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EMBEDDINGS OF FINITE GROUPS
IN Bn/Γk(Pn) FOR k = 2, 3

by Daciberg LIMA GONÇALVES,
John GUASCHI & Oscar OCAMPO

Abstract. — Let n > 3 and k ∈ {2, 3}. We study the embedding of a given
finite group G in the quotient Bn/Γk(Pn), where Bn is the nth Artin braid group,
{Γl(Pn)}l∈N is the lower central series of the nth pure braid group Pn, and |G|
denotes the order of G. If such an embedding exists, it is known that gcd(|G| , k!) =
1. In this paper, we show that if G is a finite group for which gcd(|G| , k!) = 1,
then G embeds into B|G|/Γk(P|G|). If k = 2, the result was proved independently
by Beck and Marin. If G = Zpr oθ Zd, where the action θ is injective, p is an odd
prime, p > 5 if k = 3, and d divides p− 1 and satisfies gcd(d, k!) = 1, we show that
G embeds into Bpr/Γk(Ppr ). If k = 2, this is a special case of another result of
Beck and Marin. We also construct explicit embeddings in B9/Γ2(P9) of the two
non-Abelian groups of order 27.
Résumé. — Soient n > 3 et k ∈ {2, 3}. Nous étudions le plongement d’un groupe

fini donné G dans le quotient Bn/Γk(Pn), où Bn est le ne groupe de tresses d’Artin,
{Γl(Pn)}l∈N est la série centrale descendante du ne groupe de tresses pures Pn, et
|G| désigne l’ordre de G. Si un tel plongement existe, on sait que pgcd(|G| , k!) = 1.
Si G est un groupe fini pour lequel pgcd(|G| , k!) = 1, nous montrons dans cet
article que G se plonge dans B|G|/Γk(P|G|). Si k = 2, ce résultat a été démontré
indépendamment par Beck et Marin. Si G = Zpr oθ Zd, où l’action θ est injective,
p est un nombre premier impair, p > 5 si k = 3, et d divise p − 1 et vérifie
pgcd(d, k!) = 1, nous montrons que G se plonge dans Bpr/Γk(Ppr ). Si k = 2,
c’est un cas particulier d’un autre résultat de Beck et Marin. Nous construisons
également des plongements explicites des deux groupes non-abéliens d’ordre 27
dans B9/Γ2(P9).

1. Introduction

If n ∈ N, let Bn denote the (Artin) braid group on n strings. It is well
known that Bn admits a presentation with generators σ1, . . . , σn−1 that
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are subject to the relations σiσj = σjσi for all 1 6 i < j 6 n− 1 for which
|i−j| > 2, and σiσi+1σi = σi+1σiσi+1 for all 1 6 i 6 n−2. Let σ : Bn → Sn
denote the surjective homomorphism onto the symmetric group Sn defined
by σ(σi) = (i, i + 1) for all 1 6 i 6 n − 1. The pure braid group Pn on n
strings is defined to be the kernel of σ, from which we obtain the following
short exact sequence:

(1.1) 1→ Pn → Bn
σ→ Sn → 1.

If G is a group, recall that its lower central series {Γk(G)}k∈N is defined
by Γ1(G) = G, and Γk(G) = [Γk−1(G), G] for all k > 2 (if H and K are
subgroups of G, [H,K] is defined to be the subgroup of G generated by
the commutators of the form [h, k] = hkh−1k−1, where h ∈ H and k ∈ K).
Note that Γ2(G) is the commutator subgroup of G, and that Γk(G) is a
normal subgroup of G for all k ∈ N. In our setting, since Pn is normal in
Bn, it follows that Γk(Pn) is also normal in Bn, and the extension (1.1)
induces the following short exact sequence:

(1.2) 1→ Pn/Γk(Pn)→ Bn/Γk(Pn) σ→ Sn → 1,

obtained by taking the quotient of Pn and Bn by Γk(Pn). It follows from
results of Falk and Randell [3] and Kohno [7] that the kernel of (1.2) is tor-
sion free (see Proposition 2.1 for more information). The quotient groups
of the form Bn/Γk(Pn) have been the focus of several recent papers. First,
the quotient Bn/Γ2(Pn) belongs to a family of groups known as enhanced
symmetric groups [8, page 201] that were analysed in [11]. Secondly, in their
study of pseudo-symmetric braided categories, Panaite and Staic showed
that this quotient is isomorphic to the quotient of Bn by the normal closure
of the set

{
σiσ
−1
i+1σiσ

−1
i+1σiσ

−1
i+1
∣∣ i = 1, 2, . . . , n− 2

}
[10]. Thirdly, in [4], we

showed that Bn/Γ2(Pn) is a crystallographic group, and that up to iso-
morphism, its finite Abelian subgroups are the Abelian subgroups of Sn of
odd order. In particular, the torsion of Bn/Γ2(Pn) is the odd torsion of Sn.
We also gave an explicit embedding in B7/Γ2(P7) of the Frobenius group
Z7 o Z3 of order 21, which is the smallest finite non-Abelian group of odd
order. As far as we know, this is the first example of a finite non-Abelian
group that embeds in a quotient of the form Bn/Γ2(Pn). Almost all of the
results of [4] were subsequently extended to the generalised braid groups
associated to an arbitrary complex reflection group by Marin [9]. If p > 3
is a prime number for which p ≡ 3 mod 4, he showed that the Frobenius
group ZpoZ(p−1)/2 embeds in Bp/Γ2(Pp). Observe that this group cannot
be embedded in Bn/Γ2(Pn) for any n < p, since Zp cannot be embedded
in Sn in this case. In another direction, the authors studied some aspects
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of the quotient Bn/Γk(Pn) for all n, k > 3, and proved that it is an almost-
crystallographic group [5]. For the case k = 3, it was shown that the torsion
of Bn/Γ3(Pn) is the torsion of Sn that is relatively prime with 6. For future
reference, we summarise some of these results in the following theorem.

Theorem 1.1 ([4, Corollary 4], [5, Theorems 2 and 3]). — Let n > 3.
(a) The torsion of the quotient Bn/Γ2(Pn) is equal to the odd torsion

of Sn.
(b) The group Bn/Γ3(Pn) has no elements of order 2 or 3, and if m ∈ N

is relatively prime with 6 then Bn/Γ3(Pn) possesses elements of
order m if and only if Sn does.

Almost nothing is known about the torsion and the finite subgroups of
Bn/Γk(Pn) in the case where k > 3.

Suppose that n > 3 and k > 2. The results of [4, 5, 9] lead to a number
of interesting problems involving the quotients Bn/Γk(Pn). Given a finite
group G, a natural question in our setting is whether it can be embedded
in some Bn/Γk(Pn). In order to formulate some of these problems, we
introduce the following notation. Let |G| denote the order of G, let m(G)
denote the least positive integer r for which G embeds in the symmetric
group Sr, and if k > 2, let `k(G) denote the least positive integer s, if
such an integer exists, for which G embeds in the group Bs/Γk(Ps). The
integer `k(G) is not always defined. For example, if G is of even order,
Theorem 1.1(a) implies that G does not embed in any group of the form
Bn/Γk(Pn). However, if `k(G) is defined, then m(G) 6 `k(G) using (1.2)
and the fact that Pn/Γk(Pn) is torsion free.

The main aim of this paper is to study the embedding of finite groups in
the two quotients Bn/Γk(Pn), where k ∈ {2, 3}. In Section 2, we start by
recalling some results from [4, 5] about the action of Sn on certain bases
of the free Abelian groups Pn/Γ2(Pn) and Γ2(Pn)/Γ3(Pn), which we use
to obtain information about the cycle structure of elements of Sn that fix
elements of these bases. In Proposition 2.3, using cohomological arguments,
we show that a short exact sequence splits if its quotient is a finite group G
and its kernel is a free Z[G]-module. This provides a fundamental tool for
embedding G in our quotients. In Section 3, we prove the following result.

Theorem 1.2. — Let G be a finite group, and let k ∈ {2, 3}. Then the
group G embeds in B|G|/Γk(P|G|) if and only if gcd(|G| , k!) = 1.

The statement of Theorem 1.2 has been proved independently by Beck
and Marin in the case k = 2 [1] using different methods within the setting
of real reflection groups. This result may be viewed as a Cayley-type result
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for Bn/Γk(Pn) since the proof makes use of the embedding of G in the
symmetric group S|G|, as well as Proposition 3.1 that provides sufficient
conditions on the fixed points in the image of an embedding of G in Sm for
G to embed in Bn/Γk(Pn). If gcd(|G| , k!) = 1, it follows from this theorem
that `k(G) 6 |G| by Theorem 1.2, from which we obtain:

(1.3) m(G) 6 `k(G) 6 |G|.

The analysis of the inequalities of (1.3) is itself an interesting problem.
Using Theorem 1.1, if G is a cyclic group of prime order at least 5 and k
is equal to either 2 or 3 then m(G) = `k(G) = |G|. In [1, Corollary 13],
Beck and Marin show that m(G) = `2(G) for any finite group of odd
order in a broader setting. This result may also be obtained by applying [1,
Corollary 7] to [4, Corollary 4 and its proof]. We do not currently know
whether there exist groups for which m(G) < `3(G).
In Section 4, we study the embedding of certain finite groups in the

quotient Bn/Γk(Pn), where k ∈ {2, 3}. In the case k = 2, our results are
special cases of [1, Corollary 13], but the methods that we use are rather
different from those of [1], and they are also valid for the case k = 3. In
Section 4.1, we consider certain semi-direct products of the form Znoθ Zm
for which the action θ is injective, and we analyse their possible embedding
in Bn/Γk(Pn). Our main result in this direction is the following.

Theorem 1.3. — Letm,n > 3, letG = ZnoθZm, where θ : Zm → Zn is
the associated action, and let 1 6 t < n be such that θ(1m) is multiplication
by t in Zn. Assume that gcd(tl−1, n) = 1 for all 1 6 l 6 m−1. Ifmn is odd
(resp. gcd(mn, 6) = 1) then G embeds in Bn/Γ2(Pn) (resp. in Bn/Γ3(Pn)).

Using Lemma 4.2(a), we remark that the hypotheses of Theorem 1.3
imply that the action θ : Zm → Aut (Zn) is injective. As an application of
this theorem, we obtain the following corollary.

Corollary 1.4. — Let p be an odd prime, let p− 1 = 2jd, where d is
odd, let d1 be a divisor of d, and let G be a group of the form Zpr oθ Zd1 ,
where θ : Zd1 → Aut (Zpr ) is injective.

(a) If p > 3 then G embeds in Bpr/Γ2(Ppr ).
(b) If p> 5 and d1 satisfies gcd(d1, 3) = 1 thenG embeds inBpr/Γ3(Ppr ).

Since the group Zpr cannot be embedded in Sm for any m < pr, the
groups of Corollary 1.4 satisfy m(G) = `k(G) = pr, where k ∈ {2, 3}, so
the results of this corollary are sharp in this sense, and are coherent with
those of [1, Corollary 13] in the case k = 2. Further, the groups that appear
in [9, Corollary 3.11] correspond to the case where r = 1, p ≡ 3 mod 4, and
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d1 = (p − 1)/2 is odd. Hence Corollary 1.4 generalises Marin’s result to
the case where p is any odd prime and d1 is the greatest odd divisor of
p− 1, and more generally, in the case k = 2, the family of groups obtained
in Theorem 1.3 extends even further that of the Frobenius groups of [9,
Corollary 3.11].
At the end of the paper, in Section 4.2, we give explicit embeddings of

the two non-Abelian groups of order 27 in B9/Γ2(P9). Neither of these
groups satisfies the hypotheses of Theorem 1.3. The fact that they embed
in B9/Γ2(P9) follows from the more general result of [1, Corollary 13], but
our approach is different to that of [1]. Within our framework, it is natural
to study these two groups, first because with the exception of the Frobenius
group of order 21 analysed in [4], they are the smallest non-Abelian groups
of odd order, and secondly because they are of order 27, so are related to
the discussion in Section 4.1 on groups whose order is a prime power. The
direct embedding of these groups in B9/Γ2(P9) is computationally difficult
due to the fact that the kernel P9/Γ2(P9) of (1.2) is of rank 36, but we get
round this problem by first considering an embedding in a quotient where
the corresponding kernel is free Abelian of rank 9, and then by applying
Proposition 2.3. We believe that this technique will prove to be useful for
other groups.
If n > 3, it follows from [1, Corollary 13] that the isomorphism classes

of the finite subgroups of Bn/Γ2(Pn) are in bijection with those of the
subgroups of Sn of odd order. The study of the finite non-cyclic subgroups
of Bn/Γ3(Pn) constitutes work in progress.
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2. Preliminaries

In this section, we recall several results concerning the torsion of the
groups Bn/Γk(Pn), where k ∈ {2, 3}, as well as some group-cohomological
facts from [2] that will be used in this paper. We first state the following
result from [5] that we will require.

Proposition 2.1 ([5, Lemma 11]).

(a) Let n, k > 2. Then the group Pn/Γk(Pn) is torsion free.
(b) Let n > 3, let k > l > 1, and let G be a finite group. If Bn/Γk(Pn)

possesses a (normal) subgroup isomorphic to G then Bn/Γl(Pn)
possesses a (normal) subgroup isomorphic to G. In particular, if p
is prime, and if Bn/Γl(Pn) has no p-torsion then Bn/Γk(Pn) has no
p-torsion.

Note that the first part of Proposition 2.1 follows from papers by Falk
and Randell [3, Theorem 4.2] and Kohno [7, Theorem 4.5] who proved inde-
pendently that for all n > 2 and k > 1, the group Γk(Pn)/Γk+1(Pn) is free
Abelian of finite rank, the rank being related to the Poincaré polynomial
of certain hyperplane complements.
It is well known that a set of generators for Pn is given by the set

{Ai,j}16i<j6n [6]. If j > i then we take Aj,i = Ai,j . By abuse of nota-
tion, for k > 2 and 1 6 i < j 6 n, we also denote the image of Ai,j under
the canonical projection Pn → Pn/Γk(Pn) by Ai,j . The groups Pn/Γ2(Pn)
and Γ2(Pn)/Γ3(Pn) are free Abelian groups of finite rank n(n − 1)/2 and
n(n − 1)(n − 2)/6 respectively [3, Theorem 4.2]. By [4, Section 3, p. 399]
(resp. [5, equation (17)]), a basis for Pn/Γ2(Pn) (resp. Γ2(Pn)/Γ3(Pn)) is
given by:
(2.1) B = {Ai,j | 16 i < j 6 n} (resp. by B′ = {αi,j,k | 16 i < j < k 6 n}),
where αi,j,k = [Ai,j , Aj,k]. The action by conjugacy of Bn/Γ2(Pn) (resp. of
Bn/Γ3(Pn)) on Pn/Γ2(Pn) (resp. on Pn/Γ3(Pn)) is defined in [4, Propo-
sition 12] (resp. in [5, equation (8)]), and induces an action of Sn on
Pn/Γ2(Pn) (resp. on Γ2(Pn)/Γ3(Pn)) that we now describe. If τ ∈ Sn,
Ai,j ∈ B and αi,j,k ∈ B′ then by [4, Proposition 12] and [5, equation (8)],
we have:

(2.2)
{
τ ·Ai,j = Aτ−1(i),τ−1(j) and
τ · αi,j,k = τ · [Ai,j , Aj,k] = [Aτ−1(i),τ−1(j), Aτ−1(j),τ−1(k)].

The following lemma implies that Sn acts on B and B̂′ respectively, where
B̂′ = B′ ∪B′−1. In each case, the nature of the action gives rise by linearity
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to an action of Sn on the whole group. We also obtain some information
about the stabilisers of the elements of B and B̂′. This will play a crucial
role in the proof of Proposition 3.1.

Lemma 2.2. — Let n > 2, and let τ ∈ Sn.
(a) Let Ai,j be an element of the basis B of Pn/Γ2(Pn), where 1 6

i < j 6 n. Then the element τ · Ai,j given by the action of Sn on
Pn/Γ2(Pn) belongs to B. Further, if τ · Ai,j = Ai,j then the cycle
decomposition of τ either contains a transposition, or at least two
fixed elements.

(b) Let αi,j,k be an element of the basis B′ of Γ2(Pn)/Γ3(Pn), where
1 6 i < j < k 6 n. Then the element τ · αi,j,k given by the
action of Sn on Γ2(Pn)/Γ3(Pn) belongs to B̂′. Further, if τ ·αi,j,k ∈{
αi,j,k, α

−1
i,j,k

}
then the cycle decomposition of τ contains either a

transposition, or a 3-cycle, or at least three fixed elements.

Proof.

(a). — The first part follows from (2.2). If 1 6 i < j 6 n and τ ∈ Sn
are such that τ · Ai,j = Ai,j then τ({i, j}) = {τ(i), τ(j)} = {i, j}, which
implies the second part of the statement.

(b). — The first part is a consequence of [5, equation (16)]. Now suppose
that τ ·αi,j,k ∈

{
αi,j,k, α

−1
i,j,k

}
, where 1 6 i < j < k 6 n and τ ∈ Sn. By [5,

equation (18)], we have τ({i, j, k}) = {τ(i), τ(j), τ(k)} = {i, j, k}, from
which we deduce the second part. �

Lemma 2.2 implies that if G = Sn then B and B̂′ are G-sets, and the
action of G on each of these sets extends to a Z-linear action of G on the
free Z-modules ZB and ZB′ respectively, with respect to the embedding of
B̂′ in ZB′ given by αi,j,k 7−→ αi,j,k and α−1

i,j,k 7−→ (−1). αi,j,k, the under-
lying free Abelian groups being naturally identified with Pn/Γ2(Pn) and
Γ2(Pn)/Γ3(Pn) respectively. It follows that Pn/Γ2(Pn) and Γ2(Pn)/Γ3(Pn)
each admit a G-module structure inherited from the action of Sn on B and
B̂′ respectively.
Given a group G, let Z[G] denote its group ring. The underlying Abelian

group, also denoted by Z[G], may be regarded as a Z[G]-module (or as
a G-module) via the multiplication in the ring Z[G] (see [2, Chapter I,
Sections 2 and 3] for more details), namely:

(2.3) g ·
m∑

i=1
nigi =

m∑

i=1
ni(ggi)
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for all m ∈ N, g, g1, . . . , gm ∈ G and n1, . . . , nm ∈ Z. The cohomology of
the group G with coefficients in Z[G] regarded as a G-module is well under-
stood. In the case that G is finite, we have the following result concerning
its embedding in certain extensions whose kernel is a free Z[G]-module.
First recall that if M is an Abelian group that fits into an extension of the
following form:

(2.4) 1→M → E → G→ 1,

then M is also a Z[G]-module, the action being given by (2.4).

Proposition 2.3. — Let G be a finite group. Given an extension of the
form (2.4), suppose that M is a free Z[G]-module. Then the short exact
sequence (2.4) splits. In particular, G embeds in E as a subgroup, and
the restriction of the projection E → G to the embedded copy of G is an
isomorphism.

Proof. — First suppose that M ∼= Z[G]. By [2, equation 6.5, p. 73], the
group H∗(G,Z[G]) is trivial for all ∗ > 1. In particular, H2(G,Z[G]) = 0,
which implies that any extension of the form (2.4) withM = Z[G] is split [2,
Chapter IV, Theorem 3.12], where the action of the quotient on the kernel
turns Z[G] into a Z[G]-module that is isomorphic to the one-dimensional
free Z[G]-module. Now suppose that M is an arbitrary free Z[G]-module
whose Z[G]-module structure is defined by (2.4). So M ∼= ⊕J Z[G] as a
Z[G]-module for some set J , and:

H2(G,M) ∼= H2
(
G,
⊕

J

Z[G]
)
∼=
⊕

J

H2(G,Z[G]) = 0

by the first part of the proof. The short exact sequence (2.4) splits as in
the case M ∼= Z[G]. �

3. Cayley-type results for subgroups of Bn/Γk(Pn), k = 2, 3

Let k ∈ {2, 3}. In this section, we prove Theorem 1.2 that may be viewed
as an analogue of Cayley’s theorem for Bn/Γk(Pn). The following proposi-
tion will be crucial in the proofs of Theorems 1.2 and 1.3.

Proposition 3.1. — Let k ∈ {2, 3}, let G be a finite group whose order
is relatively prime with k!, letm > 3, and let ϕ : G→ Sm be an embedding.
Assume that for all g ∈ G \ {e}, ϕ(g) fixes at most k − 1 elements. Then
the group G embeds in Bm/Γk(Pm).
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Proof. — Assume first that k = 2, so |G| is odd. Let G̃ be the (isomor-
phic) image of G by ϕ in Sm. Taking the inverse image by σ of G̃ in (1.2)
with n = m and k = 2 gives rise to the following short exact sequence:

(3.1) 1→ Pm/Γ2(Pm)→ σ−1(G̃)
σ|
σ−1(G̃)−−−−−−→ G̃→ 1.

From Section 2, G, and hence G̃, acts on the free Abelian group Pm/Γ2(Pm)
of rank m(m−1)/2, and the restriction of this action to the basis B is given
by (2.2). Let 1 6 i < j 6 m, and let g ∈ G be such that ϕ(g) ·Ai,j = Ai,j .
Since |G| is odd, the cycle decomposition of ϕ(g) contains no transposition,
and by Lemma 2.2(a) and the hypothesis on the fixed points of ϕ(g), we see
that g = e. So for all 1 6 i < j 6 m, the orbit of Ai,j contains exactly |G|
elements. In particular, |G| divides m(m−1)/2, and B may be decomposed
as the disjoint union of the form

∐m(m−1)/2|G|
k=1 Ok, where each Ok is an

orbit of length |G|. For k = 1, . . . ,m(m− 1)/2|G|, let ek ∈ Ok, and let Hk

denote the subgroup of Pm/Γ2(Pm) generated by Ok. Then Pm/Γ2(Pm) ∼=⊕m(m−1)/2|G|
k=1 Hk, and for all x ∈ Ok, there exists a unique element g ∈ G

such that ϕ(g) · ek = x. Thus the map that to x associates g defines a
bijection between Ok and G. Since Ok is a basis of Hk, if h ∈ Hk, there
exists a unique family of integers {qg}g∈G such that h =

∏
g∈G(ϕ(g) ·ek)qg ,

and the map Φ: Hk → Z[G] defined by Φ(h) =
∑
g∈G qgg may be seen to

be an isomorphism. Further, via Φ, the action of G on Hk corresponds to
the usual action of G on Z[G]. More precisely, if γ ∈ G, then:

Φ(ϕ(γ) · h) = Φ
(
ϕ(γ) ·

∏

g∈G
(ϕ(g) · ek)qg

)
= Φ

(∏

g∈G
(ϕ(γg) · ek)qg

)

=
∑

g∈G
qgγg = γ · Φ(h),

the action of γ on Φ(h) being given by (2.3). Hence Pm/Γ2(Pm) is isomor-
phic to

⊕m(m−1)/2|G|
1 Z[G] as Z[G]-modules, and by Proposition 2.3, we

conclude that the extension (3.1) splits. Thus G is isomorphic to a subgroup
Ĝ of σ−1(G̃), which in turn is a subgroup of Bm/Γ2(Pm), and this proves
the result in the case k = 2. Now suppose that k = 3. Since gcd(|G| , 6) = 1,
|G| is odd, and as above, G is isomorphic to the subgroup Ĝ of Bm/Γ2(Pm).
Consider the following extension:

1→ Γ2(Pm)/Γ3(Pm)→ Bm/Γ3(Pm) ρ→ Bm/Γ2(Pm)→ 1,

where ρ : Bm/Γ3(Pm)→Bm/Γ2(Pm) denotes the canonical projection. Tak-
ing the inverse image of Ĝ by ρ gives rise to the following short exact
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sequence:
(3.2) 1→ Γ2(Pm)/Γ3(Pm)→ ρ−1(Ĝ)

ρ|
ρ−1(Ĝ)−−−−−→Ĝ→ 1.

Let ϕ′ : Ĝ→ Sm denote the embedding of Ĝ in Sm given by compos-
ing ϕ by an isomorphism between Ĝ and G. Then Ĝ acts on the kernel
Γ2(Pm)/Γ3(Pm) of (3.2) via (2.2). Since gcd(

∣∣G̃
∣∣, 6) = 1, for all ĝ ∈ Ĝ\{e},

the cycle decomposition of ϕ′(ĝ) contains neither a transposition nor a
3-cycle, and by hypothesis, ϕ′(ĝ) contains at most 2 fixed elements. It
follows from Lemma 2.2(b) that if ϕ′(ĝ) · αi,j,k ∈

{
αi,j,k, α

−1
i,j,k

}
, where

1 6 i < j < k 6 n and ĝ ∈ Ĝ, then ĝ = e. In particular, the orbits of αi,j,k
and α−1

i,j,k are disjoint, every orbit contains exactly |G| elements, and thus
|G| divides m(m− 1)(m− 2)/6. So there exists a basis of Γ2(Pm)/Γ3(Pm)
that is the disjoint union of m(m − 1)(m − 2)/6|G| orbits of elements of
B̂′, and that for all 1 6 i < j < k 6 n, contains exactly one element
of
{
αi,j,k, α

−1
i,j,k

}
. As in the case k = 2, we conclude that the short exact

sequence (3.2) splits, and that G embeds in Bm/Γ3(Pm). �

Remark 3.2. — An efficient way to use Proposition 3.1 is as follows.
Let ϕ : G→ Sn be an embedding, and for an order-preserving inclusion
ι : {1, 2, . . . ,m} ↪−→ {1, 2, . . . , n}, where m < n, consider the embedding
Sm → Sn. Suppose that the homomorphism ϕ factors through Sm, and
let ϕ′ : G→ Sm be the factorisation. It may happen that the hypotheses
of Proposition 3.1 hold for ϕ′ but not for ϕ. In this case, we may apply
this proposition to ϕ′ to conclude the existence of an embedding of G in
Bm/Γk(Pm), which in turn implies that G embeds in Bn/Γk(Pn).

We are now able to prove Theorem 1.2.
Proof of Theorem 1.2. — Let G be a finite group, and let k ∈ {2, 3}.

If G embeds in the group B|G|/Γk(P|G|) then Theorem 1.1 implies that
gcd(|G| , k!) = 1. Conversely, suppose that gcd(|G| , k!) = 1. Consider the
classical embedding of G in S|G| that is used in the proof of Cayley’s theo-
rem (note that we identify SG with S|G|). More precisely, let ψ : G×G→ G

denote the action of G on itself given by left multiplication. For all g ∈ G,
the map ψg : G→ G defined by ψg(h) = ψ(g, h) = gh is a permutation of
G, and the map Ψ: G→ S|G| defined by Ψ(g) = ψg is an injective homo-
morphism, so G̃ = {ψg | g ∈ G} is a subgroup of S|G| that is isomorphic
to G. The action ψ is free: if h ∈ G then h = ψg(h) if and only if g = e.
In particular, if g 6= e then ψg is fixed-point free, and so the permutation
Ψ(g) is fixed-point free for all g ∈ G \ {e}. Taking m = |G|, the hypotheses
of Proposition 3.1 are satisfied for the embedding Ψ: G→ S|G|, and we
conclude that G embeds in B|G|/Γk(P|G|). �
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4. Embeddings of some semi-direct products in Bn/Γk(Pn),
k ∈ {2, 3}

Let m,n ∈ N, and let k ∈ {2, 3}. In this section, we study the prob-
lem of embedding groups of the form Zn oθ Zm in Bn/Γk(Pn), where the
representation θ : Zm → Aut (Zn) is taken to be injective. With additional
conditions on θ, in Section 4.1, we prove Theorem 1.3. In Section 4.2, we
study the two non-Abelian groups of order 27. The first such group is of
the form Zn oθ Zm, where θ is injective, but the additional conditions of
Theorem 1.3 are not satisfied. The second such group is not of the form
Zn oθ Zm. We prove that both of these groups embed in B9/Γ2(P9). In
the case of the first group, this shows that the hypotheses of Theorem 1.3
are sufficient to embed Zn oθ Zm in Bn/Γk(Pn), but not necessary. With
respect to (1.3), these groups also satisfy m(G) = `k(G) < |G|, which is
coherent with [1, Corollary 13] in the case k = 2.

4.1. Proof of Theorem 1.3

Letm,n ∈ N. In this section, G will be a group of the form ZnoθZm. We
study the question of whether G embeds in Bn/Γk(Pn), where k ∈ {2, 3}.
By Theorem 1.1, when G = Zn oθ Zm for such an embedding to exist,
gcd(|G| , k!) = 1, and so we shall assume from now on that this is the
case. In order to apply Proposition 3.1, we will make use of a specific
embedding of G in Sn studied by Marin in the case where n is prime and
m = (n − 1)/2 [9], as well as the restriction to G of the action of Sn on
Pn/Γ2(Pn) and Γ2(Pn)/Γ3(Pn) described by equation (2.2). If q ∈ N, we
will denote the image of an integer r under the canonical projection Z→ Zq
by rq, or simply by r if no confusion is possible.
Following [9, proof of Corollary 3.11], we start by describing a homomor-

phism from K to SA, for groups of the form K = A oθ H, where A and
H are finite, A is Abelian, and SA denotes the symmetric group on the
set A. Let (u, v) ∈ K, where the elements of K are written with respect
to the semi-direct product A oθ H, and let ϕ(u,v) : A→ A be the affine
transformation defined by:

(4.1) ϕ(u,v)(z) = θ(v)(z) + u for all z ∈ A.
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Lemma 4.1.

(a) For all (u, v) ∈ K, the map ϕ(u,v) : A→ A defined in (4.1) is a
bijection.

(b) Let ϕ : K → SA be the map defined by ϕ(u, v) = ϕ(u,v) for all
(u, v) ∈ K. Then ϕ is a homomorphism. Further, if the action
θ : H → Aut (A) is injective then ϕ is too.

Proof.
(a). — If (u, v) ∈ K, the statement follows from the fact that θ(v) is an

automorphism of A.
(b). — Part (a) implies that the map ϕ is well defined. We now prove

that ϕ is a homomorphism. If (u1, v1), (u2, v2) ∈ K, then for all z ∈ A, we
have:

(ϕ(u2,v2) ◦ ϕ(u1,v1))(z) = ϕ(u2,v2)(θ(v1)(z) + u1)
= θ(v2)(θ(v1)(z) + u1) + u2

= θ(v2)(θ(v1)(z)) + θ(v2)(u1) + u2

= θ(v2v1)(z) + θ(v2)(u1) + u2

= ϕ(u2+θ(v2)(u1),v2v1)(z)
= ϕ(u2,v2)(u1,v1)(z),

so ϕ(u2,v2) ◦ ϕ(u1,v1) = ϕ(u2,v2)(u1,v1), and ϕ is a homomorphism. Finally,
suppose that θ is injective, and let (u, v) ∈ Ker (ϕ). Then z = ϕ(u, v)(z) =
ϕ(u,v)(z) = θ(v)(z) + u for all z ∈ A. Taking z to be the trivial element
eA of A yields u = eA. Hence θ(v) = IdA, and it follows that v is the
trivial element H by the injectivity of θ, which completes the proof of the
lemma. �

As above, let G be a semi-direct product of the form Zn oθ Zm, where
θ : Zm → Aut (Zn) is the associated action. Note that we can apply the
construction of equation (4.1) to G, and so the conclusions of Lemma 4.1
hold for G. The element 1m generates the additive group Zm, so θ(1m) is an
automorphism of Zn whose order divides m, and since any automorphism
of Zn is multiplication by an integer that is relatively prime with n, there
exists 1 6 t < n such that gcd(t, n) = 1, θ(1m) is multiplication by t,
and tm ≡ 1 mod n. If θ is injective, the order of the automorphism θ(1m)
is equal to m, and so tl 6≡ 1 mod n for all 1 6 l < m, but this does not
imply that tl − 1 is relatively prime with n. However, the condition that
gcd(tl−1, n) = 1 for all 1 6 l < m is the hypothesis that we require in order
to prove Theorem 1.3, and as we shall now see, implies that θ is injective.
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Lemma 4.2. — Let n,m ∈ N, let G be a semi-direct product of the form
Zn oθ Zm, and let 1 6 t < n be such that θ(1m) is multiplication in Zn by
t. Suppose that gcd(tl − 1, n) = 1 for all 1 6 l 6 m− 1.

(a) The action θ : Zm → Aut (Zn) is injective, and the homomorphism
ϕ : G→ SZn defined in Lemma 4.1 is injective.

(b) For all (u, v) ∈ G\{(0n, 0m)}, the permutation ϕ(u, v) fixes at most
one element, and if v 6= 0m then ϕ(u, v) fixes precisely one element.

Proof.
(a). — To prove the first part, we argue by contraposition. Suppose that

θ is not injective. Then there exists 1 6 l < m such that θ(lm) = IdZn .
Now θ(1m) is multiplication by t, so θ(lm) is multiplication by tl, and thus
tl ≡ 1 mod n, which implies that gcd(tl− 1, n) 6= 1. The second part of the
statement follows from Lemma 4.1(b).
(b). — Let (u, v) ∈ G\{(0n, 0m)}. If v = 0m then u 6= 0n, so ϕ(u,0m)(z) =

z + u 6= z for all z ∈ Zn, hence ϕ(u,0m) is fixed-point free. So suppose that
v 6= 0m. Since θ(v) is multiplication by tv, the corresponding affine trans-
formation ϕ(u,v) : Zn → Zn is given by ϕ(u,v)(z) = tvz + u for all z ∈ Zn.
By hypothesis, gcd(tv−1, n) = 1, so tv−1 is invertible in Zn, and if z ∈ Zn,
we have:

ϕ(u,v)(z) = z ⇐⇒ tvz + u = z ⇐⇒ (tv − 1)z = −u⇐⇒ z = −u(tv − 1)−1

in Zn. Hence ϕ(u,v) possesses a unique fixed point. �

The above framework enables us to prove Theorem 1.3 using Proposi-
tion 3.1.

Proof of Theorem 1.3. — Let ϕ : G→ SZn be the embedding of G in SZn
of Lemma 4.1(b). By Lemma 4.2(b), for all g ∈ G \ {e}, ϕ(g) fixes at most
one point. So the embedding ϕ satisfies the hypotheses of Proposition 3.1,
from which we conclude that G embeds in Bn/Γ2(Pn) (resp. in Bn/Γ3(Pn))
if mn is odd (resp. if gcd(mn, 6) = 1). �

As an application of Theorem 1.3, we consider groups of the form ZnoθH,
where H is finite, n = pr is a power of an odd prime p, where r ∈ N, and
the homomorphism θ : H → Aut (Zpr ) is injective. Recall from [12, p. 146,
lines 16–17] that:

(4.2) Aut (Zpr ) ∼= Z(p−1)pr−1 ∼= Zp−1 ⊕ Zpr−1 ,

where the isomorphisms of (4.2) are described in [12, p. 145–146]. We
shall now prove Corollary 1.4 by studying injective actions of the form
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θ : H → Z(p−1)pr−1 , where H is a cyclic group whose order is an odd di-
visor of p − 1. Note that for our purposes, it suffices to take H to be the
(unique) subgroup of Zp−1 6 Aut (Zpr ) of order d1, and θ to be inclusion.
Proof of Corollary 1.4. — Let p > 2 be prime, let p−1 = 2jd, where d is

odd, and let d1 be a divisor of d. So identifying Aut (Zpr ) with Zp−1⊕Zpr−1

via (4.2), and taking the subgroup H in the above discussion to be Zd1 ,
there exists an injective homomorphism θ : Zd1 → Zp−1 ⊕ Zpr−1 , where
θ(1d1) is an automorphism of Zpr given by multiplication by an integer
t that is relatively prime with p, and the order d1 of this automorphism is
also relatively prime with p. In particular, the order of t in the group Z∗pr
is equal to d1. We claim that gcd(tl − 1, p) = 1 for all 0 < l < d1. Suppose
on the contrary that tl − 1 is divisible by p for some 0 < l < d1. Then
tl = 1 + kp, where k ∈ N, and [12, p. 146, line 12] implies that the order
of tl in Z∗pr is a power of p, which contradicts the fact that t is of order d1
and gcd(d1, p) = 1. This proves the claim. Part (a) (resp. part (b)) follows
using the fact that the order of Zpr oθ Zd1 is odd (resp. relatively prime
with 6) and by applying Theorem 1.3. �

Remark 4.3. — As we mentioned in the introduction, the results of Corol-
lary 1.4 are sharp in the sense that if k ∈ {2, 3}, the groups ZproθZd satisfy
`k(G) = m(G) = pr if d > 1, where k ∈ {2, 3}. This result no longer holds
if we remove the hypothesis that the order of the group being acted upon
is a prime power. For example, if in the semi-direct product G = Zn oZd,
we take n = 15 and d = 1 then G ∼= Z3 × Z5, and `2(G) = m(G) = 8 < 15
using [4, Theorem 3(b)] or [1, Corollary 13].

4.2. Further examples

In this final section, we give examples of two semi-direct products of
the form Z9 oθ Z3 and (Z3 ⊕ Z3) oθ Z3 respectively that do not satisfy
the hypotheses of Theorem 1.3, but that embed in B9/Γ2(P9). We start
with some general comments. If p is an odd prime, consider the group
G = Zpr oθ Zpr−1(p−1), where with respect to the notation of [12, p. 146,
line 8], the homomorphism θ : Zpr−1(p−1) → Aut (Zpr ) sends 1pr−1(p−1) to
the element of Aut (Zpr ) given by multiplication in Zpr by t′, where t′ =
(1 + p)g1, and where the order of g1 (resp. 1 + p) is equal to p − 1 (resp.
pr−1) in the multiplicative group Z∗pr . If d1 is an odd divisor of pr−1(p−1),
let q = pr−1(p− 1)/d1, and consider the subgroup Zpr oθ′ Zd1 of G, where
Zd1 is the subgroup of Zpr−1(p−1) of order d1, and θ′ : Zd1 → Aut (Zpr ) is
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the restriction of θ to Zd1 . Then θ′(1d) = θ(qpr−1(p−1)) is multiplication by
t = t′q in Zpr , and by injectivity, t is of order d1 in Z∗pr . If further d1 is
divisible by p then td1/p is of order p in Z∗pr , and by [12, p. 146, line 12],
td1/p ≡ (1 + p)λpr−2 mod pr, where λ ∈ N and gcd(λ, p) = 1. It follows
that td1/p − 1 is divisible by p, and since 0 < d1/p < d1, the hypotheses of
Theorem 1.3 are not satisfied for the group Zpr oθ′ Zd1 . As Example 4.4(a)
below shows, if p = 3 and r = 2, such a group may nevertheless embed
in Bpr/Γ2(Ppr ). In Example 4.4(b), we show that the other non-Abelian
group of order 27, which is of the form (Zp ⊕ Zp) o Zp, also embeds in
B9/Γ2(P9). It does not satisfy the hypotheses of Theorem 1.3 either.

Examples 4.4. — Suppose that G is a group of order 27 that embeds in
S9. If k = 2 and n = 9 in (1.2), taking the preimage of G by σ leads to the
following short exact sequence:

(4.3) 1→ P9/Γ2(P9)→ σ−1(G)
σ|
σ−1(G)−−−−−−→ G→ 1,

where the rank of the free Abelian group P9/Γ2(P9) is equal to 36. As we
shall now see, if G is one of the two non-Abelian groups of order 27, the
action of S9 on the basis B of P9/Γ2(P9) given by (2.2) restricts to an action
of G on B for which there are two orbits, that of A1,2, which contains 9
elements, and is given by:
(4.4) O = {A1,2, A8,9, A5,6, A2,3, A7,8, A4,5, A1,3, A7,9, A4,6} ,

and that of A5,9, which contains the remaining 27 elements of B. Let H be
the subgroup of P9/Γ2(P9) generated by the orbit of A5,9. Then H ∼= Z27,
and H is not normal in B9/Γ2(P9), but it is normal in the subgroup σ−1(G)
of B9/Γ2(P9) since the basis B \O of H is invariant under the action of G.
We thus have an extension:
(4.5) 1→ H → σ−1(G) π→ H̃ → 1,

where H̃ = σ−1(G)/H, and π : σ−1(G)→ H̃ is the canonical projection.
Equation (4.3) induces the following short exact sequence:

(4.6) 1→ (P9/Γ2(P9))/H → H̃
σ̃→ G→ 1,

where σ̃ : H̃ → G is the surjective homomorphism induced by σ, and we
also have an extension:
(4.7) 1→ H → P9/Γ2(P9) ρ→ (P9/Γ2(P9))/H → 1,
obtained from the canonical projection ρ : P9/Γ2(P9)→ (P9/Γ2(P9))/H.
From the construction of H, and using the fact that P9/Γ2(P9) (resp. H)
is the free Abelian group of rank 36 (resp. 27) for which B (resp. B \ O)
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is a basis, the kernel of (4.6) is isomorphic to Z9 and a basis is given by
the H-cosets of the nine elements of O. Further, the restriction of ρ to
the subgroup of P9/Γ2(P9) generated by O is an isomorphism, and thus
the set ρ(O) is a basis of (P9/Γ2(P9))/H, which we denote by O′. In the
examples below, we shall construct an explicit embedding ι : G→ H̃ of G
in H̃ for which the action of ι(G) is induced by the embedding of G in S9
(in other words, the embedding of G in H̃ is compatible with the action
on H). This being the case, using (4.5), we thus obtain the following short
exact sequence:

(4.8) 1→ H → π−1(ι(G))
π|π−1(ι(G))−−−−−−−→ ι(G)→ 1.

Now H is isomorphic to Z[G], and the action of ι(G) on H is given via (2.2).
It follows from Proposition 2.3 that the short exact sequence (4.8) splits.
Hence G embeds in π−1(ι(G)), which is a subgroup of σ−1(G), and so it
embeds in B9/Γ2(P9). We could have attempted to embed G in B9/Γ2(P9)
directly via (4.3). However one of the difficulties with this approach is that
the rank of the kernel is 36, whereas that of the kernel of (4.6) is much
smaller, and this decreases greatly the number of calculations needed to
show that G embeds in H̃. We now give the details of the computations of
this embedding in the two cases.

(a) Up to isomorphism, there is only one non-Abelian group G of order
27 that contains a cyclic group of order 9, so this group is iso-
morphic to the semi-direct product Z9 oθ′ Z3 defined in the first
paragraph of this subsection. We construct G as a subgroup of
S9 as follows. Consider the elements α = (1, 2, 3)(4, 5, 6)(7)(8)(9)
and β = (1, 4, 7, 3, 5, 8, 2, 6, 9) of S9, and let G = 〈α, β〉. Then
αβα−1 = (α−1(1), . . . , α−1(9)) = (1, 5, 9, 3, 6, 7, 2, 4, 8) = β4, and it
follows that the subgroup 〈β〉 of G is normal, and that G ∼= Z9oZ3,
the action being multiplication by 4. With the above notation, one
may check that O and B \ O are the two orbits arising from the
action of G on B given by (2.2) (for future reference, note that
the order of the elements of O is that obtained by the action of
successive powers of β). We define the map ι : G→ H̃ on the gen-
erators of G by ι(α) = α̂ and ι(β) = β̂, where α̂ = σ2σ

−1
1 σ5σ

−1
4

and β̂ = A1,2A
−1
8,9wσ8σ7σ6σ5σ

−1
4 σ−1

3 σ−1
2 σ−1

1 w−1, and where w =
σ3σ6σ2σ3σ4σ5σ4σ3σ7σ6. By abuse of notation, we will denote an
element of B9/Γ2(P9) in the same way as its projection on the quo-
tient (B9/Γ2(P9))/H. We claim that α̂β̂α̂−1β̂−4 = 1 in H̃, from
which we may conclude that ι extends to a group homomorphism.
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To prove the claim, using [4, Proposition 12] and the action of β on
the orbit of A1,2 mentioned above, first note that:

α̂β̂α̂−1β̂−4 = α̂A1,2A
−1
8,9bα̂

−1(A1,2A
−1
8,9b)−4

= A1,3A
−1
8,9α̂bα̂

−1b−4. b3A−1
1,2A8,9b

−3

. b2A−1
1,2A8,9b

−2. bA−1
1,2A8,9b

−1. A−1
1,2A8,9

= A1,3A
−1
8,9. α̂bα̂

−1b−4. A−1
2,3A7,8. A

−1
5,6A2,3. A

−1
8,9A5,6. A

−1
1,2A8,9

= A−1
1,2A7,8A1,3A

−1
8,9α̂bα̂

−1b−4.(4.9)

To obtain the last equality, we have also used the fact that α̂bα̂−1b−4

belongs to the quotient (P9/Γ2(P9))/H, so commutes with the other
terms in the expression. To compute α̂bα̂−1b−4 in terms of the
basis O′ of (P9/Γ2(P9))/H, we make use of the method of cross-
ing numbers given in [4, Proposition 15], with the difference that
since we are working in (P9/Γ2(P9))/H, using the isomorphism
ρ
∣∣〈O〉 : 〈O〉 → (P9/Γ2(P9))/H induced by (4.7), it suffices to com-

pute the crossing numbers of the pairs of strings corresponding to
the elements of O given in (4.4). Using the braid α̂bα̂−1b−4 illus-
trated in Figure 4.1, one may verify that:

(4.10) α̂bα̂−1b−4 = A1,2A
−1
1,3A

−1
7,8A8,9

in (P9/Γ2(P9))/H.
It follows from equations (4.9) and (4.10) that α̂β̂α̂−1β̂−4 = 1

in H̃, which proves the claim. Thus 〈 α̂, β̂ 〉 is a quotient of G, but
since it is non Abelian, and the only non-Abelian quotient of G is
itself, we conclude that 〈 α̂, β̂ 〉 ∼= G, and hence ι is an embedding.
It follows from the discussion at the beginning of these examples
that G embeds in π−1(ι(G)), and therefore in B9/Γ2(P9).

(b) We now give an explicit example of a non-Abelian group G of the
form AoZm that embeds in B|A|/Γ2(P|A|), where A is a non-cyclic
finite Abelian group. To our knowledge, this is the first explicit
example of a finite group that embeds in such a quotient but that
is not a semi-direct product of two cyclic groups. In particular, this
subgroup does not satisfy the hypothesis of Theorem 1.3 either. Let
G be the Heisenberg group mod p of order p3, where p is an odd
prime. There exists an extension of the form:

(4.11) 1→ Zp → G→ Zp ⊕ Zp → 1,
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(a) The braid [α̂, β̂]. γ̂−1
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Figure 4.1. The braid
α̂bα̂−1b−4

(a) The braid [α̂, β̂]. γ̂−1

(b) The braid [α̂, γ̂]

Figure 4.2. The braids [α̂, β̂]. γ̂−1

and [α̂, γ̂]

ANNALES DE L’INSTITUT FOURIER

(b) The braid [α̂, γ̂]

Figure 4.2. The braids [α̂, β̂]. γ̂−1

and [α̂, γ̂]
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and a presentation of G is given by:

(4.12) 〈a, b, c | ap = bp = cp = 1, c = [a, b] and [a, c] = [b, c] = 1 〉 ,

where c is an element of G emanating from a generator of the ker-
nel Zp of the extension (4.11), and a and b are elements of G that
project to the generators of the summands of the quotient. This
group is also isomorphic to (Zp ⊕ Zp) oθ Zp, where the action
θ : Zp → Aut (Zp ⊕ Zp) is given by θ(1p) = ( 1 1

0 1 ). From now on,
we assume that p = 3. Consider the map from G to S9 that sends a
to α = (1, 4, 7)(2, 5, 8)(3, 6, 9) and b to β = (1)(2)(3)(4, 5, 6)(7, 9, 8),
so c is sent to γ = [α, β] = (1, 2, 3)(4, 5, 6)(7, 8, 9). The relations
of (4.12) hold for the elements α, β and γ, and since the only non-
Abelian quotient of G is G itself, it follows that this map extends
to an embedding of G in S9. Once more, one may check that O and
B \ O are the orbits arising from the action of G on B. It remains
to show that G embeds in H̃. Let ι : G→ H̃ be the map defined by
ι(α) = α̂, ι(β) = β̂ and ι(γ) = γ̂, where:

α̂ = w′σ2σ
−1
1 σ5σ

−1
4 σ8σ

−1
7 w′−1, β̂ = σ5σ

−1
4 σ7σ

−1
8

and γ̂ = σ2σ
−1
1 σ5σ

−1
4 σ8σ

−1
7 ,

and where
w′ = σ3σ2σ4σ6σ5σ4σ3σ7σ6.

Using the notation of [4, equations (14) and (16)], we have:

α̂ = w′δ0,3δ3,3δ6,3w
′−1 = w′δ(0, 3, 3, 3)w′−1

β̂ = δ3,3δ
−1
6,3 and γ̂ = w′α̂w′−1.

So these three elements are of order 3 in B9/Γ2(P9) by the argu-
ment of [4, line 4, p. 412], and hence they satisfy the first three
relations of (4.12) in H̃, a, b and c being taken to be α̂, β̂ and
γ̂ respectively. One may check in a straightforward manner that
[β̂, γ̂] = 1 as elements of B9, hence [β̂, γ̂] = 1 in H̃. To see that
the two remaining relations of (4.12) hold, as in the first example,
we use the method of crossing numbers of the strings given in [4,
Proposition 15], but in H̃ rather than P9/Γ2(P9). In this way, we
see from Figures 4.2(a) and (b) that [α̂, β̂]. γ̂−1 = 1 and [α̂, γ̂] = 1
in H̃. It thus follows that 〈 α̂, β̂, γ̂ 〉 is a quotient of G, but since this
subgroup is non-Abelian, and the only non-Abelian quotient of G is
itself, we conclude that 〈 α̂, β̂ 〉 ∼= G, and hence ι is an embedding.
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Once more, it follows from the discussion at the beginning of these
examples that G embeds in π−1(ι(G)), and therefore in B9/Γ2(P9).

Remarks 4.5.

(a) LetG be one of the two groups of order 27 analysed in Examples 4.4.
With the notation introduced at the beginning of Section 4, the fact
that G embeds in B9/Γ2(P9) implies that `2(G) 6 9. On the other
hand, if G embeds in Sr then r > 9 by Lagrange’s Theorem. Hence
m(G) > 9, and it follows from (1.3) that m(G) = `2(G) = 9, which
is coherent with [1, Corollary 13] in the case k = 2.

(b) The finite groups of the form A oθ H, where A is a finite Abelian
group, H is an arbitrary finite group, and θ : H → Aut (A) is injec-
tive, embed in SA by Lemma 4.1. From [1, Corollary 13], if the order
of AoθH is odd then it embeds in B|A|/Γ2(P|A|). We would like to
be able to determine which of these groups embed in B|A|/Γ3(P|A|).
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