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ANALYTIC PROPERTIES OF APPROXIMATE
LATTICES

by Michael BJÖRKLUND & Tobias HARTNICK

Abstract. — We introduce a notion of cocycle-induction for strong uniform
approximate lattices in locally compact second countable groups and use it to
relate (relative) Kazhdan- and Haagerup-type of approximate lattices to the corre-
sponding properties of the ambient locally compact groups. Our approach applies
to large classes of uniform approximate lattices (though not all of them) and is
flexible enough to cover the Lp-versions of Property (FH) and a-(FH)-menability
as well as quasified versions thereof a la Burger–Monod and Ozawa.
Résumé. — Nous introduisons une notion d’induction de cocycle pour les ré-

seaux approximatifs uniformes forts dans les groupes localement compacts à base
dénombrable, et nous l’utilisons pour mettre en relation les réseaux approxima-
tifs de type Kazhdan et Haagerup (relatifs) avec les propriétés correspondantes
des groupes ambiants localement compacts. Notre approche s’applique à de larges
classes de réseaux approximatifs uniformes (bien que pas toutes) et est suffisam-
ment souple pour couvrir les versions Lp de propriété (FH) et a-(FH)-moyennabilité,
ainsi que leurs versions quasi à la Burger–Monod et Ozawa.

1. Introduction

1.1. Approximate lattices

This article is concerned with analytic properties of approximate lattices
in locally compact second countable (lcsc) groups, in particular with prop-
erties of Kazhdan and Haagerup type. Following Tao [24], we say that a
subset Λ of a group is an approximate subgroup if it is symmetric (i.e.,
Λ−1 = Λ) and contains the identity, and if moreover there exists a finite
set FΛ ⊂ Λ3 such that

Λ2 ⊂ ΛFΛ.

Keywords: Approximate lattices, Property (T), Property (FH), Haagerup Property.
2020 Mathematics Subject Classification: 20N99, 22D10, 22E40.



1904 Michael BJÖRKLUND & Tobias HARTNICK

While the original interest was mostly in families of finite approximate
subgroups with FΛ of some uniformly bounded size, here we are interested
in infinite approximate subgroups of lcsc groups.

If Λ is an approximate subgroup of a lcsc group G, then we refer to
the group Λ∞ generated by Λ in G as the enveloping group of Λ and to
the pair (Λ,Λ∞) as an approximate group. Following [4], we say that an
approximate subgroup Λ ⊂ G is a uniform approximate lattice in Λ if it is
a Delone(1) subset of G. This terminology is motivated by the observation
that if Λ = Λ∞ is actually a subgroup ofG, then it is a uniform approximate
lattice if and only if it is a uniform lattice.

Remark 1.1. — In [4] we also discussed several tentative definitions of
“non-uniform approximate lattices”. In the present article we focus exclu-
sively on uniform approximate lattices to avoid certain integrability issues.

We observed in [4], that if Λ is a uniform approximate lattice in G,
then many properties of the group G are reflected by properties of the
approximate group (Λ,Λ∞). For example, G is compactly generated if and
only Λ∞ is finitely generated. In this case, the canonical quasi-isometry
class of G is represented by the restriction of any word metric on Λ∞ to Λ,
and G is amenable if and only if Λ is metrically amenable with respect to
any such word metric.
Here we are interested in the question, in how far analytic properties of

a lcsc group G are reflected by analytic properties of a uniform approx-
imate lattice Λ in G and the associated approximate group (Λ,Λ∞). We
will focus our investigation on variants of two important analytic proper-
ties of lcsc groups, namely Kazhdan’s Property (T) (also known as Prop-
erty (FH), see [2, 14]) and the Haagerup property (also known as Gromov’s
a-T-menability, see [7, 12, 13]).

1.2. Properties of Kazhdan- and Haagerup-type

Recall that a lcsc group G has the Haagerup Property if there exists a
metrically proper affine isometric action on a Hilbert space. As for Prop-
erty (T), there are many equivalent characterizations. The one we are going
to generalize here is known as Property (FH), which demands that every
affine isometric action of G on a Hilbert space has bounded orbits. Both
the Haagerup Property and Property (FH) have been generalized in two
different directions.
(1)See the body of the text for detailed definitions.
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Firstly, if instead of Hilbert spaces we consider Lp-spaces for some fixed
p ∈ (1,∞), then we obtain the notion of a-FLp-menability [11], respectively
the notion of Property (FLp) as introduced and studied by Bader, Furman,
Gelander and Monod [1]. (We warn the reader, that while Property (FH)
is equivalent to Property (T), Property (FLp) as just defined is strictly
stronger than Property (TLp) from [1].)

Secondly, if one replaces affine actions and cocycles by the weaker no-
tions of quasi-cocycles, respectively weak quasi-cocycles, then one obtains
strengthenings of Property (FH), which were introduced respectively by
Burger–Monod [6, 18] and Ozawa [21] under the names Property (TT) and
Property (TTT). Since these properties actually generalize Property (FH)
and to avoid a conflict of terminology in the Lp-case, we follow the termi-
nology introduced by Mimura [17] and refer to them as Property (FFH) and
(FFFH) respectively. Dually, one obtains weakening of the Haagerup Prop-
erty, which we refer to respectively as a-(FFH)-menability and a-(FFFH)-
menability (which is more consistent with our other terminology than the
term “Ha-Ha-Haagerup property” suggested by Nicolas Monod). Note that
one can combine both generalizations in the obvious way.
Definition 1.2. — For the purposes of this introduction we refer to

the properties (FLp), (FFLp) and (FFFLp) for p ∈ (1,∞) as Kazhdan
type properties, and to the a-FLp-amenability, a-FFLp-menability and the
a-FFFLp-menability for p ∈ (1,∞) as Haagerup type properties. (In the
body of the text we will actually consider Kazhdan and Haagerup type
properties with respect to more general classes of uniformly convex reflexive
Banach spaces than just Lp-spaces; all the results presented below remain
true in this more general setting.)
Cornulier in his thesis [9, 10] introduced the notion of relative Prop-

erty (T) and relative Haagerup-Property of a group with respect to a sub-
set. (Relative Property (T) with respect to subgroups was defined much
earlier by Margulis [15] and implicitly already appears in Kazhdan’s origi-
nal paper [14].) Namely, a lcsc group G has Property (T) relative to a subset
A if every affine isometric action of G on a Hilbert space has a bounded
A orbit, and it has the Haagerup property relative to a subset A if there
exists an affine isometric action of G on a Hilbert space which is A-proper.
If P is any Kazhdan-type or Haagerup-type property, then relative versions
can be defined similarly.
Definition 1.3. — Let (Λ,Λ∞) be an approximate group and let P be

a Kazhdan-type of Haagerup-type property. We say that (Λ,Λ∞) has P if
Λ∞ has P relative to Λ.

TOME 70 (2020), FASCICULE 5
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Remark 1.4. — Note that if the group Λ∞ enjoys a Kazhdan-type or
Haagerup-type property P, then so does the approximate group (Λ,Λ∞).
However, as we will see in Example 1.12 below, in general the converse is
not true.

In terms of Definition 1.2 and Definition 1.3, the main problem considered
in the present article can be formulated as follows.

Problem 1.5. — Let G be a lcsc group and Λ ⊂ G a uniform approx-
imate lattice with enveloping group Λ∞. How are the Kazhdan-type and
Haagerup-type properties of G related to the Kazhdan-type and Haagerup-
type properties of (Λ,Λ∞)?

1.3. Main results

Recall that if Γ is a uniform lattice in a lcsc group G and P is a property
of Kazhdan-type or Haagerup-type, then G has P if and only if Γ has P.
There are a number of problems which prevent us from generalizing the
results to arbitrary uniform approximate lattices.
Firstly, note that if Γ is a uniform lattice in G, then the homogeneous

space G/Γ always admits a unique G-invariant probability measure. If Λ is
merely a uniform approximate lattice in G, then it is currently not known
in full generality whether the natural substitute for the homogeneous space
G/Γ, the so-called hull XΛ of Λ, admits a G-invariant probability measure.
Let us call Λ a strong uniform approximate lattice if such a measure exists.
The following theorem will be established in Subsection 5.1:

Theorem 1.6. — LetH be a Haagerup-type property, G be a lcsc group
and Σ ⊂ G be a uniform approximate lattice which is contained in a strong
uniform approximate lattice Λ ⊂ G. Then G has H if and only if (Σ,Σ∞)
has H.

We emphasize that we do not need to assume that Σ itself is strong, but
only that it is contained in a strong uniform approximate lattice. As far
as examples are concerned, let us briefly recall the main constructions of
approximate lattices. For this let G, H be lcsc groups and denote by πG :
G×H → G the projection onto the first factor. Moreover, let Γ < G×H
be a uniform lattice which projects injectively into G and densely into H,
and let W be a compact identity neighbourhood in H with dense interior.
Then the set

Λ := Λ(G,H,Γ,W ) := πG(Γ ∩ (G×W ))

ANNALES DE L’INSTITUT FOURIER
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is called a symmetric model set. A symmetric model set is called regu-
lar provided W is Jordan-measurable with dense interior, aperiodic (i.e.,
StabH(W ) = {e}) and satisfies ∂W ∩πH(Γ) = ∅. A subset ∆ of a lcsc group
G is called a Meyer set if there exists a symmetric model set Λ ⊂ G and a
finite subset F ⊂ G such that ∆ ⊂ Λ ⊂ ∆F . In fact, Λ can be chosen to
be regular.

Proposition 1.7 ([4]). — Every regular symmetric model set is a strong
uniform approximate lattice, and every symmetric Meyer set is a uniform
approximate lattice (not necessarily strong).

Combining Proposition 1.7 and Theorem 1.6 we obtain:

Corollary 1.8. — Let H be a Haagerup-type property, G be a lcsc
group and Λ ⊂ G be a symmetric Meyer set containing the identity. Then
G has H if and only if (Λ,Λ∞) has H.

If G is abelian, then every uniform approximate lattice in G is a sym-
metric Meyer set [16, 20]. As for general G, it is currently not known
whether there exist any uniform approximate lattices which are not sym-
metric Meyer sets. In particular, the corollary covers all currently known
examples of uniform approximate lattices.
The situation with Kazhdan-type properties is more complicated than

in the Haagerup case. To formulate our result, we say that a model set
Λ is of almost connected type, respectively connected Lie type, if Λ =
Λ(G,H,Γ,W ) for some H which is almost connected (i.e., connected-by-
compact), respectively a connected Lie group. The following theorem will
be established in Subsection 5.4:

Theorem 1.9. — Let T be a Kazhdan-type property, G be a lcsc group
and Λ ⊂ G be a uniform approximate lattice. Assume that one of the
following holds:

(i) Λ is a model set.
(ii) Λ is a Meyer set which is contained in a model set of almost con-

nected type.
Then G has T if and only if (Λ,Λ∞) has T .

Concerning Case (ii) of Theorem 1.9, it is natural to ask how restrictive
the assumption on a Meyer set to be contained in a model set of almost
connected type actually is. While it is not true that every Meyer set is
contained in a model set of almost connected type, we establish (a more
precise version of) the following result in the appendix:

TOME 70 (2020), FASCICULE 5
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Theorem 1.10. — Let Λ be an arbitrary Meyer set. Then Λ is contained
in a finite union of left-translates of a model set of almost connected type.
In fact, it is even contained in a finite union of left-translates of a model
set of connected Lie type.

Remark 1.11. — For Property (T), Part (i) of Theorem 1.9 was estab-
lished (without using the language of approximate groups) by Chifan and
Ioana [8, Cor. 1.3] using Cornulier’s notion of resolutions [10]. While their
proof is simpler than ours, it uses unitary representation theory, and it is
unclear to us whether their approach can be extended to cover Proper-
ties (FFH) and (FFFH) and/or Lp-Kazhdan-type properties for p 6= 2.

Theorem 1.6 and Theorem 1.9 provide a rich supply of examples of ap-
proximate groups with various Haagerup-type and Kazhdan-type proper-
ties, see Examples 5.12 and 5.13 below.

Example 1.12.

(i) Let n > 2, G := SU(n, 2) and H := SU(n + 1, 1), let Γ be an
irreducible lattice in G×H and let Λ = Λ(G,H,Γ,W ) be a regular
model set in G with symmetric window W ⊂ H containing the
identity. It then follows from the results in [6] that Λ has the Burger–
Monod Property (FFH) (a.k.a. Property (TT)), whereas Λ∞ does
not even have Property (FH). Moreover, by results from [1], Λ also
has Property (FLp) for all p ∈ (1,∞), whereas Λ∞ does not have
Property (FLp) for any p ∈ (1,∞). (For p = 2 this follows also from
the results in [8].)

(ii) Let n > 2 and let Λ be a symmetric model set in Sp(n, 1) containing
the identity. Then Λ has Property (FH), but by results from [21],
respectively [11], it is both a-FFFH-menable and a-FLp-menable
for p > 4n+ 2.

1.4. Towards applications

Given approximate groups (Λ,Λ∞) and (Σ,Σ∞) we say that a map of
pairs ϕ : (Λ,Λ∞) → (Σ,Σ∞), is called a morphism if ϕ(gh) = ϕ(g)ϕ(h)
for all g, h ∈ Λ∞ and a quasimorphism if the set {ϕ(h)−1ϕ(g)−1ϕ(gh) |
g, h ∈ Λ∞} is finite. Then the following result can be established as in the
group case.

Proposition 1.13. — Let p ∈ (1,∞), (Λ,Λ∞), (Σ,Σ∞) be approxi-
mate groups and ϕ : (Λ,Λ∞)→ (Σ,Σ∞). Assume that either of the follow-
ing holds:
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(i) If (Λ,Λ∞) has (FLp), (Σ,Σ∞) is a-FLp-menable and ϕ is a mor-
phism.

(ii) If (Λ,Λ∞) has (FFFLp), (Σ,Σ∞) is a-FFFLp-menable and ϕ is a
quasimorphism.

Then ϕ(Λ) is finite.

Remark 1.14. — In view of the Proposition it would be of interest to
have more examples of approximate groups which have (FFFLp) or are
a-FFFLp-menable. For instance, it would be of interest to know, whether
every higher rank Lie group has Property (FFFH). Similarly, one would like
to know whether every (coarsely-connected, finitely generated) hyperbolic
approximate group (Λ,Λ∞) is a-FFFH-menable by an argument similar to
the one suggested in [21] for groups.

Finally, let us suggest our own variations on Property (T) and the
Haagerup property. A natural class of maps between approximate groups
is given by 2-Freiman quasimorphisms, i.e., maps ϕ : (Λ,Λ∞) → (Σ,Σ∞)
such that the set {ϕ(h)−1ϕ(g)−1ϕ(gh) | g, h ∈ Λ} is finite. To obtain a re-
sult analogous to Proposition 1.13 for such maps, we suggest to introduce
the following extensions of Property (TT) and (TTT):

Definition 1.15. — Let (Λ,Λ∞) be an approximate group, E be an Lp-
space, and π : Λ∞ → O(E) be an arbitrary map. Then a map b : Λ∞ → E

is called a 2-Freiman wq-cocycle if

sup
g,h∈Λ

‖b(gh)− b(g)− π(g)b(h)‖ <∞.

We say that (Λ,Λ∞) has Property (FFFFLp) if every 2-Freiman wq-cocycle
on Λ∞ is bounded on Λ, and that it is a-FFFFLp-menable if there exists a
2-Freiman wq-cocycle on Λ∞ which is proper on Λ.

We leave the following as an exercise:

Proposition 1.16. — Let p ∈ (1,∞), (Λ,Λ∞), (Σ,Σ∞) be approx-
imate groups and ϕ : (Λ,Λ∞) → (Σ,Σ∞). Assume that (Λ,Λ∞) has
(FFFFLp), (Σ,Σ∞) is a-FFFFLp-menable and ϕ is a 2-Freiman quasi-
morphism. Then ϕ(Λ) is finite.

In relation to this, we would like to advertise the following problem:

Problem 1.17. — Find examples of approximate groups with Prop-
erty (FFFFLp). Also consider the case of higher order k-Freiman cocycles
instead of 2-Freiman wq-cocycles.

TOME 70 (2020), FASCICULE 5
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1.5. On the method of proof

The proofs of Theorem 1.6 and Theorem 1.9 are based on a version of
cocycle induction from a strong uniform approximate lattice Λ to the ambi-
ent lcsc group G, which may be of independent interest. This construction
is general enough to also apply to (weak) quasi-cocycles with values in
Lp-spaces. Theorem 1.6 then follows from the observation that induction
preserves properness of cocycles. On the other hand, it is not obvious (even
in the Hilbert setting) that boundedness of the induced cocycle implies
boundedness of the original cocycle on Λ. In case where Λ = Λ(G,H,Γ,W )
is a model set, we can circumvent this problem by using an alternative
model for induction, which allows us to extend the induced G-cocycle to
a cocycle on G × H. Using results from [5] we are then able to transfer
the problem to a problem about the homogeneous space (G×H)/Γ. Even
after the reduction to the homogeneous setting, the proof of Theorem 1.9
remains non-trivial and relies on a strengthening of arguments developed
by Ozawa in his work on Property (TTT).
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work on relative Property (T). We thank the Departments of Mathematics
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2. Approximate groups and approximate lattices

2.1. Basic definitions

Definition 2.1. — An approximate group is a pair (Λ,Λ∞), where Λ∞
is a group and Λ ⊂ Λ∞ is a subset which satisfies the following conditions.
(AG1) Λ is symmetric, i.e., Λ = Λ−1, and contains the identity.
(AG2) There exists a finite subset FΛ ⊂ Λ∞ such that Λ2 ⊂ ΛFΛ.
(AG3) Λ generates Λ∞.

ANNALES DE L’INSTITUT FOURIER
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If (Λ,Λ∞) is an approximate group and G is a group containing Λ∞,
then the subset Λ ⊂ G is called an approximate subgroup of Γ. We then
call Λ∞ the enveloping group of Λ in G.
We will be particularly interested in approximate subgroups of locally

compact second countable (lcsc) groups. Recall that if G is a lcsc group,
then G admits a metric which is left-invariant, proper and defines the given
topology of G. We refer to any such metric as a left-admissible metric on
G. Also recall that if (X, d) is a metric space, then a subset Λ ⊂ X is
called a Delone set if there exist constants R > r > 0 (called the Delone
parameters of Λ) such that

• Λ is r-uniformly discrete i.e., d(x, y) > r for all x, y ∈ Λ with x 6= y;
• Λ is R-relatively dense in X, i.e., for every x ∈ X there exists y ∈ Λ

with d(x, y) 6 R.
If G is a lcsc group, then a subset Λ ⊂ G is called a Delone set if it is a
Delone set with respect to some left-admissible metric on G. One can show
(see e.g. [4, Prop. 2.2]) that this notion does not depend on the choice of
left-admissible metric.

Definition 2.2. — An approximate subgroup Λ of a lcsc group G is
called a uniform approximate lattice provided Λ is a Delone set in G.

Note that a subgroup Λ < G is a Delone set if and only if it is a uniform
lattice, hence the name.

Remark 2.3. — Let G be a lcsc group. Then a subset A ⊂ G is relatively
dense, if and only if there exists a compact subsetK ⊂ G such that AK = G

(see [4, Prop. 2.2]). Now assume that Λ ⊂ G is a Delone subset and let
Σ ⊂ Λ. Then the following are equivalent (see [4, Cor. 2.10]):

(i) Σ is relatively dense in G.
(ii) There exists a finite set F ⊂ Λ−1Λ such that Σ ⊂ Λ ⊂ ΣF .

In this situation we say that Σ is left-syndetic in Λ. Note that every sym-
metric left-syndetic subset of an approximate lattice which contains the
identity is again an approximate lattice.

2.2. The hull of an approximate lattice

For the rest of this section we fix a uniform approximate lattice Λ in a lcsc
group G. We denote by C(G) the collection of all closed subsets of G. Then
G acts on C(G) by left-translations, and we denote the orbit of an element

TOME 70 (2020), FASCICULE 5
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P ∈ C(G) by G.P . The set C(G) carries a compact Hausdorff topology
called the Chabauty–Fell topology, whose basic open sets are given by

{P ∈ C(G) | P ∩K = ∅} and {P ∈ C(G) | P ∩ V 6= ∅},

where K ranges over all compact subsets of G and V ranges over all open
subsets of G. We refer the reader to [3, 4, 5] for a detailed discussion of
this topology.
Definition 2.4. — Given an approximate lattice Λ ⊂ G, the closure

XΛ := G.Λ of the left-translation orbit G.Λ in C(G) with respect to the
Chabauty–Fell topology is called the hull of Λ.

Since the action of G on C(G) is jointly continuous, so is the action of G
on the hull of Λ. We will often use the following fact (see [4, Lem. 4.6]):
Lemma 2.5. — If P ∈ XΛ, then P−1P ⊂ Λ−1Λ = Λ2, hence P and

P−1P are uniformly discrete.
We will also need the following fact:
Lemma 2.6. — Let Λ ⊂ G be Delone with parameters R > r > 0. Then

every P ∈ XΛ is Delone with parameters R > r > 0.
Proof. — Let P ∈ XΛ and fix gn ∈ G such that gnΛ→ P . For every x ∈

G and n ∈ N there then exists λn ∈ Λ ∩BR(g−1
n x). A subsequence gnkλnk

then converges to some p ∈ BR(x), and then p ∈ P by [3, Prop. E.1.2],
showing that P is R-relatively dense. Conversely, if x, y ∈ P are distinct,
then by the same proposition there exist xn, yn ∈ Λ such that gnxn → x

and gnyn → y. For sufficiently large n we then have xn 6= yn and hence
d(xn, yn) > r, which implies d(x, y) > r, showing that P is r-uniformly
discrete. �

Note that the hull XΛ is compact and that the G-action on XΛ is jointly
continuous. This implies in particular, that XΛ admits a µ-stationary prob-
ability measure for every admissible probability measure µ on G. However,
if G is non-amenable, then it is unclear whether the hull supports any
G-invariant probability measure.
Definition 2.7. — Λ is called a strong uniform approximate lattice if

the hull XΛ admits a G-invariant probability measure.

2.3. Bounded Borel sections over the hull

We keep the notation of the previous subsection. Moreover, we fix a left-
admissible metric d on G and denote by R > r > 0 the Delone parameters
of Λ with respect to d. In analogy with the group case we define:

ANNALES DE L’INSTITUT FOURIER
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Definition 2.8. — A map s : XΛ → G is called a section provided
s(P ) ∈ P for all P ∈ XΛ. A section is called bounded if its image is
pre-compact.

Proposition 2.9. — Let Λ ⊂ G be a uniform approximate lattice.
Then there exists a bounded Borel section s : XΛ → G. In fact, s can be
chosen to take values in B2R(e).

Proof. — It follows from Lemma 2.6 that for every P ∈ XΛ we can choose
x ∈ P ∩BR(e) and define an open neighbourhood of P in XΛ by U(P, x) :=
{Q ∈ XΛ | Q ∩ Br/2(x) 6= ∅}. Note that if Q ∈ U(P, x), then since Q is
r-discrete, there exists a unique point σP,x(Q) ∈ Q ∩ Br/2(x) (which is in
fact contained in Br/2(x)) and thus we obtain a section σP,x : UP,x → G

over UP,x. It follows from [4, Cor. 4.7] (applied with K := Br/2(x)) that if
Qn ∈ U(P, x) converge to Q ∈ U(P, x), then σP,x(Qn) → σP,x(Q), hence
σP,x is continuous.
Since the open sets U(P, x) cover the compact space XΛ there exist

finitely many elements P1, . . . , Pn ∈ XΛ and xi ∈ Pi such that

XΛ = U(P1, x1) ∪ · · · ∪ U(Pn, xn).

We thus obtain a Borel section over XΛ by setting

σ(Q) := σPjQ ,xjQ (Q), where jQ := min{j ∈ {1, . . . , n} | Q ∈ U(Pj , xj)}.

By definition, min d(σ(Q), xj) 6 r/2, and since xj ∈ BR(e) we deduce that
σ(Q) ∈ BR+r(e) ⊂ B2R(e). �

Lemma 2.10. — Let s : XΛ → G be a Borel section. Then for all g ∈ G
and P ∈ XΛ we have

βs(g, P ) := s(gP )−1gs(P ) ∈ Λ2,

and the function βs : G×XΛ → Λ2 satisfies the cocycle identity

(2.1) βs(g1g2, P ) = βs(g1, g2P )β(g2, P ) (g1, g2 ∈ G,P ∈ XΛ).

Moreover, the image of βs is uniformly discrete in G. If s is bounded, then
for every compact subset K ⊂ G the image βs(K×XΛ) of K×XΛ is finite.

Proof. — It follows from Lemma 2.5 that

s(gP )−1gs(P ) ∈ (gP )−1gP = P−1P ⊂ Λ2.

Moreover, the identity

(s(g1g2P )−1g1s(g2P ))(s(g2P )−1g2s(P )) = s(g1g2P )−1g1g2s(P )

TOME 70 (2020), FASCICULE 5
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implies (2.1). Finally note that if Λ ⊂ G is an approximate lattice, then
so is Λ2, and thus βs takes values in a uniformly discrete subset of G. In
particular, if g varies over a compact set K and s is chosen to take values
in a bounded set B, then βs(g, P ) is contained in set BKB ∩ Λ2, which
is finite. �

In the sequel we refer to βs as the cocycle associated with the section
s. Note that the cocycle identity (2.1) implies that β(e, P ) = e (since
β(e, P ) = β(e, P )2), hence for all g ∈ G we have e = β(g−1g, P ) =
β(g−1, gP )β(g, P ), i.e.,

(2.2) β(g, P ) = β(g−1, gP )−1.

We also record the following standard fact for later reference:

Lemma 2.11. — If s1, s2 : XΛ → G are Borel sections, then

βs2(g, P ) = u(gP )−1βs1(g, P )u(P ),

where u : XΛ → Λ2 is given by u(P ) := s1(P )−1s2(P ).

Proof. — By Lemma 2.5 we have s1(P )−1s2(P ) ∈ P−1P ⊂ Λ−1Λ = Λ2,
hence u is well-defined. The formula relating βs1 and βs2 then follows from

s2(gP )−1gs2(P ) = s2(gP )−1s1(gP )(s1(gP )−1gs1(P ))s1(P )−1s2(P ). �

Now let s : XΛ → G be a bounded Borel section taking values in B2R(e).
Given an element g ∈ G we denote ‖g‖ := d(g, e), and given g ∈ G and
λ ∈ Λ2 we define

(2.3) XΛ(g, λ) := {P ∈ XΛ | β(g−1, P )−1 = λ}.

The following observation will be used in the definition of an induced affine
isometric action.

Lemma 2.12. — If XΛ(g, λ) 6= ∅, then

‖g‖ − 4R < ‖λ‖ < ‖g‖+ 4R.

Proof. — If P ∈ XΛ(g, λ), then by definition

λ = s(P )−1g−1s(gP ),
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with {‖s(P )‖, ‖s(gP )‖} ⊂ [0, 2R). Thus a simple application of the triangle
inequality yields

‖λ‖ = d(e, s(P )−1g−1s(gP ))

> d(e, s(P )−1g−1)− d(s(P )−1g−1s(gP ), s(P )−1g−1)

= d(s(P ), g−1)− d(s(gP ), e)

> d(g−1, e)− d(e, s(P ))− d(e, s(gP ))
> ‖g‖ − 4R,

and a similary argument yields the upper bound. �

2.4. Approximate lattices from model sets

An important class of approximate lattices is given by symmetric model
sets [5, 16] in the sense of Meyer. These examples will play an important role
in the sequel, hence we briefly recall their definition and basic properties.

Definition 2.13. — A cut-and-project-scheme is a triple (G,H,Γ)
where G and H are lcsc groups and Γ < G×H is a lattice which projects in-
jectively to G and densely to H. A cut-and-project scheme is called uniform
if Γ is moreover a uniform lattice.

Remark 2.14. — In the sequel when given a uniform cut-and-project
scheme (G,H,Γ) we will always use the following notations and conven-
tions: Firstly, we denote by πG, πH the coordinate projections of G × H
and set ΓG := πG(Γ) and ΓH := πH(Γ). We then define a map τ : ΓG → H

as τ := πH ◦ (πG|Γ)−1. Note that the image of τ is precisely ΓH ; in the
abelian case this map is sometimes called the “∗-map”. Secondly, we de-
note by Y := Y (G,H,Γ) := (G × H)/Γ the associated compact homo-
geneous space and by πY : G × H → Y the canonical projection. Inside
G×H we can choose a compact subset F with dense interior Fo such that
ΓF = G × H and such that Fo is mapped homeomorphically to a dense
open subset of Y . (For example, the Voronoi cell of the identity with re-
spect to any left-admissible metric on G×H has these properties.) We then
set FG := πG(F) and FH := πH(F) and observe that these are compact
subsets of G and H respectively. Thirdly, we choose Haar measures mG

and mH on G respectively H in such a way that mG ⊗mH(F) = 1. Then
the unique invariant probability measure mY on Y is given in terms of the
projection π : G×H → Y by

mY (f) = mG ⊗mH((π ◦ f) · χF ) (f ∈ Cc(Y )).
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Finally, we will always choose a bounded Borel section s : Y → G × H,
x 7→ (sG(x), sH(x)) with values in F such that σ(π(g, h)) = (g, h) for all
(g, h) ∈ Fo. Then, by construction,

s∗mY = χF ·mG ⊗mH

As a consequence of our special choice of section we obtain:

Lemma 2.15. — In the notation of Remark 2.14, let µG = (sG)∗mY

and µH := (sH)∗mY . Then there exist bounded measurable functions ρG ∈
L∞(FG) and ρH ∈ L∞(FH) such that

µG = ρG mG and µH = ρH mH .

Proof. — Given g ∈ G, write Fg := {h ∈ H | (g, h) ∈ F} ⊂ FH . Then
µG = ρG mG, where ρG(g) = mH(Fg). By definition we have ρG(g) = 0
unless g ∈ FG, and since ρG(g) 6 mH(FH) the function ρG is bounded.
The argument for µH follows by reversing the roles of G and H. �

Definition 2.16. — Let (G,H,Γ) be a cut-and-project scheme. Given
a compact subset W ⊂ H, the subset

Λ(G,H,Γ,W ) := πG(Γ ∩ (G×W )) ⊂ G

is called a weak model set and W is called its window.

In terms of the map τ : ΓG → H from Remark 2.14 we have

Λ(G,H,Γ,W ) = τ−1(W ).

Definition 2.17. — A weak model set Λ is called a model set if its
window has non-empty interior. It is called uniform if the underlying cut-
and-project scheme is uniform and symmetric if it satisfies Λ = Λ−1.

The relation to approximate lattices is given by the following result.

Proposition 2.18 ([4, Prop. 2.13]). — Every symmetric uniform model
set in G which contains the identity is a uniform approximate lattice in G.

We now provide a condition which ensures that this uniform approximate
lattice is strong.

Definition 2.19. — Let (G,H,Γ) be a cut-and-project scheme and let
W ⊂ H be compact. We say that W is Γ-regular if it is Jordan-measurable
with dense interior, aperiodic (i.e., StabH(W ) = {e}) and satisfies ∂W ∩
ΓH = ∅. In this case the associated model set Λ(G,H,Γ,W ) is called a
regular model set.
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The following theorem summarizes basic results on regular symmetric
uniform model sets containing the identity.

Theorem 2.20 ([5, Thm. 1.1]). — Let Λ = Λ(G,H,Γ,W ) be a regular
symmetric uniform model set containing the identity. Then the following
hold:

(i) Λ is a strong approximate lattice in G, and XΛ admits a unique
G-invariant probability measure ν.

(ii) There exists a unique continuous G-equivariant surjection ι : XΛ →
Y := (G×H)/Γ mapping Λ to (e, e)Γ, which induces a probability-
measure preserving isomorphism

(XΛ, ν)→ (Y,mY )

of measurable G-spaces.

Remark 2.21. — Let Λ = Λ(G,H,Γ,W ) be as in the theorem. Since
the projection of Γ onto the first factor is injective, it induces a group
isomorphism Γ ∼= Λ∞. Under this isomorphism the set Λ corresponds to
the subset ΓW := Γ ∩ (G ×W ) of Γ. In this sense the approximate group
(Λ,Λ∞) is isomorphic to the approximate group (ΓW ,Γ).

Definition 2.22. — A model set Λ = Λ(G,H,Γ,W ) is said to have
large window if W ⊃ FH .

Note that every (symmetric, regular) model set is contained in a (sym-
metric, regular) model set with large window. The following technical result
will be used to provide an alternative model for cocycle induction for model
sets.

Proposition 2.23. — Let Λ = Λ(G,H,Γ,W ) be a uniform model set
with large window. Then for any bounded Borel section s : Y → G × H
as in Remark 2.14 there exists a bounded Borel section σ : XΛ → G such
that for almost all P ∈ XΛ,

σ(P ) = πG(s(ι(P ))).

For the proof of the proposition we need an explicit almost everywhere
defined inverse of the map ι : XΛ → Y from Theorem 2.20.

Lemma 2.24. — Let Λ = Λ(G,H,Γ,W ) be a symmetric regular uniform
model set and let ι : XΛ → Y be as in Theorem 2.20. Then there exists a ν-
conull G-invariant Borel set X0 ⊂ XΛ and a Haar-conull G-invariant Borel
set Y0 ⊂ Y such that ι restricts to a G-equivariant measurable bijection
ι0 : X0 → Y0 with inverse given by ι−1

0 ((g, h)Γ) = gτ−1(h−1W ).

TOME 70 (2020), FASCICULE 5



1918 Michael BJÖRKLUND & Tobias HARTNICK

Proof. — The first statement is contained in [5, Thm. 3.1 and Thm. 3.4].
We first claim that for every P ∈ X0 and every gP ∈ P there exists hP ∈ H
such that

(2.4) ι0(P ) = (gP , hP )Γ and P = gP .τ
−1(h−1

P W ).

To prove the claim, we fix P ∈ X0 and gP ∈ P . It is established in [5,
Prop. 2.10 and §2.5] that g−1

P P is contained in the intersection of X0 with
the so-called canonical transversal T . It then follows from [5, Thm. 3.1(ii)
and (iii)] that there exists hP ∈ H such that ι(g−1

P P ) = (e, hP )Γ and
ι−1((e, hP )Γ) = τ−1(h−1

P W ) for some hP ∈ H. By G-equivariance of ι0
and ι−1

0 we have

ι0(P ) = ι0(gP g−1
P P ) = gP ι0(g−1

P P ) = gP (e, hP ) = (gP , hP )Γ

and P = ι−1
0 ((gp, hP )Γ) = gp.ι

−1
0 ((e, hP )Γ) = gP .τ

−1(h−1
P W ). This finishes

the proof of (2.4).
Now let (g, h)Γ ∈ Y0 and set P := ι−1

0 ((g, h)Γ) ∈ X. Choose gP ∈ P and
let hP ∈ H such that (2.4) holds. Then (g, h)Γ = ι0(P ) = (gP , hP )Γ, hence
there exists (γ, γ∗) ∈ Γ such that (g, h) = (gP γ, hP γ∗), and hence

P = gP .τ
−1(h−1

P W ) = gP πG((γ, γ∗)(Γ ∩ (G× (γ∗)−1h−1
P W )))

= gτ−1(h−1W ). �

Proof of Proposition 2.23. — Let X0 and Y0 as in Lemma 2.24 and let
P ∈ X0. Abbreviate (g, h) := s(ι(P )). By construction, (g, h) ∈ F and
hence h ∈ FH . By Lemma 2.24 we have

P = g πG(Γ ∩ (G× h−1W ))

Since h ∈ FH ⊂ W the set G× h−1W contains the identity, hence g ∈ P .
Thus

(2.5) g = πG(s(ι(P ))) ∈ P for all P ∈ X0.

We now fix an arbitrary bounded Borel section σ′ : XΛ → G and define

σ : XΛ → G, σ(P ) =
{
πG(s(ι(P ))), if P ∈ X0,

σ′(P ) if P 6∈ X0.

It follows from (2.5) and the fact that σ′ is a section, that σ is a section.
Moreover, σ is Borel, since s and σ′ are and since X0 and its complement
are Borel sets. It is bounded, since s and σ′ is bounded. Finally, σ(P ) =
πG(s(ι(P ))) for all P ∈ X0, hence for almost all P ∈ XΛ. �
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3. Affine isometric actions and Lp-induction

3.1. Affine isometric actions on Banach spaces and (weak)
quasi-cocycles

In the sequel, all Banach spaces are assumed to be defined over the
field of real numbers. Given a Banach space (E, ‖ · ‖) we denote by Is(E)
the corresponding isometry group. By the Mazur–Ulam theorem we have
Is(E) = O(E) n E, where O(E) denotes the orthogonal group of (E, ‖ · ‖)
(i.e., the group of linear isometries), and E acts on itself by translations.
If Γ is a group, then a homomorphism ρ : Γ → Is(E) is called an affine
isometric action of Γ on E. Every such action is of the form

ρ(g).v = π(g).v + b(g), (g ∈ Γ, v ∈ E)

where π : Γ → O(E) is a homomorphism, and b : Γ → E is a 1-cocycle
with respect to π in the sense that

(3.1) b(gh) = b(g) + π(g)b(h) (g, h ∈ Γ).

We then write ρ = (π, b) and refer to π and b as the linear part of ρ,
respectively the cocycle defined by ρ. For later use we record that if b is a
cocycle then b(e) = 0 (since b(e) = b(e) + π(e)b(e) = 2b(e)) and hence for
all g ∈ G we have

0 = b(gg−1) = b(g) + π(g)b(g−1),

i.e.,

(3.2) b(g−1) = −π(g)−1b(g).

In the remainder of this article we will only consider uniformly convex
Banach spaces. If G is a topological group and π : G → O(E) is a homo-
morphism, then the action map G×E → E is jointly continuous if and only
if π is weakly continuous (equivalently, strongly continuous) if and only if
the orbit maps of π are continuous (as follows e.g. from [1, Lem. 2.4] since
E is uniformly convex and hence superreflexive). In this case we call π a
continuous orthogonal representation.

Definition 3.1. — An affine isometric action ρ = (π, b) of a topological
group g on a uniformly convex Banach space E is called continuous if π is
a continuous orthogonal representation and b is a continuous cocycle.

From now on let E be a class of uniformly convex separable Banach
spaces. In particular, given 1 < p < ∞ we will be interested in the class
of Lp-spaces, i.e. Banach spaces E which are isometrically isomorphic to
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Lp(Y, µ) for some σ-finite Borel measure µ on a standard Borel space Y .
We insist on separability in order to ensure that Is(E) and O(E) are Polish
groups with the topology of pointwise convergence (a.k.a. strong operator
topology) for every E ∈ E .

Definition 3.2. — If G is a lcsc group and ρ = (π, b) is a continuous
affine isometric action on some E ∈ E , then we refer to ρ as an affine
E-action of G and to b as an E-cocycle on G.

If E is the class of all Lp-spaces we obtain in particular the notion of an
affine Lp-action and Lp-cocycle. Note that our affine actions will always
implicitly assumed to be continuous.
For the class E = L2 of separable Hilbert spaces the following weak-

enings of the notion of an L2-cocycle were introduced by Ozawa in his
work on Property (TTT), respectively by Burger–Monod in their work on
Property (TT). Here, given E ∈ E , the group O(E) is equipped with the
Borel structure associated with the strong (equivalently, the weak) operator
topology.

Definition 3.3. — Let G be a lcsc group and E ∈ E . Let π : G→ O(E)
be a Borel map (not necessarily a homomorphism) and let b : G → E be
a Borel map which is locally bounded in the sense that for every compact
subset K ⊂ E,

sup
g∈K
‖b(g)‖ <∞.

(i) We say that b is a weak E-quasi-cocycle (wq-E-cocycle for short)
with respect to π if

(3.3) D(b) := sup
g1,g2∈G

‖b(g1g2)− b(g1)− π(g1)b(g2)‖ <∞.

Then the pair (π, b) is called a wq-E-pair for G, and E is called the
underlying space.

(ii) If (π, b) is a wq-E-pair and π is moreover a homomorphism, then b
is called a quasi-cocycle and (π, b) is then called a quasi-E-pair.

In particular, we obtain the notions of an Lp-quasi-cocycle and wq-Lp-
cocycle.

By definition, every Lp-cocycle is an Lp-quasi-cocyle, and every Lp-quasi-
cocycle is a wq-Lp-cocycle. In particular, all results concerning wq-Lp-
cocycles below apply to Lp-quasi-cocycles and Lp-cocycles.

Remark 3.4. — Our definition of a quasi-cocycle follows Ozawa [21].
Burger and Monod [6] require in addition that b be continuous. However,
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it is well-known(2) that every Borel quasi-cocycle is at uniformly bounded
distance from a continuous quasi-cocycle, hence this difference in definition
does not affect the notion of Property (FFE) defined below.

3.2. Lp-induction for strong uniform approximate lattices

For the rest of this section we consider the following setting: Let G be
a lcsc group, let Λ ⊂ G be a strong uniform approximate lattice with
enveloping group Λ∞, and denote by X = XΛ the hull of Λ. We fix a left-
admissible metric d on G and given g ∈ G we set ‖g‖ := d(g, e). Let R >

r > 0 be Delone parameters of Λ with respect to d. Using Proposition 2.9
we choose a Borel section s : XΛ → G which takes values in B2R(e) and
denote by β = βs : G×XΛ → Λ2 the associated cocycle.
If Λ happens to be a uniform lattice in G, then every affine Lp-action

of Λ induces an affine Lp-action of G (see e.g. [23]), and we would like to
generalize this construction to the case at hand. In fact, it is natural to
discuss induction in the wider context of wq-Lp-cocycles. In the present
setting the situation is complicated by the fact that there may be more
than one G-invariant measure on X. As we will see in Example 3.9 be-
low, different choices of measures on X will lead to substantially different
induction procedures.
We now fix a G-invariant measure ν on X and proceed to define an

induction operation depending on ν. For this let Y be a standard Borel
space, µ a σ-finite Borel measure on Y and E := Lp(Y, µ) for some p ∈
(1,∞). We then denote by

Ê := Lp(XΛ, ν;E)

the space of equivalence classes of Bochner p-integrable E-valued functions
on (XΛ, ν). Explicitly, a function f : XΛ → E represents a class in Ê if and
only if the map f̄ : XΛ × Y → C given by

f̄(P, y) := f(P )(y)

represents a class in Lp(XΛ × Y, ν ⊗ µ). In particular, we see from the
isometric isomorphism

Ê
∼=−→ Lp(XΛ × Y, ν ⊗ µ), [f ] 7→ [f̄ ]

that Ê is again an Lp-space.

(2)Since we could not locate a precise reference in the literature, we include a proof in
Appendix B.
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Remark 3.5. — If E is an arbitrary uniformly convex separable Banach
space, then the Banach space Ê := Lp(XΛ, ν;E) of equivalence classes of
Bochner p-integrable E-valued functions on (XΛ, ν) can always be defined.
We say that a class E of uniformly convex separable Banach spaces is Lp-
closed if Ê ∈ E for every E ∈ E . By the previous remark, the class of
Lp-spaces itself is Lp-closed. While we are mainly interested in the class
of Lp-spaces here, most of what we say below can be established for an
arbitrary Lp-closed class E of uniformly convex separable Banach spaces.

Proposition 3.6. — Let 1 < p <∞ and let E be an Lp-closed class of
uniformly convex separable Banach spaces (for example, the class of Lp-
spaces). Let (π, b) be a wq-E-pair for Λ∞ with underlying space E ∈ E and
let Ê := Lp(XΛ, ν;E).

(i) There are well-defined Borel maps

π̂ : G→ U(Ê), π̂(g)f(P ) := π(β(g−1, P )−1)f(g−1P ),

b̂ : G→ Ê, b̂(g) := b(β(g−1, P )−1),

and (π̂, b̂) is a wq-E-pair for G with underlying space Ê ∈ E satis-
fying D(̂b) 6 D(b).

(ii) If (π, b) is a quasi-E-pair, then so is (π̂, b̂).
(iii) If (π, b) is an affine E-action, then so is (π̂, b̂).

Proof.
(i). — π̂ maps G into U(Ê) since π is orthogonal and is clearly a Borel

map. As for well-definedness of b̂ we have to show that b̂(g) is p-integrable
for every g ∈ G. Recall from (2.3) the definition of the sets XΛ(g, λ) for
g ∈ G and λ ∈ Λ2. Since β takes values in Λ2 we have

XΛ =
⊔
λ∈Λ2

XΛ(g, λ).

for every fixed g ∈ G. We deduce that

‖b̂(g)‖p =
∫
XΛ

‖b̂(g)(P )‖p dν(P ) =
∫
XΛ

‖b(β(g−1, P )−1)‖p dν(P )

=
∑
λ∈Λ2

‖b(λ)‖pν(XΛ(g, λ)).

By Lemma 2.12 we have ν(XΛ(g, λ)) = 0 unless ‖λ‖ 6 ‖g‖ + 4R. Since Λ
is uniformly discrete in G, it follows that all but finitely many summands
are 0. This shows that ‖b̂(g)‖ <∞, whence b̂(g) ∈ Ê for all g ∈ G, and the
map b̂ is evidently Borel. It remains to show that b̂ is a wq-cocycle with
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respect to π̂. To this end we observe that for all g1, g2 ∈ G and P ∈ XΛ we
have

β(g−1
2 g−1

1 , P )−1) = β(g−1
1 , P )−1β(g−1

2 , g−1
1 P )−1),

and hence

‖b̂(g1g2)− b̂(g1)− π̂(g1)̂b(g2)‖

= ‖b(β(g−1
1 , P )−1β(g−1

2 , g−1
1 P )−1)− b(β(g−1, P )−1)

− π(β(g−1, P )−1)b(β(g−1
2 , g−1

1 P )−1)‖ 6 D(b),

which shows that D(̂b) 6 D(b) and establishes (i).

(ii). — It remains to show only that if π is a homomorphism, then so is
π̂. Now by (2.1) we have for all g1, g2 ∈ G and P ∈ XΛ,

π̂(g1g2)f(P ) = π(β(g−1
2 g−1

1 , P )−1)f(g−1
2 g−1

1 P )

= π(β(g−1
1 , P )−1)π(β(g−1

2 , g−1
1 P )−1)f(g−1

2 (g−1
1 P ))

= π(β(g−1
1 , P )−1)π̂(g2)f(g−1

1 P )
= π̂(g1)π̂(g2)f(P ),

and hence π̂(g1g2) = π̂(g1)π̂(g2).

(iii). — Assume that (π, b) is an affine E-action, i.e., a quasi-E-pair with
D(b) = 0. By (ii), this implies that (π̂, b̂) is a quasi-E-pair, and by (i) we
have D(̂b) 6 D(b) = 0, hence b is a cocycle. Now the ρ̂ = (π̂, b̂) : G→ Is(Ê)
is Borel. It the follows from [22] that ρ̂ is continuous, hence defines an affine
E-action of G. �

Definition 3.7. — In the situation of Proposition 3.6 the pair ρ̂ =
(π̂, b̂) is said to be (ν, s)-Lp-induced from (π, b) and we write

(ν, s, p)− IndG(Λ,Λ∞)(π, b) := (π̂, b̂).

If b is a wq-E-cocycle (respectively an E-quasicocycle or an E-cocycle),
then b̂ is called the (ν, s)-Lp-induced wq-E-cocycle (respectively the (ν, s)-
Lp-induced E-quasicocycle or the (ν, s)-Lp-induced E-cocycle).

Remark 3.8. — Lp-induction applies in particular to the case where Λ =
Λ∞ is actually a uniform lattice in G, and in this cases we recover the
classical constructions. In the sequel, when dealing with induction from
uniform lattices we will thus use the same notations as introduced in the
approximate lattice case above.
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3.3. Dependence on the section and the measure

We keep the notation of the previous subsection. In particular, 1 < p <∞
and E denotes an Lp-closed class of uniformly convex separable Banach
spaces (for example, the class of Lp-spaces).

3.3.1. Independence of the section

It turns out that the dependence of (ν, s)−IndG(Λ,Λ∞)(π, b) on the section
s is inessential in the following sense. Let s1, s2 : XΛ → G be bounded Borel
sections and recall from Lemma 2.11 that

βs2(g−1, P )−1 = u(P )−1βs1(g−1, P )−1u(g−1P ).

where u : XΛ → Λ2 is given by u(P ) := s1(P )−1s2(P ). Now let (π, b) be a
wq-Lp-pair for Λ∞ with underlying space E, and set

(π̂j , b̂j) := (ν, sj)− IndG(Λ,Λ∞)(π, b) (j ∈ {1, 2}).

Both pairs have the same underlying space Ê = Lp(XΛ, E), and we define
an isometric isomorphism U : Ê → Ê by

Uf(P ) := π(u(P ))f(P ) + b(u(P )).

If we assume that (π, b) is an affine E-action, then by (3.2) we have

π(u(P ))b(u(P )−1) + b(u(P ) = 0 for all P ∈ XΛ,

and hence

(U ◦ ρ̂2(g))f(P ) = π(u(P ))(π(βs2(g−1, P )−1)f(g−1P ) + b̂2(g)) + b(u(P ))

= π(u(P ))π(u(P )−1βs1(g−1, P )−1u(g−1P ))f(g−1P )

+ π(u(P ))b(u(P )−1βs1(g−1, P )−1u(g−1P )) + b(u(P ))

= π(βs1(g−1, P )−1)π(u(g−1P ))f(g−1P )

+ b(βs1(g−1, P )−1) + π(βs1(g−1, P )−1)b(u(g−1P ))

= π̂1(g)(π(u(P ))f(P ) + b(u(P ))) + b̂1(g)(P )

= π̂1(g)(Uf)(P ) + b̂1(g)(P )
= (ρ̂1(g) ◦ U)f(P ).

This shows that if (π, b) is an affine E-action, then (π̂1, b̂1) and (π̂2, b̂2) are
intertwined by the isometric isomorphism U , hence define isomorphic affine
actions.
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If (π, b) is only a quasi-E-pair, then U still intertwines the orthogonal
representations π̂1 and π̂2, and the quasi-cocycles b̂1 and b̂2 are intertwined
by U up to a bounded error.
Finally, if (π, b) is merely a wq-E-pair, then there is no control about π̂1

and π̂2, but the induced wq-E-cocycles b̂1 and b̂2 are still intertwined by U
up to a bounded error.
It follows that properties of b̂ which are stable under bounded pertuba-

tions, such as boundedness or properness, are independent of the choice
of section used to define it. In view of this essential independence of the
section we will often write

(ν, p)− IndG(Λ,Λ∞)(π, b) := (ν, s, p)− IndG(Λ,Λ∞)(π, b)

and suppress the choice of section s from our notation.

3.3.2. Dependence on the measure

The following example shows that even in the case of an affine Lp-action
(π, b) the induced representation (ν, p)− IndG(Λ,Λ∞)(π, b) does depend in an
essential way on the choice of invariant measure ν on the hull:

Example 3.9. — Let G = (R,+) and suppose that Λ ⊂ G is a uniform
approximate lattice with Λ∞ = Z such that the hull XΛ contains the sets
2Z and 3Z, whence the G-hulls X2 := X2Z and X3 := X3Z. (An explicit
construction of such a set Λ is given e.g. in [4, Ex. 4.15].) We note that X2
and X3 admit unique G-invariant probability measures ν2 and ν3, which we
can view as probability measures on XΛ as well. For every affine Lp-action
(π, b) of Λ∞ and q ∈ {2, 3} we have

(π̂q, b̂q) := νq − IndG(Λ,Λ∞)(π, b) ∼= IndGqZ(π|qZ, b|qZ).

In particular, if (π, b) is realized on an Lp-space E and T := π(1), then
νq − IndG(Λ,Λ∞)(π, b) can be realized on the space

Êq := {f ∈ Lp(R;E) | f(x+ q) = T qf(x)},

with π̂q(g)f(x) := f(x − g). In general, the orthogonal representations π̂2
and π̂3 are not equivalent. For instance, consider the case when E = R and
Tv = −v for v ∈ E. If Ê2 and Ê3 were isomorphic (as orthogonal represen-
tations) via some linear isomorphism S : Ê2 → Ê3, then a straightforward
calculation shows that S(f + π̂2(1)f) = 0, and thus every f ∈ Ê2 would
satisfy f(x−1) = −f(x), which is clearly not the case for the element f ≡ 1
in Ê2. Thus, in general,

ν2 − IndG(Λ,Λ∞)(π, b) 6∼= ν3 − IndG(Λ,Λ∞)(π, b).
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3.4. Lp-induction for model sets

We illustrate our construction of Lp-induction for the case of uniform
regular symmetric model sets. Throughout this subsection let (G,H,Γ) be
a uniform cut-and-project scheme and let Λ = Λ(G,H,Γ,W ) be a symmet-
ric regular uniform model set. We will use the notations and conventions
introduced in Remark 2.14. In particular, we set Y := (G×H)/Γ. We recall
that the map πG induces an isomorphism

πG : (ΓW ,Γ)→ (Λ,Λ∞)

of approximate groups, where ΓW := Γ ∩ (G×W ).
Now let E denote an Lp-closed class of uniformly convex separable Ba-

nach spaces and consider an affine isometric action ρ0 = (π0, b0) of Λ∞
on some E ∈ E . Via the isomorphism πG this induces an affine Lp-action
ρ := ρ0 ◦ πG = (π, b) of Γ. Since Γ is a uniform lattice in G × H, we can
induce this action to obtain an affine action IndG×HΓ (π, b) of G×H on the
Banach space Ê := Lp((G×H)/Γ;E).

Proposition 3.10. — Assume that Λ has large window and denote by
ν the unique G-invariant measure on XΛ. Then

(3.4) ν − IndG(Λ,Λ∞)(π0, b0) ∼=
(

IndG×HΓ (π, b)
)∣∣∣
G
.

Proof. — Firstly, let ι : (XΛ, ν) → (Y,mY ) denote the measurable iso-
morphism from Theorem 2.20. Secondly, let s : Y → G×H be a bounded
Borel section chosen as in Remark 2.14 and denote by (π̂, b̂) the represen-
tation IndG×HΓ (π, b) on Ê defined by means of this section. By Proposi-
tion 2.23 we can choose a bounded Borel section σ : XΛ → G such that for
almost all P ∈ XΛ,

σ(P ) = πG(s(ι(P ))).
Denote by (π̃, b̃) the model of ν − IndG(Λ,Λ∞)(π0, b0) defined on Ẽ :=
Lp(XΛ, ν;E) by means of the section σ. Then ι induces an isomorphism

ι∗ : Ê → Ẽ, ι∗f := f ◦ ι.

We claim that this isomorphism intertwines the action of G×{e} via (π̂, b̂)
on Ê with the action of G on Ẽ via (π̃, b̃). Towards the proof of the claim
we first observe that for g ∈ G and x ∈ XΛ we have

βσ(g−1, x)−1 = σ(x)−1gσ(gx) = πG(s(ι(x)))−1gπG(s(ι(gx)))

= πG(s(ι(x))−1(g, e)s((g, e)ι(x)))

= πG(βs(g−1, ι(x))−1),
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hence

π0(βσ(g−1, x)−1) = π(βs(g−1, ι(x))−1)

and

b0(βσ(g−1, x)−1) = b(βs(g−1, ι(x))−1).

This implies that

(ρ̃(g) ◦ ι∗)f(x) = π0(βσ(g−1, x)−1)f(ι(g)−1x) + b0(βσ(g−1, x)−1)

= π(βs(g−1, ι(x))−1)f((g, e)−1ι(x)) + b(βs(g−1, ι(x))−1)
= (ι∗ ◦ π̂(g, e))f(x),

which establishes the claim and thereby finishes the proof. �

Remarks 3.11. — Two remarks are in order:
(i) Proposition 3.10 shows in particular that the Lp-induced affine ac-

tion ν − IndG(Λ,Λ∞)(π0, b0) can be extended to an affine E-action of
the lcsc group G×H. The additional flexibility coming from the H-
action will turn out to be useful e.g. in establishing various Kazhdan
properties of model sets.

(ii) The right-hand side of (3.4) makes sense for every model set Λ,
regardless of whether the hull XΛ admits a G-invariant measure or
whether Λ has large window. This allows us to define induction also
for model sets, which are not strong approximate lattice.

4. Analytic properties of approximate groups

4.1. Property (T) and its relatives

We spell out the definitions of the various Kazhdan-type properties which
we investigate in the sequel. Throughout this section, 1 < p < ∞ and E
denotes an Lp-closed class of uniformly convex separable Banach spaces
(for example, the class of Lp-spaces).

Definition 4.1. — Let G be a lcsc group and let A be subset of G and
p ∈ (1,∞).

(i) G has Property (FE) relative toA if every E-cocycle onG is bounded
on A.

(ii) G has Property (FFE) relative to A if every E-quasi-cocycle on G
is bounded on A.

TOME 70 (2020), FASCICULE 5



1928 Michael BJÖRKLUND & Tobias HARTNICK

(iii) G has Property (FFFE) relative to A if every weak E-quasi-cocycle
on G is bounded on A.

If A = G then we simply say that G has Property (FE), (FFE) or (FFFE)
respectively. In particular, this defines relative and absolute versions of
Property (FLp), (FFLp) and (FFFLp). If p = 2, then we also write “H”
(for Hilbert space) instead of “L2”.
Remarks 4.2.

(i) In the sequel we refer to the Properties (FE), (FFE) and (FFFE)
as Kazhdan-type properties with respect to E . Property (FE) is
equivalent to A having bounded orbits in every affine E-action of
G.

(ii) If G enjoys some Kazhdan-type property, then (G,A) also enjoys
this property for every subset A ⊂ G.

(iii) If A is actually a subgroup, then Property (FE) is equivalent to A
having a fixpoint in every affine E-action of G, hence the name. For
general subsets, relative Property (FE) is not a fixpoint property
(and hence a more appropriate term might be “Property (BLp)”).
In fact, A having a fixpoint in every affine E-action ofG is equivalent
to G having Property (FE) relative to the group generated by A,
which is in general a much stronger property.

(iv) As remarked in the introduction, Property (FFH) was introduced
by Burger and Monod [6] under the name Property (TT), and Prop-
erty (FFFH) was introduced by Ozawa [21] under the name Prop-
erty (TTT). Cornulier [10] was the first to systematically study
Property (T) relative to arbitrary subsets. The extension to Lp-
spaces (and more general classes of Banach spaces) goes back to
Bader, Furman, Gelander and Monod [1].

We now specialize to our case of interest:
Definition 4.3. — Let T be a Kazhdan-type property. An approximate

group (Λ,Λ∞) is said to have T if Λ∞ has T relative to Λ.
Remark 4.4. — As a special case of Remark 4.2 we observe that if Λ∞

enjoys a Kazhdan-type property T , then so does (Λ,Λ∞). We will see in
Example 5.12 below that the converse is not true.

4.2. Elementary constructions preserving Kazhdan-type
properties

The following facts follow straight from the definitions.
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Lemma 4.5. — Let E be a class of uniformly convex separable Banach
spaces. Let G1, G2 be lcsc groups, A1 ⊂ G1, A2 ⊂ G2 be subsets, and let
T be a Kazhdan type property with respect to E .

(i) If G1 has T , then (G1, A1) has relative T
(ii) If A1 is finite, then (G1, A1) has relative T .
(iii) If (G1, A1) and (G2, A2) have relative T , then so has (G1 × G2,

A1 ×A2).
(iv) If G1 = G2 and (G1, A1) and (G2, A2) have relative T , then so has

(G1, A1A2).
(v) If F ⊂ G1 is finite and (G1, A1) has relative T , then so have

(G1, A1F ) and (G1, FA1).

Concerning passage to subpairs we observe:

Lemma 4.6. — Let Γ1 < Γ2 be countable groups, A2 ⊂ Γ2, A1 ⊂ Γ1 ∩
A2, and let T be a Kazhdan type property relative to a class E of uniformly
convex separable Banach spaces which is Lp-closed for some p ∈ (1,∞).

(i) If (Γ2, A2) has relative T and Γ1 has finite index in Γ2, then (Γ1, A1)
has relative T .

(ii) If A1 is left-syndetic in A2 and (Γ1, A1) has relative T , then (Γ2, A2)
has relative T .

Proof.

(i). — Let b : Γ1 → E be an E-cocycle/quasi-cocycle/wq-cocycle. Since
Γ1 has finite index in Γ2, it is a uniform lattice in Γ2, and the invariant mea-
sure on X = Γ2/Γ1 is the normalized counting measure. Let Ê = `p(X;E)
and denote by b̂ : Γ2 → Ê the induced cocycle/quasi-cocycle/wq-cocycle.
We will assume that the section used to define the induction satisfies
s(Γ1) = e. As in the proof of Proposition 3.6 we have for all g ∈ Γ2,

‖b̂(g)‖p =
∑
λ∈Γ1

‖b(λ)‖p ν(X(g, λ)),

where X(g, λ) = {x ∈ X | β(g−1, x)−1 = λ}. Since b̂ is bounded on A2 ⊃
A1, we deduce that there exists a constant C such that for all λ ∈ A1

‖b(λ)‖p ν(X(λ, λ)) 6 ‖b̂(λ)‖p 6 C.

Note that β(λ−1,Γ1)−1 = s(Γ1)−1λs(λ−1Γ1) = λ, hence X(λ, λ) 6= ∅, and
thus ν(X(λ, λ)) > [Γ2 : Γ1]−1. This shows that b is bounded on A1 and
finishes the proof.
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(ii). — Let b be an E-cocycle/quasi-cocycle/wq-cocycle on Γ2. Then b|A1

is bounded by assumption, and since A1 is left-syndetic in A2, it follows
from the wq-cocycle property that b is bounded on A2. �

Note that while the proof of (ii) also works in the topological setting,
discreteness was essential in the proof of (i). The results of this subsection
specialize to approximate groups in the obvious way. Note that if (Λ,Λ∞)
is an approximate group, then so is (Λk,Λ∞) for every k ∈ N, and we have:

Corollary 4.7. — Let (Λ,Λ∞) be an approximate group and T be a
Kazhdan type property with respect to a class E as in Lemma 4.6. Then
(Λ,Λ∞) has T if and only if (Λk,Λ∞) has T for every k ∈ N.

4.3. The Haagerup Property and its relatives

The Haagerup Property (also known as Gromov’s a-T-menability) is a
strong negation of Property (T) in the sense that every lcsc group which
enjoys both Property (T) and the Haagerup Property is compact. In anal-
ogy with Property (T) (or rather Property (FH)), we can define a number
of variants of this property as follows.

Let G be a lcsc group with left-admissible metric d, and let A be a
subset. We say that an affine action ρ = (π, b) of G on a Banach space E
is metrically A-proper if for every C > 0 and some (hence any) v ∈ E the
set {g ∈ A | ‖ρ(g).v‖ 6 C} is relatively compact. Choosing v = 0 this is
equivalent to b being an A-proper cocycle, i.e., pre-compactness of the sets
{g ∈ A | ‖b(g)‖ 6 C} for all C > 0. Similarly, a (weak) quasi-cocycle b on
G is called A-proper if the corresponding sets are pre-compact.

Definition 4.8. — Let G be a lcsc group and let A be subset and let
E be a class of Banach spaces.

(i) G is a-FE-menable relative to A if there exists an Lp-cocycle on G
which is A-proper.

(ii) G is a-FFE-menable relative to A if there exists a weak Lp-cocycle
on G which is A-proper.

(iii) G is a-FFFE-menable relative to A if there exists a weak Lp-quasi-
cocycle on G which is A-proper.

If A = G then we simply say that G is a-FE-menable, a-FFE-menable or a-
FFFE-menable respectively. In particular, this defines absolute and relative
versions of a-FLp-menability, a-FFLp-menability and a-FFFLp-menability
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Remarks 4.9.

(i) In the sequel we refer to a-FE-menability, a-FFE-menability or a-
FFFE-menability as Haagerup-type properties with respect to E .

(ii) Every Kazhdan-type property T has a dual Haagerup-type property
H such that if G enjoys both T and H relative to A, then A is pre-
compact.

(iii) if d denotes a left-admissible metric on G, then A-properness of
a wq-cocycle b is equivalent to the existence of a proper function
ρ : (0,∞)→ (0,∞) such that for all x ∈ A,

d(x, e) > t =⇒ ‖b(x)‖ > ρ(t).

Any such function ρ is then called a control function for b on A.

Definition 4.10. — Let H be a Haagerup-type property. An approxi-
mate group (Λ,Λ∞) is said to have H if Λ∞ has H relative to Λ.

5. Analytic properties of approximate lattices via
induction

Throughout this section, E denotes an Lp-closed class of uniformly convex
separable Banach spaces for some 1 < p <∞. The example we have in mind
is the class of Lp-spaces, but no specific properties of E will be used.

5.1. Preservation of Haagerup type properties under induction

In this section we relate analytic properties of strong uniform approxi-
mate lattices to analytic properties of the ambient lcsc group using cocycle
induction. It turns out that this is rather straight-forward for the Haagerup
type properties, but much harder for the Kazhdan type properties, hence
we start with the former.

Throughout this subsection let Λ be a strong uniform approximate lattice
in a lcsc group G. We fix a left-admissible metric d on G. Given g ∈ G

we abbreviate ‖g‖ := d(g, e), and we denote by R > r > 0 the Delone-
parameters of Λ with respect to d. We then choose a Borel section s :
XΛ → G which takes values in BR(e) and denote by β = βs the associated
cocycle.

Proposition 5.1. — Let (π, b) be a wq-E-pair with underlying Banach
space E, let ν be a G-invariant probability measure ν on the hull XΛ and
let (π̂, b̂) := ν − IndG(Λ,Λ∞)(π, b). If b is Λ-proper, then b̂ is G-proper.
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For the proof we will make use of the following trivial but important
observation; recall that d denotes a left-admissible metric on G.

Lemma 5.2. — Let d′ be a left-admissible metric on Λ∞ and let k ∈ N
and A ⊂ Λk. Then we have equivalences

A is bounded w.r.t. d ⇐⇒ A is bounded w.r.t. d′ ⇐⇒ |A| <∞.

Proof. — Since Λ∞ is discrete, d′-bounded sets are exactly the finite
sets. If Λ ⊂ G is an approximate lattice, then so is Λk for every k ∈ N.
In particular, Λk is uniformly discrete, hence intersects every d-bounded
subset of G in a finite set. �

Proof of Proposition 5.1. — Since the cocycle b is Λ-proper and Λ is
syndetic in Λ2, it is also Λ2-proper. It thus follows from Lemma 5.2 applied
with k = 2 that there exists a proper function ρ : (0,∞) → (0,∞) such
that for all λ ∈ Λ2,

(5.1) ‖λ‖ = d(λ, e) > t =⇒ ‖b(λ)‖ > ρ(t).

Now consider the sets XΛ(g, λ) from (2.3). It follows from (5.1) and
Lemma 2.12 that for all g ∈ G and λ ∈ Λ2 we have the implication

(5.2) XΛ(g, λ) 6= ∅ =⇒ ‖λ‖ > ‖g‖ − 4R =⇒ ‖b(λ)‖ > ρ(‖g‖ − 4R).

Also observe that for fixed g ∈ G the hull XΛ decomposes as the disjoint
union

XΛ =
⊔
λ∈Λ2

XΛ(g, λ).

We conclude that for all g ∈ G with ‖g‖ > 4R we have

‖b̂(g)‖p =
∫
XΛ

‖b̂(g)(P )‖p dν(P ) =
∫
XΛ

‖b(β(g−1, P )−1)‖p dν(P )

=
∑
λ∈Λ2

‖b(λ)‖pν(XΛ(g, λ)) >
∑
λ∈Λ2

ρ(‖g‖ − 2R)pν(XΛ(g, λ))

= ρ(‖g‖ − 4R)p ·
∑
λ∈Λ2

ν(XΛ(g, λ)) = ρ(‖g‖ − 4R)p,

whence we obtain

‖b̂(g)‖ > ρ(‖g‖ − 4R),

showing that b̂ is proper. �
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Corollary 5.3. — Let Λ be a strong uniform approximate lattice in
a lcsc group G and let H be a Haagerup-type property with respect to E .
Then (Λ,Λ∞) has H if and only if G has H.

Proof. — Assume that (Λ,Λ∞) is a-FE-menable. Then there exists a
Λ-proper affine E-action of Λ∞, and by Proposition 5.1 we thus obtain a
G-proper affine action of G by induction, showing that G is a-FE-menable.
Conversely, it follows from Lemma 5.2 (with k = 1) that if G is a-FE-
menable, then any G-proper affine E-action of G restricts to a Λ-proper
affine E-action of Λ∞. The argument for the other Haagerup-type properties
is the same. �

For instance, the following application of the corollary shows that (as
in the group case) neither the a-Lp-menability for some p > 2 nor the
a-FFFH-menability imply a-FH-menability for approximate groups.

Example 5.4. — Assume that Λ is a strong uniform approximate lattice
in a rank one Lie group G. If G is locally isomorpic to SO(1, n) or SU(1, n)
for some n > 2, then G and hence (Λ,Λ∞) is a-FH-menable [7]. If G is
of quaternion or octonion type, then G has Property (T) [2], hence is not
a-FH-menable. It is however a-FLp-menable for sufficiently large p (e.g.
for p > 4n+ 2 in the case of Sp(n, 1), see [11]). Moreover, as remarked by
Ozawa [21, Remark on p. 2], every countable hyperbolic group is a-FFFH-
menable. This applies in particular to uniform lattices in G (which exist by
Borel–Harish-Chandra). Using both directions of the corollary, we deduce
firstly that G is a-FFFH-menable, and secondly that every strong uniform
approximate lattice in a rank one group is a-FFFH-menable.

Corollary 5.3 is a special case of Theorem 1.6 in that we have to assume
here that the uniform approximate lattice under consideration is strong.
In fact, Theorem 1.6 can be deduced from Corollary 5.3 together with the
following simple observation:

Proposition 5.5. — Let G be a lcsc group and let H be a Haagerup
property with respect to E . If Λ ⊂ Σ ⊂ G are uniform approximate lattices
and (Σ,Σ∞) has H, then (Λ,Λ∞) has H.

Proof. — We prove this for a-FE-menability, the other properties can be
proved similarly. By assumption there exists a Σ-proper affine E-action ρ0 of
Σ∞. We can restrict this action to an affine E-action ρ of Λ∞. Since Λ and Σ
are both relatively dense in G, Λ is left-syndetic in Σ by Remark 2.3. If thus
follows that ρ0 and hence ρ is also Λ-proper. This finishes the proof. �
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5.2. Preservation of Kazhdan type properties, I:
The trivial direction

Concerning Kazhdan type properties of approximate lattices we have the
following trivial implication:

Proposition 5.6. — Let T be a Kazhdan type property with respect
to E . If Λ is a uniform strong approximate lattice in a lcsc group G and
(Λ,Λ∞) has T , then G has T .

Proof. — Assume that (Λ,Λ∞) has Property (FE) and let ρ = (π, b) be
an affine E-action of G. Then ρ|Λ∞ is an affine E-action of Λ∞, hence Λ has
a bounded orbit. Since Λ is relatively dense in G and ρ is continuous, this
implies that G has a bounded orbit. The proof for the other properties is
similar. �

Remark 5.7. — The argument applies more generally to pairs (Λ,Λ∞)
where Λ ⊂ G is any subsets which is bi-syndetic in the sense that there
exist compact subsets K,L of G such that G = KΛL, and Λ∞ denotes
its enveloping group. This includes in particular the class of strong non-
uniform approximate lattices as introduced in [4].

Problem 5.8. — Let T be a Kazhdan type property, let G be a lcsc
group with T and let Λ ⊂ G be a uniform approximate lattice with en-
veloping group Λ∞. Is it true that (Λ,Λ∞) has T ?

Remark 5.9. — One might expect naively, that at least for strong uni-
form approximate lattices one can obtain a positive answer to this question
by a similar induction argument as in the Haagerup case. However, any at-
tempt in this direction runs into the following problem: Assume e.g. that
G has (FLp) and let (π, b) be an affine Lp-action of Λ∞, where Λ ⊂ G

is a strong uniform approximate lattice. Choose a G-invariant probability
measure ν on XΛ and let b̂ denote the ν-induced Lp-cocycle on G. The
assumption then implies that b̂ is bounded, hence if we define sets XΛ(g, λ)
as in (2.3), then as in the proof of Proposition 3.6 we obtain for all g ∈ G,∑

λ∈Λ2

‖b(λ)‖pν(XΛ(g, λ)) = ‖b̂(g)‖p 6 ‖b̂‖p∞.

Thus for all λ ∈ Λ and g ∈ G we have

‖b(λ)‖ 6 ‖b̂‖∞
ν(XΛ(g, λ)) .

To conclude, we would have to find for every λ ∈ Λ (or at least for suffi-
ciently many such λ) some g(λ) ∈ G such that ν(XΛ(g(λ), λ) > C for some
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uniform C > 0. Even in the case where Λ = Λ∞ is a group, this requires
some non-trivial argument (see [21]), but it can be done (for g(λ) := λ). In
the approximate group case, the cocycle β used in the definition of the sets
XΛ(g, λ) is more complicated, and while we are able to show that XΛ(λ, λ)
is open and non-empty, we are not able to conclude that it has uniformly
positive measure in general.

5.3. Preservation of Kazhdan type properties, II:
The model set case

In this subsection we provide a positive answer to Problem 5.8 in the
model set case. Throughout this subsection let T be a Kazhdan type prop-
erty with respect to E , let (G,H,Λ) be a uniform cut-and-project scheme
and let Λ = Λ(G,H,Γ,W ) be a symmetric regular uniform model set con-
taining the identity with window W . We denote by Λ∞ the enveloping
group of Λ. Recall that (Λ,Λ∞) ∼= (ΓW ,Γ), where ΓW = Γ ∩ (G×W ). In
particular, T for (Λ,Λ∞) is equivalent to relative T of the pair (Γ,ΓW ).
We are going to show:

Theorem 5.10. — Let (π, b) be a wq-E-pair for Γ with underlying space
E and let (π̂, b̂) = IndG×HΓ (π, b). If b̂ is bounded on G × {e}, then b is
bounded on ΓW .

As an immediate consequence we obtain:

Corollary 5.11. — Let T be a Kazhdan type property. If Λ is a sym-
metric uniform model set containing the identity in a lcsc group G and G
has T , then (Λ,Λ∞) has T .

Proof. — If Λ = Λ(G,H,Γ,W ), then (ΓW ,Γ) has T by Theorem 5.10.
Since (Λ,Λ∞) ∼= (ΓW ,Γ), the corollary follows. �

Note that we do not assume here that Λ has large window, hence Propo-
sition 3.4 may not apply. In the notation of that proposition this means
that the two induction schemes

ν − IndG(Λ,Λ∞)(π0, b0) and
(

IndG×HΓ (π, b)
)∣∣∣
G

may be different from each other, in which case we will work with the latter
scheme. This scheme is, however, special to the model sets case, and we do
not currently know how to give an intrinsic proof of Corollary 5.11 based
on induction over the hull of Λ without reference to an ambient lattice.
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This is the reason why our approach is currently limited to the model set
case (see however Subsection 5.4 for a slight extension).
Before we prove the theorem, let us mention that Corollary 5.11 implies

that an approximate group (Λ,Λ∞) can have Property (FLp) for every
p ∈ (1,∞), even though Λ∞ fails to have Property (FLp) for any p ∈ (1,∞):

Example 5.12.

(i) Let n > 2, G := SU(n, 2) and H := SU(n+ 1, 1). Since G has rank
> 2, it has Property (FLp) for all p ∈ (1,∞) by [1, Thm. B]. On
the other hand, H has the Haagerup Property (see e.g. [7]), hence
fails to have Property (T). It thus follows from [1, Thm. A] that H
does not have Property (TLp) for any [1, Thm. B]. It then follows
from [1, Thm. 1.3] that H, and hence G×H, does not have Prop-
erty (FLp) for any p ∈ (1,∞). Now let Γ < G×H be an irreducible
uniform lattice, let W be a Γ-regular window which is symmetric
and contains the identity, and let Λ := Λ(G,H,Γ,W ) be the associ-
ated regular uniform model set. It then follows from Corollary 5.11
that (Λ,Λ∞) has Property (FLp) for every p ∈ (1,∞). On the other
hand, Λ∞ is isomorphic to the lattice Γ in G × H, hence fails to
have Property (FLp) for any p ∈ (1,∞). (Note that the case p = 2
can also be deduced from the proof of [8, Cor. 1.3].)

(ii) Note that if G and Λ are as in (i), then G and hence Λ also have
Property (FFH) by [6], while Λ∞ does not (since (FFH) would
imply (FH)).

On a more anecdotal level we also mention:

Example 5.13. — The groupG := Sp(n,1) has Property (FH) (see e.g. [2]),
but as we have seen in Example 5.4 it is also a-FLp-menable for p > 4n+2
and a-FFFH-menable. The same then holds for any symmetric regular
model set in G containing the identity. This provides examples of approxi-
mate groups which have the above three properties simultaneously.

The remainder of this subsection is devoted to the proof of Theorem 5.10.
The main ingredient in the proof is the following theorem established by
Narutaka Ozawa in his work on Property (TTT):

Theorem 5.14 (Ozawa, [21, Thm. C]). — Let G be a lcsc group acting
measure-preservingly on a standard probability space (Y,m). Let ` : Y ×
G → R>0 be a measurable function such that for almost all (x, g1, g2) ∈
Y ×G×G,

(5.3) `(x, g1g2) 6 `(x, g1) + `(g−1
1 x, g2).
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Assume that there exists D > 0 such that for almost all g ∈ G

(5.4)
∫
Y

`(x, g) dm(x) < D <∞.

Then there exists φ ∈ L1(Y,m) with φ > 0 such that for almost all (g, x) ∈
G× Y ,

(5.5) `(x, g) 6 φ(x) + φ(g−1x).

We now return to the situation of Theorem 5.10. Concerning the cut-
and-project scheme (G,H,Γ) we use freely the notations introduced in
Remark 2.14. In particular we abbreviate Y := (G × H)/Γ and choose a
bounded Borel section s : Y → G×H as in the remark. We fix the section s
for the rest of this subsection and denote by β = βs the associated cocycle.
Given γ ∈ ΓG we denote by γ∗ the unique element of ΓH such that

(γ, γ∗) ∈ Γ. Given x, y ∈ Y and (γ, γ∗) ∈ Γ we define elements gγx,y ∈ G
and hγx,y ∈ H by

(5.6) s(x)(γ, γ∗)s(y)−1 = (gγx,y, hγx,y)

We will establish below the following useful algebraic identities:

Lemma 5.15.

(i) For all (γ, γ∗) ∈ Γ and x, y ∈ Y we have

(γ, γ∗) = β((s(x)(γ, γ∗)s(y)−1)−1, x)−1.

(ii) For all (γ, γ∗) ∈ Γ and all x, y ∈ Y we have

(gγx,y, e)−1.x = (sG(y), sH(x)γ∗).Γ = (e, hγx,y).y.

We also need the following lemma, which is essentially a combination
of Fubini’s theorem and Čebyšev’s inequality. Here our special choice of
section will play an important role.

Lemma 5.16. — Let Ω ⊂ G×Y be a conull subset and let φ ∈ L1(Y,m)
with φ > 0. Then there exists a constant C > 0 such that for all (γ, γ∗) ∈
Γ ∩ (G×W ) there exist x, y ∈ Y such that

(gγx,y, x) ∈ Ω and φ(x) 6 C and φ((gγx,y, e)−1x) 6 C.

Before we prove the two lemmas, let us explain how they imply the
theorem:

Proof of Theorem 5.10 modulo Lemma 5.15 and Lemma 5.16. — Our
arguments roughly decompose as follows: We first show that there exists a
constant C ′ such that

‖b(γ, γ∗)‖ 6 ‖b((gγx,y, e)−1, x)‖+ C ′, for all x, y ∈ Y and (γ, γ∗) ∈ ΓW ,
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where gγx,y is defined in (5.6). Once this has been established, we verify that
Ozawa’s Theorem can be applied to the function

`(x, g) := ‖b(β((g, e)−1, x)−1)‖+ C ′,

which in turn implies that there exist φ ∈ L1(Y,m) and a conull subset
Ω ⊂ G× Y such that

‖b(β((g, e)−1, x)−1)‖ 6 φ(x) + φ((g, e)−1x), for all (g, x) ∈ Ω.

Now, by Lemma 5.16, there exists a constant C such that for all (γ, γ∗) ∈
ΓW , there are x, y ∈ Y which satisfy

(gγx,y, x) ∈ Ω, φ(x) 6 C and φ((gγx,y, e)−1x) 6 C,

whence, ‖b(β((gγx,y, e)−1, x))‖ 6 2C, and thus ‖b(γ, γ∗)‖ 6 2C + C ′. Since
the constants C and C ′ are independent of x and y, we conclude that b|ΓW
is bounded, which finishes the proof.
Let us now turn to the details. By Lemma 5.15 we have for all x, y ∈ Y

and (γ, γ∗) ∈ Γ,

(γ, γ∗) = β((s(x)(γ, γ∗)s(y)−1)−1, x)−1 = β((gγx,y, hγx,y)−1, x)−1

= β
(
(e, hγx,y)−1(gγx,y, e)−1, x

)−1

= β((gγx,y, e)−1, x)−1β((e, hγx,y)−1, (gγx,y, e)−1x)−1

= β((gγx,y, e)−1, x)−1β((e, hγx,y)−1, (e, hγx,y).y)−1

= β((gγx,y, e)−1, x)−1β((e, hγx,y)−1, y),

where the last equality follows from (2.2). In particular, we deduce from
the wq-Property and the fact that π takes values in isometries that

‖b(γ, γ∗)‖ 6 ‖b(β((gγx,y, e)−1, x)−1)‖+ ‖b(β((e, hγx,y)−1, y))‖+D(b),

where D(b) is defined in (3.3). Now assume that (γ, γ∗) ∈ ΓW := Γ ∩
(G×W ). Then

hγx,y = sH(x)γ∗sH(y) ∈ πH(F)WπH(F),

which is a compact subset of H. It thus follows from the last assertion
of Lemma 2.10 that there exists a constant C0 > 0 such that for all h ∈
πH(F)WπH(F) and y ∈ Y

‖b(β((e, h), y))‖ 6 C0,

and hence

(5.7) ‖b(γ, γ∗)‖ 6 ‖b(β((gγx,y, e)−1, x)−1)‖+ C0 +D(b)
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for all x, y ∈ Y and (γ, γ∗) ∈ ΓW . To estimate the first term on the right-
hand side of the inequality we are going to apply Ozawa’s theorem to the
function

` : Y ×G→ R>0, `(x, g) := ‖b(β((g, e)−1, x)−1)‖+D(b).

We need to check that this function satisfies Conditions (5.3) and (5.4)
from Theorem 5.14. Set

C1 := sup
g∈G
‖b̂(g, e)‖p <∞.

Since for all g ∈ G and x ∈ Y we have b̂(g, e)(x) = b(β((g, e)−1, x)−1), we
deduce that∫

Y

‖b(β((g, e)−1, x)−1)‖ dm(x)

6

(∫
Y

‖b(β((g, e)−1, x)−1)‖p dm(x)
)1/p

6 C1.

This implies that ∫
Y

`(x, g) dm(x) 6 C1 +D(b) <∞,

hence (5.4) holds with D := C1 +D(b). We also observe that

`(x, g1g2)

= ‖b(β((g1g2, e)−1, x))−1‖+D(b)

= ‖b(β((g1, e)−1, x)−1β((g2, e)−1, (g1, e)−1.x−1)−1‖+D(b)

6 ‖b(β((g1, e)−1, x)−1)‖+ ‖b(β((g2, e)−1, (g1, e)−1x−1)−1)‖+ 2D(b)

6 `(x, g1) + `(g−1
1 x, g2),

hence (5.3) holds, and Theorem 5.14 applies indeed to the function `. We
thus deduce that there exists a conull set Ω ⊂ G × Y and a function
φ ∈ L1(Y,m) such that for all (g, x) ∈ Ω,

(5.8) ‖b(β((g, e)−1, x)−1)‖ 6 φ(x) + φ((g, e)−1x).

Now fix (γ, γ∗) ∈ ΓW and let C be the constant from Lemma 5.16. By the
same lemma, there exist x, y ∈ Y such that (x, gγx,y) ∈ Ω, φ(x) 6 C and
φ(gγxy, e)−1x) 6 C. Now by (5.7) and (5.8) this implies that

‖b(γ, γ∗)‖ 6 ‖b(β(x, (gγxy, e)))‖+ C0 6 φ(x) + φ((gγxy, e)−1x) + C0

6 2C + C0.
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Since (γ, γ∗) ∈ ΓW was chosen arbitrarily, this shows that b is bounded on
ΓW and thereby finishes the proof. �

The rest of this subsection is devoted to the proof of the lemmas used in
the proof of this theorem.

Proof of Lemma 5.15.
(i). — Since β(g−1, x)−1 = s(x)−1gs(g−1x) we have

β((s(x)(γ, γ∗)s(y)−1)−1, x)−1

= s(x)−1(s(x)(γ, γ∗)s(y)−1)s(s(y)(γ, γ∗)s(x)−1x)

= (γ, γ∗)s(y)−1s(s(y)(γ, γ∗)Γ)

= (γ, γ∗)s(y)−1s(y)
= (γ, γ∗).

(ii). — We have

(sG(x)γsG(y)−1, sH(x)γ∗sH(y)−1) = s(x)(γ, γ∗)s(y)−1 = (gγx,y, hγx,y),

and hence

(gγx,y, e)−1.x = (sG(y)γ−1sG(x)−1, e).(sG(x), sH(x))(γ, γ∗)Γ
= (sG(y), sH(x)γ∗)Γ

= (e, sH(x)γ∗sH(y)−1)(sG(y), sH(y))Γ
= (e, hγx,y).y,

which establishes (gγx,y, e)−1.x = (sG(y), sH(x)γ∗).Γ = (e, hγx,y).y. �

Proof of Lemma 5.16. — Throughout the proof we fix (γ, γ∗) ∈ Γ ∩
(G×W ). For every C > 0 we now define sets

Ωγ1 := {(x, y) ∈ Y × Y | (gγx,y, x) ∈ Ω}

and

ΩC2 := {(x, y) ∈ Y × Y | φ(x) 6 C}

and
Ωγ,C3 := {(x, y) ∈ Y × Y | φ((gγx,y, e)−1x) 6 C}.

It suffices to show that for some C > 0 independent of γ the intersection

Ωγ,C := Ωγ1 ∩ ΩC2 ∩ Ωγ,C3 ,

has positive measure (hence is non-empty).
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As far as Ωγ1 is concerned, since Ω is a conull subset of G × Y , Fubini’s
theorem implies that there exists a conull subset Y0 ⊂ Y such that for all
x ∈ Y0 the set

Ωx := {g ∈ G | (g, x) ∈ Ω}
is a conull set in G. Now fix x ∈ Y0 and let y ∈ Y . By definition we have
the equivalences

(x, y) ∈ Ωγ1 ⇐⇒ sG(x)γsG(y)−1 ∈ Ωx ⇐⇒ sG(y) ∈ Ω−1
x sG(x)γ.

Now for every fixed x ∈ Y0 the set Ω−1
x sG(x)γ is a conull set in G. This

shows that

(5.9) (mY ⊗mY )(Ωγ1) = 1.

As far as ΩC2 is concerned, Čebyšev’s inequality yields

(mY ⊗mY )(ΩC2 ) = 1−mY ({x ∈ Y | φ(x) > C}) > 1− 1
C
‖φ‖1,

hence if ε > 0 and C > ‖φ1‖/ε, then

(5.10) (m⊗m)(ΩC2 ) > 1− ε.

To estimate the measures of the sets Ωγ,C3 we define a compact subset
K ⊂ G×H by K := πG(F)× πH(F)W and define

φ̃ : G×H → R>0, φ̃(g, h) := χK(g, h) · φ((g, h)Γ).

Since K ⊂ G×H is compact, it can be covered by finitely many translates
of F , and since φ ∈ L1(Y,m) we deduce that φ̃ ∈ L1(G × H,mG ⊗mH).
We also define a function

hγ : Y × Y, (x, y) 7→ φ̃(sG(y), sH(x)γ∗)

Since by Lemma 5.15 we have (gγx,y, e)−1x = (sG(y), sH(x)γ∗).Γ and since
for all x, y ∈ Y we have (sG(y), sH(x)γ∗) ∈ K we deduce that

Ωγ,C3 = {(x, y) ∈ Y × Y | hγ(x, y) 6 C}.

We observe that, in the notation of Lemma 2.15,

‖hγ‖1 =
∫
Y×Y

φ̃(sG(y), sH(x)γ∗) dmY (y) dmY (x)

=
∫
G

∫
H

φ̃(g, hγ∗) dµH(h) dµG(g)

=
∫
FG

∫
FH

φ̃(g, hγ∗)ρG(g)ρH(h) dmH(h) dmG(g)

6 ‖ρG‖∞‖ρH‖∞‖φ̃‖1 =: C0,

TOME 70 (2020), FASCICULE 5



1942 Michael BJÖRKLUND & Tobias HARTNICK

in particular the functions hγ are contained in L1(Y × Y ) and have uni-
formly bounded L1-norm. Another application of Čebyšev’s inequality thus
yields

(mY ⊗mY )(Ωγ,C3 ) > 1− C0

C
,

which for C > C0/ε yields

(5.11) (mY ⊗mY )(Ωγ,C3 ) > 1− ε.

Combining (5.9), (5.10) and (5.11) we deduce that for every ε > 0 there
exists C > 0 (independent of γ) such that

(mY ⊗mY )(Ωγ,C) > 1− 2ε,

hence Ωγ,C 6= ∅. �

5.4. Preservation of Kazhdan type properties, III:
The Meyer case

In the last subsection we have established Part (i) of Theorem 1.9 in
Corollary 5.11. The remaining part of the theorem can be deduced from
Part (i) using the results of the appendix:

Proof of Theorem 1.9(ii). — Let G be a lcsc group satisfying a Kazhdan
type Property T and let Λ ⊂ G be a Meyer set, which is a uniform lattice
and contained in a model set Σ of almost connected type. By Part (i) of
Theorem 1.9, the approximate group (Σ,Σ∞) has T . It then follows from
Corollary A.6 that also (Λ,Λ∞) has T . �

This finishes the proof of Theorem 1.9

Appendix A. Structure theory of Meyer sets

Let (G,H,Γ) be a uniform cut-and-project scheme and let W ⊂ H be a
subset with dense interior. Recall that the set

Λ := Λ(G,H,Γ,W ) := πG(Γ ∩ (G×W ))

is called a uniform model set with window W . If W is symmetric and
contains the identity, then it is a uniform approximate lattice in G. By
Remark 2.3 every symmetric subset ∆ < Λ containing the identity, which
is relatively dense in G (equivalently, left-syndetic in Λ), is then also a
uniform approximate lattice in G.
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Definition A.1. — A left-syndetic subset of a model set is called a
Meyer set.

If G is abelian, then every uniform approximate lattice in G is a sym-
metric Meyer set [16, 20]. As for general G, it is currently not known
whether there exist any uniform approximate lattices which are not sym-
metric Meyer sets.

Remark A.2. — In the definition of a model set, we can always assume
that W generates H, for otherwise we can replace H by the group gener-
ated by W without changing Λ. Similarly, in the definition of a Meyer set,
we may always assume that the ambient model set is symmetric, regular
and contains the identity, hence is a strong approximate lattice. Indeed,
this can be achieved by simply enlarging the window. In the sequel, when
constructing model sets/Meyer sets, we will always assume tacitly that H
and W are chosen in this way.

Definition A.3. — Let Λ = Λ(G,H,Γ,W ) be a uniform model set and
∆ ⊂ Λ be a Meyer set. We say that Λ and ∆ are of connected Lie type if
H is a connected Lie group. We say that Λ and ∆ are of almost connected
type if H is almost connected, i.e., compact-by-connected.

The difference between almost connected type and connected Lie type is
rather small:

Proposition A.4. — Let G be a lcsc group. If Λ is a uniform model
set of almost connected type in G, then there exists a uniform model set
Λ′ of connected Lie type in G and a finite subset F ⊂ Λ−1Λ such that

Λ ⊂ Λ′ ⊂ ΛF

In particular, every Meyer set of almost connected type is of connected
Lie type.

Proof. — Clearly the first statement implies the second. As for the first
statement, let Λ = Λ(G,H,Γ,W0) with H almost connected. Then by [19,
p. 175] there exist a compact normal subgroup V < H such that L := H/V

is a connected Lie group and {e} × V intersects Λ trivially. Denote by
πL : H → L the canonical projection and set WL := πL(W0), W :=
π−1
L (W0) = W0V and

ΓL := {(γ1, πL(γ2)) ∈ G× L | (γ1, γ2) ∈ Γ} < G× L

Then (G,L,ΓL) is a cut-and-project scheme, W is compact, and

Λ(G,H,Γ,W ) = Λ(G,L,ΓL,WL)
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is a uniform model set of connected Lie type. Since Λ and Λ(G,H,Γ,W ) are
model sets associated with the same cut-and-project scheme with windows
W0 ⊂ W , the model set Λ is left-syndetic in this model set of connected
Lie type by Remark 2.3. �

One reason for our interest in model sets of almost connected type is the
following observation:
Proposition A.5. — Let Λ be a regular symmetric uniform model set

of almost connected type and let ∆ ⊂ Λ be a symmetric Meyer set con-
taining the identity. Then ∆∞ is of finite index in Λ∞.

In connection with Kazhdan type properties we mention the following
application, which is immediate from Proposition A.5 and Lemma 4.6:
Corollary A.6. — Let T be a Kazhdan type property with respect

to a class of uniformly convex separable Banach spaces which is Lp-closed
for some p ∈ (1,∞). Let Λ be a symmetric uniform regular model set of
almost connected type and let ∆ ⊂ Λ be a symmetric Meyer set containing
the identity. If (Λ,Λ∞) has T , then (∆,∆∞) has T .

For the proof of Proposition A.5 we need:
Lemma A.7. — Let G, L be lcsc groups, WL ⊂ L be compact and let

Θ ⊂ G× L be a subset such that πL(Θ) is dense in L. If

Σ := πG(Θ ∩ (G×WL))

is relatively dense in G, then Θ is relatively dense in G× L.
Proof. — Since Σ is relatively dense, we can choose a compact subset

K1 ⊂ G such that G = ΣK1. Let K2 be a compact identity neighbourhood
in L and observe that since πL(Θ) is dense in L we have L = π2(Θ)K2. We
claim that G× L = Θ(K1 ×W−1

L K2).
Indeed, let (g, l) ∈ G× L; since L = π2(Θ)K2 we can write l = θ2k2 for

some θ = (θ1, θ2) ∈ Θ and k2 ∈ K2. Since G = ΣK1 we then find σ ∈ Σ and
k1 ∈ K1 such that θ−1

1 g = σk1. By definition of Σ we can write σ = πG(θ′)
for some θ′ = (σ, θ′2) ∈ Θ with θ′2 ∈WL. Then

(g, l) = (θ1, θ2)(θ−1
1 g, k2) = θ(σ, θ′2)(k1, (θ′2)−1k2) = θθ′(k1, (θ′2)−1k2),

and since (g, l) ∈ G × L was chosen arbitrarily we have G × L = Θ(K1 ×
W−1
L K2) as claimed. �

Proof of Proposition A.5. — Let Λ = Λ(G,H,Γ,W ) with H almost
connected and denote by τ : Λ∞ = ΓG → H the ∗-map of the cut-and-
project scheme (G,H,Γ). Define

Θ := Γ ∩ π−1
G (∆∞) < Γ
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so that πG(Θ) = ∆∞ and πH(Θ) = τ(∆∞). By assumption there exists a
finite subset F ⊂ Λ∞ such that Λ ⊂ F∆. Thus if we set F ∗ := τ(F ), then

W ∩ ΓH = τ(Λ) ⊂ τ(F∆) = F ∗τ(∆).

Since ΓH is dense in H, the intersection W ∩ ΓH is dense in W o, hence in
W o = W . We deduce that

W = W ∩ ΓH ⊂ F ∗τ(∆).

Thus F ∗τ(∆) has non-empty interior, and since F ∗ is finite, the Baire
category theorem implies that τ(∆) has non-empty interior. It follows that
the subgroup

(A.1) L := πH(Θ) = τ(∆∞) < H

has non-empty interior, hence is an open subgroup of H, andWL := W ∩L
is a non-empty compact subset of L. By definition Θ is contained in G×L,
and by (A.1), πL(Θ) = πH(Θ) is dense in L. Moreover the set

Σ := πG(Θ ∩ (G×WL))

is relatively dense in G, since it contains ∆. Thus Lemma A.7 applies,
and we deduce that Θ is relatively dense in G × L. Now H is almost
connected and L being open contains the identity component of H, hence
L is left-syndetic in H. It follows that Θ is also a relatively dense in G×H.
Since Θ < Γ it is also uniformly discrete, hence a uniform lattice. Since
Θ and Γ are both uniform lattices, we deduce that Θ has finite index
in Γ, and projecting to G we see that ∆∞ = πG(Θ) has finite index in
Λ∞ = πG(Γ). �

Finally we turn to the question how far an arbitrary Meyer set is from
being of almost connected type, respectively connected Lie type. To state
our result, we introduce the following terminology:

Definition A.8. — Let Γ be a group and Σ ⊂ Γ be a symmetric subset.
We say that an element a ∈ Γ quasi-commensurates Σ if there exists a finite
subset Fa ⊂ Γ such that

aΣ ⊂ ΣFa and Σa ⊂ FaΣ.

We say that a subset A ⊂ Γ quasi-commensurates the set Σ if every element
of A quasi-commensurates Σ. If Λ ⊂ Γ is a subset we denote by qCommΛ(Σ)
the set of all elements of Λ which commensurate Σ.

By definition, qCommΛ(Σ) is the largest subset of Λ which quasi-commen-
surates Σ. Note that we can enlarge approximate groups by finite subsets
of their quasi-commensurator:
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Proposition A.9. — Let G be a group and Σ ⊂ G be an approximate
subgroup. If F ⊂ qCommG(Σ) is finite and contains the identity, then
FΣ ∪ ΣF−1 is an approximate subgroup of G.
Proof. — By construction, ΣF is symmetric and contains the identity.

Let FΣ be finite such that Σ2 ⊂ ΣFΣ. Given x ∈ F chose Fx finite such
that xΣ ⊂ ΣFx and set F0 :=

⋃
Fx. Then

Σ2
F ⊂ ΣΣF 3

0 ⊂ ΣFΣF
3
0 ,

which shows that ΣF is an approximate subgroup. �

Definition A.10. — If G is a group, Σ ⊂ G is an approximate sub-
group and F ⊂ qCommG(Σ) is finite, then the approximate group ΣF :=
FΣ ∪ ΣF−1 is called the enlargement of Σ by F .
While it is not true in general that every Meyer set is contained in a

model set of connected Lie type, we can show that every Meyer set is
contained in the enlargement of a suitable model set of connected Lie type.
Theorem A.11. — Let G be a lcsc group and let Λ be a model set in

G. Then there exists a model set Σ of connected Lie type in G and a finite
subset F ⊂ qCommΛ∞(Σ) such that

Λ ⊂ FΣ ⊂ ΣF .

In particular, every Meyer set is contained in a finite union of model sets
of connected Lie type.
Proof. — Let (G,H,Γ) be a cut-and-project scheme with ∗-map τ :

ΓG → H and let Λ = Λ(G,H,Γ,W ) = τ−1(W ). Denote by Ho the identity
component of H and by π : H → H/Ho be the canonical projection. Let
U < H/Ho be an arbitrary compact-open subgroup and set L := π−1(U) so
that L is an almost connected open subgroup of H. Since L is almost con-
nected, [19, p. 175] implies that we can choose a compact normal subgroup
V of L such that {e}×L intersects Γ trivially and such thatM := L/V is a
connected Lie group. We denote by πM : L→M the canonical projection.

Since ΓH is dense in H, the image π(ΓH) = π(τ(ΓG)) is dense in H/Ho

and thus π(τ(ΓG))U = H/Ho. Since π(W ) is compact we find a finite
subset F ⊂ ΓG such that π(W ) ⊂ π(τ(F ))U , and hence

W ⊂ τ(F )L.

We now choose a compact subset WL ⊂ L such that WL ⊃ F−1W ∩L ⊂ L
and such that WM := πM (WL) satisfies π−1

M (WM ) = WL. Then

W =
⋃
f∈F

(W∩τ(f)L) =
⋃
f∈F

τ(f)(τ(f)−1W∩L) ⊂
⋃
f∈F

τ(f)WL = τ(F )WL,
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and hence if we set Σ := τ−1(WL) ⊂ ΓG, then

Λ = τ−1(W ) ⊂ τ−1(τ(F )WL) = Fτ−1(WL) = FΣ.

Now define ΓL := Γ∩ (G×L) < G×L and ΓM := (id×πM )(ΓL) < G×M .
Since G×L is open in G×H, the group ΓL is a uniform lattice in G×L.
Since ΓL < Γ its projection to G is injectice, and since L is open in H, the
projection of ΓL to L is dense in L, hence (G,L,ΓL) is a cut-and-project
scheme. From this it follows as in the proof of Proposition A.9 that also
(G,M,ΓM ) is a cut-and-project scheme and sinceWL = π−1

M (WM ) we have

Σ = πG((G×WL) ∩ Γ) = πG((G×WL) ∩ ΓL)
= πG((G×WM ) ∩ ΓM ) = Λ(G,M,ΓM ,WM ).

This shows that Σ is a model set of connected type such that Λ ⊂ FΣ.
Moreover, if x ∈ F , then the compact set τ(x)WL can be covered by finitely
many ΓH -translates ofWL (since ΓH is dense inH andWL has open interior
in H), hence we find Fx ⊂ ΓG = Λ∞ such that

τ(x)WL ⊂WLτ(Fx) and WLτ(x) ⊂ τ(Fx)WL.

Consequently,

xΣ ⊂ τ−1(τ(xΣ)) = τ−1(ΓH ∩ τ(x)WL) ⊂ τ−1(ΓH ∩WLτ(Fx)) = ΣFx,

and similarly Σx ⊂ FxΣ. This shows that F ⊂ qCommΛ∞(Σ) and finishes
the proof. �

Let us say that a lcsc group G can be coupled to a lcsc group H if there
exists a uniform lattice Γ < G × H which projects injectively to G and
densely to H. Then we have the following consequence of Theorem A.11:

Corollary A.12. — Let G be a lcsc group which cannot be coupled
to any non-compact connected Lie group. Then every Meyer set in G is
contained in a finite union of lattices.

Appendix B. Measurable vs. continuous quasi-cocycles

Let G be a lcsc group, E be a Banach space and π : G → O(E) be a
Borel homomorphism. Recall that a locally bounded Borel map b : G→ E

is called a Borel quasi-cocycle if

(B.1) D(b) := sup
g1,g2∈G

‖b(g1g2)− b(g1)− π(g1)b(g2)‖ <∞,

and a continuous quasi-cocycle if it is moreover continuous with respect
to the norm topology on E. Burger and Monod [6] define a group G to
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have Property (TT) if every continuous quasi-cocycle on an L2-space is
bounded. On the contrary, Ozawa [21] defines Property (TT) by making
the a priori stronger demand that every Borel quasi-cocycle on an L2-space
be bounded.
In our definition of Property (FFLp) we follow Ozawa’s convention to

work with Borel quasi-cocycles. However, let us point out that the two
definitions are actually equivalent in view of the following result which we
record here for lack of an explicit reference:

Theorem B.1. — If b : G → E is a Borel quasi-cocycle with respect
to π : G → O(E), then there exists a continuous quasi-cocycle b′ : G →
E which is at uniformly bounded distance from b. In particular, G has
Property (TT) in the sense of Burger and Monod iff it has Property (TT)
in the sense of Ozawa.

Remark B.2. — The full strength of the assumptions above is actually
not needed. We only need π to be a uniformly bounded representations
of G over E, which is Borel and hence actually strongly continuous. Con-
cerning b we only need that it is weakly measurable, locally bounded and
satisfies (B.1).

Proof of Theorem B.1. — We fix a left-Haar measure mG on G and
ρ ∈ Cc(G) which satisfies ρ > 0 and

∫
G
ρ dmG = 1. We then define a

function bρ : G→ E by

bρ(g) :=
∫
G

ρ(h)b(gh) dmG(h) =
∫
G

ρ(g−1h)b(h) dmG(h),

where the integral is understood in the Gelfand–Pettis sense. We also set
Kρ := supp(ρ).
Since π is uniformly bounded and b is locally bounded the distance

‖b(g)− bρ(g)‖ =
∥∥∥∥b(g)−

∫
G

ρ(h)b(gh) dmG(h)
∥∥∥∥

=
∥∥∥∥∫

G

ρ(h)(b(g)− b(gh) + π(g)b(h)) dmG(h)

−π(g)
∫
G

ρ(h)b(h) dmH(h)
∥∥∥∥

6 D(b) + ‖π(g)‖op ·

∥∥∥∥∥
∫
Kρ

ρ(h)b(h) dmH(h)

∥∥∥∥∥
is bounded uniformly in g, hence it remains to see that bρ is a continuous
quasi-cocycle. As for the quasi-cocycle property, we observe that for all
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g, h ∈ G we have

‖bρ(gh)− bρ(g)− π(g)bρ(h)‖
6 ‖bρ(gh)− b(g)− π(g)bρ(h)‖+ ‖b(g)− bρ(g)‖

6
∫
G

‖b(ghk)− b(g)− π(g)b(hk)‖ ρ(k) dmG(k) + ‖b(g)− bρ(g)‖.

Now the first summand is bounded by D(b) in view of (B.1), and the
second term is uniformly bounded in view of the previous argument. To see
continuity of bρ we fix ε > 0. Since ρ is uniformly continuous on compacta
we can find a symmetric identity neighbourhood V in g such that |ρ(x)−
ρ(s−1x)| < ε for all s ∈ V . Now for s ∈ V and g ∈ G we have

‖bρ(gs)− bρ(g)‖ =
∫
G

(ρ(s−1g−1h)− ρ(g−1h))b(h) dmG(h).

The first factor is bounded in absolute value by ε. Moreover, the integral
vanishes unless {s−1g−1h, g−1h}∩Kρ 6= ∅, which implies h ∈ K ′g := g(Kρ∪
V Kρ). It follows that

‖bρ(gs)− bρ(g)‖ 6 sup{‖b(h)‖ | h ∈ K ′g} · ε,

which yields the desired continuity. �
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