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GEODESIC FLOW OF NONSTRICTLY CONVEX
HILBERT GEOMETRIES

by Harrison BRAY (*)

Abstract. — In this paper we describe the topological behavior of the geodesic
flow for a class of closed 3-manifolds realized as quotients of nonstrictly convex
Hilbert geometries. The structure of these 3-manifolds is described explicitly by
Benoist; they are Finsler with isometrically embedded flats, but hyperbolic away
from flats. We prove the geodesic flow of the quotient is topologically mixing and
satisfies a nonuniform Anosov Closing Lemma, with applications to entropy and
orbit counting. We also prove entropy-expansivity for the geodesic flow of any
compact quotient of a Hilbert geometry, which implies existence of a measure of
maximal entropy.
Résumé. — Dans cet article, nous décrivons le comportement topologique du

flot géodésique pour une classe de 3-variétés fermées réalisées sous forme de quo-
tients de géométries de Hilbert non strictement convexes. La structure de ces 3-
variétés est explicitement décrite par Benoist; elles sont de Finsler avec des parties
plates plongées de façon isométrique, mais hyperboliques loin des parties plates.
Nous prouvons que le flot géodésique du quotient est topologiquement mélangeant
et satisfait un lemme fermant d’Anosov non uniforme, avec applications au comp-
tage d’entropie et d’orbites. Nous prouvons également l’expansivité de l’entropie
pour le flot géodésique de tout quotient compact d’une géométrie de Hilbert, ce
qui implique l’existence d’une mesure d’entropie maximale.

1. Introduction

We study topological behavior of the geodesic flow of a class of closed 3-
manifolds which are only Finsler, meaning the tangent space admits a norm
which does not come from an inner product, and for which the geodesic
flow is nonuniformly hyperbolic due to the presence of isometrically embed-
ded flats of dimension two. The 3-manifolds arise as quotients of properly
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convex domains in real projective space by discrete groups of projective
transformations. Such objects are known as Hilbert geometries or convex
real projective structures. The structure of the domain and the quotient is
well-described thanks to Benoist ([6], see Theorem 2.2). As such, we refer
to the 3-manifolds of interest as Benoist 3-manifolds.

We prove several recurrence properties of the geodesic flow of the Benoist
3-manifolds, such as topological transitivity and a nonuniform Anosov Clos-
ing Lemma. Though stable and unstable sets are not even defined for a
dense set of points, we prove that strong unstable leaves are defined and
dense for closed hyperbolic orbits, which are dense in the phase space.
These results culminate in the following:

Theorem 5.7. — The geodesic flow of a Benoist 3-manifold is topolog-
ically mixing(1).

The geometric properties of the universal cover which Benoist verifies in
dimension three are essential for the arguments, hence the results do not
immediately generalize.

This paper also serves as a precursor to work of the author on the Bowen–
Margulis measure of maximal entropy [9]. To that end, we verify conditions
of Bowen [8] for easier computability of topological entropy:

Theorem 6.2. — The geodesic flow of any closed Hilbert geometry sat-
isfies Bowen’s entropy-expansive property.

One corollary of Theorem 6.2 is existence of a measure of maximal en-
tropy for the flow. Another consequence is the following proposition, which
implies positive topological entropy.

Proposition 7.1. — The topological entropy of the geodesic flow of
a Benoist 3-manifold is bounded below by the exponential growth rate of
lengths of hyperbolic closed orbits.

The structure of the paper is as follows: we first introduce the objects of
interest and the relevant background in Section 2. In Section 3 we study au-
tomorphisms of the universal cover, and prove that the additive subgroup
of R generated by lengths of closed hyperbolic orbits is dense (Proposi-
tion 3.9). This result, along with transitivity (Proposition 4.3) and nonuni-
form Anosov Closing (Theorem 4.4) from Section 4 will be crucial for the
proof of topological mixing in Section 5. In the same section we also prove a

(1)A continuous dynamical system f t : X → X is topologically mixing if for any open
U, V ⊂ X there exists a T > 0 such that fT (U) ∩ V 6= ∅.
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nonuniform orbit gluing lemma (Lemma 5.3) which suffices for topological
mixing but requires no control over exponential contraction or expansion
rates. Section 6 is devoted to the proof of entropy-expansiveness and Sec-
tion 7 to orbit counting, with remarks on the relationships between the
topological entropy of the geodesic flow, the volume entropy of the metric
space, and the critical exponent of the group.
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2. Background

A domain Ω in n-dimensional real projective space RPn is proper if there
is an affine chart in which Ω is bounded, and properly convex if moreover
Ω is convex in this affine chart, meaning the intersection of Ω with any line
is connected. Furthermore, Ω is strictly convex if the intersection of the
topological boundary ∂Ω with any line in the complement of Ω contains
at most one point. A Hilbert geometry on a properly convex domain Ω in
RPn is determined by the Hilbert metric, defined on an affine chart for Ω
as follows: let dΩ(x, x) = 0. Then for any distinct points x, y ∈ Ω, there is a
unique projective line xy passing through x and y. Take a and b to be the
intersection points of xy with ∂Ω such that a is closer to x than y. Then
the Hilbert distance between x and y is

dΩ(x, y) := 1
2 log[a, x, y, b],

where [a, x, y, b] := |ay|
|ax|

|bx|
|by| and | · | is a Euclidean norm for the chosen

affine chart. One can verify that dΩ satisfies the properties of a metric, is
complete on Ω, and is well-defined for any affine representation of Ω by
projective invariance of the cross-ratio. Projective lines are always geodesic
in this metric, but not all geodesics are lines.
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The Hilbert metric comes from a Finsler norm, which is Riemannian only
when Ω is an ellipsoid. One can compute that for (x, v) ∈ TΩ, the Finsler
norm is given by

F (x, v) := |v|2

(
1
|xv+|

+ 1
|xv−|

)
where v− and v+ are the intersection points with ∂Ω of the projective line
determined by v in the direction of −v and +v, respectively. A properly
convex domain Ω in RP2 is uniquely geodesic if and only if there is at most
one open line segment in ∂Ω (this can be verified using the well-definedness
of the cross-ratio of four lines). The ellipsoid in RPn is isometric to Hn when
endowed with the Hilbert metric. In this metric, angles are defined, though
distorted. This model for hyperbolic space is known as the Beltrami–Klein
model or Cayley–Klein model.
For a properly convex open Ω ⊂ RPn, define the automorphism group of

Ω to be
Aut(Ω) := {g ∈ PSL(n+ 1,R) | gΩ = Ω}.

Note that Aut(Ω) is a subgroup of Isom(Ω), the isometry group of (Ω, dΩ),
since projective transformations preserve the cross-ratio. The full isometry
group of (Ω, dΩ) is, up to index 2, the group of collineations which pre-
serve Ω [29]. A properly convex domain Ω in RPn is divisible if it admits
a cocompact action by a discrete subgroup Γ of PSL(n + 1,R), in which
case we say Γ divides Ω. As a first example, the ellipse is divisible by any
Fuchsian group. The projective triangle, isometric to R2 with a hexagonal
norm when endowed with the Hilbert metric [11, 19], admits a Z2-action
with quotient a flat torus.
Suppose Γ < PSL(n+1,R) acts properly discontinuously without torsion

on Ω ⊂ RPn, so that the quotient M = Ω/Γ is a manifold. The geodesic
flow of M is defined on SM , the Finsler unit tangent bundle to M , by
flowing unit tangent vectors along projective lines at unit Hilbert speed:

φt : SM −→ SM

(x, v) 7−→ (x+ tv, v).

In other words, (x, v) ∈ SM determines a unique oriented projective
line `v : R → M parameterized at unit Hilbert speed, with `v(0) = x and
φt(v) the Finsler unit tangent vector to `v based at `v(t). In the strictly
convex case, all geodesics are projective lines and this definition coincides
with the standard definition of geodesic flow. In our setting, geodesics are
not unique so we require defining the geodesic flow in this very natural
way. The geodesic flow on SM can be lifted to a flow φ̃t : SΩ→ SΩ which
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acts equivariantly with respect to Γ. Note from the definitions that the
regularity of the boundary of Ω determines the regularity of the geodesic
flow on SΩ and hence SM .

2.1. Benoist’s dichotomy

The following landmark theorem of Benoist for the study of divisible
Hilbert geometries is equivalence of the regularity of the boundary, con-
vexity of the boundary, and hyperbolicity of the flow based on an abstract
property of the group.

Theorem 2.1 ([4, Theorem 1.1]). — Suppose Γ is a discrete torsion-free
subgroup of PSL(n + 1,R) dividing a properly convex domain Ω ⊂ RPn.
Then the following are equivalent:

(1) The domain Ω is strictly convex.
(2) The boundary ∂Ω is of class C1.
(3) The group Γ is Gromov-hyperbolic.
(4) The geodesic flow on the quotient manifold M = Ω/Γ is Anosov.

A finitely presented group G is Gromov-hyperbolic if geodesic triangles in
the Cayley graph of G endowed with the word metric are δ-thin, meaning
the δ-neighborhood of any two sides of a geodesic triangle contains the
third side. Examples include hyperbolic manifold groups, and nonexamples
include Zn for n > 2.

Essential to Benoist’s Theorem 2.1 is Benzecri’s thesis work on the PGL-
orbits of marked properly convex sets in projective space [7]. In fact, an
application of the work of Benzecri shows that in dimension two, a divisible
properly convex domain Ω is either strictly convex with C1-boundary or a
projective triangle.

2.2. The Benoist 3-manifolds

One might ask whether, as in dimension two, a divisible Hilbert ge-
ometry in any dimension is either strictly convex with C1-boundary or a
simplex. Benoist proved, in the contrary, existence of Hilbert geometries
in dimension three which are nonstrictly convex and indecomposable via a
modification of the Kac–Vinberg Coxeter construction [6, Proposition 1.3].
Moreover, Benoist proved geometric properties of such Hilbert geometries.
Before stating the theorem, we introduce some terms: let C be the cone in
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Rn+1 over a properly convex domain Ω in RPn, and define C to be prop-
erly convex if and only if Ω is properly convex. Then Ω is decomposable
if there exist vector subspaces V1, V2 ⊂ Rn+1 and properly convex cones
C1 ⊂ V1, C2 ⊂ V2 such that C = C1 +C2. Else, Ω is indecomposable. Note
that a simplex is always decomposable.
A properly embedded triangle in Ω is a projective triangle 4 ⊂ Ω such

that ∂4 ⊂ ∂Ω. Let T denote the collection of triangles 4 which are prop-
erly embedded in Ω, and let StabΓ(4) := {γ ∈ Γ | γ4 = 4} be the
subgroup of Γ stabilizing 4 ∈ T .

Theorem 2.2 ([6, Theorem 1.1]). — Let Γ < SL(4,R) be a discrete
torsion-free subgroup which divides an open, properly convex, indecom-
posable Ω ⊂ RP3, and M = Ω/Γ. Then

(1) Every subgroup in Γ isomorphic to Z2 stabilizes a unique triangle
4 ∈ T .

(2) If 41,42 ∈ T are distinct, then 41 ∩42 = ∅.
(3) For every 4 ∈ T , the group StabΓ(4) contains an index-two Z2

subgroup.
(4) The group Γ has only finitely many orbits in T .
(5) The image in M of triangles in T is a finite collection F of disjoint

tori and Klein bottles. If one cuts M along each T ∈ F , each of the
resulting connected components is atoroidal.

(6) Every nontrivial line segment is included in the boundary of some
4 ∈ T .

(7) If Ω is not strictly convex, then the set of vertices of triangles in T
is dense in ∂Ω.

We will call a compact quotient of a nonstrictly convex, indecomposable,
divisible Hilbert geometry in dimension three a Benoist 3-manifold. The
topological decomposition as in Benoist’s Theorem 2.2(5) is an example
of a Jaco–Shalen–Johansson (JSJ) decomposition [20, 21]. Benoist remarks
after Theorem 2.2 that as a consequence of Thurston’s geometrization, the
atoroidal components of the quotient are diffeomorphic to finite volume
hyperbolic 3-manifolds [6, p. 4–5].

3. Automorphisms of Benoist’s 3-manifolds

Let Ω be a properly convex domain in RPn. Then for any automorphism
g of Ω, we can define the translation length of g by

τ(g) := inf
x∈Ω

dΩ(x, g.x).
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An axis of g is a g-invariant projective line in Ω.
We will diverge slightly from the literature here in our terminology. We

define g ∈ Aut(Ω) to be hyperbolic if τ(g) > 0 and the infimum is attained
along a unique axis of g. Any other f ∈ Aut(Ω) for which τ(f) is positive
and realized, but not along a unique axis of f , will be called flat. Typically,
both flat and hyperbolic automorphisms are called hyperbolic (see [16,
Section 3]), and in the strictly convex case there would be no need for
the distinction we introduce here. A projective transformation is quasi-
hyperbolic if τ(g) > 0 and the infimum is not attained, parabolic if τ(g) = 0
and the infimum is not attained, and elliptic if τ(g) = 0 and the infimum
is attained.
There is an important property of the Benoist 3-manifolds which has

dynamical implications for the group elements. If the quotient is a Benoist
3-manifold, then Ω must be indecomposable, hence Γ is irreducible [28]. A
subgroup H < PSL(4,R) is irreducible if it does not stabilize a projective
point, line, or plane in RP3, and H is strongly irreducible if every finite-
index subgroup of H is irreducible.

Remark 3.1. — An element g of SL(n,R) is proximal if |λ1(g)| > |λ2(g)|,
where |λ1(g)| > |λ2(g)| > · · · > |λn(g)| are the moduli of the eigenvalues of
g, and biproximal if g−1 is also proximal. On the other hand, g in SL(n,R)
is positively semi-proximal if λ1(g) = |λ1(g)|. Every element g of a group
Γ which preserves a properly convex set is positively semi-proximal ([5,
Lemma 3.2], see [24, Proposition 2.2] for a translation). Since Γ contains
inverses, every element of Γ has an eigenline associated to each of the top
and bottom eigenvalues. The projection of these eigenlines must lie in ∂Ω
for Γ to preserve Ω.

Moreover, for the Benoist 3-manifolds, all elements of any Z2 subgroup
of Γ preserving a properly embedded triangle 4 have only real positive
eigenvalues [6, Corollary 2.4]. It is straightforward to verify that top and
bottom eigenvalues for these elements of the stabilizer of 4 correspond to
eigenlines which project to vertices of 4.

The following proposition is also proved in greater generality in [24,
Proposition 2.9]. We include the simpler proof only for the case of the
Benoist 3-manifolds here.

Proposition 3.2. — Let M = Ω/Γ be a Benoist 3-manifold with dis-
crete, torsion-free dividing group Γ. Then there are no quasi-hyperbolic
automorphisms of Ω.

TOME 70 (2020), FASCICULE 4
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Proof. — Suppose τ(g) > 0. Let the eigenvalues of a representative of g
in SL(4,R) be given by λi(g) such that λ0 = |λ0(g)| > |λ1(g)| > |λ2(g)| >
|λ3(g)| = λ3 > 0. Since g is hyperbolic, τ(g) = log λ0(g)

λ3(g) and is realized
along a projective line joining the projections of the eigenvectors e0 and
e3 associated to λ0 and λ3, respectively. Let `g be the open projective
line segment connecting the projections of the eigenvectors e0 and e3 of
g. Since g preserves Ω and Ω is properly convex, the line segment `g is
contained in either Ω or ∂Ω. If `g ⊂ Ω then τ(g) is realized along `g inside
Ω. Thus, suppose `g ⊂ ∂Ω. Then by Benoist’s Theorem 2.2(6), `g ⊂ ∂4
for some properly embedded triangle 4 in Ω. Since g acts by projective
transformations and preserves Ω, for any properly embedded triangle 4 we
have that g4 is also a properly embedded triangle. Then since g stabilizes
`g we have `g ⊂ g4 ∩4 6= ∅ implying g preserves the projective triangle
4 by Benoist’s Theorem 2.2(2). It follows that τ(g) is realized in 4 by a
standard cross-ratio argument. �

We now introduce terminology for points in ∂Ω. Following classical the-
ory in convex geometry, we say that a boundary point ξ is smooth if there
is a unique supporting hyperplane to Ω at ξ, where a hyperplane H in RPn
is a supporting hyperplane at ξ if H is contained in the complement of
Ω and H contains ξ. We also define ξ ∈ ∂Ω to be extremal if there is no
open line segment containing ξ embedded in ∂Ω; in other words, ξ ∈ ∂Ω is
extremal if and only if Ωr{ξ} is still a convex set. We remark that smooth
points need not even be C1; for instance, Lebesgue almost every point in
the boundary of the universal cover of a Benoist 3-manifold is smooth, but
no points are C1 because vertices of properly embedded triangles are dense
(Benoist’s Theorem 2.2(7)). Note that by Benoist’s Theorem 2.2(6), dual-
ity of divisibility [4, Lemma 2.8], and duality of smooth points to extremal
points, the set of smooth extremal points forms the complement of the
boundaries of properly embedded triangles.

Proposition 3.3. — Let M = Ω/Γ be a Benoist 3-manifold with dis-
crete, torsion-free dividing group Γ. Then for all g ∈ Γ,

• g is hyperbolic if and only if g has exactly two fixed points g−
and g+ in Ω which are smooth extremal points in the boundary.
These fixed points are respectively repelling and attracting under
the dynamics of g on Ω.

• g is flat if and only if g ∈ StabΓ(4) for some properly embedded 4.

These are the only possible behaviors of elements of Γ.
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Proof. — Since Γ is discrete and torsion-free, there are no elliptic isome-
tries in Γ. Since M is compact without boundary, closed homotopically
nontrivial loops in M cannot have arbitrarily small length, hence there are
no parabolic isometries in Γ (see also [6, Lemma 2.8]). By Proposition 3.2,
there are no quasi-hyperbolic elements of Γ. Thus, it suffices to characterize
the dynamics of group elements with translation length realized in Ω. By
Remark 3.1, the conclusion is straightforward. �

3.1. Lengths of hyperbolic orbits

The goal of this subsection is to prove that the additive subgroup of R
generated by translation lengths of closed hyperbolic orbits is dense via
Zariski density of an immersed hyperbolic surface group in Γ.

Theorem 3.4 ([2, 25]). — The fundamental group of a complete, fi-
nite volume, noncompact hyperbolic 3-manifold contains a closed quasi-
Fuchsian surface subgroup.

Let Γhyp denote the set of hyperbolic elements of Γ, and let Σ < PSL(4,R)
be the subgroup of Γ which is isomorphic to the hyperbolic surface sub-
group given by Theorem 3.4 and Benoist’s remark following Theorem 2.2.
Since Σ is a quasi-Fuchsian subgroup, no element of Σ can preserve any
properly embedded triangle. Then by Proposition 3.3, Σ is a subgroup in
Γhyp.

Corollary 3.5. — There exist infinitely many noncommuting hyper-
bolic group elements in Γ.

Let G be any subset of Aut(Ω) and L(G) := 〈τ(g)〉g∈G the additive
subgroup of R generated by translation lengths of group elements in G.
Note that if G is a subset of the group Γ which divides Ω then L(G) is
the additive subgroup of R generated by lengths of closed geodesics in the
quotient M associated to conjugacy classes in Γ of elements of G.

Corollary 3.6 (of [4, Fact 5.5]). — If Γ is a Zariski dense subgroup
of SL(n+ 1,R) preserving a properly convex domain Ω ⊂ RPn, then L(Γ)
is dense in R.

If Ω is not an ellipsoid, then the hypotheses of Corollary 3.6 hold when-
ever Γ is acting cocompactly on an indecomposable properly convex and
strictly convex domain Ω in real projective space [3, Theorem 1.2]. In our
case, Ω, the universal cover of a Benoist 3-manifold, is indecomposable but
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is not strictly convex, so Corollary 3.6 does not apply directly to Γ the
fundamental group of a Benoist 3-manifold.

Proposition 3.7 (restatement of [17, Proposition 6.5]). — Suppose Γ
is a strongly irreducible subgroup of SL(n+1,R) which preserves a properly
convex Ω ⊂ RPn. Let G be the Zariski closure of Γ. Then G is a Zariski-
connected real semi-simple Lie group.

Let log(G) := {(log |λ1(g)|, log |λ2(g)|, . . . , log |λn+1(g)|) ∈ Rn+1 | g ∈ G}
with λi decreasing in magnitude. Taking G to be the Zariski closure of Γ,
then Proposition 3.7 implies log(G) is a subspace of Rn+1, and log(Γ) is
dense in log(G). It is straightforward to verify that L(Γ) 6= R implies log(Γ)
cannot be a subspace of Rn+1. Thus, it suffices to prove that Σ is strongly
irreducible to conclude that L(Σ) is dense in R.

For the following lemma, we will use that Γ preserves (divides) Ω if
and only if the transpose Γt preserves (divides) the projective dual Ω∗ [4,
Lemma 2.8].

Lemma 3.8. — The surface subgroup Σ is either strongly irreducible or
L(Σ) is dense in R.

Proof. — First, since Σ is a surface group, every finite-index subgroup
is also a surface subgroup. Thus, it suffices to show any surface group in
PSL(4,R) preserving a properly convex domain Ω ⊂ RP3 is irreducible. By
contradiction, suppose Σ fixes a point p ∈ RP3. Clearly p 6∈ Ω because Γ act-
ing discretely without torsion cannot have elliptic elements. Also, p 6∈ ∂Ω:
this is because elements of Σ do not stabilize any properly embedded trian-
gles, hence all fixed points of elements of Σ are smooth and extremal. But
noncommuting hyperbolic isometries cannot fix the same smooth extremal
point since Γ acts properly discontinuously on Ω. If p 6∈ Ω, then we consider
the dual case: when Σt preserves a projective plane Π which intersects Ω∗.
Then Σt is acting cocompactly on a totally geodesic hypersurface Π ∩ Ω∗.
By [3, Theorem 1.2], Σt is either Zariski dense and hence L(Σt) is dense by
Corollary 3.6 or Π ∩Ω∗ is homogeneous and L(Σt) is dense in R anyways.
Then so is L(Σ) since dual groups preserving dual properly convex sets are
isospectral. Thus, if Σ preserves Ω and fixes a point, then L(Σ) is dense in R.

Now suppose Σ preserves a line l. The case where l ⊂ Ω is impossible
because Ω is properly convex. The case where l is disjoint from Ω is impos-
sible because Aut(l) = R and Σ is a surface group. If l intersects ∂Ω then
either Σ does not preserve Ω (when l ∩ ∂Ω contains exactly one point), or
Σ preserves an open line segment inside Ω which is again impossible (when
l∩∂Ω contains exactly two points), or Σ ⊂ StabΓ(4) (when l∩Ω is an open
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line segment) which is again impossible because Σ contains only hyperbolic
isometries. Therefore, Σ cannot preserve a projective line.
If Σ stabilizes a plane, then we revisit the dual cases where Σt stabilizes

a point, unless the plane intersects Ω. In this case, we have already seen
that L(Σ) is dense in R. �

Proposition 3.9. — Let Ω/Γ = M be a Benoist 3-manifold. Then
L(Γhyp) is dense in R.

Proof. — By Lemma 3.8 and Proposition 3.7, the group Σ ⊂ Γhyp is
either Zariski dense or L(Σ) is dense in R. By Corollary 3.6, density of
L(Σ) holds in both cases. �

4. Recurrence behavior

Recall that we define a boundary point ξ ∈ ∂Ω to be smooth if there
exists a unique supporting hyperplane to Ω at ξ and extremal if ξ is not
contained in any open line segment embedded in ∂Ω. For the Benoist 3-
manifolds, vertices of properly embedded triangles are the only nonsmooth
points, and all nonextremal points are contained in the side of some prop-
erly embedded triangle. Thus, the smooth extremal points form the com-
plement in ∂Ω of the boundaries of properly embedded triangles.

We will say v ∈ SΩ is regular if its endpoints at infinity v+ and v− are
smooth extremal points. Else, v is singular. Let SΩreg be the collection
of regular vectors and the complement, SΩsing, the set of v ∈ Ω such
that v+ or v− is in the boundary of some properly embedded triangle.
The collection of vectors tangent to projective lines contained entirely in
properly embedded triangles is denoted SΩflat. These notions descend to
the quotient since Γ is acting by projective transformations, and we assign
the analogous definitions to SMreg, SMsing, and SMflat.
Lastly, an orbit φ · v which is closed will be called hyperbolic if when v

is lifted to ṽ in the universal cover, `ṽ is preserved by a hyperbolic group
element. We call a vector v in SM periodic if the orbit of v is closed. Note
that any periodic vector with a closed orbit which is hyperbolic must be
regular (Proposition 3.3).
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Ω

v+v− v

W ss(v)W su(v)

Figure 4.1. The stable and unstable sets at a point v in SΩ, the uni-
versal cover of SM .

4.1. Stable and unstable sets

Recall that the stable and unstable sets at a point are defined to be

W ss(v) := {u ∈ SM | d(φtv, φtu)→ 0 | t→ +∞},
W su(v) := {u ∈ SM | d(φ−tv, φ−tu)→ 0 | t→ +∞}.

The weak stable and unstable sets of v (denoted W os(v) and W ou(v),
respectively) are the points which stay bounded distance from v under
the geodesic flow in positive and negative time, respectively. The strong
stable and unstable sets are global if for all regular u 6= v, at least one of
W ss(v) ∩W ou(u) or W ss(v) ∩W ou(−u) are nonempty.
To define the stable and unstable sets in our setting, we will need a

Finsler metric on SM compatible with the topology, see [26, p. 161–206].
We will soon see that there is a geometric description of stable and un-
stable sets. Consequently, there exists an adapted metric on SΩ such that
the distance between two points in the same weak stable set is monotone
decreasing under the geodesic flow in positive time for the adapted met-
ric [15], which can be verified by properties of the cross-ratio. Similarly, the
distance between points in the same unstable set is monotone decreasing
under the flow in negative time. We denote this metric by d and note that
it descends to the quotient SM . We denote the d-metric ball of radius r
about v by B(v, r).

Proposition 4.1. — If v in SM is regular thenW ss(v) andW su(v) are
defined globally, and the weak stable and unstable setsW os(v) andW ou(v)
admit a flow invariant foliation by strong stable (respectively, strong un-
stable) leaves.
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Proof. — We will see it is enough to verify the proposition in the univer-
sal cover. For smooth extremal points, horospheres are well-defined and the
geometric description of stable and unstable sets applies as for the strictly
convex case (as in [4, Lemma 3.4]): that is, for regular vectors v in SΩ,

W ss(v) = {u ∈ SΩ | πu ∈ Hv+(πv), u+ = v+},

W su(v) = {u ∈ SΩ | πu ∈ Hv−(πv), u− = v−},

where Hξ(x) is the horosphere based at ξ ∈ ∂Ω passing through x ∈ Ω
(see [4, Figures 5 and 6]), and π : TΩ→ Ω is the footpoint projection. See
Figure 4.1. Moreover, the strong stable and unstable sets foliate the weak
stable and unstable sets

W ou(v) =
⋃
t∈R

W su(φ̃tv)

= {w ∈ SΩ | w− = v−},

such that the foliation is both Γ-invariant and φ̃t-invariant. It is then clear
that for u, v any two distinct regular vectors, W ss(v) ∩ W ou(u) 6= ∅ as
long as u− 6= v+. In the case where u− = v+, apply the same arguments
to show that W ss(v) ∩W ou(−u) 6= ∅. �

Note that in fact, in the universal cover, if they do intersect then W ss(v)
and W ou(u) intersect at a unique point when u and v are distinct regular
vectors. Conversely, nonsmooth and nonextremal points do not have well-
defined stable and unstable sets which foliate the weak stable and unstable
sets. This can be verified by basic properties of the cross-ratio. By Benoist’s
Theorem 2.2(7), the vertices of properly embedded triangles in Ω are dense
in ∂Ω, and as such the singular points are dense in SΩ. Since these points
do not admit stable and unstable sets, the geodesic flow cannot have local
product structure in the classical sense (see for instance [12, Section 2] for
the definition of local product structure), and thus we cannot employ any
results depending on it.
However, the Bowen bracket for regular vectors is almost always well-

defined by Proposition 4.1. In the universal cover, the Bowen–Bracket of u
with v, denoted 〈u, v〉, is the point of intersection w of the strong stable and
weak stable sets of u and v respectively, assuming v− 6= u+. Geometrically,
w is uniquely determined by w− = v−, w+ = u+, and πw ∈ Hu+(πu). The
notion of Bowen–Bracket descends canonically to the quotient by choosing
a fundamental domain for the action of Γ on SΩ. See Figure 4.2.
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Ω

�v+�u−

�u

�v

�w
u

v

�u, v�

Figure 4.2. In the universal cover, pictured left, the Bowen Bracket
of �u with �v is the unique point �w in both the weak unstable set of �u
and the strong unstable set of �v. The notion descends to the quotient
vectors u and v pictured on the right. The drawing on the right depicts
the key feature of the Bowen bracket of u with v; the vector �u, v� has
the same past as u up to a time change and the same future as v.

4.2. Topological transitivity

In this subsection we prove topological transitivity, which is equiva-
lent to existence of a dense orbit when the phase space is compact [22,
Lemma 1.4.2], as in the case of the Benoist 3-manifolds. A continuous dy-
namical system f t : X → X is topologically transitive if for every pair of
open sets U, V ⊂ X, there exists a time 0 < T ∈ R such that f T (U)∩V �= ∅.
If X is a metric space then the system is uniformly transitive if for all δ > 0,
there exists a T > 0 such that for all x, y ∈ X, there is some t � T such that
f t

�
B(x, δ)

�
∩ B(y, δ) �= ∅. It is straightforward to check that transitivity

implies uniform transitivity when X is a compact metric space.

Lemma 4.2. — Hyperbolic closed orbits are dense for the geodesic flow
of a Benoist 3-manifold.

Proof. — We want to show any pair (ξ, η) in ∂Ω × ∂Ω � Δ, the pairs of
distinct points in the boundary of Ω, can be approximated by pairs (g−, g+)
of fixed points of hyperbolic group elements g. Take two noncommuting
hyperbolic elements g, h ∈ Γ, which exist by Corollary 3.5. Construct the
sequence kn = gnhn. Then by Remark 3.1, there are fixed points k+

n and
k−

n in ∂Ω of kn such that k+
n → g+ and k−

−n → h− as n → ∞. Although the
notation is suggestive, these kn could a priori stabilize properly embedded
triangles and have three fixed points in ∂Ω. Using the sequence kn and
minimality of the action of Γ on ∂Ω [6, Proposition 3.10], we conclude
that any (ξ, η) ∈ ∂Ω × ∂Ω � Δ is approximable by such kn. If any kn
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Figure 4.2. In the universal cover, pictured left, the Bowen Bracket
of ũ with ṽ is the unique point w̃ in both the weak unstable set of ũ
and the strong unstable set of ṽ. The notion descends to the quotient
vectors u and v pictured on the right. The drawing on the right depicts
the key feature of the Bowen bracket of u with v; the vector 〈u, v〉 has
the same past as u up to a time change and the same future as v.

4.2. Topological transitivity

In this subsection we prove topological transitivity, which is equiva-
lent to existence of a dense orbit when the phase space is compact [22,
Lemma 1.4.2], as in the case of the Benoist 3-manifolds. A continuous dy-
namical system f t : X → X is topologically transitive if for every pair of
open sets U, V ⊂ X, there exists a time 0 < T ∈ R such that fT (U)∩V 6= ∅.
IfX is a metric space then the system is uniformly transitive if for all δ > 0,
there exists a T > 0 such that for all x, y ∈ X, there is some t 6 T such that
f t
(
B(x, δ)

)
∩ B(y, δ) 6= ∅. It is straightforward to check that transitivity

implies uniform transitivity when X is a compact metric space.

Lemma 4.2. — Hyperbolic closed orbits are dense for the geodesic flow
of a Benoist 3-manifold.

Proof. — We want to show any pair (ξ, η) in ∂Ω× ∂Ω r ∆, the pairs of
distinct points in the boundary of Ω, can be approximated by pairs (g−, g+)
of fixed points of hyperbolic group elements g. Take two noncommuting
hyperbolic elements g, h ∈ Γ, which exist by Corollary 3.5. Construct the
sequence kn = gnhn. Then by Remark 3.1, there are fixed points k+

n and
k−n in ∂Ω of kn such that k+

n → g+ and k−−n → h− as n→∞. Although the
notation is suggestive, these kn could a priori stabilize properly embedded
triangles and have three fixed points in ∂Ω. Using the sequence kn and
minimality of the action of Γ on ∂Ω [6, Proposition 3.10], we conclude
that any (ξ, η) ∈ ∂Ω × ∂Ω r ∆ is approximable by such kn. If any kn
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admits a projective line axis, then this projective line axis corresponds
to a periodic orbit for the flow and we conclude that any vector tangent
to the projective line (ξη) is approximable by closed orbits. It suffices to
show there necessarily exists a subsequence kni

of only hyperbolic elements,
which we know have a unique projective line axis by Proposition 3.3.
By contradiction, suppose there is no such subsequence. There exists an

N such that for all n > N , each kn preserves a properly embedded triangle
4n. Consider the accumulation of the boundary of the triangles, ∂4n, in
∂Ω, which will contain h− and g+. This set will be either the boundary
of a properly embedded triangle, a line segment, or a point. None of the
above are possible; since h and g are hyperbolic and do not commute in the
discrete group Γ, h− cannot equal g+, and h− and g+ are smooth extremal
points, so the line segment [h−g+] cannot be contained in ∂Ω. �

Proposition 4.3. — The geodesic flow of a Benoist 3-manifold is topo-
logically transitive.

Proof. — Take two open sets U and V in SM . By Lemma 4.2, there
are regular u ∈ U and v ∈ V with closed orbits such that v 6= −u. We
now construct a heteroclinic orbit between v and u. Lifting to the universal
cover, we have ũ ∈ Ũ , ṽ ∈ Ṽ ⊂ SΩ such that ũ− and ṽ+ are distinct smooth
extremal points of ∂Ω. Then the open projective line segment (ũ−ṽ+) is
contained in Ω and is the footpoint projection of an orbit of the geodesic
flow. Let w̃ ∈ SΩ denote the Bowen bracket of ṽ with ũ, defined as the
unique intersection point of W ss(ṽ) and W su(φtũ) for some t ∈ R. Since
u and v have closed orbits, there are hyperbolic group elements γũ and γṽ
preserving `ũ and `ṽ, respectively. Thus Dγnũ (Ũ)∩ φ̃ · ũ and Dγnṽ (Ṽ )∩ φ̃ · ṽ
each contain lifts of u and v respectively for all n ∈ Z, where D is the
differential. Since γũ, γṽ are isometries and ũ− = w̃−, ṽ+ = w̃+ are smooth
extremal points, there is an N such that for all n > N , dγ−nũ (Ũ)∩ φ̃ ·w̃ 6= ∅
and dγnṽ (Ṽ ) ∩ φ̃ · w̃ 6= ∅. Then choosing times t1, t2 so that φt1w̃ is in
Dγ−nũ (Ũ)∩φ · w̃ and φt2w̃ is in Dγnṽ (Ṽ )∩φ · w̃, we can project φt1w̃ to SM
and obtain T = −t1 + t2 such that w′ := DπΓφ

t1w̃ ∈ U , where πΓ : Ω→M

is the quotient map, and φTw′ ∈ V as desired. �

4.3. The Anosov Closing Lemma

In this subsection, we prove Anosov closing of recurrent orbits, originally
due to Anosov for geodesic flows in negative curvature [1].
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Define a filtration of SM r SMflat by compact sets bounded away from
flats:

Λη := {v ∈ SM | d(v, w) > η for all w ∈ SMflat} .
We say for vectors u, v ∈ SM and ε > 0 that u ε-shadows v for time t if
ds(u, v) < ε for s ∈ [0, t].

Theorem 4.4. — Let Ω be an indecomposable, nonstrictly convex do-
main in RP3. Suppose Γ < PSL(4,R) is a discrete, torsion-free group divid-
ing Ω, with compact quotientM = Ω/Γ. Then for all η > 0 and sufficiently
small ε > 0, there exists a δ > 0 and T > 0 such that:

For any t > T , v ∈ Λη with d(φtv, v) < δ, there exists a regular periodic
v′ of period t′ ∈ ]t− ε, t+ ε[ which ε-shadows v for time min{t, t′}.

Proof. — We adapt a proof by contradiction following Eberlein [18] (see
also [13, Theorem 7.1]). Assume we have particular η, ε > 0 and a sequence
of vn ∈ Λη paired with a sequence tn → ∞ such that d(vn, φtnvn) → 0,
yet any wn which ε-shadows vn for time tn is not periodic of any period
t′n ∈ ]tn − ε, tn + ε[.

We can assume up to extraction of subsequences that the vn converge to
some v ∈ Λη. Lifting SM to a compact fundamental domain SD containing
ṽ in SΩ, we have some ṽ ∈ SΩ with endpoints v+, v− in ∂Ω, and lifts ṽn of
the vn which converge to ṽ in SD. Also, since φ · vn almost closes up after
time tn, there are group elements γn which take ṽn close to φ̃tn ṽn. Note
that the γn need not be hyperbolic a priori.

Again, the contradiction hypothesis is that if wn ε-shadows vn for time
tn, then wn cannot be periodic of any period t′n ∈ ]tn− ε, tn+ ε[. Eberlein’s
geometric observation is that in the universal cover, if wn ε-shadows vn
for time tn, then the same γn which moves ṽn close to φ̃tn ṽn must also be
responsible for moving w̃n close to φ̃tnw̃n. Because Γ is acting on Ω properly
discontinuously and cocompactly by isometries, the assumption that wn is
not periodic of period approximately tn is realized in the universal cover as
follows: if d(w̃n, ṽn) < ε, then γn.w̃n 6= φt

′
nw̃n for any t′n ∈ ]tn − ε, tn + ε[.

The goal of the following lemmas will be to show that nonexistence of
an axis of γn which is ε-close to `ṽn [0, tn] for infinitely many n is mutually
exclusive with the assumption that the vn and v are in Λη, producing the
desired contradiction.

Lemma 4.5. — Let x ∈ Ω be the footpoint of ṽ. Then γn.x → ṽ+ and
γ−1
n .x→ ṽ− as n→∞.

Proof. — Take any convex open neighborhood N (ṽ+) of ṽ+ in Ω. Since
the sequence vn converges to v, for all suffiently large n the point v+

n will
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be in the neighborhood N (v+). Then as tn diverges to infinity, each point
`ṽn

(tn) will be in N (ṽ+) by convexity of N (ṽ+). Since γn is chosen so
that d(Dγn.ṽn, φtn ṽn) decreases to 0 as n grows, then dΩ(γn.xn, `ṽn(tn))
decreases to 0 with n, where xn is the footpoint of ṽn in Ω. Once γn.xn
is sufficiently close to `ṽn(tn), then γn.xn will also be in N (ṽ+). Finally,
since xn converges to x and γn is an isometry, we can ensure for large n
that γn.x is in N (ṽ+).
Now consider N (ṽ−) a convex open neighborhood of ṽ− in Ω. As Dγn.ṽn

approaches φtn ṽn, the group element γ−1
n brings the line segment `ṽn

[−sn+
tn, sn + tn] back very close to the line segment `ṽn [−sn, sn] for some se-
quence of times sn which diverge to infinity with n. Then as sn gets
very large, `ṽn(−sn) will approach ṽ−n , as will γ−1

n .`ṽn(−sn + tn). But
γ−1
n .`ṽn

(−sn + tn) converges to γ−1
n .ṽ−n as n increases, so γ−1

n .ṽ−n must
approach ṽ−n in the boundary. Then since ṽn approches ṽ, for sufficiently
large n, the boundary point γ−1

n .ṽ− will be in the neighborhood N (ṽ−).
Lastly, since γ−1

n .xn is a point on the line γ−1
n .`ṽn

, it suffices to ob-
serve that dΩ(γ−1

n .xn, xn) grows like tn, which diverges with n, to conclude
γ−1
n .xn and hence γ−1

n .x are in the convex neighborhood N (ṽ−) for all
sufficiently large n. �

We next define Vk(ṽ+), Vk(ṽ−) open neighborhoods in ∂Ω of ṽ+, ṽ−,
respectively, such that for any boundary points ξ ∈ Vk(ṽ+) and ζ ∈ Vk(ṽ−),
the projective line (ζξ) is distance less than 1

k from `v(0) in the Hilbert
metric. The existence of such Vk is immediate in a Hilbert geometry by
the definition of dΩ. The Vk are also homeomorphic to open balls in R2.
Choose k large enough that 1

k <
ε
2 .

Lemma 4.6. — For all sufficiently large n, γn(Vk(ṽ+)) ⊂ Vk(ṽ+) and
γ−1
n (Vk(ṽ−)) ⊂ Vk(ṽ−).

Proof. — Note that as the sequence of boundary points γn.ṽ+
n converge

to ṽ+
n and the sequence of vectors ṽn converge to ṽ, then the boundary

points γn.ṽ+ approach ṽ+ (and similarly, γ−1
n .ṽ− converges to ṽ− with n).

If γn.ṽ+ is very close to ṽ+, then by Proposition 3.3, γn either fixes ṽ+,
is contracting near ṽ+, or both. The only way that γn(Vk(ṽ+)) would not
be contained in Vk(ṽ+) is if γn stabilized a properly embedded triangle 4n
whose boundary ∂4n intersects the boundary of the neighborhood Vk(ṽ+).
If this happened infinitely often, then ṽ+ would necessarily be the limit of
vertices of 4n which are attracting eigenvectors for the γn. Similarly, since
γ−1
n also stabilizes 4n, vertices of 4n which are repelling eigenvectors for
γn must accumulate on ṽ−. Then in the quotient SM , the vector v must
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be distance less than ε from the flat tangent to a quotient of 4n for large
enough n. This contradicts the assumption that v ∈ Λη for small ε.

An analogous argument applies to show, up to extraction of subsequences,
that γ−1

n (Vk(ṽ−)) ⊂ Vk(ṽ−) for all sufficiently large n. �

So we now have that for large n, γn(Vk(ṽ+)) ⊂ Vk(ṽ+) and similarly
γ−1
n (Vk(ṽ−)) ⊂ Vk(ṽ−), both of which are homeomorphic to open balls in

R2. Applying Brouwer’s fixed point theorem, it follows that γn fixes points
in Vk(ṽ−) and Vk(ṽ+). Then γn has an axis distance less than 1

k <
ε
2 from

`ṽ(0), hence ε-close to `ṽn
(0) for all sufficiently large n. We also assume

that γn.ṽn is arbitrarily close to φtn ṽn, so the axis of γn will eventually and
thereafter be ε-close to `ṽn

[0, tn] and the translation length of γn must be
ε-close to tn. And so we have a closed orbit of length t′n ∈ ]tn − ε, tn + ε[
which ε-shadows vn for time max{tn, t′n}, contradicting the assumption. If
we obey our hypothesis that such a closed orbit is impossible, then we would
necessarily have v 6∈ Λη as proven in Lemma 4.6 – a contradiction. �

5. Topological mixing

We prove the geodesic flow of a Benoist 3-manifold is topologically mixing
following the strategies of Coudene [12], but without the local product
structure property. Key properties will be a nonuniform orbit gluing lemma
(Lemma 5.3) and density of the unstable leaves for periodic regular vectors
(Proposition 5.5).

Let W su
ε (v) := W su(v) ∩B(v, ε), and similarly for the strong stable sets

and the weak stable and unstable sets. Recall that 〈v, u〉 denotes the Bowen
bracket of regular vectors v and u; again, the Bowen bracket is the vector
with the same past as v up to a time change and the same future as u.
By Proposition 4.1, the Bowen bracket is defined for all ordered pairs of
regular vectors (v, u), as long as −v does not have the same future as u up
to a time change. See also Figure 4.2.

Proposition 5.1. — For all ε > 0 and u regular, there is a δ > 0 such
that for all regular v ∈ B(u, δ) and for some |t| < ε,

〈v, u〉 ∈W su
ε (φtv) ∩W ss

ε (u).

Proof. — It suffices to make the arguments in a small neighborhood in
the universal cover. Keep δ small enough that v− 6= u+, so that the Bowen
bracket 〈v, u〉 is defined. For all ε > 0, there are neighborhoods U+ of u+

and U− of u− in ∂Ω such that any regular vector v, if v is within ε of u
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then v+ is in U+ and v− is in U−. Conversely, for these neighborhoods,
if v is such that v+ ∈ U+ and v− ∈ U− and moreover, the footpoint πv
is sufficiently close to πu, then v is within ε of u. Make U− small enough
that U− ⊂ {w− ∈ ∂Ω | w ∈W ss

ε (u)} guarantees that any v with v− ∈ U−
satisfies 〈v, u〉 ∈ W ss

ε (u). Taking U+ be as small as needed, we can ensure
such vectors v with v− ∈ U− are arbitrarily close to φtv 〈v, u〉 in this small
neighborhood of u. It suffices to choose δ > 0 sufficiently small as to ensure
|tv| < ε. �

5.1. Orbit gluing in Hilbert geometries

Uniform orbit gluing is also known as shadowing of pseudo-orbits in the
literature. We introduce a weaker notion here. We can associate to any orbit
segment φ[0,t]v the pair (v, t) ∈ SM ×R+

0 . An n-length δ-pseudo-orbit is a
collection of n-many finite length orbit segments {(vi, ti)}ni=1 ⊂ SM × R+

0
such that d(φtivi, vi+1) < δ for i = 1, . . . , n− 1.

Definition 5.2. — The dynamics satisfies weak orbit gluing if for all
ε > 0 and {vi}ni=1 there exists δ > 0 such that for all n-length δ-pseudo
orbits {(vi, ti)}ni=1 there is a point w which ε-shadows the pseudo-orbit
{(vi, ti)}ni=1. More explicitly: for some |t| < ε,

w ∈W su
ε (φtv1) and φ

∑n−1
i=1

tiw ∈W ss
ε (vn),

and there are numbers |s′i| < ε for i = 1, . . . , n − 1 such that for all k =
2, . . . , n− 1,

d(φt1+···+tk−1+s(w), φs
′
k+s(vk)) < ε, if 0 < s < tk,

d(φs(w), φs
′
1+s(v1)) < ε, if 0 < s < t1.

Lemma 5.3 (Weak orbit gluing). — The geodesic flow of a Benoist 3-
manifold satisfies weak orbit gluing for pseudo-orbits {(vi, ti)}ni=1 when
v1, . . . , vn are regular.

The proof of the lemma is not difficult but is technical. For the readers’
convenience, we provide first a proof in the case where n = 3. Note that the
case where n = 2 is simply a single Bowen bracket operation. Ultimately,
we will only need to use Lemma 5.3 to shadow three orbit segments in the
proof of topological mixing. The general statement and proof are simply of
independent interest.
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Proof of Lemma 5.3 in the case where n = 3. — The proof is effectively
a finite recursive application of taking Bowen brackets (Proposition 5.1).
Suppose d(φtivi, vi+1) < δ1 for all i = 1, . . . , n − 1. We will refine this
δ1 with each successive Bowen bracket. For sufficiently small δ1 > 0, the
Bowen bracket w1 of φt1v1 and v2 satisfies

w1 ∈W su
δ2

(φt
′
1+t1v1) ∩W ss

δ2
(v2)

for some |t′1| < δ2, where δ2 is not yet defined. Then by monotonicity of
stable sets in the adapted metric and the triangle inequality, φt2w1 is within
δ1 + δ2 of v3. Again, we take a Bowen bracket w2 of φt2w1 with v3, keeping
δ1 + δ2 small enough that

w2 ∈W su
δ3

(φt
′
2+t2w1) ∩W ss

δ3
(v3)

for |t′2| < δ3 and some small δ3 which is not yet determined.
Let w = φ−t1−t2w2. First, w is clearly in the same weak unstable man-

ifold as v1. We will see at the end of the proof that w is also sufficiently
close to v1. If δ3 < ε, then φt1+t2w = w2 ∈ W ss

ε (v3) is immediate. Let
s′1 = t′1 + t′2 and s′2 = t′2. Then for 0 6 s 6 t2,

d(φt1+sw, φs
′
2+sv2) = d(φ−t2+sw2, φ

s′2+sv2)

6 d(φ−t2+sw2, φ
t′2+sw1) + d(φt

′
1+sw1, φ

t′2+sv2)

6 d(w2, φ
t′2+t2w1) + d(φt

′
2w1, φ

t′2v2) < δ3 + δ2 + 2|t′2|

since w2 ∈W su
δ3

(φt2+t′2w1) and w1 ∈W ss
δ2

(v2) and d is monotone under the
flow on leaves of the stable and unstable foliations.
Also, for 0 6 s 6 t2,

d(φsw, φs
′
1+sv1)

= d(φ−t1−t2+sw2, φ
t′1+t′2+sv1)

6 d(φ−t1−t2+sw2, φ
−t1+t′2+sw1) + d(φ−t1+t′2+sw1, φ

t′1+t′2+sv1)

6 d(w2, φ
t2+t′2w1) + d(φt

′
2w1, φ

t′1+t′2+t1v1) < δ3 + δ2 + 2|t′2|

because w2 ∈W su
δ3

(φt2+t′2w1) and w1 ∈W su
δ2

(φt1+t′1v1). It remains to refine
the δi. It would be enough for δi < ε/4 for i = 1, 2, 3, but δ2 depends on δ3
and δ1 depends on both δ2 and δ3, so we take a minimum as needed. Then
choose δ = δ1 to conclude the proof. �
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Proof of Lemma 5.3 for n > 3. — We resume after the construction of
w2 as in the n = 3 proof. Repeating the argument, we have φt3w2 within
δ1 + δ3 of v4, allowing us to take the Bowen bracket of φt3w2 with v4 such
that

w3 ∈W su
δ4

(φt
′
3+t3w2) ∩W ss

δ4
(v4)

for some |t′3| < δ4 and some undetermined δ4.
The process terminates with the Bowen bracket of φtn−1wn−2 with vn

which is distance less than δ1 + δn−1 away, providing the final vector wn−1,
determined by

wn−1 = 〈φtn−1wn−2, vn〉 ∈W su
δn

(φt
′
n+tn−1wn−2) ∩W ss

δn
(vn)

for some |t′n−1| < δn. Let w0 = v1 and observe the following:

wk ∈W su
δk+1

(φt
′
k+tkwk−1) for all k = 1, . . . , n− 1,(5.1)

wk ∈W ss
δk+1

(vk+1) for all k = 1, . . . , n− 1,(5.2)
δk depends only on vk+1 and δk+1 for k = 2, . . . , n− 1(5.3)

and |t′k| < δk+1 for k = 2, . . . , n− 1.

Note that δ1 depends on δ2, . . . , δn and v2, . . . , vn. This δ1 will be the δ
taken to meet the conclusion of the lemma. Also,

w = φ−
∑n−1

i=1
tiwn−1

will be the w which satisfies the conclusion of the lemma. We now refine
the δi in terms of ε and verify that w has the desired properties.

If δn < ε, then φ
∑n−1

i=1
tiw = wn−1 is in W ss

ε (vn) by Equation (5.2). Let
s′k =

∑n−1
i=k t

′
i. Then for k = 1, . . . , n− 1 and s ∈ [0, tk],

d

(
φ

(∑k−1
i=1

ti
)

+s
w, φs

′
k+svk

)
= d

(
φ
−
(∑n−1

i=k
ti
)

+s
wn−1, φ

(∑n−1
i=k

t′i

)
+s
vk

)
6 d(φ−tk−···−tn−1+swn−1, φ

−tk−···−tn−2+t′n−1+swn−2)

+ d(φ−tk−···−tn−2+swn−2, φ
−tk−···−tn−3+t′n−1+t′n−2+swn−3)

+ · · ·+ d(φ−tk+t′k+1+···+t′n−1+swk, φ
t′k+t′k+1+···+t′n−1wk−1)

+ d(φt
′
k+···+t′n−1+swk−1, φ

t′k+···+t′n−1+svk)

<

n∑
i=k

δi + 2
n−1∑
i=k
|t′i|
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by Equation (5.1) for terms k + 1, . . . , n− 1, n and Equation (5.2) for the
k − 1 term. Recalling that w0 = v1, it suffices to recognize that the δi and
hence t′i can be made sufficiently small to meet the definition of weak orbit
gluing by the remark in Equation (5.3). �

5.2. Density of unstable sets

Using Proposition 3.9, that the additive subgroup generated by transla-
tion lengths of closed hyperbolic orbits is dense in R, we now show that
unstable sets for hyperbolic closed orbits are dense and shortly thereafter
conclude the geodesic flow is topologically mixing.
Let P be the set of hyperbolic periodic vectors up to orbit equivalence.

Let Tp denote the length of the orbit of a hyperbolic periodic vector p. Re-
call that every hyperbolic closed orbit is preserved by a hyperbolic isometry.
Thus Tp = τ(γp̃), the translation length of γp̃, where p̃ is any lift of p to
SΩ and γp̃ ∈ Γ is the hyperbolic isometry which perserves the projective
line `p̃ in Ω.

The following lemma uses transitivity (Proposition 4.3), Anosov Closing
(Theorem 4.4), orbit gluing of 3 orbit segments (Lemma 5.3), and density
of 〈Tp〉p∈P in R (Proposition 3.9).

Lemma 5.4. — For all open U in SM , the lengths of periodic orbits
passing through U generate a dense subgroup of R.

Proof. — Fix a hyperbolic periodic vector p. Since SMflat is closed, it
suffices to assume U ∩ SMflat = ∅. Choose η > 0 such that U is contained
in Λη (recall that Λη is the complement of the η-neighborhood of the flats
in SM). By transitivity (Proposition 4.3), consider a point v0 ∈ U with a
dense forward orbit. Let ε be any positive real number small enough that
B(v0, 2ε) ⊂ U . Choose 0 < δ(ε, η) < ε small enough to satisfy Anosov Clos-
ing (Theorem 4.4) on Λη with shadowing distance ε. Choose δ′(η, δ6 , 3) < δ

3
such that any δ′-pseudo orbit of three orbit segments with starting points
v0, p, v0 can be δ

6 -shadowed by a true orbit (Lemma 5.3).
Since v0 has dense forward orbit, there exist times s0, s1 > 0 such

that d(φs0v0, p) < δ′ and d(φs0+s1v0, v0) < δ′. Thus, the orbit segments
{(v0, s0), (p, nTp), (φs0v0, s1)} form a δ′ pseudo-orbit for all n ∈ N. Apply-
ing the orbit gluing lemma for each n, we obtain some point vn in SM
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which δ
6 -shadows each pseudo-orbit. In particular,

φsvn ∈ B
(
φr
′
1+sv0,

δ

6

)
for all s ∈ [0, s0],(5.4)

φs0+svn ∈ B
(
φr
′
2+sp,

δ

6

)
for all s ∈ [0, nTp], and(5.5)

φs0+nTp+svn ∈ B
(
φr
′
3+s0+sv0,

δ

6

)
for all s ∈ [0, s1](5.6)

for some |r′i| < δ
6 . Then taking s = 0 in Equation (5.4) and s = s1 in

Equation (5.6) yields

d(vn, φs0+nTp+s1(vn))

6 d(vn, v0) + d(v0, φ
s0+s1v0) + d(φs0+s1v0, φ

s0+nTp+s1vn)

< 2
(
δ

6

)
+
(
δ

3

)
+ 2

(
δ

6

)
= δ.

Note that vn ∈ B(v0, δ/3) ⊂ U ⊂ Λη. Since vn ∈ Λη returns within δ of
itself after time s0 +nTp+s1 we can apply Anosov Closing to find a nearby
orbit which shadows vn and has approximately this length. More precisely,
there exists a regular wn which has period length s0 +nTp+s1 +t′n for some
|t′n| < ε and also ε-shadows vn for the length of its period. Then wn must
be within 2ε of v, and therefore in U . We can repeat the above argument
for all n with the same η, ε, p and v0, hence the same δ, δ′ and the same
s0, s1. Then for all n, the hyperbolic periodic wn and wn+1 are in U and

s0 + (n+ 1)Tp + s1 + t′n+1 − (s0 + nTp + s1 + t′n) = Tp + t′n+1 − t′n
implies Tp + t′n+1 − t′n ∈ 〈Tq〉q∈U∩P , the additive subgroup generated by
lengths of closed hyperbolic orbits passing through U . Since |t′n+1−t′n| < 2ε,
letting ε go to zero we conclude Tp ∈ 〈Tq〉q∈U∩P for all hyperbolic periodic
p, which proves the lemma because 〈Tp〉p∈P = R by Proposition 3.9. �

We are now prepared to prove a key proposition.

Proposition 5.5. — If v ∈ SM is a hyperbolic periodic vector, then
W su(v) is dense in SM .

Proof. — Let U be an open subset of SM . By Lemma 5.4 there exists
a hyperbolic periodic vector u in U such that 〈Tv, Tu〉 = R. Take ε > 0
to be small enough that B(u, ε) ⊂ U . Since v and u are regular vectors
and ε can be as small as needed, the Bowen bracket is defined and we
conclude there exists a T ∈ R such that w ∈ W su(v) ∩W ss(φT (u)). Then
φ−Tw ∈W ss(u) so choose M ∈ N large enough that d(φmTu−Tw, u) < ε/2
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for any m > M . Because 〈Tv, Tu〉 = R, there are large enough m,n ∈ N
with m >M such that

−ε/2 < |−nTv +mTu − T | < ε/2

implying that d(φ−nTvw, φmTu−Tw) < ε/2. Thus, φ−nTvw ∈ B(u, ε) ⊂ U

by the triangle inequality. Note that φ−nTvw ∈ φ−nTvW su(v) = W su(v) to
conclude the proof. �

The following lemma, which is the final piece preceding the proof of
topological mixing, is generally taken as fact. We have included the proof
for completeness.

Lemma 5.6. — Let f t : X → X be any continuous flow of a compact
metric space and p in X a periodic point for the flow. Then density of
W su(p) implies that for all δ > 0 and for all x ∈ X, there is a time
T (p, δ, x) > 0 such that

f tW su
δ (p) ∩B(x, δ) 6= ∅

for all t > T .

Proof. — By density of the strong unstable set, there exists some z ∈
W su(p) within δ/2 of x. Then there exists an S > 0 such that s > S implies
d(f−sp, f−sz) < δ. In particular, for all n ∈ N such that nTp > S,

d(p, f−nTpz) = d(f−nTpp, f−nTpz) < δ,

hence f−nTpz is in f−nTpW su(p) =W su(p) andB(p,δ). Thus, fnTp(W su
δ (p))∩

B(x, δ/2) is nonempty; the point z is in the intersection.
Take a finite δ/2-cover {t1, . . . , tk} of [0, Tp]. Repeat the above argu-

ment for each periodic point f tip of period Tp; this produces a point zi in
W su(f tip) which is within δ/2 of x, and some positive integer ni such that

zi ∈ fnTp(W su
δ (f tip)) ⊂ fnTp+ti(W su

δ (p))

Let N = max16i6k ni and T = (N+1)Tp. Then for all t > T , there is some
integer Mt > N + 1, some i ∈ {1, . . . , k}, and some 0 6 ε 6 δ/2 such that
t = MtTp + ti + ε and thus

zi ∈ fMtTp+ti(W su
δ (p)) ∩B(x, δ/2)

so f εzi ∈ f t(W su
δ (p)) ∩B(x, δ) as desired. �

We are now prepared to prove the main theorem of the section.

Theorem 5.7. — The geodesic flow on SM is topologically mixing.
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Proof. — Let U and V be open subsets of SM and p a vector in U with
closed orbit. Let δ > 0 be small enough that W su

δ (p) ⊂ U and B(v, δ) ⊂ V
for some regular vector v ∈ V . By Proposition 5.5 and Lemma 5.6, there is
a T (U, V ) > 0 such that for all t > T ,

∅ 6= φtW su
δ (p) ∩B(v, δ) ⊂ φtU ∩ V. �

6. Entropy-expansiveness of Hilbert geometries

In this section, we prove entropy-expansiveness for the geodesic flow of
any compact Hilbert geometry. First, we review some preliminary notions
from entropy theory. Given any metric space admitting a flow, one can
define the Bowen distance by

dt(v, u) := max
06s6t

d(φsv, φsu).

Then dt is a metric on SM , nondecreasing in t. Metric dt-balls are called
Bowen balls, denoted Bt(v, δ). A (t, δ)-spanning set for K ⊂ SM is one
which is δ-dense in K for the dt metric. For any compact K ⊆ SM , we
can choose a minimal finite (t, δ)-spanning set and denote the cardinality
by S(t, δ,K). Then we define the topological entropy of φt on K by

htop(φ,K) := lim
δ→0

lim
t→∞

1
t

logS(t, δ,K).

There are many equivalent definitions of htop [22], and we include one
other here. For K ⊆ SM compact, we define a (t, δ)-separated set R ⊂ K

such that for all u, v ∈ R which are distinct, dt(v, u) > δ. Let R(t, δ,K)
denote the maximal cardinality for (t, δ)-separated sets, which is again finite
by compactness of K. Then

htop(φ,K) = lim
δ→0

lim
t→∞

1
t

logR(t, δ,K).

WhenK=SM, we abbreviate S(t, ε) :=S(t, ε, SM), R(t, ε) :=R(t, ε,SM),
and htop(φ) := htop(φ, SM).
For the purposes of applying Bowen’s work, we take

htop(φ,K, δ) := lim
t→∞

1
t

logS(t, δ,K).

so that htop(φ,K) = limδ→0 htop(φ,K, δ), and for K = SM we have
htop(φ) := limδ→0 htop(φ, δ). For any point v in SM , we define the infi-
nite Bowen balls about v in positive or negative time:

Φε(v) :=
⋂
t∈R+

φ−tB(φtv, ε) = {y ∈M | d(φty, φtv) 6 ε for all t ∈ R+}.
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Intuitively, we should think of the Φε(v) as the exceptions to expansivity.
An expansive map (not flow) is defined by the existence of an ε > 0 such
that Φε(v) = {v} for all v. An expansive flow would satisfy that Φε(v) =
W os
ε (v) for all v. These are special cases of entropy expansive systems.

Define
h∗(ε) := sup

v∈SM
htop(φ,Φε(v)).

Then φ is h-expansive with expansivity constant ε > 0 if h∗(ε) = 0. In other
words, there is an ε > 0 such that the exceptions to ε-expansivity have no
influence on the entropy of the system. For an h-expansive system, Bowen
proved that we can bypass the cumbersome limit over δ → 0 of htop(φ, δ)
to compute htop(φ).

Theorem 6.1 ([8, Theorem 2.4]). — If ε is an h-expansive constant
for φ, then

htop(φ) = htop(φ, ε).

Moreover, to compute the metric entropy of a system, one can simply
take a sufficiently fine measurable partition rather than an infimum over
all possible partitions. An immediate consequence is existence of a measure
of maximal entropy (see [30, Theorem 8.6(2)]).

For any manifold, the injectivity radius of x ∈M is defined to be

inj(x) := 1
2 inf

`
{length(`)},

where ` varies over all homotopically nontrivial loops through x. Then
define the injectivity radius of M to be

inj(M) := inf
x∈M

inj(x).

If M is compact then inj(M) > 0.

Theorem 6.2. — The geodesic flow φt on any compact Hilbert geom-
etry is h-expansive.

Proof. — Lift v to ṽ in SΩ. If ṽ+ is extremal, then by properties of
the Hilbert metric, ũ+ 6= ṽ+ for any lift ũ of u implies u 6∈ Φε(v) for
0 < ε < inj(M)/3. Then a (0, δ)-spanning set for Φε(v) is a (t, δ)-spanning
set for all t > 0 and htop(Φε(v)) = 0.
Suppose now that v+ is not extremal. Let C ⊂ ∂Ω be the intersection of

all supporting hyperplanes to Ω at ṽ+. Note that if ṽ+ is not extremal then
C has nonempty interior for the subspace topology in the minimal projec-
tive subspace containing C. Since C is properly convex in this projective
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subspace, we can extend the Hilbert metric to the interior of C, which we
will denote dC , with metric balls denoted by BC . Now define

Φ+
C(ṽ, ε) := {u ∈ B(ṽ, ε) | u+ ∈ BC(ṽ+, ε)}.

Then Φε(v) is contained in the quotient projection of Φ+
C(ṽ, ε). For all

η ∈ BC(ṽ+, ε) let vη be such that πvη = πṽ and v+
η = η. Then d(vη, v) 6

dC(η, ṽ+) 6 ε. Then for all w ∈ Φ+
C(ṽ, ε), there is an η = w+ implying

d(w, vη) 6 d(w, ṽ) + d(ṽ, vη) = ε+ ε = 2ε, hence

Φ+
C(ṽ, ε) ⊂

⋃
η∈BC(ṽ+,ε)

Φ+(vη, 2ε).

Choose a finite δ/2-cover of BC(ṽ+, ε/2) by {ηi}ki=1 and vi := vηi
. Then for

all u ∈ Φ+(vη, 2ε), there is an ηi such that dC(η, ηi) < δ/2 and d(u, vi) 6
d(u, vη) + d(vη, vi) < 2ε+ dC(η, ηi) < 5ε

2 for δ small. Describe all such u by

Φ+
C (vi, 5ε/2, δ/2) := {u ∈ B(ṽ, 5ε/2) | u+ ∈ BC(ṽ+, δ/2)}.

Then for ε < inj(M)/3,

Φε(v) ⊂
k⋃
i=1

Φ+
C (DπΓvi, 5ε/2, δ/2)

Note that for each compact Φ+
C(DπΓvi, 5ε/2, δ/2), a minimal (0, δ)-spanning

set Ei will be a (t, δ)-spanning set for all t > 0. Thus,

htop(Φε(v), δ) 6 lim
t→∞

1
t

log
(

k∑
i=1
|Ei|

)
= 0. �

7. Applications to counting and entropy

Let Pt(φ) denote the collection of hyperbolic φ-periodic orbits of period
at most t, modulo orbit equivalence, and

ρ(φ) := lim
t→∞

1
t

log #Pt(φ).

Note that the hyperbolic closed orbits for the flow are isolated and count-
able, since they are disjoint from the flats (Proposition 3.3).

The next proposition is a straightforward consequence of h-expansivity
(Theorem 6.2), included for completeness.

Proposition 7.1. — The geodesic flow φt of a Benoist 3-manifold sat-
isfies

ρ(φ) 6 htop(φ).
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Proof. — Choose 0 < ε 6 injM/3 an h-expansivity constant for the
geodesic flow on SM . We show that Pt is a (t, ε)-separated set. If v, u ∈ PT
such that dT (v, u) < ε, then dt(v, u) < ε for all t ∈ R. Since Γ acts discretely
and ε < inj(M)/3, this is only possible if v = u or if v and u lift to tangent
vectors to a properly embedded triangle 4 such that `ṽ, `ũ ⊂ 4. Then v, u
are in a flat so they are not counted in PT .
Thus, Pt is (t, ε)-separated and has cardinality at most R(t, ε), the cardi-

nality of a maximal (t, ε)-separated set. We conclude by h-expansivity and
Bowen’s Theorem 6.1 that

ρ(φ) = lim
t→∞

1
t

log #Pt(φ) 6 lim
t→∞

1
t

logR(t, ε) = htop(φ). �

Proposition 7.2. — The geodesic flow of a compact Benoist 3-manifold
has positive topological entropy.

Proof. — By Corollary 3.5, there exist noncommuting hyperbolic ele-
ments g, h ∈ Γ which generate a free subgroup. There is a positive lower
bound for the exponential growth rate of lengths of closed curves associated
to this subgroup, which bounds below ρ(φ) and hence htop(φ). �

7.1. Volume entropy

We remark in this section that A. Manning’s proof that volume entropy
and topological entropy agree for compact nonpositively curved Riemann-
ian manifolds generalizes to our context immediately [23]. Let vol be a nat-
ural projectively invariant volume on Ω, such as the Busemann volume [24,
Section 1]. Then

hvol(Ω) = lim
r→∞

1
r

log vol(BΩ(x, r))

is the volume entropy of Ω. Let δΓ denote the critical exponent of the action
of Γ on Ω, equivalently: δΓ = lim supt→∞ 1

t logNΓ(t) where NΓ(t) = #{γ ∈
Γ | dΩ(x, γ.x) 6 t}.

Proposition 7.3. — If Ω is any divisible properly convex domain in
RPn, then

δΓ = hvol = htop(φ).

Proof. — Whenever a discrete group of isometries acts cocompactly on
a metric space with finite critical exponent, one has δΓ = hvol (a proof
is available in [27, Lemma 4.5]). The statement in [23, Theorem 1] that
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hvol 6 htop(φ) holds as long as M is compact and (Ω, dΩ) is complete. The
proof of the opposite inequality in Theorem 2 uses nonpositive sectional
curvature to prove a technical lemma. We can bypass curvature and prove
the lemma immediately in Hilbert geometries. The rest of the proof follows
in the same way.
This lemma has already been proven by Crampon in the strictly convex

case, but in the proof Crampon only uses strict convexity to state the lemma
with a strict inequality for all geodesics, which can only be projective lines
when the domain is strictly convex. Since our geodesic flow is defined to
follow projective lines, the lemma suffices.

Lemma 7.4 ([14, Lemma 8.3]). — For any two projective lines σ, τ :
[0, r]→M , r > 0,

dΩ(σ(t), τ(t)) 6 dΩ(σ(0), τ(0)) + dΩ(σ(r), τ(r)).

In fact, Lemma 7.4 is an immediate consequence of work by Busemann,
who observed that the Hilbert distance from a geodesic projective line to
any convex subset of Ω is peakless, where Ω is any properly convex domain.
The definition of peakless is equation (18.11) and the statement is (18.12),
in [10, Chapter 18: Hilbert Geometry, p. 109]. We thank the referee for this
reference. �
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