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ON THE EFFECTIVE FREENESS OF THE DIRECT
IMAGES OF PLURICANONICAL BUNDLES

by Yajnaseni DUTTA

Abstract. — We give effective bounds on the number of twists by ample line
bundles, for global generations of pushforwards of log-pluricanonical bundles on klt
pairs. This gives a partial answer to a conjecture proposed by Popa and Schnell.
We prove two types of statements: first, more in the spirit of the general conjecture,
we show generic global generation with the predicted bound when the dimension of
the variety is less than or equal to 4 and more generally, with a quadratic Angehrn–
Siu type bound. Secondly, assuming that the relative canonical bundle is relatively
semi-ample, we make a very precise statement. In particular, when the morphism
is smooth, it solves the conjecture with the same bounds, for certain pluricanonical
bundles.
Résumé. — Nous donnons des limites effectives sur le nombre de torsions par fi-

brés en droites amples pour des générations globales de faisceaux log-pluricanoniques
sur des paires de klt. Cela donne une réponse partielle à une hypothèse proposée par
Popa et Schnell. Nous démontrons deux types d’énoncés: premièrement, plus dans
l’esprit de la conjecture générale, nous démontrons la génération globale générique
avec la borne annoncée quand la dimension de la variété est inférieure ou égale à
4 et plus généralement, avec une limite de type Angehrn–Siu. Deuxièmement, en
supposant que le fibré canonique relatif soit relativement semi-ample, nous donnons
un énoncé très précis. En particulier, quand le morphisme est lisse, ceci résout la
conjecture avec les mêmes limites, pour certains faisceaux pluricanoniques.

1. Introduction

The main purpose of this paper is to give a partial answer to a version
of the Fujita-type conjecture proposed by Popa and Schnell [19, Conjec-
ture 1.3], on the global generation of pushforwards of pluricanonical bundles
twisted by ample line bundles. All varieties considered below are over the
field of complex numbers.

Keywords: pluricanonical bundles, Fujita’s conjecture, effective results.
2020 Mathematics Subject Classification: 14C20, 14F05, 14Q20, 14J17.



1546 Yajnaseni DUTTA

Notation 1.1. — We fix

N =
{
n when n 6 4(
n+1

2
)

otherwise

in what follows. Our results also work if N was taken to be the effective
bounds arising from the works of Helmke [8, 9].

Conjecture 1.2 (Popa–Schnell). — Let f : X → Y be a morphism of
smooth projective varieties, with dimY = n, and let L be an ample line
bundle on Y . Then, for every k > 1, the sheaf

f∗ω
⊗k
X ⊗ L

⊗l

is globally generated for l > k(n+ 1).

In [19], Popa and Schnell proved the conjecture in the case when L is
an ample and globally generated line bundle, and observed that it holds in
general when dimY = 1. With the additional assumption that L is globally
generated, they could use Kollár and Ambro–Fujino type vanishing along
with Castelnuovo–Mumford regularity to conclude global generation. We
remove the global generation assumption on L, by making a generation
statement at general points with quadratic bounds.

Theorem A. — Let f : X → Y be a surjective morphism of projective
varieties, with Y smooth and dimY = n. Let L be an ample line bundle
on Y . Consider a klt pair (X,∆) with ∆ a Q-divisor, such that for some
integer k > 1, k(KX+∆) is linearly equivalent to a Cartier divisor P . Then
the sheaf

f∗OX(P )⊗ L⊗l

is generated by global sections at a general point y ∈ Y for all l > k(N +1)
with N as in Notation 1.1.

As a particular case of Theorem A, we have the following corollary, which
is a generic version of Conjecture 1.2 with Angehrn–Siu type bound.

Corollary B. — Let f : X → Y be a surjective morphism of smooth
projective varieties, with dimY = n. Let L be an ample line bundle on Y .
Then for all k > 1, the sheaf

f∗ω
⊗k
X ⊗ L

⊗l

is generated by global sections at a general point y ∈ Y for all l as in
Theorem A.

ANNALES DE L’INSTITUT FOURIER



DIRECT IMAGES OF PLURICANONICAL BUNDLES 1547

According to [19, Section 4], this could be interpreted as an effective
version of Viehweg’s weak-positivity for f∗ω⊗kX/Y [21] (also see [14, Theo-
rem 3.5(i)] and [4, Theorem E]).
One can in fact describe the locus on which global generation holds, but

not in a very explicit fashion. This suffices however in order to deduce
the next Theorem, where assuming semiampleness of the canonical bundle
along the smooth fibres, we prove that the global generation holds at the
smooth (regular) values of f in Y . The relative semiampleness hypothesis
was removed by Deng [3], later was improved by Iwai [10] when dimY > 5
(see 1.4 below).

Theorem C. — Let f : X → Y be a surjective morphism of smooth
projective varieties, with dimY = n. Suppose f is smooth outside of a
closed subvariety B ⊂ Y . Assume that for some k > 1, ω⊗kX is relatively
free over Y \B, and let L be an ample line bundle on Y . Then the sheaf

f∗ω
⊗k
X ⊗ L

⊗l

is generated by global sections at y, for all y /∈ B for all l > k(N + 1).

Remark 1.3. — Note, for instance, that this applies when f : X → Y

is a projective surjective morphism with generalised Calabi–Yau fibres
(i.e. ωF = OF for any smooth fibre F of f), or with fibres having nef and
big canonical bundle (i.e. they are minimal varieties of general type). In-
deed, in the second case there is an integer s� 0 such that f∗f∗ω⊗sX → ω⊗sX
is surjective (see for instance [6, Theorem 1.3]).

In particular, if f is smooth, i.e. B = ∅, Theorem C solves Conjecture 1.2
for the pluricanonical bundles that are relatively globally generated, in
dimX 6 4 and more generally with Angehrn–Siu type bound.

Remark 1.4 (A discussion on recent results). — Since the first draft of
this manuscript, several papers have significantly improved the results in
this paper in dimension bigger than 4. In a joint work with Murayama [4],
using the weak positivity of f∗OY (k(KX/Y + ∆)), the author proved effec-
tive global generation at general points with a bound of l > k(n+1)+n2−n
for log-canonical pairs. In the same paper and also in a work of Iwai [10],
slightly better quadratic bound was shown for klt Q-pairs, improving the
results of the current paper in high dimensions. In the situation of The-
orem C, Iwai showed this generation at regular values without any as-
sumptions on relative freeness of ω⊗kX , improving a similar statement by
Deng [3]. The algebraic methods in this paper rely on Kawamata’s argu-
ments in [13], which in turn uses the arguments stemming from the work
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1548 Yajnaseni DUTTA

of Bombieri [2], Kawamata [12] and Shokurov [20], involving the problem
of finding suitable singular divisors passing through the point at which one
aims to show global generation. This enables us to obtain the bounds simi-
lar to the known cases of the Fujita conjecture. On the other hand, because
of the cyclic cover techniques we use here, in Theorem C we require that
the locus where the relative base loci of the pluricanonical bundles behave
“nicely” along the fibres. The analytic methods get around this by directly
lifting sections of pluricanonical bundles from the fibres of the map.

1.1. An Effective Vanishing Theorem

The proof of Theorem C leads to an effective vanishing theorem (see
Theorem 4.1), in case of smooth morphisms, for the pushforwards of pluri-
canonical bundles that are relatively free. This is in the flavour of [19,
Theorem 1.7], but with the global generation assumption on L removed.
This vanishing theorem has been improved in [4] for n > 4.

1.2. Proof Strategy

The proof of Theorem A is, in part, inspired by arguments in [19, The-
orem 1.4]. However, since we do not assume that L is globally generated,
we need to follow a different path, avoiding Castelnuovo–Mumford regular-
ity. To do this, we need to argue locally around each point and appeal to
the following local version of Kawamata’s effective freeness result (see [13,
Theorem 1.7]), another main source of inspiration for this paper.

Proposition 1.5. — Let f : X→Y be a surjective morphism of smooth
projective varieties, with dimY = n, such that f is smooth outside of a
closed subvariety B in Y . Let ∆ be a Q-divisor on Y with simple normal
crossing support and coefficients in (0, 1) and let H be a semiample Q-
divisor on Y such that there is a Cartier divisor P satisfying

P − (KX + ∆) ∼Q f
∗H.

Fixing a point y ∈ Y \B, assume moreover that each strata of (X,Supp(∆))
intersects the fibre above y transversely or not at all. Furthermore, let A
be a nef and big line bundle on Y satisfying An > Nn and Ad · V > Nd

for any irreducible closed subvariety V ⊂ Y of dimension d that contains
y and for N as in Notation 1.1. Then

f∗OX(P )⊗A

ANNALES DE L’INSTITUT FOURIER
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is generated by global sections at y.

Remark 1.6.

(1) When ∆ = 0, H = OY and B is a simple normal crossing divisor,
the result is known for all y ∈ Y . This is Kawamata’s freeness result
(see Theorem 2.1 below). Kawamata’s proof relies on the existence
of an effective Q-divisor D ∼Q λA for some 0 < λ < 1, such that
the pair (Y,D) has an isolated log canonical singularity at a given
point y ∈ Y . Existence of such divisors is known, when A satisfies
the intersection properties as in the hypothesis of Proposition 1.5
(see [1], [16, Theorem 5.8]). Slightly better bounds are known due
to Helmke ([8], [9]). Our methods also work with N replaced by
Helmke’s bounds.

(2) The proof proceeds by reducing to the case ∆ = 0 and then to
the situation in Kawamata’s result i.e. when B has simple normal
crossing support. We perform the first reduction using an inductive
procedure of removing the coefficients of the components of ∆ via
Kawamata coverings [18, Theorem 4.1.12]. For details see Section 2.
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2. Generalisation of Kawamata’s Freeness Result

A key input in the proof of Proposition 1.5 is Kawamata’s theorem. We
state it here:
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Theorem 2.1 ([13, Theorem 1.7]). — Let f : X → Y be a surjective
morphism of smooth projective varieties, with dimY = n, such that f is
smooth outside of a simple normal crossing divisor Σ ⊂ Y . Furthermore, let
A be a nef and big line bundle on Y and fixing a point y ∈ Y assume that,
An > Nn and Ad · V > Nd for any irreducible closed subvariety V ⊂ Y of
dimension d that contains y and for N as in Notation 1.1. Then

f∗ωX ⊗A

is generated by global sections at y.

We are now ready to prove a generic version of the above allowing a
simple normal crossing klt pair.

Proof of Proposition 1.5. — Since H is semiample, so is f∗H and there-
fore by Bertini’s theorem (see Remark III.10.9.2 [7] and [11]), we can pick
a fractional Q divisor D ∼Q f∗H with smooth support such that ∆ + D

still has simple normal crossings support, Supp(D) is not contained in the
support of the ∆ and intersects the fibre over y transversely or not at all
and ∆ +D has coefficient in (0, 1). We rename ∆ +D by ∆.

We now proceed inductively by removing the components of ∆.
Step 1. Kawamata covering of ∆. — If ∆ = 0 we move to Step 2.
Otherwise let ∆ = l

kD1 + D2 with l, k ∈ Z>0, l < k and D1 smooth
irreducible. We choose a Bloch–Gieseker cover p : Z → X along D1, so that
p∗D1 ∼ kM for some Cartier divisor (possibly non-effective) M on Z and
so that the components of p∗∆ and the fibre (f ◦ p)−1(y) are smooth and
intersect each other transversely or not at all [18, Lemma 4.1.11]. Moreover
since p is flat and f is smooth over a neighbourhood around y, we can
conclude that there is a open neighbourhood U around y such that f ◦ p is
still smooth over U [7, Example III.10.2].

Set g = f ◦ p and denote by B ⊂ Y , the branch locus of g. Further note
that y /∈ B.

Now, ωX is a direct summand of p∗ωZ via the trace map. Therefore

f∗OX(P )⊗A

is a direct summand of

g∗OZ(KZ + lM + p∗D2)⊗A.

Hence it is enough to show that the latter is generated by global sections
at y.
To do this we take the kth cyclic cover q : X1 → Z of p∗D1. The smooth-

ness of the components of Supp(p∗∆) and of g−1(y), and the intersection
properties carry over to X1, i.e. (g ◦ q)−1(y) and q∗p∗Di are smooth and
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intersect each other transversely or not at all [18, Remark 4.1.8]. Further-
more, g ◦ q is still smooth over y, and hence over an open subset U around
y. In other words y is not in the branch locus (denoted B again) of g ◦ q.
For the ease of notation set f1 := g ◦ q. Note that, (see for instance, [5,
Section 1])

q∗ωX1
'

k−1⊕
i=0

ω
Z

(p∗D1 − iM) '
k−1⊕
i=0

ω
Z

((k − i)M).

The last isomorphism is due to the fact that p∗D1 ∼ kM . Further, since
k > l, the direct sum on the right hand side contains the term ωZ(lM)
when i = k − l.
Therefore it is enough to show that,

f1∗OX1(KX1 + q∗p∗D2)⊗A

is generated by global sections at y.
Proceeding inductively this way, it is enough to show that

fs∗ωXs
⊗A

is globally generated at y, where fs : Xs → X is the composition of Kawa-
mata covers along the components of ∆ (here s is the number of components
of ∆). We rename fs by f and Xs by X. We again call the non-smooth
locus of fs by B and note that y /∈ B.

Step 2. Base case of the induction. — Take a birational modification
µ : Y ′ → Y such that µ−1(B)red =: Σ in Y ′, as in the diagram below, is a
simple normal crossing divisor and Y ′\Σ ' Y \Supp(B). In particular, µ is
an isomorphism around y. Let X ′ → X be a resolution of the largest irre-
ducible component of the fibre product Y ′×Y X. The situation is described
in the following commutative diagram and a pictorial illustration.

X ′ X

Y ′ Y

f ′ f
µ

Note that f ′ satisfies the hypothesis of Kawamata’s theorem (Theorem 2.1)
around µ−1(y). Indeed, since µ is an isomorphism over a neighbourhood U
around y, µ∗A satisfies the intersection properties, as in the hypothesis,

TOME 70 (2020), FASCICULE 4
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at the point µ−1(y). Moreover f ′ is smooth outside of the simple normal
crossing divisor Σ. Therefore by Theorem 2.1, we obtain that f ′∗ωX′ ⊗µ∗A
is generated by global sections at µ−1(y). Additionally we have,

µ∗(f ′∗ωX′⊗ µ
∗A) ' f∗ωX

⊗A.

Therefore the sheaf f∗ωX ⊗A is generated by global sections at y. �

Remark 2.2 (Local version of Kawamata’s theorem). — When ∆ = 0
and H = OY , by Sźabo’s Lemma (see e.g. [17, Theorem 10.45(1)]), we can
choose µ in Step 2 of the above proof to be an isomorphism outside the
simple normal crossing locus of B to obtain a local version of Kawamata’s
theorem. Said differently, the proof shows that for any morphism f : X → Y

between smooth projective varieties, if y ∈ Y has a Zariski neighbourhood
U such that the morphism f : f−1(U) → U is smooth outside a simple
normal crossing divisor then f∗ωX ⊗ L⊗l is globally generated at y, for all
l > N + 1 with N as in Notation 1.1.

3. Proof of the Main Theorems

For its simplistic nature, we first include the proof of Theorem C. Inspired
by [19], the strategy is to reduce generation problem for pluricanonical
bundles to that of canonical bundles on pairs. We show that such a pair
can be carefully chosen, so it satisfies the properties in the hypothesis of
Proposition 1.5.

Proof of Theorem C. — Let I ⊆ OX be the relative base ideal of
ω⊗kY , i.e. there is a surjection f∗f∗ω

⊗k
X →→ I ⊗ ω⊗kX via the adjunction

morphism. We first take a log resolution µ : X̃ → X of I , so that µ is
an isomorphism outside the co-support of I and so that the image of the
adjunction morphism on X̃ is given by ω⊗k

X̃
(−E), for an effective divisor

E with simple normal crossing support. Renaming X̃ by X, we have the
following surjection:

f∗f∗ω
⊗k
X →→ ω⊗kX (−E)

Moreover, the relative freeness of ω⊗kX over Y \B, implies that f(E) ⊂ B.
Now fix a point y ∈ Y \B. We pick a positive integer m which is smallest

with the property that the sheaf f∗ω⊗kX ⊗ L⊗m is generated by global sec-
tions on U . Then f∗f∗

(
ω⊗kX ⊗ f∗L⊗m

)
is also generated by global sections

on f−1(U). Therefore by the surjectivity of the adjunction morphism, we
have

ω⊗kX (−E)⊗ f∗L⊗m

ANNALES DE L’INSTITUT FOURIER
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is globally generated on f−1(U). As a consequence, we can pick a divisor
D ∈

∣∣ω⊗kX (−E) ⊗ f∗L⊗m
∣∣ such that D is smooth outside of f−1(B) and

intersects the fibre f−1(y) transversely.
After replacing X with a birational modification that is an isomorphism

outside of f−1(B), we may assume that D = D′ + F , where D′ is smooth,
intersects the fibre f−1(y) transversely and does not share any component
with E. Furthermore, F is supported on f−1(B) and D′+F +E has simple
normal crossing support.
We write

kKX +mf∗L ∼ D′ + F + E.

Multiplying both sides by k−1
k and adding KX + lf∗L for any integer l, we

can rewrite

kKX + lf∗L ∼Q KX + k − 1
k

(D′ + F + E) +
(
l − k − 1

k
m

)
f∗L.

Now consider the effective divisor E′ :=
⌊
k−1
k (E + F )

⌋
and denote

∆ := k − 1
k

(D′ + F + E)− E′.

We can rewrite Q-linear equivalence as

kKX − E′ + lf∗L ∼Q KX + ∆ +
(
l − k − 1

k
m

)
f∗L.

It is enough to show that

f∗OX
(
KX + ∆ +

(
l − k − 1

k
m

)
f∗L

)
(1)

is generated by global sections at y for all l > k−1
k m+N . Indeed, this would

imply that the left hand side of the equation also satisfies similar global
generation bounds, i.e. f∗OX (kKX − E′ + lf∗L) is globally generated at y
for all l > k−1

k m+N . But note that E′ is supported on f−1(B) and y /∈ B.
Therefore the stalks

f∗OX (kKX − E′ + lf∗L)y ' f∗OX (kKX + lf∗L)y
are isomorphic. Moreover the global sections of the former sheaf embeds
into the global sections of the latter sheaf. Said differently, this would imply
that

f∗OX (kKX + lf∗L)

(1)Since the left hand side is Cartier we write OX(KX + ∆ + (l− k−1
k

m)f∗L) by abuse
of notation.
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is globally generated on U for all l > k−1
k m+N . From our choice of m, we

must have that m 6 k−1
k m+N + 1. This is the same as m 6 k(N + 1). As

a consequence,
f∗ω

⊗k
X ⊗ L

⊗l

is generated by global sections on Y \B for all l > (k−1)(N+1)+N+1 =
k(N + 1).
It now remains to show that

f∗OX
(
KX + ∆ +

(
l − k − 1

k
m

)
f∗L

)
is generated by global sections at y when l− k−1

k m > N . This follows from
Proposition 1.5 taking

H :=
(⌈

k − 1
k

m

⌉
− k − 1

k
m

)
L

and
A :=

(
l −
⌈
k − 1
k

m

⌉)
L.

Indeed, L is ample, H is semiample and A satisfies the Angehrn–Siu type
intersection properties by the choice of l above. Moreover ∆ has simple nor-
mal crossing support with coefficients in (0, 1) and its components intersect
the fibre f−1(y) transversely or not at all. �

The proof of Theorem A is fairly similar, except due to the lack of nice
behaviour of ω⊗kX over Y \B, one needs to carefully choose the locus U of
global generation.
Proof of Theorem A. — Following the proof of [19, Theorem 1.7], we

first take a log resolution µ : X̃ → X of the base ideal of the adjunction
morphism f∗f∗OX(P ) π−→ OX(P ) and the pair (X,∆). Write:

K
X̃
− µ∗(KX + ∆) = Q−N

whereQ andN are effective Q-divisors with simple normal crossing support,
with no common components, moreover N has coefficients strictly smaller
than 1, and Q is supported on the exceptional locus. Define:

P̃ := µ∗P + k dQe

and
∆̃ := N + dQe −Q.

Then by definition,P̃ ∼Q k(K
X̃

+ ∆̃). Moreover, since Q is exceptional, we
have the isomorphism µ∗OX̃(P̃ ) ' µ∗OX(P ). We rename X̃ by X, P̃ by
P and ∆̃ by ∆, so that the image of the adjunction morphism π is given

ANNALES DE L’INSTITUT FOURIER
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by OX(P −E), for an effective divisor E and so that X is smooth and the
divisor ∆ + E has simple normal crossing support.

Next, the strategy is to find a suitable open set U ⊆ Y on which we prove
global generation. For this purpose, write ∆ =

∑
i ai∆i, where ∆i’s are the

irreducible components of ∆. Let Ej ’s denote the irreducible components
of E. Set,

c := k × l.c.m. of the denominators of ai.

Similar to the construction in the proof of Proposition 1.5, we inductively
take cth Kawamata covers of ∆i’s and Ej ’s and denote the composition of
these covers by p : X ′ → X. We choose these covers so that p∗∆i = c∆′i
and p∗Ej = cE′j for irreducible divisors ∆′i and E′j . We further ensure that
p∗(∆ + E) has simple normal crossing support.
Denote by B, the non-smooth locus of f ◦ p. Assign U := Y \B, consider

the following cartesian diagram:

f−1(U) =: V X

U Y

fV

iV

f

i

and denote C := f−1(B).
Fix y ∈ U . Now, pick a positive integer m which is the smallest with the

property that the sheaf f∗OX(P )⊗L⊗m is generated by global sections at
each point on U . Therefore by adjunction, OX(P −E)⊗f∗L⊗m is globally
generated on V and hence so is p∗ (OX(P − E)⊗ f∗L⊗m) on X ′ \ p−1(C).
By Bertini’s theorem, we can pick D ∈

∣∣OX(P − E) ⊗ f∗L⊗m
∣∣ so that D

is smooth outside of C and such that p∗D is also smooth outside p−1(C).
We further ensure that the divisor p∗D intersects the smooth fibre f−1(y)
transversely. To simplify notations, we denote p−1(C) by C again.
We can write:

kP +mf∗L ∼ D + E

By a similar arithmetic as in the proof of Theorem C we obtain,

k (KX + ∆) ∼Q KX + ∆ + k − 1
k

(D + E)− k − 1
k

mf∗L,

and hence for any integer l,

k (KX + ∆) + lf∗L ∼Q KX + ∆ + k − 1
k

(D + E) +
(
l − k − 1

k
m

)
f∗L.

Now, since E is the relative base locus of the adjunction morphism of
OX(P ), for every effective Cartier divisor E′ such that E − E′ is effective

TOME 70 (2020), FASCICULE 4
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we have
f∗OX(P − E′) ' f∗OX(P ).

We would like to such integral divisors, E′ so that

∆ + k − 1
k

E − E′

has coefficients strictly smaller than 1. We do so as follows. Write

E =
∑
i

si∆i + Ẽ

and
∆ =

∑
i

ai∆i

where Ẽ and ∆ do not have any common component. Note that, by hy-
pothesis, 0 < ai < 1 and si ∈ Z>0. We want to pick non-negative integers
bi, such that

0 6 ai + k − 1
k

si − bi < 1

and
bi 6 si.

Denote by

γi := ai + k − 1
k

si

and note that γi < 1 + si.

For some integer j with 0 6 j 6 si, we can write si− j+ 1 > γi > si− j.
Then we pick

bi = si − j.
Now let

E′ :=
∑
i

bi∆i +
⌊
k − 1
k

Ẽ

⌋
.

Then assign

∆̃ := ∆ + k − 1
k

E − E′ =
∑
i

αi∆̃i

and note that ∆̃ is a divisor with simple normal crossing support with
coefficients 0 < αi < 1. Then we rewrite the above Q-linear equivalence of
divisors as:

P − E′ + lf∗L ∼Q KX + ∆̃ + k − 1
k

D +
(
l − k − 1

k
m

)
f∗L.

It is now enough to show that the pushforward of the right hand side
of the above Q-linear equivalence is globally generated at y, for all l >
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k−1
k m + N . Indeed, in that case the left hand side would satisfy similar

global generation bounds and by the discussion above

f∗OX(P − E′)⊗ L⊗l ' f∗OX(P )⊗ L⊗l.

Said differently, this implies that

f∗OX(P )⊗ L⊗l

is globally generated on U for all l > k−1
k m+N . From our choice of m, we

must have that m 6 k−1
k m + N + 1. This is the same as m 6 k(N + 1).

Therefore,
f∗OX(P )⊗ L⊗l

is generated by global sections on U for all l > (k − 1)(N + 1) + N + 1 =
k(N + 1).
It now remains to show that

f∗OX
(
KX + ∆̃ + k − 1

k
D +

(
l − k − 1

k
m

)
f∗L

)
is globally generated at y. To do so, we resort to Proposition 1.5. However
the divisor ∆̃+k−1

k D may not satisfy the hypothesis of Proposition 1.5, asD
may be quite singular along C. Therefore we cannot apply Proposition 1.5
directly. Since we are only interested in generic global generation though,
we can get around these problems. The rest of the proof is devoted to this.
By definition, cαi is an integer and by construction, p is a composition

of cth Kawamata coverings of the components ∆̃i’s of ∆̃. Following an
inductive argument similar to the one in the proof of Proposition 1.5, we
see that

f∗OX
(
KX + ∆̃ + k − 1

k
D +

(
l − k − 1

k
m

)
f∗L

)
is a direct summand of

(f ◦ p)∗OX′
(
KY ′ + k − 1

k
D′ + (f ◦ p)∗

(
l − k − 1

k
m

)
L

)
where D′ = p∗D. Therefore it is enough to show that the latter is globally
generated at y.
We are now almost in the situation of Proposition 1.5, except D′ may

still be singular along p−1(C). We get around this using similar strategy as
was used in the proof Theorem C. Let µ : X ′′ → X ′ be a log resolution of
D′ such that µ is an isomorphism outside of p−1(C). Then write

µ∗D′ = D̃ + F
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where D̃ is smooth, intersects the fibre over y transversely and F is sup-
ported on µ−1(p−1(C)), denoted by C again. We replace,X ′′ byX ′, rename
the divisor µ∗D′ by D′. Therefore, we can assume that D′ has simple nor-
mal crossing support.
To deal with the fact that F may not be klt, consider the effective Cartier

divisor F ′ =
⌊
k−1
k F

⌋
. Since, Supp(F ′) is contained in the C and y /∈ B,

the stalks

(f ◦ p)∗OX′
(
KX′ + k − 1

k
D′ +

(
l − k − 1

k
m

)
(f ◦ p)∗L

)
y

' (f ◦ p)∗OX′
(
KX′ + k − 1

k
D′ − F ′ +

(
l − k − 1

k
m

)
(f ◦ p)∗L

)
y

are isomorphic. Moreover the global sections of the latter sheaf embed into
the global sections of the former sheaf.
Letting

∆̃ := k − 1
k

D′ − F ′,

it is now enough to show that,

(f ◦ p)∗OY ′
(
KY ′ + ∆̃ +

(
l − k − 1

k
m

)
(f ◦ p)∗L

)

is globally generated at y for l > k−1
k m+N . The Q-divisor ∆̃ satisfies the

hypothesis in Proposition 1.5 and the required global generation follows
from Proposition 1.5 taking

H :=
(⌈

k − 1
k

m

⌉
− k − 1

k
m

)
L

and

A :=
(
l −
⌈
k − 1
k

m

⌉)
L. �

Remark 3.1. — Note that if ∆ itself has simple normal crossing support
and the relative base locus E of OX(k(KX + ∆)) is a divisor so that ∆ +E

also has simple normal crossing support, then by construction, the loci of
generation U in the statement contains the largest open set in Y , over
which f restricted to each strata of (X,∆ + E) is smooth.
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4. An Effective Vanishing Theorem

We deduce a pluricanonical version of Kollár’s vanishing theorem for
smooth morphisms satisfying certain properties. The proof essentially fol-
lows directly from the Q-linear equivalences involved in the proof of Theo-
rem C.

Theorem 4.1 (Effective vanishing theorem). — Let f : X → Y be a
smooth surjective morphism of smooth projective varieties, with dimY =
n. Assume in addition that ω⊗kX is relatively free for some k > 1, and let L
be an ample line bundle on Y . Then,

Hi
(
Y, f∗ω

⊗k
X ⊗ L

⊗l) = 0

for all i > 0 and l > k(N + 1)−N with N as in Notation 1.1.

Proof. — Since f is smooth, by Theorem C, we know that the sheaf
f∗ω

⊗k
X ⊗ L⊗l is globally generated for all l > k(N + 1). Therefore by

the surjectivity of the adjunction morphism ω⊗kX ⊗ f∗L⊗k(N+1) is glob-
ally generated as well. As a consequence, we can pick a smooth divisor
D ∈

∣∣ω⊗kX ⊗ f∗L⊗k(N+1)
∣∣ such that D intersects the fibre f−1(y) trans-

versely.
Write:

kKX + k(N + 1)f∗L ∼ D.

Multiplying by k−1
k and adding KX + lf∗L for some integer l, we obtain

as before

kKX + lf∗L ∼Q KX + k − 1
k

D + (l − (k − 1)(N + 1)) f∗L,

for any integer l. By applying Kollár’s vanishing theorem [15, Corollary 10.15]
on the right hand side, we get

Hi

(
Y, f∗OX

(
KX + k − 1

k
D + (l − (k − 1)(N + 1)) f∗L

))
= 0

for all i > 0 and l > (k − 1)(N + 1). Therefore, the left hand side satisfies
similar vanishing properties

Hi
(
Y, f∗ω

⊗k
X ⊗ L

⊗l) = 0

for all i > 0 and l > k(N + 1)−N �

Remark 4.2. — The above bound is replaced in [4, Theorem 5.3] by
k(n+ 1)− n for all n. This is an improvement for n > 4.
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