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APPLICATION OF BRAIDING SEQUENCES IV: LINK
POLYNOMIALS AND GEOMETRIC INVARIANTS

by Alexander STOIMENOW

Abstract. — We apply the concept of braiding sequences to the Conway and
skein polynomial, and some geometric invariants of positive links. Using degree and
coefficient growth properties of the Conway polynomial, estimates of braid index
and Legendrian invariants are given. We enumerate alternating (and some other
classes of) links of given genus asymptotically up to constants by braid index.
Résumé. — Nous appliquons le concept de séquences de tressage aux polynômes

de skein et de Conway, mais aussi à quelques invariants géométriques des entrelacs
positifs. On donne des estimations pour l’indice des tresses et pour des invariants
legendriens, en utilisant le degré et des propriétés de croissance des coefficients du
polynôme de Conway. Nous énumérons asymptotiquement à une constante près les
entrelacs alternants (et quelques autres) de genre donné par leur indice de tresses.

1. Introduction and overview of results

Positive knots have become gradually relevant, apparently not primarily
because of the combinatorial property that describes them, but because
they were found related to a series of different subjects, including dynami-
cal systems [7], algebraic curves [44, 45], and singularity theory [1, 8, 33].
Positive knots play some role also in 4-dimensional QFTs [29], and in rela-
tion to the concordance invariants of knot homology (see, e.g., [20]). Let us
note that the intersection of the classes of positive and alternating knots
are the special alternating knots studied extensively by Murasugi; see for
example [36].

The concept of braiding sequences [69] was used originally in relation to
Vassiliev (finite degree) invariants [3, 4, 70, 71]. Braiding sequences were

Keywords: positive knot, alternating knot, braid index, genus, link polynomial, Legen-
drian knot, Bennequin inequality, enumeration.
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1432 Alexander STOIMENOW

later related to positive and alternating knots [47, 64, 65] by means of the
fact that the set of knot diagrams on which the Seifert algorithm gives a
surface of given genus decomposes into finitely many such sequences. Our
subject here will be to derive further consequences of this circumstance,
first, to properties of the Conway polynomial∇ of positive links. This paper
is a continuation of the previous part of the work [61], where we studied
the Jones V [23], HOMFLY–PT (or skein) P [18, 31] and Kauffman F [27]
polynomials, and established a finiteness property for their coefficients (see
Theorem 5.1 below).
In contrast to these polynomials, the coefficients of the Conway polyno-

mial grow unboundedly on positive links. This is the subject of Section 4
(following some background given in Section 2 and, more specifically about
braiding sequences, in Section 3). In particular, Theorem 4.5 gives a lower
bound on all possible coefficients of ∇ of a positive link, proportional to
the crossing number of the positive diagram (see also Corollary 4.9). This
qualitatively improves the positivity result of Cromwell [12], and widens
the case of positive braid links studied by van Buskirk [9], as well as the
Casson knot invariant in [51]. The proof uses the work in [51] for knots and
certain linking number inequalities.
In Section 5, we derive various applications of the work in Section 4. The

increase of Conway’s coefficients of positive knots, amplified by a similar
property for the degree-3 Vassiliev invariant in Proposition 5.24, opposes
the finiteness result of the Jones and Kauffman polynomials, and enforces
a growth of their degrees (Section 5.5). For the skein polynomial, a much
more efficient estimate follows from modifying the proof for the Conway
polynomial. One has then the following applications to the braid index
and Legendrian knot invariants [10, 19], which are the main subject of this
paper. (The definition of the invariants is briefly recalled in Section 5.3.)

Theorem 1.1. — If L is a semihomogeneous normal link with a semi-
homogeneous reduced diagram D of Euler characteristic χ(D) = χ(L) and
c(D) crossings, then we have for the braid index b(L) of L,

(1.1) b(L) > c(D) + 1
2 + 2χ(D).

That is, the crossing number is linearly bounded in the braid index, when
the constant term depends on the Euler characteristic.

“Normal” should mean no unknot split components. The notion of semi-
homogeneous links was introduced in [56] as a (slight) generalization of
Cromwell’s homogeneous links [12]. Thus they cover alternating and posi-
tive links, among others. This provides a rather wide yet simple lower braid
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BRAIDING SEQUENCES IV 1433

index estimate. Note that it differs only by a quantity depending on χ from
Ohyama’s (general) upper estimate [39] (see (5.20)). It also gives a crossing
number bound (Corollary 5.14).
As a further application of Theorem 1.1, we have, for many links, a quite

explicit version of the finiteness result of Birman and Menasco in [6], and
its partial rederivation in [55]. (See Section 2.1 for more notation.)

Theorem 1.2. — The number βb,χ of non-split semihomogeneous links
of (fixed) Euler characteristic χ < 0 and (increasing) braid index b satisfies
the asymptotic equivalence

(1.2) βb,χ ∼b b−3χ−1.

The theorem holds in this same form also for the subclasses, incl. for
alternating and positive links (see Remark 5.15).

The other main topic we treat is the Bennequin inequality for Legendrian
knots. If L is a Legendrian embedding of a link L in the standard contact
space (R3(x, y, z), dx+y dz), then its Thurston–Bennequin invariant tb(L)
and Maslov number µ(L) satisfy

(1.3) tb(L) + |µ(L)| 6 −χ(L).

(This notation will be kept throughout below.)
We obtain the following simple lower estimate on the unsharpness of

Bennequin’s inequality for semihomogeneous links.

Theorem 1.3. — Let L be a semihomogeneous link with a reduced
semihomogeneous diagram D of c−(D) negative crossings. Then, with the
above notation,

(1.4) tb(L) + |µ(L)| 6 −χ(L)− 3 + c−(D)
2

for c−(D) > 2 (and “3” can be replaced by “2” for c−(D) = 2).

This is an, again explicit, extension and simplification of a result in [55],
which in turn generalized the examples of Kanda [24] of (increasingly)
unsharp Bennequin inequality. In particular, now we see that as such ex-
amples any sequence of (links with) semihomogeneous diagrams having an
unbounded number of negative crossings will do.

In the special case of negative links, we obtain a decreasing purely neg-
ative estimate (which is independent of χ), as follows.

Theorem 1.4. — Let L be a negative link, except the unknot, with a
reduced negative diagram D. Then

tb(L) + |µ(L)| 6 −5 + c(D)
4 .
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1434 Alexander STOIMENOW

The same statement holds for L transverse, when omitting the µ(L) term.

This can again be seen as an extension of the decrease result of Kan-
da [24], and concretizes its generalization in [55]. Along the lines of [55], one
can derive such a decreasing negative bound also for a semihomogeneous
link, when one chooses between mirror images (see Proposition 5.12).

1.1. Acknowledgment

Over the very long period that parts of this work were developed,
several people offered helpful remarks, discussions, and reference to related
research. Among them are S. Tabachnikov and T. Tanaka. I also wish to
thank my JSPS host Prof. T. Kohno at University of Tokyo for his sup-
port. S. Theriault gave numerous comments on uncareful writing in a much
earlier version, which triggered a substantial revision, and hopefully made
the exposition more approachable. Finally, I like to thank the referee for
his/her minor corrections.

2. Preliminaries, Notations and Conventions

2.1. Generalities

The symbols Z, N, Q, R and C denote the integer, natural, rational, real
and complex numbers, respectively. We will also write i =

√
−1 for the

imaginary unit, in situations where no confusion (with the usage as index)
arises. For a set S, the expression |S| denotes the cardinality of S. In the
sequel the symbol “⊂” denotes a not necessarily proper inclusion.

Let us write, just for the scope (and space) of the following definition,
that for two positive integer sequences (an) and (bn),

λ = lim inf
n→∞

an
bn
, λ = lim

n→∞

an
bn
, λ = lim sup

n→∞

an
bn
.

Let us then say/write for two such sequences (an) and (bn) that they
are/satisfy

(2.1)

an = On(bn), if λ <∞,

asymptotically equivalent, an ∼n bn, if 0 < λ 6 λ <∞,
asymptotically proportional, an 'n bn, if 0 < λ <∞,

asymptotically equal, an ∼=n bn, if λ = 1.

ANNALES DE L’INSTITUT FOURIER
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An expression of the form “an → ∞” should abbreviate limn→∞ an = ∞.
Analogously “anm →∞” should mean the limit for m→∞, etc.

We need next a few notations related to polynomials, which are un-
derstood in the broader sense as Laurent polynomials (i.e., variables are
allowed to occur with negative exponents). Let [X]ta = [X]a be the coef-
ficient of ta in a polynomial X ∈ Z[t±1]. For X 6= 0, let CX = {a ∈ Z :
[X]a 6= 0} and

min degX = min CX , max degX = max CX ,
and spanX = max degX −min degX

be the minimal and maximal degree and span (or breadth) of X, respec-
tively. It makes sense to set min deg 0 := ∞ and max deg 0 := −∞. Simi-
larly one defines for X ∈ Z[x1, . . . , xn] the coefficient [X]A for some mono-
mial A in the xi, and min degxi X, etc.

Definition 2.1. — For H,G ∈ Z[t, t−1] we write H > G (resp. H 6 G)
if [H]i > [G]i (resp. [H]i 6 [G]i) for all i. We say H is positive if H > 0
and negative if H 6 0, and that H is signed if it is positive or negative.

A polynomial H is n-strictly signed if it is signed and [H]i 6= 0 when
min degH 6 i 6 max degH and i ≡ min degH (mod n). We callH strictly
signed if H is 1-strictly signed, and H is (n-)strictly positive/negative if it
is (n-)strictly signed and positive/negative.
The absolute (value) polynomial |H| of H is given by[

|H|
]
ti

:=
∣∣[H]ti

∣∣.
Thus, for example, the polynomial 1+t2 is positive and 2-strictly positive,

but not strictly positive.
We use the abbreviations “w.l.o.g.” for “without loss of generality” and

“r.h.s.” (resp. “l.h.s.”) for “right hand-side” (resp. “left hand-side”). “w.r.t.”
will stand for “with respect to”. Some further notations will be introduced
at an appropriate place in the text.

2.2. Link polynomial invariants

As for polynomial invariants, our notation is fairly standard: ∆ denotes
the Alexander [2], ∇ the Conway [11], V the Jones [23], P the HOMFLY–
PT (or skein) [18, 31], and F the Kauffman polynomial [27].

TOME 70 (2020), FASCICULE 4



1436 Alexander STOIMENOW

2.2.1. Skein (HOMFLY-PT) polynomial

The skein (HOMFLY–PT) polynomial P is a Laurent polynomial in two
variables l and m of oriented knots and links and can be defined by being
1 on the unknot and the (skein) relation

(2.2) l−1P
( )

+ lP
( )

= −mP
( )

.

With this relation, we use the convention for P of [31], but with l and l−1

interchanged.
A skein triple D+, D−, D0 is a triple of diagrams, or of their correspond-

ing links L+, L−, L0, equal except near one crossing, where they look like
in (2.2) (from left to right). The replacement L± → L0 is called smoothing
(out) the crossing in L±. The crossing in D+ is called positive, the one
inD− negative.
Let c(L), the crossing number of a link L, be the minimal crossing number

c(D) over all diagrams D of L. We write c+(D) and c−(D) for the number
of positive resp. negative crossings of a diagram D. The sum of the signs of
all crossings of D is called the writhe of D and will be written w(D). Thus

c(D) = c+(D) + c−(D) and w(D) = c+(D)− c−(D).

Let D be an oriented knot or link diagram. We denote by c(D) the
crossing number of D. We use n(D) = n(L) to designate the number of
components of D or its link L. We write s(D) for the number of Seifert
circles of a diagram D (the loops obtained by smoothing out all crossings
of D).

2.2.2. Kauffman polynomial

The Kauffman polynomial [27] F is usually defined via a regular isotopy
invariant Λ(a, z) of unoriented links. For F we use the convention of [27],
but with a and a−1 interchanged. In particular we have for a link diagram
D the relation

(2.3) F (D)(a, z) = aw(D)Λ(D)(a, z).

The writhe-unnormalized version Λ of F is given in our convention by the
properties

(2.4)
Λ
( )

+ Λ
( )

= z
(

Λ
( )

+ Λ
( ))

,

Λ
( )

= a−1 Λ
( ))

; Λ
( )

= a Λ
( ))

; Λ
(
©
)

= 1.
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Thus the positive (right-hand) trefoil has min degl P = min dega F = 2.
Note that for P and F there are several other variable conventions, dif-

fering from each other by possible inversion and/or multiplication of some
variable by some fourth root of unity.

2.2.3. Jones polynomial

The Jones polynomial V is a Laurent polynomial in one variable t of
oriented knots and links and can be defined by being 1 on the unknot and
the relation

(2.5) t−1V
( )

− tV
( )

= (t1/2 − t−1/2)V
( )

.

The Jones polynomial is obtained from P and F (in our conventions) by
the substitutions (with i being the complex unit; see [31] or [27, Section III])

(2.6) V (t) = P (it, i(t1/2 − t−1/2)) = F (−t3/4, t1/4 + t−1/4).

2.2.4. Conway–Alexander polynomial

The Conway and Alexander polynomial are equivalent, and substitutions
of the skein polynomial:

(2.7) ∆(t) = ∇(t1/2 − t−1/2) = P (i, i(t1/2 − t−1/2)).

The skein relation for ∇ can be written

(2.8) ∇
( )

= ∇
( )

+ z∇
( )

.

We will often use below the coefficients

(2.9) ∇j = ∇j(L) = [∇(L)]j = [∇(L)]zj ,

which we abbreviate as indicated. One can argue that min deg∇L(z) >
n(L)− 1, i.e., ∇j(L) = 0 whenever j < n(L)− 1. This in particular means
that indeed ∇L(z) is a genuine polynomial in z, and not a Laurent one,
as (2.7) might suggest.
Throughout this treatise, ∆ is thus normalized so that (2.7) holds.

The word “normalized” refers to comparison with other definitions of the
Alexander polynomial, where one often leaves an ambiguity up to units
in Z[t±1].
Thus for knots L we will have

(2.10) ∆L(1) = 1,

TOME 70 (2020), FASCICULE 4



1438 Alexander STOIMENOW

and for a general link L,

(2.11) ∆L(1/t) = (−1)n(L)−1∆(t)

(i.e., the sign is positive/negative for odd/even number of components).
We will call Property (2.10) unimodularity, and (2.11) symmetry.

The reformulation of symmetry of ∆ in terms of ∇ is that ∇L(z) is
an even/odd polynomial (i.e., has coefficients only in even/odd z-degree),
when n(L) is odd/even. The reformulation of unimodularity is that for
knots ∇0 ≡ 1. More generally, ∇n(L)−1(L) can be expressed in terms of
component linking numbers (see Section 4.2 below).

2.3. Links and diagrams

Here, and in the sequel, for a knot or link K, we write !K for its obverse,
or mirror image. Similarly !D is the mirror image of a link diagram D. By
K1#K2 we denote the connected sum of K1 and K2.

We say that a link diagram D is s-almost positive if c−(D) = s. A
knot or link is s-almost positive if it has an s-almost positive diagram, but
no (s − 1)-almost positive one. Hereby, for both knots and diagrams, “0-
almost positive” is called shorter positive and “1-almost positive” is almost
positive [52]. The procedure of turning all crossings in a diagram so that
they become positive is called positification; a diagram obtained thus is
positivized. Negative links and diagrams are defined as mirror images of
positive ones.
Note: There seems some division between knot theorists as to which

links are to be called positive. In [9, 32], the rather non-standard (and
confusing) convention is used to call “positive knots” the knots with positive
braid representations (better to be called “positive braid knots”, as in [49]).
The convention here follows the now established standard, used in many
publications, as [12, 14, 37, 38, 40, 45, 66, 72, 73], to call positive knots the
(larger) class of knots with a positive diagram.

We will use the notation L = tni=1Li to indicate the Li are the compo-
nents of L (each Li is thus a knot).
We call two components of a link L split-equivalent, if there is no S2 ⊂

S3 with S2 ∩ L = ∅ which separates these two components. This is an
equivalence relation (among the components of L). A split component of
L is a sublink made up of a split-equivalence class of components of L.
A split component is trivial if it contains only one component of L, and
this component is an unknot. A split link is a link with more than one

ANNALES DE L’INSTITUT FOURIER



BRAIDING SEQUENCES IV 1439

split component. Other links are said to be non-split. We call below a link
normal if it has no trivial (that is, unknot) split components.
By L = L1 t· L2 we will designate the split union of L1 and L2. A link

is split if it is a split union of two links. Note that L1 t· L2 = L1#U2#L2,
for the 2-component unlink U2, and thus

max degl P (L1 t· L2) = max degl P (L1) + max degl P (L2) + 1,(2.12)

and

spanl P (L1 t· L2) = spanl P (L1) + spanl P (L2) + 2.(2.13)

A link diagram D is called split, or disconnected, if it can be non-trivially
separated by a simple closed curve in the plane. Otherwise we say D is non-
split, or connected. A split link is thus a link with a split diagram.
A crossing in a diagram is reducible, if it is transversely intersected by

a simple closed curve not meeting the diagram anywhere else. A diagram
is reducible if it has a reducible crossing, otherwise it is called reduced.
To avoid confusion, unless otherwise stated, in the sequel all diagrams are
assumed reduced, that is, with no nugatory crossings, and links are non-
split.
A region of a link diagram D is a connected component of the comple-

ment of the plane curve of D. A region R of a diagram is called Seifert
circle region (resp. non-Seifert circle, or hole region), if any two neighbor-
ing edges in its boundary (i.e., such sharing a crossing) are equally (resp.
oppositely) oriented (between clockwise or counterclockwise) as seen from
inside R. A diagram is called special iff all its regions are (either) Seifert
circle regions or hole regions.
It is an easy combinatorial observation that for a connected diagram

two of the properties alternating, positive and special imply the third. A
diagram with these three properties is called special alternating. See, e.g.,
[35, 36]. A special alternating link is a link having a special alternating
diagram. It can be described also (like in the introduction) as a link which
is simultaneously positive and alternating. By definition such a link has a
positive diagram, and an alternating diagram. That it has a diagram which
enjoys simultaneously both properties was proved in [38, 54].
As in [37], every diagram decomposes under (diagrammatic, or planar)

Murasugi sum, or ∗-product, into special diagrams, which may further
decompose under connected sum. These components are called Murasugi
atoms in [43]. A diagram is said to be semihomogeneous in [56] if all its
Murasugi atoms are positive or negative. A link is semihomogeneous if it
has such a diagram.

TOME 70 (2020), FASCICULE 4



1440 Alexander STOIMENOW

Morton [34] has shown that for every diagram

max degm P (D) 6 1− χ(D).

Murasugi–Przytycki [37] prove a multiplicativity of the maximal possible
m-term in P

P̃ (D) = [P (D)]m1−χ(D)(2.14)

of P (D) under diagrammatic Murasugi sum:

P̃ (D1 ∗D2) = P̃ (D1) · P̃ (D2).(2.15)

This result will be of crucial importance later. Note also that because
of (2.7), we have a corresponding multilicativity property of ∇1−χ, too
(which had been known before from Murasugi’s work more generally for
topological Murasugi sum).
The braid index b(L) of a link L is defined as the minimal number of

strings of a braid whose closure is L; see, e.g., [34]. One main tool in es-
timating (and determining) the braid index is the inequality of Morton–
Williams–Franks (MWF) [17, 34],

(2.16) 2b(L)− 2 > spanl P (L).

2.4. Genera

In the sequel we denote by g(D) the genus of a diagram D, this being
the genus of the surface coming from the Seifert algorithm applied on this
diagram. More conveniently, if D is a link diagram, we use instead of g(D)
the notation χ(D) for the Euler characteristic of the Seifert surface given
by the Seifert algorithm.
By g(L) we will denote the genus and χ(L) the Euler characteristic of a

link L, which are the minimal genus resp. maximal Euler characteristic of
an orientable spanning (i.e., Seifert) surface for L. By gc(L) we denote the
canonical genus of L, which is the minimal genus g(D) of some diagram
D of L. Similarly, χc(L), the canonical Euler characteristic of L, is the
maximal χ(D) for all diagrams D of a link L.

Theorem 2.2 (see [12]). — The Seifert algorithm applied on a positive
diagram gives a minimal genus surface.

ANNALES DE L’INSTITUT FOURIER



BRAIDING SEQUENCES IV 1441

Thus the genus g(L) of a positive link L coincides with the genus g(D)
of a positive diagram D of L, given by

(2.17) g(D) = c(D)− s(D) + 2− n(D)
2 ,

with c(D), s(D) and n(D) = n(L) being the number of crossings, Seifert
circles and components of D, resp. The preceding theorem implies that for
positive links g = gc.

We recall two major ways of estimating genera of arbitrary knots from
below. One comes from the Alexander/Conway polynomial. It is well-known
that for split links ∇ = 0, and (as partly stated already in Section 2.2.4)
for a non-split link L, the coefficient ∇i(L) is non-zero only if n(L)− 1 6
i 6 1− χ(L), and i− n(L) is odd. The range of i means that (for ∇ 6= 0)

(2.18) n(L)− 1 6 min degz∇(L) 6 max degz∇(L) 6 1− χ(L).

For many (non-split) links, including positive and alternating ones, the
rightmost inequality is exact, i.e., an equality. (In fact, this is the way to
prove Theorem 2.2, which also holds for alternating links.) Note that for
knotsK, with 2g(K) = 1−χ(K), this inequality can be restated using (2.7)
in the better-known form

max deg ∆(K) 6 g(K).

Again, equality holds for positive (and alternating) knots K.
For positive links, the left inequality in (2.18) is also exact, as follows from

the expression of [∇(L)]n−1 in terms of linking numbers (see Section 4.2).
This is also true for an arbitrary knot K, where the constant term of ∇
is 1.
Note also that (2.18) implies 2g(L) > span∇(L), and equality occurs iff

the leftmost and rightmost inequalities in (2.18) are both exact (as they
are for positive links L).
The other way of estimating genera comes from Bennequin’s Inequa-

lity [5, Theorem 3], and its subsequent improvements.
We define the Bennequin number r(D) of a diagram D of a link L to be

(2.19) r(D) := 1
2
(
w(D)− s(D) + 1

)
.

Then it is known (see [20, 45]) that

(2.20) 1− χ(L) > 2r(D),

which is called Bennequin inequality (and (1.3) is a “contactification”
of this).

TOME 70 (2020), FASCICULE 4



1442 Alexander STOIMENOW

A consequence is the following. Let D be an s-almost positive diagram
of a knot K. By comparison of (2.17) (with n(D) = 1) and (2.19), we have
then

(2.21) r(D) = g(D)− s.

Bennequin’s inequality (2.20) becomes

(2.22) g(D)− s = r(D) 6 g(K) 6 gc(K) 6 g(D).

In particular, for positive diagrams (s = 0), all inequalities become equali-
ties. This is one other way to Theorem 2.2.

2.5. Gauß sum invariants

We recall briefly the definition of Gauß sum invariants. They are intro-
duced by Fiedler and Polyak–Viro, and give formulas for Vassiliev invari-
ants [3]. We give a summary which is similar to the discussion in [51].

Definition 2.3 (see, e.g., [41]). — A Gauß diagram of a knot diagram is
an oriented circle with arrows connecting points on it mapped to a crossing
and oriented from the preimage of the undercrossing (underpass) to the
preimage of the overcrossing (overpass).

We will call the two arrow ends also hook and tail.

Example 2.4. — As an example, Figure 2.1 shows the knot 62 in its com-
monly known (alternating) diagram and the corresponding Gauß diagram.

12

3

4

5

6

1

2

3

4

5

6

Figure 2.1. The standard diagram of the knot 62 and its Gauß diagram.
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The simplest (non-trivial) Vassiliev knot invariant is the Casson invariant
v2 = ∇2, with the alternative expression −6v2 = V ′′(1). For it Polyak–
Viro [41, 42] gave the simple Gauß sum formula

(2.23) v2 = = 1
2

 +

 .

Here the point on the circle corresponds to a point on the knot diagram,
to be placed arbitrarily except on a crossing. (The expression does not
alter with the position of the basepoint; we will hence have, and need, the
freedom to place it conveniently.)
Other formulas were given by Polyak–Viro, and also Fiedler, for the

degree–3–Vassiliev invariant v3. To make precise which variation of the
degree–3–Vassiliev invariant we mean, we have

v3 = − 1
12V

′′(1)− 1
36V

(3)(1).

Fiedler’s formula for v3 [15, 16] reads(1)

(2.24) 4v3 =
∑
(3,3)

wpwqwr +
∑

(4,2)0

wpwqwr + 1
2

∑
p, q linked

(wp + wq),

where the configurations are

(2.25)

(3, 3) (4, 2)0 p, q linked
Here chords depict arrows which may point in both directions and wp

denotes the writhe of the crossing p. The summand for each configuration
is called weight.
Definition 2.5. — We call two crossings p, q in a knot diagram D

linked, and write p∩q, if, passing their crossingpoints along the orientation
of D, we have the cyclic order pqpq (i.e., their arrows in the Gauß diagram
intersect). Otherwise, if the cyclic order is ppqq (and the arrows do not
intersect), we call p and q unlinked and write p 6∩ q.
If two crossings p and q are linked, call distinguished the crossing whose

over-pass (arrow head in the Gauß diagram) is followed in orientation
direction (counterclockwise orientation of the circle in the Gauß diagram)
by the under-pass (arrow tail) of the other crossing. (In the third diagram
of (2.25) it is the arrow going from lower right to upper left.)
(1)Note the Factor 4 by which (2.24) differs from the definition in [51].
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2.6. Graphs

A graph G will have for us possibly multiple edges (edges connecting the
same two vertices), but usually no loop edges (edges connecting one and
the same vertex). By V (G) we will denote the set of vertices of G, and by
E(G) the set of edges of G (each multiple edge counting as a set of single
edges); v(G) and e(G) will be the number of vertices and edges of G (thus
counted), respectively. For v ∈ V (G), we write val(v) for the valence of v
in G.
An n-cut of G is a set T ⊂ E(G) with |T | = n such that removing

(without their endpoints) all edges in T from G gives a disconnected graph.
We say that G is n-connected if it has no n′-cut for n′ < n.

For a graph, let the operation −→ (adding a vertex
of valence 2) be called bisecting and its inverse (removing such a vertex)
unbisecting (of an edge). We call a graph G a bisection of a graph G′

with no valence–2–vertices, if G is obtained from G′ by a sequence of edge
bisections.
We call a bisection G reduced, if it has no adjacent vertices of valence

2 (that is, each edge of G′ is bisected at most once). Contrarily, if G is a
graph, its unbisected graph G′ is the graph with no valence–2–vertices of
which G is a bisection.
Now to each link diagram D we associate its Seifert graph G = G(D),

which is a planar bipartite graph. It consists of a vertex for each Seifert
circle in D and an edge for each crossing, connecting two Seifert circles. We
will for convenience sometimes identify crossings/Seifert circles of D with
edges/vertices of G. At least for special alternating diagrams D it is true
that G(D) determines D.
In [65] is was established that D is a maximal generator if and only if

G = G(D) is a reduced bisection of a planar 3-connected trivalent graph
G′. (The confinement to knots, which were the main focus in [65], is not
essential for this reasoning.)

2.7. An addendum to [58]

Definition 2.1 is needed (besides in Section 4 below) also to clarify argu-
ments in the previous part of the work [58, Section 5], but was erronously
omitted there. I apologize for this confusion.
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3. Braiding sequences and genus generators

Since all work here builds on braiding sequences and generators, the
preliminary account we need here is a little longer, and we devote to it
a separate section. Cromwell offers in his recent book [13, Section 5.3] an
introductory exposition on the subject.

3.1. Generators and generating diagrams

We start by recalling the classical flype.

Definition 3.1. — A flype is a move on a diagram shown in Figure 3.1.
We say that a crossing p admits a flype if it can be represented as the
distinguished crossing in the diagrams in the figure, and both tangles have
at least one crossing.

p
PQ −→

p
P

Q

Figure 3.1. A flype near the crossing p

Note that when two diagrams differ by a flype, there is a natural bijection
between either’s crossings: p changes position, and the crossings in P match
on either side, as do those in Q.

A reverse clasp is, up to crossing changes, a tangle like , and

a parallel clasp . We call a clasp trivial if both its crossings have
opposite sign. Such a clasp can be eliminated by a Reidemeister II move.
We call the switch of a crossing in a non-trivial clasp, followed by the
Reidemeister II move, resolving the clasp.
Now let us recall, from [47, 57], some basic facts concerning knot genera-

tors of given genus. We start by defining ∼ and ∼∗ -equivalence of crossings.
There are two alternative forms of these definitions, and we choose here
the one that closely leans on the terminology of Gauß diagrams (see Sec-
tion 2.5). We will also set up some notations and conventions used below.
The situation for links is discussed only briefly here, and in much more
detail in [62].
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Definition 3.2. — Let D be a knot diagram, and p and q be crossings.
(i) We call p and q twist equivalent, if (with the notation in Defini-

tion 2.5) for every r 6= p, q we have r ∩ p if and only if r ∩ q.
(ii) We call p and q ∼-equivalent and write p ∼ q if p and q are twist

equivalent and p 6∩ q.
(iii) Similarly p and q are called ∼∗ -equivalent, p ∼∗ q, if p and q are twist

equivalent and p ∩ q.

A minor argument will convince one that these are indeed equivalence
relations. There is an alternative way of formulating them (which general-
izes them to link diagrams): p ∼∗ q if and only if p and q can be made to
form a parallel clasp after flypes. Similarly p ∼ q for reverse clasp.

Definition 3.3. — A ∼-equivalence class consisting of one crossing is
called trivial, a class of more than one crossing non-trivial. A ∼-equivalence
class is reduced if it has at most two crossings; otherwise it is non-reduced.
A ∼-equivalence class is even or odd depending on the parity of its cross-
ings, and positive or negative depending on their (skein) sign (if the same
for all its crossings). For the diagram D, let t(D) be the number of its
∼-equivalence classes. A diagram is called generating if all its ∼-equivalence
classes are reduced.

The use of generating diagrams will be clarified in Section 3.3. We restate
here the following result from [62], which we will need.

Theorem 3.4 ([62]). — In a connected link diagram D of canonical
Euler characteristic χ(D) 6 0 there are at most

(3.1) t(D) 6 dχ(D) :=
{
−3χ(D) if χ(D) < 0
1 if χ(D) = 0

∼-equivalence classes of crossings. If D is a generating diagram and has
n(D) link components, then

(3.2) c(D) 6


4 if χ(D) = −1 and n(D) = 1
2 if χ(D) = 0
−6χ(D) if χ(D) < 0 and n(D) = 2− χ(D)
−5χ(D) + n(D)− 3 otherwise.

We call a generator D maximal, if (3.1) is an equality for D. It is known,
essentially from [65] (in the case of knots, but for links the arguments
are the same), that maximal generators are special alternating. We will
discuss these generators in more detail in Section 5.4. See also the remark
in Section 2.6.
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3.2. Braiding sequences

Let D be an oriented link diagram. For each crossing in D, there is a
local move, which are call t̄′2, and is shown on (3.3). (Note that the strand
orientation at the crossing is essential.) A t̄′2 move will sometimes be called
a reverse or antiparallel twist.

(3.3) −→

Let D be an oriented link diagram, with crossings c1, . . . , cn. We explain
now, following [46], how to define a family of diagrams D = B(D) called
the braiding sequence (or series) associated to D. Braiding sequences will
be of importance to us for reasons we will shortly explain.
We define the braiding sequence D = B(D) as follows. Consider the

family of diagrams

(3.4) D = {D(x1, . . . , xn) : x1, . . . , xn ∈ Z odd} .

Herein the diagram D(x1, . . . , xn) is obtained from D by replacing the
crossing ci by a tangle consisting of |xi| reverse half-twists of sign sgn(xi):

(3.5)
xi = −3 xi = −1 xi = 1 xi = 3

.

In terms of t̄′2 twists, one can describe the above tangles as follows: we keep
or switch the crossing ci so that is has sign sgn(xi), and apply

(3.6) x̃i := (|xi| − 1)/2

times a t̄′2 twist on it. Thus B(D) does not in fact depend on how crossings in
D are switched. In particular, we can assume w.l.o.g. that D is alternating.
Note that, so far, some parameters xi in (3.4) may be redundant, in the

following sense. If two crossings ci and cj are ∼-equivalent, then t̄′2 twists
on them give the same diagram up to flypes. Thus the two tangles in (3.5)
parametrized by xi and xj can be combined (after flypes) into a single
tangle, set to be parametrized by xi + xj . This allows one then to choose
n = t(D) in (3.4), when lifting the constraint that xi be odd.

3.3. Decomposition of the set of diagrams of given genus

After this simplification, we can assume a braiding sequence B(D) for a
generating diagramD parametrized by t(D) numbers xi (cf. Definition 3.3).
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Now xi is odd if the ∼-equivalence class of crossing ci is trivial, and xi 6= 0
is even otherwise. (For xi = 0 we have a trivial clasp, up to flypes.)

A reverse twist does not change the canonical genus: when D′ is obtained
fromD by a t̄′2 twist, then g(D′) = g(D). Thus g(D′) = g(D) is constant for
allD′ ∈ B(D). As it turns out, some kind of converse of this property is true
for fixed g(D), up to finite indeterminacy. Here is the precise statement.

Theorem 3.5 (see [47]). — The set of knot diagrams on which the
Seifert algorithm gives a surface of given genus, regarded up to crossing
changes and flypes, decomposes into a finite number of reverse braiding
sequences Bi = B(Di). The same is true for link diagrams of fixed number
of components.

The Theorem 3.5 was proved in [47] for knots, but it had been briefly
previously observed also by Brittenham (unpublished). His argument could
be applied to links, too, although they did not receive any treatment. At the
latest, the situation for links should have been sufficiently clarified in [62]
with Theorem 3.4, stated above.

The investigation of how to choose a minimal set {Di} led to the already
introduced notion of a (genus) generator. We can assume that Di are alter-
nating. Moreover, it can be seen that whenever D′ is obtained from D by t̄′2
twists (and crossing changes), then, after the explained exclusion of trivial
clasp diagrams, B(D′) ⊂ B(D). Thus we consider alternating diagrams D
which cannot be obtained from diagrams D′ of smaller crossing number by
t̄′2 twists and flypes. Such diagrams D are the generating diagrams of Defi-
nition 3.3. They are those occurring asDi in Theorem 3.5. Their underlying
(alternating) knots Ki are the generators of genus g = g(Di). (Theorem 2.2
holds analogously for alternating knots, and thus indeed g(Ki) = g(Di).)
Sometimes it is better to work with the positive generating diagrams, i.e.,
the positifications (recall Section 2.3) of Di.

There are systematical ways to determine the generator sets {Ki} for
small g. The case g = 1 was done by hand in [47] (and observed indepen-
dently in [45]), and g = 2, 3 in [57], already using substantial computation.
For g = 4, the limit of the feasible, an account is given separately [62]. The
generator sets quickly become highly difficult, and each new set required
an increasingly efficient algorithm to determine.

4. Coefficients of the Conway polynomial

We prove some properties of the coefficients ∇k = [∇]zk (cf. (2.9)) of the
Conway polynomial on positive links. (Here it is essential to consider several
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components.) Some of them are needed in the following applications, but
deserve interest in their own right.

4.1. Lower bounds

The Conway polynomial of a positive braid knot was studied by van
Buskirk [9], who obtained inequalities for the coefficients of ∇. Later Crom-
well [12, Corollary 2.1] showed that for a positive or almost positive link ∇
is positive (that is, all its coefficients are non-negative; recall Definition 2.1).
Our first improvement of this result is as follows.

Proposition 4.1. — If L is a non-split positive n-component link, then
for n− 1 < k 6 1− χ(L) and n− k odd,

(4.1) [∇(L)]zk >
3− χ− k

2 .

Also [∇(L)]zn−1 > 0. (In particular, ∇(L) is 2-strictly positive.)

Remark 4.2. — Keep in mind the degrees of ∇ stated in (2.18). (The
leftmost and rightmost inequalities are equalities here.) We noted that for
knots ∇0 = 1, and for links ∇n−1 is expressible by linking numbers. Thus
one cannot expect increasing growth. We study the case k = n − 1 in the
next subsection.

For the next arguments a dichotomy of crossings must be set up.

Definition 4.3. — Call a crossing in a link diagram mixed if it involves
strands of different components, and pure otherwise.

Proof of Proposition 4.1. — Consider first (4.1). We use induction on
the number of crossings of a positive diagram D of L. If n > 1, we apply
the Conway skein relation (2.8) at a mixed crossing of D (which exists
since D is not split). Then D0 has n− 1 components, and (4.1) is inherited
from the ∇(D0) term in (2.8) (and the property of Cromwell that ∇(D−)
is positive). In case n = 1, i.e., L is a knot, we apply (2.8) at some non-
nugatory crossing of D. Then the ∇(D0) term proves (4.1) except if k = 2.
In that case the inequality we require reads ∇2(L) > g(L). This inequality
was proved in [51].
The claim

[∇(L)]zn−1 > 0
follows with the same argument, only using∇0(L) = 1 for a knot L (instead
of ∇2(L) > g(L)). �
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Lemma 4.4. — Let D be a positive n-component link diagram. Then
on the series it generates by t̄′2 moves any coefficient ∇k with n− 1 < k 6
1 − χ(D) and k − n odd grows unboundedly. (That is, ∇k(Di) → ∞ on
any infinite sequence of diagrams (Di) in this series.) The same property
is enjoyed by ∇n−1 if all crossings of D are mixed.

Proof. — Let D(x1, . . . , xt) be a positive diagram in the series of a pos-
itive generating diagram D, as defined in (3.5). Thus each of the t = t(D)
classes of D is switched to be positive (recall Definition 3.3), and at some
crossing of class i of parity x̂i ∈ {1, 2}

x̃i = xi − x̂i
2

t̄′2 moves (3.3) are applied (compare with (3.6)).
We use the Conway skein relation (2.8) for

D+ = D(x1, . . . , xt) and D− = D(x1, . . . , xi−1, xi − 2, xi+1, . . . , xt).

For D0 we apply Proposition 4.1 (in fact, we use here only that the right
hand-side of (4.1) is positive). We obtain then for

∇k(x1, . . . , xt) := [∇(D(x1, . . . , xt))]zk

and for any 1 6 i 6 t with xi > 1 that

(4.2) ∇k(x1, . . . , xt) > ∇k(x1, . . . , xi−1, xi − 2, xi+1, . . . , xt) + 1.

Note that for the inequality (4.2) we need that either n− 1 < k or that the
diagram obtained by smoothing the twisted crossing has one component less
thanD, i.e., the crossing we twist at is mixed. By applying (4.2) inductively,
we obtain

(4.3) ∇k(x1, . . . , xt) > ∇k(x̂1, . . . , x̂t) +
t∑
i=1

x̃i = [∇(D)]zk +
t∑
i=1

x̃i.

The claim follows. �

Theorem 4.5. — If L is a positive non-split link with a positive reduced
diagram D of at least 5 crossings, and 1+n(L) 6 j 6 1−χ(L) with j−n(L)
odd, then

(4.4) ∇j(L) > 9
5 + c(D)− n(D)

10 − j

2 .

Proof. — The claimed inequality comes from balancing two estimates.
First we have (4.1), which we will come back later to.
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To produce a counterpart to (4.1), we use (4.2) (under change of notation
here). It says that if a positive diagram D is obtained from a positive
diagram D′ by a (positive) t̄′2 move, then

(4.5) ∇j(D)−∇j(D′) >
c(D)− c(D′)

2 .

The r.h.s. is equal to 1 here, but we wrote the inequality in this form,
because we see that then the argument can be iterated. Thus (4.5) remains
true when D is obtained from D′ by a sequence of t̄′2 moves, and there is
no problem in also adding flypes.
Then we can set D′ = D̃ in (4.5) to be the positive generating diagram

in whose series D lies. Thus we have

(4.6) ∇j(D) > c(D)− c(D̃)
2 +∇j(D̃).

Next, we use the estimate in Theorem 3.4, with the notice that χ(D̃) =
χ(D) and n(D̃) = n(D):

(4.7) c(D̃) 6 −5χ(D) + n(D)− 3.

To apply this main case, let us argue how to get disposed of the three other
(exceptional) cases.
If n = −χ = 1, the case D̃ is the positivized figure-8 knot diagram, we

need to consider only j = 2, and the inequality (4.4) to justify becomes

∇2(D) > c(D) + 7
10 .

This is true for c(D) > 5, for example, from the inequality

(4.8) ∇2(D) > c(D)
4 ,

proved for knots in [51]. (The conclusion (4.4) is indeed false when
c(D) = 4, since then K is the trefoil, and ∇2 = 1.)
The exception to (4.7) for χ = 0, i.e., D̃ being the Hopf link diagram, has

genus 0, as has the third case n = 2−χ. For genus 0, there is no applicable
j in (4.4), i.e., nothing is claimed. Thus we can assume (4.7).

After applying (4.7) to −c(D̃) in (4.6), we can apply (4.1) to ∇j(D̃) with
χ(D̃) = χ(D) = χ(L). Then we have

∇j(D) > c(D)
2 + 5χ(D)− n(D) + 3

2 + 3− χ(D)− j
2

= c(D) + 6− n(D)− j + 4χ(D)
2 .(4.9)

TOME 70 (2020), FASCICULE 4



1452 Alexander STOIMENOW

Now we have two alternative (lower) estimates for ∇j(D), given by (4.1)
(applied directly on D) and (4.9), in which χ appears with opposite sign.
The weakest choice over varying χ for given c(D), n(D), and j appears
when either estimates are equal. The result in (4.4) follows by evaluating
these two estimates for the value of χ equalizing them. �

The linear lower bound of (4.4) was motivated by, and aims at, extend-
ing the inequality (4.8) of [51] for knots. One can argue that, up to the
improvement of the constant 1

10 , a better than linear lower bound is not
possible for general positive diagrams.
On the opposite side, we observe that, by the result in [37] (see the

remark below (2.15)), the inequality (4.4) for n − 1 < j = 1 − χ can be
extended to semihomogoneous diagrams.

Corollary 4.6. — If L is a semihomogeneous non-split link of positive
genus with a semihomogeneous reduced diagram D of at least 5 crossings,
then ∣∣∇1−χ(L)

∣∣ > 13 + c(D)− n(D) + 5χ(D)
10 .

4.2. Linking numbers

Now we complete the discussion of inequalities of the sort of Theorem 4.5,
with the remaining case j = n−1 in (4.4). The coefficient ∇n−1(L) is fully
determined by the linking numbers lk(Li, Lj) = lij of a the components Li
of a link L = tni=1Li from the formula of Hoste [22] and Hosokawa [21].

When all lij > 0 (as for a positive link L), one can state the formula
thus. Associate to L a graph G = G(L), the linking graph. The vertices
of G are labeled by j for the component Lj of L. If lij > 0, an edge with
multiplicity lij connects in G the vertices i and j. Then a positive link L
is non-split iff G is connected. The Hoste–Hosokawa formula claims that
then ∇n−1(L) is equal to the number of spanning trees of G.
Recall Definition 4.3. It follows from the description of ∇n−1 that a t̄′2

move will not alter this coefficient if the crossings involved in the move are
pure. Thus there is no estimate like (4.4) for j = n − 1. However, when
g(L) = 0 (the case that no j are applicable in (4.4)), all crossings in D are
mixed. (Smoothing out a pure crossing would otherwise give a diagram of
negative genus.) Then indeed (4.4) holds (for j = n − 1, when n > 2 and
c(D) > 4), as a consequence of the following better estimate.
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Proposition 4.7. — If L is a positive non-split link of genus 0 and
n > 2 components, with a positive reduced diagram D, then

(4.10) ∇n−1(L) > c(D)
2 − n(D) + 2.

Note that for such D, the number of vertices of G(L) is n, and since all
crossings in D are mixed and positive, the number of edges (multiple edges
counted by muliplicity) is c(D)/2. Thus Proposition 4.7 mainly rephrases
the below statement about (multi)graphs.

Lemma 4.8. — The number of spanning trees of a connected multigraph
G with v > 2 vertices and e edges is at least e − v + 2, and this bound is
sharp.

Proof. — Use induction on v. For v = 2 the claim is obvious. When
v > 2, consider an edge of minimal positive multiplicity

(4.11) 1 6 a 6 2e
v(v − 1) .

Then contraction of this edge, and induction on the contracted graph yields
at least

a(e− v + 3− a)
spaning trees in G. It is easy to see that this is at least e − v + 2, unless
a 6 0 (which we excluded) or a > e−v+ 3. However, the latter option also
fails, because of the right inequality in (4.11) (for e > v−1 by connectivity,
and v > 2).

To see finally that the stated bound is sharp, consider G being a (span-
ning) tree with exactly one of its edges made multiple. �

Corollary 4.9. — If L is a positive non-split n component link having
a positive reduced diagram D with c(D) > 5, then

max(∇n−1(L),∇n+1(L)) > 13 + c(D)− 6n(D)
10 .

Proof. — Combine (4.4) for j = n + 1 when g(L) > 0 with (4.10) when
g(L) = 0 (using that c > 2(n− 1), and n > 1 for g(L) = 0). �

4.3. Further conditions for the Conway polynomial

We now combine the previous inequalities with a reverse estimate in [58]
(for arbitrary links) to obtain further new conditions on the Conway poly-
nomial of positive, and in part more generally of semihomogeneous, links.
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Proposition 4.10. — The Conway polynomial of a positive non-split
link L, which is not the unknot and the trefoil, satisfies for max(n(L) −
1, 1) 6 i 6 1 − χ(L), and n(L) + 1 6 j 6 1 − χ(L) with j − n(L) odd the
inequality

(4.12) ∇i(L) 6 1
2

(
10∇j(L) + 5j + n(L)− 19

i

)
.

It will be clear from the proof that here, too, the remark above Corol-
lary 4.6 applies, and we have for a non-split semihomogeneous link L of
positive genus,∣∣∇i(L)

∣∣ 6 1
2

(
10|∇1−χ(L)(L)| − 5χ(L) + n(L)− 14

i

)
.

These inequalities are not very sharp in general, yet they display a note-
worthy consequence: all coefficients of∇ for a positive (and partly some of a
semihomogeneous) link are directly interrelated in complicated ways. Some
improvement of the constants seems possible, but not straightforward: at
least in simple cases, we will observe them below hitting the boundary of
the correct.
Proof. — We will first use the following inequality, proved in [58, Lem-

ma 4.1]. The maximal bridge length d(D) of a link diagram D is the max-
imal number of consecutive crossing overpasses (or underpasses) of any
component of D. This quantity was introduced by Kidwell [28].
If D is a link diagram of c = c(D) crossings, maximal bridge length

d = d(D), then for k > 0,

(4.13) |∇k(D)| 6 1
2

(
c− d+ 1

k

)
.

The proof uses the techniques of Kidwell and those in [50]. It is essentially
the observation that the skein Relation (2.8) for ∇ fits with the triangular
identity (and monotonicity) of binomial coefficients.
We use (4.13) to observe first for a positive diagram D that, unless all

∼-equivalence classes of D are trivial (cf. Definition 3.3), we have

(4.14) ∇i(D) 6 1
2

(
c− 1
i

)
.

(Keep in mind that ∇i(D) > 0, and ∇i(D) = 0 for i − n(D) even.) To
justify (4.14), observe first that whenever D is non-alternating (i.e., not
special alternating), d(D) > 2, and (4.14) follows directly from (4.13).
If D is alternating and has a non-trivial ∼-equivalence class, consider the

skein relation of ∇ at a crossing p in that class. We have for alternating
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D = D+, that d(D−) = 3 (unless D is a Hopf link diagram, which we can
safely ignore). Also, crossings ∼-equivalent to p become nugatory in D0,
and thus we have after reducing c(D0) 6 c(D)− 2. Again using the trian-
gular identity of binomial coefficients in (4.13) for ∇i(D−) and ∇i−1(D0)
gives (4.14).
Now, from Theorem 4.5 we obtain

(4.15) c(D) 6 10∇j(L) + 5j + n(L)− 18,

and then we can use (4.14) to deduce (4.12).
It remains to check the case that all ∼-equivalence classes ofD are trivial,

i.e., t(D) = c(D). Here, with (4.13) (and d > 1), it is still enough to have
instead of (4.15),

(4.16) c(D) 6 10∇j(L) + 5j + n(L)− 19.

To justify this, we use Theorem 3.4. If χ(D) = 0, there are no i, j

for which we claim (4.12). Otherwise, by (3.1), we have c(D) = t(D) 6
−3χ(D). Then by (4.1), we obtain

c(D) 6 −3χ(D) 6 6∇j(D) + 3j − 9.

This will fail to imply (4.16) only if

(4.17) 4∇j(D) + 2j + n(D) < 10.

Since ∇j(D) > 1 and j > 1 + n(D) > 2, we see that the only case (4.17)
holds is when n(D) = 1 (i.e., we have knots), j = 2 and ∇2 = 1. Then,
for example from (4.8), we see that the only exception occurs for L being
the trefoil. (Note, that then indeed (4.12) is false, for the only interesting
values i = j = 2.) �

Remark 4.11. — For L special alternating, a series of further inequalities
comes from a property explained in [53], namely, that all zeros of ∇ (are
real and) lie in [−4, 0]. It is known (as discussed in [53]) that coefficients
of polynomials with all zeros real are log-concave. By using ∇0 = 1 for
knots, we have then, for example, ∇ji > ∇ij for i 6 j. This relation is
not (generally) stronger than (4.12). Again for (special) alternating links,
there are further inequalities imposing some global (i.e., relating all ∇j to-
gether) constraints. These include Crowell–Murasugi’s alternation property
of the coefficients of ∆, and some inequalities found by Ozsváth–Szabó for
knots (see [62]).
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5. Link polynomial degrees

5.1. Unbounded growth of skein polynomial degrees

In this section we will combine the results of Section 4, notably Theo-
rem 4.5, with the main result in [61].

Theorem 5.1 ([61]). — All coefficients (for fixed degree in all variables)
of V , P and F are bounded (that is, admit only finitely many values) on
positive links.

While this theorem was proved in [61] mostly with focus on knots, dealing
with links requires extra arguments at this point, which are useful to be
pointed out and be taken care of.

We will use below χ(L) for the Euler characteristic and n(L) for the
number of components of a positive/negative link L. By D we will usually
denote a positive/negative reduced diagram of L. We remind that χ(L) =
χ(D). Moreover, when L is normal,

(5.1) c(L) > c(D) + χ(L),

as proved in [60].

Proposition 5.2. — Let (Li) be a sequence of (pairwise distinct) pos-
itive non-split links. Let k ∈ N be fixed so that k − n(Li) is odd for all i,
and one of the following conditions holds: either

(5.2) n(Li)− 1 < k 6 1− χ(Li),

or

(5.3) k+1 = n(Li) ∈ {1, 2−χ(Li)} (i.e., Li are knots, or links of genus 0).

Then as i→∞,

(5.4) max degl[P (Li)]mk −→∞.

Proof. — By a standard subsequence argument, it suffices to assume that
either χ(Li) are bounded below, or χ(Li) → −∞. In latter case we have
[P (Li)]mk 6= 0 because of (2.7) and ∇k > 0 in Proposition 4.1. Then

max degl[P (Li)]mk > min degl[P (Li)]mk > min degl P (Li) = 1− χ(Li),

and the assertion follows.
Thus assume χ(Li) are bounded below. In case of (5.2), use Theorem 5.1

for the HOMFLY–PT polynomial and (4.4). If (5.3), for genus 0 links
use (4.10). For knots and k = 0 use that one can express v2 = ∇2 by
different means from [P ]m0 . �

ANNALES DE L’INSTITUT FOURIER



BRAIDING SEQUENCES IV 1457

Remark 5.3. — For knots, using the relation between v2 and [P ]mk for
k = 0, 2, and the Gauß diagram sum expression for v2, we showed in [52,
Corollary 5.5 and its proof] the growth result (5.4) more generally for almost
positive knots. It would be interesting to extend the above argument to
almost positive knots for any (applicable) k.

Corollary 5.4. — Let (Li) be a sequence of (pairwise distinct and
possibly split) positive links. Then max degl P (Li)→∞.

Proof. — Proposition 5.2 clearly shows this if Li are non-split. For split
Li, use (2.12). �

The following corollary answers [54, Question 5.4] in the expected posi-
tive way and extends Theorem 5.2 therein.

Corollary 5.5. — Only finitely many s-almost positive normal links
are negative.

Proof. — One easily observes that χ(D) = χ(L) < 0 for any positive
diagram D of a normal link L, so that min degl P (L) = 1−χ(L) > 0. Then
for s-almost positive link diagrams D, we have min degl P (D) > 1 − 2s
by [34]. Proposition 5.4 implies, however, that min degl P → −∞ on any
infinite sequence of negative links. �

The easy implication to Corollary 5.5 is the main reason for formulating
Corollary 5.4. However, by using a more careful argument, we can consid-
erably sharen this assertion.

5.2. Estimates of skein polynomial degrees

Assume first L is non-split, and D is a positive (connected) reduced
diagram. Consider the leading m-coefficient (2.14) P̃ (D) = [P (L)]m1−χ(L)

of P (D). Then

(5.5) min degl P̃ (D) = 1− χ(D) = 1− χ(L),

because max degm P (L) = min degl P (L) = 1− χ(L) and the identity [31,
Proposition 21]. (H. Morton remarked this to me.)
We claim the following inequality, which then easily leads to Theo-

rems 1.1 and 1.4.

Theorem 5.6. — If D has no unknot split components and is semiho-
mogeneous,

(5.6) spanl P (D) > c(D)− 1 + 4χ(D).
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Proof. — By (2.13) (when Hopf link split components are involved) and
its analogue for P̃ (otherwise), it is enough to see the inequality

(5.7) spanl P̃ (D) > c(D)− 1 + 4χ(D),

for a connected (non-trivial and non-Hopf link) diagramD, where χ(D)60.
Thus assume D is connected. The special case χ = 0 can be handled

(ad hoc). Then L = T 2,p is a reverse (2, p)-torus link (p even), and D is
its (unique) minimal (p) crossing diagram. The skein polynomial of such a
link is well-known, and

(5.8) spanl P̃ (T 2,p) = p− 2 = c(D)− 2.

(For p = 2, use spanl P (T 2,2) = 2.)
Thus we assume χ(D) < 0. Let us argue next why it is enough to

prove (5.7) for positive D, rather than semihomogeneous. This is essen-
tially by the multiplicativity of P̃ under (diagrammatic) Murasugi sum
in (2.15).
Let

(5.9) D = D1 ∗ · · · ∗Dn ∗D′1 ∗D′2 ∗ · · · ∗D′n′

be the Murasugi atom decomposition of a semihomogeneous diagram D

of a link L into positive atoms Di and negative ones D′j . Let D̂ be the
positification of D and L̂ its link. Then

D̂ = D1 ∗ · · · ∗Dn∗!D′1∗!D′2 ∗ · · · ∗!D′n′ .

From the mirroring property

P (D′j)(l,m) = P (!D′j)(l−1,m)

of P we have

(5.10) spanl P̃ (D′j)(l) = spanl P̃ (D′j)(l−1) = spanl P̃ (!D′j)(l).

Now because of (2.15), the additivity of spanl under multiplication,
and (5.10), we have spanl P̃ (D) = spanl P̃ (D̂). Moreover, χ(L) = χ(D) =
χ(D̂) = χ(L̂) and c(D) = c(D̂).
Thus we will assume that D is (connected and) positive.
In the following we will be looking at reverse clasps C in D. Note that in

the Seifert circle picture of D, a C gives a (valence-two) Seifert circle. We
call the two other Seifert circles near the crossings of C external. We call
C good if its external Seifert circles are distinct, and bad otherwise (i.e.,
when there is actually only one external Seifert circle).
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Lemma 5.7. — Let D be a positive diagram having a good reverse clasp
C and letD′ be the positive diagram obtained from D by resolving C. Then
χ(D′) = χ(D), and if D is a generating diagram, so is D′.

Proof. — We have c(D′) = c(D) − 2, and because C is good, s(D′) =
s(D) − 2. It is easy to see that if resolving C makes in D′ crossings ∼-
equivalent which were not ∼-equivalent in D, then C must be bad. See [57,
Proof of Lemma 2.1, and in particular Figure 4]. �

Lemma 5.8. — Under the same assumptions as Lemma 5.7, we have

(5.11) max degl P̃ (D) > max degl P̃ (D′) + 2.

Proof. — One can apply the skein Relation (2.2) for P at a crossing in
C (with D+ = D and D− = D′). Then it is enough to see that the leading
l-term of −l2P̃ (D′) is not cancelled from the one of −lP̃ (D0). In fact, no
coefficients of these two polynomials cancel at all, and this follows from
a positivity property of P̃ , which we crucially use here. In was observed
in [12], that the existence of a positive skein resolution tree for a posi-
tive (connected) diagram D̃ implies that P̃ (D̃), after a suitable change of
variables (to v, z, as used there), has only positive coefficients. �

Note in particular that clasps created by a t̄′2 move are always good. The
consequence of the last lemma will be conveniently rewritten thus. Let

λ(D) = c(D)− spanl P̃ (D).

Corollary 5.9. — If D ∈ B(D̃) for a generating diagram D̃, then
λ(D) 6 λ(D̃).

This means that for (5.7) it is enough to prove

(5.12) λ(D) 6 1− 4χ(D)

for a generating diagram D. We assume thus below D is generating.
Assume w.l.o.g. that D is flyped so that ∼-equivalent crossings are twist

equivalent (i.e., we have as many reverse clasps as possible).

Lemma 5.10. — At most 1− χ(D) reverse clasps in D are bad.

Proof. — Each bad reverse clasp corresponds to a (diagrammatic) Hopf
plumbing, so we need just to count the Euler characteristic. �

A combination of Lemmas 5.7, 5.8 and 5.10 now easily leads to the fol-
lowing. Let t1 = t1(D) resp. t2 = t2(D) be the number of trivial resp.
non-trivial ∼-equivalence classes of D.
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Lemma 5.11.

(5.13) spanl P̃ (D) > 2(t2(D)− 1 + χ(D))

Proof. — Apply (5.11) repeatedly as long as you find (and resolve) any
good reverse clasp. This must occur at least t2(D) − 1 + χ(D) times by
Lemma 5.10, while Lemma 5.7 ascetrains that during the iteration nothing
goes wrong. �

From here we easily get to (5.6).

(5.6) spanl P (D) > c(D)− 1 + 4χ(D)

We have, for χ = χ(D) < 0,

(5.14) t1 + t2 = t(D) 6 −3χ

from (3.1). For
t2 > 1− χ,

implying

(5.15) t1 6 −2χ− 1,

we use (5.13). Thus

λ(D) = c(D)− spanl P̃ (D) = t1 + 2t2− spanl P̃ (D) 6 t1 + 2− 2χ 6 1− 4χ

(in the last inequality, we used (5.15)). If t2 < 1−χ, then also using (5.14),

λ(D) 6 c(D) = t1 + 2t2 6 −3χ+ t2 < 1− 4χ.

This shows (5.12), and hence (5.7), and proves Theorem 5.6. �

5.3. Braid index and Thurston–Bennequin number

A further use of P is to estimate the braid index b(L) of a link L (see
Section 2.3). Birman and Menasco proved in [6] that there are only finitely
many links L of given χ(L) and b(L). We can make this statement more
explicit for semihomogeneous links L. (See [52, end of Section 5] for a
version for almost positive knots.)
Proof of Theorem 1.1. — Apply the braid index inequality (2.16) of

Morton–Williams–Franks [17, 34],

2b(L)− 2 > spanl P (D) > spanl P̃ (D), to (5.6). �
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The estimate of the l-span now also yields the other major application.
Recall that the Thurston–Bennequin number tb(K) of a Legendrian knot

K in the standard contact space (R3(x, y, z), dx+y dz) is the linking num-
ber of K with K′, where K′ is obtained from K by a push-forward along a
vector field transverse to the (hyperplanes of the) contact structure. The
Maslov (rotation) index µ(K) of K is the degree of the map

t ∈ S1 7→
pr ∂K∂t (t)∣∣pr ∂K∂t (t)

∣∣ ∈ S1,

where pr : R3 → R2 ' C is the projection (x, y, z) 7→ (y, z). For links the
invariants are obtained by summing over all components.
Our general statement in [55], which extended the result of [24], implied

in particular that tb(K)+|µ(K)| for a Legendrian embedding K of a negative
knot K becomes arbitrarily small when the crossing number of K increases.
We obtain now the more explicit estimate (also for links) stated above.
Proof of Theorem 1.4. — We use the inequalities of [19, Section 2, The-

orem 2.4] for tb and µ coming from min degl P . We have, with !L a positive
link,

(5.16) tb(L) + |µ(L)| 6 min degl P (L)− 1 = −max degl P (!L)− 1.

Thus it is enough to prove for a positive link L with a positive reduced
diagram D that

(5.17) max degl P̃ (D) > 3 + c(D)
4 .

(For L being the Hopf link use max degl P instead.)
By (2.12) and its analogue for P̃ we see that (5.17) is preserved under

split unions (also with unknots and Hopf links), as long as D is not just a
single unknot (0-crossing) diagram.
Thus we prove D again for a connected (and non-trivial) diagram D.

We explained how to deal with the Hopf link, and for the other links of
χ = χ(D) = 0 the situation is easy, so let again χ < 0. We have from (5.5)
and (5.6),

max degl P̃ (D) = min degl P̃ (D) + spanl P̃ (D) > c(D) + 3χ(D).

A comparison between this and (5.5) itself gives the estimate

max degl P̃ (D) > max(c(D) + 3χ(D), 1− χ(D)).

Its alternatives are balanced for χ(D) = 1−c(D)
4 , where the stated value on

the right of (5.17) occurs. �
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For a general semihomogeneous link one has a negativity result when
choosing between mirror images.

Proposition 5.12. — If L is normal and semihomogeneous with a
semihomogeneous diagram D, and L′ is a Legendrian embedding of !L,
then

min(tb(L) + |µ(L)|, tb(L′) + |µ(L′)|) 6 −1− c(D)
2 − 2χ(L).

Proof. — This follows from (5.16) and (5.6). �

Now we turn to Theorem 1.3. Apart from addressing semihomogeneous
insead of homogeneous links, which is only a minor technicality, note at
least four more impactful advantages of this theorem in comparison
to [55]: it

(a) gives an explicit simple estimate,
(b) does not restrict (fix) χ,
(c) does not require the choice of mirror images, and
(d) applies to links, too.

Proof of Theorem 1.3. — It is easy to see, by additivity under split
union, that it is enough to prove (1.4) for a connected diagram D.
Let again D̂ be the positification of D. By using (5.9) and (5.10), and

applying (5.5) to D̂ and D′j , we have

min degl P̃ (D)= min degl P̃ (D̂)−
n′∑
j=1

2 min degl P̃ (!D′j) + spanl P̃ (D′j)

= 1− χ(D)−
n′∑
j=1

2− 2χ(D′j) + spanl P̃ (D′j).

Next, we use (5.7) on D′j with the remark that for c(D′j) = 2, the inequality
holds with r.h.s. decreased by 1. Thus

1− χ(D)−min degl P̃ (D) >
n′∑
j=1

max(2− 2χ(D′j), c(D′j) + 2χ(D′j) + δj)
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with δj being 1 for c(D′j) > 2 and 0 for c(D′j) = 2. The maximum in the
sum is at least c(D′j)+2+δj

2 . Then from (5.16)

−χ(L)− tb(L)− |µ(L)| > 1− χ(D)−min degl P̃ (D)

>
n′∑
j=1

c(D′j) + 2 + δj

2

= c−(D)
2 + 1

2

n′∑
j=1

(2 + δj) >
c−(D) + 3

2

(the last inequality with the remark about n′ = 1 and c(D′1) = 2). �

Let us remark that there is a somewhat better estimate than (1.1) for
an alternating diagram D, which was observed in [63] along a different
line of reasoning, using the Jones polynomial. (It is used there to classify
alternating knots of braid index 4.)

Theorem 5.13 ([63]). — If D is a reduced alternating diagram, then

(5.18) spanl P (D) > s(D)− 1 = c(D) + χ(D)− 1.

Thus, from (2.16), for an alternating diagram D of a link L, we have, in
analogy to (1.1),

b(L) > c(D) + 1
2 + χ(D)

2 .

This can be used for an improvement of some of the following inequalities,
in particular, (5.16). We will need to appeal to (5.18) more substantially
in Section 5.4 below.

Corollary 5.14. — Under the assumptions of Theorem 1.1, we have

(5.19) c(L) > 1 + c(D)
2 + χ(L).

Proof. — Use (5.18) and that for each diagram D′ of L, we have
s(D′) > b(L) and −χ(L) 6 −χ(D′) = c(D′)− s(D′). �

Compare inequality (5.19) with (5.1) in the case of positive links.

5.4. Application to enumeration

Proof of Theorem 1.2. — By combining (1.1) with Ohyama’s braid index
inequality [39],

(5.20) 2b(L)− 2 6 c(D),

TOME 70 (2020), FASCICULE 4



1464 Alexander STOIMENOW

we are left to count a set Cb,χ of diagrams of given χ within a fixed (de-
pending on χ, but not b) interval of crossings. Then use (3.1). This shows
an upper bound of the type (2.1).
Note that we can distinguish the links of a positive fraction of the occur-

ring diagrams in Cb,χ by taking alternating diagrams, and using the Flyping
Theorem (as done in [47, 65]). This shows that

c∑
b=1

βb,χ ∼c c−3χ.

However, for (1.2) we need to know that the braid index in a positive
fraction of these diagrams behaves exactly as expected (see (5.21) below).
For this we will exhibit a maximal generator for each χ whose links all
have exact MWF inequality (2.16). This is the subject of Lemma 5.16
below, whose preparation and proof constitue the rest of the discussion for
Theorem 1.2. �

Remark 5.15. — With Lemma 5.16 we have that in fact (1.2) holds also
when counting only knots for odd χ and only 2-component links for even χ.

Moreover, maximal generators are special alternating ([65]), and thus
in Theorem 1.2 “semihomogeneous” can be replaced by any of “homo-
geneous”, “alternating”, “positive” or “special alternating”; the resulting
enumeration problems turn out to be all asymptotically equivalent.

It is tempting to conjecture asymptotic proportionality between the var-
ious classes for fixed number of components, or even asymptotic equality
(as happens when braid index is replaced by crossing number [60]). This
remains, though, a challenge out of reach with (the present state of) our
technology.

Another problem would be to see if instead of 1 and 2 components one
can prove Lemma 5.16 for any fixed number n > 3 of components (and
every χ with n− χ even), but this requires further effort.

Before stating Lemma 5.16, we first describe the maximal generators on
whose series we prove MWF (2.16) to be sharp. Recall the remarks at the
end of Section 3.1 and the terminology of Section 2.6.

We give these maximal generatorsD in terms of their Seifert graphG(D).
It is a planar bipartite 2-3-valent graph, which is a reduced (bipartite)
bisection of a 3-connected (planar) 3-valent graph G′. As such, G comes
from a ± marking of the vertices of G′: bisect an edge of G′ exactly if it
connects vertices with the same marking. It is thus enough to describe the
marked graph G′.
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Take two 1-2-3-valent planar trees Γ1 and Γ2, one with vertices marked
+, and one with −. (See Figure 5.1 (a).) We assume Γ1 and Γ2 have the
same number k > 0 of edges, with χ = −1− k < 0.

Then

k′ = k + 3 =
∑

v∈V (Γ1)

3− val(v) =
∑

v′∈V (Γ2)

3− val(v′).

Draw 3 − val(v) external edges from each vertex v of Γ1, similar for Γ2
(as in Figure 5.1(b)), and cyclically connect the k′ edges between the Γi
(as in Figure 5.1(c)). This gives a 2-connected graph G′.

Γ1(+) Γ2(−) + −

(a) (b)

G′

(c)

Figure 5.1. The construction of the unbisected Seifert graph of the
maximal generators for Lemma 5.16. (Here k = 6 and χ = −7, thus
G′ gives a knot generator of genus 4.)

If such a graph G′ is 3-connected, it gives a maximal generator. This
property is not automatic, however, it is easy to construct such examples
for each χ < 0. (Note that a 2-cut of G′ may only consist of one edge in Γ1
and one edge in Γ2.)
The number n = n(D) of components of the generator diagram D = Dk′

with unbisected Seifert graph G′ is n = 2 for k′ even and n = 1 for k′ odd.

TOME 70 (2020), FASCICULE 4



1466 Alexander STOIMENOW

This can be seen as follows. Resolving clasps in D (which correspond to the
edges of Γi bisected in G), we are left with the diagram of a (2, k′)-torus
link.
For k′ (and χ) odd, one can conclude (see (5.25) below) that these gener-

ators make (3.2) sharp, and the proof of Theorem 3.4, in [62], should make
clear that all maximal crossing number knot generators arise by this con-
struction. (Note: we understood from [62] that all maximal crossing genera-
tors, except the figure-8 knot, are maximal also by number of ∼-equivalence
classes, but the converse is clearly not true.) For n > 2 components, the
description of maximal crossing generators is certainly more complicated.

Lemma 5.16. — On the series B(D) of these generators D, MWF is
sharp. Moreover,

(5.21) b(D′)− b(D) = c(D′)− c(D)
2

for all D′ ∈ B(D) (where the braid index of a diagram is the braid index
of its link).

Proof. — To prove this Lemma 5.16, we appeal to the work in [62] and
the graph index.

The index of graphs was introduced by Murasugi–Przytycki, but for the
sake of a simple definition, we use here the description of Traczyk [67].

Let G be a planar bipartite graph. We call a set S of edges of G to be
independent, if each cycle C of length 2l has |C ∩ S| < l. We say that an
independent set S is maximal independent, if there is no independent set
S′ with |S′| > |S|. The index Ind(G) can be defined as the size |S| of a
maximal independent set S of G.

For a link diagramD, set Ind(D) = Ind(G(D)). Then the following holds:

Theorem 5.17. — If D is a diagram of a link L, then

(5.22) b(L) 6 s(D)− Ind(D).

Murasugi–Przytycki’s proof of this inequality has a flaw, which was found
recently. The problem was remedied partially in two papers by Traczyk [68]
and myself [59], at least to the extent that (5.22) is recovered. (Certain
features of Murasugi–Przytycki’s method, however, go amiss.)

The combination of (5.22) with (2.16) gives

(5.23) 1 + 1
2 spanl P (L) 6 b(L) 6 s(D)− Ind(D).
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Definition 5.18. — We call D Ind-optimal if

1 + 1
2 spanl P (L) = s(D)− Ind(D).

This is a practical way to test the sharpness of MWF (and calculation
of braid index). E.g., we used it in [62] to determine the braid index of
alternating knots up to genus 4.

We appeal now to the following lemma, which is a special case of [62,
Corollary 7.1].

Lemma 5.19 ([62]). — Let D be an Ind-optimal special generator such
that G(D) has two disjoint maximal independent sets. Then all D′ ∈ B(D)
are Ind-optimal.

It follows from the argument for [62, Corollary 7.1] that then also (5.21)
holds for all D′ ∈ B(D).
Now we argue that we can apply Lemma 5.19 on our maximal generators

D = Dk′ .

Lemma 5.20. — The diagrams Dk′ satisfy the assumptions of Lem-
ma 5.19.

Proof. — The trees Γ1,Γ2 have k = k′−3 edges each. This gives 2(k′−3)
edges of G′ in both Γi, plus k′ edges connecting the Γi. Thus G′ has 3k′−6
edges and 2(k′ − 2) vertices, which conforms to the initially stated value

(5.24) χ = 2− k′ = −1− k.

In G = G(D) the 2(k′ − 3) edges of Γi in G′ are bisected, thus

(5.25) c(D) = 4(k′ − 3) + k′ = 5k′ − 12 = −5χ− 2

(which matches the bound of (3.2) for χ odd and n = 1). These bisections
also add a vertex (Seifert circle) for each edge of Γi. Thus

(5.26) s(D) =
2∑
i=1

e(Γi) + v(Γi) = 2(k′ − 2) + 2(k′ − 3) = 4k′ − 10,

and again χ(D) = s(D)− c(D) leads to (5.24), as should be.
Now, by using (5.26), Theorem 5.13, and that spanl P (D) is even, we

have

spanl P (D) > 4k′ − 10,(5.27)

thus by MWF (2.16)

b(D) > 2k′ − 4.(5.28)
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On the opposite side, we have

Ind(D) > 2(k′ − 3),(5.29)

because we can find an independent set of G(D) = G of the number of
clasp (valence-2) Seifert circles in D: taking one edge indicent to each one
of the valence-2 vertices of G(D) corresponding to these clasp Seifert circles
will give an independent set S.
Now (5.27), (5.26) and (5.29), together with (5.23), combine to show on

the one hand that an edge set S of the above type is maximal independent,
and on the other hand thatD is Ind-optimal (with braid index as in (5.28)).
Moreover, one can easily find two disjoint (maximal) independent sets

S1, S2 by switching between the two different edges adjacent to each val-
ence-2 vertex of G(D).
This proves Lemma 5.20, and hence also Lemma 5.16. �

Thus the proof of Theorem 1.2 is concluded. �

Let us remark that, in order to obtain by the presented method asymp-
totic proportionality in (1.2), one would have to show that MWF in un-
sharp only sporadically on every maximal generator. This seems too hard
to accomplish at the moment.
In closing, we observe that Corollary 5.14 allows for the following similar

application. It extends, in some partial form, the result of [65] about the
number of alternating knots and [60] about the number of positive links of
fixed genus. The proof goes along the lines of the proof of Theorem 1.2.

Corollary 5.21. — Let ηc,χ be the number of non-split semihomoge-
neous links of crossing number at most c and (fixed) Euler characteristic
χ < 0. Then ηc,χ satisfies the asymptotic equivalence

ηc,χ ∼c c−3χ.

5.5. Degree growth for Jones and Kauffman polynomials

We can also obtain versions of Corollary 5.4 for the Jones and Kauff-
man polynomial, although less strong. In this Subsection 5.5, we restrict
ourselves to knots. We also use g(K) = g(D) for the genus of a knot or
diagram (where 2g = 1 − χ). In an attempt to generalize the results to
links, difficulties may occur in Corollaries 5.22 and 5.23 (because the rela-
tion between the Vassiliev invariants of ∇, V and F may require the study
of linking numbers), and Proposition 5.24 (which uses Gauß sum formulas
not available for links).
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Corollary 5.22. — If Ki are positive knots, then max deg VKi → ∞
as i→∞.

Proof. — Since max deg VKi > min deg VKi = g(Ki) (cf. [54]), it suffices
to look only on Ki of bounded, and hence w.l.o.g., fixed genus. If for such
knots max deg VKi is bounded, then Theorem 5.1 would imply that only
finitely many polynomials occur as VKi . But this contradicts the growth
statement in Theorem 4.5 for −V ′′K(1) = 6∇2(K). �

Corollary 5.23. — Let Fk(K) = [F (K)]zk . If (Ki) is a sequence of
positive knots, then for 0 6 k 6 2 we have

(5.30) max dega Fk(Ki)→∞.

Proof. — For k = 0, Lickorish [30, Proposition 4.7] showed that
[F (a, z)]z0 = [P (a,m)]m0 for knots (up to variable change), so that the
statement we claim is implied by the case of k = 0 in Proposition 5.2.
For k = 1, 2 we use Yokota’s result min dega F = 2g and the relation

between the Conway Vassiliev invariants ∇i = [∇]zi and the Kauffman
Vassiliev invariants

F
(j)
k (K) :=

√
−1k+j

j!
dj

daj
∣∣∣
a=
√
−1
Fk(K).

(See [25], but note that this definition differs from that there by the first
factor. We write here “

√
−1” for the imaginary unit to avoid conflicts with

the variable i, which we mostly use for indexing.)
The Property (5.30) for k = 1 follows from Lemma 4.4 and the iden-

tity F
(1)
1 = −2∇2. Then F

(1)
1 (Ki) → −∞, for g(Ki) fixed, and by the

subsequence argument as in the proof of Proposition 5.2 we are done.
Similarly for k = 2 it suffices to show that F (1)

2 (Ki) → ±∞. Now, F (1)
2

is Vassiliev invariant of degree 6 3, and it its straightforward to see that it
is not constant. Then the claim follows from the proposition below. �

Proposition 5.24. — If (Ki) are distinct positive knots of bounded
genus, and v is a non-constant Vassiliev invariant of degree 6 3, then
|v(Ki)| → ∞.

Note that for a growth result for a Vassiliev invariant v of degree 6 3 in
arbitrary form for positive knots the boundedness condition on the genus is
clearly necessary; otherwise one can choose v to be primitive and to vanish
on the trefoil and consider iterated connected sums of trefoils. Also, for
degree 4 Proposition 5.24 is no longer true: consider ∇4 on positive twist
knots.
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Proof. — By Theorem 3.5 we need to consider only a fixed braiding
sequence of t̄′2 twists of some (genus g) diagram D, parametrized by c(D) =
n odd numbers x1, . . . , xn.

As v is of degree 6 3, we write

±v = C1v3 + C2v2

with v2 = ∇2 and v3 being the antisymmetric (w.r.t. taking the mirror im-
age) degree 3 Vassiliev invariant. (We can w.l.o.g. ignore a constant term.)
Up to adjusting sign, we may assume C1 > 0. If C1 = 0, we could argue
with Lemma 4.4; thus assume C1 > 0.
Now we use the Gauß diagram formulas for v2 and v3 due to Fiedler [16]

and Polyak–Viro [41]; see Section 2.5. Note that for a positive diagram,
wp = 1 for all crossings p. Thus all terms summed in (2.23) and (2.24) are
1, and estimating the values of v2 and v3 reduces to counting the number
of matching configurations.
In D(x1, . . . , xn) for all xi odd and positive, a linked pair of crossings

i and j in D, is replaced by two collections of xi and xj arrows, each
arrow linked with any arrow from the other collection. Counting in Fiedler’s
formula just the (contributions from) the linked pairs and configurations
(4, 2)0, we obtain

xi

[(xj+1
2
2

)
+
(xj−1

2
2

)]
+ xj

[(xi+1
2
2

)
+
(xi−1

2
2

)]
+ xixj

= (xi − 1)2

4 xj + (xj − 1)2

4 xi + xixj >
x2
ixj + x2

jxi

4 .

Hence

v3(D(x1, . . . , xn)) >
∑

i, j linked

x2
ixj + x2

jxi

4 .

On the other hand, by (2.23) clearly

v2(D(x1, . . . , xn)) 6
∑

i, j linked
xixj .

Thus

(5.31) ± v = C1v3 + C2v2 >
∑

i, j linked
xixj

(
C1

4 (xi + xj) + min(C2, 0)
)
.

For xi, xj > 0, each summand on the right is bounded below, and grows
unboundedly if so does max(xi, xj).
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If now Dk = D(x1,k, . . . , xn,k) are distinct diagrams in the braiding se-
quence of D, then

c(Dk) =
n∑
j=1

xj,k −→∞

as k →∞, and (at least) the largest of the summands on the right of (5.31)
grows unboundedly, while the others remain bounded from below. Thus
±v(Dk)→∞, as desired. �

An alternative argument to conclude the proof of Corollary 5.23 for k = 2
is to remark that F (1)

2 is in fact antisymmetric w.r.t. taking the mirror im-
age. Thus it is a (non-trivial) multiple of v3. We showed in [51] that v3 →∞
on any sequence of positive knots (not necessarily of bounded genus). But
now Proposition 5.24 implies more restrictive properties of F0,1,2. For exam-
ple even polynomial functions X(F0, F1, F2) for X ∈ Q[x0, x1, x2] exhibit
similar degree growth.
For Fk with k > 3, the evident problem is that the Vassiliev invariants

it contains have higher degree, and thus are more difficult to control com-
binatorially. In an attempt to apply the positivity result for the Conway
Vassiliev invariants, the only further relation one can use is

(5.32) F
(1)
2
2 + F

(2)
2 − 6F (1)

3 = ∇2 − 7∇2
2 + 18∇4.

See [25, p. 422]. Here also the r.h.s. empirically appears to drop unbound-
edly for positive knots, but I cannot prove this.
For k > 4, one cannot expect to express F (j)

k (even up to lower de-
gree invariants) in terms of ∇, as the dimension of the space of Vassiliev
invariants increases rapidly. Indeed, ∇6 is not contained in F , as shown
in [26] and [48]. That is, there are two distinct knots K1 and K2 with
F (K1) = F (K2) but ∇6(K1) 6= ∇6(K2). As observed by Kanenobu, for the
higher ∇k the same property then follows by taking the connected sum of
the K1,2 with trefoils.
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