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VIRTUAL BRAIDS AND PERMUTATIONS

by Paolo BELLINGERI & Luis PARIS

ABSTRACT. — Let VB, be the virtual braid group on n strands and let &,, be
the symmetric group on n letters. Let n,m € N such that n > 5, m > 2 and
n > m. We determine all possible homomorphisms from VB,, to &,,, from &, to
VB, and from VB, to VBy,. As corollaries we get that Out(VB,,) is isomorphic
to Z/27Z x 7/2Z and that VB, is both, Hopfian and co-Hofpian.

RESUME. Soient VB, le groupe de tresses virtuelles & n brins et &, le groupe
symétrique de I’ensemble a n éléments. Soient n,m € N tels que n > 5, m > 2 et
n > m. Nous déterminons tous les homomorphismes de VB,, dans &,,, de &,, dans
VB, et de VB, dans VB,,. Comme corollaires nous obtenons que Out(VB,,) est
isomorphe & Z/27Z x Z/2Z et que VB, est a la fois hopfien et co-hofpien.

1. Introduction

The study of the homomorphisms from the braid group B,, on n strands
to the symmetric group &,, goes back to Artin [1] himself. He was right
thinking that this would be an important step toward the determination
of the automorphism group of B,,. As pointed out by Lin [18, 19], all the
homomorphisms from B,, to &,, for n > m are easily deduced from the
ideas of Artin [1]. The automorphism group of B,, was then determined by
Dyer—Grossman [13] using in particular Artin’s results in [1]. The homo-
morphisms from B, to B,, were determined by Lin [18, 19] for n > m and
by Castel [9] for n =m and n > 6.

Virtual braids were introduced by Kauffman [16] together with virtual
knots and links. They have interpretations in terms of diagrams (see Kauff-
man [16], Kamada [15] and Vershinin [21]) and also in terms of braids in

Keywords: virtual braid group, Bass—Serre theory, Artin group, symmetric group, amal-
gamated product.
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1342 Paolo BELLINGERI & Luis PARIS

thickened surfaces (see Cisneros de la Cruz [12]) and now there is a quite ex-
tensive literature on them. Despite their interest in low-dimensional topol-
ogy, the virtual braid groups are poorly understood from a combinatorial
point of view. Among the known results for these groups there are solu-
tions to the word problem in Bellingeri-Cisneros de la Cruz—Paris [8] and
in Chterental [10] and the calculation of some terms of its lower central se-
ries in Bardakov—Bellingeri [4], and some other results but not many more.
For example, it is not known whether these groups have a solution to the
conjugacy problem or whether they are linear.

In the present paper we prove results on virtual braid groups in the same
style as those previously mentioned for the braid groups. More precisely,
we take n,m € N such that n > 5, m > 2 and n > m and

(1) we determine all the homomorphisms from VB,, to &,,,
(2) we determine all the homomorphisms from &,, to VB,,,
(3) we determine all the homomorphisms from VB,, to VB,,,.

From these classifications it will follow that Out(VB,,) is isomorphic to
Z/27 x 7./27, and that VB,, is both, Hopfian and co-Hopfian.

Our study is totally independent from the works of Dyer—Grossman [13],
Lin [18, 19] and Castel [9] cited above and all similar works on braid groups.
Our viewpoint/strategy is also new for virtual braid groups, although some
aspects are already present in Bellingeri-Cisneros de la Cruz—Paris [8]. Our
idea/main-contribution consists on first observing that the virtual braid
group VB,, decomposes as a semi-direct product VB,, = KB,, x &,, of an
Artin group KB,, by the symmetric group &,,, and secondly and mainly
on making a deep study of the action of &,, on KB,,. From this study we
deduce that there exists a unique embedding of the symmetric group &,,
into the virtual braid group VB,, up to conjugation (see Lemma 5.1). From
there the classifications are deduced with some extra work.

The group VBs is isomorphic to Z % Z/27Z. On the other hand, fairly
precise studies of the combinatorial structure of VB3 can be found in
Bardakov-Bellingeri [4], Bardakov—Mikhailov—Vershinin-Wu [5] and Bellin-
geri—Cisneros de la Cruz—Paris [8]. From this one can probably determine
(with some difficulties) all the homomorphisms from VB,, to &,,, from &,,
to VB,,,, and from VB,, to VB,,,, for n > m and n = 2, 3. Our guess is that
the case n = 4 will be much more tricky.

Our paper is organized as follows. In Section 2 we give the definitions of
the homomorphisms involved in the paper, we state our three main theo-
rems, and we prove their corollaries. Section 3 is devoted to the study of the
action of the symmetric group &,, on the above mentioned group KB,,. The
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VIRTUAL BRAIDS AND PERMUTATIONS 1343

results of this section are technical but they provide key informations on
the structure of VB,, that are essential in the proofs of our main theorems.
We also think that they are interesting by themselves and may be used for
other purposes. Our main theorems are proved in Section 4, Section 5 and
Section 6, respectively.

2. Definitions and statements

In the paper we are interested in the algebraic and combinatorial as-
pects of virtual braid groups, hence we will adopt their standard defi-
nition in terms of generators and relations. So, the virtual braid group
VB,, on n strands is the group defined by the presentation with generators
O1ly+--y0n—1,T1,---,Tn—1 and relations

2 B
Ti=1for1<i<n—1,
0i0; =005, TiTj =TT, Ti0; =0;T; for |i —j| > 2,
CTinUz' = O'jgio'j , TiTjTi = TjTiTja TiTjO'i = O'jTiTj fOI‘ |7, 7‘]| =1.

For each ¢ € {1,...,n — 1} we set s; = (¢,i + 1). It is well-known that
the symmetric group &,, on n letters has a presentation with generators
$1,...,8n,_1 and relations

s?zlforlgign—l, sis; = s;8; for |i — j| > 2,
8i8;8; = sjs;s; for |[i — jl=1.

Now, we define the homomorphisms that are involved in the paper. Let
G, H be two groups. We say that a homomorphism v : G — H is Abelian if
the image of ¢ is an Abelian subgroup of H. Note that the abelianization of
&, is isomorphic to Z/2Z, hence the image of any Abelian homomorphism
¢ : 6, — H is either trivial or a cyclic group of order 2. On the other hand,
the abelianization of VB,, is isomorphic to Z x Z/2Z, where the copy of Z
is generated by the class of o1 and the copy of Z/2Z is generated by the
class of 7. Thus, the image of any Abelian homomorphism % : VB,, —» H
is a quotient of Z x Z/27Z.

From the presentations of VB,, and &,, given above we see that there
are epimorphisms 7np : VB, — &, and ng : VB, — &, defined by
wp(o;) = wp(1;) = s; for all 1 < 4 < n—1 and by ng(o;) = 1 and
(1) = s; for all 1 <4 < n — 1, respectively. The kernel of 7p is called
the virtual pure braid group and is denoted by VP,,. A presentation of this
group can be found in Bardakov [3]. It is isomorphic to the group of the
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1344 Paolo BELLINGERI & Luis PARIS

Yang-Baxter equation studied in Bartholdi-Enriquez—Etingof-Rains [6].
The kernel of mxg does not have any particular name. It is denoted by
KB,,. It is an Artin group, hence we can use tools from the theory of Artin
groups to study it and get results on VB, itself (see for example Godelle—
Paris [14] or Bellingeri-Cisneros de la Cruz—Paris [8]). This group will play
a prominent role in our study. It will be described and studied in Section 3.

Using again the presentations of &, and VB, we see that there is a
homomorphism ¢ : &,, —+ VB,, that sends s; to 7; for all 1 <i < n — 1.
Observe that ¢ is a section of both, mp and 7k, hence ¢ is injective and we
have the decompositions VB,, = VP,, x &,, and VB,, = KB,, x G,,.

The two main automorphisms of VB,, that are involved in the paper are
the automorphisms (1,( : VB,, — VB,, defined by (1(0;) = 7;0;7; and
G(r) =m forall 1 <4< n—1, and by (2(0;) = 0;1 and (o(13) = 7
for all 1 < i < n — 1, respectively. It is easily checked that ¢; and (> are
of order two and commute, hence they generate a subgroup of Aut(VB,,)
isomorphic to Z/27 x Z/27Z.

The last homomorphism (automorphism) concerned by the paper ap-
pears only for n = 6. This is the automorphism v : G5 — G¢ defined by

vs(s1) = (1,2)(3,4) (5, (32):(2, )(1,5)(4,6),
ve(s3) = (1,3)(2,4)(5 (1,2)(3,5)(4,6),
ve(ss) = (2, )( )(5,6)

It is well-known that Out(&,,) is trivial for n # 6 and that Out(&g) is a
cyclic group of order 2 generated by the class of vg. Note also that 1Z is
the conjugation by wo = (1,6,2,5, 3).

We give a last definition before passing to the statements. Let G, H be
two groups. For each o € H we denote by ¢, : H — H, 8 — aBa™!,
the conjugation by «. We say that two homomorphisms 1,12 : G — H
are conjugate and we write 11 ~. 1y if there exists « € H such that
/(/)2 =Cq 0 1/}1~

In Section 4 we determine the homomorphisms from VB,, to &,, up to

6),
,6),

conjugation. More precisely we prove the following.

THEOREM 2.1. — Let n,m € N such that n > 5, m > 2 and n > m,
and let ¢ : VB,, — &,,, be a homomorphism. Then, up to conjugation, one
of the following possibilities holds.

(1) % is Abelian,
(2) n=m and ¢ € {rx,7p},
B)n=m=6and ¢ € {vgomk,vs07mp}.
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VIRTUAL BRAIDS AND PERMUTATIONS 1345

In Section 5 we determine the homomorphisms from &,, to VB,,, up to
conjugation. More precisely we prove the following.

THEOREM 2.2. — Let n,m € N such that n > 5, m > 2 and n > m,
and let ¢ : G,, — VB,,, be a homomorphism. Then, up to conjugation, one
of the following possibilities holds.

(1) ¢ is Abelian,
(2) n=m and ¢ =,
(3) n=m =6 and ¢ = 10 vg.

Finally, in Section 6 we determine the homomorphisms from VB, to
VB,, up to conjugation. More precisely we prove the following.

THEOREM 2.3. — Let n,m € N such that n > 5, m > 2 and n > m,
and let ¥ : VB,, — VB,, be a homomorphism. Then, up to conjugation,
one of the following possibilities holds.

(1) % is Abelian,
(2) n=mandy € {tomk,Lomp},
B)n=m=6andy € {tovsgomg,Lovsomp},

(4) n=m and 1[) S {ld, C15C2741 o CQ} = <Cl7<2>.

A group G is called Hopfian if every surjective homomorphism ¢ : G — G
is also injective. On the other hand, it is called co-Hopfian if every injective
homomorphism ¢ : G — G is also surjective. It is known that the braid
group B, is Hopfian but not co-Hopfian. However, it is quasi-co-Hopfian
by Bell-Margalit [7]. The property of hopfianity for the braid group B,
follows from the fact that it can be embedded in the automorphism group
of the free group F;, (see Artin [2]). We cannot apply such an argument for
the virtual braid group VB, since we do not know if it can be embedded
into the automorphism group of a finitely generated free group. A first
consequence of Theorem 2.3 is the following.

COROLLARY 2.4. — Let n € N, n > 5. Then VB,, is Hopfian and co-
Hopfian.

Proof. — We see in Theorem 2.3 that, up to conjugation, the only surjec-
tive homomorphisms from VB,, to VB,, are the elements of {id, (1, (2,¢; o
Ca} = (¢1,¢2), and they are all automorphisms, hence VB,, is Hopfian. We
show in the same way that VB, is co-Hopfian. O

Recall that, by Dyer—Grossman [13], the group Out(B,,) is isomorphic
to Z/2Z. Here we show that Out(VB,,) is a little bigger, that is:

COROLLARY 2.5. — Let n € N, n > 5. Then Out(VB,,) is isomorphic
to Z/27 x 7./2Z, and is generated by the classes of (; and (.

TOME 70 (2020), FASCICULE 3



1346 Paolo BELLINGERI & Luis PARIS

The proof of Corollary 2.5 relies on the following lemma whose proof is
given in Section 3.

LEMMA 2.6. — Letn € N, n > 5. Then (; is not an inner automorphism
of VB,,.

Proof of Corollary 2.5. — It follows from Theorem 2.3 that Out(VB,,)
is generated by the classes of (3 and (3. We also know that these two
automorphisms are of order two and commute. So, it suffices to show that
none of the elements (1, (2,1 o (2 is an inner automorphism. It is easily
seen from its presentation that the abelianization of VB,, is isomorphic
to Z X 7Z/27Z, where the copy of Z is generated by the class of o7 and
the copy of Z/27 is generated by the class of 71. Since (a(071) = 0;1, (o
acts non-trivially on the abelianization of VB,,, hence (5 is not an inner
automorphism. The transformation ¢; o(s is not an inner automorphism for
the same reason, and (; is not an inner automorphism by Lemma 2.6.

In order to determine Out(B,,), Dyer and Grossman [13] use also another
result of Artin [1] which says that the pure braid group on n strands is a
characteristic subgroup of B,,. From Theorem 2.3 it immediately follows
that the equivalent statement for virtual braid groups holds. More precisely,
we have the following.

COROLLARY 2.7. — Let n € N, n > 5. Then the groups VP,, and KB,
are both characteristic subgroups of VB,,.

3. Preliminaries

Let n > 3. Recall that we have an epimorphism 7 : VB,, — &,, which
sends o; to 1 and 7; to s; for all 1 < ¢ < n—1. Recall also that KB,, denotes
the kernel of mx and that we have the decomposition VB,, = KB,, x &,,.
The aim of the present section is to prove three technical results on the
action of &,, on KB,, (Lemma 3.7, Lemma 3.10 and Lemma 3.12). These
three lemmas are key points in the proofs of Theorem 2.2 and Theorem 2.3.
We think also that they are interesting by themselves and may be used in
the future for other purposes. The two main tools in the proofs of these
lemmas are the Artin groups and the amalgamated products.

The following is proved in Rabenda’s master thesis at the Université de
Bourgogne in Dijon in 2003. This thesis is actually unavailable but the
proof of the proposition can also be found in Bardakov—Bellingeri [4].

ANNALES DE L’INSTITUT FOURIER
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PrROPOSITION 3.1. — For 1 < i < j < n we set

0ij = TiTit1*** Tj—20j-1Tj—2 " Ti+1Ti

0ji = TiTit1 " Tj—2Tj—10-1Tj—1Tj—2 " Tiy1Ti .
Then KB,, has a presentation with generating set
S={0i;|1<i#j<n},
and relations

0i,j0ke = O, 00;,; for i, j, k, £ pairwise distinct,

5¢7j5j7]€5¢,j = 5j,k5i,j6j,k for i,j, k pajrwise distinct.

Moreover, the action of each w € &,, on a generator d; ; is by permutation
of the indices, that is, w(0;,;) = duw(i),w(j)-

Let S be a finite set. A Coxeter matrix over S is a square matrix M =
(ms,t)s,tes indexed by the elements of S such that mg s =1 for all s € S
and mgy = my s € {2,3,4,...} U{oo} for all s,t € S, s #t. For s,t € S,
s #t, and m > 2, we denote by II(s,t,m) the word sts--- of length m.
In other words, we have II(s,t,m) = (st)% if m is even and Il(s,t,m) =
(st)mTfls if m is odd. The Artin group associated with the Coxeter matrix
M = (ms4)stes is the group A = Ajs defined by the presentation

A= (S|I(s,t,mss) =TI(t,s,msy) for s,t €S, s#1t, mgy # 00).

Example. — Let S = {6, ;|1 < ¢ # j < n}. Define a Coxeter matrix
M = (msy)stes as follows. Set my s = 1 for all s € S. Let s,t € S,
s#1t. If s =0;; and t = 6y, where 4, j, k, £ are pairwise distinct, then set
msy = 2. If s = §; j and t = 0; 1, where ¢, j, k are pairwise distinct, then set
Mg = My s = 3. Set m ¢ = oo for all other cases. Then, by Proposition 3.1,
KB,, is the Artin group associated with M = (ms¢)s tes-

If X is a subset of S, then we set M[X] = (ms+)s texr and we denote by
A[X] the subgroup of A generated by X.

THEOREM 3.2 (van der Lek [17]). — Let A be the Artin group associ-
ated with a Coxeter matrix M = (ms)ses, and let X be a subset of S.
Then A[X] is the Artin group associated with M[X]. Moreover, if X and
Y are two subsets of S, then A[X] N A[Y] = A[X NY].

TOME 70 (2020), FASCICULE 3



1348 Paolo BELLINGERI & Luis PARIS

In our example, for X C S we denote by KB, [X] the subgroup of KB,
generated by X. So, by Theorem 3.2, KB, [X] is still an Artin group and it
has a presentation with generating set X and only two types of relations:

o st =tsif ms; =2 in M[X],
o sts =tst if ms; =3 in M[X].

The following result can be easily proved from Theorem 3.2 using pre-
sentations, but it is important to highlight it since it will be often used
throughout the paper.

LEMMA 3.3. — Let A be an Artin group associated with a Coxeter
matrix M = (msy)stes. Let X and Y be two subsets of S such that
XUY =S andms; =00 foralls € X\ (XNY)andt e Y\ (XNY). Then
A = A[X] *A[Xﬂy] A[y]

Let G be a group and let H be a subgroup of G. A transversal of H
in G is a subset T of G such that for each @ € G there exists a unique
6 € T such that « H = 0H. For convenience we will always suppose that a
transversal T contains 1 and we set T* = T'\ {1}. The following is classical
in the theory and is proved in Serre [20, Section 1.1, Theorem 1].

THEOREM 3.4 (Serre [20]). — Let Gi,...,Gp, H be a collection of
groups. We suppose that H is a subgroup of G; for all j € {1,...,p}
and we consider the amalgamated product G = G xyg G *p -+ *g Gp.
For each j € {1,...,p} we choose a transversal T; of H in G;. Then each
element a € G can be written in a unique way in the form o = 6105 --- 0,0
such that:

(1) B € H and, for each i € {1,...,¢}, there exists j = j(i) € {1,...,p}
such that 0; € T} =T; \ {1},
(2) j(&)) #jli+1) forallie {1,...,0—1}.
In particular, we have o € H if and only if ¢ =0 and a = f3.

The expression of a given in the above theorem is called the normal
form of a. It depends on the amalgamated product and on the choice of
the transversal of H in G for all j.

Consider the notation introduced in Theorem 3.4. So, G = G1*g- - *gG)p
and T} is a transversal of H in G; for all j € {1,...,p}. Let a € G. We
suppose that « is written in the form oo = a; - - - oy such that £ > 1,

(1) for each i € {1,...,¢} there exists j = j(i) € {1,...,p} such that
o; € Gj \H,
(2) j(i) #j@@+1) forall i € {1,...,£—1}.

ANNALES DE L’INSTITUT FOURIER
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We define 3; € H and 0; € T;‘(i) for ¢ € {1,...,¢} by induction on i
as follows. First, #; is the element of T;(l) such that oy H = 6;H and
B1 is the element of H such that ay = 6;8;. We suppose that ¢ > 2
and that 8;_1 € H is defined. Then 60; is the element of T;(i) such that
Bi—1a;H = 0;H and (; is the element of H such that 5;_1a; = 0;5;. The
following result is quite obvious and its proof is left to the reader.

ProrosiTION 3.5. — Under the above notations and hypothesis o =
01 --- 0,8 is the normal form of . In particular, o« ¢ H (since ¢ > 1).

We turn now to the proofs of our technical lemmas.

LEMMA 3.6. — Let G1,Go, H be three groups. We suppose that H is a
common subgroup of G; and G4 and we set G = G1 xg Go. Let 7: G — G
be an automorphism of order 2 such that 7(G1) = G2 and 7(G2) = G;.
Let GT = {a € G|7(a) = a}. Then GT C H.

Proof. — Since 7(G1) = G2, 7(G2) = G1 and H = G; N G5, we have
7(H) = H. Let T} be a transversal of H in G1. Set To = 7(T1). Then Ty is
a transversal of H in G». Let o € G and let o = 0165 - - - 043 be the normal
form of . Notice that the normal form of 7(«) is 7(61) 7(62) - - - 7(8¢) 7(B).
Suppose that £ > 1. Without loss of generality we can assume that 6; € T7".
Then 7(61) € Ty, hence 0; # 7(61), thus a # 7(«), and therefore o ¢ G”.
So,ifa e G",then/ =0and a = € H. O

Recall from Proposition 3.1 that VB,, = KB,, x &,, and that the action
of &, on KB, is defined by w(d; ;) = du@)w) for all w € &, and all
d;,; € S. Recall also that for each generator s; of &,, and each o € KB,, we
have s;(a) = 7;a7;. Throughout the paper we will use both interpretations,
as action of s; and as conjugation by 7;. For each 1 < k < n we set

Skz{élﬂkgz;éjgn}

LEMMA 3.7. — Let X be a subset of S invariant under the action of sy.
Then KB, [X]** = KB, [X N S;3].

Proof. — Set U = {4, ; € X|(4,5) € {(1,2),(2,1)}}. We first prove that
KB, [X]** € KB, [U]. If X C U there is nothing to prove. We can therefore
suppose that X ¢ U. Since X is invariant under the action of s;, we have
X = Z/{U{él’g, (5271}. Set L{’ = uU{él’Q} and L{” = L{U{ég,l}. By Lemma 33,
KB, [X] = KB, [U'] *kn, ) KBn[U"]. Moreover, s1(KB,[U']) = KB, [U"]
and s1(KB,[U""]) = KB, [{']. So, by Lemma 3.6, KB, [X]** C KB, [U].

For2 <k <nweset Vi, ={d; € X|(4,7) & ({1,2} x{1,2,...,k})}. We
show by induction on k that KB, [X]** C KB, [Vj]. Since Vo = U the case
k = 2 holds. Suppose that & > 3 and that the inductive hypothesis holds,

TOME 70 (2020), FASCICULE 3



1350 Paolo BELLINGERI & Luis PARIS

that is, KB, [X]** C KB, [Vk_1]- If Vi = Vi_1 there is nothing to prove.
We can therefore suppose that Vi # Vi_1. Since Vj_; is invariant under
the action of s; we have Viy_1 = Vi U{01,%,02,%}. Set V;, =V U{d1 1} and
Vi = Ve U{d21}. By Lemma 3.3, KB, [Vx—1] = KB, [V, ] *kB,, (v,] KBa[V}/]-
Moreover, s1(KB,[Vi]) = KB, [V}] and s1(KB,[V}/]) = KB,[V}]. So, by
Lemma 3.6, KB, [X]** C KB, [Vk].

For2 <k <nweset W, ={6;; € X|(i,7) & ({1,2} x{1,2,...,n}) and
(4,7) € {1,2,...,k}x{1,2})}. We show by induction on k that KB, [X]** C
KB,,[W;]. Since Wy = V,, the case k = 2 holds. Suppose that k& > 3 and
that the inductive hypothesis holds, that is, KB, [X]** C KB,[Wy_1]. If
Wi = Wi_1 there is nothing to prove. We can therefore suppose that
Wy # Wi_1. Since Wy _1 is invariant under the action of s; we have
Wie_1 = W U {5]@,1,5]@2}. Set VV,/€ = W U {5]@,1} and W/ = W, U
{0k,2}. By Lemma 3.3, KB, [Wi_1] = KB, [W;] *ks, pv,] KBn[W)/]. More-
over, s1(KB,[W,]) = KB,[W/] and s1(KB,[W)]) = KB,[W,]. So, by
Lemma 3.6, KB,,[X]°* C KB,,[W;]. The inclusion KB, [X]** C KB, [YNSs]
therefore follows from the fact that W,, = X N S3. The reverse inclusion
KB, [X NS3] € KB, [X]** is obvious. O

By applying the action of the symmetric group, from Lemma 3.7 it im-
mediately follows:

COROLLARY 3.8. — Let k € {1,...,n — 1}, let X be a subset of S
invariant under the action of sy, and let Uy, = {6; ; € S|i,5 & {k,k+ 1}}.
Then KB, [X]** = KB, [X NU.

LEMMA 3.9. — Let G1,G2, H be three groups. We suppose that H is a
common subgroup of Gy and G5 and we set G = Gy *yg Go. Let 7 : G — G
be an automorphism of order 2 such that 7(G1) = G5 and 7(G3) = G;.
Let o € G such that 7(a) = a~!. Then there exist o/ € G and ' € H such
that 7(B') = '~ and a = o/ B (/7 1).

Proof. — Since 7(G1) = G2 and 7(G3) = G4, we have 7(H) = H. Let
T; be a transversal of H in G;. Then Ty = 7(7}) is a transversal of H
in Go. Let a € G such that 7(a) = a~!. Let a = 61605---6,3 be the
normal form of a. We prove by induction on £ that there exist o’ € G and
B’ € H such that 7(8') = 871 and a = o/’ 7(a/~1). The case ¢ = 0 being
trivial we can suppose that £ > 1 and that the inductive hypothesis holds.
We have 1 = a7(a) =61---0,87(01)---7(8,) 7(8). By Proposition 3.5 we
must have 6,67(01) € H, namely, there exists §; € H such that 0,0 =
B17(6;)~1. Note that this inclusion implies that £ is even (and therefore
¢ > 2), since we should have either 0y, 7(01) € G1\ H or 0,,7(61) € G2\ H.
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Thus, a = 0105 --- 0,161 7(07 ) = 611 7(07 1), where ay = 0y --- 0,131
We have 7(a;) = aj' since 7(a) = a~!, so, by induction, there exist
o) € G and ' € H such that 7(8') = /' and oy = o}’ 7(a/; ). We set
o/ = 61a). Then 7(8') = /7 and a = /B 7(a/71). a

LEMMA 3.10. — Let X be a subset of § invariant under the action of
s1. Let aw € KB,,[X] such that s;(«) = a~1. Then there exists o' € KB,,[X]
such that a = o/ s1(a/~1).

Proof. — Let a € KB,[X] such that si(a) = a™'. Let U = {4,; €
X (i,7) € {(1,2),(2,1)}}. We show that there exist o/ € KB,[X] and
B’ € KB,[U] such that s;(8') = /7! and a = /B s1(a/7 V). f X = U
there is nothing to prove. We can therefore suppose that X # U. Since X
is invariant under the action of s; we have X = U U {d1,2,621}. Set U =
UU{d12} and U"” = UU{02,1}. By Lemma 3.3, K B, [X] = KB, [U'] *k8,, ]
KB,,[U"]. Moreover, s1(KB,[U']) = KB, [U"] and s1(KB,[U"]) = KB, [U/].
So, by Lemma 3.9, there exist o/ € KB, [X] and ' € KB, [U] such that
s1(')=pB"tand a=a'B s;(a’7 ).

For2<k<nweset Vi, ={d; € X|(4,7) & {1,2} x{1,2,...,k})}. We
show by induction on k that there exist o/ € KB,[X] and ' € KB,,[V]
such that s1(3’) = /"t and a = /3’ s1(a/~1). Since Vo = U the case k = 2
follows from the previous paragraph. Suppose that k£ > 3 and that the in-
ductive hypothesis holds. So, there exist of € KB,,[X] and 3] € KB, [Vk—_1]
such that s1(3;) = 8,7 and a = &/, B} s1(a/; ). If Vi = Vi there is noth-
ing to prove. Thus, we can suppose that Vi # Vi_1. Since Vi_; is invariant
under the action of s1 we have Vi_1 = Vi, U{01 %, 21 }. Set V}, = Vi, U{d11}
and V! = Vi U {d21}. By Lemma 3.3, KB, [Vi_1] = KB,[V}] *kB, (v
KB, [V//]. Moreover, s1(KB,[V;]) = KB, [V//] and s1 (KB, [V}/]) = KB, [V,].
By Lemma 3.9 it follows that there exist o, € KB, [Vk_1] and 8’ € KB,,[V]
such that s1(8) = /= and B = a3 s1(abt). Set o/ = o). Then
B € KBV, 51(8) = 6~ and o = o/ sy (o).

For2 <k <nweset W, ={6;; € X|(i,7) & ({1,2} x{1,2,...,n}) and
(4,7) ¢ ({1,2,...,k} x {1,2})}. We show by induction on k that there
exist o/ € KB,[X] and p’ € KB,[W;] such that s;(f') = 8’71 and
a=a'f s1(a/71). Since Wy =V, the case k = 2 follows from the previous
paragraph. Suppose that k£ > 3 and that the inductive hypothesis holds. So,
there exist of € KB,,[X] and 3] € KB, [W;_1] such that s,(3]) = 8, ! and
a = a} B s1(a7h). If Wi, = Wi, there is nothing to prove. We can there-
fore suppose that Wy, # Wj,_1. Since W1 is invariant under the action
of s1 we have W,_1 = W, U {6k,17 (5]@’2}. Set W]; =W, U {6’6,1} and W,/vl =
Wi U {0k,2}. By Lemma 3.3, KB, [Wi_1] = KB, [W;] *k8, w,] KBn[W].
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Moreover, s1(KB,[W;]) = KB,[W)/] and s:(KB,[W]) = KB,[W,]. By
Lemma 3.9 it follows that there exist oy € KB, [Wi—_1] and 8’ € KB,,[Wk]
such that s1(8) = /= and 8] = a3 s1(abt). Set o/ = o). Then
B € KB Wi, 51(8) = B~ and o = o/’ sy (o).

Notice that W,, = X N S3. Recall that s1(8") = 5’ for all 8’ € KB, [X N
S3] = KB, [W,] (see Lemma 3.7). By the above there exist o' € KB, [X]
and ' € KB,[W,] such that s;(8') = /! and a = &'B's1(a/71). So,
B =s1(B") = B, hence B2 = 1, and therefore 8’ = 1, since, by Godelle—
Paris [14], KB,, is torsion free. So, a = o/ s1(a/71). O

LEmMMA 3.11. — Let G1,Go,...,G,, H be a collection of groups. We
suppose that H is a subgroup of G, for all j € {1,...,p} and we consider
the amalgamated product G = G1 g Ga *g -+ *g Gp. Let 71,70 : G = G
be two automorphisms satisfying the following properties:

(1) 2 =72 =1 and T 7eT1 = ToT1To.

(2) Forallie€ {1,2} and j € {1,...,p} there exists k € {1,...,p} such
that Ti(Gj) = Gk.

(3) Forall j € {1,...,p} there exists i € {1,2} such that 7,(G;) # G;.

(4) For alli € {1,2} we have 7;,(H) = H.

(5) For all i € {1,2} and v € H such that 7;(y) = v~! there exists
§ € H such that v =46 7;(671).

Let a € G satisfying the following equation:
(3.1) at(a™h) (rem)(a) (o) (™) (1) () (™) = 1.

Then there exist o/,a/ € G and 8 € H such that « = o&'fa”, 7 (o) = &/,
T2(a) = o and j satisfies (3.1).

Proof. — Let a € G satisfying (3.1). It is easily checked that, if « is
written @ = o/Ba”, where 11(a/) = o and 7 (o) = o”, then 8 also
satisfies (3.1). So, it suffices to show that there exist o/, 0" € G and 8 € H
such that o = o/Ba”, 11(¢/) = o and 7 (a”) = . If & € H there is
nothing to prove. We can therefore suppose that o ¢ H. We write « in the
form o = ajas - - - ap such that

(a) for all i € {1,...,¢} there exists j = j(i) € {1,...,p} such that
Q; € Gj \H,
(b) j(i) #j(i+1) forall i € {1,...,0—1}.
We argue by induction on £.

Suppose first that £ = 1. We can assume without loss of generality
that o € Gy \ H. We set 81 = a, o = m(a™l), B3 = (n)(a), By =
(rom172) (1), Bs = (1172)(), and B = 71(a~1). By hypothesis we have
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B1828384858s = 1 and, for each i € {1,...,6}, there exists j = j(i) €
{1,...,p} such that §; € G, \ H. If we had 7 (G1) # G1 and 72(G1) # G,
then we would have j(i) # j(i + 1) for all ¢ € {1,...,5}, thus, by Propo-
sition 3.5, we would have (182083840858 # 1: contradiction. So, either
71(G1) = Gy or 2(G1) = G1. On the other hand, by Condition (3) in
the statement of the lemma, either 71(G1) # G1 or 72(G1) # G1. Thus,
either Tl(Gl) = Gl and TQ(Gl) 7é Gl, or Tl(Gl) 7é Gl and TQ(Gl) = Gl.
We assume that 71 (G1) = G1 and 72(G1) # G;. The case 11(G1) # G1
and 72(G1) = Gy is proved in a similar way. So, j(1) # j(2), 7(2) = j(3),
J3) # j(4), j(4) = j(5), and j(5) # j(6). Since B18283B84P858 = 1, by
Proposition 3.5, either B33 € H, or 3485 € H, that is, a~! 7y (a) = v € H.
Now, we have 71(7) = 71(a"})a = 471, hence, by Condition (5) in the
statement of the lemma, there exists § € H such that v =671 (6~1). We set
o =ad, a” =1and =051 Then a = o/Ba”, 71(d/) = o, 2(a") = "
and g € H.

Suppose that £ > 2 and that the inductive hypothesis holds. It follows
from Proposition 3.5 and (3.1) that either ay mo(a, ') € H or (a7 ') oy €
H. Suppose that ay7a(a, ') € H. Then there exists v € H such that
ay = y72(ag). By applying 72 to this equality we obtain 7o (ay) = 72(7) av,
and therefore 79(y) = v~ !. By hypothesis there exists 6 € H such that
v = 0"1ma(8). We set ) = 1, af = dag, o) | = ap—10~"! and B =
ag - -ay—g0y ;. We have a = ajf10ay, 71 (o) = o and m2(a))) = aj, hence
By satisfies (3.1). By induction, there exists 7v/,7” € G and 8 € H such that
B1 =78y, m(v) =4 and 2(v") = +". Set &’ = o)y’ and o’ = v"aj.
Then a = o/Ba’”, 71(a/) = & and (o) = . The case 11(a] )y € H

can be proved in a similar way. a
LEMMA 3.12. — Let X be a subset of S invariant under the action of

s1 and under the action of sg. Let o € KB,,[X] such that

(3.2) a52(a71) (s251) () (525152)(071) (s152)(a) sl(ofl) =1.

Then there exist o/, o/ € KB, [X] such that s1(a/) = o/, s2(a’) = & and

oa=dad.

Proof. —For 4 < k < n wesetUy = {6;; € X|(4,7) € ({1,2,3} x
{4,...,k})}. We set also Us = X. We show by induction on k that there
exist o/, o’ € KB, [X] and § € KB, [Uy] such that a« = o/Ba”, s1(a/) =
s2(a’) = o and j satisfies (3.2). The case k = 3 is true by hypothesis. Sup-
pose that 4 < k < n and that the inductive hypothesis holds. So, there exist
af,of € KB,[X] and 81 € KB, [U_1] such that o = o) S104, s1(a}) = of,
so(aff) = of and By satisfies (3.2). If Uy,—1 = U}, there is nothing to prove.

TOME 70 (2020), FASCICULE 3



1354 Paolo BELLINGERI & Luis PARIS

Suppose that U1 # U. Since Uy_; is invariant under the action of s;
and under the action of sy, we have Uy_1 = Ui U {01k, 02,035} Set
G, = KB, [Uy U{8;4}] for j € {1,2,3} and H = KB,[i4]. By Lemma 3.3,
KB, [Ux—1] = G1 xg G xg G3. Moreover, we have the following properties.
e For each i € {1,2} and each j € {1,2,3} there exists k € {1,2,3}
such that s,(G;) = Gj.
e For each j € {1,2,3} there exists i € {1,2} such that s;,(G;) # G,.
e For each i € {1,2} we have s;(H) = H.
e By Lemma 3.10, for each i € {1,2} and each v € H such that
si(7) =y~ 1, there exists § € H such that v = §s;(671).
By Lemma 3.11 it follows that there exist af, oy € KB, [Uk—1] and g €
KB, [Uy] such that 81 = ahBah, s1(ah) = af, so(ahy) = of and § satis-
fies (3.2). We set o/ = aja and o' = afjaf. Then a = o/Ba”, s1(a) = o
and s3(a”) = a”.

For 4 <k <nweset Vy ={0;; €Un|(,7) € {4,...,k} x {1,2,3})}.
We set also V3 = U,,. We show by induction on k that there exist o/, a” €
KB, [X] and 8 € KB,[Vi] such that o = o/Ba”, s1(a/) = o/, s2(a”) =
o' and f satisfies (3.2). The case k = 3 is true by the above. Suppose
that 4 < k£ < n and that the inductive hypothesis holds. So, there exist
af,af € KB,[X] and 81 € KB,[V,_1] such that o = &} 8107, s1(a}) = of,
s2(af) = of and By satisfies (3.2). If Vy_1 = V), there is nothing to prove.
Suppose that Vy_1 # Vi. Since Vi_1 is invariant under the action of s;
and under the action of sy, we have Vy_1 = Vi U {Jk,1,0k,2,0k,3} Set
G; =KB,[Vx U {0k ;}] for j € {1,2,3} and H = KB, [V,]. By Lemma 3.3,
KB, [Vi-1] = G1 *1 G2 *i G5. Moreover, we have the following properties.

e For each i € {1,2} and each j € {1,2,3} there exists k € {1,2,3}
such that s;(G;) = Gj,.

e For each j € {1,2,3} there exists ¢ € {1,2} such that s,(G;) # G;.

e For each i € {1,2} we have s;(H) = H.

e By Lemma 3.10, for each i € {1,2} and each v € H such that
si(y) =71, there exists § € H such that v = §s;(671).

By Lemma 3.11 it follows that there exist o, af € KB, [Vi—1] and 8 €
KB, [Vi] such that 81 = abBa, si1(ah) = af, sa(af) = of and § satis-
fies (3.2). We set o = ojafy and o = afaf. Then o = /B’ s1(a’) = o
and s3(a”) = a”.

Set Wy = {57;’]' ex | (Z7j) S ({1,2,3} X {172,3})} and Wy = {5i,j S X|
(1,5) € {4, ...,n} x {4,...,n})}. Notice that V,, = W) UWs, KB,[V,] =
KB, [W1] x KB,,[Wa], and s1(y) = s2(y) = v for all v € KB, [Ws]. By
the above there exist o}, af € KB, [X] and 8; € KB,[V,] such that o =
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o/lﬁlo/l’, s1(a)) = of, sa(af) = of and 3 satisfies (3.2). Let B € KB,[W1]
and of € KB,[Ws] such that 51 = fad. Set o = o} and o = afaf. Then
a=dadfa’, s1(ad) =a, s2(a) = o’ and B satisfies (3.2).

Let Wl 1= { X | (Z ]) € {(1 2) (2,3), (3,1)}} and WLQ = {(51‘,]‘ €
X|(@i,79)e{(2,1), (3 2),(1,3)}}. Set G1 = KB,[Ws 1] and G2 = KB, (W 2].
By Lemma 3.3, KB, [W;] = G1 xGa. Moreover, s1(G1) = s2(G1) = G2 and
51(G2) = s2(G2) = G1. From Lemma 3.11 applied with H = {1} it follows
that there exist 8, 3" € KB,[W;] such that 8 = /8", s1(8') = ' and
s2(B"”) = B”. Actually, by Lemma 3.7, 3/ = 8” = 1, hence 8 = 1. So,
a=dd" s1(d) =a and s3(a”) = o”. O

As announced in Section 2, we take advantage of the results of the present
section to prove Lemma 2.6.

Proof of Lemma 2.6. — Suppose instead that (; is an inner automor-
phism, that is, (; = ¢, : VB, — VB,,, § = vdy~!, for some v € VB,,.
We have v # 1 since (; # id. We write v in the form v = a(w) with
a € KB, and w € &,,. For each i € {1,...,n — 1} we have s, = mx(7;) =
i (C1(7i)) = T (y7y ™) = ws;w™!, hence w lies in the center of &,, which
is trivial, and therefore w =1 and v = o € KB,,.

Note that ¢1(0; ;) = d;,; for all i,5 € {1,...,n}, i # j. Take 4,5 €
{1,...,n}, i < j, and set Ui ; = S\ {di;,0;:}, Ui ; = Ui U{di;} and
Z/ll’fj = Z/l@j U {53‘,1'}- By Lemma 3.3, KBn = KBn[Z/{ ] *KB,L[ ”] KB [Z/{ }

Moreover, (1 (KB, [l ;]) = KB,[i{;’;] and (1 (KB, [Z/;’g D)= [Z/l' 1. F;OJm
Lemma 3.6 it follows that KBS € KB, [U; j]. Since ﬂ1<l<j<n =0, by
Theorem 3.2, (N, ¢, ;<, KBn[U; ;] = KB, 0] = {1}, thus KBS = {1} But
a € KBf;l and o = v # 1, which is a contradiction. So, (; is not an inner
automorphism. O

4. From virtual braid groups to symmetric groups

The following is well-known and can be easily deduced from Artin [1]
and Lin [18, 19]. It is a preliminary to the proof of Theorem 2.1.

PROPOSITION 4.1. — Let n,m € N such that n > 5, m > 2 and n > m,
and let p : &,, — &,, be a homomorphism. Then, up to conjugation, one
of the following possibilities holds.

(1) ¢ is Abelian,
(2) n=m and ¢ = id,
(3) n=m =6 and ¢ = vg.
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Proof of Theorem 2.1. — Let n,m € N such that n > 5, m > 2 and
n = m, and let ¥ : VB,, — &,, be a homomorphism. By Proposition 4.1
one of the following possibilities holds up to conjugation.

e o is Abelian,
e n=m and o =id,
en=m==06and Yor=ug.

Suppose that 1) o ¢ is Abelian. Then there exists w; € &,, such that
wy = (Y ou)(s;) = (r) for all i € {1,...,n — 1}. Since s? = 1, we have
w} = 1. Set wy = 9(01). From the relation 7;7,410; = 04417741 it follows
that ¥(0;) = w?(0;) = Y(oi01)w? = P(oipq) for alli € {1,...,n — 2},
hence 9(0;) = wy for all ¢ € {1,...,n — 1}. Finally, from the relation
7103 = o037y it follows that wyws = wowq. So, 9 is Abelian.

Suppose that n = m and ¢ o v = id. Then ¢¥(1;) = s; for all ¢ € {1,...,
n — 1}. From the relations o17; = 7,01, 3 < ¢ < n — 1, it follows that

¥(oq) lies in the centralizer of (ss, ..., s,—1) in &, which is equal to (s1) =
{1, 1}, hence either ¢¥(o1) = 1 or ¢p(o1) = s1. If ¢(01) = 1, then ¥(0;) = 1,
since o; is conjugate to o1 in VB,,, for all i € {1,...,n—1}, hence ¢ = 7.

Assume that ¢ (01) = s1. We show by induction on ¢ that ¢ (o;) = s; for all
1€ {l,...,n—1}. The case i = 1 is true by hypothesis. Suppose that i > 2
and ’(/J((Tifl) = S;—1- Then, since Ti—1TiOj—1 = 0;T;—1T;, W€ have w(O'Z) =
8i—18i8i—18:Si—1 = S;. S0, ¥(1;) = ¥(0;) = s; forall i € {1,...,n—1}, that
iS, ’l/) =Tp.

Suppose that n = m = 6 and ¥ ot = vg. Then I/gl o1 ot = id, hence,
by the above, either l/gl 01 = WK or l/gl o1 = mp, and therefore either
P =VgoTK O Y = g O Tp. O

5. From symmetric groups to virtual braid groups

The core of the proof of Theorem 2.2 lies in the following lemma.

LEMMA 5.1. — Let n € N, n > 3, and let ¢ : &,, — VB,, be a homo-
morphism such that wg o ¢ = id. Then ¢ is conjugate to ¢.

Proof. — Since mg o ¢ = id, for each i € {1,...,n — 1} there exists a; €
KB,, such that (s;) = a;7;. We prove by induction on k that there exists
a homomorphism ¢’ : &,, — VB,, conjugate to ¢ such that mx o ¢’ = id
and ¢'(s;) =7 for all i € {1,...,k}. The case k = n — 1 ends the proof of
the lemma.

Suppose that k = 1. We have 1 = ¢(s1)? = a3 s1(a1) 7% = a1 s1(aq),
hence s1(ay) = afl. By Lemma 3.10 there exists 81 € KB, such that
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a1 = Brs1(Brt). Thus, ¢(s1) = axm = Bisi1(BrH) 1 = BBt Set
o = Cgo1 0 p. Then ¢’ is conjugate to o, Tk o ¢’ = id, since 81 € KB,
and ¢'(s1) = 71.

We assume that k£ = 2 and ¢(s1) = 71. Since ¢(s15251) = p(s25182), we
have TiaeTeT] = aTaTiaTe, hence s1(az) = ag (s251)(az). On the other
hand, as in the previous paragraph, from the equality ¢(s2)? = 1 it follows
that there exists 8o € KB,, such that as = 5 52(,82_1). Thus,

s1(B252(B5 1)) = (B2s2(B3 1)) (s251) (B2 52(83 1))
= Pasa(By ) (s251)(Ba) (s25152) (B3 1) (s152)(B2) s1(B5 ) = 1.
By Lemma 3.12 there exist 85, 35 € KB, such that 82 = 855Y, s1(85) =
By and so(BY) = BY. Thus, p(s2) = asme = PomfBy " = B4mfBy . Set
o = Cgm1 0 - Then ¢’ is conjugate to o, mx o ¢’ = id, since 85 € KB,,
¢©'(s1) = 71, since s1(8%) = B4, and ¢’(s2) = 72 by construction.

We assume that k£ > 3 and p(s;) = 7 for all 4 € {1,...,k — 1}. Let
¢ e {1,...,k — 2}. Since ¢(sks¢) = w(sesk), we have apTi7e = ToaukTk,
hence sy(a) = ag. By Corollary 3.8 it follows that « € KB, [U], where
Uy = {6i,j esS | 1, & {f, g—l—l}} Recall that S, = {6i7j esS | kE<i#j< ’fl}
We have ﬂlgzgkﬁ Uy = Sy hence, by Theorem 3.2, oy, € KB, [Sk]. Since
©(Sk—15KSk—1) = @(SkSk—15k), We have Tp_10xTRTh—1 = QRTRTE—1K Tk,
hence sp—1(ak) = ak (skSk—1)(ax). On the other hand, as in the two pre-

vious paragraphs, from the equality ¢(s;)? = 1 it follows that there exists
B € KB,,[Sk] such that ay = By sk(ﬁk_l). So,
si—1(Br sk (B 1) = (B se(Br ) (sese—1) (Br sk(By 1))
= B sk(By ") (sksk—1)(Br) (sksk—158) By 1) (sk—156)(Br) sk—1(8; ") = 1.
Note that Sy, is not invariant under the action of s;_1, but Sx_1 is and Sy C
Sk—1. By Lemma 3.12 there exist 3}, 8 € KB,,[Sk—1] such that 8, = 8,5,
sk—1(By) = By and si(BY) = il So, (s) = awte = BeBy, " = BBy -
Since sx—1(8;,) = B, by Corollary 3.8, 5, € KB, [Uy—1], where Uy_1 =
{6;; € S|i,j ¢ {k—1,k}}. Since Sx—1 NUkx—1 = Sk+1, by Theorem 3.2 it
follows that 8;, € KB, [Sk+1], hence s,(8;,) = 8), for all i € {1,...,k—1}.
Set ¢/ = Cyr-1 0. Then ¢’ is conjugate to ¢, Tk o’ =id, and ¢'(s;) = 7
forallie {1,...,k}. O
Proof of Theorem 2.2. — Let n,m € N such that n > 5, m > 2, and
n = m, and let ¢ : &,, — VB,, be a homomorphism. By Proposition 4.1
one of the following possibilities holds up to conjugation.
e T o is Abelian,
e n=m and T o =id,
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e n=m=06and 7g o p = 1g.

Assume that 7x o ¢ is Abelian. There exists w € &,,, such that (7x o
©)(s;) = w for all ¢ € {1,...,n — 1}. Set By = ¢(w) € VB,,. For each
i € {1,...,n — 1} there exists o; € KB,, such that ¢(s;) = «;8y. Since
s? = 1, we have w? = 1, hence 32 = 1. On the other hand, for each
i€{l,....,n—1}, we have 1 = ¢(s;)? = a;Bo;Bo, hence a; By = ﬁoazl.
Let ¢ € {2,...,n — 1}. We have p(s15;) = alﬁoﬁoa;I = ala;1 € KB,,,
this element is of finite order, since s1s; is of finite order, and, by Godelle—
Paris [14], KB, is torsion free, hence alafl = 1, that is, a; = 1. So,
@(s;) = aif for all i € {1,...,n — 1}, hence ¢ is Abelian.

Suppose that n = m and 7 op = id. Then, by Lemma 5.1, ¢ is conjugate
to ¢.

Suppose that n = m = 6 and g o ¢ = vg. We have 7TKO<pOV6_1 =id
hence, by Lemma 5.1, po 1/6_1 is conjugate to ¢, that is, there exists a € VBg
such that ¢ o 1/6_1 = ¢q 0 t. Then ¢ = ¢, 01 0 vg, hence ¢ is conjugate to
Lo Ug. (|

6. From virtual braid groups to virtual braid groups

LEMMA 6.1. — Let n > 3, let i,5,k € {1,...,n} pairwise distinct, and
let 01,05 € Z. Then 65,11‘65,2k = 1 if and only if /1 = 5 = 0. Similarly, we
have 65,62, =1 if and only if {; = £ = 0.

Proof. — Suppose that 5f$1]-5§’2k = 1. Set 1 = 2t1 + 1 and ¥ = 2ty + €9

where t1,t3 € Z and 1,5 € {0,1}. We have Wp(éf,lj-éffk) = (4,7)* (4, k)2 =

1, hence e; = g5 = 0. So, (87,)"(07,)" = 1. By Crisp-Paris [11] the
subgroup of KB,,[{; j,0,}] generated by {51-27]-, 5?7k} is a free group freely

generated by {07,067 , }, hence t; = t5 = 0. We show in the same way that,
if 6.6 = 1, then /1 = ¢5 = 0. It is clear that, if ¢/; = ¢5 = 0, then

Jyi kg
Uy by _ by sla
035055 = 0302 = L. U

LEMMA 6.2. — Letn = 6. Set u; = vg(s;) foralli € {1,2,3,4,5}. Let H
be the subgroup of G generated by {us,us,us}. Then KBE = {1}, where
KBE = {a € KBg |w(a) = o for all w € H}.

Proof. — Let U = {us, ug, us, uztiqus, Uglsty, Usustsugusz }. We have
ug = (1,3)(2,4)(5,6), ug = (1,2)(3,5)(4,6), us = (2,3)(1,4)(5,6),
usugus = (1,6)(2,5)(3,4), uqusug = (1,5)(2,6)(3,4),
uU3U4LU5U4LU3 — (1, 2)(3, 6) (4, 5) .
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Let 1 <i<j<6.Set U ; =S\ {6i,05:}, U ; =Ui; U{0;;} and U’; =
Ui j U{dj,:}. We have KBg = KBg[Uf; ;] *KBs[MZ J} KB6[ i';] by Lemma 3.3.
On the other hand, it is easily observed that there ex1sts v € U such
that (4,7) is a cycle in the decomposition of v as a product of disjoint
cycles. For that v we have v(KBs[l] ;]) = KBg[lf]';] and v(KBg[tf;';]) =
KBg[(f; ;]. By Lemma 3.6 we deduce that KBY ¢ KBy ¢ KBg[U; ;]. We
have 1, ¢;j<¢Ui,; = 0, hence, by Theorem 3.2, KB c KBg[0] = {1}. O

We will use the following notation in the proof of Theorem 2.3. Let
Fy = Fy(z,y) be the free group of rank 2 freely generated by {z,y}. If G is
a group, «, 8 € G, and w € Fy, then w(q, ) denotes the image of w under
the homomorphism F, — G which sends x to a and y to S.

Proof of Theorem 2.3. — Let n,m € N such that n > 5, m > 2 and
n = m, and let ¢ : VB,, — VB,,, be a homomorphism. By Theorem 2.2 one
of the following possibilities holds up to conjugation.

e o is Abelian,
e n=mand o=,
en=m==06and Yor=1roug.

Assume that ¢ o¢ is Abelian. We argue in the same way as in the Abelian
case in the proof of Theorem 2.1. There exists 81 € VB,, such that §; =
(ou)(si) =(m) forall i € {1,...,n — 1}. Since s = 1 we have 3% = 1.
Set By = 1(o1). From the relation 7;7;410; = 04117711 it follows that
(o) = BEY(o;) = P(oir1) BF = ¥(0i41), for all i € {1,...,n — 2}, hence
Y(o;) = Po for all i € {1,...,n — 1}. Finally, from the relation 1103 = o371
it follows that 5182 = (201. So, ¥ is Abelian.

Assume that n = m and ¥ o« = ¢, that is, ¥(r;) = 7 for all i €
{1,...,n—1}. For each i € {1,...,n — 1} we set ¢(0;) = a; t(w;), where
«a; € KB,, and w; € &,. For each i € {3,...,n — 1} we have s;w; =
(mr o) (mi01) = (7 o) (017;) = wys;, hence wy lies in the centralizer of
(83, 8n—1) in &, which is equal to (s1) = {1, s1}, hence either w; = $1
or wy = 1.

Suppose that wy =1, that is, ¥(01) =a171. For each k € {3,...,n — 1}
we have aym7m = ¥(017k) = ¥(101) = TrRa171, hence sip(a1) = a1. By
Corollary 3.8 this implies that a1 € KB, U], where Uy = {d;;]i,j ¢
{k,k+1}}. We have ﬂ3<k<n—1 U, ={01,2, 02,1} hence, by Theorem 3.2, a; €
KB, [{01,2,92,1}]- Let w € Fy such that ay =w(d1,2,02,1). Note that, by The-
orem 3.2, KB, [{01,2,02,1}] is a free group freely generated by {912,921},
hence w is unique. We have oo = 1172017271, hence (02) = w(d2,3, 03.2)T2
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On the other hand, since 010901 = 020103, we have

w(sz, 52,1)7’1w(52,3; 53,2)7'260(51,2, 52,1)7'1

= w(02,3,03,2)Tow (01,2, 02,1)T1w (02,3, 03,2) T2,

hence

(6.1) w(d1,2,02,1)w(d1,3,03,1)w(d23,03.2)
= w(d2,3,03,2)w(01,3,03,1)w(d1,2,02,1) .

Let W = {61‘7]‘ | 1 < 7 # ] < 3}, Wl = {6172,6273,5371} and W2 =
{62.1,03,2,01,3}. By Lemma 3.3, KB,[W| = KB, [W]| * KB,[W,]. From
this decomposition and Lemma 6.1 it is easily deduced that the only ele-
ment of F5 which satisfies (6.1) is w = 1, thus ¢(¢1) = 71. Then from the
equalities 0; = T;—1Ti0;-1T;Ti—1, 2 g ) <n-— ]., it follows that ’L)[)(O'Z) =T
foralli e {2,...,n— 1}, hence ¥ = to7p.

Suppose that wy; = 1, that is, ¥(01) = a1. For each k € {3,...,n — 1}
we have a7, = ¥(017%) = ¥(101) = TR, hence si(a1) = a1. By Corol-
lary 3.8 this implies that oy € KB, [Uy], where Uy, = {d; ; |4,j & {k,k+1}}.
As above, ﬂggk@_luk = {012,021}, hence a; € KB,,[{01,2,021}]. Let
w € Fy such that a; = w(d1,2,02,1). Again, since KB, [{d1,2,02,1}] is a free
group freely generated by {012,021}, the element w is unique. We have
09 = T1T201T2T1, hence ¥(o3) = (s182)(1) = w(da3,03,2). On the other
hand, since 010907 = 090103, we have

(6.2)  w(d1,2,02,1)w(d2,3,032)w(d1,2,02,1)
= w(0d2,3,03,2)w(01,2,02,1)w(d2,3,03.2) .

Recall that KB,[W] = KB, W] * KB,[W], where W = {§, ;|1 < i #
j < 3}, W1 = {61727(52’3,(53’1} and WQ == {52’1,53’2,51,3}. From this de-
composition and Lemma 6.1 it is easily seen that, if w satisfies (6.2),
then w is of the form w = 2* with z € {z,y} and k € Z. By Crisp-
Paris [11], if k& & {1,0,—1}, then the subgroup of KB, [W;] generated by
{07 5,055,051} is a free group freely generated by {6} ,,85 5,05}, hence
07 505 30 5 # 05 301 505 5. Similarly, we have 65 65,65, # 65,05 65, if
k & {—1,0,1}. So, w € {x,27 1, y,y~ 1, 1}. Moreover, from the equalities
O; = T;—1T;0;-1T;Ti—1, 2 < ) < TL—]., it follows that QZJ(O',L) = w((5¢$i+17 5i+1,7,')
for alli € {2,...,n —1}. If w = x then ¢ = id, if w = 27! then ¥ = (s,
if w=ythen ¢ = ¢4, if w =9y"' then ¥ = (; 0 (s, and if w = 1 then
Y =10Tk.
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Now, we assume that n = m = 6 and ¥ o+t = 1o vg. For each i €
{1,2,3,4,5} we set u; = vg(s;) and B; = ¢(u;). Thus, ¢(r;) = B; for all i €
{1,2,3,4,5}. For each i € {1,2,3,4,5} we set ¥(0;) = «; t(w;), where «; €
KBg and w; € &g. For each i € {3,4,5} we have u;wy = (7 o ¢)(r01) =
(rx o ¥)(o17;) = wiu;, hence wy lies in the centralizer of (ug,u4,us) in
Sg, which is equal to (u1) = {1,u;}, thus either wy = u; or w; = 1. On
the other hand, for each i € {3,4,5}, we have ay t(wy1) i = ¢Y(owm) =
Y(1io1) = Piag t(wy) and ¢(wr) B = t(wiu,;) = t(u;wr) = B; t(wy), hence
ui(ar) = Bialﬁfl = «1. By Lemma 6.2 it follows that «; = 1. So, either
Y(o1) = B1 or Y(oy1) = 1. If (01) = Bi, then, since oy = ;17,05 _1TiTi—1
for all ¢ € {2,3,4,5}, we have ¢¥(0;) = 5; for all i € {1,2,3,4,5}, and
therefore ¢ = tovgomp. If ¥(o1) = 1, then, since o; = 7;_17;0;—17;7;—1 for
all i € {2,3,4,5}, we have ¢(c;) = 1 for all ¢ € {1,2,3,4,5}, and therefore
P =1Lovg0TK. O
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