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EXPECTED NUMBER AND DISTRIBUTION OF
CRITICAL POINTS OF REAL LEFSCHETZ PENCILS

by Michele ANCONA

ABSTRACT. — We give an asymptotic probabilistic real Riemann-Hurwitz for-
mula computing the expected real ramification index of a random covering over the
Riemann sphere. More generally, we study the asymptotic expected number and
distribution of critical points of a random real Lefschetz pencil over a smooth real
algebraic variety. Throughout the paper, we give similar results for the complex
case. Our main tool is Héormander theory of peak sections.

RESUME. — Dans cet article, on donne une formule de Riemann—Hurwitz asymp-
totique et probabiliste qui calcule la valeur attendue de I’indice de ramification réel
d’un revétement aléatoire de la sphére de Riemann. Plus généralement, on étudie
l'asymptotique de la valeur attendue du nombre et de la distribution des points
critiques réels d’un pinceau de Lefschetz réel sur une variété algébrique réelle. Tout
au long de 'article, on donne des résultats analogues pour le cas complexe. Notre
outil principal est la théorie des sections pics d’Hérmander.

1. Introduction

The Riemann—Hurwitz formula says that the total ramification index of
a degree d branched covering f : ¥ — ¥/ between two compact Riemann
surfaces equals d - x(X') — x(X). In particular, if ¥’ = CP!, the total rami-
fication index is 2d 4+ 2g — 2, where ¢ is the genus of X. More generally, if
u: X --» CP! is a Lefschetz pencil on a complex manifold X of dimension
n, then

(=1)"# crit(u) = x(X) — 2x(F) + x(Y)

where F' is a smooth fiber of u and Y is the base locus of u.

The questions that motivate this paper are the following: how do these
critical points distribute on the variety? When u is defined over R, what
about the number of real critical points?

Keywords: real algebraic varieties, Lefschetz pencils, peak sections, random geometry.
2020 Mathematics Subject Classification: 14P99, 32U40, 60D05.



1086 Michele ANCONA

We answer these questions by computing the asymptotic expected num-
ber of real critical points of real Lefschetz pencils and also the asymptotic
distribution of such points.

The chosen random setting has already been considered by Shiffman and
Zelditch in [15] to study the integration current over the zero locus of a
random global section of a line bundle over a complex projective manifold.

In the real case, Kac [7], Kostlan [8] and Shub and Smale [16] computed
the expected number of real roots of a random real polynomial. In higher
dimensions, Podkorytov [14] and Biirgisser [1] computed the expected Euler
characteristic of random real algebraic submanifolds and Letendre [11] the
expected volume (see [12] for the expected length of a random lemniscate).
In [3, 4, 5] Gayet and Welschinger estimated from above and below the
Betti numbers of the real locus of real algebraic submanifolds (see also [9]).
For intersection of real quadrics, a precise asymptotic of the total Betti
number has been given by Lerario and Lundberg in [10]. In [13] Nicolaescu
computed the expected number of critical of a random smooth function on
a Riemannian manifold have and how they distruibute.

Statements of the results

Let X be a smooth real projective manifold of dimension n, that is a
complex projective manifold equipped with an anti-holomorphic involution
¢x, called the real structure. We denote by RX = Fix(cx) its real locus.
Let £ be a positive real line bundle over X. For large d, for almost all pairs
(o, B) € HO(X; £L%)? (resp. RH?(X; £4)2) of (real) global section, the map
Uap : X --» CP! defined by = — [a(x) : B(z)] is a (real) Lefschetz pencil,
see Proposition 2.11. Recall that a real Lefschetz pencil is a Lefschetz pencil
u: X --» CP! such that conjou = uocx.

DEFINITION 1.1. — Wedenote the set of critical points of uag by crit(uqp)
and by Rcrit(uqg) = crit(uqag) NRX the set of real critical points.

The number of real critical points of a real Lefschetz pencil depends
on the pair («, ). The main theorem of this paper is the computation of
the expected value of this number. Recall that, by definition, the expected
value of #R crit(uqg) equals

E[#R crit(uas)] = / (#R crit(uag))du(a, 8).

(e, B)ERHO(X,L%)2

ANNALES DE L’INSTITUT FOURIER
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THEOREM 1.2. — Let X be a smooth real projective manifold of di-
mension n and (L, h) be a real Hermitian line bundle over X with positive
curvature. Then

(nnili)ueR(”)gVOlh(RX) if n is odd

lim .
(nn o er(n) Vol (RX) if n is even.

d—+o0o \/g

E[#R crit(uag)] = {

In this theorem, Vol (RX) is the volume of RX with respect to the Rie-
mannian volume form dV} induced by the positive curvature of the metric
h. The probability measure we consider is a natural Gaussian probability
on RHY(X; £4)? (see Section 2.1) and egr(n) is the expected value of (the
absolute value) of the determinant of real symmetric matrices (for the ex-

plicit values of eg(n), see [5, Section 2]). We recall that eg(1 \[ then
we have:
COROLLARY 1.3. — Let (¥,cx) be a real Riemann surface and (L, h)

be a real Hermitian line bundle of degree 1. Then, for every pair («, ) €
RHO(X; £%)? without common zeros, the map u,g is a degree d branched
covering between ¥ and CP' and the expected real total ramification index

of uqp is equivalent to
\/? Vol, (RX)Vd

Theorem 1.2 is a consequence of a more precise equidistribution result. In

as d tends to +oo.

order to introduce it, let us define a natural empirical measure associated
with the real critical points of a Lefschetz pencil as follows. For any pair
(o, B) € RHO(X; £4)? of real global sections of £, we define

Ryag = Z (530.
z€eRcrit(uag)

THEOREM 1.4. — Let X be a smooth real projective manifold of di-
mension n and (L, h) be a real Hermitian line bundle over X with positive
curvature w. Then

(nnilll),,eR(n)%th if n is odd

1
lim —zE[Ry.g] =
d—+o00 /d [Ruag] { (n"'i),,eR(n)th if n is even.

weakly in the sense of distributions. Here, dV}, is the Riemannian volume
form induced by the curvature w.

TOME 70 (2020), FASCICULE 3
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Theorem 1.4 says that, for any continuous function ¢ € C°(RX), we
have

" . .
e z dv, if dd
lim E[RVQB](QO) — (n;&)ueR(n) 2 fRX PAVh 1 n ?s o
moner(n) fgx edVe  if nis even.

where the expected value is defined by

ERvesl(e) = | S @), B).
RHO(X;£4)2 zERcrit(uag)
In the complex case, we obtain a similar equidistribution theorem, whose
proof follows along the same lines. For any pair (a,8) € H°(X;L£%)? of
global sections of £¢, we define

Vap = Z 5$

zecrit(uag)
to be the empirical measure associated with the critical points of the pencil

Uaps-

THEOREM 1.5. — Let X be a smooth complex projective manifold of
dimension n and (L,h) be a Hermitian line bundle over X with positive
curvature w. Then

. 1
i e les] = (4 "
weakly in the sens of distribution.

As before, Theorem 1.5 says that, for any continuous function ¢ on X,
we have

1 .
Jim_ T Blle) = (1) [

Organisation of the paper

In Section 2.1, we introduce the Gaussian measure on H°(X;£%)? as-
sociated with a Hermitian line bundle (£, h) over a complex manifold X.
We also give the same construction for the real case. We follow the ap-
proach of [3, 5, 15]. In Section 2.2, we present some classical results about
Lefschetz pencils on complex manifolds. In Sections 2.3 and 2.4 we intro-
duce our main tools, namely the Hoérmander peak sections (see also [5],
[17]) and the incidence manifold (see [16]). Section 3 is completely devoted
to the proofs of the Theorems 1.2, 1.4 and 1.5. In Sections 3.1 and 3.2,
we prove the equidistribution of critical points of a (real) Lefschetz pencil
over a (real) algebraic variety X . This will be done using coarea formula

ANNALES DE L’INSTITUT FOURIER
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and peak sections. These ideas are taken from [5]. In Section 3.3 we will
compute the universal constant by direct computation.
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2. Definitions and main tools
2.1. Notations

Let X be a complex manifold of dimension n. Let £ — X be a holomor-
phic line bundle equipped with a Hermitian metric h of positive curvature
w € QUD(X,R). The curvature form induces a Kéhler metric and a nor-

n

malized volume form dz = ¥
w

X
Hermitian metric h? on £? for any integer d > 0 and also a L?-Hermitian

product (-,-)z2 on the space H°(X; L?) of global holomorphic sections of
L4, Tt is defined by

on X. The Hermitian metric h induces a

n

(o, B) 2 :/th(a,ﬁ)dx

for any «, 8 in H°(X; £4). This L2-Hermitian product induces a Gaussian
measure on H°(X; £4)? defined by

J(A) = — /e—uania—n,@uizdad@
A

T2Na
for any open subset A C HY(X; £%)? where dadj3 is the Lebesgue measure
associated with (-,-)z2 and Ny = dimc H°(X; £%). Finally, a Lefschetz
pencil on X is a rational map u : X --» CP! having only non degenerated

critical points and defined by two global sections of a holomorphic line
bundle with smooth and transverse vanishing loci.
All these definitions have a real counterpart.

e Let X be a real algebraic variety of dimension n, that is a complex
manifold equipped with an anti-holomorphic involution cx. We de-
note by RX = Fix(cx) its real locus.

TOME 70 (2020), FASCICULE 3
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A real holomorphic line bundle p : £ — X is a line bundle equipped
with an anti-holomorphic involution ¢, such that pocx = cgop
and c, is complex-antilinear in the fibers.

e We denote by RH?(X; £) the real vector space of real global section
of L, i.e. sections s € H°(X; £) such that socx =cg 0 s.

e A real Hermitian metric on £ is a Hermitian metric h such that
¢ih = h.If (£, h) is a line bundle over X with positive curvature w,
then w(-,7-) is a Hermitian metric over X and its real part defines
a Riemannian metric over RX. We denote the Riemannian volume
form induced by this metric by dVy,.

e The L2-Hermitian product (-,-)z2 on H(X; L?) restricts to a L2-

scalar product on RH?(X; £%), also denoted by (-, - ) 2. Then, as in

the complex case, also in the real case we have a natural Gaussian
measure on RH?(X; £4)? defined by
(A) = - / e~ lal22=18122 ad g
A

mNa

for any open subset A C RHY(X; £4)? where dad is the Lebesgue
measure associated with (-,-);2 and Ny = dimc H(X;L%) =
dimg RHO(X; £?).
o A real Lefschetz pencil u : X --» CP! is a Lefschetz pencil such
that u o cx = conjou.
We conclude this section by introducing some notation on symmetric ma-
trices.

DEFINITION 2.1. — For any n € N*, we denote by Sym(n,R) the real
vector space of real symmetric matrices of size n X n. It is a vector space
of dimension w We equip it with the basis B given by Ejj and Ez‘j =
E;j+ Ey; for 1 <i < j < n, where, for any k,l with1 < k,l < n, we denote
by Ej; the elementary matrix whose entry at the i-th row and j-th column

equals 1 if (i,75) = (k,1) and 0 otherwise.

We equip Sym(n, R) with the scalar product turning B into an orthonor-
mal basis. Let ur the associated Gaussian probability measure. We then set

en(n) = / (det Aldyuz(A).
AeSym(n,R)

2.2. Lefschetz pencils

In this section, we compute the asymptotic value of the number of critical
points of a Lefschetz pencil (see also [3, Section 1]).

ANNALES DE L’INSTITUT FOURIER
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Recall that a Lefschetz fibration is a map X — CP! with only non
degenerate critical points. The following proposition is a kind of Riemann—
Hurwitz formula for Lefschetz fibrations, for a proof see [3, Proposition 1].

PROPOSITION 2.2. — Let X be a smooth complex projective manifold
of positive dimension n equipped with a Lefschetz fibration p : X — CP!
and let F' be a regular fiber of p. Then we have the following equality:

X(X) = 2x(F) + (=1)"# crit(p).

Remark that if u : X --» CP! a Lefschetz pencil and we blow-up the
base locus Base(u) = Y, then we obtain a Lefschetz fibration @ : X =
Bly X — CP!. By additivity of the Euler characteristic, we have that
x(X) = x(X) + x(Y), then by Proposition 2.2 we have

(2.1) X(X) = 2x(F) = x(Y) + (=1)"# crit(u).

PRrROPOSITION 2.3. — Let L be a holomorphic ample line bundle over a
complex manifold X of dimension n. For almost all pair of global sections
(a, ) € HY(X;L%?, the map uap defined by z +— [a(z) : B(z)] is a
Lefschetz pencil (see Proposition 2.11). Then, as d goes to infinity, we have

(2.2) #crit(uag) = (n+1) (/X cl(ﬁ)"> d™ +0(d" ™).

Proof. — We will follow the lines of Lemma 2, Lemma 3 and Proposi-
tion 4 of [3].

We have x(F) = [ cn—1(F) and x(Y) = [, cn—2(Y). We remark that
the base locus is the intersection of the zero locus of a and 3, that is
Y = Z, N Zg. A regular fiber F over [a,b] € CP! is the zero locus of the
section ba — aff € H°(X;L?), thus the normal bundle Ny, p is EldF To
compute y(F) we will use the adjunction formula. We have

then we have ¢(X)|p = ¢(F) A ¢(L%)F, that is

(I4+aX)+ - +eX)p=0+aF) +- +ca1(F) A1 +der(L)).

\
If we develop this we have ¢1(X) = ¢1 (F)+dei (L) and, for j € {2,...,n—1},
we have ¢;(X)p = ¢;(F)+dei1 (L) pAcj—1(F). Then, summing up the term,

i (F) =Y (1) d* s (L)fir A cjn(X) 5.
k=0

TOME 70 (2020), FASCICULE 3
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In particular, for j = n — 1 we have

n—1

no1(F) =Y (1) d* 1 (L)fe A o1 (X)) -
k=0

Then x(F) is equal to [ 37—y (=1)*d*c1(£)")|r A cnp—1(X)|. But, for
« € Hi%?(X), we have that

/Fa‘F:/Xa/\cl([,)

Z/ kdk+1 ﬁ)k-&-l /\Cnfkfl(X)

and asymptotically we get

W)~ ([ )

For Y = Z, N Zg, the same argument gives us

SO

)

&(V) = S (=D dbes (L)l A ejor(Za)py-
k=0

But, as before,

cj—k(Za) =Y (—1)"d"ci(L)" A cj_p_n(X).
0

>
Il

and so, replacing in the above equation

J =k
Z d a (L \Y A (Z(—l)hdhcl(ﬁ)lhy A Cj_k_h(X)y>

=0 h=0

For j = n — 2 we have

n—2 n—2—k
en_a(Y) = Z(—l)kdkcl(c)ffyA< S (—1)hdley (L) A cn_g_k_h(X)y>

k=0 h=0
and this is equivalent to

n—2

S (L) = (1) - D e (L)

k=0

ANNALES DE L’INSTITUT FOURIER
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as d — 0o. So we have, as d — 00,
)~ ()= [ o

= (—1)"2(n — 1)dn! / (L) A er (L)

Za

= (~1)"2(n - 1) (/X cl(ﬁ)") dr.

Combining this with x(X) = 2x(F) — x(Y) 4+ (=1)"# crit(uqp) we obtain
the result. 0

2.3. Hormander’s peak sections

In this section we recall the theory of Hérmander’s peak sections, an
essential tool for our proofs of Theorems 1.4 and 1.5 (see also [5, 6, 17]).
Let £ be a holomorphic line bundle over a smooth complex projective
manifold equipped with a Hermitian metric h of positive curvature w and
let dz = —““— be the normalized volume form. Let  be a point of X.

wmn

There existg, in the neighborhood of z, a holomorphic trivialization e of
L such that the associated potential reaches a local minimum at z with
Hessian of type (1, 1). The following result was proved in [17] (see also [5]).

LEMMA 2.4. — Let (£,h) be a holomorphic Hermitian line bundle of
positive curvature w over a smooth complex projective manifold X. Let
x€ X, (p1,.-.,pn) €EN" and p’ > py + - -+ + pp,. There exists dy € N such
that for every d > dy, the bundle £ has a global holomorphic section o
satisfying [, h(o,0)dz =1 and

1
h(o,0)dx = O (,)
/X\B(m,“\’f{) dzr

Moreover, if (x1,...,x,) are local holomorphic coordinates in the neigh-
borhood of x, we can assume that in a neighborhood of z,
/ 1
o(1,. . xn) = Az - 2P+ O(||z|*))ed <1 +0 <d2p,)>

where
A2 = / |8 - xPe 2R (e, ed)da
B(z,

logd
Vd

and e is a holomorphic trivialization of L in the neighborhood of x whose

potential ¢ = —logh(e,e) reaches a local minimum at x with Hessian
mw( -, i ).

TOME 70 (2020), FASCICULE 3
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This lemma is true also in the real setting, in the following sense:

LEMMA 2.5. — Let (£, h) be a real holomorphic Hermitian line bundle
of positive curvature w over a smooth real projective manifold X. Let x €
RX, (p1,...,pn) € N* and p’ > p; + -+ + p,,. There exists dy € N such
that for every d > dg, the bundle £L? has a global holomorphic section o
satisfying [, h%(o,0)dz =1 and

1
hi(o,0)dVy, = O ()
/X\B(x,“’j;) dz

Moreover, if (z1,...,z,) are local real holomorphic coordinates in the
neighborhood of x, we can assume that in a neighborhood of x,

/ ].
(@1, an) = A@ht -2k + O(||]*))e (1 o (d)>

where

>\_2 - / logd |£L'11)1 o ,x£n|2hd(ed7 ed)dx
B(x, 5

and e is a real trivialization of L in the neighborhood of x whose potential
¢ = —log h(e, e) reaches a local minimum at x with Hessian ww(-,i-).

This real counterpart follows from Lemma 2.4 by averaging the peak sec-
tions with the real structure. Let oy be the section given by the Lemma 2.5
with p’ = 3 and p; = 0 for all ¢, o; the section given by Lemma 2.5 with
p’ = 3and p; = d;;, 0;; the section given by the Lemma 2.5 with p; = p; =1
and pyr = 0 otherwise and oy, the section given by the Lemma 2.5 with
pr = 2 and p; for | # k. These sections are called peak sections. Their
Taylor expansions are:

) = (a + (e (140 () )

o) = v+ 0llul e (140 () i
i) = Oy + OO (140 () i
o) = (st + O (140 () vk

The following lemma shows the asymptotic of the constants Ao, A, Asj
et )\kk

ANNALES DE L’INSTITUT FOURIER
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LEMMA 2.6 ([5, Lemma 2.5]). — Under the hypothesis of Lemmas 2.4
and 2.5, we have

. 1
Am e = Vo S an = Vi
dinoo \/E’H'Q w=n £ dgnoo \/gn+2 e \/i “

for the L?-product induced by dx = fw:” where 6 = [ c1(£)™ is the
X

degree of the line bundle L.

Set
Hy, = {s € HY(X;L£%) | s(x) = 0,Vs(z) = 0, V%s(z) = 0}
(resp. RHy, ={s € RH(X; L) | s(z) = 0,Vs(z) =0, V2s(z) = 0}) -

This space is formed by sections whose 2-jet vanishes at x. The sections
(0i)o<i<n (0ij)1<i<j<n provide a basis of a complement of Ha,. This basis
is not orthonormal and its spanned subspace is not orthogonal to Hs,.
However, this basis is aymptotically an orthonormal basis and its spanned
subspace is asymptotically orthonormal to Hs,, in the following sense:

PROPOSITION 2.7 ([17, Lemma 3.1]). — The section (0;)ocic<n and
(Uij)lgigg‘gn have L?-norm equal to 1 and their pairwise L?-scalar product
are O( ). Likewise, their scalar products with every unitary element of Ha,
are O(z /2)

2.4. Incidence manifolds

Following [16], we define an incidence manifold associated with the com-
plex (resp. real) manifold X and to the (real) positive line bundle L.
We will use this incidence manifold to prove that, for almost all pairs
global sections (o, 3) € HY(X;L%)? (resp. (o, 8) € RH(X;L%)?), the
map Uqg : ¢ — [a(x) : f(x)] defines a Lefschetz pencil, see Proposition 2.3.

Let (L,h) be a (real) Hermitian line bundle with positive curvature w
over a (real) algebraic variety X of dimension n.

DEFINITION 2.8. — Let o, 8 € H°(X; L) (resp. RH®(X; L%)) be two
(real) global sections such that the map un.g : « — [a(z) : B(z)] is a
Lefschetz pencil. We define

(1) the base locus of a Lefschetz pencil as the points x such that a(x) =
Blx) = 0;

TOME 70 (2020), FASCICULE 3
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(2) the critical points as the points * € X \ Base(ung) such that
(aVB—pVa)(z) = 0 (this expression does not depend on the choice
of a connection V on L). We denote by crit(uqg) the set of critical
points of (uag) and by R crit(uag) = crit(uqg) NRX the set of real
critical points.

We denote by A (resp. by RA) the set of (a,3,2) € HY(X;L£%)? x X

(resp. (a,B,2) € RH(X; £%)? x RX) such that a(z) = B(z) = 0. Set
Z={(a,B,2) € (HO(X;L',d)2 X X)\ Az € crit(uap)}

(resp. RZ = {(a, B,7) € (RH(X;LY)? x RX) \RA | z € crit(uas)}).

PROPOSITION 2.9. — Let L be a (real) holomorphic line bundle over a
smooth complex (resp. real) projective manifold X . If £ is 1-ample, that
is if the 1-jet map

HO(X; LY x X — J'(LY)
(5,2) = Ja(s) = (s(x), Vs())

is surjective, then T (resp. RT) is a smooth manifold of complex (resp. real)
dimension 2Ny, where Ny = dim H°(X; £4).

Proof. — We study the differential of the map
q: (HY(X; L x X)\A = T X ® £*
defined by
(o, B,2) = (aVB — fVa)(z) € T X © £

defining Z. If we prove that 0 is a regular value, then, by Implicit Function
Theorem, we have the result. Now, for (o, 3,2) € Z we have

dj(e.0)q - (&, B, &) = (VB — BVa + aVp — fVa
+aVi B — BV ya+ ViaVi — ViVa)(z).

For any n € T*X ® £2? we have to prove that there exists (d,B,JL‘) such
that dj(a,8,2)9 - (&, B,&) = 1. As (o, B,2) € A, we know that at least one
between a(z) and B(x) is not zero. Without loss of generality, suppose that
afx) # 0, then, as £? is 1-ample, there exists § such that 3(z) = 0 and
a(z)VE(x) = n, then djs,5.0)¢ - (0,5,0) = . O

If £ is ample, then, for large d, the line bundle £¢ is 1-ample. Then, for
large d, Z (resp. RZ) is a smooth manifold, called the incidence manifold.

ANNALES DE L’INSTITUT FOURIER
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The tangent space T(4, 3,1 of Z at a point (a, 3,7) (resp. T(4,5,0)RZ of
RT) equals

{(a,ﬂ',a‘:) e HY(X; LY x T, X

(&VB — BV + aVh — BVa
+aVi 8= BV a)(z) =0

(&, 8,) (aVpB — BVé +aVp — fVa
TP e RHO(X; L2 x TLRX | +aVE, 8 — BV ja) (@) =0 )
Remark 2.10.

e In the equation defining the tangent space there is also the term
<Vj;OéVB - VmBVa) (.Z‘)

However, it equals zero (both in the complex and real case) because
on Z and RZ we have the condition (aV — fVa)(z) = 0 so that

(V2aVB — ViBVa) (z) = <<Via§ - vm) w) (z) = 0.

e The incidence manifold comes equipped with two natural projec-
tions

T — HY(X;£Y)? and 7x:7 — X
(resp. mry : RZ —» RH°(X;£%? and mgy :RZ — RX).

PROPOSITION 2.11. — Let £ be an ample holomorphic line bundle (resp.
real holomorphic) over a smooth complex projective manifold X (resp. real
projective). For large d and for almost all pairs («, 8) € H°(X; £4)? (resp.
RHO(X;£4)?2), the map

Ugp : X --+ CP?
x> [a(z) : Bz)].
is a Lefschetz pencil (resp. real Lefschetz pencil).

Proof. — The critical points of the projection mpy (resp. mry) are ex-
actly the triples («,3,z) such that the Hessian (aV?3 — pV2a)(z) is
degenerate. By Sard’s theorem valcrit(my) has zero Lebesgue, and then
Gaussian, measure. Also, for large d, the set I' composed by the pairs
(o, B) € HY(X; L% x H°(X; L) such that {x € X,a(z) = B(z) = 0} is
not smooth has zero Lebesgue and Gaussian measure (see for example [11,
Section 2.2]). Then (T"Uvalcrit(7g)) has zero measure and its complement
is exactly the set of pairs of sections defining a Lefschetz pencil. O
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3. Proof of the main theorems

In this section we prove Theorems 1.2, 1.4 and 1.5. Hérmander’s peak
sections and the coarea formula play an important role here.

3.1. Coarea formula

In this section we use the incidence manifold defined in Section 2.4 and
the coarea formula to write the expected distribution of critical points of a
(real) Lefschetz pencil as an integral over X (resp. RX).

DEFINITION 3.1. — The normal jacobian Jacy f of a submersion f :
M — N between two Riemannian manifolds is the determinant of the
differential of the map restricted to the orthogonal complement of its kernel,
that is Jacy f = Jac(dfj(eras)t)- Equivalently, if df, is the differential of
[ at p, then the normal jacobian is equal to ,/det(df,dfy), where df, is
the adjoint of df, with respect to the scalar product on T,M and Ty, N.

Let X be a smooth complex (resp. real) projective manifold of dimension
n and (£, h) be a (real) holomorphic line bundle with positive curvature w.

DEFINITION 3.2. — We define a Dirac measure for (real) critical points
of a (real) Lefschetz pencil u,p associated with a pair («, ) € HO(X; £4)?
(resp. (@, B) € RH(X;L%)?) by

Vop = Z Oy resp. Rug,p = Z O

zEcrit(uag) zeRcrit(uag)
Let ¢ be a continuous function on RX. Then, by definition, we have

E[Rvas](¢) = / S e(@)du(a,B)

0(X:Ld)2
RHO(X;L4) zE€Rcrit(uag)

where dp is the Gaussian measure on RH?(X;£%)? constructed in Sec-
tion 2.1. Finally, recall that we denote by mry and mryx the two natural
projections from RZ to RH?(X; £%)? and RX. The projection mry is (al-
most everywhere) a local isomorphism and, by a slight abuse of notation,
we will denote by mp 111, any local inverse.

PrOPOSITION 3.3. — Following the notation of Section 2.4, we have

(3-1)  E[Rvap](#)

1
= [ (@) / - dp L AV
-/RX T (T (z)) |(7TRI%I)* Jacy (mrx)| | 7R H (”R)}(i))
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where the measure du‘Tr ( is the following: first we restrict the
RH

ﬂng)i (m))
scalar product (-,-)p2= on RHO(X;L%? to mry(mgs(x)), which is a
codimension n submanifold, then we consider the Riemannian measure
associated with this metric, and finally we multiply it by the factor
ﬁ67‘|°‘|@27”ﬁ‘@2, where Ng = dim H°(X; £%).

Proof. — We denote by 7 dp the pull-backed measure on RZ, which
is well defined since mrpy is (almost everywhere) a local isomorphism. By
definition of the pull-backed measure, the integral

E[Rves)(¢) = / S p@)du(a, )

0 cL£d)2
RHO(X;L%) zERcrit(uag)

which defines the expected value equals the following integral over the
incidence manifold RZ

/ (mtx ) (0 B, 2) () (e, B, 7).
RZ

We use the coarea formula (see [2, Lemma 3.2.3] or [16, Theorem 1]) for
the map mrx and we obtain

1
E[Rv, :/ SE/ T (Trgdp) - dV
[Ruas) () RX o) k(@) \JacN(ﬂRX”( i u)lw"”i(“ "

where the measure (ﬂ'ﬁng/J,)lﬂ_)—(l(w) is the following: first we restrict the
(singular) metric 75 (-, )72 on RZ to 7mgy (), that is a codimension n
submanifold, then we consider the Riemannian measure associated with
this metric, and finally we multiply it by the factor W%def‘lo‘”;*”ﬁ“i?,
where Ny = dim H°(X; £4). Another application of coarea formula for the
map 7ry gives us the result. O

The space Ty (Tgx () is formed by pairs (o, 8) € RH?(X; £%)? such
that z € Rerit(uqg). In the next section we will identify this space with
an intersection of some quadrics in the vector space RH®(X; £4)2. In the
complex case, the same argument gives us, for any continuous function ¢

on X
(3.2) E[vas](y)

1
= so(x)/ - Ay et ey AV
/X (s @) [Tt Jacy (mx )| O (@)
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3.2. Computation of the normal jacobian

In this section we compute the normal jacobian that appears in (3.1)
and (3.2). We follow the notations of Sections 2.3, 2.4 and 3.1. The main
result of this section is the following proposition:

PRrROPOSITION 3.4. — Following the notation of Sections 2.4 and 3.1,
under the hypothesis of Theorem 1.4, we have:

E[Rvas](p) = / PO R(@)aV,

where

Rd |det aObZ] B boal])| d//LQ + O <1>
o v/det ((aza; + bib;) + (a2 + b3) Id) Vd
and Q c R2(n+1)+n(n+1) js the product of the intersection of quadrics

@: {(ao,bo,...7an7...,bn) €R2(n+1) aobi—aibo =0 Vi= 1,...,n}

with the vector space R™"+t1) of coordinates aj; and by for 1 <i<j<n

and , )
72 Z b3 Z@J ij Zi,j bij

dUQ = n+1+n(n+1) dVQ

where dV g is the Riemannian Vo]ume form of Q).

The remaining part of this section is devoted to the proof of Proposi-
tion 3.4. Our main tool will be the peak sections defined in Section 2.3.
We fix a point z € X (resp. x € RX) and we want to compute the
integral
L d
/WRH(WR)}@:)) [(mgp)* Jacy (mrx)| Himar (e (@)

that appears in (3.1). We recall that the tangent space of Z (resp. RZ) at
(a, B, 7) is

(3.3)

{(a,ﬂ',j;) € HY(X; LY x T, X

(aVB — BVa + aVp — fVa
+aVi 8= BV ya)(z) =0
( {( B, ) (aVB — BVa + aVp — fVa } )
resp. .
€ RH(X; L) x T,RX | +aV{; 16 = BV, ya)(z) =0
We remark that dmp(a,p,2) 18 (almost everywhere) an isometry, because

on Z we put the (singular) metric n3;(-,-)r2. For any z € X (resp.
z € RX) we will compute the normal Jacobian (7;')* Jacy (mx) (resp.
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(mrpy)* Jacy (mrx)) at a point (a, B) € Ty (my' (x)) by using the following
two linear maps:

Anp t HY(X; L% x HO(X; L) — Ti X @ £2¢

3.4

34 (resp. Aap:RHO(X; L% x RHY(X;L%) —» R(T*X ® £27),)
and

- Bup: ToX — TFX @ £

3.5

(resp. Bag: T,RX — R(T*X ® £*9),)
defined by
Aaglc, B) = (aVB — BV + aVh — fVa)(x)

and

Bag(i) = (V3 B — BV, a) ()

On T X ® L2 (resp. R(T*X ® £2%),.) we have the Hermitian (resp. scalar)
product induced by h.

PRrROPOSITION 3.5. — Following the notation of Sections 2.4 and 3.1,
for any x € X (resp. + € RX) and any (o,B) € mg(ny'(z)) (resp.
Tri (TR (7)), we have

JaCN(Aag)

—1\* J _
((WH ) acn ﬂ—X)(a?ﬂ) Jac(Bag) ’
where A,p and B,g are the linear maps defined in (3.4) and (3.5).

Proof. — Recall that a vector (¢, 3,&) € HO(X;£%)? x T, X is in the
tangent space of Z at (a, 8, ) if and only if

(VB — BVa +aVB — fVa+aVi, |8 — BV, ja)(z) =0.
In particular, the vector & is uniquely determined by
(3.6) @=—(aV?8—BVia)(z) to (aVB — BVa+aVp - fVa)(z).

The map ((r5')*drx)(a, B) sends (&, B) to & and then, by (3.6) and by
the definition of A,p and B,g, we have

((mg") dmx) (@, 8) = =B5 © Aag.

Passing to the normal Jacobian and using that 7z is a local isometry, we
get ((m5')* Jacy mx ) (@, B) = Jac(Bag) ™ Jacn (Aag). O
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Fix real holomorphic coordinates (z1,...,z,) in a neighborhood of a
point x € RX such that (dx ,...,%) is an orthonormal basis of T, X
(resp. T,RX). We want to compute the integral

1

(3.7) / .
e (m b @) (M) Jacn (mrx )|

by (2 ()

that appears in (3.1).
For any (a, 8) € HY(X; £%)? (resp. RH’(X; £%)?) we have

a = Z%Uz + Z Aokl + T

1<ELIKn

B= Zb07+ Z briog + 7'

1<ELIKn

where 7,7’ € ker Jg and o;, 0 are the peak section of Lemma 2.5.

We remark that (a,3) € mg(rx'(z)) if and only if agb; — a;by = 0
Vi=1,...,n, and also that the definition of Jacy(7wx) involves only the
2-jets of sections. With this remark in mind we define the following spaces:

o Ko = (ker J2 x ker J2) C H°(X; L£%)? (resp. RHO(X; £4)?);

e Hy = Vect{(04,0), (041,0),(0,0;),(0,011)} € HY(X : L%)? (resp.
RHO(X;L42) fori=0,...,nand 1 <I<k<n

e Q= HyNmg(ry'(z)).

We see @ as the product of the intersection of quadrics:
é = {(ao,bo,...,an,bn) S RQ(n—H) apb; —abp =0 Vi= 1,...,71,}

with the vector space R™"*1) of coordinates a;; and b;; for 1 <@ < j <

X X

n. Let mo : K5+ — Ho be the orthogonal projection. A consequence of
Proposition 2.7 is that, for large d, the map w9 is invertible.

PrOPOSITION 3.6. — Following the notation of Section 2.4 and 3.1, let
Anp and Bag be the linear applications defined in (3.4) and (3.5). Then,
in the complex case, under the hypothesis of Theorem 1.5,

(wgl)* Jacn (Aap) = det (775%6[2"'“ ((aiaj + biBj)Ew

RERICITICA)

2n+2 ~ 1
det <7T(5£\/g ((a()bij_boaij)Eij—i_O(\/g))ij)
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and, in the real case, under the hypothesis of the Theorem 1.4,

(m3 1)« Jacy (Aag)

1
= |det (wé%d%“ ((aiaj + bibj) Eij + (ag + b3) 1d +O (\/3)) >
ij

(m5 1), Jac(Bag) = det (mL\/EQ”“ ((aobij ~ boai;) Eij + o(\}(z)) J)

where Eij for1 <1< j<nandkE; fori,j =1,...,n are the matrices
defined in Definition 2.1.

Proof. — Let e be a local trivialization of £ at x as in Section 2.3 and
let (04)i=0,...n, (Oki)1<k<i<n be as in Lemma 2.4 (resp. Lemma 2.5). For
any (a, ) € HO(X; £4)? (resp. RH?(X; £L%)?) we have

o= E a;o0; + E g0kl + T

1<k<I<n

Zb o; + Z bklokl-i-T

1<kLILn
where 7,7" € ker J2. In particular, we have

a(x) = agoo(x), B(x) = booo(x),

z) =Y a;Voi(z), VBx)=> biVoi(z)
i=0 1=0
x) = Z a;VZ0i(z) + Z ar V3o (),
i=0 k,l

V26(x) Zb V20;(x )JrzbleQUkl(I)-
.l

As basis for T, X and T} X ®£2? (resp. T,RX and R(T X ® £24)) we choose

(6%1, ce %) and (dz;®e2?, ... dz, ®e2?) respectively. We choose (o, 0)
and (0,0;), @ = 0,...,n, as a basis of a complement of ker J! x ker J}.

Thanks to Lemma 2.7, this basis is asymptotically orthonormal for the
L2-Hermitian product (-,-) 2. By definition it is an orthonormal basis for
the scalar product (75 ). (-,-)z2 restricted to Hy. Then we obtain, using
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Lemma 2.6,
2n+1 2n
(Aap(00.0).d; @ ) = byyracva™ +o(Va™);
—bo/mScVd 5y 40 (\/fn)

fori=1,...,n;
2n+1 2n
<A(xﬁ(0)0.0)7dx] & 62d> = _a]\/gdﬁ\/& " + O<\/a )7

(Aap(0,01), day @ ) = agy/mocV/d 65+ 0(Vd")

<Aag(ai, 0),dz; ® 62d>

fori=1,...,n;
a 2n+2 2n
<Ba5 (ami),dxj & e2d> = (agbij — boaz’j)miﬁ\/a + . O(x/& +1)
fOI' Z 7& ],
<Ba6 ((9?:>’dxk ® €2d> = ﬂ(aobkk - boakk)ﬁ5g\/g2n+2+0(\/g2n+l).
k

where the Hermitian (resp. scalar) product (-,-) on T¥X ® L2¢ (resp.
R(T;X ® £2%)) is induced by the Hermitian metric h on £. What we
have just computed are the coefficients of the matrices of A, and B,s
with respect to our choice of basis and with respect to the scalar product
(75 )« (-, - ) 2. Werecall that B, is a square matrix and that Jacy (Aap) =
,/Jac(Aa[gA:;ﬁ). More precisely, as d — oo, A,p is equivalent to the fol-

lowing matrix:

by —by O 0 —a1  agp 0o ... 0
s \/a2n+1 b 0 —bg 0 —az 0 a 0
b, 0 0 ... =bp —ap, 0O 0 ... ag
and B,g to the following one:
\/§(a0b11 — boai1) apbi2 — boaiz .. aobin — boain
wsp V| aobar — boaz V2(aob22 — boasz2) ... aoban — boazn
b o aaba— o e boan)

A direct computation shows us that A,gA}, 5 is the matrix
- 1
(W§%d2n+1) ((aiaj + blbj)E” + (|a0|2 + |b()|2) Id +O<d>> .

The results follows. O
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By Proposition 3.6 we have

1 1
(772 )*m
B . Jacg ((agbi; — boaij)Eij) 1
- (ﬂ—d) (det ((aiaj + biBj)Eij + (‘a0|2 + ‘bO‘Q) Id) " O<\/g>)
1
(m3")

“Jacy (Trx)

_ mn< det ((aobij — boaij) i) n O())
\/det ((asaj + bid;)Eij + (a3 + b3)1d)

-

We want to integrate this quantity over mry (wﬂg)l( (ac)) We recall that the

measure dulﬂ ( ) is the following one: first we restrict the scalar
RH

ax (2)
product (-,-)z2 on RH(X;L£%)? to mrp(mzx (7)), that is a codimension
n submanifold, then we consider the Riemannian measure associated with
this metric, and finally we multiply it by the factor W%de_““”i?_”mli?,
where Ny = dim H°(X; £4). Then (3.3) is equal to

|JaC(Baﬂ)|
3.8 / _— _
(38) mr«H(”m:;(:r)) ‘JacN(Aaﬁ)‘ ’ulmH(ﬂR;(m))
_ |Jac(Bag)|
- - Jacy (Aung)] Hira (rii @)
K?Qﬂw(%i(m))@m [Jacn (Aagp)| HA\TRX

/ [Jac(Bags)| .
K- Nmrp (wﬂg; (x)) |JaCN (Aa5)| |K3 Nmen (ﬂJRT; (:c))

_ -1 |JaC(Bu5)‘
B /Q(TFQ ) |[Jacn (Aag)] (7T2*dIu|K2Ln7TRH (ﬂgé(x))).

By Proposition 2.7, the pushforward measure (m2).(p 1) on Ha coin-
cides with the Gaussian measure associated with the orthonormal basis

{(Ui70)a (lea0)7 (Oaai)v (0,0’kl)} 1<i<n Up to a O(%) term. AS a conse-
1<k<I<n
quence we have that (Wg*dulKémﬂ,RH(ﬂ,—l (x))) Is equal to
RX

e 21 a?_Zi b?_Zi,j a?j_zw- b

dpg = dv
,LLQ 7Tn+1+n(n2+1) Q
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up to a O( f) term, where dVg is the Riemannian volume form of Q). We
then have that (3.8) is equal to

o [ac(Bag) |
(39) /Q“T? )- |JacN<Aa5>|d“Q+O<¢a>

n det bi; — b zEl
ot (e e )
41,01, 345,9i \/det ((a;a;+bibj) Eij+ (ad+b3)1d) Ve

aob —boaL

Putting (3.9) in (3.1) and using Proposition 3.5, we obtain Propos-
ition 3.4. g

3.3. Computation of the universal constant

The purpose of this section is the explicit computation of the function
R4(x) that appears in Proposition 3.4. We use the notation of Section 3.2.
To understand Ry (z), we have to compute

\ﬁ/ |det ((aobs; — boaij) Eij)|
\/det (a%

((aia; + bibj)Eyj; + (ad + b3) 1d)
_Z'i ai_zi b’i_zija?j_ ij b?j
EFEERICE dVy.
The main result of this section is the following computation:
PRrROPOSITION 3.7. — Let ) be as in Proposition 3.4. Then
Jrd" / |det ((aobi; — boai;) Eiy)|
Q \Jdet ((aia; + biby) By + (a3 + b3) 1d )
2 2 2
e Zz @i _Zi b3 _Zi i “u—zi,j bi;
X n+1+n(n+1) dVQ
is equal to
(3.10) (nnlll)ueR(n)ﬂ\/gn if n is odd
. (n_l)!!GR(n)\/gn if n is even.

where Eij and E;; are the matrices of Definition 2.1 and er(n) is the
expected value of the determinant of (the absolute value of) the real sym-
metric matrices.
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We recall that Q ¢ R2(+1)+n(n+1) ig the product of the intersection of
quadrics:

@Z {(ao,bo,...7an,...,bn) GRQO’MLU agb; —abp =0 Vi= 1,...,71}

with R*("+1) of coordinates a;; and b;; for 1 < i < j < n. We consider the
parametrization 1 : R("*+2) — @ defined by

Y(a,b,ty, ... tn) = (a,b,aty, by, ..., at,, bty,).

LEMMA 3.8. — We have Jac()) = /1 + ., 24/(a2 + b2)".

Proof. — A computation gives us

1+Z?:1 t2 0 tia  tea ... ... tna
0 Y " 8 b tab tnb
2 2
Jact Jacept = det tia t1b a?+b* 0 0
taa tab 0 a“+b° ... ... 0
tha tnb 0 0 . .. a®+b?

We develop the last line and we obtain

4y "8 0 tia  tza .. ... tn_10a
0 4+ " 8 b tab tn_1b
2 2
(a® + b%) det tia t1b a®+b® 0 o 0
toa tab 0 a“+b" ... ... 0
th—1a tn—1b 0 0o ... .. a2+b2
4y " ] tia  taa tha
0 t1b  tab tnb
2 2
_1\n tia a“+b 0 0
+ (=1)"tnb - det taa 0 a?+b> .. .. 0
- . S |
th_1a 0 0 ...a%4b% 0
0 t1a toa ... tha
n 2
4y " 8 ;Ibz tob ... .. tpb
_yn+l ) t1b a?46> 0 .. .. 0
+(=D)"" tna - det tab 0 a?+b? .. .. 0
o - oo
tr_1b 0 0 .. a’+4b? 0
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For the second matrix we have:

47" 8 tia tea . .. ta
0 t1b tob ... tnb
tia a2+b2 0 0
dCt toa 0 a2+b2 0
o o 0
th_1a 0 0 ...ad*+b? 0
t1b tab . tpb
n a2 0 0 0
— 2 0 242 0 0
—(1+E t7) det o'+
i=1 a’>+b? 0 0
0 0 a?+4b2 0
n
= (—1)"+! 1+§ t2 | tpb(a® 4 %)L
i=1

where the first equality is obtained by developping the first column and
remarking that, in the development, each time we clear the i-th line, the
(i — 1)-th column and the last column are linearly equivalent. Similarly,

0 tia toa ... tha
14+ " 88 b dab . . tpb

t1b a?4+b%2 0 ... .. 0

det tab 0 a®4b ... .. 0
o o 0

tn_1b 0 0 ...ad*+b? 0

=(-D)" (14 th tpa(a® + %)L
i=1

Then we have

Jacp Jacyt
1+Z:1:1 t? 0 ti1a toa ... ... th—1a
0 4" 6 b b tn_1b
2 2
= (a2 + b%) det tia t1b a®+b* 0 0
taa tob 0 a“+b* ... ... 0
SR S T B
n
Z 2),2/,2 2\n
i=1
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Continuing to develop in the same way, we obtain by induction

Jacty Jacy)t = <1+zn:tf> a® + )" <1+Zt2>
th 2 <1+Zt2> a? 4+ b*)"

Passing to the square root we obtain the result. g

Remark 3.9. — In the following we will not write the symbols Eij and
E;; defined in Definition 2.1 in order to simplify the notation.

After this change of variables, we have:

— _ 2
m / |det(a0b” boau)‘ Z'L i Z 21 i a?] i,d z] v
T o Q
@ v/det((aia; + bib;) + (a2 + b2)1d) JENEEICE]

‘det (abij — baij) ’

=Vrd"
@boaig big i €R \/det ((a2 +2) ((taty) + Id))
(1+Z 2) (a2 40) - DAL
x —— e <1+Zt2> (a2+b?) dadbda;;dby;dt;
T 2

Now det ((a? + b%)((tit;)i; +1d)) = (1 + 3, t2)(a® + b*)™ so we obtain

V’]Tdn |det ((abij — baij)ij)|
a,b7aij,bij,tiE]R
o~ (D22, (@M=, (al;+07;)

X +1+"(n+1> dadbda”dbwdtl

It is more practical to see (a,b) as a complex number ¢ € C and also
(aij,bij) as e;; € C. With a slight abuse of notation, we denote dc and de;;
instead of 1dcdc and 5 de”delj Then we have

(@) D=0, lessl?

n(n+l)

mn / |det ( Im(éeij)) | dcdeijdti.
CGC,eij eC,t; €R

n+1+
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Now, set ¢ = (y/1+ >, t?)c and then ¢ = re’’. We obtain

n - 67|E|272m les; |
m / |det ( Im(&elj)) | —dgde,]
EEC,ei]‘EC

n(nt1)
rit==

X/ ! n+1dti
teR /1 + Zl t%

n ) _Zi.j les;|?
=+Vnd / ‘det (Im(e_weij))}ie :

n(n+1)
9€(0,27],e;;€C T 2

deijdﬁ
+o00 ,.n+1,—r2 1
x / I qr- —dt.
r=0 ™ ti€R /1 4+ Y. 17

Then, we have to compute the three integrals appearing in the last equation.
For the first term, we have

—i9 e Zu e |*
‘det (Im(e Cij))lwdeijdﬁ
9€(0,27],e;;€C w2

e )
eijG(C 2

,Z 2.
e i,5 ¥
bij€R ﬁ 2

Here, er(n |det B|dur(B). For the explicit value of eg(n),

) = fBESym(n,R)
see [5, Section 2].

For the second term, we consider the change of variable r? = p and we

obtain
o0 .n —r? oo  neTF
/+ rtle dr:1/+ ps dp:F(%—Fl)
r 2 p=0

-0 s ™ 2m

where I" is the Gamma function.
For the third term we use spherical coordinates and we obtain

1 “+oo tnfl
ti€R \/1+ > t7 t=0 (1+1¢2)
where
Vol($"~1) = 22
I'(3)
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is the volume of the (n — 1)-dimensional sphere. For

n—1
+oo n—1 +oo 2
t t 1
J e —— R
t=0 (V14t2)ntl t=0 (1+12) 1+t

we make the change % =1 — 2 and we obtain

1 .
/ V1 —u? 2du.
0

Finally, set u = sin(6) and we have

w/2
/ cos" " 1(0)de.
0

The formula

n—1 n—1

/cos”fl(Q)du = sin(6) cos"(0) + = 2 /cos"*S(Q)du

tells us that foﬂ/Q cos"1(6)dd is equal to
(n—2)1
(n—1)N
if n is even and it is equal to
(n—2!xn
(n—1)I2

if n is odd.

1111

Putting together all the values of these three integrals and using that

we obtain Proposition 3.7.
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3.4. End of the proofs of Theorems 1.2, 1.4 and 1.5

We use the notations of Sections 3.1, 3.2 and 3.3. By Proposition 3.4, we
have

(3.11)  E[Rvap](#)

/RX@(Q;)(/QWdu(ai,bi,am,bkl)+0<;)>th

n det(aobi; — boa;
:/ (p(x)</a b b m ( € (CLO J 0a J)
RX i504,045,04 \/det ((aiaj +bibs) + (ag + b(2)>ld)

apb;—boa;=0
< >
\/& h

dVg. By Proposition 3.7 we

DA DI DI DL
e i 1]1] ”13

n(n+1)
2

where dug =

AT
have that the inner term of the last equation

0 det(aobi; — boai;
Vrd . |det(aobi; — boaij)|
Zubisiabi \/det ((aia; + bib;) + (a2 +b2) 1d)
67 Zz aiizi bfizi i a?j*ZM bfj

n(n+1)

X

dv
n+1+ Q

is equal to
(n%)”@ﬂ{(n)g\/gn if n is odd
(Tllli!ll)nem(n)\/gn if n is even.

Theorem 1.4 is then obtained by dividing Equation (3.11) by v/d and
then by passing to the limit. Theorem 1.2 is Theorem 1.4 for ¢ = 1. The
proof of Theorem 1.5 follows the lines the proof of Theorem 1.4. For the
computation of the universal constant in this case, we put ¢ = 1 and we
use Proposition 2.3. O
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