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A MULTIVARIABLE CASSON–LIN TYPE INVARIANT

by Leo BENARD & Anthony CONWAY

Abstract. — We introduce a multivariable Casson–Lin type invariant for links
in S3. This invariant is defined as a signed count of irreducible SU(2) representa-
tions of the link group with fixed meridional traces. For 2-component links with
linking number one, the invariant is shown to be a sum of multivariable signatures.
We also obtain some results concerning deformations of SU(2) representations of
link groups.
Résumé. — Nous définissons un invariant de Casson–Lin multivarié. Cet inva-

riant est défini comme un comptage signé de représentations irréductibles SU(2) du
groupe de l’entrelacs, avec traces méridionales fixées. Pour les entrelacs à 2 com-
posantes avec coefficient d’enlacement égal à un, nous montrons que l’invariant est
égal à une somme de signatures multivariées. Nous obtenons également des résul-
tats concernant les déformations de représentations SU(2) de groupes d’entrelacs.

1. Introduction

The Casson–Lin invariant h(K) of a knotK was originally defined by Lin
as a signed count of conjugacy classes of trace-free irreducible SU(2) repre-
sentations of π1(S3 \K) [35]. Lin proved furthermore that h(K) equals half
the (Murasugi) signature of K. Allowing for more general trace conditions,
this result was later generalized by Herald [25] and Heusener–Kroll [27] who
defined an invariant hK(α) for those α ∈ (0, π) which satisfy ∆K(e2iα) 6= 0.
They also related their invariant to the Levine–Tristram signature σK by
showing that

hK(α) = 1
2σK(e2iα).

Similar invariants have been constructed for links: Harper–Saveliev [22] de-
fined a signed count of a certain type of projective SU(2) representations

Keywords: Knot, link, SU(2)-representation, Casson invariant, Casson–Lin invariant,
multivariable signature, character variety, Alexander polynomial, Burau representation,
Gassner representation.
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1030 Leo BENARD & Anthony CONWAY

for 2-component links L = K1 ∪K2 and showed that their invariant coin-
cides with the linking number ±`k(K1,K2). The sign was later determined
by Boden–Herald [5] and the construction was extended to n-component
links by Boden–Harper [4]. We also refer to [4] for a construction involving
the group SU(n) and to [11, 23] for further gauge theoretic developments.
The first aim of this article is to produce a multivariable generaliza-

tion of the Casson–Lin invariant. Namely, building on the approach of
Lin [35] and Heusener–Kroll [27], we consider conjugacy classes of SU(2)
representations with fixed meridional traces. More precisely, given an n-
component ordered link L and an n-tuple (α1, . . . , αn) ∈ (0, π)n such that
the multivariable Alexander polynomial ∆L(t1, . . . , tn) does not vanish on
{(eε12iα1 , . . . , eεn2iαn) | εj = ±1}, we define a multivariable Casson–Lin in-
variant

hL(α1, . . . , αn).
Generalizing the aforementioned authors’ approach, this invariant is de-
fined using (colored) braids. The invariance of hL is then proved by show-
ing independence under the two colored Markov moves (Propositions 3.8
and 3.9). By construction, hL recovers the invariant of Heusener–Kroll [27]
if L is a knot, while Proposition 6.6 shows that hL is locally constant.
Note that since we are counting SU(2) representations and not projective
SU(2) representations, our invariant hL is distinct from the link invariant
constructed by Harper–Saveliev [22] and Boden–Harper [4]. The following
paragraphs shall make this difference more concrete.
In [27, 35], the invariants under consideration were related to signature

invariants by studying the effect of crossing changes and computing the
invariant on a “base case”, namely the unknot. In our setting, this task
is complicated by the following fact: if L and L′ are related by a crossing
change and ∆L is not identically zero, it might well be that ∆L′ ≡ 0, and in
this case, hL′ is not defined. Furthermore, since the Alexander polynomial
of the n-component unlink is trivial (for n > 2), there is no obvious “base
case”.
While we have not managed to circumvent this issue in general, we never-

theless provide a formula relating hL(α1, . . . , αn) to hL′(α1, . . . , αn) when-
ever L and L′ differ by a crossing change within a component of L. In
particular, for 2-component links with linking number 1, we are then able
to relate hL to the multivariable signature σL of Cimasoni–Florens [9]: for
this class of links, the Hopf link can be used as the “base case”. Here, the
multivariable signature is a function on Tn∗ := (S1 \ {1})n that generalizes
the classical Levine–Tristram signature.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.1. — Let L = K1∪K2 be a 2-component ordered link with
`k(K1,K2) = 1, let (α1, α2) ∈ (0, π)2, and set (ω1, ω2) = (e2iα1 , e2iα2).
If the multivariable Alexander polynomial satisfies ∆L(ωε1

1 , ω
ε2
2 ) 6= 0 for

all (ε1, ε2) ∈ {±1}2, then the following equality holds:

(1.1) hL(α1, α2) = −1
2 (σL(ω1, ω2) + σL(ω1, ω

−1
2 )).

First, we observe that despite appearances, the formula displayed in (1.1)
is in fact symmetric.

Remark 1.2. — Since the multivariable signature is known to satisfy
σL(ω−1

1 , ω−1
2 ) = σL(ω1, ω2), the conclusion of Theorem 1.1 can be rewritten

as

(1.2) hL(α1, α2)

= −1
4 (σL(ω1, ω2) + σL(ω1, ω

−1
2 ) + σL(ω−1

1 , ω2) + σL(ω−1
1 , ω−1

2 )).

In fact, throughout this article, we work with colored links: an n-compon-
ent oriented link L is µ-colored if its components are partitioned into sub-
links L1∪· · ·∪Lµ. For instance, taking µ = n, a µ-colored link is an ordered
link, while a 1-colored link is simply an oriented link. In particular, in this
latter case, our construction defines a one variable Casson–Lin invariant
which reduces to Heusener–Kroll’s invariant if L is a knot.

Remark 1.3. — Theorem 1.1 (as stated in (1.2)) does not hold for 1-
colored links with more than one component. Reformulating, if α ∈ (0, π)
and L is an oriented link with at least two components, then − 1

4 (σL(e2iα)+
σL(e−2iα) ) = − 1

2σL(e2iα) need not equal hL(α), even under the assump-
tions of the theorem (for knots hL(α) = − 1

2σL(e2iα) holds by Heusener and
Kroll’s work; the sign difference is discussed in Remark 6.5). Indeed, the
equality is false for the (one-colored) Hopf link: regardless of the number of
colors, hJ vanishes for the Hopf link J (since π1(S3 \ J) is abelian), while
the 1-variable signature of J (i.e. the Levine–Tristram signature) is equal
to 1 or −1 depending on the orientation.

Even though we ignore whether the linking number hypothesis is neces-
sary in Theorem 1.1, some comments can be made nonetheless.

Remark 1.4. — We claim that if Theorem 1.1 is true for an arbitrary
2-component ordered link L = K1 ∪ K2, then the equality hL(π2 ) =
−σL(−1) − `k(K1,K2) holds for the underlying oriented link (which we
also denote by L) whenever ∆L(−1) 6= 0. In particular, if `k(K1,K2) = 1,
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1032 Leo BENARD & Anthony CONWAY

then Theorem 1.1 implies the following equality (which sheds further light
on Remark 1.3):

hL

(π
2

)
= −σL(−1)− 1.

This contrasts with the knot case, where Lin showed that hK(π2 ) =
1
2σK(−1) [35]. The claim is established by noting that for an n-component
ordered link L = K1∪· · ·∪ Kn, the multivariable Casson–Lin invariant sat-
isfies hL(α, . . . , α) = hL(α) (Remark 3.12 below), while the multivariable
signature satisfies σL(ω, . . . , ω) = σL(ω) +

∑
i<j `k(Ki,Kj) [9, Proposi-

tion 2.5], and ∆L(t, . . . , t)(t− 1) = ∆L(t).

Summarizing, the multivariable Casson–Lin invariant is related to the
multivariable signature for knots and 2-component ordered links with link-
ing number 1, but is a priori a new invariant in general. Note that the
resemblance between (abelian invariants of) 2-component links with link-
ing number 1 and knots was already observed and exploited in [19].

Remark 1.5. — It should now be clear that our multivariable Casson–Lin
invariant hL differs from the invariant of Harper–Saveliev [22] and Boden–
Harper [4]. As an additional remark in this direction, it is interesting to
note that this latter count of projective representations might be a link ho-
motopy invariant [4, discussion following Conjecture 4.7], while this seems
unlikely for our hL: the statement is already incorrect for 2-component
links with linking number 1 since the multivariable signature is not a link
homotopy invariant.

The second aim of this paper is to provide some results on deformations
of SU(2) representations of link groups. In other words, we study whether
an abelian SU(2) representation of a link group is a limit point of irreducible
representations. Before providing some history and stating our results, we
introduce some notation. Given an n-component ordered link L = K1∪· · ·∪
Kn (whose exterior in S3 is denoted by ML) and ω = (ω1, . . . , ωn) ∈ Tn∗ ,
we consider the abelian representation

ρω : π1(ML)→ SU(2), ρω(γ) =
(∏n

i=1 ω
`k(γ,Ki)
i 0
0

∏n
i=1 ω

−`k(γ,Ki)
i

)
.

In the knot case (i.e. n = 1), it is known since Burde [6] and de Rham [43]
that if ρω is a limit of irreducible SU(2) representations, then ∆K(ω2) = 0.
Frohman and Klassen have shown that the converse holds if ω is a simple
root of ∆K(t) [20]. This result was generalized by Herald [25] and Heusener–
Kroll [27]: these authors used Casson–Lin type invariants to show that if ω
is a root of ∆K(t) and if the Levine–Tristram signature σK changes value

ANNALES DE L’INSTITUT FOURIER
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at ω, then ρω is a limit of irreducible representations. We refer to [2] for
other results in this direction and to [28, 29] (and references therein) for
deformations of SLn(C) representations.
In the case of links, these questions seemed to have received less atten-

tion. Our first result in this context is a multivariable generalization of the
theorem of Burde and de Rham. While our results hold for colored links
and also concern SL2(C) representations (Theorems 2.4 and 2.5), we only
state the following result on SU(2) representations, see Corollary 2.6:

Proposition 1.6. — Let L be an n-component link and let ω =
(ω1, . . . , ωn) ∈ Tn∗ . If the abelian representation ρω is a limit of irreducible
SU(2) representations, then ∆L(ω2

1 , . . . , ω
2
n) = 0.

Just as in the knot case, one might now wonder about the converse of
Proposition 1.6. Our final result uses Theorem 1.1 to provide a partial
converse for 2-component links with linking number 1 (in the spirit of
Herald’s and Heusener–Kroll’s result [25, 27] which involved the Levine–
Tristram signature). To state our result, we use V (∆L) ⊂ Tn∗ to denote
the variety described by the intersection of Tn∗ with the zero-locus of the
multivariable Alexander polynomial of an n-component link L.

Theorem 1.7. — Let L be a 2-component ordered link with linking
number 1. Let (ω1, ω2)∈T2

∗ be such that ∆L(ω1, ω2)=0 and ∆L(ω1, ω
−1
2 ) 6=

0. Assume that for any open subset U ⊂ T2
∗ containing (ω1, ω2), the

multivariable signature σL is not constant on U \ (V (∆L) ∩ U). Then the
abelian representation ρ(ω1,ω2) is a limit of irreducible representations.

This paper is organized as follows. In Section 2, we review some facts
about representation spaces and prove Proposition 1.6. In Section 3, we
define the multivariable Casson–Lin invariant hL. In Section 4, we review
some facts about the colored Gassner representation and the multivariable
potential function. In Section 5, we study the effect of crossing changes
on hL and, in Section 6, we prove Theorems 1.1 and 1.7.
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2. SL2(C) representations and the multivariable Alexander
polynomial

The aim of this section is to obtain a necessary condition for the exis-
tence of reducible non-abelian SL2(C) representations of link groups and
prove Proposition 1.6 from the introduction. In Subsection 2.1, we review
representation spaces, in Subsection 2.2, we recall some facts about the
multivariable Alexander polynomial and, in Subsection 2.3, we state and
prove our results on reducible representations of link groups. Note that
while most of this paper deals with SU(2) representations, we hope that
the more general SL2(C) statements of Theorems 2.4 and 2.5 might be of
independent interest.

2.1. Representation spaces

In this subsection, we review some basics facts and notations about rep-
resentation spaces. References include [1, 33, 42].

Let π be a finitely generated group and let G be either SU(2) or SL2(C).
The representation space of π is the set RG(π) := Hom(π,G) endowed
with the compact open topology. Choosing a set {x1, . . . , xn} of generators
of π, the map RG(π) → Gn, ρ 7→ (ρ(x1), . . . , ρ(xn)) realizes RG(π) as an
algebraic subset of Gn. A representation ρ ∈ RG(π) is abelian if its image is
an abelian subgroup of G. The closed subset of abelian representations will
be denoted by S(π). A representation is reducible if it admits a non-trivial
invariant subspace and irreducible otherwise.

Remark 2.1. — For SU(2) representation spaces, a representation ρ is
reducible if and only if it is abelian. This is well known not to be the case
for other Lie groups such as SL2(C).

When G = SU(2), we write R(π) instead of RSU(2)(π). The group SU(2)
acts on R(π) by conjugation and the SU(2)-character variety of π consists of

ANNALES DE L’INSTITUT FOURIER
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the quotient X(π) = R(π)/SU(2). After removing abelian representations,
SO(3) = SU(2)/± Id acts freely and properly on R(π) \ S(π). In practice,
we shall frequently consider (subspaces of) the set of conjugacy classes of
non abelian representations:

R̂(π) = (R(π) \ S(π)) /SO(3).

When G = SL2(C), the quotient RSL2(π)/ SL2 is not Hausdorff in general.
In this case, the SL2-character variety of π is the algebro-geometric quotient

XSL2(π) = RSL2(π)// SL2(C).

While references for the algebro-geometric quotient include [17, 37, 42], all
we need in the sequel is the following fact: two representations ρ and ρ′ are
identified in XSL2(π) if their traces are equal, i.e. if for all γ ∈ π one has
Tr ρ(γ) = Tr ρ′(γ). As a consequence, this quotient is the usual one when
restricted to the set of irreducible representations (see for instance [17,
Proposition 1.5.2]).
Finally, when π is the fundamental group of a manifold M , we write

R(M) instead of R(π). In fact, we are particularly interested in the case
where M is a link exterior.

2.2. The multivariable Alexander polynomial and reducible
SL2(C) representations

In this subsection, we first briefly review the multivariable Alexander
polynomial before stating a criterion for the existence of reducible non-
abelian SL2(C)-representations. We also prove Proposition 1.6 from the
introduction.
A µ-colored link is an oriented link L in S3 whose components are par-

titioned into µ sublinks L1 ∪ · · · ∪ Lµ. Given an n-component µ-colored
link L, we let ML denote its exterior, we consider the homomorphism
ϕ : π1(ML) → Zµ, γ 7→ (`k(L1, γ), . . . , `k(Lµ, γ)) and use m1, . . . ,mn to
denote the meridians of L.

Remark 2.2. — Any reducible representation ρ : π1(ML) → SL2(C) is
conjugated to one which satisfies ρ(mi) =

(
λi ∗
0 λ−1

i

)
for some λi ∈ C and

for i = 1, . . . , n. Using K1, . . . ,Kn to denote the connected components of
L, observe that for γ ∈ π1(ML), this representation satisfies

(2.1) ρ(γ) =
(∏n

i=1 λ
`k(γ,Ki)
i ∗
0

∏n
i=1 λ

−`k(γ,Ki)
i

)
.
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1036 Leo BENARD & Anthony CONWAY

Next we bring the colors into play. Assume that λ = (λ1, . . . , λµ) lies in
(C∗)µ and let ρλ : π1(ML) → SL2(C) be the representation which maps
mj to

(
λi ∗
0 λ−1

i

)
if mj belongs to the sublink Li. Note that if µ = n, this

recovers the representation described in (2.1). Consider the composition
ϕλ : π1(ML) ϕ→ Zµ → C, where the second map sends the canonical basis
element ei to λi. If γ lies in π1(ML), then ρλ(γ) can be written explicitly
as

(2.2) ρλ(γ) =
(
ϕλ(γ) ∗

0 ϕλ(γ)−1

)
=
(∏µ

i=1 λ
`k(γ,Li)
i ∗

0
∏µ
i=1 λ

−`k(γ,Li)
i

)
.

As observed in Remark 2.1, reducible SL2(C) representations need not
to be abelian. In order to describe this situation in more details, we re-
call the definition of the Alexander polynomial of a colored link. The pre-
viously described epimorphism ϕ : π1(ML) → Zµ induces a regular Zµ-
covering M̂L →ML. The homology of M̂L is a module over Λµ := Z[t±1

1 , . . . ,

t±1
µ ], and the Λµ-module H1(M̂L) is called the Alexander module of the
colored link L.

Definition 2.3. — The Alexander polynomial ∆L(t1, . . . , tµ) of a µ-
colored link L is the order of its Alexander module.

The Alexander polynomial is only well defined up to units of Λµ, that
is, up to multiplication by powers of ±ti. We refer to [8, 31] for further
information on ∆L. The main theorem of this section is the following.

Theorem 2.4. — Let L be a µ-colored link and let λ = (λ1, . . . , λµ) lie
in (C∗ \{1})µ. There exists a reducible, non abelian SL2(C)-representation
of the form ρλ if and only if ∆L(λ2) = 0.

We delay the proof of Theorem 2.4 to Subsection 2.3 and give some
applications instead.

Theorem 2.5. — Let L be a µ-colored link and let λ = (λ1, . . . , λµ) lie
in (C∗ \{1})µ. If ∆L(λ2) 6= 0, then a sufficiently small neighborhood of the
representation ρλ in RSL2(C)(ML) consists entirely of reducible representa-
tions.

Proof. — The strategy of the proof follows [42, Lemma 3.9(iii)]). A rep-
resentation ρ : π → SL2(C) is reducible if and only if for any γ, δ ∈ π, one
has Tr ρ(γδγ−1δ−1) = 2 [17, Lemma 1.2.1]. Consequently, reducibility is
well defined at the level of character varieties, and the set of irreducible
characters is open in both the representation variety RSL2(ML) and in the
character variety XSL2(ML).

ANNALES DE L’INSTITUT FOURIER
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Since ∆L(λ2) 6= 0, Theorem 2.4 implies that ρλ is abelian. In fact, we
claim that every representation ρ′ with the same character as ρλ is abelian
and is conjugated to ρλ. To see this, first note that since ρ′ has the same
character as ρλ, the previous paragraph implies that ρ′ is reducible. Using
Theorem 2.4, ρ′ must in fact be abelian. Since ρλ and ρ′ are abelian and
have the same character, they must be conjugated, concluding the proof of
the claim.
By way of contradiction, assume that the representation ρλ has irre-

ducible representations in anyone of its neighborhoods. Since we argued
that the set of irreducible characters is open in the character variety,
the character of the representation ρλ lies in an irreducible component
X ⊂ XSL2(ML) that contains the character of an irreducible representation.
Next, consider the quotient map t : RSL2(ML) → XSL2(ML). If χ ∈ X

is the character of an irreducible representation, then the fiber t−1({χ}) is
homeomorphic to PSL(2,C) and in particular has dimension 3. Since irre-
ducible characters form an open dense subset of X and since the dimension
of the fiber t−1({χ}) is upper semi-continuous on X for any character χ
in X, the dimension of t−1({χ}) is at least 3.
Set χλ := t(ρλ). Since ρλ is abelian, the claim implies that t−1({χλ})

is isomorphic to SL2(C)/Gρλ , where Gρλ 6 SL2(C) is the stabilizer of
ρλ and has positive dimension (since ρλ is abelian). Therefore the fiber
t−1({χλ}) has dimension strictly less than 3 which contradicts the previous
paragraph. �

In the next sections, our interest will lie in SU(2) representations. In this
case, as recalled in Remark 2.1, every reducible representation is abelian
and the resulting eigenvalues lie on the unit circle. Using Tµ∗ to denote
(S1 \ {1})µ, we obtain the following result which generalizes a theorem of
Burde [6] and de Rham [43]. This proves Proposition 1.6 from the intro-
duction.

Corollary 2.6. — Let L be a µ-colored link and let ω lie in Tµ∗ . If
∆L(ω2) 6= 0, then a sufficiently small neighborhood of ρω in R(ML) consists
entirely of abelian representations.

Proof. — This follows directly from Theorem 2.5 and the observation
that R(ML) embeds in RSL2(ML): any SU(2) representation is also an
SL2(C) representation. �

TOME 70 (2020), FASCICULE 3
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2.3. Proof of Theorem 2.4

The map ϕλ : π1(ML) → C described in Remark 2.2 endows C with
a left Z[π1(ML)]-module structure; we write Cλ for emphasis. Consider
the twisted cochain complex C∗(π1(ML),Cλ) and recall that a 1-cocycle
u ∈ Z1(π1(ML),Cλ) is a map u : π1(ML)→ C that satisfies

(2.3) u(γδ) = u(γ) + ϕλ(γ)u(δ)

for every γ, δ in π1(ML). The following lemma provides a cohomological
obstruction for a reducible representation to be abelian.

Lemma 2.7. — Given λ ∈ (C∗ \ {1})µ, the following assertions hold:
(1) The representation ρλ gives rise to a cocycle u ∈ Z1(ML,Cλ2).
(2) The representation ρλ is abelian if and only if [u]=0∈H1(ML,Cλ2).

Proof. — Using the definition of ρλ, we may write ρλ(γ) as(
ϕλ(γ) ϕλ(γ)−1u(γ)

0 ϕλ(γ)−1

)
for each γ in π1(ML) and this gives rise to a map

u : π1(ML) → C. Given γ and δ in π1(ML), the equality ρ(γδ) = ρ(γ)ρ(δ)
then shows that u satisfies the following relation:

ϕλ(γδ)−1u(γδ) = ϕλ(γδ−1)u(δ) + ϕλ(γδ)−1u(γ).

Multiplying this equation by ϕλ(γδ), we deduce that umust satisfy u(γδ) =
u(γ) + ϕλ(γ2)u(δ) which is the cocycle condition from (2.3). Thus u is a
cocycle and the first assertion is proved.
To prove the second assertion, we must show that the reducible repre-

sentation ρλ is abelian if and only if the cocycle u is a coboundary, that is
if there exists a z ∈ C such that for all γ ∈ π1(ML), one has

(2.4) u(γ) = (ϕλ(γ2)− 1)z.

First, observe that ρλ is abelian if and only if for each γ ∈ π1(ML) there
exists an invertible matrix A = ( a bc d ) such that DA = Aρλ(γ), where D
denotes the diagonal matrix

(
ϕλ(γ) 0

0 ϕλ(γ)−1

)
. Writing out this equation

coordinate by coordinate, one deduces that ρλ is abelian if and only if the
three following equations hold:

bϕλ(γ) = aϕλ(γ)−1u(γ) + bϕλ(γ)−1,

cϕλ(γ)−1 = cϕλ(γ),
dϕλ(γ)−1 = cϕλ(γ)−1u(γ) + dϕλ(γ)−1.

If ϕλ(γ) = ±1, the representation is abelian if and only if there exists a, c
such that au(γ) = 0 and cu(γ) = 0. Since A must be invertible, either a
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or c must be non-zero, and in this case u(γ) must vanish for each γ. In
particular [u] vanishes in cohomology.

If ϕλ(γ) 6= ±1, the representation is abelian if and only if c = 0 and
au(γ) = b(ϕλ(γ2) − 1). Since A is invertible, we deduce that a 6= 0 and
therefore u(γ) = b

a (ϕλ(γ2) − 1). Consequently, looking back to (2.4), we
have obtained the defining equation for a coboundary. This concludes the
proof of the second assertion and thus the proof of Lemma 2.7. �

As we shall see shortly, Theorem 2.4 will follow promptly from the fol-
lowing lemma.

Lemma 2.8. — Let λ lie in (C∗ \ {1})µ. The complex vector space
H1(ML;Cλ) does not vanish if and only if λ satisfies ∆L(λ) = 0.

Proof. — First, since we are dealing with C-vector spaces, the universal
coefficient theorem shows that the vanishing of H1(ML;Cλ) is equivalent
to the vanishing of H1(ML;Cλ). To prove the lemma, we must show that
H1(ML;Cλ) does not vanish if and only if ∆L(λ) vanishes. It is enough to
show that the order of this latter vector space is zero if and only if ∆L(λ)
is zero. This will immediately follow if we prove that

H1(ML;Cλ) ∼= H1(ML; Λµ)⊗Λµ Cλ.

To prove this assertion, we will use (a particular case of) the universal co-
efficient spectral sequence (UCSS) whose second page is given by E2

p,q =
TorΛµ

p (Hq(ML; Λµ),Cλ) and which converges toH∗(ML;Cλ), see [30, Chap-
ter 2]. We start with the following claim.

Claim. — Endow Z = H0(ML; Λµ) with the Λµ-module structure com-
ing from the augmentation homomorphism Λµ → Z, ti 7→ 1. If λ lies
in (C∗ \ {1})µ, then the complex vector space TorΛµ

k (Z,Cλ) vanishes for
k = 1, 2.

Proof. — Using the Λµ-resolution of Z given by the chain complex for
the universal cover of the torus Tµ, we have TorΛµ

k (Z,Cλ) = Hk(Tµ;Cλ).
As the λi are not equal to 1, the claim now follows from considerations
involving cellular homology, see [41] and [13, Lemma 2.2]. �

Using the claim, we know that E2
2,0 = 0. The UCSS then gives E∞2,0 = 0

and provides a filtration 0 ⊂ F 0
1 ⊂ F 1

1 = H1(ML;Cλ). As the UCSS also
implies that F 0

1 = E∞0,1 = H1(ML; Λµ) ⊗Λµ Cλ and E∞1,0
∼= F 1

1 /F
0
1 , we

obtain the following short exact sequence:

0→ H1(ML; Λµ)⊗Λµ Cλ → H1(ML;Cλ)→ TorΛµ
1 (H0(ML; Λµ),Cλ)→ 0.
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Since we showed in the claim that TorΛµ
1 (H0(ML; Λµ),Cλ) vanishes, the

lemma follows. �

Combining these two lemmas (2.7 and 2.8), we are now in position to
conclude the proof of Theorem 2.4.

Proof of Theorem 2.4. — Let uρλ be the 1-cocycle described in Lem-
ma 2.7. Using the second point of this same lemma, the existence of a
reducible non abelian representation ρλ is equivalent to the cohomology
class [uρλ ] being non zero in H1(ML,Cλ2). Thus, if there exists a reducible
non-abelian representation of the form ρλ, then H1(ML,Cλ2) is non-trivial
and Lemma 2.8 implies that the multivariable Alexander polynomial ∆L

vanishes at λ2.
Conversely, if the multivariable Alexander polynomial vanishes at

λ2, then Lemma 2.8 implies that H1(ML;Cλ2) does not vanish. Since
H1(ML;Cλ2) = H1(π1(ML);Cλ2), we deduce that there is a non-zero cocy-
cle u in Z1(π1(ML);Cλ2). Defining a representation ρ from u just as in the
proof of Lemma 2.7 produces the desired non-abelian representation. �

3. The multivariable Casson–Lin invariant

The goal of this section is to define the multivariable Casson–Lin invari-
ant. More precisely, in Subsection 3.1, we review colored braids, in Subsec-
tion 3.2, we define our invariant on braids and in Subsection 3.3 we verify
its invariance under the colored Markov moves.

3.1. Colored braids

In this subsection, we briefly review colored braids and discuss the ac-
tion of the colored braid groups on SU(2)n. References for colored braids
include [12, 39], while discussions of the action of the braid group Bn on
SU(2)n include [26, 27, 35, 36].

The braid group Bn admits a presentationwith n − 1 generators σ1, σ2,

. . . , σn−1 subject to the relations σiσi+1σi = σi+1σiσi+1 for each i, and
σiσj = σjσi if |i − j| > 2. Topologically, the generator σi is the braid
whose i-th component passes over the (i + 1)-th component. The closure
of a braid β is the link β̂ obtained from β by adding parallel strands in
S3 \ (D2 × [0, 1]).
A braid β is µ-colored if each of its components is assigned (via a sur-

jective map) an integer in {1, 2, . . . , µ} (which we call a color). A µ-colored
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β2

β1

β1β2
c′

c′′

c

c′

c′′

c

Figure 3.1. A (c, c′)-braid β1, a (c′, c′′)-braid β2 and their composition,
the (c, c′′)-braid β1β2. Here β1 is the generator σ1 of B4, while β2 is σ3.

braid induces a coloring on its top and bottom boundary components. A µ-
colored braid is then called a (c, c′)-braid, where c and c′ are the sequences
of 1, 2, . . . , µ induced by the coloring of the braid (these sequence will be
referred to as µ-colorings). We shall denote by idc the isotopy class of the
trivial (c, c)-braid. The composition of a (c, c′)-braid β1 with a (c′, c′′)-braid
β2 is the (c, c′′)-braid β1β2 depicted in Figure 3.1. Thus, for any c, we obtain
a colored braid group Bc which consists of isotopy classes of (c, c)-braids.
For instance, if µ = 1 (so that c = (1, . . . , 1)), then Bc is the braid group
Bn, while if µ = n and ci = i for each i, then Bc is the pure braid group
Pn. We shall often use the map icn+1 : Bc ↪→ B(c1,...,cn,cn+1) which sends α
to the disjoint union of α with a trivial strand of color cn+1, see Figure 3.2.
Here, cn+1 can be equal to one of the n first ci’s.

ic4(α)α

c1 c2 c3 c1 c2 c3 c4

c1 c2 c3 c1 c2 c3 c4

Figure 3.2. An example of the inclusion map ic4 .

Finally, the closure of a µ-colored braid β ∈ Bc is the µ-colored link β̂
obtained from β by adding colored parallel strands in S3 \ (D2× [0, 1]). We
refer to [39, Theorem 3.3] for the colored version of Alexander’s theorem
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and instead focus on the colored version of Markov’s theorem, referring
to [39, Theorem 3.5] for the proof.

Proposition 3.1. — Two (c, c)-braids have isotopic closures if and only
if they are related by a sequence of the following moves and their inverses:

(1) replace γβ by βγ, where γ is a (c, c′)-braid and β is a (c′, c)-braid,
(2) replace γ by σεnicn(γ), where γ is a (c, c)-braid with n strands, σn

is viewed as a ((c1, . . . , cn, cn), (c1, . . . , cn, cn))-braid, and ε is equal
to ±1.

We conclude this subsection by discussing the action of (colored) braids
on SU(2)n. Topologically, this action can be understood as follows. Any
braid β can be represented by a homeomorphism of the punctured disk
Dn which fixes the boundary pointwise [3]. As a consequence, the braid
group induces a right action of Bn on the free group Fn = π1(Dn). More
explicitly, this action can be described on the generators x1, . . . , xn of Fn
as follows:

(3.1) xjσi =


xixi+1x

−1
i if j = i,

xi if j = i+ 1,
xj otherwise.

In particular, every braid β induces a homeomorphism R(Dn) → R(Dn),
which we still denote by β. More concretely, identifying R(Dn) with SU(2)n,
this homeomorphism maps (X1, . . . , Xn) to (X1β, . . . ,Xnβ). So, for in-
stance, the generator σ1 ∈ B2 acts as (X1, X2)σ1 = (X1X2X

−1
1 , X1). Note

that we chose to follow Birman’s conventions [3] and to think of (3.1) as
a right action. In particular, we obtain a homomorphism Bn → Aut(Fn).
Working with left actions would lead to an anti-homomorphism (see
e.g. [10, 14]).

Remark 3.2. — Our conventions match those of Lin [35, p. 339]. On the
other hand, given a braid β ∈ Bn and w ∈ Fn, some authors, such as
Long [36, p. 539], choose to define β · w as wβ−1; however given an auto-
morphism θ of Fn, Long then sets θ(X1, . . . , Xn) := (θ−1X1, . . . , θ

−1Xn)
and therefore obtains the same action of Bn on SU(2)n as we do [36, p. 537].
On the other hand, Heusener–Kroll also use the action β · w = wβ−1 [27,
Example 3.1] but define β(X1, . . . , Xn) as (β ·X1, . . . , β ·Xn) [27, bottom
of p. 484].

Remark 3.3. — The fixed point set of the homeomorphism β : SU(2)n →
SU(2)n induced by β can be identified with the representation space of
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X
β̂
, see for instance [35, Lemma 1.2]. Reformulating, R(X

β̂
) is equal to

the intersection of the diagonal Λn ⊂ SU(2)n × SU(2)n with the graph
Γβ ⊂ SU(2)n × SU(2)n of the homeomorphism of SU(2)n induced by β.

Building on the work of Lin [35] and Heusener–Kroll [27], the invariant
we shall define in Subsection 3.2 makes crucial use of Remark 3.3. Indeed
we wish to “count” (conjugacy classes of) irreducible representations in
R(X

β̂
) = Λn ∩ Γβ with certain traces fixed. For this reason, given a µ-

tuple α = (α1, . . . , αµ) of real numbers in (0, π)µ and a coloring c, we shall
frequently consider the following subspace of SU(2)n:

Rα,cn = {(X1, . . . , Xn) ∈ SU(2)n | tr(Xi) = 2 cos(αci) for i = 1, . . . , n}.

In particular, observe that if β is an n-stranded (c, c′)-braid, then the afore-
mentioned homeomorphism β : SU(2)n → SU(2)n descends to a well de-
fined homeomorphism β : Rα,cn → Rα,c

′

n . Of particular interest is the graph
of this homeomorphism:

Γαβ = {(A1, . . . , An, A1β, . . . , Anβ) | (A1, . . . , An) ∈ Rα,cn } ⊂ Rα,cn ×Rα,c
′

n .

For instance, the trivial (c, c)-braid β = idc induces the identity automor-
phism on the free group and thus on R(Fn) = SU(2)n. Thus the graph
Γidc ⊂ SU(2)n × SU(2)n coincides with the diagonal Λn. We use the fol-
lowing notation for the corresponding space of fixed traces:

Λα,cn = {(A1, . . . , An, A1, . . . , An) | (A1, . . . , An) ∈ Rα,cn }.

As we alluded to above, our goal is to make sense of a signed count of
conjugacy classes of irreducible representations ρ : π1(X

β̂
) → SU(2) such

that the trace of any meridian of the sublink β̂j of β̂ is equal to 2 cos(αcj ).
In other words, using Remark 3.3 and the notations of Subsection 2.1, we
are trying to make sense of a signed count of the elements of Λ̂α,cn ∩ Γ̂αβ .

3.2. Definition of the invariant

The goal of this subsection is to define the multivariable Casson–Lin
invariant of a (c, c)-braid. Our approach builds on the work of Lin [35] and
of Heusener–Kroll [27], see also [26] and [22].
Let β be a µ-colored n-stranded (c, c)-braid and let α = (α1, . . . , αµ) lie

in (0, π)µ. The invariant that we shall consider requires us to make sense of
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the algebraic intersection of (quotients of) Λα,cn with Γαβ inside (a quotient
of) the following space:

Hα,c
n =

{
(A1, . . . , An, B1, . . . , Bn) ∈ Rα,cn ×Rα,cn

∣∣∣∣∣
n∏
i=1

Ai =
n∏
i=1

Bi

}
.

The inclusion Γαβ ⊂ Hα,c
n holds because any braid ξ ∈ Bn fixes x1 . . . xn ∈

Fn; see (3.1). In order to count conjugacy classes of the aforementioned
irreducible representations, we first need to avoid the abelian locus of the
various representation varieties. For this reason, we consider the following
set which should be understood (under the isomorphism R(Fn) ∼= SU(2)n)
as the subspace of abelian representations of R(Fn):

(3.2) Sα,cn =

(A1, . . . , An, B1, . . . , Bn) ∈ Rα,cn ×Rα,cn

∣∣∣∣∣∣∣
AiAj = AjAi,

AiBj = BjAi,

BiBj = BjBi

 .

Slightly abusing notation, we shall write Sα,cn instead of Sα,cn ∩Θα,c, where
Θα,c is any of the previously defined spaces Γαβ ,Λα,cn or Hα,c

n . As described
in Subsection 2.1, SO(3) acts freely on the resulting sets of irreducible
representations and we make the following definitions:

Λ̂α,cn = (Λα,cn \ Sα,cn )/ SO(3),

Γ̂αβ = (Γαβ \ Sα,cn )/ SO(3),

Ĥα,c
n = (Hα,c

n \ Sα,cn )/SO(3).

Observe that both Λ̂α,cn and Γ̂αβ are smooth open (2n − 3)-dimensional
manifolds: Λα,cn and Γαβ are 2n dimensional (the subspaces of matrices in
SU(2) with fixed trace are 2-dimensional) and the 3-dimensional Lie group
SO(3) acts freely and properly on the open manifolds Λα,cn \ Sα,cn and Γαβ \
Sα,cn . Recalling Remark 3.3, the representations we wish to consider lie
in the intersection Γ̂αβ ∩ Λ̂α,cn , viewed as a subspace of Ĥα,c

n . In order for a
“count” to make sense, we must now check that this intersection is compact
and that Γ̂αβ and Λ̂α,cn are half dimensional in Ĥα,c

n . We start by proving
the latter, namely we prove that Ĥα,c

n is 4n− 6 dimensional.

Lemma 3.4. — The spaceHα,c
n \Sα,cn is a smooth open (4n−3)-dimensio-

nal manifold. In particular Ĥα,c
n is (4n− 6) dimensional.

Proof. — Consider the map fn : Rα,cn ×Rα,cn → SU(2) defined by fn(A1,

. . . , An, B1, . . . , Bn) = A1 . . . AnB
−1
n . . . B−1

1 .Observe thatHα,c
n = f−1

n (Id).
The same arguments as in [35, Lemma 1.5] and [27, Lemma 3.3] show
that fn restricts to a submersion fn| on Hα,c

n \ Sα,cn . As a consequence,
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Hα,c
n \ Sα,cn = fn

−1
| (Id) is a smooth manifold whose dimension is equal

to dim(Rα,cn × Rα,cn ) − dim(SU(2)) = 4n − 3. This concludes the proof of
Lemma 3.4. �

Next, making use of Section 2, we show that the space Γ̂αβ ∩ Λ̂α,cn is
compact. For a fixed α = (α1, . . . , αµ) in (0, π)µ, we consider the finite set

S(α) = {(eε12iα1 , . . . , eεµ2iαµ) | εi = ±1 for i = 1, . . . , µ}.

The set S(α) contains 2µ elements, indexed by the ε = (ε1, . . . , εµ) in
{±1}µ. For this reason, we will sometimes write elements of S(α) as ωε,
where ε ∈ {±1}µ. We will only do this when no confusion occurs with the
coordinates of ω.

Proposition 3.5. — Let α = (α1, . . . , αµ) lie in (0, π)µ and let β be
an n-stranded µ-colored (c, c)-braid. If ∆

β̂
(ωε) 6= 0 for all ωε ∈ S(α), then

Γ̂αβ ∩ Λ̂α,cn is compact.

Proof. — Since SO(3) is compact, it is sufficient to prove that (Λα,cn \
Sα,cn )∩ (Γαβ \ Sα,cn ) is compact. As this set lies in the compact set SU(2)2n,
we are reduced to proving that it is closed. Let (ρk)k∈N be a convergent
sequence of representations in (Λα,cn \ Sα,cn ) ∩ (Γαβ \ Sα,cn ), with limit ρ∞ ∈
SU(2)2n. Since Λα,cn and Γαβ are closed in SU(2)2n, it follows that ρ∞ lies
in Λα,cn ∩ Γαβ . By way of contradiction, assume that ρ∞ is abelian. The
n components of ρ∞ ∈ SU(2)n are therefore simultaneously conjugated
to
(
ω1/2
ci

0
0 ω−1/2

ci

)
for some ω := ωε in S(α). Since ∆

β̂
(ω) 6= 0, Corollary 2.6

implies that ρk is abelian for k big enough, a contradiction. We therefore
deduce that ρ∞ lies in (Λα,cn \ Sα,cn ) ∩ (Γαβ \ Sα,cn ), concluding the proof of
Proposition 3.5. �

Perturbing Γ̂αβ if necessary, we can assume that it intersects transversally
the diagonal Λ̂α,cn . Consequently, thanks to Proposition 3.5, we know that
Γ̂αβ∩Λ̂α,cn is a 0-dimensional manifold. We now orient these manifolds. Use Sθ
to denote the set of matrices in SU(2) with trace 2 cos(θ). Orient this copy
of S2 in a fixed (but arbitrary) way. Since Rα,cn consists of an n-fold product
of Sαci , we endow it with the product orientation. The diagonal Λα,cn and
the graph Γαβ are naturally diffeomorphic to Rα,cn via the projection on the
first factor and they are given the induced orientations. Next, consider the
map

fn : Rα,cn ×Rα,cn → SU(2)
which we encountered in the proof of Lemma 3.4. Using this map, we can
pull back the orientation of SU(2) to obtain an orientation on Hα,c

n \ Sα,cn .
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The adjoint action of SO(3) on Sθ is orientation preserving, hence the
SO(3)-quotients Γ̂αβ , Λ̂α,cn and Ĥα,c

n are orientable and we endow them with
the quotient orientation.

Definition 3.6. — Let β be a µ-colored (c, c)-braid and let α ∈ (0, π)µ.
If ∆

β̂
(ωε) 6= 0 for all ωε ∈ S(α), then the multivariable Casson–Lin invari-

ant of β at α is defined as the algebraic intersection number of Γ̂αβ and Λ̂α,cn
inside Ĥα,c

n :
hcβ(α) := 〈Λ̂α,cn , Γ̂αβ〉Ĥα,cn

.

Given a µ-colored link L, we wish to define hL as hcβ , where β is any (c, c)-
braid whose closure is L. In order to obtain a well defined link invariant,
we must check that hcβ is invariant under the colored Markov moves which
were described in Proposition 3.1.

3.3. Invariance under Markov moves

In this subsection, we prove that hcβ(α) is invariant under the two col-
ored Markov moves described in Proposition 3.1. Since the key ideas of
the proofs are present in [35, Theorem 1.8] and [22, Proposition 4.2 and
Proposition 4.3], we place emphasis on the role of the colors, while referring
to the original references for details.
The invariance under the first Markov move will follow promptly from

the following lemma.

Lemma 3.7. — Let α lie in (0, π)µ and let c and c′ be µ-colorings. Let ξ1
be a (c, c)-braid, let ξ2 be a (c, c′)-braid and view ξ−1

2 as a (c′, c)-braid. The
multivariable Casson–Lin invariants of the (c, c)-braid ξ1 and the (c′, c′)-
braid ξ−1

2 ξ1ξ2 are related by the following equation:

hcξ1
(α) = hc

′

ξ−1
2 ξ1ξ2

(α).

Proof. — Recalling Subsection 3.1, the (c, c′)-braid ξ2 gives rise to an
orientation preserving homeomorphism ξ2 : Rα,cn → Rα,c

′

n . One can then
argue that it induces a well defined orientation preserving homeomorphism
ξ2 × ξ2 : Ĥα,c

n → Ĥα,c′

n . A short computation (using right actions) shows
that (ξ2 × ξ2)(Λ̂α,cn ) = Λ̂α,c′n and (ξ2 × ξ2)(Γ̂αξ1

) = Γ̂α
ξ−1

2 ξ1ξ2
. The result now

follows promptly, see [35, first part of the proof of Theorem 1.8] and [22,
proof of Proposition 4.2]. �

Using Lemma 3.7, we can prove the invariance under the first colored
Markov move.
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Proposition 3.8. — The multivariable Casson–Lin invariant is pre-
served under the first colored Markov move.

Proof. — Let α lies in (0, π)µ, let ξ be a (c, c′)-braid and let η be a (c′, c)-
braid. Applying Lemma 3.7 to the (c, c)-braid ξη and to the (c, c′)-braid
ξ, we obtain hcξη(α) = hc

′

ξ−1(ξη)ξ(α) = hc
′

ηξ(α). This concludes the proof of
Proposition 3.8. �

Proposition 3.9. — The multivariable Casson–Lin invariant is pre-
served under the second colored Markov move.

Proof. — Fix α ∈ (0, π)µ, a µ-coloring c and a (c, c)-braid β. For the
sake of conciseness, we write c′ instead of (c1, . . . , cn, cn) and we recall
from Subsection 3.1 that icn : Bc → Bc′ denotes the natural inclusion
which adds a trivial strand of color cn to a given (c, c)-braid. Viewing
the generator σn ∈ Bn+1 as a (c′, c′)-braid, our goal is to show that
hc
′

σnicn (β)(α) = hcβ(α). Using Lemma 3.7, this is equivalent to showing that

(3.3) hc
′

icn (β)σn(α) = hcβ(α).

Recall (arranging transversality if necessary) that the right hand side of (3.3)
is defined as the algebraic intersection of the diagonal Λ̂α,cn with the graph
Γ̂αβ . Similarly, the left hand side of (3.3) is the algebraic intersection of
Λ̂α,c

′

n+1 with Γ̂αicn (β)σn . In order to relate these various spaces, consider the
embedding g : Rα,cn ×Rα,cn → Rα,c

′

n+1 ×R
α,c′

n+1 defined by

(X1, . . . , Xn, Y1, . . . , Yn) 7→ (X1, . . . , Xn, Yn, Y1, . . . , Yn, Yn).

One can check that g(Hα,c
n ) ⊂ Hα,c′

n+1 and that g commutes with the conju-
gation, thus giving rise to an embedding ĝ : Ĥα,c

n → Ĥα,c′

n+1. It can also
be checked that ĝ(Λ̂α,cn ) is contained in Λ̂α,c

′

n+1, that ĝ(Γ̂αβ) is contained
in Γ̂αicn (β)σn and that ĝ(Λ̂α,cn ∩ Γ̂αβ) is equal to Λ̂α,c

′

n+1 ∩ Γ̂αicn (β)σn . Given
X = (X1, . . . , Xn) in Λα,cn ∩Γαβ , the same arguments as in [35, p. 346] show
that the intersection number of Λ̂α,c

′

n+1 and Γ̂αicn (β)σn at ĝ(X,X) is equal to
the intersection number of Λ̂α,cn and Γ̂α,cβ at (X,X). This proves (3.3) and
concludes the proof of Proposition 3.9. �

Using the invariance under Markov moves, we now define the main in-
variant of this paper.
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Definition 3.10. — Let L be a µ-colored link and fix α=(α1, . . . , αµ)∈
(0, π)µ. Assume that ∆L(ωε) 6= 0 for all ωε ∈ S(α). The multivariable
Casson–Lin invariant of L at α is defined as

hL(α) := hcβ(α),

where β is any (c, c)-braid whose closure is L.

Remark 3.11. — The multivariable Casson–Lin invariant hL can be de-
fined for a larger subset of (0, π)µ. More precisely, one can define hL on
the subset DL of those α ∈ (0, π)µ such that none of the abelian repre-
sentations ρωε (recall Section 2.2) is a limit of irreducible representations,
for any ωε ∈ S(α). Indeed, looking at the proof of Proposition 3.5, this
assumption is sufficient to guarantee that Λ̂α,cn ∩ Γ̂αβ is compact in Ĥα,c

n .
In particular, note that Corollary 2.6 implies that DL contains the set
{α ∈ (0, π)µ |∆L(ωε) 6= 0 for all ωε ∈ S(α)}.

We conclude this section with a last remark that was used in Remark 1.4
of the introduction.

Remark 3.12. — Every ordered link L has an underlying oriented link
which we also denote by L. Observe that given α ∈ (0, π), the following
equality holds provided the multivariable and single variable Casson–Lin
invariants are defined:

hL(α, . . . , α) = hL(α).

Indeed, in both cases we are counting the irreducible SU(2)-representations
of π1(XL) for which all meridional traces are fixed to be 2 cos(α). Notice
furthermore since ∆L(t, . . . , t) = (t − 1)∆L(t) for a link L with n > 2
components, the multivariable Casson–Lin invariant is defined at (α, . . . , α)
if and only if the single-variable Casson–Lin invariant is defined at α.

4. The colored Gassner matrices and the Potential
function

This section is organized as follows. In Subsection 4.1, we recall the defi-
nition of the colored Gassner matrices, in Subsection 4.2, we review a result
due to Long, in Subsection 4.3, we recall the definition of the multivariable
potential function. Finally, in Subsection 4.4, we prove a technical result
which shall frequently be used in Section 5.
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4.1. The colored Gassner matrices

In this subsection, we recall the definition of the colored Gassner matri-
ces and of the reduced colored Gassner matrices which are multivariable
generalizations of the (reduced) Burau matrices. Although references in-
clude [10, 14, 32], our conventions are closest to those of [12].

Let Fn be the free group on x1, . . . , xn. Recall from Subsection 3.1 that
the braid group Bn acts on Fn from the right and that each n-stranded
braid β gives rise to an automorphism of Fn which is also denoted by β.
Given a µ-coloring c = (c1, . . . , cn), consider the map

ψc : Fn → Zµ = 〈t1, . . . , tµ〉

which sends each xi to tci and extend it to a homomorphism ψc : Z[Fn]→
Λµ. For later use, observe that if β is a (c, c)-braid, then ψc(xi) is equal
to ψc(xiβ) and in fact, both are equal to tci . Next, consider the element
∂(xiβ)
∂xj

of the group ring Z[Fn], where ∂
∂xj

: Z[Fn]→ Z[Fn] denotes the Fox
derivative associated to xi (see e.g. [34, Chapter 11]).
The main definition of this section is the following.

Definition 4.1. — The (unreduced) colored Gassner matrix of an n-
stranded (c, c)-braid β is defined as the n × n matrix Bct (β) whose i, j-
coefficient is ψc

(
∂(xiβ)
∂xj

)
.

The notation Bct (β) is meant to indicate that the coefficients of the col-
ored Gassner matrix lie in Λµ = Z[t±1

1 , . . . , t±1
µ ] (i.e. t is used as a shorthand

for (t1, . . . , tµ)). When µ = 1, the colored Gassner matrices recover the
usual matrices for the Burau representation of Bn. We refer the interested
reader to [10, 32] for more intrinsic approaches and to [12, Example 3.5] for
(c, c′)-braids. Instead, we note that the unreduced colored Gassner matrix
of the generator σi ∈ Bn, viewed as a (c, c)-braid, is given by

(4.1) Bct (σi) = Ii−1 ⊕
(

1− tci tci
1 0

)
⊕ In−i−1.

Here, note that viewing σi as a (c, c)-braid necessitates that ci = ci+1.
Next, following [3] and [12, Section 3(c)], we deal with the reduced colored
Gassner matrices. Instead of working with the free generators x1, x2 . . . , xn
of Fn, we consider the elements g1, g2, . . . , gn, defined by gi := x1x2 . . . xi.
As gn is always fixed by the action of the braid group, the matrix whose i, j-
coefficient is ψc

(
∂(giβ)
∂gj

)
is equal to B̃ct (β) :=

(
Bct(β) v

0 1

)
for some column

vector v. This motivates the following definition.
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Definition 4.2. — The reduced colored Gassner matrix of an n-strand-
ed (c, c)-braid β is defined as the size n − 1 matrix Bct(β) whose i, j-
coefficient is ψc

(
∂(giβ)
∂gj

)
.

When µ = 1, the reduced colored Gassner matrices recover matrices for
the reduced Burau representation of the braid group Bn. We once again
avoid the more intrinsic definition of the reduced colored Gassner represen-
tation which involves homology and covering spaces, but instead refer the
interested reader to [10, 32] and [14, Theorem 1.2].

We conclude this subsection with a technical lemma which will be needed
in Section 5.

Lemma 4.3. — For any (c, c)-braid β, the submodule of fixed points
of the unreduced colored Gassner matrix Bcω(β) is generated by g̃n =
( 1 ωc1 ωc1ωc2 ... ωc1 ...ωcn−1 ) whenever ω ∈ Tµ satisfies both ωc1 . . . ωcn 6= 1
and ∆

β̂
(ω) 6= 0.

Proof. — We first translate the statement into the g1, . . . , gn basis of
Fn. Namely, computing the change of basis matrix between Bcω(β) and
B̃cω(β) (see (4.8) below), the statement is equivalent to the claim that the
submodule of fixed points of B̃cω(β) is freely generated by x = ( 0 ... 0 1 ).
Here, our convention is that the Burau matrices act on the right on row
vectors.
Since x is fixed by B̃cω(β), we suppose that w = (w1 ... wn−1 wn ) is fixed

by B̃cω(β) and wish to show that w lies in the span of x. Using Defini-
tion 4.2, the assumption on w implies that the reduced colored Gassner
matrix Bcω(β) must fix w′ := (w1 ... wn−1 ) (recall that we are using right
actions). This implies that (Bcω(β)− In−1)w′ = 0, and we therefore deduce
that det(Bcω(β) − In−1) = 0. Using the relation between the multivariable
Alexander polynomial and the colored Gassner representation (see e.g. Re-
mark 4.7 below), we infer that (ωc1 . . . ωcn−1)∆

β̂
(ω) = 0. This contradicts

our assumptions on ω and concludes the proof of Lemma 4.3. �

4.2. A result due to Long

The goal of this subsection is to recall a theorem due to Long [36, Theo-
rem 2.4]. In order to state this result, we use Long’s conventions regarding
automorphisms of the free group. As we observed in Remark 3.2, these
conventions match ours when dealing with the action of the braid group
Bn on SU(2)n.
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For an automorphism θ : Fn → Fn of the free group, consider the dif-
feomorphism θ∗ : R(Fn) → R(Fn), ρ 7→ ρ ◦ θ−1. Picking free generators
x1, . . . , xn of Fn and identifying R(Fn) with SU(2)n, the diffeomorphism
θ∗ is described as θ∗(X1, . . . , Xn) = (θ−1X1, . . . , θ

−1Xn). The assignment
θ 7→ θ∗ gives rise to a homomorphism Aut(Fn) → Diff(SU(2)n). Fixing
a subgroup H of Aut(Fn), the restriction of this assignment produces a
homomorphism H → Diff(SU(2)n). To get a linear representation of H,
pick a function f : (0, π)µ → SU(2)n such that h∗f(α) = f(α) for every
α = (α1, . . . , αµ) in (0, π)µ and for every h in H, and set

ρα : H → Aut(Tf(α) SU(2)n)
h 7→ Tf(α)(h∗).

The fact that ρα is a representation follows from the chain rule [36, The-
orem 2.3]. We now restrict to the colored braid group H = Bc and, for
θ ∈ (0, π), we set eiθ :=

(
eiθ 0
0 e−iθ

)
. Recalling the notations and con-

ventions discussed in Remark 3.2, we observe that for any µ-tuple ε =
(ε1, . . . , εµ) ∈ {±1}µ, the action of a (c, c)-braid β on the n-tuple of ma-
trices f(α) := (eεc1 iαc1 , . . . , eεcn iαcn ) satisfies f(α)β = f(α). As a conse-
quence, we obtain representations ρα of Bc. Long [36, Theorem 2.4] proves
the following result:

Proposition 4.4. — Let c = (c1, . . . , cn) be a µ-coloring, let α =
(α1, . . . , αµ) lie in (0, π)µ and let ε = (ε1, . . . , εµ) ∈ {±1}µ. If one sets aε =
(eεc1 iαc1 , . . . , eεcn iαcn ), then the representation ρα : Bc → Aut(Taε SU(2)n)
is a direct sum of a permutation representation with the colored Gassner
matrix evaluated at ωε = (eε12iα1 , . . . , eεµ2iαµ).

Note that Long proved this result for µ = 1 [36, Theorem 2.4] and µ = n

[36, Theorem 2.5] but his proof goes through for arbitrary colored braid
groups. In order to make some further remarks on Proposition 4.4, we recall
some known facts regarding the field H of quaternions.

Remark 4.5. — We think of H using the isomorphisms H ∼= C ⊕ jC ∼=
(R⊕ iR)⊕ (jR⊕ kR) and recall that a quaternion is pure if its real part is
zero. Matrices in SU(2) can be identified with unit quaternions via the map
which sends ( a b

−b̄ ā ) to a+ jb, for any a, b ∈ C which satisfy |a|2 + |b|2 = 1.
On the Lie algebra level, for r ∈ R and z ∈ C, matrices ( ir z

−z̄ −ir ) in su2
correspond to quaternions ir + jz, and in particular su2 splits as iR⊕ jC.

Using Remark 4.5 and working with the notations of Proposition 4.4,
Long’s result shows that the restriction of the differential of β : SU(2)n →
SU(2)n at aε to the complex summand of su2 is Bcωε(β) (i.e. the colored
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Gassner matrix evaluated at ωε). In Section 5 however, we shall study the
restriction of β toRα,cn . Since this latter space is homeomorphic to a product
of 2-spheres Sαj which consist of those matrices with trace 2 cos(αj), we
adapt some observations from [27, Section 2.3] to the multivariable case.

Remark 4.6. — Matrices in SU(2)\±I can be identified with pairs (θ,Q),
where θ ∈ (0, π) and Q = xi + yj + zk is a pure quaternion of norm 1.
More explicitly, the quaternion cos(θ) + sin(θ)Q associated to a pair (θ,Q)
corresponds to the SU(2)-matrix

X =
(

cos(θ) + ix sin(θ) (y + iz) sin(θ)
(−y + iz) sin(θ) cos(θ)− ix sin(θ)

)
.

On the Lie algebra level, using j2 = −1 and the identification of su2 with
iR ⊕ jC, multiplication by −j picks out the complex component z of the
matrix ( 0 z

−z̄ 0 ) ∈ su2. In particular, since Rα,cn is a product of Sθ, Proposi-
tion 4.4 implies that the following diagram commutes:

TaR
α,c
n

(−j,...,−j) //

Taβ

��

Cn

Bcω(β)
��

TaR
α,c
n

(−j,...,−j) // Cn.

On the topological level, it is helpful to think of SU(2) as foliated by the
spheres Sθ: indeed the quaternionic expression cos(θ) + sin(θ)Q, specifies a
2-sphere Sθ and a position Q on this sphere. On the Lie algebra level, the
complex lines are tangent to the leaves Sθ and the real lines are tangent to
the transverse directions.

4.3. The potential function

In this section, we review some facts about the multivariable potential
function. References include [8, 15, 24, 39].

As we recalled in Section 2, the multivariable Alexander polynomial ∆L

of a µ-colored link L is only well defined up to multiplication by units of
Λµ. The multivariable potential function of a µ-colored link L is a rational
function ∇L(t1, . . . , tµ) which satisfies

(4.2) ∇L(t1, . . . , tµ) .=


1

t1−t−1
1

∆L(t21) if µ = 1,

∆L(t21, . . . , t2µ) if µ > 1.
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In this paper, we use a construction of the potential function which arises
from the reduced colored Gassner representation [14, Theorem 1.1]. The
next remark briefly recalls this result.

Remark 4.7. — Any (c, c)-braid β can be decomposed into a product∏m
j=1 σ

εj
ij
, where σij denotes the ij-th generator of the braid group (viewed

as an appropriately colored braid) and each εj is equal to ±1. For each j,
use bj to denote the color of the over-crossing strand in the generator σεjij
and consider the Laurent monomial

〈β〉 :=
m∏
j=1

t
−εj
bj

.

Define g : Λµ → Λµ by extending Z-linearly the group endomorphism of
Zµ = 〈t1, . . . , tµ〉 which sends ti to t2i . Given an n-stranded µ-colored (c, c)-
braid β, [14, Theorem 1.1] shows that the multivariable potential function
of the closure β̂ can be described as:

(4.3) ∇
β̂
(t1, . . . , tµ)

= (−1)n+1 · 1
tc1 . . . tcn − t−1

c1 . . . t−1
cn

· 〈β〉 · g(det(Bct(β)− In−1)).

Note that in [14], the matrices Bct are the transposes of the ones used here
(and in particular [14] deals with anti-representations). Naturally, this does
not affect (4.3).

In the one-variable case, some care is needed with the terminology.

Remark 4.8. — The expression DL(t) := ∇(t)(t−t−1) is usually referred
to as the Alexander-Conway polynomial of L and satisfies DL(t) .= ∆L(t2).
On the other hand, some authors call DL(

√
t) the Conway-normalized

Alexander polynomial. For instance Heusener–Kroll use ∆L(t) to denote
the Conway-normalized Alexander polynomial [27, Section 2.1]. These dis-
tinctions do matter: for a knot K and ω ∈ S1, it is known that DK(

√
ω) is

real, while this statement is incorrect for ∇K and makes no sense for ∆K

(because of the indeterminacy).

We conclude with some remarks on evaluations of ∇L at elements of
Tµ = (S1)µ.

Remark 4.9. — The potential function ∇L of an n-component µ-colored
link is known to be (−1)n-symmetric [8, Proposition 1]. Thus, for ω ∈ Tµ,
the evaluation ∇L(ω) need not be real. In fact, for ω ∈ Tµ, the afore-
mentioned symmetry property yields ∇L(ω) = ∇L(ω) = (−1)n∇L(ω), and
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therefore ∇L(ω) belongs to R (resp. iR) if n is even (resp. odd). In par-
ticular, if two µ-colored links differ by a crossing change within a sublink,
then the quotient of the two potential functions evaluated at ω ∈ Tµ is real
(assuming the quotient is defined).

4.4. A technical proposition

The aim of this section is to prove the following multivariable general-
ization of [27, Lemma 4.4]. This result will be frequently used in Section 5.
Due to the technical nature of this result and its proof, we suggest the
reader skip this subsection upon his first reading.

Proposition 4.10. — Let c be a µ-coloring such that c1 = c2 and let
ω ∈ Tµ. Given a (c, c)-braid β, use

(A(ω) B(ω)
C(ω) D(ω)

)
to denote the unreduced

colored Gassner matrix of β evaluated at ω ∈ Tµ, where D(ω) is a size n−2
square matrix. If we assume that ω2

c1
6= 1 and ∇

β̂
(ω) 6= 0, then det(D(ω)−

In−2) 6= 0.

The proof of Proposition 4.10 follows the strategy of [27, Lemma 4.4].
However several of the preliminary results require some additional work in
the multivariable case.

4.4.1. Rows and columns of Bct (β)

We temporarily adopt the following conventions: given a matrix Ψ, we
write Ψi

j for the (i, j)-coefficient of Ψ, instead of the more standard Ψij ;
apart if mentioned otherwise, I denotes any identity matrix, regardless of
its size.
The following lemma (which generalizes well known results for the Burau

representation) describes the result of summing (linear combinations of) the
rows and columns of the unreduced colored Gassner matrices.

Lemma 4.11. — Given a (c, c)-braid β, the rows and columns of the
colored Gassner matrix satisfy the following properties:

(1) For each i, one has
∑n
j=1(tcj − 1)Bct (β)ij = tci − 1.

(2) For each j, one has
∑n
i=1 tc1 . . . tci−1Bct (β)ij = tc1 . . . tcj−1 .

Proof. — In order to prove both of these identities, we recall the so-called
“fundamental lemma of Fox calculus” [7, Proposition 9.8(c)]. Given a word
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w in the free group Fn on x1, . . . , xn, the following identity holds in the
group ring Z[Fn]:

(4.4)
n∑
j=1

∂w

∂xj
(xj − 1) = w − 1.

The first identity now follows by considering the word w = xiβ, applying
ψc to both sides of (4.4) and recalling that for a (c, c)-braid, both ψc(xi)
and ψc(xiβ) are equal to tci . To obtain the second formula, apply the Fox
derivative ∂

∂xj
to both sides of the equality (x1 . . . xn)β = x1 . . . xn and use

the derivation property repeatedly. �

Taking advantage of our unconventional notation, observe that the i-th
column of Bct (β) can be written as Bct (β)i, while the i-th line of Bct (β) can
be written as Bct (β)i. In particular, Lemma 4.11 implies that

n∑
i=1

(tci − 1)Bct (β)i = (T − 1),
n∑
i=1

(tc1 . . . tci−1)Bct (β)i = v,

where T−1 denotes the size n column vector whose i-th component is tci−1
and v denotes the size n row vector whose j-th component is tc1 . . . tcj−1 .

Example 4.12. — If c = (1, . . . , 1), the first point of Lemma 4.11 implies
the following known fact: the sum of the coefficients within any line of the
Burau matrix is 1 (i.e. the Burau matrix is a “right stochastic matrix”).
For σ2

1 ∈ B(1,2) = P2, the Gassner matrix is given by

B(1,2)
t1,t2 (σ2

1) =
(

1− t1 + t1t2 t1(1− t1)
1− t2 t1

)
.

Now Lemma 4.11 states in particular that (1 − t1)(1 − t1 + t1t2) + (1 −
t2)(t1(1−t1) = 1−t1 and t1(1−t1)+t1t1 = t1 which can indeed be verified.

4.4.2. Computations with minors

Given a square matrix Ψ of size n, we use Ψi,j to denote the size (n− 1)
matrix obtained from Ψ by deleting its i-th row and j-th column. We also
use Bct (β, l,m) to denote det((Bct (β) − I)l,m) (the notation cβl,m is used
in [27, Section 2.4]).
The following lemma is a multivariable generalization of [27, Lem-

ma 2.2(1)].
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Lemma 4.13. — Let c be a µ-coloring. Given an n-stranded (c, c)-braid
β and positive integers 1 6 l, l′,m,m′ 6 n, the following equality holds
in Λµ:

(4.5) (tcm′ − 1)(tc1 . . . tcl′−1)Bct (β, l,m)

= (−1)m+m′+l+l′(tcm − 1)(tc1 . . . tcl−1)Bct (β, l′,m′).

Proof. — To prove the lemma, it suffices to prove (4.5) when l = l′ and
when m = m′. We therefore start by assuming that l = l′ and claim that

(tcm′ − 1)Bct (β, l,m) = (−1)m+m′(tcm − 1)Bct (β, l,m′).

Recall that T −1 denotes the size n column vector whose i-th component is
tci−1 and assume that i differs fromm. Using the first point of Lemma 4.11,
a short computation shows that

(4.6) (tci − 1)(Bct (β)− I)i

=

(T − 1)−
∑
k 6=i

(tck − 1)Bct (β)k

− (tci − 1)Ii

= −
∑
k 6=i

(tck − 1)(Bct (β)− I)k.

We now use this identity to compute the determinant of the matrix
(Bct (β) − I)l,m obtained by removing the l-th row and the m-th column
from Bct (β) − I. Multipliying the i-th column of Bct (β) − I by tci − 1,
using (4.6), removing the m-th column of Bct (β)− I, invoking the multilin-
earity of the determinant and switching back the i-th column to its original
place (this produces a sign (−1)i+m−1 since we now have one column less),
we obtain

(tci − 1)Bct (β, l,m) = (tcm − 1)(−1)i+mBct (β, l, i).

The claim now follows by taking i = m′. To prove (4.5) for m = m′, one
uses the second point of Lemma 4.11 and follows the exact same steps
as above with rows instead of columns. This concludes the proof of the
lemma. �

Lemmas 4.11 and 4.13 involve the colored Gassner matrices in the basis
arising from the choice of generators x1, . . . , xn of the free group Fn. In
order to work with the reduced colored Gassner matrices, we need the
corresponding statements for the basis g1, . . . , gn of Fn.
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Remark 4.14. — Use B̃ct (β) to denote the unreduced colored Gassner ma-
trix in the basis arising from the choice of generators g1, . . . , gn
of the free group. Just as for the matrix Bct (β), we set B̃ct (β, l,m) :=
det((B̃ct (β)− I)l,m). Using these notations, the following formula holds:

(4.7) − (tc1 . . . tcn−1 − 1)B̃ct (β, n, n− 1) = (tc1 . . . tcn − 1)B̃ct (β, n, n).

The proof of (4.7) is entirely analogous to the proof of Lemma 4.13: it
suffices to use the equality ψc(gi) = tc1 . . . tci instead of ψc(xi) = tci .
Finally note that (4.7) can be rewritten using the reduced colored
Gassner representation. Indeed, using Definition 4.2, we have B̃ct (β, n, n) =
det(Bct(β)− In−1), where In−1 denotes the size n− 1 identity matrix.

We now relate det(Bct(β)− In−1) and Bct (β, 1, 1), generalizing [27, Lem-
ma 2.2.2].

Proposition 4.15. — Given an n-stranded (c, c)-braid β, the following
equation holds:

tc1 . . . tcn − 1
tc1 − 1 Bct (β, 1, 1) = det(Bct(β)− In−1).

Proof. — It suffices to show that Bct (β, n, n)(tc1 . . . tcn−1) = tc1 . . . tcn−1

(tcn − 1)B̃ct (β, n, n): the conclusion will then follow from Remark 4.14 and
Lemma 4.13 which imply respectively that B̃ct (β, n, n) = det(Bct(β)− In−1)
and (tcn − 1)(tc1 . . . tcn−1)Bct (β, 1, 1) = (tc1 − 1)Bct (β, n, n). A computation
involving Fox calculus shows that the change of basis matrix from Bct (β)
to B̃ct (β) is given by

(4.8) Pn =



1 0 0 . . . 0
1 tc1 0 . . . 0

1 tc1 tc1tc2

. . .
...

...
...

. . . . . . 0
1 tc1 . . . tc1 . . . tcn−2 tc1 . . . tcn−2tcn−1

 .

Given a matrix M , recall that we use Mn,n to denote the matrix obtained
by deleting the n-th row and n-th column ofM . Until the end of this proof,
we use I to denote the size n identity matrix. With this notation, observe
that B̃ct (β, n, n) = det((PnBct (β)P−1

n − I)n,n). A tedious computation now
shows that

det((PnBct (β)P−1
n − I)n,n)

= det(Pn−1(Bct (β))n,nP−1
n−1 − In−1)− B̃ct (β,n,n− 1).
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Using the definition of B̃ct (β) and the fact that the determinant is invariant
under conjugation, this can be rewritten as B̃ct (β, n, n) = Bct (β, n, n) −
B̃ct (β, n, n− 1). The conclusion then follows by using (4.7). This concludes
the proof of the proposition. �

4.4.3. Relation to the potential function

As in Remark 4.7, g : Λµ → Λµ is defined by extending Z-linearly the
group endomorphism of Zµ = 〈t1, . . . , tµ〉 which sends ti to t2i . The follow-
ing lemma expresses ∇

β̂
using a minor of the unreduced colored Gassner

matrix.

Lemma 4.16. — Given a µ-colored n-stranded (c, c)-braid β, we have

(t2c1
− 1)∇

β̂
(t1, . . . , tµ) = (−1)n+1〈β〉 · tc1 . . . tcn · g(Bct (β, 1, 1)),

where 〈β〉 is the Laurent monomial described in Remark 4.7.

Proof. — Using successively Remark 4.7 and Proposition 4.15, we obtain

∇
β̂
(t1, . . . , tµ) = (−1)n+1〈β〉

tc1 . . . tcn − t−1
c1 . . . t−1

cn

g(det(Bct(β)− In−1))(4.9)

= (−1)n+1〈β〉
tc1 . . . tcn − t−1

c1 . . . t−1
cn

t2c1
. . . t2cn − 1
t2c1
− 1 g(Bct (β, 1, 1)).

This concludes the proof of Lemma 4.16. �

We need one last lemma in order to prove Proposition 5.8, namely we
require a multivariable generalization of [27, Lemma 2.2, part 3]. For that
purpose, we write the (unreduced) colored Gassner matrix of β as (A B

C D ),
where D is a square matrix of size n− 2.

Lemma 4.17. — Let c be a µ-coloring with c1 = c2 and let β be an
n-stranded (c, c)-braid. If the generator σ1 ∈ Bn is viewed as a (c, c)-braid,
then the following equality holds in Λµ:

(4.10) Bct (σ2
1β, 1, 1) = t2c1

Bct (β, 1, 1) + (tc1 − 1) det(D − In−2).

Proof. — First, a short computation shows that

Bct (σ2
1) =

(
1− tc1 + t2c1

tc1(1− tc1)
1− tc1 tc1

)
⊕ In−2,

see also Example 4.12. Next, recalling that we decomposed the colored
Gassner matrix of β as (A B

C D ), we write the matrix A as ( a11 a12
a21 a22 ), the

matrix B as
(
b1
b2

)
where each bi is a size n − 2 row vector and the matrix

C as (c1, c2), where each ci is a size n − 2 column vector. As (4.10) does
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not involve the first lines and columns of the aforementioned matrices, we
are reduced to proving

(4.11) det
(

(1− tc1)a12 + tc1a22 − 1 (1− tc1)b1 + tc1b2
c2 D − I

)
= t2c1

det
(
a22 − 1 b2
c2 D − I

)
+ (tc1 − 1) det(D − I),

where we use I as a shorthand for the identity matrix In−2. Expanding the
left hand side of (4.11) along the first row, we obtain

(4.12) ((1− tc1)a12 + tc1a22 − 1) det(D − I)

+
n−1∑
j=2

(−1)1+j((1− tc1)bj1 + tc1b
j
2) det(Lj),

where, for j greater than one, Lj denotes the size n− 2 square matrix ob-
tained from ( c2 D−I ) by removing the j-th column. Keeping these notations
in mind and expanding the determinant in the right hand side of (4.11)
along its first line, we obtain

(4.13) t2c1

(a22 − 1) det(D − I) +
n−1∑
j=2

(−1)1+jbj2 det(Lj)


+ (tc1 − 1) det(D − I).

Substracting (4.13) from (4.12) and simplifying the extraneous tc1 − 1
factors, we see that (4.11) in fact reduces to proving the equation
−Bct (β, 2, 1) − tc1Bct (β, 1, 1) = 0. Since the latter equation holds thanks
to Lemma 4.13, the proof of Lemma 4.17 is concluded. �

4.4.4. Conclusion of the proof

Proof of Propostion 4.10. — Let ω ∈ Tµ be such that ∇
β̂
(ω) is non-zero.

Our goal is to show that det(D(ω)−In−2) is non-zero. Use Bcω(β) to denote
the unreduced colored Gassner matrix of β evaluated at ω. Assume by way
of contradiction that det(D(ω) − In−2) vanishes. Using Lemma 4.17, this
implies that Bcω(σ2

1β, 1, 1) = ω2
c1
Bcω(β, 1, 1). Combining this equality with

Lemma 4.16 and the fact that 〈σ2
1β〉 = t−2

c1
〈β〉, we get

(4.14)
(ω2
c1
− 1)∇

σ̂2
1β

(ω) = (−1)n+1〈σ2
1β〉 · ωc1 . . . ωcn · g(Bcω(σ2

1β, 1, 1))

= ω2
c1

(ω2
c1
− 1)∇

β̂
(ω).
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Note that we slightly abused notations by thinking of g as being de-
fined on C and noting that g(Bcω(σ2

1β, 1, 1)) = ω4
c1
g(Bcω(β, 1, 1)). Regard-

less of this fact, simplifying the extraneous terms, we obtain the equality
∇
σ̂2

1β
(ω) = ω2

c1
∇
β̂
(ω). We let the reader verify that this conclusion also

holds if ω2
c1
. . . ω2

cn = 1. Since we assumed that ∇
β̂
(ω) 6= 0, we deduce

that∇
σ̂2

1β
(ω) 6= 0. As Remark 4.9 implies that the quotient∇

σ̂2
1β

(ω)/∇
β̂
(ω)

is real, we obtain a contradiction when ω2
c1

is different from 1. This con-
cludes the proof of Proposition 4.10. �

Note that in their equivalent of (4.14), Heusener and Kroll work with
the Conway-normalized Alexander polynomial which they denote ∆K(t)
(recall Remark 4.8). This explains why they obtain the equality ∆k′(ω) =
ω∆k(ω) [27, last equation of p. 494], while we have a ω2

c1
factor.

5. The multivariable Casson–Lin invariant and crossing
changes

The goal of this section is to understand the behavior of the multivari-
able Casson–Lin invariant under a crossing change within a sublink. In
Subsection 5.1, we reduce this analysis to a computation in a space Ĥαj

2 , in
Subsection 5.2, we perform calculations in Ĥαj

2 which are then reformulated
in Subsection 5.3 in terms of the multivariable potential function.

5.1. Reduction to a “pillowcase-like” space.

Let c be a µ-coloring such that c1 = c2 = j. Let β be an n-stranded
(c, c)-braid and view the generator σ1 ∈ Bn as a (c, c)-braid. Given an
element α of (0, π)µ, we set

Sj(α) = {(eε12iα1 , . . . , eεµ2iαµ) ∈ S(α) | εj = 1}.

This set contains 2µ−1 elements and once again its elements are written
as ωε with ε in {±1}µ−1. Although this fact is not needed in the sequel,
observe that Sj(α) is in bijection with the set of conjugacy classes of abelian
representations of π1(ML) where the meridional traces of the sublink Lk
are fixed to 2 cos(αk) for k = 1, . . . , µ. To see this, first simultaneously
diagonalize these meridional matrices, yielding

(
eεk2iαk 0

0 e−εk2iαk

)
, and then

use one extra conjugation to fix εj = 1.
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Assume that ∆
β̂
(ωε),∆

σ̂2
1β

(ωε) 6= 0 for all ωε ∈ Sj(α). In order to un-
derstand the effect of a single crossing change within a sublink on the
multivariable Casson–Lin invariant hL, we will study

(5.1) hcσ2
1β

(α)− hcβ(α).

Indeed the links L := β̂ and σ̂2
1β differ by a single crossing change within

the sublink Lj and any such (negative to positive) crossing change within
a colored link can be realized in this way, see the proof of Proposition 5.10
below for further details. The first step in understanding (5.1) is to consider
the following set:

V α,cn = {(A1, . . . , An, B1, . . . , Bn) ∈ Hα,c
n |Ai = Bi for i = 3, . . . , n}.

Use c′ to denote (c3, . . . , cn) so that c = (c1, c2, c′). Observe that V α,cn is
homeomorphic to Hαj

2 ×Λα,c
′

n−2 and set V̂ α,cn := (V α,cn \ Sα,cn )/ SO(3). Using
Lemma 3.4, we deduce that this latter space is a smooth submanifold of
Ĥα,c
n whose dimension is 2n−2. We then consider the projection p : V α,cn →

H
αj
2 given by the following map:

p(X1, X2, X3, . . . , Xn, Y1, Y2, Y3, . . . , Yn) = (X1, X2, Y1, Y2).

In order to obtain an induced map p̂ on (a subset of) V̂ α,cn , we introduce
some further notations. Namely, we consider the subsetWα,c

n = p−1(Sαj2 ) of
V α,cn that projects onto the abelian representations in Hαj

2 . We additionally
set Ŵα,c

n := (Wα,c
n \ Sα,cn )/ SO(3): this way p induces a well defined map

p̂ : V̂ α,cn \ Ŵα,c
n → Ĥ

αj
2 .

Arguing as in [35], and perturbing Γ̂αβ if necessary, we can assume that V̂ α,cn

and Γ̂αβ intersect transversally in a properly embedded one-dimensional
submanifold of Ĥα,c

n . One can then further assume that Γ̂αβ ∩ Ŵα,c
n = ∅.

Now (5.1) can be computed by considering curves inside the 2-dimensional
space Ĥαj

2 . More precisely, using 〈 · , · 〉 to denote the algebraic intersection
number, the same arguments as in [35, Lemma 2.3] and [27, Equation (4)])
show that

hcσ2
1β

(α)− hcβ(α) = 〈Γ̂αj
σ2

1
− Λ̂αj2 , p̂(V̂ α,cn ∩ Γ̂αβ)〉

Ĥ
αj
2
.(5.2)

As we will see in Proposition 5.3 below, p̂(V̂ α,cn ∩ Γ̂αβ) consists of several
arcs, each approaching the same pair of punctures of Ĥαj

2 . Each of these
arcs will contribute, or not, to the intersection number (5.2) in a way that
we make precise in Proposition 5.8 below. This contrasts with the situation
described in [27, 35], where p̂(V̂ α,cn ∩ Γ̂αβ) consists of a single arc.
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Note that we are adopting the following convention: we are writing
Γ̂αj
σ2

1
, Λ̂αj2 and Ĥ

αj
2 instead of Γ̂(αj ,αj)

σ2
1

, Λ̂(αj ,αj),(c1,c2)
2 and Ĥ

(αj ,αj),(c1,c2)
2

which would be more coherent with the previous notation. Summariz-
ing, (5.2) shows that the difference of the multivariable Casson–Lin in-
variants (which are defined via algebraic intersections in Ĥα,c

n ) can be un-
derstood in the more manageable space Ĥαj

2 by studing intersections with
the difference cycle Γ̂αj

σ2
1
− Λ̂αj2 .

5.2. Computations in Ĥ
αj
2

The goal of this subsection is to understand whether the projection
p̂(V̂ α,cn ∩ Γ̂αβ) intersects the difference cycle Γ̂αj

σ2
1
− Λ̂αj2 : using (5.2), this

will provide a formula for the difference hc
σ2

1β
(α)− hcβ(α).

We first recall the parametrization of Ĥαj
2 = {(X1, X2, Y1, Y2) ∈ SU(2)4 |

Tr(Xi) = Tr(Yi) = 2 cos(αj), X1X2 = Y1Y2} which was obtained by Lin
for αj = π/2 [35, Lemma 2.1] and by Heusener–Kroll for αj 6= π/2 [27,
Lemma 4.1]. Although the proofs may be found in the aforementioned
references, we provide an outline of the arguments in order to introduce
some notation which we shall use throughout the section.

Lemma 5.1. — Given αj ∈ (0, π), the space Ĥαj
2 is homeomorphic to

(1) a 2-sphere with four points deleted if αj = π/2,
(2) a 2-sphere with three points deleted if αj 6= π/2.

Proof. — For X,Y ∈ SU(2), consider the SU(2)-invariant distance on
SU(2) given by d(X,Y ) := arccos

(
Tr(X−1Y )

2

)
. Notice that this distance

realizes the distance induced by the standard spherical metric on S3. Let
(X1, X2, Y1, Y2) lie in Ĥαj

2 . Up to conjugacy, one can assume that

X1 =
(

cos(αj) + i sin(αj) cos(θ1) sin(αj) sin(θ1)
− sin(αj) sin(θ1) cos(αj)− i sin(αj) cos(θ1)

)
,

X2 =
(
eiαj 0

0 e−iαj

)
for some θ1 ∈ [0, π]. As the distance d is invariant, the matrices X1 and Y1
lie on a (possibly degenerate) circle given by the intersection of the sphere
Sαj (1) = {X ∈ SU(2) | d(1, X) = αj} with the sphere Sαj (X1X2) = {X ∈
SU(2) | d(X,X1X2) = αj}, see Figure 5.1. We denote by θ2 ∈ [0, 2π] the
oriented angle between X1 and Y1 on this circle. Two cases must be treated
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1

X1

X2

Y1

X1X2

Sαj (1)

Sαj (1) ∩ Sαj (X1X2)

Figure 5.1. The pointsX1 and Y1 on the red circle Sαj (1)∩Sαj (X1X2).
The angle θ2 is given by the euclidean angle between X1 and Y1 on
this circle.

according to whether αj = π/2 or αj 6= π/2. These cases are respectively
discussed in [35] and [27], but here is short outline.

(1) First suppose that αj = π
2 . In this case, the space Ĥαj

2 is parametri-
zed by the two coordinates θ1 ∈ [0, π] and θ2 ∈ [0, 2π], with the
identifications (0, θ2) ∼ (0, 2π − θ2), (π, θ2) ∼ (π, 2π − θ2) and
(θ1, 0) ∼ (θ1, 2π) [35, Lemma 2.1]. Let us briefly justify the appear-
ance of these identifications.
When θ1 = 0, one has X1 = X2 = ( i 0

0 −i ) and therefore X1X2 =
−1. As a consequence, using the definition of d and the fact that
αj = π/2, the spheres Sπ

2
(1) and Sπ

2
(X1X2) coincide. Since X1 =

X2 is diagonal, after conjugating by a diagonal matrix, one can write
Y1(θ2) =

( i cos(θ2) sin(θ2)
− sin(θ2) −i cos(θ2)

)
. We then notice that Y1(2π − θ2) =

( i 0
0 −i )Y1(θ2)( i 0

0 −i )−1, whence the announced identification.
If θ1 = π, then X1X2 = 1 and the same argument holds. Finally

when θ2 = 0 and θ2 = 2π, we see that Y1 = X1 which also leads to
the claimed identifications. To conclude the proof of the first asser-
tion, note that removing the abelian representations corresponds
to removing the four points A = (0, 0), A′ = (0, π), B = (π, 0),
B′ = (π, π).

(2) Next, assume that αj 6= π
2 . In this case, the parametrization is

given by θ1 ∈ [0, π] and θ2 ∈ [0, 2π] with identifications (0, θ2) ∼
(0, 0), (θ1, 0) ∼ (θ1, 2π) and (π, θ2) ∼ (π, 2π − θ2) [27, Lemma 4.1].
We once again briefly justify the appearance of these identifications
which are illustrated in Figure 5.2.
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When θ1 = 0, we have X1 = X2 and the spheres Sαj (1) and
Sαj (X1X2) are tangent, with intersection point X1 = X2 = Y1 = Y2
(i.e. the red circle is “degenerate”: it is a unique point). This proves
the identification (0, 0) = (0, θ2). The remaining identifications fol-
low from the same argument as in the αj = π/2 case. Finally,
removing the abelian representations corresponds to removing the
three points A = (0, 0), B = (π, 0), B′ = (π, π).

θ1

θ2

0 π

2π

A B

B′

AB′ B

Figure 5.2. The space Ĥ2
αj , for αj 6=

π
2 . On the left hand side: the

left vertical edge (in red) is collapsed onto the point A, both the top
horizontal edge and the bottom horizontal edge (marked with a dot)
are identified, as are the right vertical edges above and below the point
B, with orientations described by arrows. On the right hand side: the
result of the aforementioned identifications; gluing the two boundary
segments joining B′ to B produces the desired sphere.

This concludes our outline of the description of Ĥαj
2 and therefore the

proof of Lemma 5.1. �

Remark 5.2. — Since we aim to consider the algebraic intersection of Γ̂αβ
with the difference cycle Γ̂α

σ−2
1
− Λ̂α,cn , it is worth mentioning that we lose

nothing by working in V̂ α,cn , which is a strict subset of (V α,cn \Sα,cn )/SO(3),
see [22, Lemma 5.2].

Working in the space Ĥαj
2 , we will now observe that near the puncture

A = (eiαj , eiαj , eiαj , eiαj ) (which was also described in Lemma 5.1), the
projection p̂(V̂ α,cn ∩ Γ̂αβ) is a family of 2µ−1 curves indexed by the elements
of the set Sj(α).

Proposition 5.3. — Let c be a µ-coloring such that c1 = c2 = j and
let α ∈ (0, π)µ. If ω := ωε ∈ Sj(α) is such that ω2

j 6= 1 and β is a (c, c)-braid
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such that ∇
β̂
(ω) 6= 0, then, in a neighborhood of A in Ĥαj

2 , the projection
p̂(Γ̂αβ ∩ V̂ α,cn ) is a family of 2µ−1 curves.

Proof. — Given θ in (0, π), we use eiθ to denote the matrix
(
eiθ 0
0 e−iθ

)
.

For each ε ∈ {±1}µ−1, observe that a := aε = (eiαj , eiαj , eεc3 iαc3 , . . . ,

eεcn iαcn ) is an element in the subset Sα,cn of abelian representations. Next,
we consider the following subspace of Rα,cn ×Rα,cn :

Λ′n
α,c = {(X1, X2, X3, . . . , Xn, Y1, Y2, X3, . . . , Xn) ∈ Rα,cn ×Rα,cn }.

Since Λ′n
α,c is (2n + 4)-dimensional, Γαβ is 2n-dimensional and Rα,cn ×

Rα,cn is 4n-dimensional, we deduce that the dimension of the vector space
T(a,a)Λ′n

α,c ∩ T(a,a)Γαβ is at least 4.

claim. — The dimension of T(a,a)Λ′n
α,c ∩T(a,a)Γαβ is equal to 4. In par-

ticular, the manifolds Λ′n and Γαβ intersect transversally at (a,a).

Proof. — Using Remark 4.6, the tangent map of β|Rα,cn at a can be
canonically identified with the unreduced colored Gassner matrix Bcω(β) =(A(ω) B(ω)
C(ω) D(ω)

)
. Since the tangent space to a graph is the graph of the corre-

sponding derivative, the space T(a,a)Λ′n
α,c ∩ T(a,a)Γαβ is isomorphic to the

space X of n-tuples v = (v1, . . . , vn) which satisfy

(5.3)
(
A(ω) B(ω)
C(ω) D(ω)

)

v1
v2
v3
...
vn

 =


∗
∗
v3
...
vn

 .

The claim is therefore equivalent to the assertion that the real dimension
of X is 2. Since we assumed that ∇

β̂
(ω) 6= 0 and ω2

j 6= 1, Proposition 4.10
ensures that det(In−2 − D(ω)) 6= 0. Thus we deduce from (5.3) that the
last n−3 components of v are equal to (In−2−D(ω))−1C(ω) ( v1

v2 ), finishing
the proof of the first assertion; the second assertion follows immediately by
recalling the respective dimensions of Λ′n

α,c and Γαβ . This concludes the
proof of the claim. �

The claim implies that in a neighborhood of each of the 2µ−1 points
(aε,aε), the space Λ′n

α,c∩ Γαβ is a manifold of dimension 4. Since V α,cn ∩Γαβ
is equal to Λ′n

α,c ∩ Γαβ , the same conclusion holds for this former space.
Since each of the (aε,aε) projects to A, after quotienting by SO(3) (and
perturbing if necessary), we deduce that the projection p̂(V̂ α,cn ∩Γ̂αβ) consists
of at least 2µ−1 curves near A.
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It remains to show that p̂(V̂ α,cn ∩ Γ̂αβ) consists precisely of 2µ−1 curves
(and not more). Reformulating, we assert that the arcs of p̂(V̂ α,cn ∩ Γ̂αβ)
that approach A are precisely parametrized by the (aε,aε). To see this,
we must understand how the fiber above A interacts with V̂ α,cn ∩ Γ̂αβ .
Observe that (aε,aε) ∈ p−1(A) (i.e. the fiber contains all the (aε,aε))
and p−1(A) ⊂ Wα,c

n : the former is clear while for the latter we use that
Wα,c
n = p−1(Sαj2 ) = p−1({A,B,B′}). Since Γ̂α,cβ ∩ Ŵα,c

n = ∅, the assertion
follows readily. This concludes the proof of Proposition 5.3. �

From now on, we use Cε to denote the arc of p̂(V̂ α,cn ∩ Γ̂αβ) corresponding
to ωε ∈ Sj(α), as described Proposition 5.3. Perturbing if necessary, we
can arrange that these 2µ−1 arcs intersect transversally. In particular, (5.2)
turns into

hcσ2
1β

(α)− hcβ(α) = 〈Γ̂αj
σ2

1
− Λ̂αj2 , p̂(V̂ α,cn ∩ Γ̂αβ)〉

Ĥ
αj
2

=
∑

ε∈{±1}µ−1

〈Γ̂αj
σ2

1
− Λ̂αj2 , Cε〉Ĥαj2

.
(5.4)

Observe that Cε lifts to a curve in V̂ α,cn ∩ Γ̂αβ approaching aε. Propo-
sition 5.3 shows that the question of whether Cε intersects the difference
cycle strongly depends on the position of this curve near A.

Remark 5.4. — As Γαβ is the graph of a function, each component Cε of
the projection p̂(V̂ α,cn ∩ Γ̂αβ) is the graph of a function in Ĥαj

2 , of the form
θ2 = gε(θ1); recall the left hand side of Figure 5.2.

Next, we let γ : (−δ, δ) → Ĥ
αj
2 be (a parameterization of) a curve such

that γ(t) approaches A as t goes to 0. Slightly abusing notations, we some-
times write γ(0) = A. The example to keep in mind is (a perturbation of)
Cε. Recalling the definition and parametrization of Ĥαj

2 , we write

(5.5) γ(t) = (X1(t), X2(t), Y1(t), Y2(t)).

and follow [27] by introducing the velocity θ0
1 = d

dtθ1|t=0 and the angle
θ0

2 = d
dtθ2|t=0 of such a curve γ. Still following [27], we define

s(θ0
2) :=

cos(αj + θ0
2
2 )

cos(αj)
e
iθ0

2
2

and observe that 2 arg s(θ0
2) = θ0

2. The following remark is used implicitly
in [27].

Remark 5.5. — If the curve γ is non constant, then we can choose θ1(t)
such that θ0

1 6= 0. Assume by way of contradiction that θ0
1 = 0. Since

γ(0) = A, this implies that γ is tangent to the vertical axis {θ1 = 0} (recall
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Figure 5.2). As this whole axis is collapsed to the point A, the curve γ
must be constant, a contradiction. Note also that when γ = Cε, this is
a consequence of Remark 5.4: since Cε is the graph of a function (in the
(θ1, θ2) coordinates), the derivative θ′1(t) cannot vanish.

From now on, we consider the 2µ−1 paths γβ,ε given by (a perturbation
of) Cε where ε lies in {±1}µ−1; we then write θ0

1,ε, θ
0
2,ε for the corresponding

velocity and angle, although at times, we will drop the ε from the nota-
tion. Using Remark 5.5, we suppose that θ0

1,ε = 1
sin(αj) . As in the proof of

Proposition 5.3, we write the unreduced colored Gassner matrix evaluated
at ω as Bcω(β) =

(A(ω) B(ω)
C(ω) D(ω)

)
. The following lemma relates the angle θ0

2,ε
to this matrix.

Lemma 5.6. — Let c be a µ-coloring, let α be an element of (0, π)µ and
let ω := ωε ∈ Sj(α) be such that ω2

j 6= 1. Let β be a (c, c)-braid which
satisfies ∇

β̂
(ω) 6= 0 and additionally set v := vε = (1 −D(ω))−1C(ω) ( 1

0 ).
Then sβ := sβ,ε = s(θ0

2,ε) satisfies

Bcω(β)

1
0
v

 =

 sβ
ωj(1− sβ)

v

 .

Proof. — Write ω ∈ Sj(α) as ω = (eε12iα1 , . . . , e2iαj , . . . , eεµ2iαµ). For
θ ∈ (0, π), we write eiθ := ( eiθ 0

0 e−iθ
) and a := aε = (eiαj , eiαj , eεc3 iαc3 , . . . ,

eεcn iαcn ) ∈ SU(2)n. Remark 4.6 shows that the derivative Taβ of the map
β : Rα,cn → Rα,cn at a is given by the action of the colored Gassner matrix
Bcω(β) on Cn (after multiplication by −j). Using the definition of v, the
lemma will follow once we show that

(5.6) Bcω(β)|C2

(
1
0

)
=
(

sβ
ωj(1− sβ)

)
.

Writing the curve γβ(t) := γβ,ε(t) as (X1(t), X2(t), Y1(t), Y2(t)), we first
compute γ′β(0). Recalling the parametrization of Ĥαj

2 which was described
in Lemma 5.1, we see that X ′2(0) = 0. Additionally using that θ1(0) = 0
and that our parametrization satisfies θ0

1 := θ0
1,ε = 1/ sin(αj), we also get

X ′1(0) =
(

0 sin(αj) cos(θ1(0))θ0
1

− sin(αj) cos(θ1(0))θ0
1 0

)
= ( 0 1

−1 0 ). Next, using [27,
p. 492, Equation (5)] a computation shows that

Y ′1(0) =
(

0 θ0
1 sin(αj)sβ

−θ0
1 sin(αj)sβ 0

)
=
(

0 sβ
−sβ 0

)
.
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Finally, since Y2(t) = Y1(t)−1X1(t)X2(t), we also deduce that Y ′2(0) is given
by the matrix

(
0 e−2iαj (1−sβ)

−e−2iαj (1−sβ) 0

)
. Summarizing and recalling Re-

mark 4.6, we obtain

γ′β(0)(−j) = (1, 0, sβ , ωj(1− sβ)).

Since γβ is a parametrization of the curve Cε and since the tangent space
of a graph can be described using the graph of the derivative, we deduce
that (5.6) holds, concluding the proof of the Lemma 5.6. �

Using Lemma 5.6, we make a first observation on the angles θ0
2,ε near A.

We stress the fact that each sβ,ε depends on the corresponding ω := ωε ∈
Sj(α).

Proposition 5.7. — The angle θ0
2,ε of each Cε is not equal to 0 or −4αj .

Proof. — We argue by means of contradiction. First assume that θ0
2,ε is

equal to 0. The definition of sβ,ε implies that sβ,ε = 1. Using Lemma 5.6
(and its notations), this implies that the vector w := (1 0 v3 . . . vn)t is fixed
by the colored Gassner matrix. This is a contradiction since Lemma 4.3
shows that fixed vectors of the colored Gassner matrix do not contain a
zero in their second coordinate.
Next, assume that θ0

2,ε = −4αj . In this case, sβ,ε is equal to ωj = e−2iαj

(recall that ω = ωε lies in Sj(α)). Applying Lemma 5.6 to σ2
1β, we obtain

Bcω(σ2
1β)w = (sσ2

1β,ε
ωj(1 − sσ2

1β,ε
) v)t, where v := (v3, . . . vn) is as

in Lemma 5.6. Using the multiplicativity of the colored Gassner matrix,
applying Lemma 5.6 to β and recalling the Gassner matrix for σ2

1 which
was described in Example 4.12, we get

(5.7)
(

1 + ω2
j − ωj −ω2

j + ωj
1− ωj ωj

)(
sβ,ε

ωj(1− sβ,ε)

)
=
(

sσ2
1β,ε

ωj(1− sσ2
1β,ε

)

)
.

Since sβ,ε = ωj , the left hand side of (5.7) is equal to ( 1
0 ). As a consequence,

we obtain sσ2
1β,ε

= 1, contradicting the first paragraph of the proof. This
concludes the proof of Proposition 5.7. �

We now build on [27, Lemma 4.6] in order to understand how the various
sβ,ε control the behavior of the multivariable Casson–Lin invariant under
a crossing change within a given sublink. Since the argument is nearly the
same as in [27], we only indicate the necessary modifications (we excep-
tionally chose to use the notation ωεj to refer to the j-th component of ωε;
even though ωεj = e2iαj for each ε ∈ {±}µ−1).

Proposition 5.8. — Let c be a µ-coloring for which c1 = c2 = j, let
α ∈ (0, π)µ, and let β be a (c, c)-braid whose induced permutation β satisfies
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β(1) 6= 1 and β(2) 6= 2. If all ωε ∈ Sj(α) satisfy ω2
ε j 6= 1,∇

β̂
(ωε) 6= 0 and

∇
σ̂2

1β
(ωε) 6= 0, then the following equality holds:

hcσ2
1β

(α)− hcβ(α) = #
{
ωε ∈ Sj(α)

∣∣∣∣ ωεjsβ,ε − 1
sβ,ε − 1 < 0

}
.

Proof. — Recall from (5.4) that hc
σ2

1β
(α)− hcβ(α) can be understood by

studying the intersection of each Cε with the difference cycle Γ̂αj
σ2

1
− Λ̂αj2

inside Ĥαj
2 . We also know from Proposition 5.3 that each Cε approaches A.

Since each Cε is the graph of a function (recall Remark 5.4), the Cε cannot
be loops at A. the conclusion now depends on the behavior near B and B′.

Claim. — There is a neighborhood of B′ in Ĥαj
2 which is disjoint from

p̂(V̂ α,cn ∩ Γ̂αβ).

Proof. — Suppose this not to be the case and recall that B′ ∈ Ĥαj
2 is the

point (eiαj , e−iαj , eiαj , e−iαj ) and that p̂ is induced by (A1, A2, . . . , An, B1,

B2, . . . Bn) 7→ (A1, A2, B1, B2). Observe that B′ = p̂(A,A), where A =
(eiαj , e−iαj , A3, . . . , An). Using this notation, we deduce that there is a
point in V̂ α,cn ∩ Γ̂αβ which is represented by the pair (A,A). There are now
two cases both of which lead to contradictions. If (A,A) represents an
irreducible point, then we obtain the same contradiction as in [27, p. 491].
On the other hand, if (A,A) represents a reducible point, then the same
argument as [27, p. 496] shows that A is a fixed point of β|Rα,cn . Looking
back to the definition of A, this contradicts our assumption that β(1) 6= 1
and β(2) 6= 2, concluding the proof of the claim. �

A

B′

B

Λ̂αj2

Γ̂αj
σ−2

1

Cε

θ0
2

Figure 5.3. The union of the curves Λ̂αj2 (in red) and Γ̂αj
σ−2

1
(in green)

form a circle that disconnects the punctured sphere Ĥαj
2 .
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Using the claim, we know that p̂(V̂ α,cn ∩ Γ̂αβ), and hence each curve Cε,
must approach the points A and B. The intersection properties of each
of those curves now depend on the angle θ0

2,ε. If θ0
2,ε lies between 0 and

−4αj , then the curve Cε starts off in the connected component of Ĥαj
2 \

(Λ̂αj2 ∪ Γ̂αj
σ−2

1
) which does not contain B. Since this curve eventually reaches

B, it must intersect algebraically once positively the circle Λ̂αj2 ∪ Γ̂αj
σ−2

1
, such

a situation is depicted in Figure 5.3.
Similarly, if θ0

2,ε is not between 0 and −4αj , then the algebraic inter-
section of Cε with the difference cycle will be zero. Heusener–Kroll [27,
Section 4] now prove that these two situations correspond respectively to
the cases ωεjsβ,ε−1

sβ,ε−1 < 0 and ωεjsβ,ε−1
sβ,ε−1 > 0. The proposition now follows

from (5.4). �

5.3. The behavior under crossing changes and the Alexander
polynomial

In this subsection, we express the behavior of the multivariable Casson–
Lin invariant under crossing changes in terms of the multivariable potential
function.

Following closely the proof of [35, Lemma 2.7], the next result general-
izes [27, Lemma 4.7]. In this latter reference, the authors use the Conway-
normalized Alexander polynomial instead of the potential function: this
explains the slight difference in their formula, see Remark 4.8.

Proposition 5.9. — Let c be a µ-coloring for which c1 = c2 = j, let
α ∈ (0, π)µ, and let ω := ωε ∈ Sj(α) be such that ω2

j 6= 1 and ωc1 . . . ωcn 6=
1. If β is a (c, c)-braid such that ∇

β̂
(ω) 6= 0 and ∇

σ̂2
1β

(ω) 6= 0, and if we
write sβ := sβ,ε then we have

∇
β̂
(ω)

∇
σ̂2

1β
(ω) = sβ − 1

ω2
j sβ − 1 .

Proof. — Let ξ be an n-stranded (c, c)-braid such that ∇
ξ̂
(ω) 6= 0. As

in Subsection 4.4, we use Bcω(ξ) to denote the colored Gassner matrix of
ξ evaluated at ω. Setting v := (1, 0, v3, . . . , vn)t and xξ := (sξ, ωj(1 −
sξ), v3, . . . , vn)t, Lemma 5.6 implies that Bcω(ξ)v = xξ. Writing Bcω(ξ) as
(A(ω) B(ω)
C(ω) D(ω)

)
, we know from Proposition 4.10 that In−2−D(ω) is invertible.
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Using this fact to isolate the last n−3 vectors in the equation Bcω(ξ)v = xξ,
we deduce that(

sξ
ωj(1− sξ)

)
= (A(ω) +B(ω)(In−2 −D(ω))−1C(ω))

(
1
0

)
.

We can therefore write A(ω) + B(ω)(In−2 −D(ω))−1C(ω) as ( sξ a

ωj(1−sξ) b )
for some a and b. Next, we set T = ( 1 0

0 t ), where t is some indeterminate.
Since In−2 − D(ω) is invertible, a short computation using the formula
det(W X

Y Z ) = det(W − XZ−1Y ) det(Z) for the determinant of a (2 × 2)
block matrix (W X

Y Z ) where Z is invertible shows that

(5.8) det
((

T 0
0 In−2

)
− Bcω(ξ)

)
= det

(
1− sξ −a

ωj(sξ − 1) t− b

)
det(In−2 −D(ω)).

We now compute the left hand side of (5.8). LetM1, . . . ,Mn be the columns
of M := In − Bcω(ξ) and let E2 be the column vector whose only non-zero
entry is in the second position and is equal to 1. Using these notations, the
second column of

(
T 0
0 In−2

)
− Bcω(ξ) is equal to (t − 1)E2 + M2. Using the

linearity of the determinant in its second column, we get

(5.9) det
((

T 0
0 In−2

)
− Bcω(ξ)

)
= det(M) + (t− 1) det(M1, E2,M3, . . . ,Mn).

The first summand vanishes: the matrix M = Bcω(ξ) − In has a nontrivial
kernel since the colored Gassner matrix has fixed vectors. Recall from Sec-
tion 4 that we use Bcω(ξ, l,m) to denote the determinant of the size (n− 1)
matrix obtained by deleting the l-th row andm-th column ofM . Expanding
the second summand in (5.9) along the second column, we obtain

det
((

T 0
0 In−2

)
− Bcω(ξ)

)
= (t− 1)Bcω(ξ, 2, 2).

On the other hand, Lemma 4.13 gives ωc1(ωc2 − 1)Bcω(ξ, 1, 1) = (ωc1 −
1)Bcω(ξ, 2, 2), while Lemma 4.15 ensures that ωc1 ...ωcn−1

ωc1−1 Bcω(ξ, 1, 1) =
det(Bcω(ξ) − In−1). Using (5.8), and recalling that we assume c1 = c2,
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we obtain

(5.10) det
(

1− sξ −a
ωj(sξ − 1) t− b

)
det(In−2 −D(ω))

= ωc1(ωc1 − 1)
ωc1 . . . ωcn − 1(t− 1) det(Bcω(ξ)− In−1).

We now set t = 1 in (5.10) so that its right hand side vanishes. Since
det(In−2 −D(ω)) is non-zero, the leftmost determinant must vanish. But
as sξ cannot be equal to 1 (recall the proof of Proposition 5.7), we deduce
that a = ωj(1 − b). A straightforward computation now shows that the
leftmost determinant of (5.10) is equal to (t − 1)(1 − sξ). Simplifying the
(t− 1) terms, we have therefore obtained

(5.11) (1− sξ) det(In−2 −D(ω)) = ωc1(ωc1 − 1)
ωc1 . . . ωcn − 1 det(Bcω(ξ)− In−1).

In order to apply (5.11) to β and σ2
1β, notice that the “D blocks” of the

colored Gassner matrices of β and σ2
1β are equal: multiplying by Bcω(σ2

1)
only affects the A and B submatrices. Consequently, substituting ξ with β
and σ2

1β in (5.11) and taking quotients, we obtain

(5.12) 1− sβ
1− sσ2

1β

= det(Bcω(β)− In−1)
det(Bcω(σ2

1β)− In−1)
.

A short computation using (5.7) shows that sσ2
1β
− 1 = ωj(ωjsβ − 1). To

conclude the proof of the proposition, it thus only remains to express (5.12)
using the potential function instead of the reduced colored Gassner matri-
ces. Since 〈σ2

1β〉 = t−2
c1
〈β〉, Remark 4.7 and (5.12) yield

∇
β̂
(ω)

∇
σ̂2

1β
(ω) = ω2

j

det(Bcω2(β)− In−1)
det(Bcω2(σ2

1β)− In−1)
= ω2

j

1− sβ
ω2
j (ω2

j sβ − 1) .

Simplifying the ω2
j terms concludes the proof of the proposition. �

We can now express the effect of an intra-component crossing change
on the multivariable Casson–Lin invariant hL in terms of the multivariable
potential function.

Proposition 5.10. — Let L be a µ-colored link and assume that L+
is obtained from L by changing a negative crossing within a connected
component of Lj ⊂ L. Let α ∈ (0, π)µ be such that all ω ∈ Sj(α) satisfy
ω2
j 6= 1 and ωc1 . . . ωcn 6= 1. If ∇L(ω1/2) 6= 0 and ∇L+(ω1/2) 6= 0 for

all ω ∈ Sj(α), then the multivariable Casson–Lin invariants of L and L+
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satisfy

(5.13) hL+(α)− hL(α) = #
{
ω ∈ Sj(α)

∣∣∣∣∣ ∇L+(ω1/2)
∇L(ω1/2)

< 0
}
.

Proof. — Since ∇L(ω1/2) 6= 0 and ∇L+(ω1/2) 6= 0 for all ω ∈ Sj(α),
we deduce from (4.2) that ∆L(ω) 6= 0 and ∆L+(ω) 6= 0 for all ω ∈ Sj(α).
Using the symmetry of the Alexander polynomial, the same assertion holds
for all ω ∈ S(α). Therefore the multivariable Casson–Lin invariants hL(α)
and hL+(α) are defined. Assume that the crossing change occurs within a
j-colored knot K ⊂ L. Arguing as in [14, Remark 2.1], we can then assume
that L = β̂ and L+ = σ̂2

1β, where β and σ2
1 are µ-colored (c, c)-braids with

c1 = c2 = j, see Figure 5.4.

β β β

Figure 5.4. On the left hand side, the braid β; on the right hand side,
the braid σ2

1β.

Since the crossing change takes place within K, the permutation β in-
duced by β cannot satisfy β(1) = 1 and β(2) = 2.
We can therefore apply Proposition 5.8 to deduce that

hcσ2
1β

(α)− hcβ(α) = #
{
ω ∈ Sj(α)

∣∣∣∣ ωjsβ,ε − 1
sβ,ε − 1 < 0

}
.

Applying Proposition 5.9, this equation can be rewritten as in (5.13). This
concludes the proof of Proposition 5.10. �

In [27, 35], the condition in (5.13) is expressed as a product of poly-
nomials instead of a quotient. Since these authors work with knots, the
Conway-normalized Alexander polynomial evaluated at ω ∈ S1 is real (re-
call Remark 4.8) and so the two formulations are in fact equivalent. The
next remark describes the situation in the multivariable case.

Remark 5.11. — If L and L+ are n-component µ-colored links as in
Proposition 5.10 and ω ∈ Tµ, then the sign of ∇L+ (ω1/2)

∇L(ω1/2) is equal to the sign
of ∇L+(ω1/2)∇L(ω1/2) up to (−1)n. Indeed, the quotient and the product
agree up to multiplication by ∇L(ω1/2)2, and recalling Remark 4.9, this
latter quantity equals (−1)n∇L(ω1/2)∇L(ω−1/2) = (−1)n|∇L(ω1/2)|2.
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6. The relation to the multivariable signature

In this section, we prove the main results of this paper. In more details,
Subsection 6.1 gathers some facts about the multivariable signature, Sub-
section 6.2 proves Theorem 1.1, Subsection 6.3 shows that hL is locally
constant and Subsection 6.4 proves Theorem 1.7.

6.1. The multivariable signature

In this subsection, we briefly recall the definition of the multivariable
signature, the main references being [16] and [9].

A C-complex for a µ-colored link L = L1 ∪ · · · ∪ Lµ is a union S =
S1 ∪ · · · ∪ Sµ of surfaces in S3 which is connected, and such that:

(1) for all i, Si is a Seifert surface for the sublink Li,
(2) for all i 6= j, Si ∩ Sj is either empty or a union of clasps,
(3) for all i, j, k pairwise distinct, Si ∩ Sj ∩ Sk is empty.

The existence of a C-complex for arbitrary colored links was established
in [8, Lemma 1]. Given a sequence ε = (ε1, . . . , εµ) of signs ±1, let
iε : H1(S)→ H1(S3\S) be defined as follows. Any homology class in H1(S)
can be represented by an oriented cycle x which behaves as illustrated in [9,
Figure 2] whenever crossing a clasp. Define iε([x]) as the class of the 1-cycle
obtained by pushing x in the εi-normal direction off Si for i = 1, . . . , µ.
Next, consider the bilinear form

αε : H1(S)×H1(S)→ Z, (x, y) 7→ `k(iε(x), y) ,

where `k denotes the linking number. Fix a basis ofH1(S) and denote by Aε
the matrix of αε. Note that for all ε, these generalized Seifert matrices
satisfy A−ε = (Aε)T . Using this fact, one easily checks that for any ω =
(ω1, . . . , ωµ) in the µ-dimensional torus Tµ, the matrix

H(ω) =
∑
ε

µ∏
i=1

(1− ωεii )Aε

is Hermitian. Since this matrix vanishes when one of the coordinates of ω
is equal to 1, we restrict ourselves to the subset Tµ∗ = (S1 \ {1})µ of Tµ.

Definition 6.1. — The multivariable signature and nullity of a µ-
colored link L are the maps σL, ηL : Tµ∗ → Z , where σL(ω) is the signature
of H(ω) and ηL(ω) its nullity.
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The multivariable signature and nullity are independent of the choice
of the C-complex [9]. Note furthermore that when µ = 1, a C-complex is
nothing but a Seifert surface and σL recovers the Levine–Tristram signature
of the oriented link.

6.2. The multivariable signature and the multivariable
Casson–Lin invariant

The goal of this subsection is to relate the multivariable Casson–Lin
invariant hL to σL when L is a 2-component ordered link with linking
number 1, proving Theorem 1.1 from the introduction.
The following lemma describes the parity of the multivariable signature

and its behavior under crossing changes within a sublink.

Lemma 6.2. — The multivariable signature satisfies the following prop-
erties:

(1) If a µ-colored link L has ν components and ω ∈ Tµ∗ is not a root of
∆L, then

σL(ω) ≡ ν +
∑
k<j

`k(Lk, Lj)− sign(iν∇L(ω1/2)) mod 4.

In particular, if L is a 2-component ordered link with linking number
1 and ω ∈ T2

∗ is not a root of ∆L, then σL(ω) is even and

σL(ω) ≡
{

0 mod 4 if ∇L(ω1/2) > 0,
2 mod 4 if ∇L(ω1/2) < 0.

(2) Assume that L+ is obtained from L by changing a unique negative
crossing within a given sublink. If ω ∈ Tµ∗ is neither a root of ∆L+

nor a root of ∆L, then

σL+(ω)− σL(ω) ∈ {0,−2}.

Proof. — The first statement is contained in [9, Lemma 5.7] and directly
implies the claim about 2-component links with linking number 1 (here
∇L(ω) is real since L has 2 components, see Remark 4.9). Here, note that we
can apply [9, Lemma 5.7] since we assumed that ∆L(ω) 6= 0: this hypothesis
is equivalent to the assumption ηL(ω) = 0 made in [9, Lemma 5.7]. We
now prove the second statement. Pick C-complexes S+ and S for L+ and L
which only differ at the crossing under consideration. Since the crossing
change occurs within a sublink, there are bases for H1(S+) and H1(S)
such that the resulting generalized Seifert matrix Aε+ only differs from Aε at
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one diagonal entry which is reduced by 1. As a consequence, the Hermitian
matrix H+(ω) is the same as H(ω) except for one diagonal entry which
is reduced by the positive real number

∑µ
i=1(2 − ωi − ωi). Since only one

eigenvalue can change and since we assumed both Alexander polynomials
to be non-zero (i.e. there are no zero eigenvalues in H+(ω) and H(ω)), the
result follows. �

Reformulating Lemma 6.2, we immediately obtain the following result.

Lemma 6.3. — Let L be a 2-component ordered link with linking num-
ber 1 and assume that L+ is obtained from L by a unique crossing change
within a component of L. If ω ∈ T2

∗ is such that ∇L(ω1/2) 6= 0 and
∇L+(ω1/2) 6= 0, then

σL+(ω)− σL(ω) =
{

0 if ∇L+(ω1/2)∇L(ω1/2) > 0,
−2 if ∇L+(ω1/2)∇L(ω1/2) < 0.

For 2-component links with linking number 1, we can now relate the
multivariable Casson–Lin invariant to the multivariable signature, proving
Theorem 1.1 from the introduction.

Theorem 6.4. — Let L = K1∪K2 be a 2-component ordered link with
`k(K1,K2) = 1, let (α1, α2) ∈ (0, π)2, and set (ω1, ω2) = (e2iα1 , e2iα2).
If the multivariable Alexander polynomial satisfies ∆L(ωε1

1 , ω
ε2
2 ) 6= 0 for

all (ε1, ε2) ∈ {±1}2, then the following equality holds:

(6.1) hL(α1, α2) = −1
2
(
σL(ω1, ω2) + σL(ω1, ω

−1
2 )
)
.

Proof. — Recall that we write S(α) = {(ωε1
1 , ω

ε2
2 ) | (ε1, ε2) ∈ {±1}2}. We

first prove the theorem when α ∈ (0, π)µ is such that all ω ∈ S(α) satisfy
the following conditions: arg(ωj) is transcendental, ω1ω2 6= 1 and ω2

j 6= 1
for j = 1, 2. Since L has 2 components and linking number 1, the Torres
formula (which reads ∆K1∪K2(t1, 1) .= (t`12

1 − 1)/(t1 − 1)∆K1(t1), where
`12 = `k(K1,K2)) shows that |∆L(1, 1)| = 1. Thus ∆L is not identically
zero and therefore the multivariable Casson–Lin invariant hL(α) is well
defined whenever ∆L(ω) 6= 0 for all ω ∈ S(α). Since the fundamental group
of the complement of the Hopf link J is abelian, hJ vanishes identically.
The same conclusion holds for the multivariable signature σJ , as J admits
a contractible C-complex.
Since arg(ωj) is transcendental for j = 1, 2, it follows that ∇L(ω1/2) 6= 0

for all L as in the statement of the theorem. The equality (6.1) is obtained
by induction: both sides of this equation vanish on the (positive) Hopf
link, and the next paragraph will show that they behave identically under
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crossing changes within components. Notice that since the links have linking
number one, the Torres formula guarantees that such crossing changes do
not make the Alexander polynomial vanish (consequently if hL is defined
for L, then it remains defined after performing such a crossing change).
To prove the induction step, we assume that L+ differs from L = K1 ∪

K2 by a unique negative crossing within a component. Assume that this
component is K1 (the reasoning is similar for K2). Since we are working
with 2-component links, Proposition 5.10 and Remark 5.11 imply that

(6.2) hL+(α)− hL(α) = #
{
ω ∈ S1(α1, α2)

∣∣∣∇L+(ω1/2)∇L(ω1/2) < 0
}
.

By definition, S1(α1, α2) contains two elements: (ω1, ω2) and (ω1, ω
−1
2 ).

Let δ(ω1,ω2) be 1 or 0 according to whether or not ∇L+(ω1/2)∇L(ω1/2) < 0.
Using (6.2) and Lemma 6.3, we deduce that

hL+(α)− hL(α) = δ(ω1,ω2) + δ(ω1,ω
−1
2 )

= −1
2
(
σL+(ω1, ω2)− σL(ω1, ω2)

)
+ −1

2
(
σL+(ω1, ω

−1
2 )− (σL(ω1, ω

−1
2 )
)

= −1
2 (σL+(ω1, ω2) + σL+(ω1, ω

−1
2 )

− (σL(ω1, ω2) + σL(ω1, ω
−1
2 ))).

This concludes the proof of the theorem for the α ∈ (0, π)2 which were
described above, since the linking number is a complete link homotopy
invariant for 2-component links [38].
We conclude. View the right hand side of (6.1) as a function on (0, π)2.

The result will follow if we prove that both sides of (6.1) are locally con-
stant on {α ∈ (0, π)2 |∆L(ω±1

1 , ω±1
2 ) 6= 0}: for the multivariable signature,

this follows from [9, Corollary 4.2], while for hL, the result is proved in
Proposition 6.6 below. This concludes the proof of Theorem 6.4. �

The sign appearing in Theorem 6.4 depends on some conventions which
we briefly discuss.

Remark 6.5. — Given a knot K obtained as the closure of a braid β, Lin
writes K+ = σ̂2

1β, while Heusener and Kroll write K− = σ̂2
1β. As a conse-

quence, while these authors agree on the sign of h
σ̂2

1β
(α)− h

β̂
(α), compar-

ing [35, Theorem 2.9] with [27, Proposition 4.8] shows that the meaning of
this sign differs: it depends on the conventions adopted for the generators
of the braid group. We follow Lin’s conventions (recall Figures 3.1 and 5.4).
On the other hand, assuming that K+ is obtained from K− by changing
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a single negative crossing, Lin states that 0 6 σK+(ω)− σK−(ω) 6 2 [35,
p. 356], while Heusener–Kroll state that 0 6 σK−(ω) − σK+(ω) 6 2 [27,
p. 497]. With our notations, the proof of Lemma 6.2 (as well as [40, proof
of Lemma 2.1] and [21, proof of Lemma 2.2]) yields the latter result. Sum-
marizing, the sign differences in [35] and [27] cancel out (explaining why
these authors obtain “hK = σK/2”) while our conventions account for the
minus sign in Theorem 6.4.

6.3. The multivariable Casson–Lin invariant is locally constant

Recall from Remark 3.11 that hL is defined on the set DL={α∈(0, π)2|
ρω is not a limit of irreducible representations for all ω ∈ S(α)}. Since the
inclusion {α ∈ (0, π)2 |∆L(ω±1

1 , ω±1
2 ) 6= 0} ⊂ DL was also observed in

Remark 3.11, the following proposition concludes the proof of Theorem 6.4.

Proposition 6.6. — Given a µ-colored link L, the multivariable Cass-
on–Lin invariant is locally constant on DL. Namely, if α0 and α1 lie in the
same connected component of DL, then the following equality holds:

hL(α0) = hL(α1).

We first describe the strategy of the proof which is inspired by [27, Propo-
sition 3.8]. Let α ∈ (0, π)µ. Given ε > 0, we denote by B(α, ε) the ball of
radius ε centered at α. We will show that if ε is small enough, then hL(α)
coincides with hL(α′) for any α′ in B(α, ε). Writing L as the closure of an
n-stranded (c, c)-braid β, this will be carried out by constructing a cobor-
dism which joins Λ̂α,cn ∩ Γ̂αβ to Λ̂α′,cn ∩ Γ̂α′β . This cobordism will take place in
an ambient space whose description requires us to introduce the following
spaces:

Rcn,2n =
{

(A1, . . . , An, B1, . . . , Bn)

∈ SU(2)2n

∣∣∣∣∣ tr(Ai) = tr(Bi) = tr(Aj) = tr(Bj)
if ci = cj

}
,

Hc
n =

{
(A1, . . . , An, B1, . . . , Bn) ∈ Rcn,2n

∣∣∣∣∣
n∏
i=1

Ai =
n∏
i=1

Bi

}
.

Recalling the notations from Section 3, observe that we have the inclusions
Rα,cn × Rα,cn ⊂ Rcn,2n and Hα,c

n ⊂ Hc
n. Just as in Section 3, we then define

Scn as the space of abelian representations in Rcn,2n (i.e. we impose the
same relations as in (3.2)) and define Ĥc

n by removing Scn ∩ Hc
n from Hc

n

and moding out by the action of SO(3). The next lemma is an analogue of
Lemma 3.4; we also refer to [26, Corollary 3.2] where a similar statement
is made.

ANNALES DE L’INSTITUT FOURIER



A MULTIVARIABLE CASSON–LIN TYPE INVARIANT 1079

Lemma 6.7. — The space Ĥc
n is a smooth open manifold which contains

Ĥα,c
n as a codimension µ submanifold. Furthermore, the normal bundle of

Ĥα,c
n inside Ĥc

n is trivial.

Proof. — The proof of the first statement is the same as in Lemma 3.4.
Namely, the map fn : Rcn,2n → SU(2) defined by fn(A1, . . . , An, B1,

. . . , Bn) = A1 . . . AnB
−1
n . . . B−1

1 restricts to a submersion fn| on Hc
n \ Scn

and therefore Hc
n \ Scn = fn

−1
| (Id) is a smooth manifold whose dimen-

sion is equal to dim(Rcn,2n) − dim(SU(2)) = 4n + µ − 3. Since SO(3) acts
freely on Hc

n \ Scn, the quotient Ĥc
n is a smooth open manifold of dimen-

sion 4n−6 +µ. It is clear that Ĥα,c
n has codimension µ in Ĥc

n because that
many traces are fixed.
We now show that Ĥα,c

n has trivial normal bundle in Ĥc
n. Recall that for

any θ ∈ (0, π), the 2-sphere Sθ = {A ∈ SU(2) | Tr(A) = 2 cos(θ)} has trivial
normal bundle in SU(2): the Lie algebra su(2) splits as C⊕R, the complex
line being mapped onto the tangent space of Sα at A by the tangent map
of multiplication by A and the real direction is spanned by the tangent
map of the trace function Tr: SU(2) \ {± Id} → (−2, 2) at A. Denoting
by (Rcn,2n)∗ the subspace of Rcn,2n with none of its coordinates equal to
± Id, and by i1, . . . , iµ some preimages of 1, . . . , µ by the coloring c, the
following map is thus a submersion:

Trµ : (Rcn,2n)∗ → (−2, 2)µ

(A1, . . . , An, B1, . . . , Bn) 7→ (Tr(Ai1), . . . ,Tr(Aiµ)).

Fiberwise, the normal bundle of Rα,cn ×Rα,cn in Rcn,2n is given by TxRcn,2n/Tx
(Rα,cn ×Rα,cn ), for any x in Rα,cn ×Rα,cn . As a consequence, using N ((Rα,cn ×
Rα,cn )/Rcn,2n) to denote the normal bundle of Rα,cn × Rα,cn inside Rcn,2n,
the map Trµ induces a fiberwise isomorphism N ((Rα,cn × Rα,cn )/Rcn,2n) →
T (−2, 2)µ. Since this latter bundle is trivial, so is the former. The statement
now descends to the normal bundle of Hα,c

n inside Hc
n: indeed Hα,c

n \ Sα,cn

(resp. Rα,cn × Rα,cn ) is a submanifold of codimension µ in Hc
n \ Scn (resp.

Rcn,2n). This concludes the proof of Lemma 6.7. �

Using Lemma 6.7, we can now prove Proposition 6.6 which asserts that
hL is locally constant on DL. The main idea is inspired by the proof of
Ehresmann’s fibration theorem [18].
Proof of Proposition 6.6. — Let α ∈ (0, π)µ, fix ε > 0 and use B(α, ε)

to denote the ball of radius ε centered in α. We want to show that if ε is
small enough, then hL(α′) coincides with hL(α) for any α′ ∈ B(α, ε). Pick
an isotopy F : Ĥα,c

n × [0, 1]→ Ĥα,c
n which makes the intersection Λ̂α,cn ∩ Γ̂αβ
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transverse in Ĥα,c
n . Choose a path α : [0, 1] → (0, π)µ joining α to α′ In

order to build a cobordism joining Λ̂α,cn ∩ Γ̂αβ to Λ̂α′,cn ∩ Γ̂α′β , we will prove
that F can be “transported” along α(t) so that for each t, the intersection
Λ̂α(t),c
n ∩ Γ̂α(t)

β becomes transverse in Ĥα(t),c
n .

Let N (Ĥα,c
n /Ĥc

n) denote the normal bundle of Ĥα,c
n inside of Ĥc

n. Since
Lemma 6.7 ensures that this bundle is trivial, we can pick a nowhere van-
ishing normal vector field X : Ĥα,c

n → N (Ĥα,c
n /Ĥc

n) whose flow we denote
by φtX : Ĥc

n → Ĥc
n. Since the intersection Λ̂α(t),c

n ∩ Γ̂α(t)
β is compactly sup-

ported for each t, there is a compact set K0 ⊂ Ĥα,c
n containing Λ̂α,cn ∩ Γ̂αβ

and such that for each t, the compact set Kt = φtX(K0) is a subset of
Ĥ
α(t),c
n containing Λ̂α(t),c

n ∩ Γ̂α(t)
β . It can in fact safely be assumed that K0

is a manifold. Let {Ui | i ∈ I} be an open cover of Ĥα,c
n , with finite sub-

cover {Ui | i = 1, . . . , k} of K0. Refining this sub-cover if necessary, one can
assume that each open set Ui ⊂ Ĥα,c

n verifies the following property: for
some t ∈ [0, 1], the set φtX(Ui) contains only one component of the non-
transverse intersection Λ̂α(t),c

n ∩ Γ̂α(t)
β in Ĥα(t),c

n (there are finitely number
such components because we are dealing with (semi-)algebraic sets).
Since there are only finitely many non-transverse intersections, it is

enough to show that for one such U ⊂ Ĥα,c
n , one can transport the iso-

topy F so that, for the corresponding t, the non-transverse intersection
point of Λ̂α(t),c

n ∩ Γ̂α(t)
β in Ĥα(t),c

n is perturbed to a transverse one. To make
this possible, consider the isotopy

(φtX)∗F : φtX(U)× [0, 1]→ φtX(U)

(p, s) 7→ φtX ◦ F (φ−tX (p), s).

As vector fields X such that the isotopy (φtX)∗F makes this intersection
transverse are generic in the set of normal vector fields, this procedure can
always be carried out.
We now conclude the proof. Pick ε small enough so that each φtX : Ui →

Ĥc
n is an embedding. The set K =

⋃
t∈[0,1] φ

t
X(K0) is therefore a

compact submanifold of Ĥc
n. The previous construction now ensures that⋃

t∈[0,1] φ
t
X(Λ̂α,cn ) and

⋃
t∈[0,1] φ

t
X(Γ̂αβ) can be assumed to intersect transver-

sally in a one dimensional submanifold of K. This latter submanifold re-
alizes the desired cobordism between Λ̂α,cn ∩ Γ̂αβ and Λ̂α′,cn ∩ Γ̂α′β . As a con-
sequence, the corresponding intersections numbers are equal and therefore
the Proposition 6.6 is proved. �
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6.4. Deformations of SU(2) representations of link groups

The goal of this subsection is to prove Theorem 1.7 from the introduction.
Recall that for a µ-colored link L, the multivariable Alexander polyno-

mial ∆L(t±1
1 , . . . , t±1

µ ) restricts to a polynomial on the µ-dimensional torus
Tµ. Our interest lies in the zero locus

V (∆L) = {(ω1, . . . , ωµ) ∈ Tµ∗ |∆L(ω1, . . . , ωµ) = 0}.

We can now prove Theorem 1.7 from the introduction.

Theorem 6.8 (Reproduction of Theorem 1.7). — Let L be a 2-compon-
ent ordered link with linking number 1. Let (ω1, ω2) ∈ T2

∗ be such that
∆L(ω1, ω2) = 0 and ∆L(ω1, ω

−1
2 ) 6= 0. Assume that for any open subset

U ⊂ T2
∗ containing (ω1, ω2), the multivariable signature σL is not constant

on U \ (V (∆L) ∩ U). Then the abelian representation ρ(ω1,ω2) is a limit of
irreducible representations.

Proof. — Set ω := (ω1, ω2). By way of contradiction, assume that ρω is
not a limit of irreducible representations. Recall from Remark 3.11 that the
invariant hL is defined on the set

DL =
{
α ∈ (0, π)2

∣∣∣∣∣ ρω is not a limit of irreducible
representations for all ω ∈ S(α)

}
.

Consider the continuous mapΠ: T2
∗ → (0, π)2 defined by

Π(ω1, ω2) =
(

1
2 arccos

(
ω1 + ω−1

1
2

)
,

1
2 arccos

(
ω2 + ω−1

2
2

))
.

Since Π is continuous and, by Proposition 6.6, hL : DL → Z is locally
constant, we see that the composition hL ◦ Π defines a locally constant
function on Π−1(DL). Since Remark 3.11 implies that V (∆L) ⊂ Π−1(DL),
we can apply hL ◦Π to (ω1, ω2).
Combining these facts, there is a small open neighborhood U ⊂ Π−1(DL)

containing (ω1, ω2) such that hL ◦Π is constant on U . In particular hL ◦Π
is constant on U \V (∆L)∩U . Writing ωi +ω−1

i = 2 cos(2αi) and applying
Theorem 6.4, we deduce that

hL ◦Π(ω1, ω2) = −1
2(σL(ω1, ω2) + σL(ω1, ω

−1
2 )).

Since we established that hL◦Π is constant on U\V (∆L)∩U , the same holds
for (ω1, ω2) 7→ − 1

2 (σL(ω1, ω2)+σL(ω1, ω
−1
2 )). Now observe that (ω1, ω2) 7→

σL(ω1, ω
−1
2 ) is locally constant around (ω1, ω2) because ∆L(ω1, ω

−1
2 ) 6= 0 [9,

Corollary 4.2]. These facts imply that σL is constant in a neighborhood of
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(ω1, ω2) in U \(V (∆L)∩U). This contradicts the hypothesis of the theorem,
concluding the proof. �
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