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HOMOTOPY THEORY OF HOMOTOPY ALGEBRAS

by Bruno VALLETTE (*)

In memoriam JLL

Abstract. — This paper studies the homotopy theory of algebras and homo-
topy algebras over an operad. It provides an exhaustive description of their higher
homotopical properties using the more general notion of morphism called infinity-
morphism. The method consists in using the operadic calculus to endow the cat-
egory of coalgebras over the Koszul dual cooperad or the bar construction with a
new type of model category structure, Quillen equivalent to that of algebras. We
provide an explicit homotopy equivalence for infinity-morphisms, which gives a sim-
ple description of the homotopy category, and we endow the category of homotopy
algebras with an infinity-category structure.
Résumé. — Cet article porte sur la théorie homotopique des algèbres et des al-

gèbres à homotopie près sur une opérade. Il fournit une description exhaustive de
leurs propriétés homotopiques supérieures en utilisant la notion générale de mor-
phisme appelé infini-morphisme. La méthode consiste à utiliser le calcul opéradique
pour munir la catégorie des cogèbres sur la coopérade duale de Koszul ou sur la
construction bar d’un nouveau type de structure de modèles, équivalente au sens
de Quillen de celle des algèbres. Nous introduisons une notion d’équivalence homo-
topique explicite pour les infinis-morphismes, qui induit une description simple de
la catégorie homotopique, et nous munissons la catégorie des algèbres à homotopie
près d’une structure d’infinie-catégorie.

Introduction

To define derived functors in non-necessarily additive setting, D. Quillen
generalized the ideas of A. Grothendieck [16] and introduced the notion of
model category [27]. A derived functor, being defined up to quasi-isomor-
phisms, finds its source in the homotopy category, which is the original
category localized with respect to quasi-isomorphisms. (This process is the
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684 Bruno VALLETTE

categorical analogue of the construction of the field of rational numbers,
where one starts from the ring of integers and formally introduce inverses
for the non-zero numbers). For instance, Quillen homology theory for alge-
bras of “any” type is defined by deriving the functor of indecomposables,
see [24, Chapter 12].
So it becomes crucial to be able to describe the homotopy category of

algebras, and more generally the homotopy theory of algebras. Using the
free algebra functor, Quillen explained how to transfer the cofibrantly gen-
erated model category of chain complexes to the category of differential
graded algebras. His main theorem, then asserts that the homotopy cate-
gory is equivalent to the full subcategory of fibrant-cofibrant objets, with
morphisms up to a certain homotopy equivalence relation. In this model
category structure [18], all the algebras are fibrant but the cofibrant ob-
jects are not so easily described: they are actually the retracts of quasi-free
algebras on generators endowed with a suitable filtration.

In his seminal paper on Rational Homotopy Theory [28], Quillen proved
that several algebraic and topological homotopy categories are equivalent
(differential graded Lie algebras, differential graded cocommutative coal-
gebras, topological spaces, simplicial spaces, etc.). For instance, one can
find there a way to describe the homotopy category of differential graded
Lie algebras as the homotopy category of differential graded cocommuta-
tive coalgebras. However, one problem and one question arise there. The
aforementioned Quillen equivalences hold only under a strong connectivity
assumption; and why does the category of Lie algebras admits the “dual”
category of cocommutative coalgebras?
The problem was solved by Hinich [19], see also Lefevre-Hasegawa [23],

who showed how to bypass the connectivity assumption by considering
on cocommutative coalgebras a new class of weak equivalences, which is
strictly included in the class of quasi-isomorphisms. The underlying idea
is quite natural: the cobar functor going from differential graded cocom-
mutative coalgebras to differential graded Lie algebras does not preserve
quasi-isomorphisms. So if one wants this functor to form a Quillen equiv-
alence, one has to find a class of morphisms of coalgebras which are sent
to quasi-isomorphisms of Lie algebras. This forces the definition of weak
equivalences of coalgebras.
The question is answered by the Koszul duality for operads [14, 15].

One encodes the category of Lie algebras with an operad and its Koszul
dual cooperad is the one which encodes the category of cocommutative
coalgebras.
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In the present paper, we settle the homotopy theory of algebras over
an operad as follows. First, we consider the category of coalgebras over
the Koszul dual cooperad, when the original operad is Koszul, or over the
bar construction of the operad, in general. Then, we endow it with a new
type of model category structure, Quillen equivalent to the one on algebras
and where the class of weak equivalences is strictly included in the class of
quasi-isomorphisms. In this model category, all the coalgebras are cofibrant
and the fibrant ones are the quasi-free ones, that is the ones for which
the underlying coalgebra, forgetting the differential, is cofree. This already
provides us with a simpler subcategory of fibrant-cofibrant objects.

Theorem 2.2. — The category of conilpotent dg P ¡ -coalgebras admits
a model category structure, Quillen equivalent to that of dg P-algebras, in
which every object is cofibrant and in which fibrant objects are the quasi-
free ones.

The method consists in extending Lefevre-Hasegawa’s strategy from as-
sociative algebras to any algebra over an operad P, using heavily the op-
eradic calculus developed in [24, Chapters 10–11]. (Notice that we try to
provide complete proofs for all the results, like the form of fibrant objects,
for instance, which was not given on the level of associative algebras).
Notice how the present theory parallels that of Joyal–Lurie of ∞-categ-

ories. To get a suitable notion of higher category, one can endow the cat-
egory of simplicial sets with a new model category made up of less weak
equivalences than the Quillen–Kan classical ones. In this case, all the ob-
jects are cofibrant and the fibrant ones provide us with the notion of quasi-
category, which is one model of ∞-category. In our case, we consider a
new model category on P ¡ -coalgebras with less weak equivalences. All the
objects are cofibrant and the fibrant ones give us the suitable notion of
P∞-algebra together with a good notion of morphisms that we call ∞-
morphisms.

Classical notion Homotopy Contextgeneralization
Joyal–Lurie Category ∞-category Simplicial sets

Present paper P-algebras P∞-algebras
P ¡ -coalgebraswith ∞-morphisms

So this new model category structure induces a new homotopy theory for
homotopy algebras with their ∞-morphisms. To complete the picture, we
solve the problem of a functorial cylinder object inducing a universal homo-
topy relation for∞-morphisms. (Notice that this question is not trivial, for
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686 Bruno VALLETTE

instance, the author was not able to fix a crucial gap in [3] related to this
issue.) The cylinder object that we present here is proved to be equivalent
to “all” the equivalence relations that have been considered so far in the
literature. With it, we prove that any∞-quasi-isomorphism admits a homo-
topy inverse, a property which does not hold for strict quasi-isomorphisms.
Moreover, the initial category of algebras sits inside the category of ho-
motopy algebras with their ∞-morphisms. And it can be proved that the
second one retracts onto the first one. We are done: the homotopy category
of algebras is equivalent the following simple one.

Theorem 3.11. — The following categories are equivalent

Ho(dg P-alg) ' ∞-P-alg/∼h.

This gives a simple description of the first homotopical level of informa-
tion about algebras over an operad. However, using the simplicial localiza-
tion methods of Dwyer–Kan [10], one can use the full power of this new
model category structure on coalgebras to endow the category of homotopy
algebras together with∞-morphism with an∞-category structure, thereby
encoding all their higher homotopical information.

Theorem 3.12. — The category∞-P∞-alg of P∞-algebra with∞-mor-
phisms extends to a simplicial category giving the same underlying homo-
topy category.

Another direct corollary of the model category structure on coalgebras
endows the category of homotopy algebras with a fibrant objects category
structure [2]. We reinforce this statement by proving that it actually carries
a model category structure, except for the existence of some limits and col-
imits. In this case, the description of the three classes of structure maps is
simple: weak equivalences (respectively cofibrations, respectively fibrations)
are given by ∞-quasi-isomorphisms (respectively ∞-monomorphisms, re-
spectively∞-epimorphisms). For instance, this provides a neat description
of fibrations between quasi-free coalgebras.

There is already an extensive literature about model category structures
on coalgebras over cooperads, see [1, 13, 17, 19, 23, 27, 28, 30] for instance.
The present result is more general for the following three reasons. First,
no assumption is needed here like bounded below chain complexes or finite
dimensional space. Second, it treats the general case of any operad. Third,
in most of the cases, the model category structures on coalgebras considers
quasi-isomorphisms for weak equivalences. We show that such model cate-
gory structures can be obtained from the present one by means of Bousfield
localization.
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In the end, applied to the three graces, the present general treatise re-
covers many of the results of Hinich [19] for cocommutative algebras (op-
erad P = Lie), of Lefevre-Hasegawa [23] for coassociative algebras (operad
P = Ass), and of Lazarev–Markl [22] for inverse limits of finite-dimensional
nilpotent Lie algebras (operad P = Com). This latter case is obtained
by considering the linear duals of conilpotent Lie coalgebras. (Notice that
this latter article was written independently during the preparation of the
present one.)
Last but not least, let us mention the large range of applications of the

present general homotopy theory. They include all the examples of algebraic
structures treated in the compendium of Chapter 13 of [24]. Therefore this
applies to all the fields where homotopy algebras and ∞-morphisms play a
role. So far, applications have been found, at least, in the following fields.
∞-morphisms of mixed complexes (D∞-morphisms):

cyclic homology, spectral sequences.
∞-morphisms of assocative algebras (A∞-morphisms):

algebraic topology (loop spaces, Massey products), symplectic
topology (Fukaya categories), probability theory (free probability).

∞-morphisms of Lie algebras (L∞-morphisms):
deformation theory, differential geometry (deformation quantiza-
tion of Poisson manifolds), rational homotopy theory.

∞-morphisms of commutative algebras (C∞-morphisms):
rational homotopy theory (Kähler manifolds).

∞-morphisms of Gerstenhaber algebras (G∞-morphisms):
Deligne conjecture, Drinfeld associators.

∞-morphisms of Batalin–Vilkovisky algebras (BV∞-morphisms):
Quantum cohomology (Frobenius manifolds), mirror symmetry.

In most of these cases, the homotopy theory of∞-morphisms was possible
to achieve “by hands” because the associated operad is rather small. This
is not necessarily the case in the new appearing algebraic structures, like
the homotopy Batalin–Vilkovisky algebras for instance. This point was the
starting motivation for the development of the present general theory.

Layout

The paper is organized as follows. We begin with some recollections on
operadic homological algebra and on the model category for algebras. In
the second section, we endow the category of coalgebras over a Koszul dual
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688 Bruno VALLETTE

cooperad with a new model category structure. The induced homotopy the-
ory for∞-morphisms is developed in Section 3. The last section proves that
there is almost a model category structure on homotopy algebras. Appen-
dix A deals with the obstruction theory of ∞-morphisms and Appendix B
contains the proof of a technical lemma.

Prerequisites

The reader is supposed to be familiar with the notion of an operad and
operadic homological algebra, for which we refer to the book [24]. In the
present paper, we use the same notations as in loc. cit..

Framework

Throughout this paper, we work over a field K of characteristic 0. Every
chain complex is Z-graded with homological degree convention, i.e. with
degree −1 differential. All the S-modules M = {M(n)}n∈N are reduced,
that is M(0) = 0.

Acknowledgements
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Drummond-Cole, Joey Hirsh, Bernhard Keller, Brice Le Grignou, Daniel
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would like to express my appreciation to the Simons Center for Geometry
and Physics in Stony Brook for the invitation and the excellent working
conditions. Last but not least, I would like to particularly thank the referee
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1. Recollections

In this section, we recall the main results about algebras over an op-
erad [24, Chapters 10–11], the (inhomogeneous) Koszul duality theory of
operads [11, Appendix A] and a (cofibrantly generated) model category
structure for algebras [18].
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1.1. Operad and cooperad

Recall that a differential graded operad (respectively a differential
graded cooperad) is a monoid (resp. a comonoid) in the monoidal category
(dg S-Mod, ◦, I) of differential graded S-modules. A dg operad P (resp. a dg
cooperad C) is called augmented (resp. coaugmented) when it is equipped
with an augmentation morphism ε : P → I of dg operads (resp. with a
coaugmentation morphism η : I→ C of dg cooperads).

1.2. Algebra and coalgebra

Let P be a dg operad. A dg P-algebra (A, γA) is a left P-module con-
centrated in arity 0:

γA : P(A) := P ◦A =
⊕
n>1
P(n)⊗Sn A

⊗n → A.

Amorphism of dg P-algebras is a morphism of dg modules f : A→ B which
commutes with the structure maps, i.e. fγA = γBP(f). This category is
denoted by dg P-alg.
Dually, let C be a dg cooperad. A conilpotent dg C-coalgebra (C,∆C) is

a left C-comodule concentrated in arity 0:

∆C : C → C(C) := C ◦ C =
⊕
n>1
C(n)⊗Sn C

⊗n.

This category is denoted by conil dg C-coalg.
In general, one defines the notion of a C-coalgebra with the product and

invariant elements: ∆C(C) ⊂
∏
n>1(C(n) ⊗ C⊗n)Sn . Since we work over a

field of characteristic 0, we can identify invariant and coinvariant elements.
We restrict here to the case where the image of the coproduct lies in the
sum. We refer to [24, Chapter 5] for more details.
A dg P-algebra A (resp. a dg C-coalgebra C) is called quasi-free when

its underlying graded module, i.e. after forgetting the differential map, is
isomorphic to a free P-algebra: A ∼= P(V ) (resp. to a cofree C-coalgebra:
C ∼= C(V )).

1.3. Operadic homological algebra

Let P be a dg operad and let C be a dg cooperad. The graded vector
space of S-equivariant maps HomS(C,P) :=

∏
n>1 HomSn(C(n),P(n)) from

TOME 70 (2020), FASCICULE 2



690 Bruno VALLETTE

C to P carries a natural dg Lie algebra structure, called the convolution
Lie algebra. An operadic twisting morphism α ∈ Tw(C,P) is an element
α : C → P of the convolution Lie algebra which satisfies the Maurer–Cartan
equation:

∂α+ 1
2[α, α] = 0.

This operadic twisting morphism bifunctor is represented by the bar
construction on the right-hand side and by the cobar construction on the
left-hand side

Homdg Op (ΩC, P) ∼= Tw(C, P) ∼= Homconil dg coOp (C, BP) .

So these latter ones form a pair of adjoint functors.

B : augmented dg operads 
 conilpotent dg cooperads : Ω.

Any twisting morphism α ∈ Tw(C,P) gives rise to twisted differentials
dα on the composite products C◦P and P◦C. The resulting chain complexes
are called left and right twisting composite product and are denoted C ◦αP
and P ◦α C respectively, see [24, Chapter 6].

1.4. Bar and cobar constructions on the algebra level

Let α ∈ Tw(C,P) be an operadic twisting morphism. Let (A, γA) be a dg
P-algebra and let (C,∆C) be a dg C-coalgebra. We consider the following
unary operator ?α of degree −1 on Hom(C,A):

?α(ϕ) : C
∆C−−→ C ◦ C α◦ϕ−−→ P ◦A γA−−→ A, for ϕ ∈ Hom(C,A).

A twisting morphism with respect to α is a linear map ϕ : C → A of
degree 0 which is a solution to the Maurer-Cartan equation

∂(ϕ) + ?α(ϕ) = 0.

The space of twisting morphisms with respect to α is denoted by Twα(C,A).
This twisting morphism bifunctor is represented by the bar construction

on the right-hand side and by the cobar construction on the left-hand side

Bα : dg P-alg 
 conil dg C-coalg : Ωα.

So they form a pair of adjoint functors. The underlying spaces are given by
a cofree C-coalgebra, BαA = C(A), and by a free P-algebra, ΩαC = P(C),
respectively. For more details, see [24, Chapter 11].
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HOMOTOPY THEORY OF HOMOTOPY ALGEBRAS 691

1.5. Koszul duality theory

Let (E,R) be a quadratic-linear data, that is R ⊂ E ⊕ T (E)(2). It gives
rise to a quadratic operad P := P(E,R) = T (E)/(R), where T (E) stands
for the free operad on E and where (R) stands for the ideal generated by R.
Let q : T (E) � T (E)(2) be the projection onto the quadratic part

of the free operad. The image of R under q, denoted qR, is homoge-
neous quadratic. So the associated quotient operad qP := P(E, qR) is
homogeneous quadratic. We consider the homogeneous quadratic cooperad
qP ¡ := C(sE, s2qR), where s denotes the suspension map. We assume that
the space of relations R satisfies the condition

(ql1) : R ∩ E = {0},

which means that the space of generators is minimal. Under this assump-
tion, there exists a map ϕ : qR → E such that R is the graph of ϕ. If R
satisfies the condition

(ql2) : {R ◦(1) E + E ◦(1) R} ∩ T (E)(2) ⊂ R ∩ T (E)(2),

which amounts to the maximality of the space of relations R, then the map
ϕ induces a square-zero coderivation dϕ on the cooperad qP ¡ . For more
details, we refer the reader to [11, Appendix A] and to [24, Chapter 7].
From now on, we will always assume the two conditions (ql1) and (ql2).
The dg cooperad P ¡ := (qP ¡

, dϕ) is called the Koszul dual cooperad of P.
Notice that when the data (E,R) is homogeneous quadratic, qR = R and
the differential map dϕ vanishes. In this case, one recovers the homogeneous
Koszul duality theory of Ginzburg–Kapranov and Getzler–Jones [14, 15].
There is a canonical operadic twisting morphism κ ∈ Tw(P ¡

,P) defined
by the following composite

κ : P
¡

= C(sE, s2qR)� sE
s−1

−−→ E � P.

The associated twisted composite product P ◦κ P
¡ (resp. P ¡ ◦κ P) is called

the Koszul complex.

Definition 1.1.

(1) A homogeneous quadratic operad is called a homogeneous Koszul
operad when its Koszul complex is acyclic.

(2) An quadratic-linear operad P is called a Koszul operad when its
presentation P(E,R) satisfies conditions (ql1) and (ql2) and when
the associated homogeneous quadratic operad qP is homogeneous
Koszul.
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692 Bruno VALLETTE

When an inhomogeneous operad P is Koszul, then its Koszul complexes
P ◦κ P

¡ and P ¡ ◦κ P are acyclic.

1.6. The general case

For simplicity and to avoid discrepancy, the rest of the paper is writ-
ten in the case of a Koszul presentation of the operad P using coalgebras
over the Koszul dual cooperad P ¡ . In general, one can always consider the
trivial presentation made up of all the elements of P as generators. This
presentation is quadratic-linear and always Koszul. In this case, the Koszul
dual cooperad is nothing but the bar construction BP of the operad P.
So all the results of the present paper are always true if one considers this
presentation and BP-coalgebras.

1.7. Weight grading

Throughout the present paper, we will require an extra grading, other
than the homological degree, to make all the proofs work. We work over
the ground category of weight graded dg S-modules. This means that every
dg S-module is a direct sum of sub-dg S-modules indexed by this weight
Md =

⊕
ω∈NM

(ω)
d , where d stands for the homological degree and where ω

stands for the weight grading. In this context, the free operad is a weight
graded dg operad, where the weight is given by the number of generators,
or equivalently by the number of vertices under the tree representation.
This induces a filtration on any quadratic operad P = T (E)/(R), where

F0P = I, F1P = I⊕E, and F2P = I⊕E ⊕ T (E)(2)

R
.

The underling cooperad of any Koszul dual cooperad is connected weight
graded:

qP
¡

= K I⊕qP
¡ (1)
⊕ · · · ⊕ qP

¡ (ω)
⊕ · · · = K I⊕sE ⊕ s2R⊕ · · · .

The coderivation dϕ of the Koszul dual cooperad does not preserve this
weight grading but lowers it by 1:

dϕ : qP
¡ (ω)
→ qP

¡ (ω−1)
.
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1.8. Homotopy algebra

We denote by P∞ := ΩP ¡ the cobar construction of the Koszul dual
cooperad of P. When the operad P is a Koszul operad, this is a resolution
P∞

∼−→ P of P. Algebras over this dg operads are called P∞-algebras or
homotopy P-algebras.

A P∞-algebra structure µ : P ¡ → EndA on a dg module A is equivalently
given by a square-zero coderivation dµ extending the underlying differential
on A, called a codifferential, on the cofree P ¡ -coalgebra P ¡(A):

Homdg Op(ΩP
¡
, EndA) ∼= Codiff(P

¡
(A)).

By definition, an ∞-morphism of P∞-algebras is a morphism

F :
(
P

¡
(A), dµ

)
→
(
P

¡
(B), dν

)
of dg P ¡-coalgebras. The composite of two ∞-morphisms is defined as the
composite of the associated morphisms of dg P ¡-coalgebras:

F ◦G := P
¡
(A)→ P

¡
(B)→ P

¡
(C).

The category of P∞-algebras with their ∞-morphisms is denoted by
∞-P∞-alg. An ∞-morphism between P∞-algebras is denoted by A  B

to avoid confusion with the classical notion of morphism.
Since an ∞-morphism A B is a morphism of P ¡ -coalgebras P ¡(A)→

P ¡(B), it is characterized by its projection P ¡(A) → B onto the space of
generators B. The first component A ∼= I(A) ⊂ P ¡(A) → B of this map is
a morphism of chain complexes. When this is a quasi-isomorphism (resp.
an isomorphism), we say that the map F is an∞-quasi-isomorphism (resp.
an ∞-isomorphism). One of the main property of ∞-quasi-isomorphisms,
which does not hold for quasi-isomorphisms, lies in the following result.

Theorem 1.2 ([24, Theorem 10.4.4]). — Let P be a Koszul operad
and let A and B be two P∞-algebras. If there exists an ∞-quasi-isomor-
phism A

∼
 B, then there exists an ∞-quasi-isomorphism in the opposite

direction B
∼
 A, which is the inverse of H(A)

∼=−→ H(B) on the level on
holomogy.

So being∞-quasi-isomorphic is an equivalence relation, which we call the
homotopy equivalence. A complete treatment of the notion of∞-morphism
is given in [24, Chapter 10].

TOME 70 (2020), FASCICULE 2



694 Bruno VALLETTE

1.9. The various categories

We apply the arguments of Section 1.4 to the universal twisting mor-
phism ι : P ¡ → ΩP ¡ = P∞ and to the canonical twisting morphism
κ : P ¡ → P. This provides us with two bar-cobar adjunctions respectively.
By definition of ∞-morphisms, the bar construction

Bι : P∞-alg→ conil dg P
¡
-coalg

extends to a functor

B̃ι :∞-P∞-alg→ conil dg P
¡
-coalg.

These two functors actually lands in quasi-free P ¡ -coalgebras, yielding an
isomorphism of categories. These various functors form the following dia-
gram.

dg P-alg
� _

i

�

Bκ
/ conil dg P ¡ -coalg

Ωκo

∞-P∞-alg
∼=

B̃ι
//

ΩκB̃ι

?

quasi-free P ¡ -coalg
?�

OO

Theorem 1.3 (Rectification [11]). — Let P be a Koszul operad.
(1) The functors

ΩκB̃ι : ∞-P∞-alg 
 dg P-alg : i

form a pair of adjoint functors, where i is right adjoint to ΩκB̃ι.
(2) Any homotopy P-algebra A is naturally∞-quasi-isomorphic to the

dg P-algebra ΩκB̃ιA:

A
∼
 ΩκB̃ιA.

The dg P-algebra ΩκB̃ιA, homotopically equivalent to the P∞-algebra
A is called the rectified P-algebra. We refer the reader to [24, Chapter 11]
for more details.

1.10. Homotopy categories

Recall that the homotopy category Ho(dg P-alg) (resp. Ho(∞-P∞-alg))
is the localization of the category of dg P-algebras with respect to the class
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of quasi-isomorphisms (resp. P∞-algebras with respect to the class of ∞-
quasi-isomorphisms). The rectification adjunction of Theorem 1.3 induces
an equivalence of categories between these two homotopy categories.

Theorem 1.4 ([24, Theorem 11.4.8]). — Let P be a Koszul operad.
The homotopy category of dg P-algebras and the homotopy category of
P∞-algebras with the ∞-morphisms are equivalent

Ho(dg P-alg) ∼= Ho(∞-P∞-alg).

1.11. Model category for algebras

A model category structure consists of the data of three distinguished
classes of maps: weak equivalences, fibrations and cofibration, subject to
five axioms. This extra data provided by fibrations and cofibrations gives a
way to describe the homotopy category, defined by localization with respect
to the weak equivalences. This notion is due to D. Quillen [27]; we refer
the reader to the reference book of M. Hovey [21] for a comprehensive
presentation.

Theorem 1.5 ([18]). — The following classes of morphisms endow the
category of dg P-algebras with a model category structure.

• The class W of weak equivalences is given by the quasi-isomor-
phisms;

• the class F of fibrations is given by degreewise epimorphisms,
fn : An � Bn ;

• the class C of cofibrations is given by the maps which satisfy the
left lifting property with respect to acyclic fibrations F ∩W.

Notice that this model category structure is cofibrantly generated since it
is obtained by transferring the cofibrantly generated model category struc-
ture on dg modules thought the free P-algebra functor, which is left adjoint
to the forgetful functor, see [27, Section II.4].
Following D. Sullivan [31], we call triangulated dg P-algebra any quasi-

free dg P-algebra (P(V ), d) equipped with an exhaustive filtration

V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Colimi Vi = V,

satisfying d(Vi) ⊂ P(Vi−1).

Proposition 1.6 ([18]). — With respect to the aforementioned model
category structure, every dg P-algebra is fibrant and a dg P-algebra is
cofibrant if and only if its a retract of a triangulated dg P-algebra.

So this model category structure is right proper.

TOME 70 (2020), FASCICULE 2



696 Bruno VALLETTE

2. Model category structure for coalgebras

For a Koszul operad P, we endow the category of conilpotent dg P ¡ -
coalgebras with a model category structure which makes the bar-cobar
adjunction a Quillen equivalence with dg P-algebras.

2.1. Main theorem

Definition 2.1. — In the category of conilpotent dg P ¡ -coalgebras, we
consider the following three classes of morphisms.

• The class W of weak equivalences is given by the morphisms of dg
P ¡-coalgebras f : C → D whose image Ωκf : ΩκC

∼−→ ΩκD under
the cobar construction is a quasi-isomorphism of dg P-algebras;

• the class C of cofibrations is given by degreewise monomorphisms,
fn : Cn� Dn;

• the class F of fibrations is given by the maps which satisfy the right
lifting property with respect to acyclic cofibrations C ∩W.

Theorem 2.2.

(1) Let P be a Koszul operad. The aforementioned three classes of
morphisms form a model category structure on conilpotent dg P ¡ -
coalgebras.

(2) With this model category structure, every conilpotent dg P ¡ -coalg-
ebra is cofibrant; so this model category is left proper. A conilpotent
dg P ¡ -coalgebra is fibrant if and only if it is isomorphic to a quasi-
free dg P ¡ -coalgebra.

(3) The bar-cobar adjunction

Bκ : dg P-alg 
 conil dg P
¡
-coalg : Ωκ.

is a Quillen equivalence.

2.2. Weight filtration

Definition 2.3. — Any P ¡-coalgebra (C,∆C) admits the following
weight filtration:

FnC :=
{
c ∈ C

∣∣∣∣∣∆C(c) ∈
n⊕
ω=0
P

¡ (ω)
(C)
}
.
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For instance, the first terms are

F−1C = {0} ⊂ F0C := {c ∈ C |∆C(c) = c}

⊂ F1C :=
{
c ∈ C

∣∣∣∣∆C(c) ∈ C ⊕ P
¡ (1)

(C)
}
⊂ · · · .

Examples.

• For any cofree coalgebra P ¡(V ), the weight filtration is equal to

FnP
¡
(V ) :=

n⊕
ω=0
P

¡ (ω)
(V ).

• When the operad P is the operad As, which encodes associative
algebras, the Koszul dual cooperad As¡ = Asc encodes coassociative
coalgebras. In this case, the weight filtration is equal, up to a shift
of indices, to the coradical filtration of coassociative coalgebras,
cf. [28, Appendix B] and [24, Section 1.2.4].

We consider the reduced coproduct ∆̄C(c) := ∆C(c) − c. Its kernel is
equal to PrimC := F0C, which is called the space of primitive elements.

Proposition 2.4. — Let Cbe a conilpotent dg P ¡-coalgebra (C, dc,∆C).

(1) Its weight filtration is exhaustive:
⋃
n∈N FnC = C.

(2) Its weight filtration satisfies

∆̄C(FnC) ⊂
⊕

16ω6n, k>1,
n1+···+nk=n−ω

P
¡ (ω)

(k)⊗Sk (Fn1C ⊗ · · · ⊗ FnkC).

(3) The differential preserves the weight filtration: dc(FnC) ⊂ FnC.

Proof. — The first point follows from the definition of a conilpotent coal-
gebra and from the fact that P ¡ is a connected weight graded cooperad. The
second point is a direct corollary of the relation P ¡(∆C)∆C = ∆P¡ (C)∆C

in the definition of a coalgebra over a cooperad. The last point is a con-
sequence of the commutativity of the differential dC and the structure
map ∆C . �

This proposition shows that the weight filtration is made up of dg P ¡ -
subcoalgebras. Notice that any morphism f : C → D of P ¡ -coalgebras
preserves the weight filtration: f(FnC) ⊂ FnD.
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2.3. Filtered quasi-isomorphisms

In this section, we refine the results of [24, Chapter 11] and of [23, Sec-
tion 1.3] about the behavior of the bar and cobar constructions with respect
to quasi-isomorphisms.

Definition 2.5. — A filtered quasi-isomorphism of conilpotent dg P ¡ -
coalgebras is a morphism f : C → D of dg P ¡-coalgebras such that the
induced morphisms of chain complexes

grn f : FnC/Fn−1C
∼−→ FnD/Fn−1D

are quasi-isomorphisms, for any n > 0.

Proposition 2.6. — The class of filtered quasi-isomorphisms of conil-
potent dg P ¡-coalgebras is included in the class of weak equivalences.

Proof. — Let f : C → D be a filtered quasi-isomorphism of conilpo-
tent dg P ¡ -coalgebras. We consider the following filtration on the cobar
construction ΩκC = (P(C), d1 + d2) induced by the weight filtration:

Fn ΩκC :=
∑
k>1,

n1+···+nk6n

P(k)⊗Sk (Fn1C ⊗ · · · ⊗ FnkC).

Recall from [24, Section 11.2] that the differential of the cobar construction
is made up of two terms d1 + d2, where d1 = P ◦′ dC and where d2 is the
unique derivation which extends

C
∆C−−→ P

¡
◦ C κ◦IdC−−−−→ P ◦ C.

It is explicitly given by

P ◦ C IdP ◦′∆C−−−−−−→ P ◦ (C;P
¡
◦ C) IdP ◦(IdC ;κ◦IdC)−−−−−−−−−−−→ P ◦ (C;P ◦ C)

∼= (P ◦(1) P)(C)
γ(1)◦IdC−−−−−→ P ◦ C.

So, Proposition 2.4 implies

d1(Fn) ⊂ Fn and d2(Fn) ⊂ Fn−1.

The first page of the associated spectral sequence is equal to

P(gr f) : (P(gr C),P ◦′ dgr C) ∼−→ (P(gr D),P ◦′ dgrD),

which is a quasi-isomorphism by assumption. Since the weight filtration
is exhaustive, this filtration is exhaustive. It is also bounded below, so we
conclude by the classical convergence theorem of spectral sequences [25,
Chapter 11]:

Ωκf : ΩκC
∼−→ ΩκD. �
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Proposition 2.7. — If f : A ∼−→ A′ is a quasi-isomorphism of dg
P-algebras, then Bκf : BκA → BκA′ is a filtered quasi-isomorphism of
conilpotent dg P ¡ -coalgebras.

Proof. — Since the bar construction BκA is a quasi-free coalgebra, its
weight filtration is equal to Fn BκA =

⊕n
ω=0 P

¡ (ω)
(A). Recall that its

differential is the sum of three terms dϕ ◦ IdA + IdP¡ ◦′dA + d2, where d2 is
the unique coderivation which extends

P
¡
◦A κ◦IdA−−−−→ P ◦A γA−−→ A.

So, the coderivation d2 is equal to the composite

P
¡
◦A

∆(1)◦IdA−−−−−−→ (P
¡
◦(1) P

¡
) ◦A

(Id
P¡ ◦(1)κ)◦IdA

−−−−−−−−−−−→ (P
¡
◦(1) P) ◦A

∼= P
¡
◦ (A;P ◦A)

Id
P¡ ◦(IdA;γA)
−−−−−−−−−→ P

¡
◦A.

Since the maps κ and dϕ lowers the weight grading by 1, we get

IdP¡ ◦′dA(Fn) ⊂ Fn, dϕ ◦ IdA(Fn) ⊂ Fn−1, and d2(Fn) ⊂ Fn−1.

Hence, the graded analogue of Bκ f is equal to

grn Bκ f = P
¡ (n)

(f) :
(
P

¡ (n)
(A), IdP¡ ◦′dA

) ∼−→ (
P

¡ (n)
(A′), IdP¡ ◦′dA′

)
,

which is a quasi-isomorphism for any n ∈ N. �

Proposition 2.8. — The class of weak equivalences of conilpotent dg
P ¡ -coalgebras is included in the class of quasi-isomorphisms.

Proof. — Let f : C → D be a weak equivalence of conilpotent dg
P ¡ -coalgebras. By definition, its image under the bar construction Ωκf :
ΩκC

∼−→ ΩκD is a quasi-isomorphism of dg P-algebras. Since the bar con-
struction Bκ preserves quasi-isomorphisms, by [24, Proposition 11.2.3], and
since the counit of the bar-cobar adjunction υκC : C

∼−→ Bκ ΩκC is a
quasi-isomorphism, we conclude with the following commutative diagram

C
f //

∼υκC

��

D

∼υκD

��
Bκ ΩκC

∼ // Bκ ΩκD. �

Without any assumption on the connectivity of the underlying chain
complexes, the aforementioned inclusion can be strict. Examples of
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quasi-isomorphisms, which is not weak equivalences, are given in [19, Sec-
tion 9.1.2] of dg cocommutative coalgebras and in [23, Section 1.3.5] of dg
coassociative coalgebras.
The following diagram sums up the aforementioned propositions.

filtered quasi-isomorphisms
� _

��
quasi-isomorphisms

Bκ 11

weak equivalencesΩκ

ii

� _
6=��

quasi-isomorphisms

dg P-algebras dg P ¡ -coalgebras

Theorem 2.9. — Let P be a Koszul operad.
(1) The counit of the bar-cobar adjunction εκ : Ωκ BκA

∼−→ A is a
quasi-isomorphism of dg P-algebras, for every dg P-algebra A.

(2) The unit of the bar-cobar adjunction υκ : C ∼−→ Bκ ΩκC is a weak
equivalence of conilpotent dg P ¡-coalgebras, for every conilpotent
dg P ¡-coalgebra C.

Proof. — The first point follows from [24, Theorem 11.3.3] and [24, Co-
rollary 11.3.5]. For the second point, we consider the following filtration
induced by the weight filtration of C:

Fn Bκ ΩκC :=
∑
k>1,

n1+···+nk6n

(P
¡
◦ P)(k)⊗Sk (Fn1C ⊗ · · · ⊗ FnkC).

Since the unit of adjunction υκ is equal to the composite

C
∆C−−→ P

¡
(C) ∼= P

¡
◦ I ◦C � P

¡
◦ P ◦ C,

it preserves the respective filtrations by Proposition 2.4(2). The associated
graded morphism is equal to

grn υκ : FnC/Fn−1C → Fn Bκ ΩκC/Fn−1 Bκ ΩκC,

where the right-hand side is isomorphic to Bκ Ωκ gr C ∼= (P ¡ ◦κ P) ◦
(gr C, dgr C). Since the operad P is Koszul, its Koszul complex is acyclic,
P ¡ ◦κP

∼−→ I, which proves that the unit υκ is a filtered quasi-isomorphism.
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Finally, we conclude that the unit υκ is a weak-equivalence by Proposi-
tion 2.6. �

2.4. Fibrations and cofibrations

Let us first recall that the coproduct A ∨ B of two P-algebras (A, γA)
and (B, γB) is given by the following coequalizer

P ◦ (A⊕B;P(A)⊕ P(B)) // // P(A⊕B) // // A ∨B,

where one map is induced by the partial composition product P ◦(1)P → P
of the operad P and where the other one is equal to P ◦ (IdA⊕B ; γA + γB).
When B = P(V ) is a free P-algebra, the coproduct A ∨ P(V ) is simply
equal to the following coequalizer

P ◦ (A⊕ V ;P(A)) // // P(A⊕ V ) // // A ∨ P(V ).

As usual, see [21], we denote by Dn the acyclic chain complex

· · · → 0→ K ∼−→ K→ 0→ · · ·

concentrated in degrees n and n− 1. We denote by Sn the chain complex

· · · → 0→ K→ 0→ · · ·

concentrated in degrees n. The generating cofibrations of the model cat-
egory of dg modules are the embeddings In : Sn−1 � Dn and the gen-
erating acyclic cofibrations are the quasi-isomorphisms Jn : 0

∼
� Dn. So,

in the cofibrantly generated model category of dg P-algebras, the relative
P(I)-cell complexes, also known as standard cofibrations, are the sequen-
tial colimits of pushouts of coproducts of P(I)-maps. Since we are working
over a field K, such a pushout is equivalent to

P(s−1V )
��

��

γAP(sα) //

p

A
��

��

P(V ⊕ s−1V ) // A ∨α P(V ),

where V is a graded module, α : V → A is a degree −1 map, with image
in the cycles of A. The dg P-algebra A ∨α P(V ) is equal to the coproduct
of P-algebras A ∨ P(V ) endowed with the differential given by dA and by
the unique derivation which extends the map

V
α−→ A� A ∨ P(V ).
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Hence a standard cofibration of dg P-algebras is a morphism of dg P-
algebras A � (A ∨ P(S), d), where the graded module S admits an ex-
haustive filtration

S0 = {0} ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Colimi Si = S,

satisfying d(Si) ⊂ A ∨ P(Si−1).
In the same way, a standard acyclic cofibration, or relative P(J)-cell

complex, is a morphism of dg P-algebras A� A∨P(M), where the chain
complex M is a direct sum M =

⊕∞
i=1M

i of acyclic chain complexes.
Finally, any cofibration (resp. acyclic cofibration) is a retract of a stan-
dard cofibration (resp. standard acyclic cofibration) with isomorphisms on
domains.
Let (A, dA) be a dg P-algebra and let (V, dV ) be a chain complex. Let

α : V → A be a degree −1 map such that the unique derivation on the
coproduct A ∨ P(V ), defined by dA, dV and α, squares to 0. In this case,
the dg P-algebra produced is still denoted by A ∨α P(V ).

Lemma 2.10. — The embedding A� A∨αP(V ) is a standard cofibra-
tion of dg P-algebras.

Proof. — Since we are working over a field K, any chain complex V

decomposes into
V ∼= B ⊕H ⊕ sB,

where dV (B) = dV (H) = 0 and where dV : sB s−1

−−→ B. It is enough to
consider the following filtration to conclude

S0 = {0} ⊂ S1 := B ⊕H ⊂ S2 := V. �

Proposition 2.11. — Let (C,∆C) be a dg P ¡-coalgebra and let C ′ ⊂ C
be a dg sub-P ¡ -coalgebra such that ∆̄C(C) ⊂ P ¡(C ′). The image of the
inclusion C ′� C under the cobar construction Ωκ is a standard cofibration
of dg P-algebras.

Proof. — Since we are working over a field K, there exists a graded sub-
module E of C such that C ∼= C ′⊕E in the category of graded K-modules.
Forgetting the differentials, the underlying P-algebra of the cobar construc-
tion of C is isomorphic to

ΩκC ∼= P(C ′ ⊕ E) ∼= P(C ′) ∨ P(E).

Under the decomposition C ∼= C ′ ⊕ E, the differential dC of C is the sum
of the following three terms:

dC′ : C ′ → C ′, dE : E → E, and α : E → C ′.
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By assumption, the degree −1 map

β : E � C
∆C−−→ P

¡
(C) κ(C)−−−→ P(C)

actually lands in P(C ′). So the morphism of dg P-algebras ΩκC ′ → ΩκC
is equal to the embedding A� A ∨α+β P(E), where A stands for the dg
P-algebra ΩκC ′. We conclude the present proof with Lemma 2.10. �

Theorem 2.12.

(1) The cobar construction Ωκ preserves cofibrations and weak equiva-
lences.

(2) The bar construction Bκ preserves fibrations and weak equivalences.

Proof.
(1). — Let f : C � D be a cofibration of conilpotent dg P ¡ -coalgebras.

For any n ∈ N, we consider the dg sub-P ¡-coalgebra of D defined by

D[n] := f(C) + Fn−1D,

where Fn−1D stands for the weight filtration of the P ¡ -coalgebra D. By
convention, we set D[0] := C. Proposition 2.4(2) implies

∆̄D[n+1](D[n+1]) ⊂ P
¡
(D[n]).

So, we can apply Proposition 2.11 to show that the maps ΩκD[n] →
ΩκD[n+1] are standard cofibrations of dg P-algebras. Finally, the map Ωκf
is a cofibration as a sequential colimit of standard cofibrations.
The cobar construction Ωκ preserves weak equivalences by definition.
(2). — Let g : A� A′ be a fibration of dg P-algebras. Its image Bκ g is

a fibration if and only if it satisfies the right lifting property with respect
to any acyclic cofibration f : C

∼
� D. Under the bar-cobar adjunction 1.4,

this property is equivalent to the left lifting property of Ωκf with respect
to g, which holds true by the above point (1).

The bar construction Bκ sends quasi-isomorphisms of dg P-algebras to
weak equivalences of dg P ¡-coalgebras by Propositions 2.6 and 2.7. �

2.5. Proof of Theorem 2.2(1)

(MC 1) (Limits and Colimits). — Since we are working over a field of
characteristic 0, Proposition 1.20 of [14] applies and shows that the category
of conilpotent dg P ¡ -coalgebras admits finite limits and finite colimits.
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(MC 2) (Two out of three). — Let f : C → D and g : D → E be two
morphisms of conilpotent dg P ¡ -coalgebras. If any two of f , g and gf are
weak equivalences, then so is the third. This is a direct consequence of the
definition of weak equivalences and the axiom (MC 2) for dg P-algebras.

(MC 3) (Retracts). — Since the cofibrations C are the degreewise mono-
morphisms, they are stable under retracts.
Since the image of a retract under the cobar construction Ωκ is again

a retract, weak equivalences W of conilpotent dg P ¡ -coalgebras are stable
under retract by the axiom (MC 3) for dg P-algebras.
Let f : C � D be a fibration F of conilpotent dg P ¡ -coalgebras and let

g : E → F be a retract of f . Let c : G
∼
� H be an acyclic cofibration fitting

into the following commutative diagram.

G //
��

c ∼

��

E //

g

��

C
p //

f

����

E

g

��

H //

α
77

F // D // F

By the lifting property, there exists a map α : H → C making the first
rectangle into a commutative diagram. Finally, the composite pα makes
the first square into a commutative diagram, which proves that the map g
is a fibration.

(MC 4) (Factorization). — Let f : C → D be a morphism of conilpotent
dg P ¡ -coalgebras. The factorization axiom (MC 5) for dg P-algebras allows
us to factor Ωκf into

ΩκC
Ωκf //

!!

i !!

ΩκD

A,

p

== ==

where i is a cofibration and p a fibration and where one of these two is a
quasi-isomorphism. So, the morphism Bκ Ωκf factors into Bκ p ◦Bκ i. We
consider the following commutative diagram in the category of conilpotent
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dg P ¡ -coalgebras.

Bκ ΩκC
Bκ Ωκf //

Bκ i
%%

Bκ ΩκD

BκA

Bκ p

99

C
f //

υκC

OO

ı̃
%%

D

υκD

OO

BκA×Bκ ΩκD D

OO

q p̃

99

By definition of the pullback, there exists a morphism

ı̃ : C → BκA×Bκ ΩκD D,

such that f = p̃ ı̃. We shall now prove that the two maps p̃ and ı̃ are
respectively a fibration and a cofibration.
First, the map Bκ p is a fibration by Theorem 2.12(2). Since fibrations

are stable under base change, the morphism p̃ is also a fibration.
As a cofibration of dg P-algebras, the map i : ΩκC � A is a retract of a

standard cofibration, with isomorphisms on domains, and so is a monomor-
phism. The composite (Bκ i)(υκC) is actually equal to the following com-
posite

C
∆C−−→ P

¡
(C) P

¡
(iC)−−−−→ P

¡
(A).

Since its first component on A ∼= I(A) ⊂ P ¡(A) is equal to the restriction
iC on C, it is a monomorphism. We conclude that the morphism ı̃ is a
monomorphism by Lemma B.1, proved in the Appendix B.
If the map i (resp. p) is a quasi-isomorphim, then the map Bκ i (resp.

Bκ p) is a weak equivalence by Theorem 2.12(2). Recall that the unit of
adjunction υκ is a weak equivalence by Theorem 2.9(2). Assuming Lem-
ma B.1, that is j : BκA ×Bκ ΩκD D

∼→ BκA being a weak equivalence,
we conclude that the map ı̃ (resp. p̃) is a weak equivalence by the above
axiom (MC 2).
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(MC 5) (Lifting property). — We consider the following commutative
diagram in the category of conilpotent dg P ¡ -colagebras

E //
��

c

��

C

f

����

F //

α

>>

D,

where c is a cofibration and where f is a fibration. If moreover the map c
is a weak equivalence, then there exists a morphism α such that the two
triangles commute, by the definition of the class F of fibrations.
Let us now prove the same lifting property when the map f is a weak

equivalence. Using the aforementioned axiom (MC 5), we factor the map f
into f = p̃ ı̃, where ı̃ is a cofibration and p̃ a fibration. By the axiom (MC 2),
both maps p̃ and ı̃ are weak equivalences. By the definition of fibrations,
there exists a lifting r : BκA×Bκ ΩκD D → C in the diagram

C
idC //

��

∼ı̃

��

C

f

����

BκA×Bκ ΩκD D
p̃
//

r

99

D.

It remains to find a lifting in the diagram

E //
��

c

��

BκA×Bκ ΩκD D

p̃

����

F //

99

D,

which, by the pullback property, is equivalent to finding a lifting in

E //
��

c

��

BκA×Bκ ΩκD D

p̃

����

//

y
BκA

Bκ p

��

F //

44

D
υκD

// Bκ ΩκD.
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To prove that such a lifting exists, it is enough to consider the following
dual diagram under the bar-cobar adjunction 1.4.

ΩκE //
��

Ωκc

��

A

p∼
����

ΩκF //

<<

ΩκD

Since the cobar construction preserves cofibrations, by Theorem 2.12(1),
and since the map p is an acyclic cofibration, we conclude by the lifting
axiom (MC 4) in the model category of dg P-algebras. �

2.6. Fibrant and cofibrant objects

Since cofibrations are monomorphisms, every conilpotent dg P ¡ -coalgebra
is cofibrant. Let us now prove that a conilpotent dg P ¡ -coalgebra is fibrant
if and only if it is isomorphic to a quasi-free dg P ¡ -coalgebra.
Proof of Theorem 2.2(2). — Let (C, dC) ∼= (P ¡(A), dµ) be a conilpotent

dg P ¡ -coalgebra isomorphic to a quasi-free dg P ¡ -coalgebra. The codiffer-
ential dµ endows A with a P∞-algebra structure, so C ∼= B̃ιA. We consider
the unit υ : A  ΩκB̃ιA of the (ΩκB̃ι, i)-adjunction of Theorem 1.3. Its
first component υ(0) : A ∼= I ◦ I ◦A � P ◦ P ¡ ◦ A is a monomorphism. We
denote by ρ(0) : P ◦P ¡ ◦A� I ◦ I ◦A ∼= A its right inverse. We define a map
ρ : P ¡ → EndΩκB̃ιA

A by the formula of [24, Theorem 10.4.1]. The proof given
in loc. cit. shows that the map ρ is an ∞-morphism, which is right inverse
to υ, i.e. ρυ = idA. This allows us to write the conilpotent dg P ¡ -coalgebra
C as a retract of its bar-cobar construction Bκ ΩκC:

C
υκC //

id

55Bκ ΩκC
B̃ιρ // C.

Since the dg P-algebra ΩκC is fibrant and since the bar construction Bκ
preserves fibrations by Theorem 2.12(2), then the bar-cobar construction
Bκ ΩκC is a fibrant conilpotent dg P ¡-coalgebra. We conclude with the
general property that fibrant objects are stable under retract.
In the other way round, let C be a fibrant conilpotent dg P ¡-coalgebra.

By definition of the fibrations of conilpotent dg P ¡ -coalgebras, there exists
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a lifting r in the following commutative diagram

C
��

υκC ∼

��

C

����

Bκ ΩκC //

r

;;

0,

which makes C into a retract of its bar-cobar construction. Since the map
r preserves the respective weight filtrations, its first component P(C) →
PrimC on F0 induces the following projection onto PrimC

ξ : C � P(C)→ PrimC.

Let us now prove that the induced morphism of conilpotent P ¡ -coalgebras
Ξ : C → P ¡(PrimC) is an isomorphism. To that extend, we show, by
induction on n ∈ N, that the graded morphism

grn Ξ : grn C
∼=−→ P

¡ (n)
(PrimC),

associated to the weight filtration, is an isomorphism. The case n = 0 is
trivially satisfied, since gr0 C = PrimC. Suppose now the result true up to
n and let us prove it for n+ 1.
We consider the cobar construction ΩκC of the P ¡ -coalgebra (C,∆C)

without its internal differential, equipped with the filtration induced by
the weight filtration of C :

FnΩκC :=
∑
k>1,

l+n1+···+nk6n

FlP(k)⊗Sk Fn1C ⊗ · · · ⊗ FnkC.

This filtration is stable under the boundary map d2 : FnΩκC → FnΩκC.
The associated chain complex

grn ΩκC ∼=
∑
k>1,

l+n1+···+nk=n

grl P(k)⊗Sk grn1 C ⊗ · · · ⊗ grnk C
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is cohomologically graded by the weight l of the operad P:

grn C
d−→

∑
k>1,

n1+···+nk=n−1

E(k)⊗Sk grn1 C ⊗ · · · ⊗ grnk C
d−→

∑
k>1,

n1+···+nk=n−2

gr2 P(k)⊗Sk grn1 C ⊗ · · · ⊗ grnk C
d−→

· · · d−→ (grn P)(PrimC) d−→ 0.

Notice that if one considers the same construction gr ΩκP
¡(V ) for any the

cofree P ¡ -coalgebra P ¡(V ), one gets a (co)chain complex isomorphic to the
Koszul complex qP ◦κ qP

¡(V ) of the quadratic analogous operad qP “with
coefficients” in V . Since the Koszul property for the operad P includes
the Koszul property of the quadratic analgue operad qP, this later chain
complex is acyclic. Recall that it decomposes as a direct sum of sub-chain
complexes labelled by the global weight, so that it is isomorphic and thus
quasi-isomorphic to V in weight 0 and its homology groups are all trivial
in higher weights.
The morphism of P ¡ -coalgebras Ξ : C → P ¡(PrimC) induces morphisms

of (co)chain complexes, which is grn+1 ΩκΞ on weight n+ 1:

0 //

∼=

��

grn+1 C
∑
k>1,

n1+···+nk=n

E(k)⊗Sk grn1 C ⊗ · · · ⊗ grnk C //

grn+1 Ξ

��

//

∼=
��

· · ·

∼=

��
0 // P ¡ (n+1)

(PrimC)D //// · · ·

where

D =
∑
k>1,

n1+···+nk=n

E(k)⊗Sk P
¡ (n1)

(PrimC)⊗ · · · ⊗ P
¡ (nk)

(PrimC).

The top (co)chain complex is acyclic since it can be written as retract of a
similar one for a cofree P ¡ -coalgebra, the bar-cobar resolution Bκ ΩκC. The
bottom one is also acyclic. This allows to conclude that the map grn+1 Ξ
is an isomorphism. �
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2.7. Quillen equivalence

Now that Theorem 2.2(1) is proved, Theorem 2.12 states that the bar-
cobar adjunction

Bκ : dg P-alg 
 conil dg P
¡
-coalg : Ωκ.

forms a Quillen functor. Let us now prove Point (3) of Theorem 2.2: the
bar-cobar adjunction is a Quillen equivalence.
Proof of Theorem 2.2(3). — Recall that any dg P-algebra is fibrant and

that any conilpotent dg P ¡ -coalgebra is cofibrant, in the respective model
category structures considered here. Let A be a dg P-algebra and let C be
a conilpotent dg P ¡ -coalgebra. We consider two maps

f : ΩκC → A and g : C → BκA,

which are sent to one another under the bar-cobar adjunction.
If the map f is a quasi-isomorphism of dg P-algebras, then the map

Bκ f is a filtered quasi-isomorphism of conilpotent dg P ¡ -coalgebras by
Proposition 2.7 and so a weak equivalence by Proposition 2.6. Since the
map g is equal to the following composite with the unit of adjuction

g : C
υκC−−−→ Bκ ΩκC

Bκ f−−−→ BκA,

then it is a weak equivalence by Theorem 2.9(2).
In the other way round, if the map g is a weak equivalence of conilpo-

tent dg P ¡ -coalgebras, then the map Ωκg is a quasi-isomorphism of dg P-
algebras by definition. Since the map f is equal to the following composite
with the counit of adjuction

f : ΩκC
Ωκg−−→ Ωκ BκA

εκA−−→ A,

then it is a quasi-isomorphism by Theorem 2.9(1). �

Corollary 2.13. — The induced adjunction

RBκ : Ho(dg P-alg) 
 Ho(conil dg P
¡
-coalg) : LΩκ

is an equivalence between the homotopy categories.

2.8. Comparison between model category structures on
coalgebras

In order to understand the homotopy theory of conilpotent dg P ¡ -coalg-
ebras with respect to quasi-isomorphisms, one can endow them with a
model category structure.
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Theorem 2.14 ([17]). — The category of bounded below dg P ¡-coal-
gebras with respectively quasi-isomorphisms, degree wise monomorphisms
and the induced fibrations forms a model category.

Remark. — There is a rich literature on model category structures for
coalgebras with respect to quasi-isomorphisms, starting from the original
work of Quillen [27, 28]. Getzler–Goerss treated the case of non-negatively
graded but not necessarily conilpotent coassociative coalgebras in [13].
Aubry–Chataur covered the case of conilpotent coalgebras over a quasi-
cofree cooperad in [1]. J.R. Smith worked out in [30] the case of coalgebras
over operads satisfying a certain condition (Condition 4.3 in loc. cit.) and
with chain homotopy equivalences.

The model category structure with quasi-isomorphisms can be obtained
from the present model category structure by means of Bousfield localiza-
tion.

Proposition 2.15. — The model category structure on conilpotent dg
P ¡ -coalgebras with quasi-isomorphisms is the left Bousfield localization of
the model category structure of Theorem 2.2 with respect to the class of
quasi-isomorphisms.

Proof. — In this proof, we will denote by coalgwe the category of conilpo-
tent dg P ¡ -coalgebras equipped with the model category structure of The-
orem 2.2 and we will denote by coalgqi the same underlying category but
equipped with the model category structure with quasi-isomorphisms.
We first prove that the model category coalgqi is the localization of the

model category coalgwe with respect to the class of quasi-isomorphisms.
Since the class of weak equivalences sits inside the class of quasi-isomor-
phisms (Proposition 2.8) and since the cofibrations are the same in both
model categories, the identity functor id : coalgwe → coalgqi is a left Quillen
functor. (Its right adjoint is the identity too.) We now show that the iden-
tity satisfies the universal property of begin a unital object, see [20, Defini-
tion 3.1.1]. Let F : coalgwe � C : G be a Quillen adjunction such that the
total left derived functor LF sends quasi-isomorphisms into isomorphisms
in the homotopy category Ho(C). Obviously, there is a unique way to factor
this adjunction by the identity adjunction: F̃ : coalgqi � C : G̃. Since every
object in coalgwe is cofibrant, Theorem 3.1.6(1)(b) of [20] shows that the
functor F sends quasi-isomorphisms of coalgebras into weak equivalences
in C. Therefore, the functor F̃ is a left Quillen functor.
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We now prove that this localisation of model categories is a Bousfield
localization. For this, it is enough to prove that the class of quasi-isomor-
phisms of coalgebras is equal to the class of local equivalences with respect
to quasi-isomorphisms. By definition, the former is included into the latter.
The inclusion in the other way round is provided by Theorem 3.1.6(1)(d)
of [20] applied to the identity Quillen adjunction id : coalgwe → coalgqi. �

From the present study and the Bousfield localization, we can obtain a
more precise description of the model category with quasi-isomorphisms
of [17].

Corollary 2.16. — In the model category of conilpotent dg P ¡ -coalg-
ebras with quasi-isomorphisms, the class of acyclic fibrations is the same
as the class of acyclic fibrations in the present model category. Its fibrant
objects are the dg P ¡ -coalgebras isomorphic to quasi-free ones which are
local with respect to quasi-isomorphisms.

Proof. — The first point is a direct corollary of Proposition 2.15
and Proposition 3.3.3(1)(b) of [20]. The second point follows from the
left properness of the present model category (Theorem 2.2(2)), Propos-
ition 2.15 and Proposition 3.4.1(1) of [20]. �

We refer the reader to Proposition 4.5 for a complete description of
acyclic fibration between quasi-free P ¡ -coalgebras. For more elaborate re-
sults and a full comparison between the possible model category structures
on conilpotent dg P ¡-coalgebras, we refer the reader to the recent preprint
of Drummond-Cole–Hirsh [8].

3. Homotopy theory of infinity-morphisms

The purpose of this section is to apply the previous model category
structure on conilpotent dg P ¡ -coalgebras to get general results about ∞-
morphisms. For instance, the model category structure provides us auto-
matically with a good notion of homotopy equivalence between morphisms
of fibrant-cofibrant objects, that is a homotopy equivalence between ∞-
morphisms of P∞-algebras. In this section, we realize this homotopy equiv-
alence with a functorial cylinder object. We also show that this new sim-
ple homotopy equivalence is equivalent to “all” the equivalence relations
that have been considered so far on ∞-morphisms in the literature. Then,
we state and prove one of the main results of this paper: the homotopy
category of P-algebras is equivalent to the category of P-algebras with
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∞-morphisms up to homotopy equivalence. Finally, we explain how the
present model category does not only encaptures this first level homotopi-
cal data, but all the higher homotopical properties of P∞-algebras. This is
achieved by upgrading the category of P∞-algebras with∞-morphism into
an ∞-category.

3.1. Functorial cylinder objects

To define functorial cylinder objets in the category of dg P ¡ -coalgebras,
we consider two algebraic models for the interval, the first one in the cat-
egory of dg coassociative coalgebras and the second one in the category of
dg commutative algebras.

Definition 3.1 (Coassociative model for the interval). — We consider
the cellular chain complex of the interval:

I := K0⊕K1⊕Ki, with |0| = |1| = 0, |i| = 1, d(0) = d(1) = 0, d(i) = 1−0.

It is equipped with a dg coassociative coalgebra structure by

∆(0) = 0⊗ 0, ∆(1) = 1⊗ 1, and ∆(i) = 0⊗ i + i⊗ 1.

When P is a nonsymmetric operad, the tensor product of any conilpotent
dg P ¡ -coalgebra (C, dC ,∆C) with I provides us with a functorial conilpo-
tent dg P ¡ -coalgebra. The arity n component of its structure map is given
by

C ⊗ I ∆C(n)⊗∆n−1

−−−−−−−−−→ P
¡
(n)⊗ C⊗n ⊗ I⊗n

∼=−→ P
¡
(n)⊗ (C ⊗ I)⊗n.

Proposition 3.2. — Let P be a nonsymmetric Koszul operad and let
C be a conilpotent dg P ¡ -coalgebra. The P ¡ -coalgebra C ⊗ I provides us
with a functorial good cylinder object

C ⊕ C // // C ⊗ I ∼ // C

in the model category of conilpotent dg P ¡ -coalgebras of Theorem 2.2.

Proof. — One can notice that the weight filtration satisfies Fn(C ⊗ I) ∼=
FnC⊗I. Since the P

¡ -coalgebra C is conilpotent, then so is C⊗I. The left-
hand map is the embedding c+ c′ 7→ c⊗0+ c′⊗1, hence it is a cofibration.
The right-hand map is equal to c ⊗ 0 7→ c, c ⊗ 1 7→ c, and c ⊗ i 7→ 0.
To prove that it is a weak-equivalence, we show that it is a filtered quasi-
isomorphism. The graded part of the above morphism of dg P ¡ -coalgebras
is equal to

FnC/Fn−1C ⊗ I → FnC/Fn−1C,
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with the same kind of formula. So, this is a quasi-isomorphism and we
conclude with Proposition 2.6. �

In the symmetric case, the situation is more involved since it is difficult to
find a suitable model for the interval in the category of dg cocommutative
coalgebras equipped with two different group-like elements. Instead, we
proceed as follows.

Definition 3.3 (Commutative model for the interval). — Let Λ(t,dt) :=
K[t] ⊕ K[t]dt be the dg commutative algebra made up of the polynomial
differential forms on the interval. The degree is defined by |t| = 0, |dt| =
−1 and the differential is the unique derivation extending d(t) = dt and
d(dt) = 0. This dg commutative algebra model for the interval (Λ(t, dt),d)
is called the Sullivan algebra.

Let P be a Koszul operad and let (A,µ) be a P∞-algebra. The tensor
product A⊗ Λ(t, dt) inherits a natural P∞-algebra, given by

µ̃ : P
¡ ∼= P

¡
⊗ Com µ⊗ν−−−→ EndA ⊗ EndΛ(t,dt) ∼= EndA⊗Λ(t,dt),

where Com denotes the operad of commutative algebras, whose arity-wise
components are one-dimensional, and where ν denotes the commutative
algebra structure on Λ(t, dt). We consider the cellular chain complex of the
interval I∗, which is isomorphic to the sub-complex of Λ(t, dt) made up of
J := K1⊕Kt⊕Kdt under the identification 0∗+ 1∗ ↔ 1, 1∗ ↔ t, and i∗ ↔
dt. This latter chain complex is a deformation retract of the polynomial
differential forms on the interval; a particularly elegant contraction was
given by J. Dupont in his proof of the de Rham theorem [9], see also [4, 12].

Definition 3.4 (Dupont’s contraction). — The Dupont’s contraction
amounts to the following deformation retract:

(Λ(t, dt),d)h
%% p // (J,d)

i
oo

h(tkdt) := tk+1 − t
k + 1 , h(tk) := 0 and

p(tkdt) := 1
k + 1dt, p(1) := 1, p(tk) = t for k > 1.

We now consider the contraction idA⊗h on A ⊗ Λ(t, dt) and then the
induced P∞-algebra structure µ̂ on A ⊗ J obtained by applying the Ho-
motopy Transfer Theorem [24, Theorem 10.3.1], see also [7, Section 8] for
more insight. This transferred P∞-algebra structure satisfies the following
properties.
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Lemma 3.5. — The P∞-algebra structure µ̂ on A⊗ J satisfies

µ̂(p; a1 ⊗ b1, . . . , an ⊗ bn) = µ(p; a1, . . . , an)⊗ p(b1 · · · bn),

for any p ∈ P ¡(n), a1, . . . , an ∈ A when b1, . . . , bn = 1 or t and

µ̂(p; a1 ⊗ b1, . . . , ai ⊗ dt, . . . , an ⊗ bn) ∈ A⊗Kdt,

for any p ∈ P ¡(n), a1, . . . , an ∈ A, and b1, . . . , bi−1, bi+1, . . . , bn ∈ J .

Proof of Lemma 3.5. — The formula for the Homotopy Transfer The-
orem given in [24, Theorem 10.3.3] is a sum of terms where one has al-
ways to apply the homotopy h to some of the bi’s, except for the term
µ(p; a1, . . . , an) ⊗ p(b1 · · · bn). Since h applied to tk gives 0, when all the
bi’s are equal to 1 or t, only remains the last term.
When one bi is equal to dt, the last term is of the form µ(p; a1, . . . , an)⊗

P (t)dt, with P (t) ∈ K[t]. Each other term involves applying at least one
homotopy h above the root vertex. Therefore the upshot is of the form

a⊗ p
(

L∑
l=1

Pl(t)(tkl+1 − t)
)
,

with a ∈ A and Pl(t) ∈ K[t]. Since p
(
tm(tk+1 − t)

)
= 0, all these terms

vanish and the second formula is proved. �

Finally, this produces the required cylinder for quasi-free dg P ¡ -coalg-
ebras.

Proposition 3.6. — Let P be a Koszul operad and let (P ¡(A), dµ) be
a quasi-free dg P ¡ -coalgebras. The P ¡ -coalgebra (P ¡(A ⊗ J), dµ̄) provides
us with a functorial good cylinder object

P ¡(A)⊕ P ¡(A) // // P ¡(A⊗ J) ∼ // P ¡(A)

in the model category of conilpotent dg P ¡ -coalgebras of Theorem 2.2.

Proof. — For the left-hand map, we consider the embedding i0 + i1 :
a+ b 7→ a⊗ 1 + b⊗ t, which extends to the following unique morphism of
P ¡ -coalgebras:

P
¡
(i0) + P

¡
(i1) : p(a1, . . . , an) + q(b1, . . . , bn)

7→ p(a1 ⊗ 1, . . . , an ⊗ 1) + q(b1 ⊗ t, . . . , bn ⊗ t),

for p, q ∈ P ¡(n) and for a1, . . . , an, b1, . . . , bn ∈ A. It commutes with the
respective differentials since the following diagram, where the middle map
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is P ¡(P ¡(i0); i0
)
, and the other similar one with i1, are commutative

P ¡(A)
P

¡
(i0) //

dµ

��

∆(1)(A)

$$

P ¡(A⊗K1)

dµ̂

��

∆(1)(A⊗K1)

vv
P ¡(P ¡(A);A

)
P

¡
(µA;A)zz

// P ¡(P ¡(A⊗K1);A⊗K1
)

P
¡
(µ̂A⊗K1;A⊗K1) ((

P ¡(A)
P

¡
(i0) // P ¡(A⊗K1)

by Lemma 3.5, where µA (respectively µ̂A⊗K1) denotes the map P ¡(A)→ A

induced from µ : P ¡ → EndA. It is clearly a degreewise monomorphism,
and so a cofibration.
The second map P ¡(A ⊗ J) → P ¡(A) is the unique morphism P ¡(j)

of P ¡ -coalgebras which extends the map j : A ⊗ J → A, defined by
j(a ⊗ 1) = j(a ⊗ t) = a and j(a ⊗ dt) = 0. It commutes with the re-
spective differentials since the following diagram, where the middle map is
P ¡(P ¡(j); j

)
, is commutative

P ¡(A⊗ J)
P

¡
(j) //

dµ̂

��

∆(1)(A⊗J)

((

P ¡(A)

dµ

��

∆(1)(A)

yy
P ¡(P ¡(A⊗ J);A⊗ J

)
P

¡
(µ̂A⊗J ;A⊗J)vv

// P ¡(P ¡(A);A
)

P
¡
(µA;A) %%

P ¡(A⊗ J)
P

¡
(j) // P ¡(A)

by Lemma 3.5. Notice the map j : A⊗ J → A is a quasi-isomorphism. We
consider the canonical weight filtrations on the quasi-free dg P ¡ -coalgebras
P ¡(A⊗ J) and P ¡(A). They induce a filtered quasi-isomorphism and thus
a weak equivalence by Proposition 2.6.
The data of a morphism F : (P ¡(A), dµ) → (P ¡(B), dω) between two

quasi-free dg P ¡ -coalgebras is equivalent to the data of an∞-morphism f :
(A,µ)  (B,ω) between the two associated P∞-algebras. The Homotopy

ANNALES DE L’INSTITUT FOURIER



HOMOTOPY THEORY OF HOMOTOPY ALGEBRAS 717

Transfer Theorem [24, Theorem 10.3.3] produces the following natural ∞-
morphisms

(A⊗ Λ(t, dt), µ̃)

f⊗ν
��

(A⊗ J, µ̂)
(A⊗i)∞oo

��
(B ⊗ Λ(t, dt), ω̃)

(B⊗p)∞ // (B ⊗ J, ω̂)

,

whose composition gives the functoriality of the present cylinder object. �

3.2. Homotopy equivalence of ∞-morphisms

The ultimate goal of these two sections, is to provide the present theory
with a suitable explicit notion of homotopy equivalence of ∞-morphisms,
which allows us to obtain a simple description of the homotopy category
of P-algebras, for instance.

Definition 3.7 (Homotopy relation). — Two morphisms f, g : C → D

of conilpotent dg P ¡ -coalgebras are homotopic if there exists a morphism
h of conilpotent dg P ¡ -coalgebras fulling the commutative diagram

C
j0 //

f ""

Cyl(C)

h

��

C
j1oo

g
||

D,

where Cyl(C) is a cylinder for C.

Proposition 3.8. — This homotopy relation of morphisms of conilpo-
tent dg P ¡ -coalgebras is an equivalence relation.

Proof. — This a direct consequence of the general theory of model cat-
egories [21, Proposition 1.2.5] since every object of the present category is
cofibrant by Theorem 2.2(2). �

This homotopy relation restricts naturally to maps between fibrant-
cofibrant objects, that is to ∞-morphisms of P∞-algebras. In this case,
we can use the small cylinder given in Proposition 3.6 for instance. In the
recent paper [6], V. Dotsenko and N. Poncin study several equivalence re-
lations for ∞-morphisms and they prove that they are all equivalent. The
next proposition shows that these equivalence relations are actually homo-
topy equivalences in the sense of the present model category of conilpotent
dg P ¡ -coalgebras.
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Proposition 3.9. — All the equivalence relations for ∞-morphisms
of [6] are equivalent to the above homotopy relation.

Proof. — It is enough to prove that

P ¡(A) ∼ // P ¡(
A⊗ Λ(t, dt)

)
// // P ¡(A⊕A)

is a good path object in the model category of conilpotent dg P ¡ -coalgebras
of Theorem 2.2. Then, by the general theory of model categories, the associ-
ated right homotopy equivalence will be an equivalence relation, equivalent
to the above left homotopy relation defined by the above good cylinder
object. Finally, one can notice that this new equivalence is nothing but the
one called concordance in [6, Definition 3], which is proved in loc. cit. to be
equivalent to the other ones.
This statement is proved in the same way as Proposition 3.6, so we

will only give the various arguments and constructions. We first notice
that the right-hand term is the categorical product of the dg P ¡ -coalgebra
(P ¡(A), dµ) with itself; the details can be found in the proof of Axiom
(MC 1′) of Theorem 4.2(1) in the sequel. The first map is defined by the
unique morphism of P ¡ -coalgebras extending a 7→ a⊗1. It is straightforward
to check that it commutes with the differentials. Since it is the extension of a
quasi-isomorphism A

∼−→ A⊗Λ(t, dt), it is a filtered quasi-isomorphism and
therefore a weak equivalence of conilpotent dg P ¡-coalgebras. The second
map is defined by the unique morphism of P ¡ -coalgebras extending a ⊗
(P (t) + Q(t)dt) 7→ a ⊗ P (0) + a ⊗ P (1). It is again straightforward to
check that it commutes with the differentials. To prove that it forms a
fibration, we use the characterization of fibrations between quasi-free dg
P ¡ -coalgebras given in Proposition 4.5 (and whose proof does not depend
on the present result). Since the map A⊗Λ(t, dt)� A⊕A is a degreewise
epimorphism, the map P ¡(

A⊗Λ(t, dt)
)
� P ¡(A⊕A) is a fibration. Finally,

we check that the composite of these two maps is equal to the product of
the identity with itself, which concludes the proof. �

The following result refines Theorem 1.2: it gives a finer control of the
“inverse” ∞-quasi-isomorphism.

Theorem 3.10. — Any ∞-quasi-isomorphism admits a homotopy in-
verse.

Proof. — By Proposition 11.4.7 of [24], any ∞-quasi-isomorphism f :
A
∼
 A′ induces a weak equivalence

B̃ιf : B̃ιA
∼−→ B̃ιA′
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between fibrant-cofibrant conilpotent dg P ¡-coalgebras. By the general
model category arguments, this latter one admits a homotopy inverse,
which translated back on the level of P∞-algebras gives the result. �

The other general consequence of the above mentioned theory is the
following description of the homotopy category of dg P-algebras, defined
as a localized category, as the category of P-algebras with∞-morphism up
to homotopy equivalence.

Theorem 3.11. — The following categories are equivalent

Ho(dg P-alg) ' Ho(∞-P∞-alg) ' ∞-P∞-alg/∼h ' ∞-P-alg/∼h.

Proof. — By Corollary 2.13 of Theorem 2.2(3), the total derived functors

RBκ : Ho(dg P-alg)
∼=

 Ho(conil dg P

¡
-coalg) : LΩκ

form an equivalence of categories. By the general arguments of model cat-
egories, the right-hand category is equivalent to the category of fibrant-
cofibrant conilpotent dg P ¡ -coalgebras modulo the homotopy relation. So
by Theorem 2.2(2), we get the following equivalence of categories

Ho(conil dg P
¡
-coalg)

∼=

 quasi-free P

¡
-coalg/∼h.

We then use the equivalence between the category of quasi-free P ¡ -coalg-
ebras and the category of P∞-algebras with their ∞-morphisms. Finally,
we conclude with Theorem 1.3, which shows that any P∞-algebra can be
rectified into a dg P-algebra:

∞-P∞-alg/∼h
∼=

 ∞-P-alg/∼h. �

Using the explicit homotopy relation defined by the cylinder object asso-
ciated to I, this recovers the classical homotopy relation of A∞-morphisms
and the description of the homotopy category for unbounded dg associative
algebras, see [23, 26].

3.3. An ∞-category enrichment of homotopy algebras

The previous result deals with the homotopy category of P∞-algebras,
which is only the first homotopical level of information. At the present stage
of the theory, we have objects (the P∞-algebras), 1-morphisms (the ∞-
morphisms) and 2-morphisms (the homotopy relation). However, one can go
further, thanks to the model category structure established in the previous
section, and prove that the category of P∞-algebras actually extends to an
∞-category.
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Theorem 3.12. — The category ∞-P∞-alg of P∞-algebras with ∞-
morphisms extends to a simplicial category giving the same underlying
homotopy category.

Proof. — This is a direct application of the simplicial localization meth-
ods of Dwyer–Kan [10]. �

During the preparation of this paper, Dolgushev–Hoffnung–Rogers [5]
used the integration theory of L∞-algebras [12, 18] to endow the category
of P∞-algebras with another model of ∞-category, that we present now
using the langage of the present paper. Let us denote by Ω• the simplicial
dg commutative algebra made up of the polynomial differential forms on
the geometric simplicies, for instance Ω1 = Λ(t, dt). Given a P∞-algebra
(A,µ), the associated quasi-free dg P ¡-coalgebra (P ¡(A), dµ) admits the
following simplicial resolution (P ¡(A ⊗ Ω•), dµ̃), where (A ⊗ Ω•, µ̃) is the
simplicial P∞-algebra obtained by tensoring with the various commutative
algebras. Then, the simplicial enrichment

Homconil dgP¡ -coalg

(
(P

¡
(A), dµ), (P

¡
(B ⊗ Ω•), dω̃)

)
coincides with Dolgushev–Hoffnung–Rogers simplicial enrichment; this can
be proved using the methods recently developed by Robert-Nicoud in [29].
Since the simplicial category of Theorem 3.12 is produced out of a cylinder
whose definition comes from a homotopy equivalent form of Ω1, one expects
that these two simplicial categories of P∞-algebras are weakly equivalent.

Remark. — One can also notice that Hinich introduces another type of
simplicial enrichment in the case of dg cocommutative colagebras by ex-
tending the ground ring to Ωn. One can perform the same kind of simplicial
enrichment here, which heuristically should produce again a weakly equiv-
alent simplicial category, since the objects involved are the same. However
the details of such a non-trivial result goes beyond the scope of the present
paper.

4. Homotopy algebras

The model category structure for algebras over an operad of Theorem 1.5
applies as well to the category P∞-alg of P∞-algebras with their strict
morphisms. But if we consider the category ∞-P∞-alg of P∞-algebras
with their ∞-morphisms, then it cannot admit a model category structure
strictly speaking since it lacks some colimits like coproducts.
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With the abovementioned isomorphism between the category of quasi-
free P ¡ -coalgebras and the category of P∞-algebras with their ∞-morph-
isms, Theorem 2.2 shows that the category ∞-P∞-alg is endowed with a
fibrant objects category structure, see [2] for the definition. Such a notion
is defined by two classes of maps: the weak equivalences and the fibrations.
Notice that the fibrations of P ¡ -coalgebras has not been made explicit so far.
In this section, we refine this result: we provide the category ∞-P∞-alg

of homotopy P-algebras and their∞-morphisms with almost a model cate-
gory structure, only the first axiom on limits and colimits is not completely
fulfilled. As a consequence, this will allow us to describe the fibrations be-
tween quasi-free P ¡-coalgebras.

4.1. Almost a model category

Definition 4.1. — In the category of homotopy P-algebras with their
∞-morphisms, we consider the following three classes of morphisms.

• The class W of weak equivalences is given by the ∞-quasi-isomor-
phisms f : A ∼

 A′, i.e. the ∞-morphisms whose first component
f(0) : A ∼−→ A′ is a quasi-isomorphism;

• the class C of cofibrations is given by the ∞-monomorphisms f :
A A′, i.e. the∞-morphisms whose first component f(0) : A� A′

is a monomorphism;
• the class F of fibrations is given by ∞-epimorphisms f : A  A′,
i.e. the ∞-morphisms whose first component f(0) : A � A′ is a
epimorphism;

Theorem 4.2.
(1) The category ∞-P∞-alg of P∞-algebras with their ∞-morphisms,

endowed with the three classes of maps W, C, and F, satisfies
the axioms (MC 2)–(MC 5) of model categories and the following
axiom.
(MC 1′). — This category admits finite products and pullbacks

of fibrations.
(2) Every P∞-algebra is fibrant and cofibrant.

Recall that a category admits finite colimits if and only if it admits finite
coproducts and coequalizers. The present category lacks coproducts. It is
enough to consider the two dimension 1 trivial A∞-algebras T̄ c(sx) and
T̄ c(sy), viewed as quasi-free coassocaitive coalgebras, and to see that they
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do not admit coproducts in that category. The situation about equalizers
and coequalizers is more subtle and requires further studies.

4.2. Properties of ∞-morphisms

The proof of Theorem 4.2 relies on the algebraic properties of∞-morph-
ism given in this section and on the obstruction theory developped in
Appendix A.
Recall from [24] that the dg module HomS(P ¡

,EndA) is endowed with a
preLie product defined by

f ? g := γP ◦
(
f ⊗ g

)
◦∆(1),

where ∆(1) : P ¡ → T (P ¡)(2) is the partial decomposition map of the co-
operad P ¡ . This preLie product induces the Lie bracket of Section 1.3 by
antisymetrization [f, g] := f ? g − (−1)|f ||g|g ? f . So the Maurer–Cartan
equation encoding P∞-algebra structures is equivalently written

∂(α) + α ? α = 0.

We consider the dg S-module EndAB defined by

EndAB :=
(
{Hom(A⊗n, B)}n∈N, ∂AB

)
.

Let µ ∈ HomS(P ¡
,EndA), ν ∈ HomS(P ¡

,EndB) and f ∈ HomS(P ¡
,EndAB).

We consider the following two operations:

f ∗ µ := P
¡ ∆(1)−−−→ P

¡
◦(1) P

¡ f◦(1)µ−−−−→ EndAB ◦(1) EndA → EndAB ,

ν ~ f := P
¡ ∆−→ P

¡
◦ P

¡ ν◦f−−→ EndB ◦ EndAB → EndAB ,

where the right-hand maps is the usual composite of functions.

Theorem 4.3 ([24, Theorem 10.2.3]). — Let (A, dA, µ) and (B, dB , ν)
be two P∞-algebras. An ∞-morphism F : A B of P∞-algebras is equiv-
alent to a morphism of dg S-modules f : P ¡ → EndAB satisfying

(4.1) ∂(f) = f ∗ µ− ν ~ f

in HomS(P ¡
,EndAB).

Using this equivalent definition of ∞-morphisms, the composite of f :
A B with g : B  C is given by

g } f := P
¡ ∆−→ P

¡
◦ P

¡ g◦f−−→ EndBC ◦ EndAB → EndAC .

Notice that the product } is associative and left linear.
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For any element µ ∈ HomS(P ¡
,EndA) and any element f ∈ HomS(P ¡

,

EndAB), we denote by

µ(n) ∈ HomS(P
¡ (n)

,EndA) and by f(n) ∈ HomS(P
¡ (n)

,EndAB)

the respective restrictions to the weight n part P ¡ (n)
of the cooperad P ¡ .

Recall that an ∞-morphism f : A  B of P∞-algebras is a (strict) mor-
phism of P∞-algebras if and only if its higher components f(n) = 0 vanish
for n > 1.

Proposition 4.4.

(1) Let f : (A, dA, µ)  (B, dB , ν) be an ∞-monomorphism. There
exists a P∞-algebra structure (B, dB , ξ) and an ∞-isomorphism
g : (B, dB , ν)  (B, dB , ξ) with first component g(0) = idB such
that the composite gf is a (strict) morphism of P∞-algebras equal
to f(0).

(2) Let g : (A, dA, µ)  (B, dB , ν) be an ∞-epimorphism. There ex-
ists a P∞-algebra structure (A, dA, ω) and an ∞-isomorphism f :
(A, dA, ω)  (A, dA, µ) with first component f(0) = idA such that
the composite gf is a (strict) morphism of P∞-algebras equal to g(0).

Proof.
(1). — Since the map f(0) : A � B is a monomorphism of graded

modules, it admits a retraction r : B � A, such that rf(0) = idA. We

define a series of linear maps g(n) : P ¡ (n)
→ EndB by induction as follows.

Let g(0) be equal to P ¡ (0)
= I 7→ idB . Suppose the maps g(k) constructed

up to k = n− 1, we define the map g(n) by the formula

g(n) := −
n−1∑
k=0

g(k) } (r∗f),

where the map r∗f is equal to the composite

r∗f : P
¡
(n) f−→ Hom(A⊗n, B) (r⊗n)∗−−−−→ Hom(B⊗n, B).

So for n > 1, the weight n part of the composite gf is equal to

(gf)(n) =
n∑
k=0

g(k) } f =
n−1∑
k=0

g(k) } f + g(n) } f(0)

=
n−1∑
k=0

(
g(k) } f − g(k) } ( r∗f } f(0)︸ ︷︷ ︸

=f}(rf(0))=f

)
)

= 0.
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Since the image of g(0) is an invertible map, the full map g ∈ HomS(P ¡
,

EndB) induces an isomorphism G : P ¡(B)→ P ¡(B) of P ¡ -coalgebras, with
inverse G−1 given by the formulae of [24, Theorem 10.4.1]. Let dν denote
the codifferential of P ¡(B) corresponding to the P∞-algebra structure ν ∈
HomS(P ¡

,EndB) on B. We consider the square-zero degree −1 map on
P ¡(B) given by dξ := GdνG

−1. The following commutative diagram shows
that dξ is a coderivation.

P ¡(B) G−1
//

∆(B)
��

dξ

++
P ¡(B) dν //

∆(B)
��

P ¡(B) G //

∆(B)
��

P ¡(B)

∆(B)
��

P ¡ ◦ P ¡(B) P
¡
◦G−1

//

P
¡
◦′dξ

33
P ¡ ◦ P ¡(B) P

¡
◦′dν // P ¡ ◦ P ¡(B) P

¡
◦G // P ¡ ◦ P ¡(B).

So it defines another P∞-algebra structure (B, dB , ξ) on the underlying
chain complex B, such that the map g : (B, dB , ν)  (B, dB , ξ) becomes
the required ∞-isomorphism. This concludes the proof.

(2). — The second point is shown by the same kind of arguments, where
one has to use a splitting of the epimorphism g(0) : A� B this time. �

4.3. Proof of Theorem 4.2

Proof of Theorem 4.2(1).

(MC 1′) (Finite products and pullbacks of fibrations). — This is a direct
corollary of the fibrant objects category structure [2]. Let us first make the
product construction explicit. Let (A, dA, µ) and (B, dB , ν) be two P∞-
algebras. Their product is given by A⊕B with P∞-algebra structure:

P
¡ µ+ν−−−→ EndA ⊕ EndB → EndA⊕B .

The structures maps are the classical projections A⊕B � A and A⊕B �
B. Any pair C f

 A and C f
 B of ∞-morphisms extend to the following

unique ∞-morphism:

P
¡ f+g−−−→ EndCA ⊕ EndCB → EndCA⊕B .

The pullbacks of fibrations is given as follows. Let us now consider a third
P∞-algebra (C, dC , ω) together with two ∞-morphisms f : A  C and
g : B  C. Requiring that this latter ∞-morphism is a fibration amounts
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to requiring that its first component g(0) : B � C is an epimorphism of
chain complexes. Notice that using Proposition 4.4, it is enough to do the
case where g is a strict morphism, that is when g(0) is its unique non-trivial
component. We denote by s : C → B a section of g(0) as a morphism of
graded vector spaces, that is g(0)s = idC . In the underlying category of
graded vector spaces, the pullback is given by the following diagram

(∗)

A⊕ ker g(0)
sf(0)+i

//

p

��

y
B

g(0)
����

A
f(0) // C,

where p : A ⊕ ker g(0) � A denotes the canonical projection and where
i : ker g(0) � B denotes the canonical inclusion. We consider the following
two elements ϕ,ψ in HomS(P ¡

,EndA⊕B) defined respectively by

ϕ := idA + idB +s∗f and ψ := idA + idB −s∗f.

They are inverse to each other under the composite }. We first consider
on A⊕B the P∞-algebra product structure µ+ν described above, that we
transport on A⊕B under ϕ and ψ, as in the proof of Proposition 4.4, that
is dξ := ψdµ+νϕ. The weight 0 part of this formula produces the following
twisted underlying differential on A⊕B: d = dA + dB + dBsf(0)− sf(0)dA;
the transported P∞-algebra structure ξ on (A⊕B, d) should be understood
with this differential. One can then check that this twisted differential d
restricts to A ⊕ ker g(0); this chain complex becomes the pullback (∗) but
the category of chain complexes now.
It is then straightforward to check that A ⊕ ker g(0) is stable under the

P∞-algebra structure ξ. Under the previous definitions, the collection ϕ

becomes an∞-morphism from (A⊕ker g(0),d, ξ) to (A⊕B, dA+dB , µ+ν).
The following commutative diagram provides us with the desired pullback
in the category of P∞-algebras with ∞-morphisms:

A⊕ ker g(0)

y

ϕ //

ϕ

��

A⊕B // // B

g

����

A⊕B

����
A

f // C.
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The universal property of the pullback is then an easy consequence of
the universal property of the product and the definition of the ∞-isomor-
phism ψ.

(MC 2) (Two out of three). — Straightforward.

(MC 3) (Retracts). — Straightforward.

(MC 4) (Lifting property). — We consider the following commutative
diagram in the category ∞-P∞-alg

A
h //

��

f

��

C

g
����

B
k // D,

where f is a cofibration and where g is a fibration. Using Proposition 4.4,
we can equivalently suppose that the morphisms f and g are strict. Let us
prove by induction on the weight n the existence of a lifting l : B  C of
the diagram

(4.2)

A
h //

��

f

��

C

g
����

B
k //

l

>>

D,

when either f or g is a quasi-isomorphism. The lifting property (MC 4)
of the model category structure on unbounded chain complexes [21] pro-
vides us with a chain map l(0) : (B, dB)→ (C, dC) such that the following
diagram commutes

(A, dA)
h(0) //

��

f

��

(C, dC)

g
����

(B, dB)
k(0) //

l(0)
::

(D, dD).

Suppose constructed the components l(0), l(1), . . . , l(n−1) of the map l such
that Diagram (4.2) commutes up to weight n − 1. Let us look for a map
l(n) ∈ HomS(P ¡ (n)

,EndBC) such that the diagram (4.2) commutes up in
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weight n and such that Equation (4.1) is satisfied in weight n, i.e.:

f∗l(n) = h(n),(4.3a)
g∗l(n) = k(n),(4.3b)

∂AB l(n) =
n∑
k=1

l(n−k) ∗ µ(k) −
n∑
k=1

ν(k) ~ l(n−k) + l(n−1)dϕ,(4.3c)

where µ and ν stand respectively for the P∞-algebra structures on B and
C. We consider a retraction r : B � A of f , rf = idA, and a section
s : D � C of g, gs = idD, in the category of graded modules. The map `
defined by

` := r∗h(n) + s∗k(n) − (sg)∗r∗h(n)

is a solution to (4.3a) and (4.3b). Let us denote by l̃(n) the right-hand side
of (4.3c), as in Appendix A. Since f is a morphism of P∞-algebras, then one
can see, by a direct computation from the definition, that the obstruction(̃
f∗l
)

(n) to lift f∗l = l } f is equal to f∗ l̃(n). This implies

f∗
(
∂BC `− l̃(n)

)
= ∂AC

(
f∗`
)
−
(̃
f∗l
)

(n) = ∂AC
(
h(n)

)
− h̃(n) = 0.

In the same way, the relation
(̃
g∗l
)

(n) = g∗ l̃(n) gives

g∗
(
∂BC `− l̃(n)

)
= ∂BD

(
g∗`
)
−
(̃
g∗l
)

(n) = ∂AC
(
k(n)

)
− k̃(n) = 0.

Let λ : P ¡ (n)
(B) → C be the image of ∂BC ` − l̃(n) under the isomorphism

HomS(P ¡ (n)
,EndBC) ∼= Hom(P ¡ (n)

(B), C). Since λ ◦ P ¡ (n)
(f) = 0 and since

g ◦λ = 0, then the map λ factors through a map λ̄ : cokerP ¡ (n)
(f)→ ker g,

that is λ = iλ̄p, where i and p are the respective canonical injection and
projection. If f is a quasi-isomorphism, then so is the map P ¡ (n)

(f), by
the operadic Künneth formula [24, Theorem 6.2.3] and hence the chain
complex cokerP ¡ (n)

(f) is acyclic. Respectively, if g is a quasi-isomorphism,
then the chain complex ker g is acyclic. Theorem A.1 shows that λ is a
cycle for the differential (∂BC )∗, then so is λ̄. Hence, in either of the two
aforementioned cases, the cycle λ̄ is boundary element : λ̄ = ∂(θ). By a
slight abuse of notation, we denote by iθp the corresponding element in
HomS(P ¡ (n)

,EndBC). Finally, we consider the element

l(n) := `− iθp,

which satisfies (4.3a), (4.3b) and (4.3c).
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(MC 5) (Factorization). — Let f : A  B be an ∞-morphism of P∞-
algebras.

(a) We consider first the factorization of the chain map f(0) into an
acyclic monomorphism followed by an epimorphism:

A //
i

∼ //

f(0)

&&
C

p(0)
// // B,

where C stands for the mapping cocylinder of f(0). Let us recall
that this latter chain complex is given by C := A⊕ s−1B ⊕B with
differential

(a, s−1b, b′) 7→
(
dA(a),−s−1f(a)− s−1dB(b) + s−1b′, dB(b′)

)
.

The inclusion i is equal to i(a) := (a, 0, f(a)) and the projection
p(0) is equal to p(0)(a, s−1b, b′) := b′. The right-hand side of C is the
cocone of the identity idB , that is the cone of − ids−1B ; so this is an
acyclic chain complex. The canonical projection A⊕s−1B⊕B � A

induced a chain map q : C � A which admits i for section, i.e.
qi = idC . As in the classical case, the short exact sequence

0 // Cone (− ids−1B) // // C // // A // 0,

induces a long exact sequence in homology which proves that i is
a quasi-isomorphism. The maps q and i show that C is a homo-
topy retract of A with respect to the trivial homotopy. We can thus
apply the homotopy transfer theorem [24, Theorem 10.3.1]. If we de-
note by (A, dA, µ) the P∞-algebra structure on A, the formulae [24,
Theorem 10.3.3] for the homotopy transfer theorem endow C with
the P∞-algebra structure (C, dC , q∗i∗µ) in this particular case. It is
then straightforward to check that i is a strict∞-morphism between
these two P∞-algebras. All of this provides us with the following
commutative diagram in the category of chain complexes

A
f(0) //

��

∼i

��

B

����

C //

p(0)
>> >>

0,
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where i actually forms an injective (strict) ∞-quasi-isomorphim.
Using the same arguments as in the aforementioned proof of Ax-
iom (MC 4), there exists an∞-morphism p : C  B, extending p(0)
such that the following diagram commutes

A
f //

��

∼i

��

B

����

C //

p
>> >>

0.

In the end, the factorization f = pi concludes the proof.
(b) Let C := s−1A ⊕ A be the mapping cone of the identity idA of A.

By Corollary A.2, the canonical inclusion A � C extends to an
∞-monomorphism denoted by j : A C. We consider the product
i of the two ∞-morphisms f and j:

A

f

||

��

i

��

""
j

""
B C

B
∏
C.

p

∼
bbbb <<

Since the underlying chain complex of the product B
∏
C is equal

to B ⊕ C, the ∞-morphism i is an cofibration and the projection
p is an acyclic fibration. So the factorization f = pi concludes the
proof. �

4.4. Relationship with the model category structure on
conilpotent dg P¡-coalgebras

Since the bar construction B̃ι provides us with an isomorphism of cate-
gories

B̃ι : ∞-P∞-alg ∼= quasi-free P
¡
-coalg,

we can compare the model category structure without equalizers on P∞-
algebras (Theorem 4.2) with the model category structure on conilpotent
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P ¡ -coalgebras (Theorem 2.2). The following proposition shows that the
various notions of weak equivalences, cofibrations and fibrations agree.

Proposition 4.5.

(1) An∞-morphism f is a weak-equivalence of P∞-algebras if and only
if its image under the bar construction B̃ι f is a weak equivalence
of conilpotent dg P ¡ -coalgebras.

(2) An ∞-morphism f is a cofibration of P∞-algebras if and only if its
image under the bar construction B̃ι f is a cofibration of conilpotent
dg P ¡-coalgebras.

(3) An ∞-morphism f is a fibration of P∞-algebras if and only if its
image under the bar construction B̃ι f is a fibration of conilpotent
dg P ¡-coalgebras.

Proof.

(1). — This is Proposition 11.4.7 of [24].

(2). — Let f : A  A′ be an ∞-morphism of P∞-algebras. If B̃ι f :
B̃ιA � B̃ιA′ is a cofibration of conilpotent dg P ¡ -coalgebras, then it is a
monomorphism by definition. So its restriction to A is again a monomor-
phism. Since this restriction is equal to the composite

A
f(0)−−→ A′� P

¡
(A′),

this implies that the first component f(0) is a monomorphism.
In the other way round, suppose that the ∞-morphism f : A  A′ is

an ∞-monomorphism, i.e. f(0) : A � A′ is injective. Let r(0) : A′ � A

be a retraction of f(0). The formula of [24, Theorem 10.4.1] produces an
∞-morphism r, which is right inverse to f . Therefore, the image B̃ι r is a
right inverse to B̃ι f , which proves that this latter one is a monomorphism.

(3). — Let us first recall that axioms (MC 3) and (MC 5) imply that
fibrations are characterized by the right lifting property with respect to
acyclic cofibrations. So this characterization also holds for∞-epimorphisms
in the model category without equalizers of Theorem 4.2.
Let f : A A′ be an ∞-morphism of P∞-algebras. Suppose that B̃ι f :

B̃ιA � B̃ιA′ is a fibration of conilpotent dg P ¡ -coalgebras. We consider a

ANNALES DE L’INSTITUT FOURIER



HOMOTOPY THEORY OF HOMOTOPY ALGEBRAS 731

commutative diagram in ∞-P∞-alg

(4.4)

B
h //

��

∼g

��

A

f
����

B′
k // A′,

where g is an acyclic cofibration. Its image B̃ι g : B̃ιB → B̃ιB′ under
the bar construction functor is an acyclic cofibration of conilpotent dg P ¡ -
coalgebras by the two previous points (1) and (2). So, by the axiom (MC 4)
of Theorem 2.2, there exists a lifting map B̃ι l in following diagram

B̃ιB //
��

B̃ι g ∼

��

B̃ιA

B̃ι f
����

B̃ιB′ //

B̃ι l

<<

B̃ιA′,

which proves that l is a lifting map in Diagram (4.4). So the ∞-morphism
f : A A′ is a fibration.
In the other way round, suppose that the ∞-morphism f : A  A′ is a

fibration of P∞-algebras and let

C
H //

��

G ∼

��

B̃ιA

B̃ι f
��

C ′
K // B̃ιA′
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be a commutative diagram in the category of conilpotent dg P ¡ -coalgebras,
where G is an acyclic cofibration. We consider the diagram

C
H //

""

υκC

∼
""

��

G ∼

��

B̃ιA

B̃ι f

��

Bκ ΩκC
��

∼ Bκ ΩκG

��

C ′
K //

""

B̃ιA′

Bκ ΩκC ′.

Since the unit υκC of the bar-cobar adjunction is an acyclic cofibration
by Theorem 2.9(2) and since B̃ιA is a fibrant dg P ¡ -coalgebra, then there
exists a morphism H ′ : Bκ ΩκC → B̃ιA which factors H, i.e. H = H ′υκC.
Since G is a weak-equivalence, then ΩκG is a quasi-isomorphism, by def-
inition, and so Bκ ΩκG is a weak-equivalence by point (1). In the same
way, since G is a cofibration, then it is a monomorphism, by definition,
and so is ΩκG = idP(G) : P(C)� P(C ′); point (2) shows that Bκ ΩκG is
a cofibration. All together, this proves that the map Bκ ΩκG is an acyclic
cofibration of conilpotent dg P ¡ -coalgebras, and, since B̃ιA′ is fibrant, then
there exists a morphism K ′ : Bκ ΩκC ′ → B̃ιA′ which factors (B̃ι f)H ′,
i.e. (B̃ι f)H ′ = K ′(Bκ ΩκG). Finally, we apply the lifting property ax-
iom (MC 4) of Theorem 4.2 in the diagram

ΩκC
h′ //

��

ΩκG ∼

��

A

f

����

ΩκC ′
k′ //

==

A′

to conclude that B̃ι f is a fibration. �
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Appendix A. Obstruction theory for infinity-morphisms

In this appendix, we settle the obstruction theory for ∞-morphisms of
homotopy P-algebras.

Recall from Theorem 4.3, that an ∞-morphism f : A B between two
P∞-algebras (A, dA, µ) and (B, dB , ν) is a map f : P ¡ → EndAB satisfying
Equation (4.1)

∂(f) = f ∗ µ− ν ~ f

in HomS(P ¡
,EndAB).

For any n > 0, we denote by µ(n), ν(n), and f(n) the respective restrictions

of the maps µ, ν, and f to the weight n part P ¡ (n)
of the cooperad P ¡ .

Using these notations, Equation (4.1) becomes

(A.1) ∂ABf(n) − f(n−1)dϕ =
n∑
k=1

f(n−k) ∗ µ(k) −
n∑
k=1

ν(k) ~ f(n−k)

on P ¡ (n)
, for any n > 0, where ν(k) ~ f(n−k) means, by a slight abuse

of notations, that the total weight of the various maps f involved on the
right-hand side is equal to n− k.

Theorem A.1. — Let (A, dA, µ) and (B, dB , ν) be two P∞-algebras.
Let n > 0 and suppose given f(0), . . . , f(n−1) satisfying Equation (A.1) up
to n− 1. The element

f̃(n) :=
n∑
k=1

f(n−k) ∗ µ(k) −
n∑
k=1

ν(k) ~ f(n−k) + f(n−1)dϕ

is a cycle in the chain complex (HomS(P ¡
,EndAB), (∂AB)∗). Therefore, there

exists an element f(n) satisfying Equation (4.1) at weight n if and only if
the cycle f̃(n) is a boundary element.

Proof. — Let us prove that ∂AB f̃(n) = 0; the second statement is then
straightforward. We have

∂AB f̃(n) =
n∑
k=1

(
(∂ABf(n−k)) ∗ µ(k) + f(n−k) ∗ (∂Aµ(k))

− (∂Bν(k))~ f(n−k) + ν(k) ~ (f ; ∂ABf)(n−k)
)

+ ∂ABf(n−1)dϕ,

where the notation (f ; ∂ABf) means that we apply the definition of the
product ~ with many f but one ∂ABf . (With the notations of [24], this
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coincides to composing by ν ◦(f ; ∂ABf).) Applying Equation (A.1) at weight
strictly less than n and the Maurer–Cartan equation

∂Aµ(n) = −
n∑
k=1

µ(k) ? µ(n−k) − µ(n−1)dϕ

for µ and ν respectively, we get

∂AB f̃(n) =
∑

k+l+m=n

(
(f(k) ∗ µ(l)) ∗ µ(m) − f(k) ∗ (µ(l) ? µ(m))

+ (ν(k) ? ν(l))~ f(m) − ν(k) ~ (f ; ν ~ f)(l+m)

+ ν(k) ~ (f ; f ∗ µ)(l+m) − (ν(k) ~ f(l)) ∗ µ(m)
)

+
n−1∑
k=1

(
(f(n−k−1)dϕ) ∗ µ(k) − f(n−k−1) ∗ (µ(k)dϕ)

+ (f(n−k−1) ∗ µ(k))dϕ + (ν(k)dϕ)~ fn−k−1)
− (ν(k) ~ fn−k−1)dϕ + ν(k) ~ (f ; f(•−1)dϕ)(n−k−1)

)
+ f(n−2)(dϕ)2.

Since µ has degree −1, the preLie relations of the operations ? and ∗ imply
(f ∗µ)∗µ = f ∗ (µ?µ). The coassociativity of the decomposition coproduct
∆ of the cooperad P ¡ implies (ν ? ν) ~ f = ν(f ; ν ~ f) and (ν ~ f) ∗ µ =
ν ~ (f ; f ~ µ). Since dϕ is a coderivation of the cooperad P ¡ , it implies
(f∗µ)dϕ = f∗(µdϕ)−(fdϕ)∗µ and (ν~f)dϕ = (νdϕ)~f+ν~(f ; f(•−1)dϕ).
Finally, the coderivation dϕ squares to zero, which concludes the proof. �

Corollary A.2. — Let (A, dA, µ) be a P∞-algebra and let (B, dB) be
an acyclic chain complex, viewed as a trivial P∞-algebra. Any chain map
(A, dA)→ (B, dB) extends to an ∞-morphism (A, dA, µ) (B, dB , 0).

Proof. — We prove the existence of a series of maps f(n), for n > 0
satisfying Equation (A.1) by induction on n using Theorem A.1. Let us
denote the map A → B by f(0). Since this is a chain map, it satisfies
Equation (A.1) for n = 0. Since the chain complex (B, dB) is acyclic,
then so is the chain complex (HomS(P ¡

,EndAB), (∂AB)∗). Therefore, all the
obstructions vanish and Theorem A.1 applies. �

Appendix B. A technical lemma

Lemma B.1. — Let A be a dg P-algebra and let D be a conilpotent
dg P ¡-coalgebra. Let p : A � ΩκD be a fibration of dg P-algebras. The
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morphism j : BκA×Bκ ΩκD D
∼
� BκA, produced by the pullback diagram

BκA×Bκ ΩκD D //
��

j ∼

��

y
D

υκD

��

BκA
Bκ p // Bκ ΩκD,

is an acyclic cofibration of conilpotent dg P ¡ -coalgebras.

Proof. — We consider the kernel K := Ker(p) of the map p : A� ΩκD,
which is a sub-dg P-algebra of A. The short exact sequence

0 // K // // A // // ΩκD = P(D)
yy // 0

of dg P-algebras splits in the category of graded P-algebras since the under-
lying P-algebra of ΩκD = P(D) is free. The induced isomorphism of graded
P-algebras A ∼= K⊕P(D) becomes an isomorphism of dg P-algebras when
the right-hand side is equipped with the transferred differential, which the
sum of the following three terms

dK : K → K, dΩκD : P(D)→ P(D), and d′ : P(D)→ K.

Notice that K ⊕ P(D) endowed with the P-algebra structure given by

P(K ⊕ P(D))� P(K)⊕ P(P(D))
γK⊕γP(D)−−−−−−−→ K ⊕ P(D)

is the product of K and P(D) in the category of graded P-algebras. Since
the bar construction is right adjoint, it preserves the limits and thus the
products. This induces the following two isomorphisms of conilpotent dg
P ¡ -coalgebras

BκA ∼= BκK × Bκ ΩκD, and BκA×Bκ ΩκD D ∼= BκK ×D,

with both right-hand sides equipped with an additional differential coming
from d′. Under these identifications, the initial pullback becomes

BκK ×D
proj //

id×υκD

��

y
D

υκD

��
BκK × Bκ ΩκD

proj // Bκ ΩκD.

Since the unit of adjunction υκD is monomorphism, then so is the map j,
which is therefore a cofibration.
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It remains to prove that id×υκD is again a weak-equivalence when the
twisted differentials, coming from d′, are taken into account. We will prove
that this is a filtered quasi-isomorphism with the same kind of filtrations
as in the proof of Theorem 2.9.
We notice first that the product of two P ¡ -coalgebras is given by an equal-

izer dual to the coequalizer introduced at the beginning of Section 2.4 to
describe coproducts of P-algebras. So the product P ¡(K)×D is a conilpo-
tent sub-P ¡ -coalgebra of the conilpotent cofree P ¡ -coalgebra P ¡(K ⊕ D).
We filter the latter one by

Fn
(
P

¡
(K⊕D)

)
:=

∑
k>1,

n1+···+nk6n

P
¡
(k)⊗Sk

(
(K⊕Fn1D)⊗· · ·⊗ (K⊕FnkD)

)
and we denote by Fn (BκK × D) the induced filtration on the product
BκK ×D. In the same way, we filter the product BκK × Bκ ΩκD, whose
underlying conilpotent P ¡-coalgebra is P ¡(K ⊕ P(D)), by

Fn (BκK × Bκ ΩκD) :=
∑
k>1,

n1+···+nk6n

P
¡
(k)⊗Sk

(
(K ⊕ Fn1P(D))

⊗ · · · ⊗ (K ⊕ FnkP(D))
)
,

where

FnP(D) :=
∑
k>1,

n1+···+nk6n

P(k)⊗Sk (Fn1D ⊗ · · · ⊗ FnkD).

The respective differentials and the map id×υκD preserve these two filtra-
tions. Let us now prove that the associated map gr(id×υκD) = id×gr(υκD)
is a quasi-isomorphism with the twisted differentials coming for d′. We now
consider the filtration Fn (BκK × grD) induced by

Fn

(
P

¡
(K ⊕ grD)

)
:=

∑
k>1,

n1+···+nk+k6n

P
¡
(k)⊗Sk

(
(K ⊕ grn1 D)

⊗ · · · ⊗ (K ⊕ grnk D)
)
.

We introduce the filtration Fn(BκK × Bκ Ωκ grD) given by

Fn

(
P

¡
(K ⊕ P(grD))

)
:=

∑
k>1,

n1+···+nk6n

P
¡
(k)⊗Sk

(
(K ⊕Fn1P(grD))

⊗ · · · ⊗ (K ⊕FnkP(grD))
)
,
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where

FnP(grD) :=
∑
k>1,

n1+···+nk+k6n

P(k)⊗Sk (grn1 D ⊗ · · · ⊗ grnk D).

The respective differentials and the map id× gr(υκD) preserve these two
filtrations. By their definitions, the part of the differential coming from
d′, and only this part, is killed on the first page of the respective spectral
sequences. By the same arguments as in the proof of Theorem 2.9, we get a
quasi-isomorphism between these first pages. Since the two aforementioned
filtrations are bounded below and exhaustive, we conclude by the classical
convergence theorem of spectral sequences [25, Chapter 11]. �
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