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LARGE DEGREE COVERS AND SHARP RESONANCES
OF HYPERBOLIC SURFACES

by Dmitry JAKOBSON, Frédéric NAUD & Louis SOARES

Abstract. — Let Γ be a convex co-compact discrete group of isometries of
the hyperbolic plane H2, and X = Γ\H2 the associated surface. In this paper we
investigate the behaviour of resonances of the Laplacian ∆X̃ for large degree covers
of X given by X̃ = Γ̃\H2 where Γ̃ C Γ is a finite index normal subgroup of Γ. Using
techniques of thermodynamical formalism and representation theory, we prove two
new existence results of sharp non-trivial resonances close to {Re(s) = δ}, in the
large degree limit, for abelian covers and infinite index congruence subgroups of
SL2(Z).
Résumé. — On considère ici des quotients X = Γ\H2 du plan hyperbolique H2

par des groupes d’isométries convexes co-compacts Γ. On s’intéresse au comporte-
ment des résonances du Laplacien ∆X̃ où X̃ = Γ̃\H2 est un revêtement Galoisien
de haut degré de X. En combinant des techniques de formalisme thermodynamique
et de théorie des représentations, on prouve, dans le régime de haut degré, de nou-
veaux théorèmes d’existence de résonances non-triviales près de l’axe {Re(s) = δ}
pour deux familles de revêtements, les cas abéliens et le cas des congruences.

1. Introduction and results

In mathematical physics, resonances generalize the L2-eigenvalues in sit-
uations where the underlying geometry is non-compact. Indeed, when the
geometry has infinite volume, the L2-spectrum of the Laplacian is mostly
continuous and the natural replacement data for the missing eigenvalues
are provided by resonances which arise from a meromorphic continuation
of the resolvent of the Laplacian.
To be more specific, in this paper we will work with the positive Laplacian

∆X on hyperbolic surfaces X = Γ\H2, where Γ is a geometrically finite,

Keywords: Hyperbolic surfaces, Geometrically finite fuchsian groups, Laplace spectrum
and resonances, Selberg zeta function, Representation theory, Transfer operators and
thermodynamical formalism.
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discrete subgroup of PSL2(R). A good reference on the subject is the book
of Borthwick [7]. Here H2 is the hyperbolic plane endowed with its metric
of constant curvature −1. Let Γ be a geometrically finite Fuchsian group of
isometries acting on H2. This means that Γ admits a finite sided polygonal
fundamental domain in H2. We will require that Γ has no elliptic elements
different from the identity and that the quotient Γ\H2 is of infinite hyper-
bolic area. If Γ has no parabolic elements (no cusps), then the group is
called convex co-compact. We will be working with non-elementary groups
Γ so that X is never a hyperbolic cylinder, a “trivial” case for which res-
onances can actually be computed. Under these assumptions, the quotient
space X = Γ\H2 is a Riemann surface (called convex co-compact) whose
ends geometry is well known. The surface X can be decomposed into a
compact surface N with boundary, called the Nielsen region, on which two
types of ends are glued: funnels and cusps. We refer the reader to the first
chapters of Borthwick [7] for a description of the metric in the ends. The
limit set Λ(Γ) is defined as

Λ(Γ) := Γ.z ∩ ∂H2,

where z ∈ H2 is a given point and Γ.z is the orbit under the action of Γ
which accumulates on the boundary ∂H2. The limit set Λ does not depend
on the choice of z and its Hausdorff dimension δ(Γ) is the critical exponent
of Poincaré series [56].
The spectrum of ∆X on L2(X) has been fully described by Lax and

Phillips and Patterson in [39, 56] as follows:
• The half line [1/4,+∞) is the continuous spectrum.
• There are no embedded eigenvalues inside [1/4,+∞).
• The pure point spectrum is empty if δ 6 1

2 , and finite and starting
at δ(1− δ) if δ > 1

2 .
• Moreover, if Γ has some non-trivial parabolic elements (i.e. X has

at least one cusp), then δ > 1
2 .

Using the above notations, the resolvent

R(s) := (∆X − s(1− s))−1 : L2(X)→ L2(X)

is a holomorphic family of operators for Re(s) > 1
2 , except at a finite

number of possible poles related to the eigenvalues. From the work of
Mazzeo–Melrose and Guillopé–Zworski [30, 31, 46], it can be meromor-
phically continued (to all C) from C∞0 (X)→ C∞(X), and poles are called
resonances. We denote in the sequel by RX the set of resonances, written
with multiplicities.
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LARGE DEGREE COVERS AND HYPERBOLIC SURFACES 525

To each resonance s ∈ C (depending on multiplicity) are associated
generalized eigenfunctions (so-called purely outgoing states) ψs ∈ C∞(X)
which provide stationary solutions of the automorphic wave equation
given by

φ(t, x) = e(s− 1
2 )tψs(x),(

D2
t + ∆X −

1
4

)
φ = 0.

From a physical point of view, Re(s)− 1
2 is therefore a rate of decay while

Im(s) is a frequency of oscillation. Resonances that live the longest are
called sharp resonances and are those for which Re(s) is the closest to the
unitary axis Re(s) = 1

2 . In general, s = δ is the only explicitly known reso-
nance (or eigenvalue if δ > 1

2 ). This resonance is called “leading resonance”
since we also know from [48] that there exists a spectral gap i. e. one can
find ε(Γ) > 0 such that

RX ∩ {Re(s) > δ − ε(Γ)} = {δ}.

A non-trivial sharp resonance, is a sharp resonance other than δ. There are
very few effective results on the existence of non-trivial sharp resonances,
and to our knowledge the best statement so far is due to the first two
authors [33], where it is proved that for all ε > 0, there are infinitely many
resonances in the strip {

Re(s) > δ(1− 2δ)
2 − ε

}
.

It is conjectured in the same paper [33] that for all ε > 0, there are infin-
itely many resonances in the strip {Re(s) > δ/2− ε}. However, the above
result, while proving existence of non-trivial resonances, is typically a high
frequency statement and does not provide estimates on the imaginary parts
(the frequencies), and it is a notoriously hard problem to locate precisely
non-trivial resonances. The goal of the present work is to obtain a different
type of existence result by looking at families of covers of a given surface,
in the large degree regime. Let us be more specific. Given a finite index
normal subgroup Γ̃ C Γ, we denote by

G := Γ/Γ̃

the (finite) Galois group (or covering group) of the cover πG

πG : X̃ = Γ̃\H2 → X = Γ\H2.

TOME 70 (2020), FASCICULE 2
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We have an associated natural projection PG : Γ→ G such that Ker(PG) =
Γ̃. We will denote by |G| the cardinality of G, and our purpose is to in-
vestigate the presence of non-trivial resonances, as |G| becomes large. We
mention that since G is a finite group, we have Λ(Γ) = Λ(Γ̃), hence the
leading resonance δ remains the same for all finite covers. The end-game
of this paper is to produce new resonances close to δ as |G| becomes large
and see how the algebraic nature of G affects their location.
A way to attack any problem on resonances of hyperbolic surfaces is

through the Selberg zeta function defined for Re(s) > δ by

ZΓ(s) :=
∏
C∈P

∏
k∈N

(
1− e−(s+k)l(C)

)
,

where P is the set of primitive closed geodesics on Γ\H2 and l(C) is the
length. This zeta function extends analytically to C and it is known from the
work of Patterson–Perry [57] that non-trivial zeros of ZΓ(s) are resonances
with multiplicities. This zeta function method will be our main tool in the
analysis of resonances.
Let {%} denote the set of irreducible complex unitary representations

of G, and given % we denote by χ% = Tr(%) its character, V% its linear
representation space and we set

d% := dimC(V%).

Our first result is the following, it will serve as a general tool to address
the problem of resonances in Galois covers.

Theorem 1.1. — Assume that Γ is convex co-compact. For Re(s) > δ,
consider the L-function defined by

LΓ(s, %) :=
∏
C∈P

∏
k∈N

det
(

IdV% −%(C‖)e−(s+k)l(C)
)
,

where %(C) is understood as %(PG(γC)) where γC ∈ Γ is any representative
of the conjugacy class defined by C. Then we have the following facts.

(1) For all % irreducible, LΓ(s, %) extends as an analytic function to C.
(2) There exist C1, C2 > 0 such that for all p large, all % irreducible

representation of G, and all s ∈ C, we have

|LΓ(s, %)| 6 C1 exp
(
C2d% log(1 + d%)(1 + |s|2)

)
.

(3) We have the formula valid for all s ∈ C,

ZΓ̃(s) =
∏

% irreducible
(LΓ(s, %))d% .

ANNALES DE L’INSTITUT FOURIER
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Notice that the L-function for the trivial representation is just ZΓ(s)
and thus ZΓ(s) is always a factor of ZΓ̃(s). There is a long story of L-
functions associated with compact extensions of geodesic flows in negative
curvature, see for example [35, 54, 66]. In the case of pairs of hyperbolic
pants with symmetries, a similar type of factorization has been considered
for numerical purposes by Borthwick andWeich [8]. The above factorization
is very similar to the factorization of Dedekind zeta functions as a product
of Artin L-functions in the case of number fields. In the finite area case, after
Atle Selberg, this type of factorization was known to Venkov–Zograf [74].
We also point our the related recent work of Pohl–Fedosova [22]. In the
context of hyperbolic surfaces with infinite volume, although not surprising,
the above statement is new and interesting in itself for various applications,
especially (2) which provides necessary a priori bounds on the growth of
these L-functions with respect to d%. We now describe our two main results
which deal with two opposite cases, the first one when the Galois group G
is abelian, the other when G = SL2(Fp), which is as far from abelian as
possible.

1.1. Abelian covers

An efficient way to manufacture abelian covers is to use the first homol-
ogy group with integral coefficients,

H1(X,Z) ' Γ/[Γ,Γ],

where [Γ,Γ] is the commutator subgroup of Γ. Since Γ is actually a free
group(1) on r symbols (since Γ is always assumed to be non-elementary,
we have r > 2, see Section 2 for the Schottky representation in the convex
co-compact case), then

H1(X,Z) ' Zr.
Let us fix a surjective homomorphism P : Γ → Zr. Fix an integer k with
1 6 k 6 r. Given a sequence of positive integers (N (j)

1 , N
(j)
2 , . . . , N

(j)
k ) we

obtain a surjective map π̃j by considering

π̃j :
{
Zr → Z/N (j)

1 Z× Z/N (j)
2 Z× · · · × Z/N (j)

k Z
x = (x1, . . . , xr) 7→ (x1 mod N (j)

1 , . . . , xk mod N (j)
k )

One can then check that

Γj := Ker(π̃j ◦ P )

(1) It’s a pure fact of algebraic topology that the fundamental group of a non-compact
surface with finite geometry is free, see for example [71].

TOME 70 (2020), FASCICULE 2



528 Dmitry JAKOBSON, Frédéric NAUD & Louis SOARES

is indeed a normal subgroup with Galois group

Gj = Z/N (j)
1 Z× Z/N (j)

2 Z× · · · × Z/N (j)
k Z.

To avoid artificial sequence extractions, we will use the following hypothe-
sis:

(H) lim
j→∞

min
16`6k

N
(j)
` = +∞.

The case k = 1 corresponds to cyclic covers, while k = r are full rank
abelian covers. We will first prove the following fact.

Theorem 1.2. — Assume that X = Γ\H2 has at least one cusp, and
consider a sequence of abelian covers as above with Galois group Gj , and
assume that (H) is satisfied. Then for all ε > 0, one can find j such that
Xj = Γj\H2 has at least one non-trivial resonance s with |s− δ| 6 ε.

In the case of compact hyperbolic surfaces, this is a known result proved
in 1974 by Burton Randol(2) [64]. Note that in the compact case, it follows
also from min-max techniques and the Buser inequality, see for example
in the book of Bergeron [6, Chapter 3]. In the case of abelian covers of
the modular surface, this fact was definitely first observed by Selberg, see
Selberg’s Collected papers [67, paper 33, “On the estimation of Fourier
coefficients of modular forms”, p. 12]. For more general compact mani-
folds, we mention the work of R. Brooks [16] (based on Cheeger’s constant)
which gives sufficient conditions on the fundamental group that guarantees
existence of coverings with arbitrarily small spectral gaps.
The outline of the proof is (not surprisingly) as follows: since there is a

cusp, we have δ > 1
2 and resonances close to δ are actually L2-eigenvalues.

One can then use the fact that Cayley graphs of abelian groups are never
expanders combined with some L2 techniques and Fell’s continuity of in-
duction to prove the result, following earlier ideas of Gamburd [27]. The
proof of Theorem 1.2 is rather different than the rest of the paper and is
found in the last section.
In the convex co-compact case, we can actually prove a much stronger

result which goes as follows.

Theorem 1.3. — Assume that X = Γ\H2 is convex co-compact, and
consider a sequence of abelian covers with Galois group Gj as above,
with (H) satisfied.

(2)although there is no interpretation in terms of abelian covers in this early work.
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(1) Then there exists ε0(Γ) > 0 such that for all j ∈ N,

RXj ∩ {Re(s) > δ − ε0}
consists of finitely many real resonances included in the segment
[δ − ε0, δ].

(2) Moreover, up to a sequence extraction, we have weak convergence
in C0([δ − ε0, δ])∗ of the spectral measures:

lim
j→+∞

1
|Gj |

∑
λ∈Rj∩[δ−ε0,δ]

Dλ = µ,

where µ is an absolutely continuous finite measure fully supported
on [δ − ε0, δ], and Dλ is the Dirac measure at λ.

(3) In addition, if λ ∈ RX , then for all ε0 > 0 small enough, one can
find C0 > 0 such that as j → +∞,

C−1
0 |Gj | 6 #RXj ∩D(λ, ε0) 6 C0|Gj |.

• The absolutely continuous measure µ depends dramatically on the
sequence of covers: a more detailed description of the density is
provided in Section 3.

• Since δ belongs to the support of µ, a simple approximation argu-
ment shows that for all ε > 0 small enough, we have as j → +∞,

#{λ ∈ RXj : |λ− δ| < ε} ∼ Cε|Gj |,
for some constant Cε > 0.

• Another obvious corollary is that for all ε > 0 one can find a finite
abelian cover Xj of X such that Xj has a non-trivial resonance
ε-close to δ. Both Theorems 1.2 and 1.3 fully cover the case of all
geometrically finite surfaces. We have existence of surfaces with
arbitrarily small spectral gap, which was not known so far.

• Note that the non-trivial resonances obtained here are real: for δ >
1
2 , this is clear because when close enough to δ they are actually
L2-eigenvalues. However when δ 6 1

2 , this is not an obvious fact.
• In the general context of scattering theory on spaces with negative
curvature, it is to our knowledge the first exact asymptotic result
on the distribution of resonances, apart from the “trivial” cases of
elementary groups or cylindrical manifolds where resonances can
be explicitly computed. For a review of the current knowledge on
counting results for resonances in various settings, we refer to the
recent surveys [51, 75].

• The above theorem fully describes sharp resonances in a small ver-
tical strip close to {Re(s) = δ}. It is the abelian analog of [53].

TOME 70 (2020), FASCICULE 2
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The proof mostly uses thermodynamical formalism and L-functions to anal-
yse carefully the contribution of L-factors related to characters which are
close to the identity. In particular we use in a fundamental way dynamical
L-functions related to characters of Zr and their representation as Fred-
holm determinants of suitable transfer operators. A key part of the proof
is to prove that for large Im(s), there are no new resonances in covers: this
fact follows from a twisted version of the analysis of [48], however we fol-
low an alternative and much shorter route here by using Fourier decay of
Patterson–Sullivan measures as obtained recently by Bourgain–Dyatlov [9].

1.2. Congruence subgroups

Let Γ be an infinite index, finitely generated, free subgroup of SL2(Z),
without parabolic elements. Because Γ is free, the projection map π :
SL2(R) → PSL2(R) is injective when restricted to Γ and we will thus
identify Γ with π(Γ), i.e. with its realization as a Fuchsian group. Under
the above hypotheses, Γ is a convex co-compact group of isometries. For
all p > 2 a prime number, we define the congruence subgroup Γ(p) by

Γ(p) := {γ ∈ Γ : γ ≡ Id mod p},

and we set Γ(0) = Γ. Recently, these “infinite index congruence sub-
groups” have attracted a lot of attention because of the key role they
play in number theory and graph theory. We mention the early work of
Gamburd [27] and the more recent by Bourgain–Gamburd–Sarnak [10],
Bourgain–Kontorovich [11, 12] and Oh–Winter [53]. In all of the previously
mentioned works, the spectral theory of surfaces

Xp := Γ(p)\H2,

plays a critical role and knowledge on resonances is mandatory. It should
be stressed at this point that unlike in the case of abelian covers treated
above, there is a uniform spectral gap as p → +∞, see [10, 27, 53], so it
is a completely different situation where the non-commutative nature of G
makes it much more difficult to exhibit new non-trivial resonances in the
large p limit.
In [34], the authors have started investigating the behaviour of resonances

in the large p limit and the present paper goes in the same direction with
different techniques involving sharper tools of representation theory.

ANNALES DE L’INSTITUT FOURIER
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Note that it is known from Gamburd [27], that the map

πp :
{

Γ→ SL2(Fp)
γ 7→ γ mod p

is onto for all p large, and we thus have a family of Galois covers Xp → X

with Galois group G = SL2(Fp). In [34], by combining trace formulae tech-
niques with some a priori upper bounds for ZΓ(p)(s) obtained via transfer
operator techniques, we proved the following fact. For all ε > 0, there exists
Cε > 0 such that for all p large enough,

C−1
ε p3 6 #RXp ∩ {|s| 6 (log(p))ε} 6 Cεp3(log(p))1+2ε.

We point out that p3 � Vol(Np), where Vol(Np) is the volume of the convex
core of Xp, therefore these bounds can be thought as a Weyl law in the
large p regime.
In the case of covers of compact or finite volume manifolds, after the

pioneering work of Heinz Huber [32], precise results for the Laplace spec-
trum in the “large degree” limit have been obtained in the past in [21, 29].
We also mention the recent work [40] where a precise asymptotic is proved
for sequences of compact hyperbolic surfaces. In the case of infinite vol-
ume hyperbolic manifolds, we also mention the density bound obtained by
Oh [52].

While this result has near optimal upper and lower bounds, it does not
provide a lot of information on the precise location of non-trivial resonances.
The second main result of this paper is as follows.

Theorem 1.4. — Using the above notations, assume that δ > 3
4 . Then

for all ε, β > 0, and for all p large,

#RXp ∩
{
δ − 3

4 − ε 6 Re(s) 6 δ and |Im(s)| 6 (log(log(p)))1+β
}
>
p− 1

2 .

• Existence of convex co-compact subgroups Γ of SL2(Z) with δΓ ar-
bitrarily close to 1 is guaranteed by a theorem of Lewis Bowen [13].
See also [27] for some hand-made examples.

• The point of Theorem 1.4 is that we manage to produce non-trivial
resonances without having to affect δ, just by moving to a finite
cover, and despite the uniform spectral gap. In that sense, our re-
sult is somehow complementary to the spectral gap obtained by
Gamburd [27].

• It would be interesting to know if the log log bound can be improved
to a constant, but this should require different techniques (see the
remarks at end of the main proof).

TOME 70 (2020), FASCICULE 2
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• It is rather clear to us that the methods of proof are robust enough
to allow extensions to more general subgroups of arithmetic groups,
in the spirit of the recent work of Magee [44], as long as some
knowledge of the group structure of the Galois group G is available
(see Section 5).

The outline of the proof is as follows. Having established the factoriza-
tion formula, we first notice that since the dimension of any non-trivial
representation of G is at least p−1

2 , it is enough to show that at least one
of the L-functions LΓ(s, %) vanishes in the described region as p→∞. We
achieve this goal through an averaging technique (over irreducible %) which
takes in account the “explicit” knowledge of the conjugacy classes of G,
together with the high multiplicities in the length spectrum of X. Unlike
in finite volume cases where one can take advantage of a precise location
of the spectrum (for example by assuming GRH), none of this strategy ap-
plies here which makes it much harder to mimic existing techniques from
analytic number theory.

Acknowledgements. Dima Jakobson and Frédéric Naud are supported
by ANR grant “GeRaSic”. DJ was partially supported by NSERC, FRQNT
and Peter Redpath fellowship. FN is supported by Institut Universitaire de
France. We all thank Anke Pohl for many helpful discussions and Werner
Müller for pointing out relevant references. We also thank the anonymous
referee for his in depth reading and relevant comments.

2. Factorization formula and a priori bounds

2.1. Bowen-Series coding and transfer operator

The goal of this section is to prove Theorem 1.1. The technique follows
closely previous works [34, 50] with the notable addition that we have to
deal with vector valued transfer operators. We start by recalling Bowen-
Series coding and holomorphic function spaces needed for our analysis. Let
H2 denote the Poincaré upper half-plane

H2 = {x+ iy ∈ C : y > 0}

endowed with its standard metric of constant curvature −1

ds2 = dx2 + dy2

y2 .

ANNALES DE L’INSTITUT FOURIER
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Figure 2.1. Schottky pairing

The group of isometries of H2 is PSL2(R) through the action of 2 × 2
matrices viewed as Möbius transforms

z 7→ az + b

cz + d
, ad− bc = 1.

Below we recall the definition of Fuchsian Schottky groups which will be
used to define transfer operators. A Fuchsian Schottky group is a free sub-
group of PSL2(R) built as follows. Let D1, . . . ,Dr,Dr+1, . . . ,D2r, r > 2, be
2r Euclidean open discs in C orthogonal to the line R ' ∂H2. We assume
that for all i 6= j, Di ∩ Dj = ∅. Let γ1, . . . , γr ∈ PSL2(R) be r isometries
such that for all i = 1, . . . , r, we have

γi(Di) = Ĉ \ Dr+i,

where Ĉ := C ∪ {∞} stands for the Riemann sphere. For notational pur-
poses, we also set γ−1

i =: γr+i.
Let Γ be the free group generated by γi, γ−1

i for i = 1, . . . , r, then Γ is a
convex co-compact group, i.e. it is finitely generated and has no non-trivial
parabolic element. The converse is true: up to isometry, convex co-compact
hyperbolic surfaces can be obtained as a quotient by a group as above,
see [17].
For all j = 1, . . . , 2r, set Ij := Dj ∩ R. One can define a map

T : I :=
2r⋃
j=1

Ij → R ∪ {∞}

by setting
T (x) = γj(x) if x ∈ Ij .

TOME 70 (2020), FASCICULE 2
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This map encodes the dynamics of the full group Γ, and is called the Bowen-
Series map, see [15] for the genesis of these type of coding. The key prop-
erties are orbit equivalence and uniform expansion of T on the maximal
invariant subset ∩n>1T

−n(I) which coincides with the limit set Λ(Γ), see
for example [7].
We now define the function space and the associated transfer operators.

Set

Ω :=
2r⋃
j=1
Dj .

Each complex representation space V% is endowed with an inner product
〈 · , · 〉% which makes each representation

% : G→ End(V%)

unitary, where we use the notations of Section 1 i.e. G is the Galois group
of the cover πG : X̃ → X, and we have the associated natural projection
PG : Γ→ G such that Ker(PG) = Γ̃.
Consider now the Hilbert space H2

%(Ω) which is defined as the set of
vector valued holomorphic functions F : Ω→ V% such that

‖F‖2H2
%

:=
∫

Ω
‖F (z)‖2%dm(z) < +∞,

where dm is Lebesgue measure on C. On the space H2
%(Ω), we define a

“twisted” by % transfer operator L%,s by

L%,s(F )(z) :=
∑
j

((T ′)(T−1
j ))−sF (y)%(T−1

j )

=
∑
j 6=i

(γ′j)sF (γjz)%(γj), if z ∈ Di,

where s ∈ C is the spectral parameter. Here %(γj) is understood as

%(PG(γj)), γj ∈ SL2(Z).

We also point out that the linear map %(g) acts “on the right” on vectors
U ∈ V% simply by fixing an orthonormal basis B = (e1, . . . , ed%) of V% and
setting

U%(g) := (U1, . . . , Ud%)MatB(ρ(g)).

Notice that for all j 6= i, γj : Di → Dr+j is a holomorphic contraction since
γj(Di) ⊂ Dr+j . Therefore, L%,s is a compact trace class operator and thus
has a Fredholm determinant. We start by recalling a few facts.
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We need to introduce some more notations. Considering a finite sequence
α with

α = (α1, . . . , αn) ∈ {1, . . . , 2r}n,
we set

γα := γα1 ◦ · · · ◦ γαn .
We then denote by Wn the set of admissible sequences of length n by

Wn := {α ∈ {1, . . . , 2r}n : ∀ i = 1, . . . , n− 1, αi+1 6= αi + r mod 2r} .
The set Wn is simply the set of reduced words of length n. For all j =
1, . . . , 2r, we define W j

n by

W j
n := {α ∈ Wn : αn 6= j}.

If α ∈ W j
n , then γα maps Dj into Dα1+r. Using this set of notations, we

have the formula for all z ∈ Dj , j = 1, . . . , 2r,

LN%,s(F )(z) =
∑
α∈W j

N

(γ′α(z))sF (γαz)%(γα).

A key property of the contraction maps γα is that they are eventually
uniformly contracting, see [7, Proposition 15.4]: there exist C > 0 and
0 < ρ2 < ρ1 < 1 such that for all z ∈ Dj , for all α ∈ W j

n we have for all
n > 1,

(2.1) C−1ρn2 6 sup
z∈Dj

|γ′α(z)| 6 Cρn1

In addition, they have the bounded distortion property (see [50] for proofs):
There exists M1 > 0 such that for all n, j and all α ∈ W j

n , we have for all
z ∈ Dj ,

(2.2)
∣∣∣∣γ′′α(z)
γ′α(z)

∣∣∣∣ 6M1.

We will also need to use the topological pressure as a way to estimate
certain weighted sums over words. We will rely on the following fact [50].
Fix σ0 ∈ R, then there exists C(σ0) such that for all n and σ > σ0, we have

(2.3)
2r∑
j=1

 ∑
α∈W j

n

sup
Dj
|γ′α|σ

 6 C(σ0)enP (σ0).

Here σ 7→ P (σ) is the topological pressure, which is a strictly convex de-
creasing function which vanishes at σ = δ, see [14]. In particular, whenever
σ > δ, we have P (σ) < 0. A definition of P (σ) is by a variational formula:

P (σ) = sup
µ

(
hµ(T )− σ

∫
Λ

log |T ′|dµ
)
,
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where µ ranges over the set of T -invariant probability measures, and hµ(T )
is the measure theoretic entropy. For general facts on topological pressure
and thermodynamical formalism we refer to [55]. We will also use it in
Section 4.

2.2. Norm estimates and determinant identity

We start with an a priori norm estimate that will be used later on, see
also [34] where a similar bound (on a different function space) is proved in
appendix.

Proposition 2.1. — Fix σ = Re(s) ∈ R, then there exists Cσ > 0,
independent of G, % such that for all s ∈ C with Re(s) = σ and all N we
have

‖LN%,s‖H2
%
6 Cσe

Cσ|Im(s)|e2NP (σ).

Proof. — First we need to be more specific about the complex powers
involved here. First we point out that given z ∈ Di then for all j 6= i, γ′j(z)
belongs to C \ (−∞, 0], simply because each γj is in PSL2(R). This make
it possible to define γ′j(z)s by

γ′j(z)s := esL(γ′j(z)),

where L(z) is the complex logarithm defined on C\ (−∞, 0] by the contour
integral

L(z) :=
∫ z

1

dζ
ζ
.

By analytic continuation, the same identity holds for iterates. In particular,
because of bound (2.1) and also bound (2.2) one can easily show that there
exists C1 > 0 such that for all N, j and all α ∈ W j

N , we have

(2.4) sup
z∈Dj

|γ′α(z)s| 6 eC1|Im(s)| sup
Dj
|γ′α|σ,

where σ = Re(s). We can now compute, given F ∈ H2
%(Ω),

‖LN%,s(F )‖2H2
%

:=
2m∑
j=1

∑
α,β∈W j

N

∫
Dj
γ′α(z)sγ′β(z)s〈F (γαz)%(γα), F (γβz)%(γβ)〉%dm(z).
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By unitarity of % and Schwarz inequality we obtain

‖LN%,s(F )‖2H2
%

6 e2C1|Im(s)|
∑
j

∑
α,β

sup
Dj
|γ′α|σ sup

Dj
|γ′β |σ

∫
Dj

‖F (γαz)‖%‖F (γβz)‖%dm(z).

We now remark that z 7→ F (z) has components in H2(Ω), the Bergman
space of L2 holomorphic functions on Ω =

⋃
j Dj , so we can use the scalar

reproducing kernel BΩ(z, w) to write (in a vector valued way)

F (γαz) =
∫

Ω
F (w)BΩ(γαz, w)dm(w).

Therefore we get

‖F (γαz)‖% 6
∫

Ω
‖F (w)‖%|BΩ(γαz, w)|dm(w),

and by Schwarz inequality we obtain

sup
z∈Dj

‖F (γαz)‖% 6 ‖F‖H2
%

(∫
Ω
|BΩ(γαz, w)|2dm(w)

)1/2
.

Observe now that by uniform contraction of branches γα : Dj → Ω, there
exists a compact subset K ⊂ Ω such that for all N, j and α ∈ W j

N ,

γα(Dj) ⊂ K.
We can therefore bound∫

Ω
|BΩ(γαz, w)|2dm(w) 6 C

uniformly in z, α. We have now reached

‖LN%,s(F )‖2H2
%
6 ‖F‖2H2

%
C2e

2C1|Im(s)|
∑
j

∑
α,β

sup
Dj
|γ′α|σ sup

Dj
|γ′β |σ,

and the proof is now done using the topological pressure estimate (2.3). �
The main point of the above estimate is to obtain a bound which is

independent of d%. In particular the spectral radius ρsp(L%,s) of L%,s :
H2
%(Ω)→ H2

%(Ω) is bounded by

(2.5) ρsp(L%,s) 6 eP (Re(s)),

which is uniform with respect to the representation %, and also shows that
it is a contraction whenever σ = Re(s) > δ. Notice also that using the
variational principle for the topological pressure, it is possible to show that
there exist a0, b0 > 0 such that for all σ ∈ R,

(2.6) |P (σ)| 6 a0 + |σ|b0.
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We continue with a key determinantal identity. We point out that repre-
sentations of Selberg zeta functions as Fredholm determinants of transfer
operators have a long history going back to Fried [25], Pollicott [62] and also
Mayer [18, 45] for the Modular surface. For more recent works involving
transfer operators and unitary representations we also mention [59, 60].

Proposition 2.2. — For all Re(s) large, we have the identity:

(2.7) det(I − L%,s) = LΓ(s, %),

Proof. — Remark that the above statement implies analytic continuation
to C of each L-function LΓ(s, %), since each s 7→ det(I − L%,s) is readily
an entire function of s. For all integer N > 1, let us compute the trace
of LN%,s. Our basic reference for the theory of Fredholm determinants on
Hilbert spaces is [70]. Let (e1, . . . , ed%) be an orthonormal basis of V%. For
each disc Dj let (ϕj`)`∈N be a Hilbert basis of the Bergmann space H2(Dj),
that is the space of square integrable holomorphic functions on Dj . Then
the family defined by

Ψj,`,k(z) :=
{
ϕj`(z)ek if z ∈ Dj
0 otherwise,

is a Hilbert basis of H2
%(Ω). Writing

〈LN%,s(Ψj,`,k),Ψj,`,k〉H2
%(Ω)

=
∑
α∈W j

N

∫
Dj

(γ′α(z))sϕj`(γαz)ϕ
j
`(z)〈ek%(γα), ek〉%dm(z),

we deduce that

Tr(LN%,s) =
∑
j,`,k

〈LN%,s(Ψj,`,k),Ψj,`,k〉H2
%(Ω)

=
∑
j

∑
α∈W j

N
α1=r+j

χ%(γα)
∫
Dj

(γ′α(z))sBDj (γαz, z)dm(z),

where χ% is the character of % and BDj (w, z) is the Bergmann reproducing
kernel of H2(Dj). There is an explicit formula for the Bergmann kernel of
a disc Dj = D(cj , rj):

BD`(w, z) =
r2
j

π
[
r2
j − (w − cj)(z − cj)

]2 .
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It is now an exercise involving Stoke’s and Cauchy formula (for details we
refer to Borthwick [7, p. 306]) to obtain the Lefschetz identity

∫
Dj

(γ′α(z))sBDj (γαz, z)dm(z) = (γ′α(xα))s

1− γ′α(xα) ,

where xα is the unique fixed point of γα : Dj → Dj . Moreover,

γ′α(xα) = e−l(Cα),

where Cα is the closed geodesic represented by the conjugacy class of γα ∈ Γ,
and l(Cα) is the length. There is a one-to-one correspondence between prime
reduced words (up to circular permutations) in

⋃
N>1

2r⋃
j=1
{α ∈ W j

N such that α1 = r + j},

and prime conjugacy classes in Γ (see Borthwick [7, p. 303]), therefore each
prime conjugacy class in Γ and its iterates appear in the above sum, when
N ranges from 1 to +∞.
We have therefore reached formally (absolute convergence is valid for

Re(s) large, see later on)

∑
N>1

1
N

Tr(LN%,s) =
∑
N>1

1
N

∑
j

∑
α∈W j

N
α1=r+j

χ%(γα) (γ′α(xα))s

1− γ′α(xα)

=
∑
C∈P

∑
k>1

χ%(Ck)
k

e−skl(C)

1− e−kl(C) .

The prime orbit theorem for convex co-compact groups says that as T →
+∞, (see for example [38, 49]),

#{(k, C) ∈ N0 × P : kl(C) 6 T} = eδT

δT
(1 + o(1)) .

On the other hand, since χ% takes obviously finitely many values on G we
get absolute convergence of the above series for Re(s) > δ. For all Re(s)
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large, we get again formally

det(I − L%,s) = exp

−∑
N>1

1
N

Tr(LN%,s)


= exp

−∑
C,k,n

χ%(Ck)
k

e−(s+n)kl(C)


=
∏
C∈P

∏
n∈N

exp

−∑
k>1

χ%(Ck)
k

e−(s+n)kl(C)


=
∏
C∈P

∏
k∈N

det
(

IdV% −%(C‖)e−(s+k)l(C)
)
.

This formal manipulations are justified for Re(s) > δ by using the spectral
radius estimate (2.5) and the fact that if A is a trace class operator on a
Hilbert space H with ‖A‖H < 1 then we have

det(I −A) = exp

−∑
N>1

1
N

Tr(AN )

 ,

(this is a direct consequence of Lidskii’s theorem, see [70, Chapter 3]). The
proof is finished and we have claim (1) of Theorem 1.1. �

Claim (3) follows from the formula (valid for Re(s) > δ)

det(I − L%,s) = exp

−∑
C,k,n

χ%(Ck)
k

e−(s+n)kl(C)

 ,

and the identity for the character of the regular representation (see [68,
Chapter 2])

(2.8)
∑

% irreducible
d%χ%(g) = |G|De(g),

where De is the dirac mass at the neutral element e. Indeed, using (2.8),
we get

(2.9)
∏

% irreducible
(det(I−L%,s))d% = exp

−|G|∑
k,n

∑
C∈P

rG(C)=e

1
k
e−(s+n)kl(C)

.
The end of the proof rests on an algebraic fact related to the splitting of
conjugacy classes in Γ̃. For the benefit of the reader, we give the outline. It
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is easy to check that any prime conjugacy class C̃ in Γ̃ has a representative
given by (representative of) a power of a prime conjugacy class (in Γ), i.e.

C̃ = C`,

for some 1 6 ` 6 |G|. It is then a fact of group theory that the conjugacy
class of C` in Γ will split in Γ̃ in one-to-one correspondence with the cosets of

Γ/Γ̃CΓ(C`),

where CΓ(C`) is the centralizer in Γ of C`. Because we are in a free group,
this centralizer is the elementary group generated by C, which shows that
the number of conjugacy classes in Γ̃ is |G|/`. This factor ` is exactly what’s
needed to recognize in (2.9) the length `l(C) = l(C`) = l(C̃).
We refer the reader to [22] for more details, including a complete proof of

the factorization formula (3) for geometrically finite groups. We point out
that this type of analog of the Artin factorization had already been proved
by Venkov–Zograf in [74] for cofinite groups.

2.3. Singular value estimates

The proof of claim (2) will require more work and will use singular values
estimates for vector-valued operators. We now recall a few facts on singular
values of trace class operators. Our reference for that matter is for example
the book [70]. If T : H → H is a compact operator acting on a Hilbert
space H, the singular value sequence is by definition the sequence µ1(T ) =
‖T‖ > µ2(T ) > · · · > µn(T ) of the eigenvalues of the positive self-adjoint
operator

√
T ∗T . To estimate singular values in a vector valued setting, we

will rely on the following fact.

Lemma 2.3. — Assume that (ej)j∈J is a Hilbert basis of H, indexed by
a countable set J . Let T be a compact operator on H. Then for any subset
I ⊂ J with #I = n we have

µn+1(T ) 6
∑
j∈J\I

‖Tej‖H.

Proof. — By the min-max principle for bounded self-adjoint operators,
we have

µn+1(T ) = min
dim(F )=n

max
w∈F⊥,‖w‖=1

〈
√
T ∗Tw,w〉.
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Set F = Span{ej , j ∈ I}. Given w =
∑
j 6∈I cjej with

∑
j |cj |2 = 1, we

obtain via Cauchy–Schwarz inequality

|〈
√
T ∗Tw,w〉| 6 ‖

√
T ∗T (w)‖ = ‖T (w)‖ 6

∑
j 6∈I

‖T (ej)‖,

which concludes the proof. �

Our aim is now to prove the following bound.

Proposition 2.4. — Let (λk(L%,s))k>1 denote the eigenvalue sequence
of the compact operators L%,s. There exists C > 0 and 0 < η such that for
all s ∈ C and all representation %, we have for all k,

|λk(L%,s)| 6 Cd%eC|s|e−
η
d%
k
.

Before we prove this bound, let us show quickly how the combination
of the above bound with (2.5) gives the estimate (2) of Theorem 1.1. By
definition of Fredholm determinants, we have

log |LΓ(s, %)| 6
∞∑
k=1

log(1 + |λk(L%,s)|)

=
N∑
k=1

log(1 + |λk(L%,s)|) +
∞∑

k=N+1
log(1 + |λk(L%,s)|),

where N will be adjusted later on. The first term is estimated via (2.6) as
N∑
k=1

log(1 + |λk(L%,s)|) 6 C̃(|s|+ 1)N,

for some large constant C̃ > 0. On the other hand we have by the eigenvalue
bound from Proposition 2.4
∞∑

k=N+1
log(1 + |λk(L%,s)|) 6

∞∑
k=N+1

|λk(L%,s)|

6 Cd%e
C|s|

∑
k>N+1

e
− η
d%
k = Cd%e

C|s| e
−(N+1)η/d%

1− e−η/d%

6 C ′
d2
%

η
eC|s|e

−N η
d% .

Choosing N = B[|s|d%] +B[d% log(d% + 1)] for some large B > 0 leads to
∞∑

k=N+1
log(1 + |λk(L%,s)|) 6 B̃
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for some constant B̃ > 0 uniform in |s| and d%. Therefore we get

log |LΓ(s, %)| 6 O
(
d% log(d% + 1)(|s|2 + 1)

)
,

which is the bound claimed in statement (2).
Proof of Proposition 2.4. — We first recall that if Dj = D(cj , Rj), an ex-

plicit Hilbert basis of the Bergmann space H2(Dj) is given by the functions
(` = 0, . . . ,+∞, j = 1, . . . , 2r)

ϕ
(j)
` (z) =

√
`+ 1
π

1
Rj

(
z − cj
Rj

)`
.

By the Schottky property, one can find η0 > 0 such for all z ∈ Dj , for all
i 6= j we have γi(z) ∈ Di+r and

|γi(z)− cr+i|
Rr+i

6 e−η0 ,

so that we have uniformly in i, z,

(2.10) |ϕ(i+r)
` (γiz)| 6 Ce−η1`,

for some 0 < η1 < η0. Going back to the basis Ψj,`,k(z) of H2
%(Ω), we can

write

‖L%,s(Ψj,`,k)‖2H2
%

=
2r∑
n=1

∑
i,i′ 6=n

∫
Dn

(γi(z))s(γi′(z))s〈Ψj,`,k(γiz)%(γi),Ψj,`,k(γi′z)%(γi′)〉%dm(z).

Using Schwarz inequality and unitarity of the representation % for the inner
product 〈 · , · 〉%, we get by (2.10) and also (2.4),

‖L%,s(Ψj,`,k)‖2H2
%
6 C̃eC̃|s|e−2η1`,

for some large constant C̃ > 0. We can now use Lemma 2.3 to write

µ2rdρn+1(L%,s) 6
2r∑
j=1

+∞∑
`=n

d%∑
k=1
‖L%,s(Ψj,`,k)‖H2

%

6 Cdρe
C̃|s|e−η1n,

for some C > 0. Given N ∈ N, we write N = 2rd%k+ r where 0 6 r < 2rd%
and k = [ N

2rdρ ]. We end up with

µN+1(Lρ,s) 6 µ2rd%k+1(L%,s) 6 C ′d%eC̃|s|e−η2N/d% ,
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for some η2 > 0. To produce a bound on the eigenvalues, we use then a
variant of Weyl inequalities (see [70, Theorem 1.14]) to get

|λN (L%,s)| 6
N∏
k=1
|λk(L%,s)| 6

N∏
k=1

µk(L%,s),

which yields
|λN (L%,s)| 6 C1d%e

C2|s|e
− η2
Nd%

∑N

k=1
k
.

Using the well known identity
∑N
k=1 k = N(N+1)

2 we finally recover

|λN (L%,s)| 6 C1d%e
C2|s|e

− ηNd% ,

for some η > 0 and the proof is done. �

3. Sharp resonances in abelian covers

In this section we prove Theorem 1.3. We use the same notations as in
Section 1.

3.1. Structure of abelian covers

Let us recall the basic notations used below and previously defined in
the introduction.

Let Γ be a convex co-compact group, then Γ is isomorphic to the free
group of rank r, with r > 2 when it is non-elementary, see for example in [17]
for a Schottky realization. Assume now that Γj is a normal subgroup of Γ
such that Gj := Γ/Γj is a finite abelian group. Let πj : Γ → Gj be the
associated onto homomorphism so that

Γj = ker(πj).

By universal property of the abelianized group

Γab := Γ/[Γ,Γ] = H1(X,Z) ' Zr,

the homomorphism πj can be factorized as πj = π̃j ◦ P where P : Γ→ Zr
is a now fixed surjective homomorphism, and π̃j : Zr → Gj is another (j-
dependent) onto homomorphism. By the usual structure theorem for finite
abelian groups, Gj can be written as a product of cyclic groups which we
will write as

Gj = Z/N (j)
1 Z× · · · × Z/N (j)

k Z,
where N1(j), N2(j), . . . Nk(j) are integers.
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Xj = Γj\H

X = Γ\H

1

Figure 3.1. A cyclic cover of a funneled torus

In what follows, as explained in the introduction, we will be assuming
that 1 6 k 6 r is fixed and that the following hypothesis (H) is satisfied:

(H) lim
j→+∞

inf
`=1,...,k

N
(j)
` = +∞.

Furthermore, π̃j will be given by

π̃j(n) = (n1 mod N (j)
1 , . . . , nk mod N (j)

k ),

which is an obvious family of surjective homomorphism from Zr to Gj .
In the simplest case k = 1, the Galois group is the cyclic group Z/N (j)

1 Z,
see the figure for an example, where the cover is obtained by cutting X
along a simple closed geodesic and gluing cyclically several copies of the
result.

3.2. Selberg’s zeta function and characters

According to the result of Patterson–Perry [57], resonances on X = Γ\H2

coincide with multiplicity with the non-trivial zeros of the Selberg zeta
function, see also [7] for the case of surfaces. Let P = P(Γ) denote the set
of primitive closed geodesics on X, and if C ∈ P, l(C) will be the length.
Selberg zeta function is usually defined by the infinite product

ZΓ(s) :=
∏
C∈P

∏
k∈N0

(
1− e−(s+k)l(C)

)
, Re(s) > δ(Γ).
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This infinite product has a holomorphic extension to C. The characters of
the abelian group

H1(X,Z) ' Zr

are given by
χθ(x) = e2iπ〈θ,x〉, x ∈ Z,

where 〈θ, x〉 =
∑r
`=1 θ`x`, and θ = (θ1, . . . , θr) belongs to the torus Rr/Zr.

Associated to each character χθ is a corresponding “twisted” Selberg zeta
ZΓ(s, θ) function (or rather L-function) defined by

ZΓ(s, θ) :=
∏
C∈P

∏
k∈N0

(
1− χθ(C)e−(s+k)l(C)

)
, Re(s) > δ(Γ),

where χθ(C) is a shorthand for χθ(P (C)). On the other hand, the characters
of Gj are given by χθ((m1, . . . ,mk, 0, . . . , 0)),m ∈ Gj , where

θ ∈ Sj :=
{

0, 1
N

(j)
1

. . . ,
N

(j)
1 − 1
N

(j)
1

}
× · · · ×

{
0, 1
N

(j)
k

. . . ,
N

(j)
k − 1
N

(j)
k

}
× {0} × · · · × {0}︸ ︷︷ ︸

r−k times

.

Notice that if γ ∈ Γ, then for all θ ∈ Sj , we have indeed

χθ(π̃j ◦ P (γ)) = χθ(P (γ)).

From the results of Theorem 1.1, we know that for all θ ∈ Sj , each zeta
function s 7→ ZΓ(s, θ) has an analytic continuation to C, and we have the
following fundamental factorization formula, valid for all s ∈ C:

(3.1) ZΓj (s) =
∏
θ∈Sj

ZΓ(s, θ).

Theorem 1.3 then follows from the next theorem.

Theorem 3.1. — Assume that Γ is non-elementary. We have the fol-
lowing facts.

(1) For all ε > 0, one can find η(ε) > 0 such that if θ ∈ Rr is such that
dist(θ,Zr) > ε, then s 7→ ZΓ(s, θ) does not vanish inside the strip

{δ − η 6 Re(s) 6 δ}.
(2) There exists ε0 > 0 and η0 > 0 such that for all θ with dist(θ,Zr) 6

ε0, the analytic function s 7→ ZΓ(s, θ) has exactly one zero ϕ(θ)
(which is real) inside the strip

{δ − η0 6 Re(s) 6 δ},

ANNALES DE L’INSTITUT FOURIER



LARGE DEGREE COVERS AND HYPERBOLIC SURFACES 547

and the map θ 7→ ϕ(θ) is smooth, real valued with a non-degenerate
critical point at θ = 0. Moreover, the hessian ∇2

0ϕ is negative defi-
nite.

The proof of Theorem 3.1 will occupy several sections. Let us show how
one can recover Theorem 1.3 from that. We first start by picking ε0 from
statement (2), and then a corresponding η(ε0) from statement (1). Set
η∗ = min{η0; η(ε0)}. Inside the strip

Ω := {δ − η∗ 6 Re(s) 6 δ},

we observe that either dist(θ,Zr) 6 ε0 and s 7→ ZΓ(s, θ) vanishes at most
once on the real line, or dist(θ,Zr) > ε0 and s 7→ ZΓ(s, θ) does not vanish.
Going back to the factorization formula (3.1), we deduce that inside {δ −
η∗ 6 Re(s) 6 δ}, the set of zeros of ZXj (s) is given by

{ϕ(θ) : θ ∈ Sj and dist(θ,Zr) 6 ε0} ∩ {δ − η∗ 6 Re(s) 6 δ}.

To complete the proof, we use Poisson summation formula. Let f ∈ C∞0 ([δ−
ε1, 1]), where 0 < ε1 < η∗ is small enough such that Supp(f ◦ ϕ) ⊂
{dist(θ,Zr) 6 ε0}. We therefore have

1
|Gj |

∑
λ∈RXj∩Ω

f(λ) = 1
N

(j)
1 . . . N

(j)
k

∑
β∈Zk

f ◦ ϕ
(

β1

N
(j)
1
, . . . ,

βk

N
(j)
k

, 0, . . . , 0
)
.

Applying Poisson summation formula,

1
N

(j)
1 . . . N

(j)
k

∑
β∈Zk

f ◦ ϕ
(

β1

N
(j)
1
, . . . ,

βk

N
(j)
k

, 0, . . . , 0
)

=
∑

m∈Zk,m 6=0

ψ̂(2πN (j)
1 m1, . . . , 2πN (j)

k mk) +
∫
Rk
ψ(x)dx,

where we have set ψ(x) := f ◦ ϕ(x, 0, . . . , 0) and ψ̂ is as usual the Fourier
transform defined by

ψ̂(ξ) =
∫
Rk
ψ(x)e−iξ.xdx.
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Since ψ̂ has rapid decay (Schwartz class), a simple summation argument
gives

1
N

(j)
1 . . . N

(j)
k

∑
β

ψ

(
β1

N
(j)
1
, . . . ,

βk

N
(j)
k

)

=
∫
ψ(x, 0, . . . , 0)dx+Oα

(
1

(min{N (j)
1 , . . . N

(j)
k })α

)
,

for all integers α. We then set∫
Rk
f ◦ ϕ(x, 0, . . . , 0)dx =:

∫
fdµ.

The fact that the push-forward measure µ is absolutely continuous follows
from Radon–Nykodym’s theorem and the non-degeneracy of the critical
point of ϕ at 0, see for example [63]. We digress slightly to explain how
one can describe the shape of the Radon-Nikodym derivative dµ

dm (u) in the
vicinity of δ, where m is Lebesgue measure on R. Indeed, we know from
the above that locally,

ϕ(x, 0, . . . , 0) = δ −Q(x) +O(‖x‖3),

where Q(x) is a positive definite quadratic form.
The Morse lemma implies that for all ε > 0 small enough, there is an

open neighbourhood Ũ ⊂ Rk of 0 and a diffeomorphism

Ψ : B∞(0, ε)→ Ũ , (x1, . . . , xr) 7→ (y1, . . . , yk)

such that Ψ(0) = 0 and ϕ ◦Ψ−1(y) = δ − y2
1 − · · · − y2

k. Therefore, for any
f ∈ C∞0 ([δ − ε1, 1]), where again ε1 > 0 is taken small enough, we have∫

fdµ =
∫
Rk
f ◦ ϕ(x, 0, . . . , 0)dx

=
∫
Ũ

f(δ − y2
1 − · · · − y2

k) · |DΨ−1(y)|dy

�
∫
Ũ

f(δ − y2
1 − · · · − y2

k)dy,

where |DΨ−1(y)| is the Jacobian determinant. Choosing polar coordinates
yields ∫

fdµ �
∫
R+
ϕ(δ −R2)Rk−1dR.

With one last change of variables R 7→ ξ = R2 we obtain∫
fdµ �

∫
R+
ϕ(δ − ξ)ξ k−2

2 dξ.
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We conclude that there exists a constant C > 0 such that for all u close
enough to delta (u < δ)

C−1(δ − u)
k−2

2 6
dµ
dm (u) 6 C(δ − u)

k−2
2 ,

In particular we observe a drastic difference in the density shape when
k = 1, 2 and k > 2.

By further shrinking the strip (i.e. taking a smaller η∗), and a standard
approximation argument, the proof of the first two claims is complete. We
now prove the last point. First we observe that using Theorem 1.1(2), we
have the existence of a constant CΓ > 0 such that for all j and s ∈ C, we
have

(3.2) |ZΓj (s)| 6 CΓ exp
(
CΓ|Gj ||s|2

)
.

On the other hand, for all Re(s) > δ and θ ∈ Sj , we have

ZΓ(s, θ) = exp

− ∞∑
n=1

1
n

∑
C∈P(X)

χθ(Cn) e−snl(C)

1− e−nl(C)

 ,

which combined with the factorization formula (3.1) shows that for
Re(s) > δ,

(3.3) |ZΓj (s)| > exp

−C1|Gj |
∞∑
n=1

1
n

∑
C∈P(X)

e−Re(s)nl(C)

 .

We now fix λ ∈ RX and ε0 > 0. To get the upper bound we fix x0 ∈ R
with x0 > δ and choose R0 > 0 large enough such that the disc D(x0, R0)
contains D(λ, ε0) in its interior. We will use Jensen’s formula (or rather a
consequence of it) in the following form.

Proposition 3.2. — Let f be a holomorphic function on the open disc
D(w,R), and assume that f(w) 6= 0. let Nf (r) denote the number of zeros
of f in the closed disc D(w, r). For all r̃ < r < R, we have

Nf (r̃) 6 1
log(r/r̃)

(
1

2π

∫ 2π

0
log |f(w + reiθ)|dθ − log |f(w)|

)
.

It is now clear that by applying the above Proposition on the disc
D(x0, R0) where both x0, R0 are fixed we can use the bounds (3.2), and (3.3)
to obtain that for all j,

#RXj ∩D(λ, ε0) 6 CΓ|Gj |.
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To prove the lower bound, provided ε0 is taken small enough, we can write
for all s ∈ D(λ, ε0),

ZΓ(s) = (s− λ)mψ(s),
where m > 1 is the order of vanishing of ZΓ(s) at s = λ and s 7→ ψ(s) is
a holomorphic function non-vanishing on a neighborhood of D(λ, ε0). On
∂D(λ, ε0) we have

|ZΓ(s)| > εm0 inf
s∈D(λ,ε0)

|ψ(s)| > 0.

On the other hand, since (s, θ) 7→ Z(s, θ) is smooth and Z(s, 0) = ZΓ(s),
there exist ε > 0 such that for all ‖θ‖ 6 ε we have

sup
s∈∂D(λ,ε0)

|Z(s, θ)− ZΓ(s)| < inf
s∈∂D(λ,ε0)

|ZΓ(s)|.

Applying the classical Rouché’s theorem for holomorphic functions, we de-
duce that for each θ ∈ Sj such that ‖θ‖ 6 ε, s 7→ Z(s, θ) has exactly m
zeros inside D(λ, ε0). Using the factorization formula, we deduce that the
number of zeros of ZΓj (s) inside D(λ, ε0) is at least

m#{θ ∈ Sj : ‖θ‖ 6 ε},
which is bigger than C|Gj | for some small constant C > 0, independent
of j. The proof is complete.

3.3. A digression on closed geodesics in homology classes

Let P : Γ→ Zr ' H1(X,Z) be a fixed isomorphism as above. Let α ∈ Zr
be a fixed “holomogy class”, and consider the counting function

N(α, T ) = #{C ∈ P(X) : P (C) = α and l(C) 6 T}.
In the case of infinite volume hyperbolic surfaces, the leading term is known,
and follows for example from [55, Chapter 12]. (For Kleinian groups, we also
mention the work of Babillot–Peigné [3]). It goes as follows: as T → +∞
we have

(3.4) N(α, T ) ∼ c0
eδT

T r/2+1 ,

where c0 is independent of α. Counting asymptotics for closed geodesics in
homology classes has a long history of results: for compact hyperbolic mani-
folds it was proved independently by Phillips and Sarnak [58] and Katsuda
and Sunada [35]. On compact surfaces with variable negative curvature,
we mention Lalley and Pollicott [37, 61]. The most general version of the
leading asymptotic (3.4) for Anosov flows is due to Sharp [69].
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As a consequence of Theorem 3.1 on the non-vanishing of ZΓ(s, θ) and
combining it with a priori estimates on zeta functions from Theorem 1.1,
we obtain the following improved counting result.

Theorem 3.3. — Assume that Γ is convex co-compact and non-elem-
entary, then for all α ∈ Zr, for all n > 0, there exists a sequence c0, c1(α),
. . . , cn(α) ∈ R such that as T → +∞,

N(α, T ) = eδT

T r/2+1

(
c0 + c1T

−1 + · · ·+ cnT
−n +O(T−n−1)

)
.

In particular, this extends the asymptotics obtained by McGowan and
Perry [47] to the case δ 6 1

2 , which was not known so far. This type of
asymptotic expansion was first obtained for compact hyperbolic surfaces
by Phillips and Sarnak [58], and for more general Anosov flows by Anan-
tharaman [2].
The proof, knowing Theorem 3.1, is standard and goes exactly as in [47].

We recall briefly the main ideas for the benefit of the reader. One starts by
picking φT ∈ C∞0 (R+), φT > 0 such that φT ≡ 1 on the interval [ε0, T ] and
is supported in [ε0/2, T + β], where ε0 > 0 is taken small and β = e−νT for
some large ν > 0. We then set

ψT (s) :=
∫ ∞

0
exsφT (x)dx,

so that for all A > δ we have the contour integral identity

1
2iπ

∫ A+i∞

A−i∞

Z ′Γ(s, θ)
ZΓ(s, θ)ψT (s)ds =

∑
k,C

l(C) χθ(Ck)
1− e−kl(C)φT (kl(C)).

Notice that if ν is large enough and ε0 small, we have for σ 6 δ,

φT (σ) = eσT

σ
+O

(
eTδ/2

)
.

Thanks to the a priori upper bound from Theorem 1.1 and Caratheodory
estimates, we know that if ZΓ(s, θ) 6= 0 for all s with Re(s) > δ − η, then
we will get a polynomial upper bound for the log derivative∣∣∣∣Z ′Γ(s, θ)

ZΓ(s, θ)

∣∣∣∣ 6M |Im(s)|2,
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for all |Im(s)| large and Re(s) > δ − η/2. Integrating with respect to θ on
Rr/Zr gives the formula

1
2iπ

∫ A+i∞

A−i∞

∫
Rr/Zr

e−2iπ〈α,θ〉Z ′Γ(s, θ)
ZΓ(s, θ)dθψT (s)ds

=
∑

k,C:P (Ck)=α

l(C)
1− e−kl(C)φT (kl(C)).

Thanks to Theorem 3.1, for all ε > 0, we can therefore deform the contour
(by taking A < δ) for all θ such that dist(θ, 0) > ε to obtain a contribution
of order

O(e(δ−η(ε)/2)T ).
We are essentially left with estimating integrals over θ in a neighborhood
of 0. Using the residue formula, the fact that s 7→ ZΓ(s, θ) has a sim-
ple leading zero ϕ(θ), and neglecting error terms which are exponentially
smaller than eδT , we are then led to estimate integrals of the form

I(T ) =
∫
Rr/Zr

eϕ(θ)Tκ(θ)dθ,

where κ(θ) is a smooth function supported in an arbitrarily small neigh-
borhood of 0. Using Morse Lemma (we know that θ 7→ ϕ(θ) has a non-
degenerate critical point at θ = 0 with negative definite Hessian) and
Laplace method to deal with the stationnary phase at θ = 0 (see [58,
Lemma 2.3]) leads to expansions as T → +∞ of the form

I(T ) = eδT

T r/2
(
a0 + a1T

−1 + · · ·+ anT
−n +O(T−n−1)

)
.

Notice that there are no odd powers of T−
1
2 here because all the odd

moments on Rr of e−|x|2 vanish. We have essentially obtained that∑
P (C)=α and l(C)6T

l(C) = eδT

T r/2
(
c0 + c1T

−1 + · · ·+ cnT
−n +O(T−n−1)

)
.

To obtain the desired asymptotics forN(α, T ) is now a simple exercise using
Stieltjes integration by parts and the bound coming from the known leading
term (3.4). We point out that using more delicate arguments involving
the saddle point method, it is possible to derive similar asymptotics for
counting functions of the type

N(α+ [Tξ], T ),

where ξ ∈ Zr \ {0}, see Anantharaman [2].

ANNALES DE L’INSTITUT FOURIER



LARGE DEGREE COVERS AND HYPERBOLIC SURFACES 553

4. Twisted zeta functions and transfer operators

We recall the function space used and the associated twisted transfer
operators related to characters of the homology. Set

Ω :=
2r⋃
j=1
Dj .

Consider now the Hilbert space H2(Ω) which is defined as the set of holo-
morphic functions F : Ω→ C such that

‖F‖2H2 :=
∫

Ω
|F (z)|2dm(z) < +∞,

where dm is Lebesgue measure on C. Let θ ∈ Rr/Zr, the “character torus”.
On the space H2(Ω), we define a “twisted” by θ transfer operator Ls,θ by

Ls,θ(F )(z) :=
∑
j 6=i

(γ′j)s(z)χθ(Pγj)F (γjz), if z ∈ Di,

where s ∈ C is the spectral parameter, and χθ is the character of
H1(X,Z) ' Zr associated to θ and P : Γ → H1(X,Z) is the projection
homomorphism. Notice that for all j 6= i, γj : Di → Dr+j is a holomorphic
contraction since γj(Di) ⊂ Dr+j . Therefore, Ls,θ is a compact trace class
operator and thus has a Fredholm determinant. We define the twisted zeta
function ZΓ(s, θ) by

ZΓ(s, θ) := det(I − Ls,θ).

It follows from Theorem 1.1, but also [22] that for all Re(s) > δ we have
the identity

det(I − Ls,θ) =
∏
C∈P

∏
k∈N0

(
1− χθ(C)e−(s+k)l(C)

)
,

which shows that the infinite product has actually an analytic continuation
to C.

4.1. The high and low frequency results

The proof of Theorem 3.1 will follow from two facts which will require
two different types of asymptotic analysis. We state these results below.
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Proposition 4.1 (The high frequency regime). — Assume that Γ is
non-elementary, then there exist ε0 > 0 and T0 � 1 such that for all
θ ∈ Rr and

s ∈ {δ − ε0 6 Re(s) 6 δ and |Im(s)| > T0},
we have ZΓ(s, θ) 6= 0.

A very important feature is that ε0 > 0 and T0 can be taken uniform
with respect to θ. This uniform high frequency (aka large Im(s)) fact will
follow from certain Dolgopyat estimates for twisted transfer operators as
in [48]. In particular, this result implies that at high frequencies, there is
a uniform resonance gap for all abelian covers of a given non-elementary
Schottky surface, a fact that is similar to the result proved in [53] for
congruence subgroups. To describe the behaviour of resonances with small
Im(s), we will prove the following result.

Proposition 4.2 (The low frequency regime). — Assume that Γ is non-
elementary, then for all t ∈ R and θ ∈ Rr/Zr we have

ZΓ(δ + it, θ) = 0⇐⇒ (t, θ) = (0, 0),

where 0 in the second factor is understood mod Zr.

In other words, on the vertical line {Re(s) = δ}, the zeta function
ZΓ(s, θ) vanishes only at s = δ when θ ∈ Zr. The proof will follow from
convexity arguments in the analysis of transfer operators, as in previous
works of Parry and Pollicott [55].
To conclude this section, let us show how the combination of Proposi-

tion 4.1 and Proposition 4.2 does imply Theorem 3.1. First we fix ε > 0.
We know from Proposition 4.1 that no zeta function ZΓ(s, θ) will vanish for
δ − ε0 6 Re(s) 6 δ and |Im(s)| 6 T0 regardless of the value of θ. Assume
that for all η > 0, there exists θ ∈ Rr with dist(θ,Zr) > ε and there exists
s ∈ C with δ−η 6 Re(s) 6 δ and |Im(s)| 6 T0 such that ZΓ(s, θ) = 0. Then
by compactness one construct a converging sequence (s`, θ`) such that

s∞ := lim
`→+∞

s` ∈ δ + i[−T0,+T0]

and θ∞ := lim`→+∞ θ` satisfies θ∞ 6∈ Zr. By continuity, we have

ZΓ(s∞, θ∞) = 0

which clearly contradicts Proposition 4.2. Therefore one can find η̃(ε) > 0
such that if θ ∈ Rr is such that dist(θ,Zr) > ε, then s 7→ ZΓ(s, θ) does not
vanish inside the rectangle

{δ − η̃ 6 Re(s) 6 δ and |Im(s)| 6 T0}.
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By taking η = min{ε0, η̃} we have proved part (1) of Theorem 3.1.
Let us consider the family of rectangles

RT0,η := [δ − η, δ + η] + i[−T0,+T0].

Because we have ZΓ(s, 0) = ZΓ(s) and (s, θ) 7→ ZΓ(s, θ) is smooth, there
exists a constant CT0,η > 0 such that for all θ ∈ Rr with ‖θ‖ 6 ε0 we have
for all s ∈ RT0,η,

|ZΓ(s, θ)− ZΓ(s)| 6 CT0,ηε0.

On the other hand, since on the line {Re(s) = δ}, ZΓ(s) vanishes only at
s = δ, with a simple zero, one can find η0 > 0 small enough such that for
all s ∈ RT0,η0 one can write

ZΓ(s) = (s− δ)ψ(s),

where ψ(s) is holomorphic in a neighbourhood of RT0,η0 and does not vanish
on RT0,η0 . For all s ∈ ∂RT0,η0 , we have

|ZΓ(s)| > η0 inf
RT0,η0

|ψ(s)| =: MT0,η0 .

By choosing ε0 > 0 small enough we can make sure thatMT0,η0 > ε0CT,η0 so
that we can apply Rouché’s theorem to conclude that ZΓ(s, θ) has exactly
one simple zero in RT0,η0 . By combining it with Proposition 4.1, we now
know that provided ‖θ‖ is small enough, s 7→ ZΓ(s, θ) has exactly one zero
in a thin strip {δ − η0 6 Re(s) 6 δ}. The fact that this zero is real follows
from “time reversal” invariance of the length spectrum: in other words, we
have the identity

ZΓ(s, θ) = ZΓ(s, θ).
To see that, first we know that for Re(s) > δ, we have

ZΓ(s, θ) = exp

−∑
C,k,n

χθ(Ck)
k

e−(s+n)kl(C)

 ,

where the sum runs over prime conjugacy classes. By complex conjugation
and uniqueness of analytic continuation, we have first the identity valid for
all s ∈ C and θ ∈ Zm,

ZΓ(s, θ) = ZΓ(s,−θ).
On the other hand, if C ∈ P, then C−1 ∈ P and l(C−1) = l(C), while
χθ(C−1) = χ−θ(C). Therefore “time reversal” invariance of P yields another
identity (again use unique continuation) valid for all s ∈ C and θ ∈ Zm,

ZΓ(s, θ) = ZΓ(s,−θ),
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hence the claimed identity. Since non-real zeros must come in conjugate
pairs, this forces this unique zero to be real. The fact that this unique zero
can be smoothly parametrized as a (real valued) function ϕ(θ) for all ‖θ‖
small is just an application of the holomorphic implicit function theorem,
legitimate since

∂sZΓ(δ, 0) = Z ′Γ(δ) 6= 0.

Because we have ϕ(0) = δ, and ϕ(θ) 6 δ for all θ close to 0 (indeed, all zeta
functions ZΓ(s, θ) do not vanish inside {Re(s) > δ}), the map θ 7→ ϕ(θ)
must have a critical point at s = δ. One can then show that we have

det
(
∇2ϕ(0)

)
6= 0,

i.e. that the associated quadratic form is definite negative. We point out
that the non-degeneracy of this critical point has historically played an im-
portant role on works related to prime orbit counting in homology classes,
see [2, 35, 37, 58, 61]. We provide some details on that fact at the end of
Section 5.
The remaining goal of this section is to prove Proposition 4.1 which is

concerned with zeros of ZΓ(s, θ) for Re(s) close to δ and large |Im(s)|.
When θ = 0 mod Zr, then this was done in [48]. The game here is to show
that one can do the same uniformly in θ. As pointed out in [53], the fact
that the extra character term χθ(γ) is locally constant on I =

⋃
j Ij makes

it possible to apply almost verbatim the analysis of [48], where one has
essentially to check that the extra oscillating term does not interfere with
the “large Im(s)” cancellation mechanism.
In this section we will choose an alternative route based on the recent

result of [9] which will allow us to bypass the most technical part of the
argument in [48], allowing an easier proof of the uniform spectral gap. We
believe this alternative proof might be interesting for future generalizations
of [53] to more general families of possibly non-Galois covers, this will be
pursued elsewhere.

4.2. High frequency L2 estimates

Let C1(I) denote the Banach space of complex valued functions, C1 on
I, endowed with the norm (t 6= 0)

‖f‖(t) := ‖f‖∞ + 1
|t| ‖f

′‖∞,
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where as usual
‖f‖∞ = sup

x∈I
|f(x)|.

We recall that the action of the transfer operator Ls,θ, now on C1(I), is
given by

Ls,θ(F )(x) :=
∑
j 6=i

(γ′j)s(x)χθ(Pγj)F (γjx), if x ∈ Ii.

We need to recall a few basic estimates that we will use throughout the
rest of the paper.
We first recall some notations. We recall that γ1, . . . , γr are generators

of the Schottky group Γ, as defined in the previous section. Considering a
finite sequence α with

α = (α1, . . . , αn) ∈ {1, . . . , 2r}n,
we set

γα := γα1 ◦ · · · ◦ γαn .
We then denote by Wn the set of admissible sequences of length n by

Wn := {α ∈ {1, . . . , 2r}n : ∀ i = 1, . . . , n− 1, αi+1 6= αi + r mod 2r}.
We point out that α ∈ Wn if and only if γα is a reduced word in the free
group Γ. For all j = 1, . . . , 2r, we define W j

n by

W j
n := {α ∈ Wn : αn 6= j}.

If α ∈ W j
n , then γα maps Dj into Dα1+r. Given the above notations and

f ∈ C1(I), we have for all x ∈ Ij and n ∈ N,

Lns,θ(f)(x) =
∑
α∈W j

n

(γ′α(x))sχθ(Pγα)f(γα(x)).

We will need in this section some distortion estimates (similar to the
ones used on discs Dj in Section 2) for these “inverse branches” of Tn that
can be found in [48]. More precisely we have:

• (Uniform hyperbolicity). One can find C > 0 and 0 < ρ < ρ < 1
such that for all n and all j such that α ∈ W j

n , then for all x ∈ Ij
we have

C−1ρn 6 |γ′α(x)| 6 Cρn.
• (Bounded distortion). There exists M1 > 0 such that for all n, j
and all α ∈ W j

n ,

sup
Ij

∣∣∣∣γ′′αγ′α
∣∣∣∣ 6M1.
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• (Bounded distortion for third derivatives). There exists Q > 0 such
that for all n, j and all α ∈ W j

n ,

sup
Ij

∣∣∣∣γ′′′αγ′α
∣∣∣∣ 6 Q.

The bounded distortion estimate has the following important consequence:
there exists a uniform constant M2 > 0 such that for all x, y ∈ Ij ,∣∣∣∣γ′α(x)

γ′α(y)

∣∣∣∣ 6M2.

We point out that the same conclusion is still valid (up to a bigger constant
M3) if x and y belong to different Ij and Ij′ such that α ∈ W j

n ∩W j′

n . Indeed
if α = α1 . . . αn then both γαn(x), γαn(y) ∈ Iαn+r and we can apply the
above estimate.
We will also need to recall facts on the topological pressure, already

introduced in Section 2, and Bowen’s formula. Recall that the Bowen-Series
map

T :
2p⋃
i=1

Ii → R ∪ {∞}

is defined by T (x) = γi(x) if x ∈ Ii. The non-wandering set of this map T
is exactly the limit set Λ(Γ) of the group:

Λ(Γ) =
+∞⋂
n=1

T−n

( 2p⋃
i=1

Ii

)
.

A celebrated result of Bowen [14] says that the map

σ 7→ P (−σ log |T ′|)
is convex, strictly decreasing and vanishes exactly at σ = δ(Γ), the Haus-
dorff dimension of the limit set. An alternative way to compute the topo-
logical pressure is to look at weighted sums on periodic orbits i.e. we have

(4.1) eP (ϕ) = lim
n→+∞

( ∑
Tnx=x

eϕ
(n)(x)

)1/n

,

with the notation ϕ(n)(x) = ϕ(x) + ϕ(Tx) + · · · + ϕ(Tn−1x). We will use
the following fact (already stated in Section 2).

Lemma 4.3. — For all σ0,M in R with 0 6 σ0 < M , one can find
C0 > 0 such that for all n large enough and M > σ > σ0, we have

(4.2)
2p∑
j=1

 ∑
α∈W j

n

sup
Ij

(γ′α)σ
 6 C0e

nP (σ0),
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where P (σ) is used as a shorthand for P (−σ log |T ′|).

The proof of this Lemma follows rather straightforwardly from the
Ruelle–Perron–Frobenius Theorem, which we state below ([54, Thm. 2.2]),
and will be used several times.

Proposition 4.4 (Ruelle–Perron–Frobenius). — Set Lσ = Lσ,0 where
σ is real.

• The spectral radius of Lσ on C1(I) is eP (σ) which is a simple eigen-
value associated to a strictly positive eigenfunction hσ > 0 in C1(I).

• The operator Lσ on C1(I) is quasi-compact with essential spectral
radius smaller than κ(σ)eP (σ) for some κ(σ) < 1.

• There are no other eigenvalues on |z| = eP (σ).
• Moreover, the spectral projector Pσ on {eP (σ)} is given by

Pσ(f) = hσ

∫
Λ(Γ)

fdµσ,

where µσ is the unique T -invariant probability measure on Λ that
satisfies

L∗σ(µσ) = eP (σ)µσ.

We continue with a basic a priori estimate.

Lemma 4.5 (Lasota–Yorke estimate). — Fix some σ0 < δ, then there
exists C0 > 0, ρ < 1 such that for all n, θ and all s = σ + it with σ > σ0,
we have

‖
(
Lns,θ(f)

)′ ‖∞ 6 C0e
nP (σ0) {(1 + |t|)‖f‖∞ + ρn‖f ′‖∞} .

Proof. — Differentiate the formula for Lns,θ(f) and then use the bounded
distortion property plus the uniform contraction, combined with the pres-
sure estimate (4.2). Uniformity with respect to θ follows from the fact that
|χθ| ≡ 1. �

The main result of this section is the following.

Proposition 4.6 (Uniform Dolgopyat estimate). — There exist ε > 0,
T0 > 0 and C, β > 0 such that for all θ and n = [C log |t|] with s = σ + it

satisfying |σ − δ| 6 ε and |t| > T0, we have∫
Λ(Γ)
|Lns,θ(f)|2dµδ 6

‖f‖2(t)
|t|β .

This type of estimate is very similar in spirit to the ones encountered in
the seminal work of Dolgopyat [20] on Anosov flows, hence the terminology.
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We claim that Proposition 4.6 implies Proposition 4.1. Assume that σ 6 δ.
First we observe that if g ∈ C1(I) is positive, then we write (x ∈ Ij)

Lnσ(g)(x) =
∑
α∈W j

n

(γ′α(x))σg(γα(x)),

and using Cauchy–Schwarz inequality and the pressure estimate (4.2), we
have

(Lnσ(g)(x))2 6 A2(σ, n)Lnδ (g2),
where A(σ, n) 6 CenP (2σ−δ). Now write n = n1 +n2 where both n1, n2 will
be specified later on. Given f ∈ C1(I), we write

‖Lns,θ(f)‖2∞ 6 A2(σ, n1)‖Ln1
δ (|Ln2

s,θ(f)|2)‖∞.
Using the Ruelle-Perron-Forbenius theorem at σ = δ gives (using Cauchy–
Schwarz and the fact that µδ is a probability measure)

‖Lns,θ(f)‖2∞ 6 CA2(σ, n1)
(∫

Λ(Γ)
|Ln2
s,θ(f)|2dµδ + κn1‖|Ln2

s,θ(f)|2‖C1

)
,

for some 0 < κ < 1. Using the Lasota–Yorke estimate, we know that for
σ0 6 σ 6 δ we have (assume |t| > 1)

‖Ln2
s,θ(f)‖C1 6 C0e

n2P (σ0)|t|‖f‖(t).
Using Proposition 4.6 with n2 = [C2 log |t|], we get for |t| > T0 and σ0 6
σ 6 δ with |σ0 − δ| 6 ε,

‖Lns,θ(f)‖∞ 6 CA(σ0, n1)
(

1
|t|β/2 + κn1 |t|1+C2P (σ0)

)
‖f‖(t).

We know choose n1 = [C1 log |t|] with C1 large enough so that for |t| > T0,
we have

‖Lns,θ(f)‖∞ 6 CA(σ0, n1)
‖f‖(t)
|t|β/2 ,

and since we have
A(σ0, n1) 6 C|t|C̃1(δ−σ0),

with C̃1 = C1|log ρ|, we can make sure that σ0 is taken close enough to δ
so that

‖Lns,θ(f)‖∞ 6
‖f‖(t)
|t|β/4 ,

for all |t| > T0. Using the Lasota–Yorke estimate, a similar computation
leads to the conclusion that for all θ and n(t) = [C3 log |t|] for some C3 > 0,
we get

(4.3) ‖Ln(t)
s,θ (f)‖(t) 6

‖f‖(t)
|t|β

,
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for some β > 0 and |t| > T0 � 1, |σ−σ0| 6 ε with ε > 0. Assume now that
ZΓ(s, θ) has a zero inside the region

{s ∈ C : |Re(s)− δ| 6 ε and |Im(s)| > T0}.
Then we get the existence of fs,θ ∈ C1(I) with ‖fs,θ‖|Im(s)| = 1 such that

Ls,θ(fs,θ) = fs,θ.

Using (4.3) this leads to

1 6 1
|Im(s)|β

,

which is clearly a contradiction since |Im(s)| � 1.
The remaining subsections will focus on proving Proposition 4.6.

4.3. The measure µδ versus Patterson–Sullivan density at i

Patterson–Sullivan densities are measures on the limit set that satisfy
interesting invariance properties. In the convex co-compact case, they where
first introduced by Patterson in [56]. Primarily defined on the disc model
D of the hyperbolic plane, they are constructed via Poincaré series (with
s > δ(Γ), x ∈ D)

PΓ(s;x, x) :=
∑
γ∈Γ

e−sd(x,γx).

By taking weak limits as s→ δ of probability measures

νx,s :=
∑
γ∈Γ e

−sd(x,γx)Dγx
PΓ(s;x, x) ,

where Dz is the Dirac mass at z ∈ D, one obtains a Γ-invariant measure
νx supported on the limit set. For the upper half-plane model H2, one can
use the push forward of νx by the inverse of the Cayley map given by
A(z) = i

( 1+z
1−z
)
.

The Patterson–Sullivan density ν := νi (centered at i) is then a prob-
ability measure supported on the limit set Λ(Γ) ⊂ R that satisfies the
equivariant formula (for any integrable f on Λ(Γ))

∀ γ ∈ Γ,
∫

Λ(Γ)
fdν =

∫
Λ(Γ)

(f ◦ γ)|γ′|δDdν,

where |γ′(x)|D comes from the unit disc model of H2, given explicitly by

|γ′(x)|D := γ′(x)
(

1 + x2

1 + γ(x)2

)
.
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See for example Borthwick [7, Lemma 14.2]. This Patterson–Sullivan den-
sity ν is actually absolutely continuous with respect to µδ, more precisely
we have the following.

Lemma 4.7. — There exists CΓ > 0 such that the measure µδ from the
Ruelle–Perron–Frobenius theorem is

µδ = CΓ(1 + x2)δν.

Proof. — From the equivariant formula, we know that for all integrable
f and all bounded interval J we have for all γ ∈ Γ,∫

J

fdν =
∫
γ−1(J)

(f ◦ γ)|γ′|δDdν.

Remark that
Λ(Γ) ⊂

⋃
j=1,...,2r

⋃
i6=j

γi(Ij),

so that we write ∫
Λ(Γ)

fdν =
∑
j

∑
i 6=j

∫
γi(Ij)

fdν.

By using the equivariant formula as above we get∫
Λ(Γ)

fdν =
∑
j

∫
Ij

∑
i 6=j

(f ◦ γi)|γ′i|δDdν,

which we recognize as∫
Λ(Γ)

fdν =
∫

Λ(Γ)
H−1(x)Lδ(Hf)(x)dν(x),

where H(x) = 1
(1+x2)δ . It is now clear that acting on measures, we have

L∗δ(H−1ν) = H−1ν,

which by uniqueness of µδ (normalized as a probability measure) implies
the statement. �

Since the density H−1 is smooth and uniformly bounded from above
and below on Λ(Γ), the measure µδ inherits straightforwardly some of the
properties of Patterson–Sullivan densities. In particular we will need to use
the following bound.

Proposition 4.8 (Ahlfors–David upper regularity). — There exists
BΓ > 0 such that for all bounded interval J ,

µδ(J) 6 BΓ|J |δ.

ANNALES DE L’INSTITUT FOURIER



LARGE DEGREE COVERS AND HYPERBOLIC SURFACES 563

For a proof (for ν) of that fact see for example [7, Lemma 14.13]. In [9],
Bourgain–Dyatlov established the following remarkable Theorem.

Theorem 4.9 (Decay of oscillatory integrals). — There exist constants
β1, β2 > 0 such that the following holds. Given g ∈ C1(I) and Φ ∈ C2(I),
consider the integral

I(ξ) :=
∫

Λ(Γ)
e−iξΦ(x)g(x)dν(x).

If we have
ε := inf

Λ(Γ)
|Φ′| > 0,

and ‖Φ‖C2 6M , then for all |ξ| > 1, we have

|I(ξ)| 6 CM |ξ|−β1ε−β2‖g‖C1 ,

where CM > 0 does not depend on ξ, ε, g.

Remark. — This result is stated as Theorem 2 in [9]. However the depen-
dence on g and ε is not explicit in their statement. The fact that it can be
bounded using ‖g‖C1 is obvious: it follows from linearity in g and Banach–
Steinhaus theorem. The dependence on ε appears only in Lemma 3.5 of [9],
where one can check that the loss is polynomial in ε−1. All we need is
to allow ε > |ξ|−κ for some κ > 0 without ruining the decay in |ξ|, see
Section 4.4. We mention the recent related work of Jialun Li [41], where
similar bounds on Oscillatory integrals are proved and where one has also
to allow ε→ 0 in the applications.

By Lemma 4.7, it is clear that the exact same statement holds for µδ.
The proof of Proposition 4.6 will follow rather directly from this decay
result and some additional facts that we will prove below.

4.4. A uniform non-integrability (UNI) result

Given two words α, β ∈ W j
n , consider the quantity

D(α, β) := inf
x∈Ij

∣∣∣∣∣γ′′α(x)
γ′α(x) −

γ′′β(x)
γ′β(x)

∣∣∣∣∣ .
We prove the following estimate, which will be used when estimating the
“near-diagonal” sums (see the next section below). This type of estimate is
a generalization to Schottky groups of the work done by Baladi and Vallée
for the Gauss map [4].
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Proposition 4.10 (UNI). — There exist constants M > 0 and η0 > 0
such that for all n and all ε = e−ηn with 0 < η < η0, we have for all
α ∈ W j

n , ∑
β∈W j

n ,D(α,β)<ε

‖γ′β‖δIj ,∞ 6Mεδ.

Proof. — First we set some notations. If α is an admissible word in say
W j
n , we will write

γα(x) = aαx+ bα
cαx+ dα

, aαdα − bαcα = 1.

Each γα is a hyperbolic isometry of H2 whose attracting fixed point will be
denoted by xα and repelling by x∗α. The isometric circle of γα is the circle
centered at

zα = −dα
cα

= γ−1
α (∞),

with radius 1
cα
. We point out that by our definition of Schottky groups, we

must have

(4.4) |γ−1
α (∞)| 6M,

for some uniform M > 0. Since x∗α is in the disc centered at −dαcα and of
radius 1/|cα|, we have obviously∣∣∣∣x∗α + dα

cα

∣∣∣∣ 6 1
|cα|

.

On the other hand, since we have

Im(γα(i)) = 1
c2α + d2

α

,

we can use (4.4) to deduce that
1
|cα|
6 M̃

√
Im(γα(i)).

By the hyperbolicity estimate, it is now easy to see that one can find
constants M ′, η0 > 0 such that for all n we have

1
|cα|
6M ′e−η0n,

which in turn implies

(4.5)
∣∣∣∣x∗α + dα

cα

∣∣∣∣ 6M ′e−η0n.

This estimate just says that repelling fixed point and center of isomet-
ric circle are exponentially close when the word length goes to infinity, a
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quantitative version of the well known fact that centers of isometric circles
accumulate on the limit set.
Given γα, then γ−1

α = γα, where α = (αn + r) . . . (α1 + r), understood
mod 2r. We will use below the fact that x∗α = xα, and that γ′α(xα) =
γ′α(x∗α). We now go back to the quantity∑

β∈W j
n ,D(α,β)<ε

‖γ′β‖δIj ,∞.

For each β as above, write
‖γ′β‖Ij ,∞
γ′
β
(xβ) =

‖γ′β‖Ij ,∞
γ′β(xβ) ,

which by the bounded distortion estimate gives∑
β∈W j

n ,D(α,β)<ε

‖γ′β‖δIj ,∞ 6M ′′
∑

β∈W j
n ,D(α,β)<ε

(γ′
β
(xβ))δ.

Using the Gibbs property for the µδ measure, see [55, Corollary 3.2.1], we
obtain that ∑

β∈W j
n ,D(α,β)<ε

‖γ′β‖δIj ,∞ 6 C ′
∑

β∈W j
n ,D(α,β)<ε

µδ(Iβ),

where Iβ = γβ(Ij(β)), where Ij(β) is chosen such that x∗β ∈ Ij(β). Because
the “cylinder sets” Ij(β) are pairwise disjoints, we get

∑
β∈W j

n ,D(α,β)<ε

‖γ′β‖δIj ,∞ 6 C ′µδ

 ⋃
β∈W j

n ,D(α,β)<ε

Iβ

 .

We now conclude the proof by contemplating the implications of having
D(α, β) < ε. Roughly speaking, it implies that the repelling fixed points of
the maps γα and γβ are ε-close. Indeed, since we have

D(α, β) = 2 inf
x∈Ij

|cαdβ − cβdα|
|cαx+ dα||cβx+ dβ |

,

and
γ′α(x) = 1

(cαx+ dα)2 ,

we can use the bounded distortion property combined with (4.4) to observe
that

D(α, β) > 1
L

∣∣∣∣dαcα − dβ
cβ

∣∣∣∣ ,
for some large constant L > 0. Using (4.5) we deduce that

|x∗α − x∗β | 6 L′
(
ε+ e−η0n

)
.
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Using the uniform contraction estimate, we get that the union of cylinder
sets ⋃

β∈W j
n ,D(α,β)<ε

Iβ

is included in an interval of length at most L̃(ρn + ε + e−η0n). Choosing
ε of size e−η1n with η1 6 min{η0, |log ρ|} and using the estimate from
Proposition 4.8 we conclude the proof. �

4.5. Proof of Proposition 4.6, uniform Dolgopyat estimate

We set s = σ + it, where σ0 6 σ 6 δ. We then write for f ∈ C1(I),∫
Λ(Γ)
|Lns,θ(f)|2dµδ

=
2r∑
j=1

∫
Ij

∑
α,β∈W j

n

(γ′α)σ+it (
γ′β
)σ−it

χθ(Pγα)χθ(Pγβ)f ◦ γαf ◦ γβdµδ

=
∑
j

∑
α,β∈W j

n

χθ(Pγα)χθ(Pγβ)
∫

Λ(Γ)
eitΦα,β(x)g

(j)
α,β(x)dµδ(x),

where we have set

Φα,β(x) := log γ′α(x)− log γ′β(x),

and
g

(j)
α,β(x) = ϕj(x) (γ′α(x))σ

(
γ′β(x)

)σ
f ◦ γα(x)f ◦ γβ(x),

with ϕj being a C1(I) function which is ≡ 1 on Ij and ≡ 0 on Ii for i 6= j.
We point out that because they do not depend on the x variable, but

only on the word α, the oscillating terms χθ(Pγα) do not interfere with the
oscillatory integrals, which is the crucial reason why we will get estimates
uniform with respect to θ.

Using the bounded distortion estimate and the hyperbolicity estimate,
we have

‖g(j)
α,β‖∞ 6 C1‖γ′α‖σ∞,j‖γ′β‖σ∞,j‖f‖2(t),

while ∥∥∥∥ d
dx

(
g

(j)
α,β

)∥∥∥∥
∞
6 C2‖γ′α‖σ∞,j‖γ′β‖σ∞,j‖f‖2(t)(1 + |t|ρn).

On the other hand we have precisely

inf
x∈Ij
|Φ′α,β(x)| = D(α, β).
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The bounded distortion estimates for the second (and third) derivatives
show that

‖Φα,β‖C2(Ij) 6M

for some uniform M > 0. We now pick ε = e−ηn, with 0 < η < η0 so that
(UNI) holds and write∫

Λ(Γ)
|Lns,θ(f)|2dµδ 6 C1

∑
j

∑
D(α,β)<ε

‖γ′α‖σ∞,j‖γ′β‖σ∞,j‖f‖2(t)︸ ︷︷ ︸
near diagonal sum

+
∑
j

∑
D(α,β)>ε

∣∣∣∣∣
∫

Λ(Γ)
eitΦα,βg

(j)
α,βdµδ

∣∣∣∣∣︸ ︷︷ ︸
off diagonal sum

.

Using the pressure estimate and the (UNI) property, the “near diagonal
sum” is estimated from above by

C3‖f‖2(t)A(σ0, n)enP (σ0)εδ.

Using the polynomial decay result on oscillatory integrals, the “off diagonal
sum” is estimated from above (again using the pressure estimate) by

C4‖f‖2(t)
|t|−β1(1 + |t|ρn)

εβ2
e2nP (σ0),

so that∫
Λ(Γ)
|Lns,θ(f)|2dµδ

6 C5‖f‖2(t)
(
A(σ0, n)enP (σ0)εδ + |t|

−β1(1 + |t|ρn)
εβ2

e2nP (σ0)
)
.

We recall that A(σ0, n) 6 Cρ(σ−δ)n and ε = e−ηn. In the latter, n is now
taken as n = [C0 log |t|]. We know fix C0 � 1 so that |t|ρn stays bounded
as |t| → +∞ and choose η > 0 small enough so that we get∫

Λ(Γ)
|Lns,θ(f)|2dµδ 6 C6‖f‖2(t)

(
A(σ0, n)enP (σ0)|t|−β3 + |t|−β1/2e2nP (σ0)

)
.

It is now clear that by taking σ0 close enough to δ we obtain for all |t|
large, ∫

Λ(Γ)
|Lns,θ(f)|2dµδ 6 C7‖f‖2(t)|t|−β4 ,

for some β4 > 0 and the proof is complete. �
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5. Zeros of ZΓ(s, θ) on the line {Re(s) = δ} and hessian
matrix ∇2ϕ(0).

In this final section we prove Proposition 4.2, by combining standard
ideas from [48] and [55]. Notice that we already know from [48], that s 7→
ZΓ(s, 0) only vanishes at s = δ on the line {Re(s) = δ}, with a simple zero,
a consequence of the fact that the length spectrum of Γ\H2 is non-lattice.
Therefore we need to show that on the line {Re(s) = δ}, if θ 6= 0 mod Zr,
then s 7→ ZΓ(s, θ) does not vanish. Assume that θ 6= 0 mod Zr and suppose
that ZΓ(δ + it0, θ) = 0. Then by the Fredholm determinant identity, we
know that there exists g = gt0,θ ∈ C1(I) with ‖g‖∞ 6= 0 such that

Lδ+it0,θ(g) = g.

Using the Ruelle–Perron–Frobenius theorem, we can conjugate Lδ+it0,θ by
the positive non-vanishing eigenfunction hδ so that we have for all x ∈ Ii∑

j 6=i
hj(x) = 1,

∑
j 6=i

hj(x)(γ′j(x))itχθ(Pγj)g̃ ◦ γj(x) = g̃(x),

where hj(x) := h−1
δ (γ′j)δhδ ◦ γj and g̃ = h−1

δ g. Choosing i and x0 ∈ Ii such
that

|g̃(x0)| = sup
x∈Λ(Γ)

|g̃(x)| := ‖g̃‖∞,Λ(Γ),

we observe that

|g̃(x0)| 6
∑
j 6=i

hj(x0)|g̃ ◦ γj(x0)| 6 ‖g̃‖∞,Λ(Γ),

which implies that for all j 6= i,

|g̃ ◦ γj(x0)| = ‖g̃‖∞,Λ(Γ).

Iterating this argument and using the fact that the orbit of x0 under the
semigroup generated by γ1, . . . , γ2r is dense in Λ(Γ), we conclude that |g̃| is
actually constant on Λ(Γ). Taking this constant equal to one, we can write

g̃(x) = eiφ(x),

where φ is in, say, C0(Λ(Γ)). We obtain that for all x ∈ Ii ∩ Λ(Γ),∑
j 6=i

hj(x)eit0 log γ′j(x)+2iπ〈θ,Pγj〉+φ◦γj(x) = eiφ(x),

which by strict convexity of the unit circle implies that for all j,

t0 log γ′j(x) + φ ◦ γj(x)− φ(x) ∈ 2πZ− 2π〈θ, Pγj〉.
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If t0 = 0 then this implies (by evaluating at attracting fixed points of each
γj) that for all j = 1, . . . , r,

〈θ, Pγj〉 ∈ Z.

Since {Pγ1, . . . , Pγr} is a Z-basis of Zr, it implies that θ ∈ Zr, a contra-
diction. Therefore t0 6= 0. Iterating the above formula, we get that for all
γα ∈ W j

n ,

t0 log γ′α(x) + φ ◦ γα(x)− φ(x) ∈ 2πZ− 2π〈θ, Pγα〉.

By evaluating at the attracting fixed point xα of γα, we obtain that the
translation length lα of γα, given by the formula

e−lα = γ′α(xα),

satisfies
lα ∈

2π
t0

Z + 2π
t0
〈θ, Pγα〉.

In term of lengths of closed geodesics, it shows in particular that the set of
closed geodesics which belong to the homology class of 0 (i.e. Pγα = 0)
is a subset of 2π

t0
Z. But this would imply that the length spectrum of

(KerP )\H2 is lattice, which is impossible since KerP = [Γ,Γ] is the com-
mutator subgroup of Γ and hence non-elementary, see for example [19].

We now explain why the Hessian matrix at 0 of θ 7→ ϕ(θ) is non degen-
erate. Let us fix θ 6= 0 mod Zr. Let t ∈ R and set

χtθ(γ) := eitgθ(γ),

where gθ(γ) := 2π〈θ, Pγ〉. We use the same argument as in [61]. For all t
close to 0, we now by definition of ϕ that there exists gt ∈ C1(I) such that
for all n,

Lnϕ(tθ),tθ(gt) = gt.

Perturbation theory (for simple eigenvalues) shows that the t-dependence
is smooth. Differentiating two times with respect to t, and performing the
same calculation(3) as in [55, p. 60–61], we obtain that

〈∇2ϕ(0)θ, θ〉 = d2

dt2 (ϕ(tθ)) |t=0 = −C lim
n→+∞

1
n

∫
Λ(Γ)

(
g

(n)
θ

)2
dµδ,

where C > 0 is some normalizing constant and g(n)
θ = gθ+gθ ◦T + · · ·+gθ ◦

Tn−1. By Proposition 4.12 from [55, p. 62], we deduce that 〈∇2ϕ(0)θ, θ〉 = 0

(3)This is the calculation of the second derivative of the pressure or the variance in the
CLT for expanding maps.
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implies that gθ is cohomologous to a constant. Using the same ideas as
above, we get that there exists a ∈ R such that for all j = 1, . . . , 2r,

〈θ, Pγj〉 = a.

But P (γj+r) = P (γ−1
j ) = −P (γj), therefore a = 0. We are left with the fact

that for all j = 1, . . . , r, 〈θ, Pγj〉 = 0, which implies θ = 0, a contradiction.

6. Zero-free regions for L-functions and explicit formulae

The goal of this section is to prove the following result which will al-
low us to convert zero-free regions into upper bounds on sums over closed
geodesics. The results are completely general, but will be used in the last
section on congruence subgroups.

Proposition 6.1. — Fix α > 0, 0 6 σ < δ and ε > 0. Then there
exists a C∞0 test function ϕ0, with ϕ0 > 0, Supp(ϕ0) = [−1,+1] and such
that for % non-trivial, if LΓ(s, %) has no zeros in the rectangle

{σ 6 Re(s) 6 1 and |Im(s)| 6 (log T )1+α},
for some T large enough, then we have∑

C,k

χ%(Ck) l(C)
1− ekl(C)ϕ0

(
kl(C)
T

)
= O

(
d% log(d% + 1)e(σ+ε)T

)
,

where the implied constant is uniform in T, d%.

The proof will occupy the full section and will be broken into several
elementary steps.

6.1. Preliminary lemmas

We start this section by the following fact from harmonic analysis.

Lemma 6.2. — For all α > 0, there exists C1, C2 > 0 and a positive test
function ϕ0 ∈ C∞0 (R) with Supp(ϕ) = [−1,+1] such that for all |ξ| > 2,
we have

|ϕ̂0(ξ)| 6 C1e
|Im(ξ)| exp

(
−C2

|Re(ξ)|
(log|Re(ξ)|)1+α

)
,

where ϕ̂0(ξ) is the Fourier transform, defined as usual by

ϕ̂0(ξ) =
∫ +∞

−∞
ϕ0(x)e−ixξdx.
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Proof. — It is known from the Beurling–Malliavin multiplier Theorem,
or the Denjoy–Carleman Theorem, that for compactly supported test func-
tions ψ, one cannot beat the Fourier decay rate (ξ ∈ R, large)

|ψ̂(ξ)| = O

(
exp

(
−C |ξ|

log |ξ|

))
,

because this rate of Fourier decay implies quasi-analyticity (hence no com-
pactly supported test functions). We refer the reader to [36, Chapter 5]
for more details. The above statement is definitely a folklore result. How-
ever since we need a precise control for complex valued ξ and couldn’t find
the exact reference for it, we provide an outline of the proof which follows
closely the construction that one can find in [36, Chapter 5, Lemma 2.7].
Let (µj)j>1 be a sequence of positive numbers such that

∑∞
j=1 µj = 1.

For all k ∈ Z, set

ϕN (k) =
N∏
j=1

sin(µjk)
µjk

, ϕ(k) =
∞∏
j=1

sin(µjk)
µjk

.

Consider the Fourier series given by

f(x) :=
∑
k∈Z

ϕ(k)eikx, fN (x) :=
∑
k∈Z

ϕN (k)eikx,

then one can observe that by rapid decay of ϕ(k), f(x) defines a C∞ func-
tion on [−2π, 2π]. On the other hand, one can check that fN (x) converges
uniformly to f as N goes to ∞ and that

fN (x) = (g1 ? g2 ? · · · ? gN )(x),

where ? is the convolution product and each gj is given by

gj(x) :=
{

2π
µj

if |x| 6 µj
0 elsewhere.

From this observation one deduces that f is positive and supported on
[−1,+1] since we assume

∞∑
j=1

µj = 1.

We now extend f outside [−1,+1] by zero and write by integration by parts
and Schwarz inequality,

|f̂(ξ)| 6 e|Im(ξ)|

|Re(ξ)|N ‖f
(N)‖L2(−1,+1).
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By Plancherel formula, we get

‖f (N)‖2L2(−1,+1) =
∑
k∈Z

k2N (ϕ(k))2 6 C
N+1∏
j=1

µ−2
j ,

where C > 0 is some universal constant. Fixing ε > 0, we now choose

µj = C̃

j(log(1 + j))1+ε ,

where C̃ is adjusted so that
∑∞
j=1 µj = 1, and we get

|f̂(ξ)| 6 e|Im(ξ)|

|Re(ξ)|N (C1)NN !eN(1+ε) log log(N).

Using Stirling’s formula and choosing N of size

N =
[ |Re(ξ)|

(log(|Re(ξ)|)1+2ε

]
yields (after some calculations) to

|f̂(ξ)| 6 O
(
e|Im(ξ)|e

−C2
|Re(ξ)|

(log(|Re(ξ)|)1+2ε

)
,

and the proof is finished. �

One can obviously push the above construction further below the thresh-
old |ξ|

log |ξ| by obtaining decay rates of the type

exp
(
− |ξ|

log |ξ| log(log |ξ|) . . . (log(n) |ξ|)1+α

)
,

where log(n)(x) = log log . . . log(x), iterated n times. However this would
only yield a very mild improvement to the main statement, so we will
content ourselves with the above lemma.
We continue with another result which will allow us to estimate the size

of the log-derivative of LΓ(s, %) in a narrow rectangular zero-free region.
More precisely, we have the following:

Proposition 6.3. — Fix σ < δ. For all ε > 0, there exist C(ε), R(ε) > 0
such that for all R > R(ε), if LΓ(s, %) (% is non-trivial) has no zeros in the
rectangle

{σ 6 Re(s) 6 1 and |Im(s)| 6 R},
then we have for all s in the smaller rectangle

{σ + ε 6 Re(s) 6 1 and |Im(s)| 6 C(ε)R},∣∣∣∣L′Γ(s, %)
LΓ(s, %)

∣∣∣∣ 6 B(ε)d% log(d% + 1)R6.
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Proof. — We will use Caratheodory’s Lemma and take advantage of the
a priori bound from Theorem 1.1. More precisely, our goal is to rely on this
estimate (see Titchmarsh [73, 5.51]).
Lemma 6.4. — Assume that f is a holomorphic function on a neighbor-

hood of the closed disc D(0, r), then for all r′ < r, we have

max
|z|6r′

|f ′(z)| 6 8r
(r − r′)2

(
max
|z|6r
|Re(f(z))|+ |f(0)|

)
.

First we recall that for all Re(s) > δ, LΓ(s, %) does not vanish and has a
representation as

LΓ(s, %) = exp

−∑
C,k

χ%(Ck)
k

e−skl(C)

1− ekl(C)

 ,

so that we get for all Re(s) > A > δ,

(6.1) |log |LΓ(s, %)|| 6 CAd%,
∣∣∣∣L′Γ(s, %)
LΓ(s, %)

∣∣∣∣ 6 C ′Ad%
where CA, C ′A > 0 are uniform constants on all half-planes

{Re(s) > A > δ}.
We have simply used the prime orbit theorem and the trivial bound on
characters of unitary representations:

|χ%(g)| 6 d%, for all g ∈ G.

Let us now assume that LΓ(s, %) does not vanish on the rectangle

{σ 6 Re(s) 6 1 and |Im(s)| 6 R}.
Consider the disc D(M, r) centered atM and with radius r whereM(σ,R)
and r(σ,R) are given by

M(σ,R) = R2

2(1− σ) + σ + 1
2 ; r(σ,R) = M(σ,R)− σ,

see the figure below.
Since by assumption s 7→ LΓ(s, %) does not vanish on the closed disc

D(M, r), we can choose a determination of the complex logarithm of
LΓ(s, %) on this disc to which we can apply Lemma 6.4 on the smaller
disc D(M, r− ε), which yields (using the a priori bound from Theorem 1.1
and estimate (6.1))∣∣∣∣L′Γ(s, %)

LΓ(s, %)

∣∣∣∣ 6 C rε (d% log(d% + 1)r2 +A1d%
)

= O
(
R6d% log(d% + 1)

)
,
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Figure 6.1. Covering rectangles by discs.

where the implied constant is uniform with respect to R and d%. Looking
at the picture, the smaller disc D(M, r − ε) contains a rectangle

{σ + 2ε 6 Re(s) 6 1 and |Im(s)| 6 L(ε)},

where L(ε) satisfies the identity (Pythagoras Theorem!)

L2(ε) = ε(2M − 2σ − 3ε),

which shows that

L(ε) > C(ε)R,

with C(ε) > 0, as long as R > R0(ε), for some R0 > 0. The proof is
done. �

6.2. Proof of Proposition 6.1

We are now ready to prove the main result of this section, by combining
the above facts with a standard contour deformation argument. We fix a
small ε > 0 and 0 < α < α. We use Lemma 6.2 to pick a test function
ϕ0 with Fourier decay as described, with same exponent α. We set for all
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T > 0, and s ∈ C,

ψT (s) =
∫ +∞

−∞
esxϕ0

( x
T

)
dx

= T ϕ̂0(isT ).

By the estimate from Lemma 6.2, we have

(6.2) |ψT (s)| 6 C1Te
T |Re(s)| exp

(
−C2

|Im(s)|T
(log(T |Im(s)|)1+α

)
.

We fix now A > δ and consider the contour integral

I(%, T ) = 1
2iπ

∫ A+i∞

A−i∞

L′Γ(s, %)
LΓ(s, %)ψT (s)ds.

Convergence is guaranteed by estimate (6.1) and rapid decay of |ψT (s)| on
vertical lines. Because we choose A > δ, we have absolute convergence of
the series

L′Γ(s, %)
LΓ(s, %) =

∑
C,k

χ%(Ck) l(C)e
−skl(C)

1− ekl(C)

on the vertical line {Re(s) = A}, and we can use Fubini to write

I(%, T ) =
∑
C,k

χ%(Ck) l(C)
1− ekl(C) e

−Akl(C) 1
2π

∫ +∞

−∞
e−itkl(C)ψ̂T (iA− t)dt,

and Fourier inversion formula gives

I(%, T ) =
∑
C,k

χ%(Ck) l(C)
1− ekl(C)ϕ0

(
kl(C)
T

)
.

Assuming that LΓ(s, %) has no zeros in

{σ 6 Re(s) 6 1 and |Im(s)| 6 R},

where R will be adjusted later on, our aim is to use Proposition 6.3 to
deform the contour integral I(%, T ) as depicted in the figure below.
Writing I(%, T ) =

∑5
j=1 Ij (see the above figure), we need to estimate

carefully each contribution. In the course of the proof, we will use the
following basic fact.

Lemma 6.5. — Let φ : [M0,+∞) → R+ be a C2 map with φ′(x) > 0
on [M0,+∞) and satisfying

(∗) sup
x>M0

∣∣∣∣ φ′′(x)
(φ′(x))3

∣∣∣∣ 6 C,
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Figure 6.2. The contour deformation

then we have for all M >M0,∫ +∞

M

e−φ(t)dt 6 e−φ(M)

φ′(M) + Ce−φ(M).

Proof. — First observe that condition (∗) implies that

x 7→ 1
(φ′(x))2

has a uniformly bounded derivative, which is enough to guarantee that

lim
x→+∞

e−φ(x)

φ′(x) = 0.

In particular limx→+∞ φ(x) = +∞ and for all M > M0, φ : [M,+∞) →
[φ(M),+∞) is a C2-diffeomorphism. A change of variable gives∫ +∞

M

e−φ(t)dt =
∫ +∞

φ(M)
e−u

du
φ′(φ−1(u)) ,

and integrating by parts yields the result. �

• First we start with I1 and I5. Using estimate (6.1) combined
with (6.2), we have

|I5| 6 Cd%TeTA
∫ +∞

C(ε)R
e
−C2

tT
(log(tT ))1+α dt,
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which by a change of variable leaves us with

|I5| 6 Cd%eTA
∫ +∞

C(ε)RT
e
−C2

u
(log(u))1+α du.

This where we use Lemma 6.5 with

φ(x) = C2
x

(log(x))1+α .

Computing the first two derivatives, we can check that condition (∗)
is fulfilled and therefore∫ +∞

M

e
−C2

u
(log(u))1+α 6 C(log(M))1+αe

−C2
M

(log(M))1+α ,

for some universal constant C > 0. We have finally obtained

|I5| 6 Cd%eTA(log(RT ))1+αe
−C2

RT
(log(RT ))1+α .

Choosing R = (log(T ))1+α, with α > α gives

|I5| = O
(
d%e

TA(log(T ))1+αe−C2T (log(T ))α−α
)

= O
(
dρe
−BT ) ,

where B > 0 can be taken as large as we want. The exact same
estimate is valid for I1.

• The case of I4 and I2. Here we use the bound from Proposition 6.3
and again (6.2) to get

|I4|+ |I2| = O
(
d% log(d% + 1)e−BT

)
,

where B can be taken again as large as we want.
• We are left with I3 where

I3 = 1
2π

∫ +C(ε)R

−C(ε)R

L′Γ(σ + ε+ it, %)
LΓ(σ + ε+ it, %)ψT (σ + ε+ it)dt.

Using Proposition 6.3 and (6.2) we get

|I3| = O
(
d% log(d% + 1)(log(T ))7(1+α)e(σ+ε)T

)
.

Clearly the leading term in the contour integral is provided by I3, and the
proof of Proposition 6.1 is now complete.
We conclude this section by a final observation. If % = id is the trivial

representation, then LΓ(s, id) = ZΓ(s) has a zero at s = δ, thus the best
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estimate for the contour integral I(id, T ) is given by (6.1) and (6.2) which
yields (by a change of variable)

|I(id, T )| 6 CAd%
∫ +∞

−∞
|ψT (A+ it)|dt

6 C̃Ad%Te
TA

∫ +∞

−∞
exp

(
−C2

|t|T
(log(T |t|))1+α

)
dt = O

(
d%e

TA
)
.

Since d% = 1 and A can be taken as close to δ as we want, the contribution
from the trivial representation is of size

(6.3) I(id, T ) = O
(
e(δ+ε)T

)
.

7. Congruence subgroups and existence of “low lying”
zeros for LΓ(s, %)

7.1. Conjugacy classes in G

In this section, we will use more precise knowledge on the group struc-
ture of

G = SL2(Fp).
Our basic reference is the book [72], see Section 6 of Chapter 3 for much
more general statements over finite fields. We start by describing the con-
jugacy classes in G. Since we are only interested in the large p behaviour,
we will assume that p is an odd prime strictly bigger than 3. Conjugacy
classes of elements g ∈ G are essentially determined by the roots of the
characteristic polynomial

det(xI2 − g) = x2 − tr(g)x+ 1,

which are denoted by λ, λ−1, where λ ∈ F×p . There are three different
possibilities.

• λ 6= λ−1 ∈ F×p . In that case g is diagonalizable over Fp and g is
conjugate to the matrix

D(λ) =
(
λ 0
0 λ−1

)
.

The centralizer Z(D(λ)) = {h ∈ G : hD(λ)h−1 = D(λ)} is then
equal to the “maximal torus”

A =
{(

a 0
0 a−1

)
: a ∈ F×p

}
,
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and we have |A| = p − 1, the conjugacy class of g has p(p + 1)
elements.

• λ 6= λ−1 6∈ F×p . In that case λ belongs to F ' Fp2 the unique
quadratic extension of Fp. The root λ can be written as

λ = a+ b
√
ε, λ−1 = a− b√ε,

where {1,√ε} is a fixed Fp-basis of F . Therefore g is conjugate to(
a εb

b a

)
,

and |Z(g)| = p+ 1, its conjugacy class has p(p− 1) elements.
• λ = λ−1 ∈ {±1}. In that case g is non-diagonalizable unless g ∈
Z(G) = {±I2}, and is conjugate to ±u or ±u′ where

u =
(

1 1
0 1

)
, u′ =

(
1 ε

0 1

)
.

The centralizer Z(g) has cardinality 2p and the four conjugacy
classes have p(p+ 1) elements.

Using this knowledge on conjugacy classes, one can construct all irreducible
representations and write a character table for G, but we won’t need it.
There are two facts that we highlight and will use in the sequel:

(1) For all g ∈ G, |Z(g)| > p− 1.
(2) For all % non-trivial we have dρ > p−1

2 .
We will also rely on the very important observation below.

Proposition 7.1. — Let Γ be a convex co-compact subgroup of SL2(Z)
as above. Fix 0 < β < 2, and consider the set ET of conjugacy classes
γ ⊂ Γ \ {Id} such that for all γ ∈ ET , we have L(γ) 6 T := β log(p). Then
for all p large and all γ1, γ2 ∈ ET , the following are equivalent:

(1) tr(γ1) = tr(γ2).
(2) γ1 and γ2 are conjugate in G.

Proof. — Clearly (1) implies that γ1 and γ2 have the same trace modulo
p. Unless we are in the cases tr(γ1) = tr(γ2) = ±2 mod p, we know from
the above description of conjugacy classes that they are determined by the
knowledge of the trace. To eliminate these “parabolic mod p” cases, we
observe that if γ ∈ ET satisfies tr(γ) = ±2 + kp with k 6= 0, then

2 cosh(l(γ)/2) = |tr(γ)| > p− 2,

and we get
p− 2 6 1 + p

β
2 ,

TOME 70 (2020), FASCICULE 2



580 Dmitry JAKOBSON, Frédéric NAUD & Louis SOARES

which leads to an obvious contradiction if p is large, therefore k = 0. Then
it means that |tr(γ)| = 2 which is impossible since Γ has no non-trivial
parabolic element (convex co-compact hypothesis). Conversely, if γ1 and
γ2 are conjugate in G, then we have

tr(γ1) = tr(γ2) mod p.

If tr(γ1) 6= tr(γ2) then this gives

p 6 |tr(γ1)− tr(γ2)| 6 4 cosh(T/2) 6 2(p
β
2 + 1),

again a contradiction for p large. �

7.2. Proof of Theorem 1.4

Before we can rigorously prove Theorem 1.4, we need one last fact from
representation theory which is a handy folklore formula.

Lemma 7.2. — Let G be a finite group and let % : G→ End(V%) be an
irreducible representation. Then for all x, y ∈ G, we have

χ%(x)χ%(y) = d%
|G|

∑
g∈G

χ%(xgy−1g−1).

Proof. — Writing∑
g∈G

χ%(xgy−1g−1) = Tr
(
%(x)

∑
g

%(gy−1g−1)
)
,

we observe that
Uy :=

∑
g

%(gy−1g−1)

commutes with the irreducible representation %, therefore by Schur’s Lem-
ma [68, Chapter 2], it has to be of the form

Uy = λ(y)IV% ,

with λ(y) ∈ C, which shows that∑
g∈G

χ%(xgy−1g−1) = χ%(x)λ(y).

Similarly we obtain ∑
g∈G

χ%(xgy−1g−1) = χ%(y)λ(x),

and evaluating at the neutral element x = eG ends the proof since we have

UeG = |G|IV% . �
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We fix some 0 6 σ < δ. We take ε > 0 and α > 0. We assume that for
all non-trivial representation %, the corresponding L-function LΓ(s, %) does
not vanish on the rectangle

{σ 6 Re(s) 6 1 and |Im(s)| 6 (log T )1+α},

where T = β log(p) with 0 < β < 2. The idea is to look at the average

S(p) :=
∑

% irreducible
|I(%, T )|2,

where I(%, T ) is the sum given by

I(%, T ) =
∑
C,k

χ%(Ck) l(C)
1− ekl(C)ϕ0

(
kl(C)
T

)
.

While each term I(%, T ) is hard to estimate from below because of the
oscillating behaviour of characters, the mean square is tractable thanks to
Lemma 7.2. Let us compute S(p).

S(p) =
∑

% irreducible

∑
C,k

∑
C′,k′

l(C)l(C′)
(1− ekl(C))(1− ek′l(C′))ϕ0

(
kl(C)
T

)

× ϕ0

(
k′l(C′)
T

)
χ%(Ck)χ%(C′k

′).

Using Lemma 7.2, we have

χ%(Ck)χ%(C′k
′) = d%

|G|
∑
g∈G

χ%(Ckg(C′)−k′g−1),

and Fubini plus the identity∑
% irreducible

d%χ%(g) = |G|De(g)

allow us to obtain

S(p) =
∑
C,k

∑
C′,k′

l(C)l(C′)
(1− ekl(C))(1− ek′l(C′))ϕ0

(
kl(C)
T

)

× ϕ0

(
k′l(C′)
T

)
ΦG(Ck, C′k

′

),

where
ΦG(Ck, C′k

′

) :=
∑
g∈G

De(Ckg(C′)−k′g−1).
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Since all terms in this sum are now positive and Supp(ϕ0) = [−1,+1], we
can fix a small ε > 0 and find a constant Cε > 0 such that

S(p) > Cε
∑

kl(C)6T (1−ε)
k′l(C′)6T (1−ε)

ΦG(Ck, C′k
′

).

Observe now that

ΦG(Ck, C′k
′

) =
∑
g∈G

De(Ckg(C′)−k′g−1) 6= 0

if and only if Ck and C′−k
′
are in the same conjugacy class mod p, and in

that case,

ΦG(Ck, C′k
′

) = |Z(Ck)| = |Z(C′k
′

)|.
Using the lower bound for the cardinality of centralizers, we end up with

S(p) > Cε(p− 1)
∑

Ck=C′k′ mod p
kl(C),k′l(C′)6T (1−ε)

1.

Notice that since we have taken T = β log(p) with β < 2, we can use
Proposition 7.1 which says that Ck and C′−k

′
are in the same conjugacy

class mod p iff they have the same traces (in SL2(Z)). It is therefore natural
to rewrite the lower bound for S(p) in terms of traces. We need to introduce
a bit more notations. Let LΓ be set of traces i.e.

LΓ = {tr(γ) : γ ∈ Γ} ⊂ Z.

Given t ∈ LΓ, we denote by m(t) the multiplicity of t in the trace set by

m(t) = #{conj class γ ⊂ Γ : tr(γ) = t}.

We have therefore (notice that multiplicities are squared in the double sum)

S(p) > Cε(p− 1)
∑
t∈LΓ

|t|62 cosh(T (1−ε)/2)

m2(t).

To estimate from below this sum, we use a trick that goes back to Selberg.
By the prime orbit theorem [38, 49, 65] applied to the surface Γ\H2, we
know that for all T large, we have

Ce(δ−2ε)T 6
∑
t∈LΓ

|t|62 cosh(T (1−ε)/2)

m(t),
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and by Schwarz inequality we get for T large

Ce(δ−2ε)T 6 C0

 ∑
t∈LΓ

|t|62 cosh(T (1−ε)/2)

m2(t)


1/2

eT/4,

where we have used the obvious bound

#{n ∈ Z : |n| 6 2 cosh(T (1− ε)/2)} = O(eT/2).

This yields the lower bound∑
t∈LΓ

|t|62 cosh(T (1−ε)/2)

m2(t) > C ′εe(2δ−1/2−ε)T ,

which shows that one can take advantage of exponential multiplicities in
the length spectrum when δ > 1

2 , thus beating the simple bound coming
from the prime orbit theorem. In a nutshell, we have reached the lower
bound (for all ε > 0),

S(p) > Cε(p− 1)e(2δ−1/2−ε)T .

Keeping that lower bound in mind, we now turn to upper bounds using
Proposition 6.1. Writing

S(p) = |I(id, T )|2 +
∑
%6=id
|I(%, T )|2,

and using the bound (6.3) combined with the conclusion of Proposition 6.1,
we get

S(p) = O(e(2δ+ε)T ) +O

∑
%6=id

d2
%(log(d% + 1))2e2(σ+ε)T

 .

Using the formula
|G| =

∑
%

d2
%,

combined with the fact that |G| = p(p2 − 1) = O(p3), we end up with

S(p) = O(e(2δ−ε)T ) +O
(
p3 log(p)e2(σ+ε)T

)
.

Since T = β log(p), we have obtained for all p large(4)

Cp(2δ−1/2−ε)β 6 p(2δ+ε)β−1 + p2+2(σ+ε)β+ε.

(4)Note that the log(p) term has been absorbed in pε.
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Remark that since β < 2, then if ε is small enough we always have

(2δ + ε)β − 1 < (2δ − 1/2− ε)β,
so up to a change of constant C, we actually have for all large p

Cp(2δ−1/2−ε)β 6 p2+2(σ+ε)β+ε.

We have contradiction for p large provided

σ <

(
δ − 1

4 −
1
β

)
− ε− ε

2β .

Since β can be taken arbitrarily close to 2 and ε arbitrarily close to 0, we
have a contradiction whenever δ > 3

4 and σ < δ − 3
4 . Therefore for all p

large, at least one of the L-function LΓ(s, %) for non-trivial % has to vanish
inside the rectangle{

δ − 3
4 − ε 6 Re(s) 6 δ and |Im(s)| 6 (log(log(p)))1+α

}
,

but then by the product formula we know that this zero appears as a zero of
ZΓ(p)(s) with multiplicity dρ which is greater or equal to p−1

2 by Frobenius.
The main theorem is proved. �

We end by a few comments. It would be interesting to know if the
log1+ε(log(p)) bound can be improved to a uniform constant. However,
it would likely require a completely different approach since log(log(p)) is
the very limit one can achieve with compactly supported test functions.
Indeed, to achieve a uniform bound with our approach would require the
use of test functions ϕ 6≡ 0 with Fourier bounds

|ϕ̂(ξ)| 6 C1e
|Im(ξ)|e−C2|Re(ξ)|,

but an application of the Paley–Wiener theorem shows that these test func-
tions do not exist (they would be both compactly supported and analytic
on the real line).

8. Fell’s continuity and Cayley graphs of abelian groups

In this section we prove Theorem 1.2. The arguments follow closely those
of Gamburd in [27]. Roughly speaking, since Cayley graphs of finite abelian
groups can never form a family of expanders, one should expect strongly
that there is no uniform spectral gap in the family of covers Xj = Γj\H2.
We give a rigourous proof of that fact using Fell’s continuity.
Let G be a finite graph with set of vertices V and of degree k. That is, for

every vertex x ∈ V there are k edges adjacent to x. For a subset of vertices
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A ⊂ V we define its boundary ∂A as the set of edges with one extremity
in A and the other in G − A. The Cheeger isoperimetric constant h(G) is
defined as

h(G) = min
{ |∂A|
|A| : A ⊂ V and 1 6 |A| 6 |V|2

}
.

Let L2(V) be the Hilbert space of complex-valued functions on V with inner
product

〈F,G〉L2(V) =
∑
x∈V

F (x)G(x).

Let ∆ be the discrete Laplace operator acting on L2(V) by

∆F (x) = F (x)− 1
k

∑
y∼x

F (y),

where F ∈ L2(V), x ∈ V is a vertex of G, and y ∼ x means that y and x
are connected by an edge. The operator ∆ is self-adjoint and positive. Let
λ1(G) denote the first non-zero eigenvalue of ∆.
The following result due to Alon and Milman [1] relates the spectral gap

λ1(G) and Cheeger’s isoperimetric constant.

Proposition 8.1. — For finite graphs G of degree k we have
1
2k · λ1(G) 6 h(G) 6 k

√
λ1(G)(2− λ1(G)).

We note that large first non-zero eigenvalue λ1(G) implies fast conver-
gence of random walks on G, that is, high connectivity (see Lubotzky [42]).

Definition 8.2. — A family of finite graphs {Gj} of bounded degree
is called a family of expanders if there exists a constant c > 0 such that
h(Gj) > c.

The family of graphs we are interested in is built as follows. Let Γ = 〈S〉
be a Fuchsian group generated by a finite set S ⊂ PSL2(R). We will assume
that S is symmetric, i.e. S−1 = S. Given a sequence Γj of finite index
normal subgroups of Γ, let Sj be the image of S under the natural projection
rGj : Γ → Gj = Γ/Γj . Notice that Sj is a symmetric generating set for
the group Gj . Let Gj = Cay(Gj , Sj) denote the Cayley graph of Gj with
respect to the generating set Sj . That is, the vertices of Gj are the elements
of Gj and two vertices x and y are connected by an edge if and only if
xy−1 ∈ Sj .
The connection of uniform spectral gap with the graphs constructed

above comes from the following result.
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Proposition 8.3. — Assume that δ = δ(Γ) > 1
2 and assume that there

exists ε > 0 such that for all j all non-trivial resonances s of Xj = Γj \H2

satisfy |s− δ| > ε. Then the Cayley graphs Gj form a family of expanders.

Let us see how Proposition 8.3 implies Theorem 1.2.
Proof of Theorem 1.2. — Since X = Γ \ H2 has at least one cusp by

assumption, we have δ > 1
2 so that we can apply Proposition 8.3. Suppose

by contradiction that there exists ε > 0 such that for all j we have |s−δ| > ε

for all non-trivial resonances s of Xj . Then Proposition 8.3 implies that the
Cayley graphs Gj = Cay(Gj , Sj) form a family of expanders. We will show
that this is never true for the sequence of abelian groups Gj defined in
Section 1.1, thus showing Theorem 1.2. Using the same notations as in
Section 1, write

Gj = Z/N (j)
1 Z× Z/N (j)

2 Z× · · · × Z/N (j)
k Z,

where 1 6 k 6 r is fixed. The space L2(Gj) is spanned by the characters
χα given by

χα(x) = exp
(

2πi
k∑
`=1

α`

N
(j)
`

x`

)
where x = (x1, . . . , xk) and α = (α1, . . . , αk) with α` ∈ {0, . . . , N (j)

` − 1}.
Note that the trivial character χα ≡ 1 corresponds to α = 0. Applying the
discrete Laplace operator ∆ on Gj to χα yields

∆χα(x) = χα(x)− 1
|Sj |

∑
s∈Sj

χα(x+ s)

= χα(x)− 1
|Sj |

∑
s∈Sj

exp
(

2πi
k∑
`=1

α`

N
(j)
`

s`

)
χα(x)

= χα(x)− 1
|Sj |

∑
s∈Sj

cos
(

2πi
k∑
`=1

α`

N
(j)
`

s`

)
χα(x)

=

1− 1
|Sj |

∑
s∈Sj

cos
(

2πi
m∑
`=1

α`

N
(j)
`

s`

)χα(x),

where we exploited the symmetry of the set Sj in the third line. Thus every
character χα is an eigenfunction of ∆ with eigenvalue

λ(j)
α := 1

|Sj |
∑
s∈Sj

(
1− cos

(
2πi

k∑
`=1

α`

N
(j)
`

s`

))
.
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Note that we can view Sj as a subset of {0, . . . , N (j)
1 − 1} × · · · × {0, . . . ,

N
(j)
k −1} ⊂ Zk. Since S is a finite subset of PSL2(R), there exists a constant

M > 0 independent of j such that maxs∈Sj ‖s‖∞ 6 M, where ‖s‖∞ =
max16`6k |s`| is the supremum norm. Since we assume that

lim
j→+∞

min
`
N

(j)
` = +∞,

we know that N (j)
1 → +∞. Set α = (1, 0, . . . , 0). Then we have

0 6 η(j) := max
s∈Sj

k∑
`=1

α`

N
(j)
`

s` = max
s∈Sj

1
N

(j)
1
s1 6

M

N
(j)
1
→ 0

as j → +∞. Using 1− cosx� x2 for |x| sufficiently small we obtain

λ(j)
α � (η(j))2 → 0

as j → +∞. We need to exclude the possibility that λ(j)
α is zero. Note that

Gj is a connected graph because Sj is a generating set for Gj . Hence the
zero eigenvalue of the discrete Laplacian is simple and therefore

λ(j)
α = 0⇔ α = 0.

In particular, for α = (1, 0, . . . , 0) we have λ(j)
α > 0. We have thus shown

that the spectral gap λ1(Gj) of Gj tends to zero as j → +∞. By Propo-
sition 8.1 this implies that the Gj do not form a family of expanders. The
proof of Theorem 1.2 is therefore complete. �

8.1. Proof of Proposition 8.3

A very similar statement to that of Proposition 8.3 was given by Gam-
burd [27, Section 7]. The key ingredient in Gamburd’s proof is Fell’s con-
tinuity of induction and we will follow this line of thought.

For the remainder of this section set G = SL2(R) and let Ĝ be its uni-
tary dual, that is, the set of equivalence classes of (continuous) irreducible
unitary representations of G. We endow the set Ĝ with the Fell topology.
We refer the reader to [23] and [5, Chapter F] for more background on the
Fell topology. A representation of G is called spherical if it has a non-zero
K-invariant vector, where K = SO(2). Let us consider the subset Ĝ1 ⊂ Ĝ

of irreducible spherical unitary representations.
According to Lubotzky [43, Chapter 5], the set Ĝ1 can be parametrized as

Ĝ1 = iR+ ∪
[
0, 1

2

]
,
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where s ∈ iR+ corresponds to the spherical unitary principal series rep-
resentations, s ∈ (0, 1

2 ) corresponds to the complementary series repre-
sentation, and s = 1

2 corresponds to the trivial representation. See also
Gelfand–Graev–Pyatetskii-Shapiro [28, Chapter 1, §3] for a classification
of the irreducible (spherical and non-spherical) unitary representations with
a different parametrization. Moreover the Fell topology on Ĝ1 is the same
as that induced by viewing the set of parameters s as a subset of C, see [43,
Chapter 5]. In particular, the spherical unitary principal series representa-
tions are bounded away from the identity.
Let us now recall the connection between the exceptional eigenvalues

λ ∈ (0, 1
4 ) and the complementary series representation. Consider the (left)

quasiregular representation (λG/Γ, L2(G/Γ)) of G defined by

λG/Γ(g)f(hΓ) = f(hg−1Γ).

(We will denote this representation simply by L2(G/Γ).) Define the func-
tion s(λ) =

√
1/4− λ for λ ∈ (0, 1

4 ). Then, λ ∈ (0, 1
4 ) is an exceptional

eigenvalue of ∆Γ\H if and only if the complementary series πs(λ) occurs as
a subrepresentation of L2(G/Γ). This is the so-called Duality Theorem [28,
Chapter 1, §4].
Let us return to the proof of Proposition 8.3. Let Γ and Γj be as in

Proposition 8.3. Let Ω(Γ) denote eigenvalues of the Laplacian ∆X on X =
Γ \H. Let λ0(Γ) = δ(1− δ) = inf Ω(Γ) denote the bottom of the spectrum.
Since Γj is by assumption a finite-index subgroup of Γ, we have δ(Γj) = δ

and consequently
λ0(Γj) = λ0(Γ) =: λ0

for all j. Let Vs0 be the invariant subspace corresponding to the representa-
tion πs0 and let L2

0(G/Γj) be its orthogonal complement in L2(G/Γj). For
each j we can decompose the quasiregular representation of G into direct
sum of subrepresentations

L2(G/Γj) = L2
0(G/Γj)⊕ Vs0 .

Recall that λ0 is a simple eigenvalue by the result of Patterson [56]. By
the Duality Theorem it follows that Vs0 is one-dimensional. The following
lemma provides us with a link between uniform spectral gap and represen-
tation theory.

Lemma 8.4. — Let R ⊂ Ĝ1 be the following set:

R =
⋃
j

{
(π,H) :

π is spherical irreducible
unitary subrep. of L2

0(G/Γj)

}
/ ∼,
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where ∼ denotes the equivalence of representations. Then the following are
equivalent.

(1) There exists ε0 > 0 such that |s−δ| > ε0 for all j and all non-trivial
resonances s of Xj .

(2) The representation πs0 is isolated in the set R∪{πs0} with respect
to the Fell topology.

Proof. — Since the resonances s of Xj = Γj \ H with Re(s) > 1
2 corre-

spond to the eigenvalues λ = s(1 − s) ∈ [λ0,
1
4 ), the uniform spectral gap

condition (1) can be stated as follows. There exists ε1 > 0 such that for all
j we have

(8.1) Ω(Γj) ∩ [0, λ0 + ε1) = {λ0}.
Now we can reformulate (8.1) in representation-theoretic language. Set s0 =
s(λ0). Then by the Duality Theorem, there exists ε > 0 such that for all
j and all s ∈ (s0 − ε, 1

2 ], the complementary series representation πs does
not occur as a subrepresentation of L2(G/Γj). Since Vs0 is one-dimensional
(and each representation πs with s 6= 1

2 is infinite-dimensional), (1) is
equivalent to

(8.2) R∩
(
s0 − ε,

1
2

]
= {s0}.

Since the Fell topology on Ĝ1 is equivalent to the one induced by viewing
Ĝ1 as the subset iR+ ∪

[
0, 1

2
]
of the complex plane, the equivalence of (1)

and (2) is now evident. �

Let 1Γj denote the trivial representation of Γj on C. Then the induced
representation IndΓ

Γj 1Γj is equivalent to the (left) quasiregular representa-
tion (λGj

, L2(Gj)) of Γ defined by

(λGj (γ)F )(hΓj) = (γ.F )(hΓj) = F (hγ−1Γj).

The action of Γ on L2(Gj) given by γ.F = λGj (γ)F is transitive. Hence
the only Γ-fixed vectors are the constants. Thus we can decompose the
representation of Γ on L2(Gj) into a direct of subrepresentations

L2(Gj) = L2
0(Gj)⊕ C,

where L2
0(Gj) is the subspace of functions orthogonal to the constant func-

tion, and (1Γ,C) does not occur as a subrepresentation of L2
0(Gj).

Consider the following subset of Γ̂:

T =
⋃
j∈N
{(ρ, V ) : ρ is irreducible unitary subrepresentation of L2

0(Gj)}/ ∼,
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We claim the following.

Lemma 8.5. — Assume that one of the equivalent statements in Lem-
ma 8.4 holds true. Then the trivial representation 1Γ is isolated in T ∪{1Γ}
with respect to the Fell topology.

Proof. — Let K be a closed subgroup of a locally compact group H.
Given a unitary representation (π, V ) of K, the induced representation
IndHK π of H is defined as follows. Let µ be a quasi-invariant regular Borel
measure on H/K and set

(8.3) IndHK π :=
{
f : H → V : f(hk) = π(k−1)f(h)

for all k ∈ K and f ∈ L2
µ(H/K)

}
.

Note that the requirement f ∈ L2
µ(H/K) makes sense, since the norm of

f(g) is constant on each left coset of H. The action of G on IndGH π is
defined by

g.f(x) = f(g−1x)

for all x, g ∈ G, f ∈ IndGH π. We also note that the equivalence class of the
induced representation IndHK π is independent of the choice of µ. We refer
the reader to [5, Chapter E] for a more thorough discussion on properties
of induced representations.
If two representations (π1,H1) and (π2,H2) are equivalent, we write

H1 = H2 by abuse of notation. Using induction by stages (see [24] or [26]
for a proof) we have

Vs0 ⊕ L2
0(G/Γj) = L(G/Γj)

= IndGΓj 1Γj

= IndGΓ IndΓ
Γj 1Γj

= IndGΓ L2(Gj)

= IndGΓ 1Γ ⊕ IndGΓ L2
0(Gj)

= Vs0 ⊕ L2
0(G/Γ)⊕ IndGΓ L2

0(Gj).

Choose an index j and an irreducible unitary subrepresentation (τ, V ) of
L2

0(Gj). The above calculation implies that IndGΓ τ is a unitary subrep-
resentation of L2

0(G/Γj). Since τ is unitary and irreducible, so is IndGΓ τ .
Moreover IndGΓ τ is a spherical representation of G, since any non-zero
function f ∈ L2(H/Γ) and non-zero vector v ∈ V gives rise to a non-zero
K-invariant function F ∈ IndGΓ τ . Indeed, we have H ∼= K \ G, so that
we my view f as function f : G → C satisfying f(kgγ) = f(g) for all
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g ∈ G, k ∈ K, γ ∈ Γ. Now one easily verifies that F = fv : G→ V belongs
to IndGΓ τ and is invariant under K. In other words, IndGΓ τ belongs to R.
Now suppose the lemma is false. Then there exists a sequence (τn)n∈N ⊂

T that converges to 1Γ as n → ∞. On the other hand, πs0 is weakly
contained in IndGΓ 1Γ. By Fell’s continuity of induction [23] we have

πs0 ≺ IndGΓ 1Γ = lim
n→∞

IndGΓ τn ∈ R,

which contradicts Lemma 8.4. �

We can now prove Proposition 8.3.
Proof of Proposition 8.3. — Let us recall the definition of the Fell topol-

ogy on Γ̂ (for further reading consult [5, Chapter F]). For an irreducible
unitary representation (π, V ) of Γ, for a unit vector ξ ∈ V , for a finite
set Q ⊂ Γ, and for ε > 0 let us define the set W (π, ξ,Q, ε) that consists
of all irreducible unitary representations (π′, V ′) of Γ with the following
property. There exists a unit vector ξ′ ∈ V ′ such that

sup
γ∈Q
|〈π(γ)ξ, ξ〉V − 〈π′(γ)ξ′, ξ′〉V ′ | < ε.

The Fell topology is generated by the sets W (π, ξ,Q, ε). By Lemma 8.5
and the definition of the Fell topology, there exists c0 = c0(Γ, S) > 0 only
depending on Γ and the generating set S of Γ, but not on j, such that for
all F ∈ L2

0(Gj)

(8.4) sup
γ∈S
|〈γ.F − F, F 〉L2(Gj)| > c0‖F‖2.

By the Cauchy–Schwarz inequality we have

sup
γ∈S
‖γ.F − F‖ > c0‖F‖.

Fix a non-empty subset A of Gj with |A| 6 1
2 |Gj | and define the function

F (x) =
{
|Gj | − |A| if x ∈ A
−|A| if x /∈ A.

One can verify that F ∈ L2
0(Gj) and ‖F‖2 = |A||Gj |(|Gj | − |A|). On the

other hand,
‖γ.F − F‖2 = |Gj |2Eγ(A,Gj \A),

where

Eγ(A,B) := |{x ∈ Gj : x ∈ A and xγ ∈ B or x ∈ B and xγ ∈ A}| .
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Therefore there exists γ ∈ S such that

Eγ(A,Gj \A) = ‖γ.F − F‖
2

|Gj |2
>
c20‖F‖2
|Gj |2

= c20

(
1− |A||Gj |

)
|A|.

Thus we obtain a lower bound for the size of the boundary of A in the
graph Gj = Cay(Gj , Sj):

|∂A| > 1
2 sup
γ∈S

Eγ(A,Gj \A) > c20
2

(
1− |A||Gj |

)
|A| > c20

4 |A|.

Consequently, h(Gj) > c20/4 for all j and thus, the graphs Gj form a family
of expanders. The proof of Proposition 8.3 is complete. �
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