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ON A CONJECTURE OF BUIUM AND POONEN

by Gregorio BALDI (*)

Abstract. — Given a correspondence between a modular curve S and an ellip-
tic curve A, we prove that the intersection of any finite-rank subgroup of A with
the set of points on A corresponding to an isogeny class on S is finite. The ques-
tion was proposed by A. Buium and B. Poonen in 2009. We follow the strategy
proposed by the authors, using a result about the equidistribution of Hecke points
on Shimura varieties and Serre’s open image theorem. The result is an instance of
the Zilber–Pink conjecture.
Résumé. — Étant donnée une correspondance entre une courbe modulaire S et

une courbe elliptique A, nous prouvons que l’intersection de tout sous-groupe de
rang fini de A avec l’ensemble de points de A d’une classe isogénie sur S est fini. Le
question a été posée par A. Buium et B. Poonen en 2009. Nous suivons la stratégie
proposée par les auteurs, utilisant un résultat sur l’équidistribution des points de
Hecke sur les variétés de Shimura et le théorème de l’image ouverte de Serre. Le
résultat est un cas particulier de la conjecture de Zilber–Pink.

1. Introduction

A. Buium and B. Poonen [1] studied the problem of independence of
points on elliptic curves arising from special points on modular and Shimura
curves. As a first approximation the problem can be described as follows.
Let S/Q be a modular curve, A/Q an elliptic curve and Γ0 6 A(Q) a
finitely generated subgroup. Let

Ψ : S → A/Q
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be a (non-constant) morphism and CM ⊂ S(Q) be the set of special points
of S, i.e. the points corresponding to elliptic curves with complex multi-
plication (also referred as CM-elliptic curves). One can ask whether the
following are true:

(1) André–Oort–Manin–Mumford: Ψ(CM) ∩Ators is finite;
(2) André–Oort–Mordell–Lang: Ψ(CM) ∩ Γ0 is finite.

The first statement is an easy consequence of the André–Oort conjecture
for S × A. We recall the shape of the André–Oort conjecture (AO from
now on) for products of a modular curve and an elliptic curve. This is a
particular case of a theorem of Pila ([19, Theorem 1.1], see also [20]).

Theorem 1.1 (André–Oort–Manin–Mumford). — Let S be a modular
curve, A an elliptic curve and consider their product T := S × A. A point
(s, a) ∈ T is said to be special if s ∈ CM and a ∈ Ators. The only irreducible
closed subvarieties of T containing a Zariski dense set of special points are:
{CM−point} × {torsion point}, S × {torsion point}, {CM−point} × A,
S ×A.

It is interesting to notice that (1), together with the modularity theo-
rem of Wiles, Breuil, Conrad, Diamond, Taylor, implies that there are only
finitely many torsion Heegner points on any elliptic curve over Q (first
proven in [16]). For a complete discussion about this, we refer to [1, Sec-
tion 1.2] and the references therein.
Statement (2) is true because there are only finitely many classes of Q-

isomorphic CM-abelian varieties of a given dimension defined over a given
number field. For example, in the case of elliptic curves, it is a classical
result in the theory of complex multiplication that the set of CM-points of
X1(N), defined over a given number field, is finite.
A. Buium and B. Poonen [1, Theorem 1.1] were able to deal with finitely

generated subgroups and torsion points simultaneously. The main theorem
they discuss is as follows.

Theorem 1.2 (Buium–Poonen). — Let A/Q be an elliptic curve and

Ψ : X1(N)→ A

be a non-constant morphism defined over Q. Let Γ 6 A(Q) be a finite rank
subgroup, i.e. the division hull of a finitely generated subgroup Γ0 6 A(Q).
Then Ψ(CM) ∩ Γ is finite.

Since the proof is very elegant and our results will follow a similar path,
we present here the main points of the strategy. It relies on two deep re-
sults from equidistribution theory due to Zhang (namely [29, Corollary 3.3]
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and [28, Theorem 1.1]) and the Brauer–Siegel theorem. The first result
about equidistribution of Galois orbits of CM-points on modular curves
was established by Duke [9].
Strategy of the proof. — Let µS be the hyperbolic measure on S(C)

and µA be the normalised Haar measure on A(C). Assume that S,A,Ψ are
defined over a number field K and that Γ is contained in the division hull
of A(K). We have three main facts preventing the existence of infinitely
many points in Ψ(CM) ∩ Γ:

• Let (xn)n be an infinite sequence of CM-points in S(Q), then the
uniform probability measure on the Gal(K/K)-orbit of xn weakly
converges, as n→∞, to the measure µS ;

• Let (an)n be an infinite sequence of almost division points relative
to K, i.e.

lim
n→∞

sup
σ∈Gal(K/K)

‖aσn − an‖ = 0,

such that [K(an) : K]→∞. Then the uniform probability measure
on the Gal(K/K)-orbit of an weakly converges to the measure µA;

• Some measure theoretic lemmas ([1, Lemma 3.1, 3.2, 3.3]) prevent-
ing this. �

Remark 1.3. — Such proof allows also to fatten Γ: Let ε > 0, we may
replace Γ by Γε := Γ + Aε, where Aε is a set of points of small Néron-ü
height, i.e. Aε := {a ∈ A(Q) such that h(a) 6 ε}. The theorem then asserts
that, for some ε > 0, the set Ψ(CM) ∩ Γε is finite, see [1, Theorem 2.3].
See also [24], where B. Poonen strengthen the Mordell–Lang conjecture by
fattening Γ in this way.

In the subsequent work, [2], the authors, motivated by some local results
involving the theory of arithmetic differential equations, conjectured that
the same results hold when CM-points are replaced by isogeny classes.
Recall that a non-cuspidal point x ∈ X1(N), defined over Q, corresponds
to an elliptic curve Ex/Q (with some extra structure), and its isogeny class
is defined as the subset of X1(N)(Q) given by the elliptic curves admitting
a Q-isogeny to Ex (see 3.1 for more about the definition). The following
is [2, Conjecture 1.7]:

Theorem 1.4. — Let A be an elliptic curve defined over Q and Γ 6
A(Q) be a finite rank subgroup. Let x ∈ X1(N)(Q) be a non-cuspidal point
and Σx be its isogeny class. Let X ⊂ X1(N) × A be a irreducible closed
Q-subvariety such that X(Q) ∩ (Σx × Γ) is Zariski dense in X, then X

TOME 70 (2020), FASCICULE 2



460 Gregorio BALDI

is one of the following: {point} × {point}, X1(N) × {point}, {point} × A,
X1(N)×A.

The aim of this paper is to prove Theorem 1.4, as a special case of the
following more general result:

Theorem 1.5. — Let A,Γ, x,Σx be as in Theorem 1.4. If X ⊂ X1(N)×
A is an irreducible closed Q-subvariety such that X(Q)∩(Σx×Γε) is Zariski
dense in X for every ε > 0, then X is one the following: {point}× {point},
X1(N)× {point}, {point} ×A, X1(N)×A.

Remark 1.6. — In particular taking X in Theorem 1.5 to be the graph
of a non-constant Q-morphism Ψ : X1(N)→ A, we get a result analogous
to Theorem 1.2. Namely we have that, for some ε > 0, the image of Σx
along Ψ meets Γε in only finitely many points.

Theorem 1.4 may be thought as an André–Pink–Mordell–Lang conjec-
ture, as will be discussed in Section 5. See also [18] for more about the
André–Pink conjecture. It is worth noticing that such conjecture will ap-
pear in our result in the form of [4, Theorem B] and [22, Theorem 7.6.].

Our approach follows the strategy of Buium–Poonen presented above, us-
ing a equidistribution result about Hecke points in place of Zhang’s equidis-
tribution of CM-points on modular curves and Serre’s open image theorem
for elliptic curves without complex multiplication. The equidistribution re-
sult follows from the work of Clozel, Eskin, Oh and Ullmo, and it is de-
scribed in Section 3.2. Notice that it holds for arbitrary Shimura varieties,
in particular it is possible to obtain a result analogue to Theorem 1.5 for
the isogeny class of Galois generic points in higher dimensional Shimura
varieties. We remark that, even if the André–Oort conjecture for Ag is now
a theorem, the equidistribution conjecture for Galois orbits of CM-points
is still unsolved.

1.1. Related work

Another fruitful approach for problems like the ones discussed in this
paper is to use O-minimality and the Pila–Zannier strategy. This approach
relies on the Pila–Wilkie counting theorem, and it was used to prove both
the Manin–Mumford and the André–Oort conjecture. For example Z. Gao,
in [11], obtained important results towards what he calls the André–Pink–
Zannier conjecture. After the paper was written, it was pointed out to the
author that Gabriel Dill employed such strategy to obtain results about
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unlikely intersections between isogeny orbits and curves similar to the ones
presented here. Dill’s progress on a modification of the André–Pink–Zannier
conjecture ([8, Conjecture 1.1]) implies indeed Theorem 1.1 as well as The-
orem 1.4 (see [8, Corollary 1.4]).
As explained above, our strategy does not rely on O-minimality at any

point. The proofs obtained here are quite short but are confined to isogeny
classes of Galois generic points. An advantage of the equidistributional
approach is that it allows to fatten Γ, by adding points of small Néron–
Tate height (as in Theorem 1.5). Finally notice that our result does not
invoke Masser–Wüstholz Isogeny Theorem, as it often happens in results
regarding isogeny classes (see 4.4 for a more detailed discussion about this).

1.2. Organisation of paper

In the first section we discuss Hecke orbits on modular curves, and for-
mulate the equidistribution result of Clozel, Eskin, Oh and Ullmo in the
form needed for the main theorem. In the second section we prove the
conjecture (Corollary 4.3). We end the section showing how to obtain an
analogous statement for quaternion Shimura curves XD(U) (Theorem 4.8)
and discuss in more details the equidistribution of Hecke points on higher
dimensional Shimura varieties. In the last section we present some conjec-
tures about unlikely intersection for a product of a Shimura variety and an
abelian variety, inspired by the theorems presented so far. We prove that
they follow from the Zilber–Pink conjecture (Proposition 5.7).

2. Notations

• By X ⊂ Y we mean that X injects into Y , if we want to say that
such injection can not be an isomorphism we write A ( B;

• We denote by Af the (topological) group of finite Q-adeles, i.e.
Af = Ẑ⊗Q, endowed with the adelic topology;

• As in [7, Notation 0.2] we write 0 as an exponent to denote an
algebraic connected component and + for a topological connected
component, e.g. G(R)+ is the topological connected component of
the identity of the group of the real points of G. We write G(R)+
for the subgroup of G(R) of elements that are mapped into the
connected component Gad(R)+ ⊂ Gad(R), where Gad denotes the
adjoint group of G. Finally we set G(Q)+ := G(Q) ∩ G(R)+ and
G(Q)+ := G(Q) ∩G(R)+.

TOME 70 (2020), FASCICULE 2
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3. Preliminaries

Let Λ be a neat congruence subgroup of SL2(Z), and X+ = H be the
upper half plane, coming with the action of SL2(Z) by fractional linear
transformations. For the purpose of the paper, we may assume Λ to be one
of Γ(N),Γ0(N),Γ1(N) (and N > 3). A (non-compact) modular curve is a
Riemann surface of the form

SΛ := Λ\X+.

Since in this paper we are interested in maps from modular curves to ellip-
tic curves (which are compact), it is natural to identify the above quotients
as the non-cuspidal locus in their Alexandroff compactifications. The com-
pactifications obtained from the choices of Λ mentioned above are denoted
by X(N), X0(N), X1(N). They can be written as an opportune quotient of

H∗ := H ∪ P1(Q),

and we denote by ∞SΛ the projection of ∞ ∈ P1(Q) ⊂ H∗ onto the com-
pactification of SΛ.

Points on such complex curves naturally correspond to complex elliptic
curves (with some Λ-structure). Using the moduli interpretation one can
show that modular curves are naturally defined over a number field. Let
K ⊂ C be a field such that SΛ is defined over K and SΛ(K) 6= ∅. A K-
point of a modular curve corresponds to an elliptic curve defined over K.
We usually write

x ∈ SΛ(K) Ex/K.

3.1. Hecke operators

For every a ∈ SL2(Q), consider the diagram of (Shimura) coverings

Λ\X+ pr←− (Λ ∩ a−1Λa)\X+ a·−→ Λ\X+.

It induces a finite correspondence, called Hecke operator

Ta : SΛ → SΛ.

The Hecke operator Ta maps a point x ∈ SΛ to the finite set

{aλx | λ ∈ (Λ ∩ a−1Λa)\Λ}.

Remark 3.1. — Since Λ is neat, for all a, b ∈ SL2(Q) the following are
equivalent:

• Ta(x) ∩ Tb(x) 6= ∅ ;
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• Ta(x) = Tb(x);
• ΛaΛ = ΛbΛ.

We set
degΛ(a) := |ΛaΛ/Λ| = [Λ : a−1Λa ∩ Λ].

Given a point x ∈ SΛ we denote by T (x) its Hecke orbit:

T (x) :=
⋃

g∈SL2(Q)

Tg(x) ⊂ SΛ.

The Hecke operator Ta also acts on functions f on SΛ by

Taf(x) := 1
degΛ(a) ·

∑
s∈Ta(x)

f(s).

Example 3.2. — Let x ∈ X0(N), corresponding to a pair (Ex,Ψx), where
Ex is an elliptic curve and Ψx is a Γ0(N)-level structure (i.e. subgroup of
order N). Given a prime p, not dividing N , the Hecke operator Tp applied
to x gives

Tp(x) = Tp(Ex,Ψx) =
⋃
C

(Ex/C, (Ψx + C)/C)

where the union is over all the subgroups C ⊂ Ex of cardinality p.

3.1.1. Hecke orbits and isogeny classes

Let S = X1(N), and x ∈ S(Q) be a non-cuspidal point. It may be
represented as a pair (Ex, Px), where Ex is an elliptic curve defined over Q
and Px is a point of order N . We set

(3.1) ΣX1(N)
x := {(E,P ) ∈ S(Q) : there exists an isogeny E → Ex}.

Otherwise stated, we are looking at elliptic curves isogenous to Ex and the
isogeny is not required to respect the points of order N . This is the notion
of isogeny class appearing in Theorem 1.4.
Consider A1 the modular curve parametrizing elliptic curves. It is easy to

see that T (x) = ΣA1
x for any x ∈ A1(Q). By forgetting the point of order N ,

there is a finite Shimura morphism associated to the same Shimura datum

π : X1(N)→ A1.

In particular the preimage of an A1-Hecke orbit can be written as a finite
union of Hecke orbits in X1(N), in symbols

(3.2) ΣX1(N)
x =

m⋃
i=1

T (xi).

TOME 70 (2020), FASCICULE 2
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This will be the main step in the deduction of Corollary 4.3 from Theo-
rem 4.1.

3.1.2. Hecke orbits and strictly Galois generic points

Let K be a number field and x a non-cuspidal K-point in SΛ. To such x
there is a corresponding Galois representation

ρx : Gal(K/K)→ Λ ⊂ GL2(Af ),

where Λ denotes the closure of Λ in GL2(Af ). In terms of the associated
elliptic curve Ex, ρx is nothing but the representation coming from the
inverse limit of the Galois modules Ex[n]. Recall [22, Definition 6.3]:

• x is called Hodge generic/non-special if the elliptic curve Ex is not
CM;

• x is called Galois generic if Im(ρx) is open in Λ;
• x is called strictly Galois generic if Im(ρx) is equal to Λ.

Let x ∈ X1(N) be a non-special non-cuspidal point defined over a number
field. Serre’s open image theorem asserts that Im(ρx) is open in Λ, i.e. that
x is Galois generic. See [25] and [26] for Serre’s proof.

Remark 3.3. — We remark here that the difference between Galois
generic and strictly Galois generic points is not important in this paper.
Indeed let x ∈ SΛ a Galois generic point, we may shrink Λ in such a way
that x lifts along π : SΛ′ → SΛ and becomes strictly Galois generic in SΛ′ .

It is easy to see that the Hecke orbit Ta(x) of a strictly Galois generic
point x is permuted transitively by Gal(K/K). See for example [22, Propo-
sition 6.6]. In particular

∀ a ∈ SL2(Q) and s ∈ Ta(x), degΛ(a) = [K(s) : K].

3.2. Equidistribution of Hecke points

Let S = SΛ be a modular curve, and write µS for the hyperbolic measure
on S(C). If we fix coordinates (x, y) in H, the measure µS is the measure
whose pullback to H equals a multiple of the hyperbolic measure y−2dxdy.
Given a point p in S we denote by δp the Dirac distribution at p.
This is the main result of the section.
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Theorem 3.4. — Let x ∈ S be a strictly Galois generic point defined
over a number field K. Let (an)n ⊂ SL2(Q) be an arbitrary sequence, and
fix sn ∈ Tan(x) for every n. We have that

Tan
(x) = Gal(K/K)sn.

Moreover, if the cardinality of {sn}n is not finite then [K(sn) : K]→ +∞
and the sequence of measures

∆Tan (x) := 1
|Gal(K/K)sn|

∑
p∈Gal(K/K)sn

δp

weakly converges to µS as n→ +∞.

Proof. — As explained in Section 3.1.2, since x is strictly Galois generic
point, the Hecke orbit coincides with the Galois orbit. In particular we have

degΛ(an) = [K(sn) : K],

and an equality of measures
1

degΛ(an)
∑

λ∈(Λ∩a−1
n Λan)\Λ

δλ = 1
|Gal(K/K)sn|

∑
p∈Gal(K/K)sn

δp.

From the former equation we see that degΛ(an) goes to infinity if and
only if [K(sn) : K] does. The results of [5], together with the existence
of infinitely distinct sn, imply that the degΛ(an) → +∞ and the desired
weakly convergence of measures (see Theorems 4.5 and 4.6 for the general
statements we are referring to)(1) . �

4. Main results

Throughout this section we fix an elliptic curve A defined over Q and a
subgroup Γ 6 A(Q) of finite rank. Let

h : A(Q)→ R>0

be a canonical height function attached to some symmetric ample line bun-
dle on A, and, for every ε > 0, let

Γε := {γ + a such that γ ∈ Γ, a ∈ A(Q), h(a) 6 ε}.

By S = SΛ we will denote a modular curve as in the previous section.

(1)As the reader may have noticed, Masser–Wüstholz Isogeny Theorem shows that the
existence of infinitely many distinct (sn) forces the degree to grow (as explained in
Section 4.4). However we are showing this by invoking an equidistribution results which
does not rely on the Isogeny Theorem and holds for arbitrary Shimura varieties.
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Theorem 4.1. — Let x be Galois generic point of S and (an)n be an
arbitrary sequence in SL2(Q). Let X ⊂ S × A be an irreducible closed Q-
subvariety which is not of the form S×{point}, {point}×A, S×A. For some
ε > 0, X(Q) contains only finitely many points lying in (

⋃
n Tan

(x))× Γε.

Remark 4.2. — In particular, by listing all the elements of SL2(Q), we
have also that

X(Q) ∩ (T (x)× Γε)
is finite, where T (x) is defined as

⋃
g∈SL2(Q) Tg(x).

Regarding isogeny classes, as in Section 3.1.1, and in the direction of
Theorem 4.1 we obtain the following:

Corollary 4.3. — Suppose S is the modular curve X1(N) over Q.
Let A, Γ, X be as in Theorem 4.1, and x be a non-cuspidal Q-point of
X1(N). For some ε > 0, X(Q) contains only finitely many points lying in
ΣX1(N)
x × Γε.

Proof of Corollary 4.3. — Let Ex be the elliptic curve (with some extra
structure) corresponding to x. Recall that a non-cuspidal point in a modular
curve is either special or Hodge generic. In terms of the endomorphisms ring
of Ex this means that End(Ex) ⊗ Q is either a quadratic imaginary field,
or the field of rational numbers. In the former case the corollary follows
from Theorem 1.2. Indeed elliptic curves isogenous to a CM-elliptic curve
are again CM, therefore the set ΣX1(N)

x is contained in the set of special
points of S, so

X(Q) ∩
(

ΣX1(N)
x × Γε

)
⊂ X(Q) ∩ (CM×Γε) .

Theorem 1.2, in the more general form of [1, Theorem 2.3], shows precisely
that the right hand side is finite (for some ε > 0).
Suppose now that x is Hodge generic. Serre’s open image theorem implies

that x is Galois generic. The result then follows from Theorem 4.1 since
ΣX1(N)
x is a finite union of Hecke orbits (as explained in Section 3.1, in

particular 3.1.1). �

4.1. Proof of Theorem 4.1

In the statement of Theorem 4.1 x is assumed to be Galois generic. As
explained in the remark of Section 3.1.2, we may and do assume that x is
strictly Galois generic. Indeed there exist Λ′ and xΛ′ ∈ SΛ′ such that

π : SΛ′ → S
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maps xΛ′ to x and xΛ′ is strictly Galois generic. Since π is a finite map, we
may replace X by an X ′ ⊂ SΛ′ × A which projects onto X ⊂ S × A and
the validity of the result does not change.
Denote by µS the hyperbolic measure on S(C) and by µA the normalised

Haar measure on A(C). Define Br to be the open disk in S(C) with center
∞S and radius r with respect to the metric. Lemma 3.3 in [1] shows that
µS blows up relative to the Riemannian metric near the cusp ∞S . Using
also [1, Lemma 3.1] we can choose a compact annulus C ⊂ Br−{∞S} such
that

(4.1) µS(C) > µA(Ψ(Br − {∞S})),

for more details see also [1, p. 6, last but second paragraph]. From now on
we fix such a C.
Finally we say that a sequence (yn)n in a scheme X is generic if it

converges to the generic point of X with respect to the Zariski topology,
i.e. each proper subvariety of X contains at most finitely many yn.

Proof of Theorem 4.1. — Of course if the set
⋃
n Tan(x) is finite the

theorem trivially holds true. Therefore we may and do assume that the set

Σ(an)
x :=

⋃
n

Tan
(x)

is infinite.
Heading for a contradiction let us suppose that X(Q) ∩ (Σ(an)

x × Γε) is
Zariski dense in X for every ε > 0. Since X has only countably many
subvarieties, we may choose a generic sequence of points yn = (sn, γn) ∈
X(Q) with sn ∈ Σ(an)

x and γn ∈ Γεn
where εn → 0. In particular, each sn

appears only finitely often.
Up to enlarging the base field, we may assume that A,S,X, x are all

defined over a number field K and that Γ is contained the division hull of
A(K). Theorem 3.4 implies that [K(sn) : K]→ +∞. Since, by assumption,
X surjects onto S and A andX 6= S×A we have that the projectionX → A

is generically finite, say of degree d. Since [K(sn) : K] 6 d[K(γn) : K], we
have also that [K(γn) : K] → +∞ (as n goes to infinity). The γns form a
sequence of almost division points relative to K in the sense of [28] and,
by passing to a subsequence, we may assume that they admit a coherent
limit. Moreover, as dimA = 1, the only possibility for the coherent limit of
the γns is (A, {0}).
The combination of the next two facts implies the contradiction we were

aiming for:
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• As explained in Theorem 3.4, the uniform probability measure asso-
ciated to the points Gal(K/K)sn weakly converges to µS on S(C),
i.e. 1
|Gal(K/K)sn|

∑
p∈Gal(K/K)sn

δp

→ µS , as n→ +∞;

• Zhang’s result, [28, Theorem 1.1], implies that the uniform proba-
bility measure on Gal(K/K)γn, as n → +∞, weakly converges to
the Haar measure µA on A(C).

In particular, arguing as in [1, p. 7, first paragraph], they imply that

µS(C) 6 µA(Ψ(Br − {∞S})),

contradicting the choice of C in 4.1. The theorem is proven. �

In the rest of the section we discuss the case of more general Shimura
varieties.

4.2. Shimura varieties

Let G be an almost Q-simple group, (G,X+) be a connected Shimura
datum and Λ an arithmetic subgroup of G(Q)+. In this section we present
the general setting for arbitrary connected Shimura varieties

SΛ := Λ\X+.

Remark 4.4. — The definitions of the first section naturally generalise
to arbitrary Shimura data (G,X+). Notice that there is a more general
notion of generalized Hecke orbit which takes into account non-inner auto-
morphisms of (G,X), see [22, Definition 3.1]. This generalisation does not
substantially change the content of the paper. Indeed, when the group G
is of adjoint type, the quotient

Aut(G,X+)/G(Q)+

is finite.

The main theorem about equidistribution of Hecke points (after Clozel,
Eskin, Oh and Ullmo) is the following:

Theorem 4.5. — Let (an)n ⊂ G(Q)+ be an arbitrary sequence of
points and x ∈ Λ\X+. Exactly one of the following happens:

(1) The set
⋃
n Tan

(x) is finite and degΛ(an) is bounded;
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(2) The set
⋃
n Tan

(x) is Zariski dense in S and the sequence of mea-
sures ∆Tan (x) weakly converges to the canonical Haar measure on
S. Where we set

∆Tan (x) := 1
degΛ(an)

∑
λ∈(Λ∩a−1Λa)\Λ

δλ

and δλ denotes the Dirac distribution at λ.

Proof. — See [4, Corollary 7.2.3], which follows from [4, Theorem 7.2.2].
In [4, Section 9.1] it is also explained how the result can be deduced
from [10] (using [10, Proposition 2.1]). When Λ = GSp2g(Z), see also [22,
Theorem 7.5], which builds on [5]. �

It easily implies the next theorem. For a recollection of facts about Galois
and Hodge generic points on arbitrary Shimura varieties the reader may
also consult [22, Section 6].

Theorem 4.6. — Let SΛ be a connected Shimura variety and x ∈ S be
a strictly Galois generic point defined over a number field K. Let (an)n ⊂
G(Q)+ be an arbitrary sequence, and fix sn ∈ Tan

(x) for every n. We have
that

Tan
(x) = Gal(K/K)sn.

Moreover, if the cardinality of {sn}n is not finite then [K(sn) : K]→ +∞
and the sequence of measures

∆Tan (x) = 1
|Gal(K/K)sn|

∑
p∈Gal(K/K)sn

δp

weakly converges to the hyperbolic measure µS on S(C) as n→ +∞.

4.3. Quaternion Shimura curves

Let D be a non-split indefinite quaternion algebra over Q and fix a max-
imal order OD. In this section we prove a statement analogous to Corol-
lary 4.3 for quaternion Shimura curves XD(U)/Q, i.e. the Shimura curve
attached to (D,U), where U is a sufficiently small compact subgroup of
(OD ⊗ Ẑ)∗ such that XD(U) is connected. See [3] for a complete treat-
ment about such Shimura curves. Such curves parametrise fake elliptic
curve (with a U-level structure), i.e. abelian surfaces E with an embedding
OD ⊂ End(E). Using such interpretation we have a notion of isogeny class
Σx ∈ XD(U) as in Section 3.1.1.
We have a version of Serre’s open image theorem which holds for arbi-

trary Shimura curves:
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Theorem 4.7. — Let SΛ be a Shimura curve. A Q-point x ∈ S is either
special or Galois generic.

Proof. — On a Shimura curve a point is either special or Hodge generic.
The main theorem of [17] shows precisely that Hodge generic points are
Galois generic (the proof is similar to the methods used by Serre). Since
XD(U) parametrises fake elliptic curves, it is possible to prove this
special case directly from Serre’s open image, without invoking Ohta’s
theorem. �

Such open image theorem, combined with Theorem 4.6 implies the equi-
distribution of the Hecke orbit associated to a Hodge generic point, as
used in the case of X1(N). The equidistribution of the Galois orbit of CM-
points, as used in [1, Theorem 2.5 and Theorem 2.6], follows again from
Brauer–Siegel and Zhang’s paper [29].
To obtain a contradiction in this case, it is enough to use [1, Lemma 3.6].

Indeed let Ψ : S → A be a map from a Shimura curve(2) to an elliptic
curve, [1, Lemma 3.6] shows that Ψ∗µS 6= µA. Therefore we cannot have
a sequence of measures ∆sn

weakly converging to µS , whose pushforward,
Ψ∗∆sn

, weakly converges to µA.
We have eventually proved the following:

Theorem 4.8. — Let S/Q a quaternion Shimura curve. Let A, Γ, Ψ be
as in Theorem 4.1. Let x be a Q-point of S. There exists an ε > 0, such that
image of a isogeny class Σx ⊂ S(Q) along Ψ intersects Γε in only finitely
many points.

4.4. A remark on Masser–Wüstholz Isogeny Theorem

This is the main theorem of [14] (see also [12] for a bound that does not
depend on the polarisations).

Theorem 4.9 (Masser–Wüstholz). — Let A,B be principally polarised
abelian varieties of dimension g over a number field K, and suppose that
AC and BC are isogenous. Then if we let N be the minimal degree of an
isogeny between them over C, we have

N 6 bg max(hFal(A), [K : Q])cg ,

where bg, cg are positive constants depending only on g and hFal(A) denotes
the semistable Faltings height of A.

(2) In the previous theorem we had to use a different strategy since the compact Riemann
surface X1(N) is only the compactification of a Shimura curve.
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It has the following amusing consequence regarding the field of definition
of the Hecke points. For the proof see [4, Lemma 9.2.1].

Corollary 4.10. — Let (G,X+) be a connected Shimura datum of
abelian type. Let x ∈ SΛ be a point with residue field K. For every integer
d there are only finitely many t ∈ T (x) such that the degree of K(t) over
K is bounded by d.

It is interesting to notice that Theorem 4.9 is used in the proof of partial
results towards conjectures about unlikely intersections. For example in
the AO and André–Pink conjectures. Corollary 4.10 may be used for the
result of this paper. Indeed, for Shimura varieties of abelian type, it implies
the existence of finitely many Hecke operators of bounded degree. In our
approach we deduced this from Theorem 4.5, which builds on different
techniques.

Remark 4.11. — For example Corollary 4.10 may be applied to arbitrary
Shimura curves. This is possible since all Shimura curves are of abelian
type, as proven by Deligne in [6, Section 6].

5. Mixed Shimura varieties and the Zilber–Pink
conjecture

In the introduction we discussed characterisations of subvarieties of a
product of a modular curve and an elliptic curve intersecting a dense set of
special points (Theorems 1.1, 1.2, 1.4). We formulate analogous conjectures
for products of higher dimensional Shimura varieties and abelian varieties.
In Section 5.1.2, we prove that they follow from the Zilber–Pink conjecture
about unlikely intersections in mixed Shimura varieties (Conjecture 5.6).
Throughout this section let T := S × A be the product of S a Shimura

variety and A an abelian variety (of dimension g). When we do not specify
the field of definition of an object, we assume that it is defined over the
field of complex numbers.
Recall that we have notions of being special and weakly special for both

subvarieties of Shimura and abelian varieties, in particular we denote by
CM ⊂ S(Q) the subset of special points of S. In this section we combine the
two as follows. For an overview about special subvarieties and the André–
Oort conjecture, we refer the reader to [13].

Definition 5.1. — A special (resp. weakly special) subvariety of T is
a subvariety of the form S′×A′ where S′ is a special (resp. weakly special)
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subvariety of S and A′ is a special (resp. weakly special) subvariety of A.
We say that a subvariety of T is weakly special generic if it not contained
in any smaller weakly special subvariety of T .

We state three conjectures about a weakly special generic closed irre-
ducible subvariety X  T .

Conjecture 5.2 (André–Oort–Manin–Mumford). — The subset of
special points of T is not Zariski dense in X.

We denote by A[>d] the union of all algebraic subgroups of A of codi-
mension > d and we fix a subgroup of finite rank Γ 6 A(C).

Conjecture 5.3 (André–Oort–Mordell–Lang). — The set (CM×
(A[>dimX] + Γ)) ∩X is not Zariski dense in X.

In the next conjecture, by isogeny class of a point s ∈ S ⊂ Ag′ , cor-
responding to an abelian variety As, we mean the set of points s′ ∈ S

corresponding to abelian varieties As′ isogenous to As.

Conjecture 5.4 (André–Pink–Mordell–Lang). — Assume S is a sub-
Shimura variety of Ag′ for some g′, and let Σs be the isogeny class of a
point s ∈ S(C). The set (Σs × Γ) ∩X is not Zariski dense in X.

When the abelian variety A is defined over Q, we can also fatten Γ, by
replacing Γ by Γε, to formulate an André–Oort–Mordell–Lang–Bogomolov
Conjecture and an André–Pink–Mordell–Lang–Bogomolov Conjecture.
Theorem 1.5 is a special case of such formulation, requiring all the ob-
jects to be defined over Q. Since the aim of the section is a comparison
with the conjectures appearing in the work of Pink ([22, 23]), we discuss
only the case of subgroups of finite rank.

Remark 5.5. — Combining the recent proof of the AO conjecture for
Shimura varieties of abelian type (culminated in [27]) and the proof of
Manin–Mumford ([20]), it is possible to prove Conjecture 5.2 whenever S
is a Shimura variety of abelian type.

For recent developments, using O-minimality, towards the André–
Pink–Mordell–Lang we point out to the reader the main theorems of
G. Dill, see [8]. See also the main theorems of [11]. Indeed, as mentioned in
the introduction, Conjecture 5.4 formally follows from Gao’s André–Pink–
Zannier(3).

(3)Only a small modification is needed, in order to take into account non-polarised
isogenies and subgroups of arbitrary finite rank.
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5.1. Zilber–Pink conjecture

To state the Zilber–Pink conjecture ([23, Conjecture 1.1]) we need to
introduce some vocabulary from the theory of mixed Shimura varieties. For
a complete treatment we refer the reader to [22, Section 2], [15, Chapter VI]
and [21].

5.1.1. Mixed Shimura varieties

Let S := ResC/RGm be the Deligne torus. A connected mixed Shimura
datum is a pair (P,X+) where

• P is a connected linear algebraic group defined over Q, with unipo-
tent radical W , and an algebraic subgroup U ⊂W which is normal
in P ;

• X+ ⊂ Hom(SC, PC) is a connected component of an orbit under the
subgroup P (R) · U(C) ⊂ P (C);

satisfying axioms (i)-(vi) in [22, Definition 2.1]. A connected mixed Shimura
variety associated to (P,X+) is a complex manifold of the form Λ\X+

where Λ is a congruence subgroup of P (Q)+ acting freely on X+.
A mixed Shimura datum allows to take into consideration groups of

the form GSp2gnG2g
a . For suitable congruence subgroups the associated

connected mixed Shimura variety is the universal family of abelian varieties
over the moduli space of principally polarised abelian varieties (with some
n-level structure). The point is that every (principally polarised) abelian
variety can be realised as a fibre of such a family.

As for the pure case, there is a notion of special and weakly special sub-
varieties of mixed Shimura varieties (see [22, Section 4]). As the reader may
expect every irreducible component of the intersection of special subvari-
eties (resp. weakly special) is again special (resp. weakly special), and a
weakly special subvariety containing a special point is itself special. For ex-
ample special points in the universal family of abelian varieties correspond
to torsion points in the fibers As over all special points s ∈ Ag.

Finally pure Shimura varieties are also mixed Shimura varieties (they
occur precisely when P is reductive) and a product of (finitely many) mixed
Shimura varieties is again a mixed Shimura variety.

5.1.2. The conjecture

Conjecture 5.6 (Zilber–Pink). — Consider a mixed Shimura variety
M over C and a Hodge generic irreducible closed subvariety X ⊂M . Then
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the intersection of X with the union of all special subvarieties of M of
codimension > dimX is not Zariski dense in X.

The proof of the next proposition is similar to the arguments appear-
ing in Theorem 3.3, 5.3 and 5.7 of the preprint [23]. See also [11, Sec-
tion 8] and [22], where it is explained that André–Pink(–Zannier) for mixed
Shimura varieties implies Mordell–Lang ([22, Theorem 5.4]).

Proposition 5.7. — Conjecture 5.6 implies both Conjecture 5.3 and
Conjecture 5.4.

We first fix some notations. Let a ∈ Ag,n be the point corresponding to
the abelian variety A (for some n > 3), Sa the smallest Shimura subvariety
of Ag,n containing a and M the universal abelian scheme over Sa. The
variety S×M is a mixed Shimura variety and it contains S×A = S×Ma,
where Ma denotes the fibre of

π : M → Sa

over the point a.
Finally fix a maximal sequence of linearly independent elements

a1, . . . , an ∈ Γ, and let C the Zariski closure of the subgroup of An gen-
erated by the point a := (a1, . . . , an). We may assume C is an abelian
variety. Moreover, since a is Hodge generic in Sa, we may view C as the
fibre over a of an Sa flat subgroup scheme Z of the n-th fibred power of
M (cf. the discussion at the beginning of the proof of [23, Theorem 5.7]).
We will apply the Zilber–Pink conjecture to the subvarieties of the mixed
Shimura variety

B := S × (M ×Sa Z) .

Zilber–Pink implies André–Oort–Mordell–Lang. — Equivalently we may
suppose that X is not contained in any special subvariety of T and deduce
that (CM×Γ)∩X is not Zariski dense in X. Consider the irreducible closed
subvariety of B defined by

Y := X × {a}.

Since a is Hodge generic in Sa, X is weakly special generic in T , a is Zariski
dense in C, then Y is a Hodge generic subvariety of B of dimension dimX.

As for abelian varieties, we denote by M [>d] the union of M [>d]
x , varying

x in Sa. To conclude, applying the Zilber–Pink conjecture to Y ⊂ B, we
only need to show that the set

(X ∩ (CM×(M [>dimX] + Γ)))× {a}
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is contained in the intersection between Y and the union of all special
subvarieties of B of codimension > dimX = dimY . Let G be a Sa-flat
algebraic subgroup of M of codimension > dimX, and let x = (c, g+ γ) ∈
X, where c is a special point in S and γ an element of Γ. For some integer
m > 0 we may write

mγ = m1a1 + · · ·+mnan,

then we have mγ = ϕ(a) for the homomorphism of Sa-group schemes
ϕ := (m1, . . . ,mn) : Mn →M . We may therefore write (x, a) as an element
in the set

H := CM×(m−1(G× {0}+ (ϕ,m)(C))).
Since the codimension of H in B is bigger than dimX, we have proved the
desired inclusion.
The result on the fiber over a then follows in virtue of the following

remark (see proof of [23, Theorem 5.7]): Let X ⊂ A be an irreducible closed
subvariety of A, X is contained in a proper algebraic subgroup of A if and
only it is contained in a special subvariety of M of codimension > 0. �

Zilber–Pink implies André–Pink–Mordell–Lang. — By applying Hecke
operators, we may assume that X × {a} and {s} × {a} lie in a given con-
nected component of B. Let Ss be the smallest Shimura subvariety con-
taining s, and S′ the smallest Shimura subvariety of B × Ag′ containing
Y × {s}.
Suppose (X ∩ (Σs× (M [>dimX] +Γ))) is not Zariski dense in X, we want

to prove that X is weakly special, more precisely we show that X×{s} is an
irreducible component of a fibre of S′ → Ss. To do so we apply Zilber–Pink
(actually in the equivalent form appearing in [23, Conjecture 1.1]) to

Σs × {s} × (M [>dimX] + Γ)× {a}.

The result follows by combining the argument presented in the previous
proof, which allows to see the points in Γ as special points in an opportune
Shimura variety (see also the last paragraph in the proof of [23, Theo-
rem 5.3]), and the argument of [23, Theorem 3.3] (noticing that given two
points s, t ∈ Ag′ such that the underlying abelian varieties are isogenous,
then the defect of s ∈ Ag′ is equal to the defect of (s, t) ∈ A2

g′ , as in [18,
Lemma 2.2]). �
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