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LOGARITHMIC FORMS AND SINGULAR
PROJECTIVE FOLIATIONS

by Javier GARGIULO ACEA (*)

Abstract. — In this article we study polynomial logarithmic q-forms on a pro-
jective space and characterize those that define singular foliations of codimension
q. Our main result is the algebraic proof of their infinitesimal stability when q = 2
with some extra degree assumptions. We determine new irreducible components of
the moduli space of codimension two singular projective foliations of any degree,
and we show that they are generically reduced in their natural scheme structure.
Our method is based on an explicit description of the Zariski tangent space of the
corresponding moduli space at a given generic logarithmic form. Furthermore, we
lay the groundwork for an extension of our stability results to the general case
q > 2.
Résumé. — Dans cet article nous étudions des q-formes logaritmiques polyno-

miales sur un espace projectif et nous caractérisons celles qui définissent des feuille-
tages singuliers de codimension q. Notre principal résultat est la preuve algébrique
de leur stabilité infinitésimale lorsque q = 2 avec quelques hypothèses supplémen-
taires sur leurs degrés. Nous donnons des nouvelles composantes irréductibles des
espaces de modules des feuilletages projectifs de codimension deux et de degré quel-
conque, et nous montrons que ces composantes sont génériquement réduites selon
leur structure naturelle de schéma. Notre méthode est basée sur le calcul explicite
de l’espace tangent de Zariski de l’espace de modules en une forme logarithmique
générique. Nous posons aussi les bases pour l’extension de nos résultats de stabilité
au cas général q > 2

1. Introduction

This article is concerned with the study of complex projective logarithmic
forms of arbitrary degrees in the setting of the theory of algebraic foliations.
The problem which motivates this paper is the analysis of the irreducible
components of moduli spaces of algebraic singular projective foliations,
and the description of their geometry. For some classical results on this
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172 Javier GARGIULO ACEA

classification problem for codimension one foliations we refer to e.g. [1], [2]
and [11]. More in general, we recommend [6] and [7] for some remarkable
facts about the higher codimensional case.
Fix q ∈ N, n, d ∈ N>q and m ∈ N>q+1. Also, set d = (d1, . . . , dm) such

that d =
∑m
i=1 di. A polynomial logarithmic q-form of type d is a projective

twisted differential form

(1.1) ω =
∑

I⊂{1,...,m}
|I|=q

λI F̂IdFi1 ∧ · · · ∧ dFiq ,

where λ ∈
∧q Cm satisfies that its interior product by d vanishes (i.e.,

id(λ) = 0 ∈
∧q−1 Cm), F1, . . . , Fm are homogeneous polynomials in n + 1

variables of degrees d1, . . . , dm and F̂I =
∏
j /∈I Fj for every I ⊂ {1, . . . ,m}.

If we assume that λ is totally decomposable (i.e., λ = λ1 ∧ · · · ∧ λq), then
ω is an element of H0(Pn,ΩqPn(d)) that also satisfies the Plücker’s decom-
posability equation (2.1) and the so called Frobenius’s integrability equa-
tion (2.2) (see Section 2.1 for more details). These conditions ensure that
the distribution associated to its kernel at each point determines a singular
complex foliation of codimension q on Pn.

In addition, the forms as in (1.1) are related to the classical sheaf of
logarithmic forms in the following sense. With the notation above, if we set
DF as the divisor defined by the zero locus of F =

∏m
i=1 Fi, and assume it

has simple normal crossings, then all the elements η ∈ H0(Pn,ΩqPn(logDF ))
can be described in homogeneous coordinates by the formula

η = ω

F
=

∑
I⊂{1,...,m}
|I|=q

λI
dFi1
Fi1
∧ · · · ∧

dFiq
Fiq

.

Remember that the sheaf Ω•Pn(logDF ) is defined by all the rational forms
η such that η and dη have at most simple poles along DF . In other words,
the global sections of the sheaf of logarithmic forms over DF are in 1-
1 correspondence with the vectors λ ∈

∧q Cm such that id(λ) = 0. See
Proposition 2.6 for more details.
On the other hand, denote by Fq(d,Pn) ⊂ PH0(Pn,ΩqPn(d)) the moduli

space of algebraic singular projective foliations of degree d on Pn, which
corresponds to the algebraic space of twisted q-forms of total degree d
satisfying the announced equations (2.1) and (2.2).
We consider ρ as a rational map parametrizing those logarithmic q-

forms of type d that define foliations (see Definition 2.21), and we set
Lq(d, n) ⊂ Fq(d,Pn) as the Zariski closure of its image. We refer to this
projective irreducible variety as the logarithmic variety associated to the
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partition d. Our purpose is to show that these logarithmic varieties are
irreducible components of the corresponding moduli spaces of foliations.
In this paper, we solve this problem for q = 2 and with some condition
among the vector of degrees d (see the 2-balanced assumption from Def-
inition 3.18). Furthermore, we expect that, up to some technical details,
our results and proofs can be adapted for any q 6 n− 2 at least assuming
an extended q-balanced condition. When q = n − 1 there is no hope to
establish a stability result even for a generic logarithmic form. In this case
the corresponding moduli space coincides with PH0(Pn, T Pn).

In order to put our work in context, we shall explain some related articles.
It was proved in [1] by Omegar Calvo Andrade that the logarithmic varieties
L1(d, n) are irreducible components of F1(d,Pn), and so this type of forms
satisfy a sort of stability condition among all the integrable forms (see
integrability condition (2.1) for q = 1). Actually, his article is essentially
based on analytical and topological methods, and the main results are
proved for logarithmic foliations on a general complex manifoldM with the
assumption H1(M,C) = 0. Later, in [5] it was developed a new proof of the
stability result for polynomial logarithmic one-forms in projective spaces.
Here the methods are completely algebraic and provide further information
about the irreducible components L1(d, n). For example, it is deduced that
the scheme F1(d,Pn) is generically reduced along these components.

Moreover, in [7] the authors proved that the varieties Lq(d, n) are irre-
ducible components when m = q + 1 (lower possible value for m). In this
case, the corresponding differential q-forms determine projective foliations
which are tangent to the fibers of quasi-homogeneous rational maps. From
now, we refer to this type of forms as rational q-forms of type d. It is also
remarkable that there are not many known irreducible components of the
moduli space Fq(d,Pn) for general q. See for instance the introductions
of [6] and [7].
In some sense, this article is concerned with obtaining a common gen-

eralization of the definitions and results from [1] and [7], using the same
algebraic methods as in [5]. Notice that formula (1.1) coincides with that
given for a general rational q-form of type d in [7] when q = m − 1, and
with that given for a polynomial logarithmic 1-form in [1] when q = 1.
The article is organized as follows. In Section 2 we present a brief sum-

mary of the objects involved in the definitions of Fq(d,Pn), Lq(d, n) and
the corresponding parametrization map, with a particular attention to the
case q = 2. We suggest to consult Definitions 2.12 and 2.21, and also Propo-
sitions 2.14 and 2.17 that contain our definition of logarithmic q-forms of
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174 Javier GARGIULO ACEA

type d, and a characterization of those that determine singular projective
foliations of codimension q.
Since our methods are based on Zariski tangent space calculations, in

Section 2 we also present a description of these spaces for F2(d,Pn) and
the space of parameters P2(d) of the natural parametrization ρ. In addition,
a formula for the derivative of the parametrization map is given at the end
of the section. Our main tool is based on the comparison of the image of
this derivative with the tangent space of F2(d,Pn) at a generic logarithmic
form of type d. See our Subsections 2.3 and 2.4 for a complete treatment
of these tasks.
Our Section 3 contains a development of the main result: Theorem 3.1,

which establishes that the logarithmic varieties L2(d,Pn) are irreducible
components of the moduli space F2(d,Pn). In addition, we deduce that
these components are generically reduced according to its induced scheme
structure. Our result assumes that m,n > 3 and that the vector of degrees
d is 2-balanced, that is

di + dj <
∑

k 6=i,6=j
dk ∀ i, j ∈ {1, . . . ,m}.

The formal statement of the theorem is the following:

Theorem. — Fix natural numbers n,m ∈ N>3, and a 2-balanced vector
of degrees d = (d1, . . . , dm) with d =

∑
i di. The variety L2(d, n) is an

irreducible component of the moduli space F2(d,Pn). Furthermore, the
scheme F2(d,Pn) is generically reduced along this component, in particular
at the points of ρ(U2(d)).

The proof of Theorem 3.1 is supported on Proposition 3.2 (surjectivity
of the derivative of the natural parametrization). This method had been
originally used in [6] and [7], and was also applied in [5]. However, the proof
of this proposition is quite technical, and it is obtained through various
steps and lemmas, including certain results of independent interest. See for
instance Steps 1 to 7.

Finally, we would like to observe the followings facts about the general
case q > 2. The definition of our natural parametrization ρ, the varieties
Lq(d, n) and some of our lemmas are still valid for larger q (see Subsec-
tion 3.2.1). However, most of the steps of the proof of Proposition 3.2 are
quite technical, and the combinatorics behind them is hard to extend for
q > 2. See also Remark 3.28 for more details.

Acknowledgements. The author is grateful with Fernando Cukierman
for suggesting the problem and for his further valuable help. Also gratitude
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is due to Federico Quallbrunn, Cesar Massri and the anonymous Referee
for their useful comments and corrections.
The content of this paper is part of the author’s doctoral thesis, for the

degree of Doctor de la Universidad de Buenos Aires.

Remark 1.1. — After completing and having posted this article we
learned about the article [3] by D. Cerveau and A. Lins Neto. Some of
our results for logarithmic q-forms turn out to be contained in this paper,
but the methods of proof are completely different. In particular, the au-
thors obtain a stability result for the general case 1 6 q 6 n − 2, after
reducing the problem to the case of foliations of dimension two (see [3,
Theorems 5 and 6]). We would like to observe that our methods, based
on computing the Zariski tangent space at a generic point, are completely
algebraic and provide further information in the particular case of loga-
rithmic foliations of codimension two. Especially, the fact that the moduli
space of singular projective foliations results generically reduced along the
logarithmic irreducible components that we obtained.

2. Definitions and constructions

In this article we shall use the following basic notation concerning poly-
nomials and forms.
S(n) = C[x0, . . . , xn] for the graded ring of polynomials with complex

coefficients in n+ 1 variables. When n is understood we write S(n) = S.
S

(n)
d = H0(Pn,OPn(d)) for the space of homogeneous polynomials of

degree d in n+ 1 variables. When n is understood we denote S(n)
d = Sd.

ΩqX(L) = ΩqX ⊗O(L) for the sheaf of differential forms twisted by a line
bundle L on X.
iv : Ω•X → Ω•−1

X for the interior product or contraction with a vector
field v on a variety X. In addition, if m, q ∈ N, d = (d1, . . . , dm) ∈ Cm and
λ ∈

∧q Cm, we also denote by id(λ) ∈
∧q−1 Cm the interior product of λ

by d, that is

i(d1,...,dm)

( ∑
I:|I|=q

λIei1 ∧ · · · ∧ eiq

)

=
∑

I:|I|=q

q∑
j=1

λI(−1)j+1dijei1 ∧ · · · ∧ êij ∧ · · · ∧ eiq ,

for {e1, . . . , em} the canonical base of Cm.

TOME 70 (2020), FASCICULE 1
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2.1. Singular projective foliations and logarithmic forms

We write Fq(d,Pn) for the moduli space of singular projective foliations of
codimension q and degree d. Recall from [13] (or see also [7]) that this space
is naturally described by projective classes of twisted projective forms ω ∈
H0(Pn,ΩqPn(d)) which satisfy both the Plücker’s decomposability condition

(2.1) iv(ω) ∧ ω = 0 ∀ v ∈
q−1∧

Cn+1

and the so called Frobenius’s integrability condition

(2.2) iv(ω) ∧ dω = 0 ∀ v ∈
q−1∧

Cn+1.

The elements like v can be considered as local frames on the affine cone
over Pn, or alternatively as rational multi-vector fields.
The first equation ensures that ω is locally decomposable outside its

singular set, so this section of ΩqPn(d) belongs to the corresponding Grass-
mannian space at that points. The second equation is a condition to guar-
antee that the singular distribution associated to the kernel of ω is also
integrable. See for instance [13, Proposition 1.2.2]. We also recall that the
singular set of the foliation induced by ω corresponds to its vanishing points
Sω = {p ∈ Pn : ω(p) = 0}.

Remark 2.1. — Each element ω ∈ H0(Pn,ΩqPn(d)) can be represented in
homogeneous coordinates by homogeneous affine q-forms of total degree d
like

ω =
∑

I={i1...,iq}

AI(z)dzi1 ∧ · · · ∧ dziq ,

where {AI}I ⊂ Sd−q are selected in order to satisfy the so called descend
condition

(2.3) iR(ω) = 0 ∈ H0(Cn+1,Ωq−1
Cn+1).

Here R denotes the radial Euler field
∑
i zi

∂
∂zi

.

Remark 2.2. — For q = 2 the decomposability equation (2.1) is slightly
simpler than in the general case because is equivalent to iv(ω ∧ ω) = 0
∀ v ∈ Cn+1, so it can be replaced by

(2.4) ω ∧ ω = 0.
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In conclusion, we define Fq(d,Pn), the algebraic space of codimension q
singular foliations on Pn of degree d > q, as the following set{

[ω] ∈ PH0(Pn,ΩqPn(d)) : ω satisfies (2.1), (2.2) and codim(Sω) > 2
}
.

Thus each [ω] ∈ Fq(d,Pn) determines a singular holomorphic foliation on
Pn whose leaves are of codimension q, i.e., a regular holomorphic foliation
outside the singular set Sω. Moreover, the degree of the divisor of tangencies
of such leaves with a generic linearly embedded Pq in Pn is in this case
d− q − 1 (sometimes also used to refer to the degree of the corresponding
foliation).
On the other hand, we want to define correct formulas for those polyno-

mial logarithmic q-forms in H0(Pn,ΩqPn(d)) that define foliations according
to the above-mentionned equations.
First, we recall the principal definitions and properties of the well-known

sheaf of meromorphic logarithmic forms and its classical residues in our
particular case of interest. For a more extensive development of this task
see [8].

Let D =
∑m
i=1(Fi = 0) be a projective divisor defined by homogeneous

polynomials Fi ∈ Sdi
for i = 1, . . . ,m. The sheaf ΩqPn(logD) of meromor-

phic logarithmic q-forms is defined as a subsheaf of the sheaf ΩqPn(∗D) of
meromorphic forms with arbitrary poles along D according to

ΩqPn(logD) = {α ∈ ΩqPn(∗D) : α and dα have simple poles alongD}.

If D has simple normal crossings, it is a well known fact that

(Ω•Pn(logD), d) ↪→ (Ω•Pn(∗D), d)

determines a subcomplex and a quasi-isomorphism (see [14, Proposition 4.3]).
We consider the following usual filtration

(2.5) Wk(ΩqPn(logD)) =


0 if k < 0
Ωq−kPn ∧ ΩkPn(logD) if 0 6 k 6 q
ΩqPn(logD) if k > q,

and use the notation
• Xi = (Fi = 0) for i = 1, . . . ,m,
• XI = Xi1 ∩ · · · ∩Xik for I = {i1 . . . ik} ⊂ {1, . . . ,m},
• D(I) =

∑
j 6∈I XI ∩Xj as a divisor on XI ,

• jI = XI ↪→ Pn,
• Xk

D =
∐
I:|I|=kXI ,

• jk = Xk
D ↪→ Pn.

TOME 70 (2020), FASCICULE 1



178 Javier GARGIULO ACEA

The desired formula for polynomial logarithmic forms will be supported
on the characterization of the global sections of the sheaf ΩqPn(logD). Our
arguments will rely on the following known constructions and results re-
garding this classical sheaf of forms.

Proposition 2.3. — Assume that D has simple normal crossings.
(1) There is a well defined residue map

ResI : Ω•Pn(logD) −→ Ω•XI
(logD(I))[−k]

for each multi-index I with |I| = k.
(2) The residue map restricts to

ResI : Wk(Ω•Pn(logD) −→ (jI)∗(Ω•XI
[−k]),

is surjective and also well defined on the quotient GrWk (Ω•Pn(logD)).
(3) The total residue map

Resk :=
⊕

I:|I|=k

ResI : GrWk (Ω•Pn(logD)) −→ (jk)∗(Ω•Xk
D

[−k])

is an isomorphism.

Proof. — See [14, Lemma 4.6], or [8] for an extended overview. �

Now we are able to compute H0(Pn,ΩqPn(logD)).

Lemma 2.4. — With the notation above, assume q < min{m,n − 1}.
Then the following computations hold:

(1) H0(Pn,Wk(ΩqPn(logD))) = 0 ∀ k = 0, . . . , q − 1,
(2) H1(Pn,Wk(ΩqPn(logD))) = 0 ∀ k = 0, . . . , q − 2,
(3) H1(Pn,Wq−1(ΩqPn(logD))) has a natural injective map to

∧q−1 Cm.

Proof. — First, recall that the Hodge numbers associated to the classical
projective space are hp,qPn = δpq (Kronecker delta). Due to the normal cross-
ings condition and the Lefschetz hyperplane theorem (see for instance [12,
Section 3.1]) it is also true that

hp,qXI
= δpq ∀ p, q, I : p+ q < n− |I|,

for every complete intersection subvariety XI . Now, we proceed by induc-
tion on the number k > 0. The base case is trivial. Then, the results (1)
and (2) are immediate consequences of considering the long exact sequence
in cohomology associated to the exact sequence

(2.6) 0 −→Wk−1(ΩqPn(logD)) −→Wk(ΩqPn(logD))−→ (jk)∗(Ωq−kXk
D

)−→ 0,
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where the exactness follows from Proposition 2.3. Finally, consider the long
sequence on cohomology for k = q − 1, that is

0→ H1(Pn,Wq−1(ΩqPn))→
⊕

I:|I|=q−1

H1(XI ,Ω1
XI

)

→ H2(Pn,Wq−2(ΩqPn(logD))) . . . ,

and use the knowledge of the Hodge number h1,1
XI

for each I of size q− 1 to
show our assertion (3). �

With a similar proof and the same inductive argument, we can also state
the following result.

Corollary 2.5. — If we assume that D has simple normal crossings
and q < min{m,n− j}, then

Hj(Pn,Wk(ΩqPn(logD))) = 0 ∀ k = 1, . . . , q − j − 1.

Proposition 2.6. — Assume q < min{m,n − 1}. Let F1, . . . , Fm be
homogeneous polynomials with simple normal crossings and respective de-
grees d1, . . . , dm, defying a divisor D as before. For every global section η ∈
H0(Pn,ΩqPn(logD)), there exist unique constants λ = {λI}I:|I|=q ∈

∧q Cm
such that η can be written in homogeneous coordinates as

η =
∑

I⊂{1,...,m}
|I|=q

λI
dFi1
Fi1
∧ · · · ∧

dFiq
Fiq

,

where also λ satisfies id(λ) = 0 to ensure that iR(η) = 0. Recall that id
denotes the interior product by the constant vector d = (d1, . . . , dm).

Proof. — We use once more the exact sequence of sheaves (2.6) consid-
ered at the proof of Lemma 2.4, but now in the particular case k = q, and
we get

0 −→Wq−1(ΩqPn(logD)) −→ ΩqPn(logD) Resq−−−→ (jq)∗(OXq
D

) −→ 0.

The result follows from considering again the associated long exact se-
quence in cohomology, and applying the previous lemma to deduce the
injectivity of the total residue map Resq on global sections. Notice that
the normal crossing assumption ensures that the image of the total residue
map described in homogeneous coordinates can be considered as a subset
of C(m

q ) '
∧q Cm. Hence, the residues of the form

∑
λI

dFi1
Fi1
∧· · ·∧ dFiq

Fiq
are

the numbers (λI). In addition, the kernel of the first connection morphism
of the long exact sequence is exactly determined by the descend condition

TOME 70 (2020), FASCICULE 1
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among the previous form, that is id(λ) = 0. This equation characterizes
the image of Resq and implies our statement. �

Remark 2.7. — In fact, last proposition can be proved for a general com-
plex projective algebraic variety X of dimension n with the assumption

hp,0X = dim(H0(X,ΩpX)) = 0,

for 1 6 p 6 n− 1.

Corollary 2.8. — Select λ ∈
∧q Cm and homogeneous polynomials

Fi ∈ Sdi
having simple normal crossings. Then

∑
λI

dFi1
Fi1
∧ · · · ∧ dFiq

Fiq
= 0

if and only if λ = 0.

The last statement is a sort of extension of [11, Lemma 3.3.1] to the case
of higher degree logarithmic forms, with a more restrictive hypothesis.

Corollary 2.9. — For every simple normal crossings divisor D set as
before we have

H0(Pn,ΩqPn(logD)) '
{
λ ∈

q∧
Cm : id(λ) = 0

}
.

Moreover, notice that for each q ∈ N<m the right set corresponds to the
degree q cycles of the Koszul complex associated to the vector d ∈ Cm, i.e.,
the exact complex

K(d) : 0→
m∧

Cm id−→
m−1∧

Cm id−→ . . .
id−→
∧

Cm id−→ C→ 0.

Definition 2.10. — Fix natural numbers d and m. A partition of d
into m parts is an m-tuple of degrees d = (d1, . . . , dm) ∈ Nm satisfying∑m
i=1 di = d.

For future convenience, we will use the following notation.

Definition 2.11. — For Fi ∈ Sdi as above we denote

F = (F1, . . . , Fm),

F =
m∏
j=1

Fj , F̂i =
∏
j 6=i

Fj , F̂ij =
∏

k 6=i,k 6=j
Fk, (i 6= j),

or, more generally, for I ⊂ {1, . . . ,m} we write F̂I =
∏
j /∈I Fj .
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Definition 2.12. — Fix d as a partition of d ∈ N>q into m parts,
and assume m > q + 1. A twisted projective differential q-form ω ∈
H0(Pn,ΩqPn(d)) is a polynomial logarithmic q-form of type d if it is de-
fined by the following formula

(2.7) ω = F

 ∑
I:|I|=q

λI
dFi1
Fi1
∧ · · · ∧ dFiq

Fiq

 =
∑

I:|I|=q

λI F̂IdFI ,

where Fi ∈ Sdi
and λ ∈

∧q Cm satisfies id(λ) = 0.

Remark 2.13. — From Corollary 2.9 we deduce that for every logarithmic
q-form ω as in (2.7), there exist γ ∈

∧q+1 Cm such that id(γ) = λ and

ω = iR

 ∑
J:|J|=q+1

γJ F̂JdFJ

 .

Hence the above formula could be an alternative definition for logarithmic
q-forms of type d. See also [7] to compare our formulas with the definition
presented there for rational q-forms.

At first, we want to determine when this type of forms define foliations
of codimension q, i.e., when the forms as in (2.7) satisfy the equations
of Fq(d,Pn). For simplicity, we start with the Plücker’s decomposability
condition (2.1) (or equivalently (2.4)) for q = 2.

Proposition 2.14. — If ω is a logarithmic 2-form of type d and the
polynomials involved have simple normal crossings, then the following con-
ditions are equivalent:

(1) ω ∧ ω = 0
(2) λ ∧ λ = 0.

Proof. — Notice that

ω ∧ ω = F 2

 ∑
i 6=j 6=k 6=l

(λ ∧ λ)ijkl
dFi
Fi
∧ dFj
Fj
∧ dFk
Fk
∧ dFl
Fl

 .

The result then follows from Corollary 2.8. �

Remark 2.15. — For ω as above, the condition λ ∧ λ = 0 implies that
there exist λ1, λ2 ∈ Cm such that λ = λ1 ∧ λ2. In this case, if we consider
the meromorphic logarithmic forms defined by

ηj =
m∑
i=1

(λj)i
dFi
Fi

j = 1, 2,

TOME 70 (2020), FASCICULE 1
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then the meromorphic logarithmic 2-form η = ω
F = η1 ∧ η2 is globally

decomposable.

Remark 2.16. — If we consider a totally decomposable q-vector λ = λ1∧
· · · ∧ λq ∈

∧q Cm with id(λ) = 0, then for every selection of homogeneous
polynomials, the induced logarithmic q-form of type d as in (2.7) satisfies
the Plücker’s decomposability equation (2.1). Using the above notation,
the reason is that the meromorphic q-form η = ω

F = η1∧ · · ·∧ηq is globally
decomposable.

Let us recall that the grassmannian space Gr(q,Cm) of q-dimensional
subspaces of Cm can be considered as a projective algebraic subset of
P(
∧q Cm) via the Plücker embedding

ι : Gr(q,Cm) −→ P

(
q∧
Cm
)

span(λ1, . . . , λq) 7−→ [λ1 ∧ · · · ∧ λq].

With a slight abuse of notation, we only write λ or λ1 ∧ · · · ∧ λq for
the elements of Gr(q,Cm) and (λI) for its corresponding antisymmetric
coordinates.

Proposition 2.17. — For d as above, λ ∈ Gr(q,Cm) such that id(λ) =
0 and (Fi)mi=1 ∈

∏m
i=1 Sdi

, the logarithmic q-form of type d

ω =
∑

I:|I|=q

λI F̂IdFI

is a twisted projective form of total degree d, i.e., ω ∈ H0(Pn,ΩqPn(d), and
satisfies (2.1) and (2.2). Hence [ω] ∈ Fq(d,Pn).

Proof. — If we take into consideration Remark 2.16, then it only re-
mains to prove that ω satisfies the integrability equation iv(ω) ∧ dω =
0, for all v ∈

∧q−1 Cn+1. This follows by a straight forward calculation
using that dω = dF

F ∧ ω and iv(ω) ∧ ω = 0. �

The next result characterizes in an useful way the condition id(λ) = 0
for λ ∈ Gr(q,Cm).

Lemma 2.18. — For λ = λ1 ∧ · · · ∧ λq ∈
∧q(Cm) − {0}, the following

equations are equivalent:
(1) id(λ) = 0
(2) id(λi) = 0, ∀ i = 1, . . . , q.
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Proof. — The equivalence follows from

id(λ) =
m∑
j=1

(−1)j id(λj) λ1 ∧ · · · ∧ λ̂j ∧ · · · ∧ λq,

and the fact that {λ1 ∧ · · · ∧ λ̂j ∧ · · · ∧ λq}j are linearly independent. �

Corollary 2.19. — The following equality holds:

{λ ∈ Gr(q,Cm) : id(λ) = 0} = Gr(q,Cmd ),

where Cmd denotes the linear space of vectors µ ∈ Cm such that idµ =
µ · d =

∑m
i=1 µidi = 0.

Remark 2.20. — Notice that we have not proved that if ω is a logarithmic
q-form of type d as in Definition 2.12, then the moduli equations (2.1)
and (2.2) are equivalent to the condition λ ∈ Gr(q,Cmd ), i.e., ω globally
decomposable outside DF = (F = 0). Proposition 2.17 only states a partial
answer to that problem. However, when q = 2 the equivalence is in fact
true according to Proposition 2.14. It is also remarkable that the case q > 2
is an open question in [3, Problem 1].

2.2. The logarithmic varieties and the natural parametrization

Consider again natural numbers q ∈ N, n ∈ N>q+1, d,m ∈ N>q+1 and
a partition d of d into m parts. According to Proposition 2.17 we denote
by lq(d, n) the algebraic set of logarithmic q-forms of type d which are
globally decomposable outside their corresponding divisor DF = (F = 0),
and whose projective classes determine codimension q foliations. Actually,
this set also coincides with the image of the multi-linear map

φ : (Cmd )q ×
m∏
i=1

Sdi
−→ H0(Pn,ΩqPn(d))

((λ1, . . . , λq), (F1, . . . , Fm)) 7−→
∑

I:|I|=q

(λ1 ∧ · · · ∧ λq)I F̂IdFI .

TOME 70 (2020), FASCICULE 1



184 Javier GARGIULO ACEA

Definition 2.21. — We introduce the following map as our natural
parametrization:

ρ : Pq(d) := Gr(q,Cmd )×
m∏
i=1

P(Sdi
) −→ Fq(d,Pn) ⊂ PH0(Pn,ΩqPn(d))

(2.8)

(λ = [(λ1 ∧ · · · ∧ λq)], F = ([F1], . . . , [Fm])) 7−→ [ω] =

 ∑
I:|I|=q

λI F̂IdFI

.
From now on and when there is no confusion, we avoid the notation

[ · ] for the corresponding projective classes of the elements involved in the
definition of ρ.

Definition 2.22. — We define the logarithmic variety Lq(d, n) as the
Zariski closure of the image of ρ, i.e., Lq(d, n) = im ρ ⊂ Fq(d,Pn).

Remarks 2.23.

(1) ρ is only a rational map and so it is not well defined on the whole
space of parameters Pq(d). In particular, on the parameters which
give rise to forms that vanish completely (base locus of the parame-
trization).

(2) The space Pq(d) is an algebraic irreducible projective variety of
dimension

∑m
i=1
(
n+di

di

)
−m+ q(m− 1− q).

(3) Notice that the image of ρ also coincides with Plq(d, n).
(4) The space Lq(d, n) is a projective irreducible subvariety of Fq(d,Pn).

With some conditions among d, we will prove that L2(d, n) is an irre-
ducible component of the space F2(d,Pn). From now on, in general, we
assume q = 2.
For our prompt purposes we need to assume some generic conditions on

the parameters in P2(d). The polynomials {Fi} and the constants {λij}
are general according to the following definition.

Definition 2.24. — We take the non-empty algebraic open subset of
P2(d) defined by

U2(d) = {(λ, F ) ∈ P2(d) : λij 6= 0, λij−λik+λjk 6= 0, λij−λik−λjk 6= 0
and F1, . . . , Fm are smooth irreducible with normal crossings}.

Remark 2.25. — It follows from Corollary 2.8 that U2(d) does not inter-
sect the base locus of ρ.
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A more detailed analysis of the base locus of ρ, including a description
of its irreducible components and scheme structure will be pursued in [4].

2.3. The Zariski tangent space of F2(d,Pn)

For a scheme X and a point x ∈ X we denote by TxX the Zariski tangent
space of X at x. Remember that for a classical projective space X = PV,
associated to a finite dimensional vector space V, it is common to identify
its Zariski tangent space at a given point x = π(v) with

TxX = V/〈v〉.

Also recall that F2(d,Pn) is the closed subscheme of the projective space
P(H0(Pn,Ω2

Pn(d))) defined by equations (2.1) and (2.4). With a slight abuse
of notation, the Zariski tangent space TωF2(d,Pn) can be represented by
the forms α ∈ H0(Pn,Ω2

Pn(d))/〈ω〉 such that

(ω + εα) ∧ (ω + εα) = 0 and

(ivω + εivω) ∧ (dω + εdα) = 0 ∀ v ∈ Cn+1 , with ε2 = 0.

Remark 2.26. — If we fix an element ω ∈ F2(d,Pn), then a simple cal-
culation shows that α ∈ H0(Pn,Ω2

Pn(d))/〈ω〉 belongs to the Zariski tangent
space of F2(d,Pn) at ω if and only if it fulfills the following equations:

α ∧ ω = 0(2.9)

(ivω ∧ dα) + (ivα ∧ dω) = 0 ∀ v ∈ Cn+1.(2.10)

We refer to the first equation as the decomposability perturbation equa-
tion and to the second one as the integrability perturbation equation. In
conclusion, we have

TωF2(d,Pn) = {α ∈ H0(Pn,Ω2
Pn(d))/〈ω〉 : α satisfies (2.9) and (2.10)}.

2.4. The derivative of the natural parametrization

One of our main purposes is to show that the derivative of ρ is surjective
(see for instance Section 3.1). In order to carry out this plan we need to
set some notation.
As it was explained in the previous section, for every e ∈ N we have

Tπ(F )P(Se) = Se/〈F 〉.

From now on we will write F ′ for a general element of this space.
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Moreover, let λ = [λ1 ∧ λ2] be an element in the grassmannian space
Gr(2,Cmd ). The Zariski tangent space of Gr(2,Cmd ) at λ has a natural
identification with the space of antisymmetric vectors λ′ ∈

∧2(Cmd )/〈λ〉
such that

(2.11) λ′ ∧ λ = 0.

Even more, the vectors λ′ satisfying the above condition can be written as

(2.12) λ′ = (λ′)1 ∧ λ2 + λ1 ∧ (λ′)2,

where (λ′)1,(λ′)2 ∈ Cmd /〈λ1,λ2〉. In general, we will write λ′ for the ele-
ments of TλGr(2,Cmd ), i.e., for the vectors λ′ ∈

∧2(Cmd )/〈λ〉 fulfilling equa-
tion (2.11) or equivalently of the type (2.12).

Remark 2.27. — Let (λ1 ∧ λ2, (Fi)mi=1) = (λ, F ) ∈ P2(d) be a fixed pa-
rameter in the domain of ρ and write ω = ρ((λ, F )) =

∑
i 6=j λijF̂ijdFi∧dFj .

From the multilinearity of φ and the definition of ρ, we obtain the following
formula for the derivative of ρ:

(2.13) dρ(λ, F ) : TλGr(2,Cmd )×
m∏
i=1
TFi

PSdi
−→ TωF2(d,Pn)

(λ′, (F ′1, . . . , F ′m)) 7−→
∑
i 6=j

λ′ijF̂ijdFi ∧ dFj

+
∑
i 6=j 6=k

λijF̂ijkF
′
kdFi ∧ dFj + 2

∑
i 6=j

λijF̂ijdF ′i ∧ dFj .

We will use the following notation for the forms in the image of the partial
derivatives of ρ:

α1 = dρ(λ, F )(λ′, (0, . . . , 0)) with λ′ ∈ TλGr(2,Cmd ),
α2 = dρ(λ, F )(0, (F ′1, . . . , F ′m)) with F ′i ∈ Sdi

/〈Fi〉.

Remark 2.28. — For each (λ, F ) ∈ P2(d) we have an inclusion of vector
spaces im(dρ(λ, F )) ⊂ TωF2(d,Pn). In particular, the forms like α1 and α2
satisfy the perturbation equations (2.9) and (2.10).

Now, we want to distinguish the two introduced partial derivatives. With
the notation of Section 2.1 (see our definitions in (2.5)), we will see they
vanish on different strata Xk

DF
associated to the divisor DF = (F = 0) =⋃m

i=1 Xi = (Fi = 0). Under the assumptions of Definition 2.24, each XI

is a smooth complete intersection of codimension |I|. Thus, the stratum
Xk
DF

has codimension k and is singular along Xk+1
DF

. We have the following
results concerning these spaces.
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Proposition 2.29. — For every m> 1 and k ∈{1, . . . ,m}, the satura-
ted homogeneous ideal I(k) associated to Xk

DF
is generated by {F̂J}|J|=k−1.

Hence we have a surjective map
⊕
|J|=k−1OPn(−d̂J) � IXk

DF

, where
IXk
DF

⊂ OPn denotes the ideal sheaf of regular functions vanishing on

each stratum, and d̂J =
∑
j /∈J dj .

Proof. — We will proceed by induction on the total number of polynomi-
als m, where m > k is required. The base case is trivial, left to the reader.
It is also clear that I(k) =

⋂
J:|J|=k〈Fj1 , . . . , Fjk

〉, and then we are reduced
to prove that ⋂

J⊂{1,...,m}:|J|=k

〈Fj1 , . . . , Fjk
〉 = 〈F̂J〉J⊂{1,...,m}:

|J|=k−1
.

One inclusion is always clear and does not require the inductive argument.
Next, if we separate in the left term the multi-indexes of the intersection
which do not contain m and use the inductive hypothesis, then we obtain

(2.14) I(k) =
⋂

J⊂{1,...,m−1}:
|J|=k−1

〈F̂J∪{m}〉 ∩ 〈Fj1 , . . . , Fjk−1 , Fm〉.

As a consequence, for every P ∈ I(k) there exists a family of polynomials
{HJ}J:|J|=k−1 such that

(2.15) P =
∑

J:|J|=k−1

HJ F̂J∪{m}.

For each J0 = {j1, . . . , jk−1} ⊂ {1, . . . ,m− 1} the class [P ] in the quotient
ring C[z0, . . . , zn]

/
〈Fj1 , . . . , Fjk−1 , Fm〉 is equal to zero. This is a conse-

quence of formula (2.14). Hence we have [HJ0 ][F̂J0∪{m}] = 0. Finally, since
the ring is integral and Fl /∈ 〈Fj1 , . . . , Fjk−1 , Fm〉, for every index l /∈ J0
distinct of m, we get [HJ0 ] = 0. This fact applied to equality (2.15) allows
us to show the other needed inclusion. �

Remark 2.30. — If ω = ρ(λ, F ) is a projective logarithmic q-form of type
d, then Xq+1

DF
is contained in its singular set.

Remark 2.31. — Assumem > 3. With notation as in Remark 2.27, notice
that α1 vanishes on X3

DF
and α2 on X4

DF
, and so every element α in the

image of dρ vanishes on X4
DF

.
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3. Infinitesimal stability of a generic logarithmic 2-form

3.1. Main results

Our desired result can be summarized in the next theorem. For some
technical reasons that will be explained later, the vector of degrees d is
assumed to be 2-balanced (see Definition 3.18).

Theorem 3.1. — Fix natural numbers n,m ∈ N>3, and a 2-balanced
vector of degrees d = (d1, . . . , dm) with d =

∑
i di. The variety L2(d, n) is

an irreducible component of the moduli space F2(d,Pn). Furthermore, the
scheme F2(d,Pn) is generically reduced along this component, in particular
at the points of ρ(U2(d)).

The proof of the above theorem is implied by the surjectivity of the de-
rivative of the natural parametrization ρ (Proposition 3.2 below), combined
with some arguments of scheme theory. This method is the same as the one
used to prove [7, Theorem 2.1] and [6, Theorem 1]. Moreover, it was also
used in [5, Theorem 8.2] for an alternative algebraic proof of the stability
of projective logarithmic one forms. As a consequence, we will only present
a proof of the corresponding proposition.

Proposition 3.2. — With the notation of Theorem 3.1, let (λ, F ) ∈
U2(d) and ω = ρ(λ, F ). Then the derivative

dρ(λ, F ) : TλGr(2,Cmd )×
m∏
i=1
TFi

PSdi
−→ TωF2(d,Pn)

is surjective.

Proof. — It will be attained in the following section. �

Remark 3.3. — Most of our definitions and constructions concerning log-
arithmic q-forms of type d = (d1, . . . , dm) assume m > q+ 1. However, the
techniques applied in the proof of Proposition 3.2 (and hence of Theo-
rem 3.1) require q = 2 and m > 3. Notice that the case m = q + 1 cor-
responds to rational q-forms, and it is already known that they determine
irreducible and generically reduced components of Fq(d,Pn) (see [7]).

3.2. Surjectivity of the derivative of the natural parametrization

Let us now start with several steps towards the proof of Proposition 3.2.
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3.2.1. Lemmas

We keep the generic conditions assumed in Definition 2.24. In particu-
lar, we fix homogeneous irreducible polynomials F1, . . . , Fm with smooth
normal crossings.

Remark 3.4. — With the normal crossing assumption, the next property
is satisfied:

(∗) for I = {i1, . . . , ik} ⊂ {1, . . . ,m} and every point x ∈ C(XI)−{0} ⊂
Cn+1, we have

dxFi1 ∧ · · · ∧ dxFik 6= 0,

where C(XI) denotes the affine cone over XI and dxFj is the differential of
Fj at x.

The following lemma is similar to that described in [7, Lemma 2.2], and
also it is a consequence of Saito’s Lemma [15] turned up for our purposes.

Lemma 3.5 (Division Lemma). — Assume n,m ∈ N>3, and fix k ∈
{1, 2}, integers j and q with 1 6 j 6 q 6 n − 2, and I = {i1, . . . , iq} ⊂
{1, . . . ,m}. If µ ∈ H0(Pn,ΩkPn(d)) is a twisted k-form of total degree d such
that in homogeneous coordinates satisfies

(3.1) (µ ∧ dFi1 ∧ · · · ∧ dFij )|C(XI ) = 0,

then there exists forms {γr}jr=1 ⊂ H0(Cn+1,Ωk−1
Cn+1), where each γr is a

homogeneous affine form of total degree d− dir , such that

µ|XI
=
(

j∑
r=1

γr ∧ dFir

)∣∣
XI
.

Proof. — Notice that the restricted sheaf Ω1
Cn+1 |C(XI ) is an OC(XI )-

module freely generated on global sections according to: Ω1
Cn+1 |C(XI ) =

OC(XI ) · dz0|C(XI ) ⊕ · · · ⊕ OC(XI ) · dzn|C(XI ). Moreover, the property (∗)
of the previous remark implies that the unique singularity of the j-form
dFi1 |C(XI ) ∧ · · · ∧ dFij |C(XI ) is the point zero. Now, consider the ideal A
generated by the coefficients {al1...lj} determined by the decomposition

(dFi1 ∧ · · · ∧ dFij )|C(XI ) =
∑

06l1<···<lj6n
al1...lj dzl1 |C(XI ) ∧ · · · ∧ (dzlj )|C(XI ).

The depth of A is greater or equal than three because of the normal
crossings hypothesis. Hence, we are able to apply Saito’s lemma (see [15])
to divide 1-forms and 2-forms restricted to C(XI). From this lemma
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and equation (3.1), we deduce the existence of homogeneous forms γ̃r in
H0(C(XI),Ωk−1

Cn+1 |C(XI )) of degrees d− dir for r = 1, . . . , j such that

µ|C(XI ) =
j∑
r=1

γ̃r ∧ (dFir |C(XI )).

Next, we need to construct global homogeneous forms {γr} whose restric-
tion to C(XI) coincides with {γ̃r}. When k = 1, each function γ̃r can
be considered as an element of H0(XI ,OXI

(d − dir )). Since each XI is a
smooth complete intersection, the corresponding restriction map is surjec-
tive (see for instance [10, Exercise 5.5]). Using this fact, we deduce the ex-
istence of γk ∈ H0(Pn,OPn(d−dik )) as wanted. When k = 2, we have γ̃r =∑n
s=0 A

r
sdzs|C(XI ), where {Ars}r,s are elements in H0(XI ,OXI

(d−dir−1)).
Finally, we may apply the previous procedure to each function Ars, and
hence construct homogeneous global affine 1-forms and as claimed. �

Remarks 3.6.

(1) The above proof does not use the fact that the form µ descends
to the projective space, that is iR(µ) = 0. So the conclusion
of Lemma 3.5 holds for every homogeneous affine form µ ∈
H0(Cn+1,ΩkCn+1) satisfying equation (3.1).

(2) The depth of the ideal A defined in the previous proof is greater
or equal than the dimension of C(XI), which is exactly n + 1 − q.
Hence by an inductive argument, the previous result is in fact true
for k 6 n− q.

Remark 3.7. — Let X be an algebraic variety and Y i
↪−→ X a subvariety

whose sheaf of ideals is denoted by IY ⊂ OX . Also let E be a locally free
sheaf on X. Taking global sections on the exact sequence

0→ E ⊗ IY → E → i∗(E ⊗ OY ) := E|Y → 0,

we can identify the global sections of E vanishing on Y with the elements
of H0(X, E ⊗ IY ).

Lemma 3.8 (Vanishing Lemma). — Let µ ∈ H0(Cn+1,Ω2
Cn+1) be a ho-

mogeneous affine 2-form of total degree d. If µ vanishes on the affine cone
C(Xk

DF
) for some k ∈ N>2, then

µ =
∑

I:|I|=k−1

F̂I µI

for some homogeneous affine 2-forms µI of degree
∑
i∈I di.
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Proof. — The result is a consequence of Proposition 2.29 and the previ-
ous remark applied to X = Cn+1, Y = C(Xk

DF
) and E = Ω2

Cn+1 . �

Lemma 3.9 (Fundamental Lemma). — Assume m ∈ N>3. Consider a
family of homogeneous polynomials {Bijk} whose indexes are selected on
the set {1, . . . ,m}. Suppose Bijk = Bjik and deg(Bijk) = dk. If these
polynomials also satisfy the relations

(3.2) Bijl(x) = Bikl(x) = Bjkl(x) ∀ x ∈ Xijkl,

then for each k ∈ {1, . . . ,m} there exists a polynomial F ′k ∈ Sdk
such that

Bijk(x) = F ′k(x) ∀ x ∈ Xijk.

Proof. — Fix two indexes j, k ∈ {1, . . . ,m}, write X = Xjk and DX
for the restriction of the divisor DF to X. The family {Bijk}i 6=j, k deter-
mines a well defined object in H0(DX ,ODX

(dk)), by (3.2). Now, take into
consideration the exact sequence

0→ IDX
(dk)→ OX(dk)→ i∗(ODX

)(dk)→ 0,

and the associated long exact sequence in cohomology

0→ H0(X, IDX
(dk))→ H0(X,OX(dk))→ H0(DX ,ODX

(dk))

→ H1(X, IDX
(dk))→ · · ·

Observe that DX = (F̂jk|X = 0), and so IDX
(dk) ' OX(2dk + dj − d).

Moreover, since H1(X,OX(2dk+dj−d)) = 0 (see again [10, Exercise 5.5]),
the second morphism of the long sequence is surjective. Summarily, there
exists an element H̃jk ∈ H0(X,OX(dk)) whose restriction to DX coincides
with {Bijk}i 6=j, k.

With a similar argument, the restriction map

H0(Pn,OPn(dk)) |X−→ H0(X,OX(dk))

is also surjective. Then, we can choose a global homogeneous polynomial
Hjk such that Hjk = Bijk on Xijk for all i 6= j, k. In addition, we have
Hjk = Bijk = Bjik = Hik on Xijk. Hence, we have construct a family of
homogeneous polynomials {Hjk}j,k with deg(Hjk) = dk such that Hik =
Hjk on every triple intersection Xijk.

Finally, we need to apply again the previous procedure but now over the
family {Hjk} on the variety X = Xk (see also [5, Proposition 8.9]). From
this result we deduce the existence of F ′k ∈ Sdk

such thatHjk = F ′k on Xjk

as claimed. �
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Remark 3.10. — The previous lemma is also true for families of polyno-
mials supported on an arbitrary number of indexes, and the proof can be
preformed by induction.

We end this section with the construction of certain rational vector fields
dual, in some sense, to the homogeneous affine 1-forms {dFi}mi=1.

Remark 3.11 (Fields with the δ-property). — Fix an integer r < n and
select I = {i1, . . . , ir} ⊂ {1, . . . ,m}. For each j ∈ {1, . . . , r} we can select,
locally on the points of XI , a rational vector field V Ij such that

(3.3) iV I
j

(dFik ) = δjk on XI ∀ k ∈ {1, . . . , r}.

A similar construction was used in [7, Proof of Proposition 3.1].
The correct objects to consider are the so called logarithmic vector fields.

The formal definition of a logarithmic derivation along an hypersurface D
of a complex algebraic variety X (with associated ideal sheaf I) is the
following:

DerX(logD)p = {χ ∈ (DerX)p : χ(Ip) ⊂ Ip}.
We refer to [16] for more details and properties. In particular, we shall use
that

Ω1
X(logD)p and DerX(logD)p

are reflexive OX,p-modules, dual to each other. Also, when the divisor has
simple normal crossings we are able to apply Saito’s criterion ([16] p. 270).
If we fix local coordinates f1, . . . , fn and assume that the divisor is defined
by the zero locus of f1 . . . fs, then df1

f1
, . . . , dfs

fs
,dfs+1, . . . ,dfn is a free

system of generators of Ω1
X(logD)p. And the local fields f1 · ∂

∂f1
, . . . , fs ·

∂
∂fs

, ∂
∂fs+1

, . . . , ∂
∂fn

determines a dual basis of DerX(logD)p.
In conclusion, for the simple normal crossings projective divisor DF de-

termined by the zero locus of
∏m
i=1 Fi, it is possible to construct vector

fields V Ij with the property (3.3) as claimed.

3.2.2. Beginning of the proof of Proposition 3.2. Steps 1 to 4

Note. — The hypothesis of d being 2-balanced will be introduced only
when necessary.

As before, fix n,m ∈ N>3 and a partition d of d into m parts. Let (λ1 ∧
λ2, (Fi)mi=1) = (λ, F ) ∈ U2(d) and ω = ρ(λ, F ) =

∑
i 6=j λijF̂ijdFi ∧ dFj .

Consider α ∈ Tω(F2(d,Pn)), i.e., a projective form α ∈ H0(Pn,Ω2
Pn(d))/〈ω〉

satisfying equations (2.9) and (2.10). We want to prove that there exists
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an element (λ′, (F ′i )mi=1) ∈ T(λ,F )U2(d) such that dρ(λ, F )(λ′, (F ′i )mi=1) = α.

Using formula (2.13), the problem is equivalent to show that

α=
∑
i 6=j

λ′ijF̂ijdFi ∧dFj+
∑
i6=j 6=k

λijF̂ijkF
′
kdFi ∧dFj + 2

∑
i 6=j

λijF̂ijdF ′i ∧dFj .

In the sake of clarity, we will separate the proof in several steps related
to the possible vanishing of α on each stratum Xk

DF
. First, we shall prove

that α vanishes on X4
DF

, and describe its restriction to X3
DF

.

Proposition 3.12 (Step 1). — If α is a Zariski tangent vector of
F2(d,Pn) at ω, then α|X4

DF

= 0. Moreover, the following decomposition
holds:

α =
∑
i 6=j 6=k

F̂ijkAijkdFi ∧ dFj + ε,

for some homogeneous polynomials {Aijk} with Aijk = −Ajik, and ε ∈
H0(Cn+1,Ω2

Cn+1) a homogeneous form of total degree d satisfying ε|X3
DF

= 0.

Proof. — Since X3
DF

is contained in the singular set of ω, we have
iv(ω)|Xijk

= 0 for each vector v and every piece Xijk of X3
DF

. Also, for
every i, j and k notice that

dω|Xijk
= ((λij − λik + λjk)F̂ijkdFi ∧ dFj ∧ dFk)|Xijk

.

Then, the integrability perturbation equation iv(α) ∧ dω + iv(ω) ∧ dα = 0
reduces to ivα∧ ((λij−λik +λjk)F̂ijkdFi∧dFj ∧dFk) = 0 on Xijk. Taking
into consideration the definition of U2(d) we get

(3.4) ivα ∧ dFi ∧ dFj ∧ dFk = 0 on Xijk −X4
DF
.

If we select certain local bases at the points of Xijk as in Remark 3.11
turned up for this particular case, then after some straightforward calcula-
tions we obtain

α ∧ dFi ∧ dFj ∧ dFk = 0 on Xijk.

Now, we are able to apply Lemma 3.5 (division lemma), and deduce that

(3.5) α = γi ∧ dFi + γj ∧ dFj + γk ∧ dFk on Xijk,

for some homogeneous forms γl ∈ H0(Cn+1,Ω1
Cn+1) of total degree d− dl.

Again, we need to use fields with the δ-property developed in Remark 3.11.
In particular, we choose a rational vector field Y jijk such that

(iY j
ijk

(dFj))|Xijk
= 1 and (iY j

ijk
(dFi))|Xijk

= (iY j
ijk

(dFk))|Xijk
= 0.

Therefore, equation (3.4) combined with decomposition (3.5) implies that

γj ∧ dFi ∧ dFj ∧ dFk = 0,
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at the points of Xijk. We can also permute indexes to deduce the same
condition for γi and γk. Applying again the division lemma, we finally
achieve the following formula:

(3.6) α = GijkdFi ∧ dFj +GjkidFj ∧ dFk +GikjdFi ∧ dFk on Xijk,

where {Grst}r,s,t are homogeneous polynomials of the correct degree.
Now, if we fix another index l and compare the previous decompositions

on their restriction to Xijkl = Xijk ∩Xjkl ∩Xikl, then we get

α|Xijkl
= (GijkdFi ∧ dFj +GjkidFj ∧ dFk +GikjdFi ∧ dFk)|Xijkl

= (GjkldFj ∧ dFk +GkljdFk ∧ dFl +GjlkdFj ∧ dFl)|Xijkl
.

Due to the normal crossings hypothesis, the restricted forms dFi|Xijkl
,

dFj |Xijkl
, dFk|Xijkl

and dFl|Xijkl
are linearly independent at every point

of Xijkl. Hence, we have Gijk|Xijkl
= 0 for all l 6= i, j, k. As a consequence,

for every selection of indexes i, j and k there exists a homogeneous polyno-
mial Aijk such that Gijk = F̂ijkAijk on Xijk. It is easy to check that both
families {Gijk} and {Aijk} can be selected antisymmetric in the first two
indexes.
Finally, notice that α and

∑
F̂ijkAijkdFi∧dFj have the same restriction

to eachXijk. Hence the form ε = α−
∑
F̂ijkAijkdFi∧dFj is a homogeneous

affine form of total degree d that vanishes on X3
DF

, as claimed. �

Corollary 3.13. — Any Zariski tangent vector α ∈ TωF2(d,Pn) may
be written as

α =
∑
i 6=j 6=k

F̂ijkAijkdFi ∧ dFj +
∑
i<j

F̂ijεij

for some homogeneous affine 2-forms {εij}.

Proof. — It follows from Proposition 3.12 (step 1) and Lemma 3.8 (van-
ishing lemma). �

The next step deals with the existence of the expected polynomials “F ′i”.
We would like to obtain some equations for the polynomials {Aijk} of step
1 to deduce that each Aijk/λij only depends on the index k.

Proposition 3.14 (Step 2). — With the notation of Proposition 3.12,
define Bijk = Aijk/λij for i 6= j 6= k. Then, these new polynomials neces-
sarily satisfy the relations

Bijl(x) = Bjkl(x) = Bikl(x) ∀ x ∈ Xijkl.

Proof. — We will fix in some order four indexes i0, j0, k0 and l0 to deduce
the desired conditions on Xi0j0k0l0 .
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First, select j0 and l0, and use the construction of Remark 3.11 to select
a local rational vector field Yj0 := Y j0

j0l0
with the corresponding δ-property.

For simplicity, we will work separately on the two terms of the restricted
perturbation equation

(3.7) (iYj0
(α) ∧ dω)|Xj0l0

+ (iYj0
(ω) ∧ dα)|Xj0l0

= 0.

From Corollary 3.13 we have

iYj0
(α) =

∑
i 6=j 6=k

2F̂ijkAijkiYj0
(dFi)dFj +

∑
i<j

F̂ijiYj0
(εij).

Hence its restriction to Xj0l0 is∑
k

2F̂j0l0kAl0j0dFl0 +
∑
i

2F̂ij0l0Aij0l0iYj0
(dFi)dFj0

+
∑
i

2F̂ij0l0Ail0j0iYj0
(dFi)dFl0 +

∑
j

2F̂j0jl0Aj0jl0dFj

+ F̂j0l0iYj0
(εj0l0).

Also notice that

(dω)|Xj0l0
=

 ∑
i 6=j 6=k

λijF̂ijkdFi ∧ dFj ∧ dFk

∣∣∣∣∣∣
Xj0l0

= (χj0l0 ∧ dFj0 ∧ dFl0)|Xj0l0

for some homogeneous affine 1-form χj0l0 . As a consequence, we get the
following description of the whole first term on its restriction to Xj0l0 :

iYj0
(α) ∧ dω =

∑
i6=j 6=k 6=r
r 6=j0,l0

2λijAj0rl0 F̂j0rl0 F̂ijkdFr ∧ dFi ∧ dFj ∧ dFk

+ 2F̂j0l0iYj0
(εj0,l0) ∧ χj0l0 ∧ dFj0 ∧ dFl0 ,

where F̂j0rl0 F̂ijk can be replaced by F̂j0l0 F̂ijkr.
Now, we ought to make the same process on the other term of expres-

sion (3.7). In this case, observe that

(iYj0
(ω))|Xj0l0

=

∑
i6=j

2λijF̂ijiYj0
(dFi)dFj

∣∣∣∣∣∣
Xj0l0

= (2λj0l0 F̂j0l0dFl0)|Xj0l0
.
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After some straight forward calculations we obtain that the restriction of
iYj0

(ω) ∧ dα to Xj0l0 coincides with the restriction of the form

2λj0l0 F̂j0l0dFl0 ∧
( ∑
i 6=j 6=k 6=r

AijkF̂ijkrdFi ∧ dFj ∧ dFr

+
∑
i 6=j 6=k

F̂ijkdAijk ∧ dFi ∧ dFj +
∑
i 6=j 6=k
i<j

F̂ijkdFk ∧ εij +
∑
i<j

F̂ijdεij

)
.

Next, we need to add the two term’s expressions obtained. Also, notice
that we are allowed to cancel the polynomial factor F̂j0l0 . Then, select two
more distinct indexes i0 and k0, and further restrict to Xi0j0k0l0 to obtain

((λj0k0 + λk0l0)Aj0i0l0 + (λi0j0 + λl0i0)Aj0k0l0 + λj0l0Ai0k0l0) F̂i0j0k0l0

dFi0 ∧ dFj0 ∧ dFk0 ∧ dFl0 = 0.

Due to the normal crossings hypothesis, the definition of the polynomials
{Bijk} and the order in which the indexes were selected, we have produced
the following equation on Xi0j0k0l0 :

(λj0k0λj0i0 + λk0l0λj0i0)Bj0i0l0 + (λi0j0λj0k0 + λl0i0λj0k0)Bj0k0l0

+ λj0l0λi0k0Bi0k0l0 = 0,

from now denoted by [Eqj0l0i0k0 ]. Since Aijk = −Ajik, if we consider the
sum of equations [Eqi0l0j0k0 ], [2Eqj0l0i0k0 ] and [Eqk0l0i0j0 ], then we have

(λi0j0 − λi0k0 + λj0k0)(Bi0j0l0 −Bj0k0l0) = 0

on Xi0j0k0l0 as wanted. Finally, the other equality follows from an appro-
priated permutation of indexes. �

In the next step, we deduce that any tangent vector at ω may be de-
compose as a sum of a perturbation in the image of dρ that vanishes on
X4
DF

, with another tangent vector that vanishes on a stratum of lower
codimension.

Proposition 3.15 (Step 3). — For every α ∈ TωF2(d,Pn), there exists
a family of homogeneous polynomials F ′1, . . . , F ′m of degrees d1, . . . , dm and
another tangent vector β ∈ TωF2(d,Pn) with β|X3

DF

= 0, such that

α =
∑
i 6=j 6=k

λijF̂ijkF
′
kdFi ∧ dFj +

∑
i6=j

2λijF̂ijdF ′i ∧ dFj + β

= dρ(λ, F )(0, (F ′i )mi=1) + β.
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Proof. — First, we use Propositions 3.12 and 3.14 (steps 1 and 2) to get
the following decomposition for α:

α =
∑
i 6=j 6=k

λijF̂ijkBijkdFi ∧ dFj + ε,

where {Bijk} satisfy the relations Bijl = Bjkl = Bikl onXijkl, and ε|X3
DF

=
0. By Lemma 3.9 (fundamental lemma), there exist homogeneous polyno-
mials F ′1, . . . , F ′m of respective degrees d1, . . . , dm such that Bijk = F ′k on
Xijk. Then, it is clear that the forms α and

∑
i 6=j 6=k λijF̂ijkF

′
kdFi∧dFj have

the same restriction to X3
DF

. Moreover, if we add and subtract a suitable
term, then we obtain

α =
∑
i6=j 6=k

λijF̂ijkF
′
kdFi ∧ dFj +

∑
i6=j

2λijF̂ijdF ′i ∧ dFj + β

= dρ(λ, F )(0, (F ′i )mi=1) + β,

where β is a homogeneous affine form such that β|X3
DF

= 0. Finally, since
dρ(0, (F ′i )) and α are Zariski tangent vectors at ω, the same condition holds
for β. �

Remark 3.16. — From now on, we are reduced to prove our result for
elements β ∈ TωF(d,Pn) with the additional hypothesis β|X3

DF

= 0. In
advanced, taking into consideration Remark 2.27, these forms are expected
to be related to perturbations of the coefficients λ. This fact is going to be
true only assuming certain extra condition among d (balanced case).

Next proposition sets the background to end the proof, and is useful to
understand the possible trouble in the non balanced case.

By Lemma 3.8, if β ∈ TωF(d,Pn) vanishes on X3
DF

, then it may be
written as

β =
∑
i6=j

F̂ijβij ,

for some homogeneous affine forms {βij} such that βij = βji. Now, we
would like to obtain further information on these new forms βij .

Proposition 3.17 (Step 4). — With the notations above, for each se-
lection of i0, j0 and k0 there exist λ′i0j0

∈ C and homogeneous polynomials
Bi0j0
i0k0

and Bi0j0
j0k0

such that

βi0j0 = λ′i0j0
dFi0 ∧ dFj0 + F̂i0j0k0(Bi0j0

i0k0
dFi0 ∧ dFk0 +Bi0j0

j0k0
dFj0 ∧ dFk0)

on Xi0j0k0 .
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Proof. — We will follow a similar idea to that used in steps 1 and 2. Fix
i0 and j0, and use Remark 3.11 to select a rational vector field Yj0 = Y i0j0

j0

with the corresponding δ-property. From the integrability perturbation
equation restricted to Xi0j0 we have∑
i 6=j 6=k

2λijF̂i0j0 F̂ijk iYj0
(βi0j0) ∧ dFi ∧ dFj ∧ dFk

+
∑
i6=j 6=k

2λj0i0 F̂i0j0 F̂ijkdFi0 ∧dFk∧βij + 4λj0i0 F̂i0j0 F̂i0j0dFi0 ∧dβi0j0 = 0.

Afterward, we can remove the factor F̂i0j0 , select another index k0, restrict
the equation to Xi0j0k0 and obtain

(3.8) (λi0j0 − λi0k0 + λj0k0)F̂i0j0k0iYj0
(βi0j0)dFi0 ∧ dFj0 ∧ dFk0

+ 2λj0i0 F̂i0j0k0dFi0 ∧ dFk0 ∧ βi0j0 + 2λj0i0 F̂i0j0k0dFi0 ∧ dFj0 ∧ βi0k0 = 0.

If we take the wedge product by dFj0 |Xi0j0k0
, then we deduce

(βi0j0 ∧ dFi0 ∧ dFj0 ∧ dFk0)|Xi0j0k0
= 0.

Also, the same conclusion holds for βi0k0 and βj0k0 . From Lemma 3.5 (di-
vision lemma) we have

(βi0j0)|Xi0j0k0
= µi0j0k0

k0
∧ dFk0 + µi0j0k0

j0
∧ dFj0 + µi0j0k0

i0
∧ dFi0

for some homogeneous affine forms µi0j0k0
l of degree di0 + dj0 − dl.

Now, we want to prove that these new forms are also divisible by dFi0 ,
dFj0 and dFk0 . Select a new rational vector field Zj0 := Y i0j0k0

j0
with the

corresponding δ-property, and replace the above decomposition for βi0j0

into (3.8) to obtain

((λi0j0 − λj0k0 + λi0k0)µi0j0k0
j0

− 2λi0j0 µ
i0k0j0
k0

) ∧ dFi0 ∧ dFj0 ∧ dFk0 = 0.

For each l ∈ {i0, j0, k0} define γi0j0k0
l := µi0j0k0

l ∧ dFi0 ∧ dFj0 ∧ dFk0 (sim-
ilarly with γi0k0j0

l and γj0k0i0
l ). Next, our last equation may be written as

Eq(Ii0j0k0) : (λi0j0 − λj0k0 + λi0k0)γi0j0k0
j0

− 2λi0j0γ
i0k0j0
k0

= 0,

where the tag Eq(Ii0j0k0) refers to the order in which indexes were selected.
Permuting these indexes, we can construct a linear system of equations in
order to deduce our claim. In particular, from Eq(Ii0j0k0) +Eq(Ik0j0i0) we
deduce γi0k0j0

k0
= γi0j0k0

j0
. Then, using again Eq(Ii0j0k0) we get γi0j0k0

j0
= 0

on Xi0j0k0 . With a similar argument we can also prove the other vanishing
conditions for the forms γi0j0k0

l .

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC FORMS AND FOLIATIONS 199

Now, we are able to apply again the division lemma to the forms µi0j0k0
l ,

and obtain the following decomposition for the original form βi0j0 onXi0j0k0:

(3.9) βi0j0 = Ai0j0
i0j0k0

dFi0 ∧dFj0 +Ai0j0
i0k0j0

dFi0 ∧dFk0 +Ai0j0
j0k0i0

dFj0 ∧dFk0 .

If we fix another index l0, then all the possible decompositions for βi0j0

must coincide in the intersection Xi0j0k0l0 = Xi0j0k0 ∩Xi0j0l0 . In particu-
lar, we have

Ai0j0
i0j0k0

dFi0 ∧ dFj0 +Ai0j0
i0k0j0

dFi0 ∧ dFk0 +Ai0j0
j0k0i0

dFj0 ∧ dFk0

= Ai0j0
i0j0l0

dFi0 ∧ dFj0 +Ai0j0
i0l0j0

dFi0 ∧ dFl0 +Ai0j0
j0l0i0

dFj0 ∧ dFl0 .

From the normal crossings hypothesis we deduce

Ai0j0
i0j0k0

= Ai0j0
i0j0l0

and Ai0j0
i0k0j0

= Ai0j0
j0k0l0

= 0 on Xi0j0k0l0 .

The first condition implies that Ai0j0
i0j0k0

does not depend on k0. Notice that
its degree equals to zero, and so we write λ′i0j0

:= Ai0j0
i0j0k0

. On the other
hand, from the second condition we have

Ai0j0
i0k0j0

= F̂i0j0k0B
i0j0
i0k0

and Ai0j0
j0k0i0

= F̂i0j0k0B
i0j0
j0k0

on Xi0j0k0 , for some homogeneous polynomials Bi0j0
i0k0

and Bi0j0
j0k0

of degrees
deg(Bi0j0

i0k0
) = 2dj0 + di0 − d and deg(Bi0j0

j0k0
) = 2di0 + dj0 − d. Finally, our

claim follows from (3.9). �

3.2.3. The balanced assumption and end of the proof. Steps 5 to 7

We need the following definition in order to restrict the possible degrees
of the polynomials Bi0j0

i0k0
and Bi0j0

j0k0
introduced in the previous step.

Definition 3.18. — We say that anm-tuple of degrees d = (d1, . . . , dm)
is k-balanced if for each I ⊂ {1, · · · ,m} of size |I| = k, the following
inequality holds:

(3.10)
∑
i∈I

di = di1 + · · ·+ dik <
∑
l/∈I

dl.

Example 3.19. — If all the possible degrees are equal to 1, i.e., d =
(1, . . . , 1), then d is k-balanced if and only if 2k < m.

Remark 3.20. — When k = 1, condition (3.10) is the same that appears
in [9, Corollaries 5.10 and 5.11] and [5, Definition 8.16].
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Remark 3.21. — If a vector d is k-balanced then it is k′-balanced for all
k′ lower than k. Although, the converse of this fact is trivially not true (not
even for large m). For example:

d =
(

1, 2, . . . ,m− 2, (m− 2)(m− 1)
2 ,

(m− 2)(m− 1)
2

)
is 1-balanced but not 2-balanced for every m > 3.

Now, we are ready to continue with the following step.

Proposition 3.22 (Step 5). — Suppose d is 2-balanced. Then, for any
β ∈ TωF2(d,Pn) that vanishes on X3

DF
there exist constants {λ′ij}i 6=j and

a homogeneous affine form γ ∈ H0(Cn+1,Ω2
Cn+1) of total degree d, with

γ|X2
DF

= 0, such that

β =
∑
i 6=j

λ′ijF̂ijdFi ∧ dFj + γ.

Proof. — From Proposition 3.17 (step 4) we know that β =
∑
i 6=j F̂ijβij ,

where

βij = λ′ijdFi ∧ dFj + ˆFijk(BijikdFi ∧ dFk +BijjkdFj ∧ dFk) on Xijk.

Since d is 2-balanced, computing degrees we deduce that the polynomials
Bijik and Bijjk must be equal to zero. Then, for every i, j and k we have

(3.11) βij = λ′ijdFi ∧ dFj on Xijk.

Observe that the form (βij − λ′ijdFi ∧ dFj)|Xij vanishes on the divisor
(F̂ij |Xij = 0). Hence, with a slight modification of the vanishing lemma
(Lemma 3.8), we get βij − λ′ijdFi ∧ dFj = F̂ijµij on Xij , for some µij ∈
H0(Cn+1,Ω2

Cn+1) homogeneous form of degree di + dj −
∑
k 6=i,j dk. Using

again our hypothesis among d, we deduce that equality (3.11) holds in Xij .
Finally, observe that β and

∑
i 6=j λijF̂ijdFi ∧ dFj have the same restric-

tion to X2
DF

, and hence their difference vanishes on this stratum. �

Remark 3.23. — With the notations above, notice that the forms β and∑
i 6=j λ

′
ijF̂ijdFi∧dFj satisfy the integrability perturbation equation (2.10),

and therefore the same holds for γ. But, a priori, we can not assume that
γ satisfies the other perturbation equation (2.9).

Proposition 3.24 (Step 6). — Assume d is 2-balanced. If γ is a homo-
geneous affine 2-form of degree d satisfying the integrability perturbation
equation (2.10) and γ|X2

DF

= 0, then γ = 0.
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Proof. — Using the vanishing lemma, we get γ =
∑
l F̂lγl, for some ho-

mogeneous forms γl ∈ H0(Cn+1,Ω2
Cn+1) of total degree dl.

With the same idea as in other steps, we fix i0 and j0 distinct, and choose
a rational local vector field Yj0 = Y j0

i0j0
with the corresponding δ-property.

In this case, the restriction of the integrability perturbation equation to
Xi0j0 reduces to

λj0i0(F̂i0j0)2dFi0 ∧ dFj0 ∧ γi0 = 0.

Then it follows from the division lemma that

γi0 = µi0j0 ∧ dFi0 + νi0j0 ∧ dFj0 on Xi0j0 ,

for certain homogeneous affine forms µi0j0 and νi0j0 . But since dFi0 and γi0
have the same degree, we deduce that µi0j0 = 0. Now, select a new index
k0, and notice that γi0 = νi0j0 ∧ dFj0 = νi0k0 ∧ dFk0 on Xi0j0k0 . If we take
the wedge product by dFk0 , then we get νi0j0 ∧ dFj0 ∧ dFk0 = 0. Again by
the division lemma, we can select Ai0j0k0 such that

γi0 = Ai0j0k0dFj0 ∧ dFk0 on Xi0j0k0 .

Furthermore, Ai0j0k0 is divisible by F̂i0j0k0 . This is just a consequence of
the equality

Ai0j0k0dFj0 ∧ dFk0 = Ai0j0ldFj0 ∧ dFl ∀ l 6= i0, j0, k0

and the normal crossings hypothesis. Then, we obtain

γi0 = F̂i0j0k0Bi0j0k0dFj0 ∧ dFk0

on Xi0j0k0 , for some new homogeneous polynomials Bi0j0k0 of degree di0 −∑
l 6=i0 dl. But notice that this degree is negative because d is also 1-balanced

(see Remark 3.21). As a consequence, γi|Xijk
= 0 for all i 6= j 6= k.

Finally, for each index i, we deduce that γi vanishes on the subvariety of
X3
DF

defined by
⋃
j,k 6=iXijk. It is also clear that its corresponding homoge-

neous saturated ideal is generated by {F̂ij}j 6=i. With a slight modification
of the vanishing lemma (Lemma 3.8), we have γi =

∑
j 6=i F̂ij γij , for some

homogeneous affine forms γij . Since d is 2-balanced, each form γi must be
equal to zero, and hence the claim. �

The next proposition summarizes the last step of the proof. We finally
show that each Zariski tangent vector at ω vanishing on X3

DF
lies in the

image of dρ(λ, F ).
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Proposition 3.25 (Step 7). — Suppose d is 2-balanced, and let ω =
ρ(λ, F ) =

∑
λijF̂ijdFi ∧ dFj be a logarithmic 2-form of type d, with

λ ∈ Gr(2,Cmd ). If β is a Zariski tangent vector of F2(d,Pn) at ω and
also β|X3

DF

= 0, then there exists λ′ ∈ TλGr(2,Cmd ) such that

β =
∑
i 6=j

λ′ijF̂ijdFi ∧ dFj = dρ(λ, F )(λ′, 0).

Proof. — We can use Propositions 3.22 and 3.24 (steps 5 and 6) to de-
duce that any Zariski tangent vector with our hypotheses may be written as
β =

∑
i 6=j λ

′
ijF̂ijdFi ∧ dFj . Notice that iR(β) = 0 if and only if id(λ′) = 0.

Hence it is easy to see that λ′ = (λ′ij) can be considered as an element of∧2(Cmd )/〈λ〉. Also, recall from Section 2.4 that TλGr(2,Cmd ) can be repre-
sented by vectors λ′ ∈

∧2(Cmd )/〈λ〉 such that λ ∧ λ′ = 0. Now, from the
decomposability perturbation equation (2.9), that is β ∧ ω = 0, we get

F 2 ·
∑

i 6=j 6=k 6=l
(λ′ ∧ λ)ijkl

dFi
Fi
∧ dFj
Fj
∧ dFk
Fk
∧ dFl
Fl

= 0.

Then from Corollary 2.8 it follows that λ′ ∧ λ = 0, and this implies our
claim. �

Corollary 3.26. — Combining Propositions 3.15 and 3.25 (steps 3
and 7) we conclude the whole proof of the surjectivity of dρ (Proposi-
tion 3.2), which also implies our Theorem 3.1.

Corollary 3.27. — Assume m,n ∈ N>4. From Example 3.19 we de-
duce that a generic linear logarithmic 2-form is stable. In other words,
L2(d, n) determines an irreducible component of F2(d,Pn) when d =
(1, . . . , 1). Furthermore, observe that any logarithmic form of type d =
(d1, . . . , dm) in Pn is the pullback of a linear logarithmic form by a quasi-
homogeneous rational map.

Remark 3.28. — We expect that Theorem 3.1 could be also proved for a
larger codimension q with 2 6 q < n− 1 and m > q + 1. It seems that the
argument could be performed using the same proof schema, studying the
restriction of a Zariski tangent vector to each stratum Xk

DF
for k 6 q + 2.

In fact, it is possible to see that each Zariski tangent vector of Fq(d,Pn) at
a logarithmic q-form of type d as in Definition 2.21 necessarily vanishes on
Xq+2
DF

. However, most of the steps of the proof of Proposition 3.2 are quite
technical for q > 2 and require new combinatorial ideas, even if we assume
that d is q-balanced. In addition, the open question stated in Remark 2.20
seems to be important for obtaining a generalized proof.
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