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THE BOUNDARY CONJECTURE FOR LEAF SPACES

by Karsten GROVE, Adam MORENO & Peter PETERSEN (*)

In memory of Marcel Berger

Abstract. — We prove that the boundary of an orbit space or more generally a
leaf space of a singular Riemannian foliation is an Alexandrov space in its intrinsic
metric, and that its lower curvature bound is that of the leaf space. A rigidity
theorem for positively curved leaf spaces with maximal boundary volume is also
established and plays a key role in the proof of the boundary problem.
Résumé. — On montre que le bord d’un espace d’orbites, ou plus généralement

l’espace quotient d’un feuilletage riemannien singulier, est un espace d’Alexandrov
muni de sa distance intrinsèque, et que la borne inférieure de sa courbure coincide
avec celle de l’espace des feuilles. On établit aussi un théorème de rigidité pour les
espaces de feuilles de courbure strictement positive maximisant le volume de leur
bord, qui joue un rôle clef dans la preuve du théorème du bord.

1. Introduction

A basic conjecture going back to the early days of Alexandrov geometry
states that the boundary ∂X of an Alexandrov space X, with its induced
length metric, is itself an Alexandrov space with the same lower curvature
bound as that of X.
In case X is a convex subset of a Riemannian manifold M with lower

bound on sectional curvature this conjecture was verified in [1].
In this note we deal with other important classes of Alexandrov spaces

from Riemanian geometry, namely, orbit spaces of isometric group actions
or more generally leaf spaces of singular Riemannian foliations (to be ab-
breviated as SRF).

Keywords: Alexandrov Geometry, Singular Riemannian Foliations, Leaf Spaces, Lens
Charaterization.
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Theorem 1.1. — Let M be a closed Riemannian manifold, and F a
singular Riemannian foliation on M . If all the leaves in F are closed, then
the boundary conjecture holds for the Alexandrov space X = M/F .

Our proof is intertwined with that of the following rigidity result for leaf
spaces X = M/F with curvX > 1. Here Sn denotes the unit sphere in
euclidean (n+ 1)-space and the spherical join

L = Lnα = Sn−2 ∗ [0, α], 0 < α 6 π

is referred to as the n-dimensional lens with angle α.

Theorem 1.2. — If X = M/F be an n-dimensional leaf space with
curvX > 1 and vol(∂X) = vol(Sn−1), then X is isometric to a lens, Lnα
with angle α = π/k, where k ∈ Z+.

Here any such lens will arise. In fact the following construction exhibits
essentially all Riemannian manifolds M with a SRF F and leaf space iso-
metric to a lens:

Construction. — Let F be a SRF on Sm, m > 1 with dim Sm/F = 1. In
particular, F is the trivial point foliation when m = 1. From [9] we know
that Sm/F = [0, α] with α ∈ {π, π/2, π/3, π/4, π/6} when m > 2 and, of
course, Sm/F = S1 when m = 1.
Now let G be a compact Lie group acting isometrically on Sm. Further

assume that it leaves F invariant in such a way that the identity component
G0 of G preserves each leaf F ∈ F . In this case G /G0 is either trivial or Z2
whenm > 2. Ifm = 1, then G is clearly finite and we assume S1/G = [0, α].
In particular, G = Dk is a dihedral group of order 2k and α = π/k with
k ∈ Z+.
Now let F also denote its canonical “join” extension to Sn+m−1 = Sn−2 ∗

Sm with point leaves on Sn−2. Furthermore, assume G acts freely and by
isometries on a Riemannian manifold P . Clearly, G preserves the SRF on
P × Sn+m−1 with leaves P × L, L ∈ F and hence induces a SRF on the
associated bundle M = P ×G Sn+m−1 with leaf space Lnα, where α is the
length of the interval (Sm /F)/(G /G0).

We mention that a simple application of the slice theorem for SRF in [7]
and the geometry of Lnα in fact implies that any Riemannian manifold M
with a SRF F having leaf space Lnα is foliated diffeomorphic to a manifold
constructed as above, with the possible exception of m > 1, α < π and
dimM/F = 2.

Both Theorem 1.1 and Theorem 1.2 are proved by induction on dimen-
sion.
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We refer to [10], respectively [2] and [3] for basic tools and results in
Riemannian, respectively Alexandrov geometry that will be used freely. It
is our pleasure to thank Marco Radeschi for constructive comments, and in
general for sharing his insights on singular Riemannian foliations with us.

2. Preliminaries

In this section we exhibit a few facts about the Alexandrov geometry of
leaf spaces needed in our proofs. When no curvature assumptions are made,
these facts are merely translations to Alexandrov geometry of by now well
known results for SRF presented in [13] (see also [8]).

Throughout,M is a closed Riemannian manifold and F a SRF onM with
closed leaves. Since, by definition, leaves are locally everywhere equidistant
from one another, the Riemannian distance between any pair of leaves
agrees with the classical Haussdorff distance between them. When equipped
with this metric,

• X = M/F is a geodesic space of finite dimension,
• the projection map P : M → X = M/F is a submetry,

i.e., the image of any r-ball inM is the corresponding r-ball inX. It follows,
[3], that

• X = M/F is an Alexandrov space.
We now describe the space of directions SFX at F ∈ X, corresponding

to a leaf F ∈ F . Clearly all directions are geodesic directions. Associated
to each leaf F ∈ F there is an infinitesimal SRF on each tangent space
along F which restricts to a SRF on each normal space, T⊥F to F . This
induced foliation is invariant under homotheties, and hence comes from a
SRF, FF⊥ , on the normal sphere S⊥F at any point p ∈ F . The (foliation)
holonomy group, GF of the leaf F at p acts by isometries on S⊥F preserving
FF⊥ . Two leaves in FF⊥ correspond to the same leaf in F if and only if
they are in the same GF orbit (see [13]). It follows that

• SFX is isometric to (S⊥F /FF⊥)/GF .
The manifold M as well as its leaf space X = M/F admits two natural

stratifications, one finer than the other (see [13] and [8, Section 6]).
The coarser stratification is given by the dimensions of the leaves:
For each 0 6 d 6 dimM , the d-stratum Md ⊂M is simply the union of

all leaves F ∈ F with dimF = d:
• each component of Md is a submanifold of M ([13] and [8, Propo-

sition 6.3]),
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and the closure satisfies:

• Md = ∪d′6dMd′ .

Furthermore, the restriction of F to any such component is a Riemannian
foliation. As all leaves are compact, the restriction of F to each component
of Md is locally a Riemannian submersion whose image in X = M/F is
intrinsically a Riemannian orbifold. The regular part, Mreg, of M is the
non-empty stratum Md0 with d0 maximal. In particular, Mreg is open,
dense, and connected in M , moreover, clearly dimX = dimM − d0.

The finer stratification amounts to further stratifying each component
Xd = Md/F according to its orbifold singularities described via the finite
groups defining the local orbifold structure. Each component of the fine
stratification of X is a manifold which is locally totally geodesic in X. With
this stratification, the “singular” points of Mreg/F correspond to so-called
exceptional leaves, whereas the non-singular points of Mreg/F correspond
to principal leaves. This part is also open, dense, and even convex in X.

For each F ∈ F , the coarse stratum it belongs to is locally determined by
the subspace V0 ⊂ T⊥F making up the point leaf stratum of its infinitesimal
foliation FF⊥ . The tangent space of its fine stratum at F ∈ X is isomorphic
to the fixed point set V GF

0 of the holonomy group.
Of particular interest for us is the boundary ∂X of X when non-empty.

Clearly, ∂X is the closure of the dimX − 1 dimensional strata in X. Each
component of a stratum of dimension dimX − 1 is an open subset of ∂X,
referred to as an open face of ∂X. An open face is closed in ∂X only if it
also constitutes a component of ∂X. The closure of an open face is simply
called a face of the boundary. In other words,

• ∂X is the union of its finitely many faces.

For non-trivial infinitesimal SRF we have the following simple fact

Lemma 2.1. — Let F be a SRF with closed leaves on Sn. Either
diam Sn/F 6 π/2 or diam Sn/F = π. In the latter case, F is a suspen-
sion of a SRF on Sn−1. In particular, the radius radSn/F 6 π/2 in all
cases.

Proof. — Suppose diam Sn/F > π/2 and let F1 and F2 be leaves with
dist(F1, F2) = r > π/2. By equidistance of leaves, the convex set C =
Sn − B(F1, r) is a union of leaves of F and the point s ∈ C at maximal
distance to the boundary of C is a leaf. Again by equidistance of leaves −s
is also a leaf and F is the suspension of its restriction to the equator of
{s,−s}. To prove the last statement we note that by induction it follows

ANNALES DE L’INSTITUT FOURIER



THE BOUNDARY CONJECTURE FOR LEAF SPACES 2945

that Sn/F is an iterated spherical suspension of an SRF of a sphere whose
leaf space has diam 6 π/2, and hence radSn/F = π/2. �

3. Rigid lens characterization

A lens L = Lnα = Sn−2 ∗ [0, α] with α ∈ (0, π] is clearly an Alexandrov
space with curvature curvL > 1 and boundary ∂L isometric to Sn−1 when
equipped with its intrinsic length metric.
Conversely, consider the following

Problem 3.1 (Lens Problem). — Let X be an n-dimensional Alexan-
drov space with curvX > 1 and boundary ∂X isometric to Sn−1, relative
to its induced length metric. Is X isometric to an n-dimensional lens?

In the special case when X = N is a Riemannian manifold with smooth
(convex) boundary N is, indeed, isometric to the closed hemisphere of
radius 1, i.e., N = Lπ in our terminology. This is in fact a special case of
the main theorem in [5]:

Theorem 3.2 (Hang–Wang [5]). — Let N be an n-dimensional com-
pact Riemannian manifold with ricN > n − 1 and convex boundary ∂N ,
i.e., its second fundamental form is nonnegative. Then N is isometric to a
hemisphere of Sn provided ∂N is intrinsically isometric to Sn−1.

As a precursor to Theorem 1.2, we will provide a positive answer to the
above problem when X = M/F is the leaf space of a singular Riemannian
foliation by closed leaves (for the general case cf. [4]).
We begin with the following

Lemma 3.3. — When X = M/F has curvX > 1 and ∂X = Sn−1, then
X − ∂X is a smooth manifold. Moreover, any x ∈ X has distance at most
π/2 to the soul point s ∈ X. In particular, X = Lnπ, when |s∂X| = π/2.

Proof. — We start by showing that the interior of X consists of princi-
pal leaves. Assume that x ∈ intX is not a principal leaf. By Lemma 2.1
it follows that volSxX 6 1

2 vol Sn−1. Now glue the constant curvature 1
hemisphere Dn with boundary Sn−1 onto X along the boundary ∂X, to
obtain an n-dimensional Alexandrov space Y without boundary and with
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curvY > 1 [11]. By volume comparison we have:

vol(Dn) = 1
2 vol(Sn)

< volY
6 vol(Σ1SxX)

= vol(SxX)
∫ π

0
sinn−1(t)dt

6
1
2 vol(Sn−1)

∫ π

0
sinn−1(t)dt

= 1
2 vol(Sn).

A contradiction.
Let s ∈ X be the soul of X, i.e., the unique point at maximal distance

to ∂X. We claim that any point of X has distance at most π/2 to s. To
see this, we begin by showing that the distance from the boundary ∂X to
s is at most π/2. In fact, note that, on one hand the boundary is convex,
and on the other that, the distance function from s is a support function
from below at any point on ∂X closest to s. If such a point was at distance
> π/2 from s, the boundary would be concave rather than convex. Now, let
x ∈ X be any point of X and c a minimal geodesic from s to x. Since s is a
critical point for the distance function to ∂X there is a minimal geodesic,
d from s to a closest point y ∈ ∂X that makes an angle at most π/2 to
c. Since d is a minimal geodesic to the boundary any direction at y makes
and angle at most π/2 with d. Now let e be a minimal geodesic from y to
x. By the Toponogov’s comparison theorem both e and c have lengths at
most π/2.

Note that if |s∂X| = π/2, then every x ∈ ∂X has distance π/2 to s. It
follows that X is the spherical cone on ∂X, which in turn is isometric to
the space of directions SsX = Sn−1 at s. �

As the rest of the proof is by induction on dimension we start with
dimX = 2.

Theorem 3.4 (Induction Anchor). — Let X = M/F be a two-dimens-
ional leaf space with curvX > 1 and boundary ∂X. The length of the
boundary satisfies `(∂X) 6 2π with equality if and only if X = L2

α, where
α = π/k, for k ∈ Z+.

Proof. — Recall that any two dimensional leaf space is an orbifold [6].
Moreover let F be a vertex point F ∈ F . Then FF⊥ is either a point
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foliation when dimF⊥ = 2 or else a foliation by isoparametric hyper-
surfaces in the S⊥F . In the first case (S⊥F /FF⊥)/GF = (S⊥F )/GF , where
GF = Dk is a dihedral group. In the second case, S⊥F /FF⊥ = [0, α], with
α ∈ {π, π/2, π/3, π/4, π/6} by [9]. In this case, it is also possible that the
holonomy is GF = Z2 and interchanges the two focal leaves of the isopara-
metric foliation, thus cutting these angles in half, i.e., adding π/8 and π/12.
In particular, ∂X is a geodesic polygon P , where the angle at each vertex
is π/k with k > 2. From curvX > 1 it follows, that P can have at most
three vertices.
Partition P further (if necessary) so that each part of P is a minimal

geodesic in X. Join each partition point of P to the soul point s, by a
minimal geodesic. In S2 draw all the corresponding comparison triangles
adjacent to one another as in X with common vertex s0 ∈ S2 say at the
south pole corresponding to s.

Note that, unless all comparison angles at s0 are equal to the actual
angles at s, this configuration of geodesic triangles will not close up. If so,
the gap is joined by a circular arc of radius the length of the corresponding
geodesics. From Toponogov’s triangle comparison theorem, the region C ′

described in S2 is convex, and thus has length at most 2π, i.e., the inequality
is established.
Now assume `(∂X) = 2π, and note that a convex region C ⊂ S2 has

boundary of length 2π if an only if C is the intersection of two closed hemi-
spheres, i.e., a bi-angle, or lens in our terminology. This immediately rules
out three vertices of P . Moreover, by construction of C ′ and `(∂X) = 2π,
it follows that all angles at s in X agree with the corresponding angles
at s0 and that there is no gap between the first and last triangle. Since
the lengths of the sides opposite the angles at s and so are equal by con-
struction, the hinge rigidity version of Toponogov implies that the surfaces
spanned by the triangles in X are isometric to the ones in C ′. It follows
that X is the intersection of two hemispheres. �

We are now ready to complete the proof of our main result in this section:

Theorem 3.5. — An Alexandrov leaf space Xn with curvX > 1 and
boundary ∂X intrinsically isometric to Sn−1 is isometric to Lnα with α =
π/k, where k ∈ Z+.

Proof. — Assume by induction that the Theorem holds in all dimensions
6 n, and consider an (n+ 1)-dimensional leaf space X whose boundary is
intrinsically isometric to Sn.

TOME 69 (2019), FASCICULE 7
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For each boundary point x ∈ ∂X, the space of directions SxX has non-
empty boundary intrinsically isometric to Sn−1 by assumption. By the in-
duction hypothesis, for each x ∈ ∂X the space of directions SxX is isomet-
ric to Lnαx

for αx as in the Theorem.
Assume first that for all x ∈ ∂X, αx = π, in particular, ∂X is a single

stratum of X = M/F . Thus X is a smooth Riemannian manifold with
sectional curvature> 1 and totally geodesic boundary and the result follows
from [5].
Now suppose x ∈ ∂X has SxX isometric to Lnαx

with αx < π. Any
such x belongs to an (n − 1)-dimensional stratum of X, and the closures
of any two such strata cannot meet due to the induction hypothesis. So
such a stratum is a totally geodesic Sn−1 in the boundary Sn, and only
one such stratum can exist. Thus, the boundary has exactly two faces,
each intrinsically isometric to a hemisphere of curvature 1, meeting each
other at an angle π/k, where k ∈ Z+. As all singularities lie in strata of
codimension 6 2 it follows from Theorem 1.4 in [6] that X is an orbifold.
We claim that it is, in fact, a good orbifold.
Consider the metric space Y obtained by gluing together 2k copies of

X along one face at a time. Consecutive copies of X are reflections of
each other along their common face. The dihedral group Dk of order 2k
acts by isometries on Y with quotient space X. Next note that the local
orbifold covers of X are determined by reflections for points on the open
faces and for the singular points by the linear action of Dk on Sn−2∗S1 that
acts trivially on Sn−2, the space of directions for the (n − 1)-dimensional
stratum. Thus the local orbifold covers of X are metrically isometric to
open sets of Y . This shows that Y is a smooth Riemannian manifold. It
also contains a totally geodesic copy of Sn, namely, the fixed point set of
a reflection in Dk. We can then use [5] again to see that Y is a constant
curvature sphere and the quotient is an Alexandrov lens. �

4. Intrinsic convexity of the regular boundary

We say that a point x ∈ ∂X of an (n+ 1)-dimensional Alexandrov space
X is (boundary) regular, if its space of directions SxX is isometric to a
lens Sn−1 ∗ [0, α], with α 6 π. We denote this set of points by ∂X0. Note
that by Theorem 3.4 these are precisely points on the boundary where
∂SxX = Sn−1 and thus correspond to the regular points on the boundary
provided the boundary is an Alexandrov space.
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In a leaf space X = M/F , the regular boundary points are dense in
the boundary since they are the n- and (n− 1)-dimensional strata of X in
∂X. Moreover, the open faces of X, i.e., the n-dimensional strata of X, are
Riemannian manifolds that are (locally) totally geodesic inX. In particular,
the (open) faces are locally Alexandrov with the same lower curvature
bound at that of X. From Petrunin’s gluing theorem [11] it also follows
that, if x is boundary regular but not in an open face, then we intrinsically
still have the same local curvature control near x on the boundary.

By [12], to complete the proof of Theorem 1.1, it thus suffices to prove
that the set ∂X0 is boundary convex, i.e., any minimal curve in ∂X con-
necting two points of ∂X0 lies entirely in ∂X0.
Theorem 4.1. — In a leaf space X = M/F , the set ∂X0 of regular

points is intrinsically convex.
Proof. — Let x, y ∈ ∂X0 and connect them by a minimal curve c :

[a, b]→ ∂X. Pick any t0 ∈ (a, b).
Now we blow up X at c(t0). In the limit c becomes a line ` = R in the

tangent cone Tc(t0)X passing through the cone point c(t0) and belongs to
its boundary. By induction, we can assume that the boundary of the space
of directions SxX at x is an Alexandrov space with curv∂SxX > 1 (having
verified it dimension 2). We claim that the intrinsic diameter of ∂Sc(t0)X

is π. Suppose there is a path γ in ∂Sc(t0)X of length less than π joining
the opposite directions u and v of ` at c(to). In this case c would not be
a minimal curve in the boundary. It follows that ∂Sc(t0)X is intrinsically
isometric to a spherical suspension of the space of directions at u (and at
v). Now the set of regular boundary point is clearly open in the boundary,
and hence along c. We claim it is closed along c as well. If not let t1 be
the first time where c(t1) not regular. Recall that the local structure of
X near c(t1) including its stratification is in 1-1 correspondence with the
euclidean cone on the space of directions SxX. In particular, the geodesic
c−1 restricted to a small interval (t1 − ε, t1) is contained either in an open
face of X (an n dimensional stratum) or in an n− 1 dimensional stratum
(the interior of the n − 1 dimensional intersection of two closed faces). In
the first case, its direction u is contained in an open face of the boundary
of SxX and hence regular. In the second case, u is contained in an open
n−2 dimensional stratum of the boundary of SxX, also consisting entirely
of regular boundary points of SxX. A contradiction. �

Remark 4.2. — The statement in Theorem 1.2 now follows from 3.5 and
Theorem 1.1, since knowing that ∂X is an Alexandrov space with curvX >
1 and maximal volume implies that it is a round sphere of curvature 1.
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