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NASH BLOW-UPS OF JET SCHEMES

by Tommaso DE FERNEX & Roi DOCAMPO (*)

Abstract. — Given an arbitrary projective birational morphism of varieties, we
provide a natural and explicit way of constructing relative compactifications of the
maps induced on the main components of the jet schemes. In the case the morphism
is the Nash blow-up of a variety, such relative compactifications are shown to be
given by the Nash blow-ups of the main components of the jet schemes.
Résumé. — Étant donné un morphisme birationnel projectif de variétés nous

fournissons une manière explicite et naturelle de construire des compactifications
relatives des applications induites sur les composantes principales des espaces de
jets. Dans le cas où le morphisme est l’éclatement de Nash d’une variété, nous
montrons que ces compactifications relatives sont données par les éclatements de
Nash des composantes principales des espaces de jets.

1. Introduction

The Nash blow-up of a variety is defined as the universal projective
birational morphism for which the pull-back of the sheaf of differentials
admits a locally free quotient of the same rank. The name comes from
John Nash, who is generally credited for having promoted the question
of whether singularities of algebraic varieties can always be resolved by
finitely many iterations of such blow-ups; before him, the question had al-
ready been considered by Semple [12]. The property is known to hold for
curves of characteristic zero, and to fail in positive characteristics [9]. A
variant of this question, where Nash blow-ups are alternated with normal-
izations, has been settled affirmatively for surfaces of characteristic zero by
Spivakovsky [13], building on [5]. Higher order Nash blow-ups have been
defined and studied by Yasuda [15].

Keywords: Jet scheme, Nash blow-up, singularities, Grassmannian, functor of points.
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The Nash blow-up can be thought as the universal operation separating
multiple limits of tangent spaces, and hence its construction relates to the
geometry of the main component of the first jet scheme of the variety. It is
however unclear a priori how the Nash blow-up of a variety should relate
to the Nash blow-up of such component. Even less obvious is whether there
should be a relationship with the Nash blow-ups of the main components
of the higher jet schemes of the variety.

The following result shows that these Nash blow-ups are not just related,
but in fact they essentially determine each other.

Theorem 1.1. — Let X be a variety. For every n, the main component
of the n-th jet scheme of the Nash blow-up of X has an open immersion
into the Nash blow-up of the main component of the n-th jet scheme of X,
and such immersion is compatible with the respective natural map to the
n-th jet scheme of X.

Denoting by N(X) → X the Nash blow-up of a variety and by J ′n(X)
the main component of the n-th jet scheme of X, Theorem 1.1 can be
rephrased by saying that the Nash blow-up N(J ′n(X)) → J ′n(X) gives a
relative compactification of the map J ′n(N(X))→ J ′n(X) induced on n-jets
by the Nash blow-up of X. This implies that the Nash blow-up of a variety
X can equivalently be characterized as the universal projective birational
morphism Y → X such that, for every n, the pull-back of ΩJ′

n(X) via
J ′n(Y )→ J ′n(X) has a locally free quotient of the same rank. The theorem
also implies that the Nash blow-up of J ′n(X) induces the Nash blow-up ofX
under the natural section (the “zero section”) of the projection J ′n(X)→ X.
It was shown by Ishii [6] that if a variety X is singular then all of its jet
schemes are singular, and Theorem 1.1 implies that, if the ground field is
algebraically closed of characteristic zero, then in fact the main components
of the jet schemes are already singular.
The proof of Theorem 1.1 uses the description of the sheaves of differen-

tials on jet schemes given in [4] in combination with Theorem 1.2 (stated
below), which addresses a related question in a more general context.

Suppose that µ : Y → X is an arbitrary projective birational morphism of
varieties. By functoriality, µ induces for every n a morphism on jet schemes
µn : Jn(Y ) → Jn(X), and hence, by restriction, a birational morphism
µ′n : J ′n(Y ) → J ′n(X) between the main components of the jet schemes. In
general, µ′n is not a projective morphism, and one can ask whether there
are natural ways of constructing relative compactifications of µ′n. The next
theorem provides an answer to this question.

ANNALES DE L’INSTITUT FOURIER



NASH BLOW-UPS OF JET SCHEMES 2579

The morphism µ can be described as the blow-up of an ideal sheaf I ⊂
OX , and a way to approach the question is to look for natural ways of
constructing an ideal sheaf an ⊂ OJ′

n(X) whose blow-up gives a relative
compactification of µ′n. Doing this directly seems hard: while a posteriori
we will provide an explicit formula for computing the local generators of
such an ideal an in terms of the generators of I, the formula will show that
the complexity of an grows fast even in simple examples, an indication that
looking at ideals might not be the best approach.
Instead, we view µ as the Nash transformation N(F)→ X of a coherent

sheaf F , as defined for instance in [10]. In this language, the blow-up of
an ideal I ⊂ OX is the same as the Nash transformation N(I) → X

of the ideal, and the Nash blow-up of a variety X is defined to be the
Nash transformation N(ΩX) → X of the sheaf of differentials of X. In
general, the Nash transformation of a coherent sheaf F of rank r is defined
using the Grassmann bundle of locally free quotients of rank r of F , and
is a projective birational morphism. Conversely, every projective birational
morphism µ : Y → X can be realized as a Nash transformation of some
coherent sheaf F on X.

Theorem 1.2. — Let X be a variety over a field k, and let µ : N(F)→
X be the Nash transformation of a coherent sheaf F on X. For every n, let

J ′n(X)×∆n

ρ′
n

��

γ′
n // X

J ′n(X)

be the diagram induced by restriction from the universal n-jet of X; here,
we denote ∆n = Spec k[t]/(tn+1). Define

F ′n := (ρ′n)∗(γ′n)∗F .

Then the induced map µ′n : J ′n(N(F))→ J ′n(X) factors as

J ′n(N(F)) �
� ιn // N(F ′n) νn // J ′n(X)

where ιn is an open immersion and νn is the Nash transformation of F ′n.

If in this theorem we take F = I ⊂ OX , an ideal sheaf on X, then
F ′n is not an ideal sheaf. However, the sheaf ∧(n+1)F ′n, modulo torsion,
is isomorphic to an ideal sheaf an, and N(F ′n) = N(an). Our approach
enables us to make explicit computations and hence to provide a formula
for the generators of an.
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A motivation for Theorem 1.2 comes from the Nash problem on families
of arcs through the singularities of a variety [8] and, more specifically, from
the problem of lifting wedges [7, 11]. In dimension two, the Nash problem
has been settled in characteristic zero in [1] but it remains open in positive
characteristics. The algebraic proof given in [3] may be adaptable to positive
characteristics, provided one can avoid certain wild ramifications that could
occur in the proof. A possible approach is to look for suitable deformations
of wedges, and this requires working with relative compactifications of the
maps Jn(Y ) → Jn(X) where Y → X is the minimal resolution of the
surface. Theorem 1.2 provides a first step in this direction.

1.1. Acknowledgments

We thank Mircea Mustaţă for pointing out an error in a previous version
of the paper and the referee for a careful reading of the paper and valuable
comments and corrections.

2. Proofs

We work over an arbitrary field k. For every integer n > 0, the n-th
jet scheme Jn(X) of a scheme X is the scheme representing the functor of
points defined by

Jn(X)(Z) = X(Z ×∆n)
for any scheme Z, where ∆n = Spec k[t]/(tn+1). We denote by

Jn(X)×∆n

ρn

��

γn
// X

Jn(X)

the universal n-jet of X. For generalities about jet schemes, we refer to [2,
14]. If X is a variety, then there exists a unique irreducible component of
Jn(X) dominating X, and this component has dimension (n + 1) dimX.
We shall denote it by J ′n(X) and call it the main component of Jn(X).

Given a coherent sheaf F on a scheme X, and a positive integer r, we
denote by Gr(F , r) the Grassmann bundle over X parameterizing locally
free quotients of F of rank r, where by the term quotient we mean an equiv-
alence class of surjective maps from the same source where two surjections
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are identified whenever they have the same kernel. This scheme represents
the functor of points given by

Gr(F , r)(Z) =
{(
Z

p−→ X, p∗F � Q
)
| Q locally free sheaf on Z of rank r

}
for any scheme Z.

Suppose now that X is a variety, and let F be a coherent sheaf on X

of rank r. The Nash transformation of F is defined to be the irreducible
component of Gr(F , r) dominatingX, and is denoted byN(F). The natural
projection Gr(F , r)→ X induces the blow-up map N(F)→ X. The Nash
blow-up N(X)→ X is, by definition, the Nash transformation of the sheaf
of Kähler differentials ΩX .

Proof of Theorem 1.2. — The sheaf F ′n is the restriction, under the
inclusion J ′n(X) ⊂ Jn(X), of the sheaf

Fn := (ρn)∗γ∗nF .

By construction, J ′n(N(F)) is an irreducible component of the jet scheme
Jn(Gr(F , r)). Similarly, observing that F ′n is a sheaf of rank (n+ 1)r and
keeping in mind that J ′n(X) is an irreducible component of Jn(X), we see
that N(F ′n) is an irreducible component of Gr(Fn, (n+1)r). We claim that
there is a universally injective map

i : Jn(Gr(F , r)) ↪→ Gr(Fn, (n+ 1)r),

defined overX, which agrees with the natural identification of these schemes
over the open set where X is smooth and F is locally free, and restricts to
an open immersion from J ′n(N(X)) to N(J ′n(X)). Note that the existence
of such a map implies the statement of the theorem.
In order to prove this claim, we compare the functors of points of the

schemes Jn(Gr(F , r)) and Gr(Fn, (n+ 1)r). For every scheme Z, we have

Jn(Gr(F , r))(Z)
= Gr(F , r)(Z ×∆n)

=
{(
Z×∆n

α−→ X, α∗F�Q
)
| Q locally free sheaf on Z×∆n of rank r

}
and

Gr(Fn, (n+ 1)r)(Z)

=
{(
Z

β−→Jn(X), β∗Fn�R
)
|R locally free sheaf on Z of rank (n+1)r

}
.

By the description of Jn(X) via the functor of points, every β : Z →
Jn(X) corresponds to a unique α : Z ×∆n → X, and for any such pair of

TOME 69 (2019), FASCICULE 6
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maps there is a commutative diagram

Z ×∆n

π

��

β×id∆n

//

α

((
Jn(X)×∆n

ρn

��

γn

// X

Z
β

// Jn(X)

where π is the projection onto the first factor. Note that taking push-
forward along π of a sheaf on Z ×∆n simply means that we are restricting
scalars to OZ and forgetting the given OZ×∆n

-module structure of the
sheaf.
By the definition of Fn and base-change, which holds in this setting

because ρn and π are affine, we have

β∗Fn = π∗α
∗F .

Using the identification Jn(X)(Z) = X(Z ×∆n), the above formula yields
the following alternative description of the functor of points:

Gr(Fn, (n+ 1)r)(Z) =
{(
Z ×∆n

α−→ X, π∗α
∗F � R

)
|

R locally free sheaf on Z of rank (n+ 1)r
}
.

For every locally free sheaf Q on Z × ∆n of rank r, the push-forward
π∗Q is a locally free sheaf on Z of rank (n+ 1)r. Taking push-forwards via
π is exact, and any two quotients of α∗F are identified (i.e., they define
the same kernel in α∗F) if and only if their push-forwards are identified
as quotients of π∗α∗F (i.e., they define the same kernel in π∗α

∗F). This
means that taking push-forwards via π defines a natural injection

Jn(Gr(F , r))(Z) ↪→ Gr(Fn, (n+ 1)r)(Z).

As this holds for every scheme Z, we deduce that there is a naturally defined
universally injective morphism

i : Jn(Gr(F , r)) ↪→ Gr(Fn, (n+ 1)r).

It is immediate to see that i is defined over X and therefore it agrees
with the natural identification of these schemes over the open set where
X is smooth and F is locally free. Furthermore, the restriction of i to
J ′n(N(F)) gives a universally injective map ιn : J ′n(N(F)) → N(F ′n). To
finish the proof, we need to show that ιn is a local isomorphism, that is, it
induces isomorphisms on all local rings. To this end, we prove the following
property.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — Let (A,m) be a Noetherian local domain over k, and set
U = SpecA and P = SpecA/m. Assume that f0 and g are morphisms as
in the diagram

P
f0

//� _

��

Jn(Gr(F , r))� _

i

��

U
g
//

f

88

Gr(Fn, (n+ 1)r)

such that the square sub-diagram commutes and the image of g is a dense
subset of N(F ′n). Then there exists a unique morphism f (marked by the
dotted arrow in the diagram) making the whole diagram commute.

Proof. — Suppose f0 and g are given. Let π0 : P ×∆n → P and π : U ×
∆n → U denote the respective projections to the first components. By the
descriptions of the functors of points, we can write

f0 =
(
P ×∆n

α0−→ X, α∗0F � Q
)
,

where Q is a locally free A[t]/(tn+1)-module of rank r, and

g =
(
U ×∆n

α−→ X, π∗α
∗F � R

)
where R is a locally free A-module of rank (n+ 1)r. The commutativity of
the square sub-diagram in the statement means that α0 is the restriction of
α and R⊗AA/m = (π0)∗Q. The fact that the image of g is dense in N(F ′n)
implies that α is dominant, and hence π∗α∗F is a sheaf of rank (n + 1)r.
Since R is a locally free quotient of the same rank of π∗α∗F , the kernel
K of π∗α∗F → R is the torsion A-submodule of π∗α∗F . Every element of∑
i>0 t

iK, viewed as an A-submodule of π∗α∗F , is torsion, and therefore
we have

∑
i>0 t

iK = K. This shows that K is an A[t]/(tn+1)-submodule
of π∗α∗F and hence R is an A[t]/(tn+1)-module quotient of π∗α∗F . This
gives the lift f of g as in the diagram, which is clearly unique and makes
the diagram commute. �

We apply Lemma 2.1 to the local rings of N(F ′n) at the points in the
image of ιn. Using the fact that i is injective on the functors of points, we
deduce that i induces isomorphisms on the local rings.
To see this last implication, let Oq denote the local ring of J ′n(N(F))

at a point q, and let Op denote the local ring of N(F ′n) at p = ιn(q). Let
g : SpecOp → Gr(Fn, (n + 1)r) and h : SpecOq → Jn(Gr(F , r)) be the
natural maps, and let j : SpecOq → SpecOp be the map induced by ιn.

TOME 69 (2019), FASCICULE 6
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We have the following diagram:

SpecOq �
� h //

j

��

Jn(Gr(F , r))

i

��

SpecOp �
�

g
//

s

AA

f

77

Gr(Fn, (n+ 1)r).

Here, the square sub-diagram is commutative, f exists by Lemma 2.1 and
hence satisfies

(2.1) i ◦ f = g,

and the universal property of local rings implies that f factors through h,
so that we have a morphism s, as in the diagram, satisfying

(2.2) h ◦ s = f.

Using the commutativity of the square sub-diagram and Eq. (2.1), we get

i ◦ h = g ◦ j = i ◦ f ◦ j.

Then, using the fact that i is injective at the level of functors of points and
hence is a monomorphism, we deduce that

(2.3) h = f ◦ j.

Now, using Eqs. (2.2) and (2.3), we get

h = f ◦ j = h ◦ s ◦ j,

and since h is a monomorphism, this implies that s ◦ j is the identity of
SpecOq. Using Eqs. (2.2) and (2.3) in a different order, we get

f = h ◦ s = f ◦ j ◦ s.

Since g is a monomorphism, it follows by Eq. (2.1) that f is a monomor-
phism, and this implies that j ◦ s is the identity of SpecOp. This proves
that j is an isomorphism, which completes the proof of the theorem. �

Proof of Theorem 1.1. — By [4, Theorem B], there is an isomorphism

ΩJn(X) ∼= (ρn)∗γ∗nΩX ,

and this implies that

N(J ′n(X)) = N
(
(ρn)∗γ∗nΩX ⊗OJn(X) OJ′

n(X)
)

= N
(
(ρ′n)∗(γ′n)∗ΩX

)
,

where ρ′n and γ′n are the restrictions of ρn and γn to J ′n(X)×∆. Therefore
Theorem 1.1 reduces to Theorem 1.2 with F = ΩX . �

ANNALES DE L’INSTITUT FOURIER
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Corollary 2.2. — For any variety X, the following properties are
equivalent:

(1) the Nash blow-up N(J ′n(X))→ J ′n(X) is an isomorphism for some
n > 0;

(2) the Nash blow-up N(J ′n(X))→ J ′n(X) is an isomorphism for every
n > 0.

Proof. — By Theorem 1.1, both properties are equivalent to the fact that
the Nash blow-up N(X)→ X is an isomorphism. �

In positive characteristics, there are examples of singular varieties whose
Nash blow-up is an isomorphism (see [9, Example 1]), and Corollary 2.2
implies that this property, whenever it holds, propagates through all the
jet schemes, and conversely.

By contrast, when the ground field is algebraically closed of characteristic
zero the Nash blow-up is an isomorphism if and only if the variety is smooth
(see [9, Theorem 2]). It is elementary to show that the jet schemes of a
smooth variety are smooth, and conversely it was proved in [6] that if X
is a singular variety then all its jet schemes Jn(X) are singular. With the
above assumptions on the ground field, we deduce the following stronger
statement from Corollary 2.2.

Corollary 2.3. — If X is a singular variety defined over an alge-
braically closed field of characteristic zero, then the main component of
J ′n(X) of Jn(X) is singular for every n.

3. Computational aspects

After viewing a projective birational morphism µ : Y → X as the Nash
transformation of a coherent sheaf F on a varietyX, Theorem 1.2 provides a
construction of a relative compactification of the induced map µ′n : J ′n(Y )→
J ′n(X) by taking the Nash transformation of an explicitly described sheaf
F ′n on J ′n(X). Such transformation is a projective birational morphism,
and therefore can also be described as the blow-up of an ideal sheaf an on
J ′n(X). In this section we explain how to compute such ideal.

For simplicity, we assume that X = SpecR is affine. The following dia-
gram provides the algebraic counterpart of the restriction to J ′n(X) of the

TOME 69 (2019), FASCICULE 6
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universal n-jet:

R′n[t]/(tn+1) R
(γ′

n)]

oo

R′n

(ρ′
n)]

OO

Here R′n is a quotient of Rn, the algebra of Hasse–Schmidt differentials of
order at most n, (ρ′n)] is the natural inclusion map, and (γ′n)] is induced
by the homomorphism

γ]n : R→ Rn[t]/(tn+1), f 7→
n∑
i=0

Di(f) ti,

where (D0, D1, . . . , Dn) is the universal Hasse–Schmidt derivation of order
n. With this notation, we have Jn(X) = SpecRn and J ′n(X) = SpecR′n.
If τ(F) denotes the torsion of F , then the two sheaves F ′n and (F/τ(F))′n

have the same torsion free quotient. We can therefore assume without loss
of generality that F is torsion free. Let F denote the R-module associated
to F . If r is the rank of F , we can then realize F as a submodule of
Rr. Picking a set of generators for F of cardinality s, we obtain a matrix
M ∈ Matr×s(R) such that F = ImM . Notice that, to produce an ideal
whose blow-up gives Y → X, one can take the ideal generated by the r× r
minors of M .
The relative compactification of µ′n : J ′n(Y )→ J ′n(X) constructed in The-

orem 1.2 is given by the Nash transformation of the R′n-module

F ′n := (γ′n)](F ) · (R′n[t]/(tn+1))r,

where the R′n-module structure is defined via (ρ′n)]. A straightforward com-
putation shows that Fn = ImMn whereMn ∈ Mat(n+1)r×(n+1)s(R′n) is the
matrix given in block form by

Mn =


D0(M) 0 · · · 0
D1(M) D0(M) · · · 0

...
...

. . .
...

Dn(M) Dn−1(M) · · · D0(M)

 .
Here Di(M) is the matrix obtained from M by applying Di to each entry.
By construction, we have the following property.

Proposition 3.1. — With the above notation, the morphism N(F ′n)→
J ′n(X) is the blow-up of the ideal an ⊂ R′n generated by the (n + 1)r ×
(n+ 1)r minors of Mn.

ANNALES DE L’INSTITUT FOURIER
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The next example shows the computation of the first few ideals an in a
simple case.

Example 3.2. — Consider X = A2 = Spec k[x, y], and let Y → X be the
blow-up of the maximal ideal (x, y). Taking F to be the maximal ideal, we
have

M0 =
[
x y

]
,

M1 =
[
x y 0 0
x1 y1 x y

]
,

M2 =

 x y 0 0 0 0
x1 y1 x y 0 0
x2 y2 x1 y1 x y

 ,

M3 =


x y 0 0 0 0 0 0
x1 y1 x y 0 0 0 0
x2 y2 x1 y1 x y 0 0
x3 y3 x2 y2 x1 y1 x y

 ,
where xi = Di(x) and yi = Di(y). Letting an be the ideal generated by the
(n+ 1)× (n+ 1) minors of Mn, we have

a0 = (x, y),

a1 = a2
0 + (xy1 − yx1),

a2 = a0a1 + (y2x
2 − yx2x− x1y1x+ yx2

1, x2y
2 − x1y1y − xy2y + xy2

1),

a3 = a0a2 + a2
1

+ (y3x
3 − yx3x

2 − x2y1x
2 − x1y2x

2 + 2yx1x2x+ x2
1y1x− yx3

1,

y1y2x
2 − yy3x

2 − x1y
2
1x+ y2x3x+ y2x1x2 + yx2

1y1,

x2y1y
2 + x1y2y

2 + xy3y
2 − x1y

2
1y − 2xy1y2y + xy3

1 − y3x3,

y2
2x

2 − y1y3x
2 + x2y

2
1x+ yx3y1x− 2yx2y2x− x1y1y2x

+ yx1y3x+ y2x2
2 − y2x1x3 − yx1x2y1 + yx2

1y2).

Notice that while the matrices Mn remain simple and have an easily rec-
ognizable structure, the corresponding ideals an grow in complexity quite
fast.
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