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NEARLY OVERCONVERGENT SIEGEL MODULAR
FORMS

by Zheng LIU

Abstract. — We introduce a sheaf-theoretic formulation of Shimura’s theory
of nearly holomorphic Siegel modular forms and differential operators. We use it
to define and study nearly overconvergent Siegel modular forms and their p-adic
families.
Résumé. — Nous introduisons une formulation faisceau-théorique de la théorie

de Shimura des formes modulaires de Siegel quasi holomorphes et des opérateurs
différentiels. Nous l’utilisons pour définir et étudier les formes modulaires de Siegel
quasi surconvergentes et leurs familles p-adiques

1. Introduction

Shimura developed his theory of nearly holomorphic forms in his study
on the algebraicity of special L-values and Klingen Eisenstein series [42,
45]. With the goal of combining this useful tool with Hida and Coleman–
Mazur theories for p-adic families of modular forms to study special L-
values and Selmer groups by using p-adic congruences and deformations,
Urban [49] introduced a sheaf-theoretic formulation of Shimura’s theory in
the GL(2)/Q case. Such a formulation enables him to define and study some
basic properties of nearly overconvergent modular forms.
In this article we generalize Urban’s work to Siegel modular forms. In

the construction of automorphic sheaves over Siegel varieties equipped with
integrable connections, we take a different approach from [49] by using
a canonical Q-torsor over the Siegel variety and (g,Q)-modules. Here g

is the Lie algebra of the algebraic group G = GSp(2n)/Z and Q is the
standard Siegel parabolic subgroup of G. Compared to G-representations,

Keywords: nearly holomorphic Siegel modular forms, nearly overconvergent Siegel mod-
ular forms, differential operators, overconvergent families.
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2440 Zheng LIU

(g,Q)-modules are more adaptive for p-adic deformations. Combining the
ideas and techniques in [2] with our sheaf-theoretic formulation of nearly
holomorphic Siegel modular forms and differential operators, we introduce
the space of nearly overconvergent Siegel modular forms and their p-adic
families.
One of the main motivations for considering differential operators, nearly

holomorphic forms and their p-adic theory is for arithmetic applications of
various integral representations of L-functions or L-values: the algebraicity
results on special L-values and Klingen Eisenstein series by the doubling
method [20, 21, 44, 45], the construction of p-adic L-functions by evaluating
Eisenstein series at CM points [32], by Rankin–Selberg method [24] and by
doubling method [14, 15, 37], and the study of p-adic regulators of Heegner
cycles by the Waldspurger formula [4], just to name a few.
As we know, the algebraicity of an automorphic representation is mainly

related with its archimedean component. When utilizing integral represen-
tations to study special L-values, differential operators and nearly holo-
mophic forms naturally show up in the analysis of archimedean zeta inte-
grals. Over the field of complex numbers, roughly speaking, cuspidal nearly
holomorphic forms are automorphic forms inside cuspidal automorphic rep-
resentations whose archimedean components are isomorphic to holomorphic
discrete series. The holomorphic forms are those whose archimedean com-
ponents belong to the lowest K∞-types of the holomorphic discrete series.
The Maass–Shimura differential operators correspond to the action of the
Lie algebra on the archimedean components. The theory of nearly holo-
morphic forms and differential operators aims to introduce nice algebraic
or even integral structure to the complex vector space of nearly holomor-
phic forms and to the action of the Lie algebra. It also provides explicit
formulas that help the computation of Fourier coefficients and archimedean
zeta integrals. Besides Shimura, the differential operators and nearly holo-
morphic forms have also been studied in [6, 19, 27, 40, 41] through different
approaches.
In Shiumra’s theory of nearly holomorphic Siegel modular forms, there

are three main ingredients. Let hn be the genus n Siegel upper half space,
Γ ⊂ Sp(2n,Z) be a congruence subgroup, and (ρ,Wρ) be an algebraic
GL(n)-representation of finite rank. Shimura defined

(1) the space Nr
ρ (hn,Γ) of Wρ(C)-valued nearly holomorphic forms on

hn of level Γ and (non-holomorphy) degree r, together with its al-
gebraic structure defined by using CM points,
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(2) the Maass–Shimura differential operator

Dhn,ρ : Nr
ρ (hn,Γ)→ Nr+1

ρ⊗τ (hn,Γ),

where τ is the symmetric square of the standard representation of
GL(n),

(3) a holomorphic projection Nr
κ(hn,Γ) → N0

κ(hn,Γ) for a generic
weight κ.

Both the differential operators and the holomorphic projection preserve
the algebraic structure in (1), and they play important roles in choosing
desirable archimedean sections in arithmetic applications of various integral
representations of L-functions and L-values.

This paper consists of two parts. In the first part, we construct the au-
tomorphic quasi-coherent sheaf Vρ over a smooth toroidal compactification
X of the Siegel modular variety Y of level Γ defined over Z[1/N ] for some
positive integer N . This automorphic sheaf Vρ has an increasing filtration
Vrρ and we construct a connection

(1.1) Vrρ −→ Vr+1
ρ ⊗OX Ω1

X(logC), C = X − Y.

Composing this connection with the Kodaira–Spencer isomorphism, we get
the differential operator Dρ : Vrρ → Vr+1

ρ⊗τ . We show in Section 2.5 that Vrρ
together with Dρ recovers the first two ingredients in Shimura’s theory, and
there is the commutative diagram

(1.2)

H0(X◦C,Vrρ) ∼ //

Dρ

��

Nr
ρ (hn,Γ)

Dhn,ρ

��

� � // C∞(Γ\G◦(R))

q+-action
��

H0(X◦C,V
r+1
ρ⊗τ ) ∼ // Nr+1

ρ⊗τ (hn,Γ) �
� // C∞(Γ\G◦(R)),

where X◦C is a connected component of the base change of X to C, G◦ =
Sp(2n), and q+ =

(
In iIn
iIn In

)
(Lie Q)C

(
In iIn
iIn In

)−1.
Automorphic sheaves are defined over X using algebraic Q-represen-

tations free of finite rank and the canonical Q-torsor T×H = IsomX(O2n
X ,

H1
dR(A/Y )can), where A → Y is the principally polarized universal abelian

scheme, and the isomorphisms are required to respect the Hodge filtra-
tion and preserve the symplectic pairing of H1

dR(A/Y )can up to similitude.
Given an algebraic Q-representation V , the associated automorphic sheaf
is defined as the contracted product V = T×H ×Q V .
If one wants to consider automorphic sheaves further equipped with inte-

grable connections which induce Hecke equivariant maps on global sections,
we show in Section 2.2 that the right objects to consider are (g,Q)-modules.

TOME 69 (2019), FASCICULE 6



2442 Zheng LIU

It is the g-module structure combined with the Gauss–Manin connection
on H1

dR(A/Y )can that gives rise to the desired connection. Then in order
to construct the sheaves of nearly holomorphic Siegel modular forms with
differential operators, it remains to select suitable (g,Q)-modules. In Sec-
tion 2.3 we define, for each algebraic GL(n)-representation ρ free of finite
rank, a (g,Q)-module Vρ. As a Q-module, Vρ has an increasing filtration
V rρ , r > 0 such that g·V rρ ⊂ V r+1

ρ . We define the sheaf of nearly holomorphic
forms of weight ρ and (non-holomorphy) degree r as Vrρ = T×H ×Q V rρ . The
general construction in Section 2.2 equips Vρ with the connection (1.1). The
construction of holomorphic projections is postponed to Section 3.7 where
it is done in the more general setting of nearly overconvergent families.
In the second part, combining the ideas and techniques in [2] with our

construction in the first part, we define and study some basic properties of
the space of nearly overconvergent forms and p-adic families of nearly over-
convergent forms. When replacing dominant algebraic weights by general
p-adic anaylitic weights, it is convenient to construct the corresponding rep-
resentations of the Lie algebra, which can be viewed as a p-adic deformation
of the Lie algebra representations attached to dominant algebraic weights.
However, these Lie algebra representations do not integrate to representa-
tions of the algebraic group, but only integrate to certain p-adic analytic
representations of some rigid analytic subgroup of the rigid analytification
of the algebraic group. In order to construct sheaves of p-adic automorphic
forms with p-adic analytic weights, one natural approach is to modify the
torsor of the algebraic group to a p-adic analytic torsor of its rigid analytic
subgroup, and to form the contracted product of the p-adic analytic torsor
with the representation of the rigid analytic subgroup.
In [2], for v, w > 0 within a certain range, over the strict neighborhood

XIw(v) of the ordinary locus of the compactifed Iwahori-level Siegel vari-
ety XIw, an Iwahori-like space T ×F,w(v) inside the GL(n)an-torsor T×ω,an =
IsomX (OnX , ω(A/Y )can)an is constructed by using canonical subgroups.
Here the subscript “an” means the rigid analytification. This T ×F,w(v) can
be viewed as a torsor of a rigid analytic subgroup Iw ⊂ GL(n)rig, the
rigid analytic fibre of the completion of GL(n) along its special fibre. For
a w-analytic weight κ ∈ Homcont

(
(Z×p )n,C×p

)
, there corresponds a natural

representation Wκ,w of Lie(GL(n)) which integrates to a representation of
Iw. The Banach sheaf ω†κ,w over XIw(v) of overconvergent modular forms
of the w-analytic weight κ is obtained as the contracted product of T ×F,w(v)
and Wκ,w.
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Taking ρ to be the trivial representation and r = 1, the construction
in Section 2 gives an automorphic coherent sheaf J = V1

triv. A quick way
to define the Banach sheaf of degree r nearly overconvergent forms of the
w-analytic weight κ is to set V†,rκ,w := ω†κ,w ⊗ Symr J (this is similar to the
way of defining Hrk, HrU in [49]). For the convenience of defining differential
operators and holomorphic projections as in Section 3.6, 3.7, we need a con-
tracted product interpretation for V†,rκ,w. Associated to the p-adic analytic
weight κ, generalizing the previous Vρ, there is a natural g-module Vκ,w
which integrates to a (g,Qw)-module, where Qw ⊂ Qan is the rigid ana-
lytic group defined as the preimage of Iw of the projection Qan → GL(n)an.
We define the Qw-torsor T ×H,w(v) as the subspace of T×H,an whose image un-
der the projection T×H,an → T×ω,an lies inside T ×ω,w(v). Then T ×H,w(v) together
with Vκ,w gives the desired contracted product interpretation for the Ba-
nach sheaf V†,rκ,w.
Now let U be an affinoid subdomain of the weight space whose Cp-points

are all w-analytic. The construction above works for the universal weight
as well and produces the Banach sheaf V†,rκun,w over XIw(v) × U . In Sec-
tion 3.5 we show that the A(U)-Banach module N†,rU,w,v,cusp := H0(XIw(v)×
U ,V†,rκun,w(−C)) is projective. Section 3.9 is devoted to defining the Up-
operators and showing the compactness of the operator Up = res◦Up,n◦· · ·◦
Up,1 acting on N†,rU,w,v,cusp. Then the Coleman–Riesz–Serre spectral theory
is applied to give the slope decomposition ofN†,∞U,w,v,cusp :=

⋃
r>0N

†,r
U,w,v,cusp

in Section 3.11.
The p-adic theory of nearly holomorphic forms and differential oper-

ators has also been considered in [12, 13] (unitary case) and [28] (sim-
plectic case). They define nearly holomorphic forms as global sections of(
H1

dR(A/Y )can)⊗m for some positive integer m, and the differential oper-
ators are then the connections induced from the Gauss–Manin connection
on H1

dR(A/Y )can. In order to consider p-adic deformations, their method
relies on unit root splitting of H1

dR(A/Y )can over the ordinary locus and
the q-expansion or Serre–Tate expansion principle, and does not extend
to nearly overconvergent forms. We believe that our method here works
also for Shimura varieties for unitary groups. In [23], a construction of the
Gauss–Manin connections for nearly overconvergent forms is given in the
GL(2)/Q case, where they consider the action of GL(1) (the Levi subgroup
of the Siegel parabolic of GL(2)) instead of that of Lie(GL(2)). Note that
besides constructing differential operators acting on nearly overconvergent
forms of general p-adic analytic weight, there is another problem of taking
the differential operator to a p-adic analytic power. This is easy for p-adic
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forms over the ordinary locus by using the q-expansion principle, but for
nearly overconvergent forms there seems no obvious approach. Recently this
problem has been addressed for families of nearly overconvergent modular
forms in [1]. It is expected that some ideas there extend to our case of
nearly overconvergent Siegel modular forms.

Notation. — Let G be the rank n symplectic similitude group

GSp(2n)/Z =
{
g ∈ GL(2n)/Z : tg

( 0 In
−In 0

)
g = ν(g)

( 0 In
−In 0

)}
with the multiplier character ν : G→ Gm. Denote by Q the standard Siegel
parabolic subgroup of G consisting of matrices whose lower left n×n block
is 0 and by T the maximal torus consisting of diagonal matrices. Write
Q = MnU with M and U as its Levi subgroup and unipotent radi-
cal. Fix the embedding GL(n) ↪→ M sending a ∈ GL(n) to

(
a 0
0 ta−1

)
. Let

G◦ = Sp(2n)/Z be the kernel of the multiplier character ν with maximal
torus T◦ ∼= Gnm and standard Siegel parabolic subgroup Q◦ = M◦nU.
The embedding GL(n) ↪→ M gives an isomorphism of GL(n) onto M◦.
The maximal torus T◦ of Sp(2n) can also be regarded as a maximal torus
of M◦ ∼= GL(n). We use B to denote the Borel subgroup of M◦ consisting
of upper triangular matrices and N to denote the unipotent radical of B.
For an algebra E, let RepE Q (resp. RepE,f GL(n)) stand for the category
of algebraic representations of the group Q (resp. GL(n)) base changed to
E on locally free E-modules (resp. locally free E-modules of finite rank).
The projection Q → GL(n) mapping

(
a b
0 d
)
∈ Q to a ∈ GL(n) defines

a functor RepE,f GL(n) → RepE Q, through which we regard every ob-
ject in RepE,f GL(n) also as a Q-representation. The congruence subgroup
{γ ∈ G◦(Z) : γ ≡ I2n mod N} of G◦(Z) is denoted by Γ(N).

Acknowledgement. I am very grateful to my advisor Eric Urban for
his guidance and insightful suggestions. I would also like to thank Michael
Harris, Vincent Pilloni for their helpful advice, and Adrian Iovita, Johan
de Jong, Ellen Eischen, Kai-Wen Lan, Liang Xiao for useful conversations.

2. Nearly holomorphic forms

2.1. Automorphic sheaves over Siegel varieties

Let N > 3 and Y = YG,Γ(N) be the Siegel variety parametrizing princi-
pally polarized abelian schemes of relative dimension n with principal level
N structure defined over Z[1/N ]. Over it there is the universal abelian
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scheme p : A → Y . Take a smooth toroidal compactification X of Y with
boundary C = X − Y . Then p : A → Y extends to a semi-abelian scheme
p : G → X. Let ω(G/X) be the pullback of Ω1

G/X along the zero section of
p. According to [35, Proposition 6.9], the locally free sheaf H1

dR(A/Y ) =
R1p∗(Ω•A/Y ) has a canonical extension H1

dR(A/Y )can ∼= H1
log -dR(G/X)

which is a locally free subsheaf of (Y → X)∗H1
dR(A/Y ). This canonical

extension H1
dR(A/Y )can is endowed with a symplectic pairing under which

ω(G/X) is maximally isotropic. The Hodge filtration of H1
dR(A/Y ) also

extends to

0 // ω(G/X) // H1
dR(A/Y )can // Lie(tG/X) // 0

where tG/X is the dual semi-abelian scheme of G/X.
There is a standard way to construct, from a representation in RepZ Q, a

quasi-coherent sheaf over X whose global sections are equipped with Hecke
actions. Equip the free sheaf O2n

X with a two-step filtration with the first n
copies as the subsheaf, and a symplectic pairing using the matrix

( 0 In
−In 0

)
.

Define the right Q-torsor over X

T×H = IsomX(O2n
X ,H1

dR(A/Y )can)

to be the isomorphisms respecting the filtration and the symplectic pairing
up to similitude. The right Q-action is given as

(b · φ)(v) = (φ ◦ b)(v) = φ(bv)

for any open subscheme U = Spec(R) ⊂ X, φ ∈ T×H (U), v ∈ R2n and
b ∈ Q(R).
With this right Q-torsor, by forming contracted product, one can define

the functor

E : RepZ Q −→ QCoh(X)

V 7−→ T×H ×
Q V

from the category of algebraic representations of Q on locally free Z-
modules to that of quasi-coherent sheaves over X. Let us give a more
detailed description of E(V ) in local affine charts. Let U = Spec(R) be
an affine open subscheme of X such that H1

dR(A/Y )can(U) is free over
R. We identify elements in T×H (U) with ordered basis α = (α1, . . . , α2n)
of H1

dR(A/Y )can(U), which gives rise to isomorphisms between R2n and
H1

dR(A/Y )can(U) preserving the Hodge filtration and the symplectic par-
ing up to similitude. Then E(V )(U) is the set of maps v : T×H (U)→ V ⊗R
such that v(αg) = g−1 · v(α) for all g ∈ Q(R) and α ∈ T×H (U).

TOME 69 (2019), FASCICULE 6



2446 Zheng LIU

Moreover, for all V ∈ RepZ Q, the space of global sections of the associ-
ated quasi-coherent sheaf E(V ) comes with a Hecke action constructed via
algebraic correspondence (cf. [16, Section VII.3]). Such an E(V ) together
with the Hecke action on its global sections is often called an automor-
phic sheaf. Morphisms between algebraic Q-representations induce Hecke
equivariant morphisms between global sections of the corresponding auto-
morphic sheaves. The functor E is exact and faithful [35, Definition 6.13].
Certainly this functor is not fully faithful (see Example 2.13). Let Vst be the
standard representation of G restricted to Q andWst be the standard repre-
sentation of GL(n) regarded as a Q-representation. Then immediately from
the definition we see that E(Vst) ∼= H1

dR(A/Y )can and E(Wst) ∼= ω(G/X).
The multiplier character ν : G → Gm can be seen as an algebraic rep-

resentation of Q and we denote its corresponding invertible sheaf over X
by E(ν). As an invertible sheaf, E(ν) is isomorphic to the structure sheaf
OX . However the Hecke action differs by a Tate twist. For V ∈ RepZ Q we
define E(V )(i) to be E(V ⊗ νi) = E(V )⊗ E(ν)i.

Remark 2.1. — The Hecke actions are only defined on global sections
not on the quasi-coherent sheaves. However, in the following we say, for
simplicity, a quasi-coherent sheaf with Hecke actions to mean that Hecke
operators act on its global sections, and a Hecke equivariant morphism
between quasi-coherent sheaves to mean that the induced map on global
sections is Hecke equivariant. Also by a morphism between two automorphic
sheaves we mean a Hecke equivariant morphism unless otherwise stated.

2.2. (g,Q)-modules and Gauss–Manin connection

Let g = Lie G, q = Lie Q be the Lie algebras of G and its Siegel
parobolic Q.

Definition 2.2. — Let E be an algebra. A (g,Q)-module V over E is
an algebraic representation of Q and g base changed to E on locally free
E-modules, such that the action of q ⊂ g on V is the one induced from
that of Q and for any g ∈ Q, X ∈ g, v ∈ V ,

g ·X · g−1 · v = (Ad(g)X) · v.

We denote the category of (g,Q)-modules over E by RepE(g,Q).

It is mentioned on [16, p. 223] that G(C)-equivariant quasi-coherent D-
modules over the compact dual D∨ = G(C)/Q(C) correspond to (g,Q)-
modules. We show below that for an object V ∈ RepZ(g,Q), using the
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g-module structure on V , we can equip its associated automorphic sheaf
E(V ) with an integrable connection.

For the locally free sheaf H1
dR(A/Y ) = R1p∗(Ω•A/Y ) over Y , there is a

canonical integrable connection called the Gauss–Manin connection [33].
We record the following result on the extension of the Gauss–Manin con-
nection to toroidal compactification.

Theorem 2.3 ([35, Proposition 6.9]). — The Gauss–Manin connection
∇ : H1

dR(A/Y ) −→ H1
dR(A/Y ) ⊗ Ω1

Y extends to an integrable connection
with log poles along the boundary

∇ : H1
dR(A/Y )can −→ H1

dR(A/Y )can ⊗ Ω1
X(logC),

which satisfies Griffith transversality and compatible with the symplectic
pairing on H1

dR(A/Y )can.

Let U = Spec(R) and basis α be as in our description of the contracted
product defining E(V ) in Section 2.1. Given D ∈ TX(U) = DerZ[1/N ](R,R),
a section of the tangent bundle of X over U , by Theorem 2.3 there exists
X(D,α) ∈Mn,n(R) ∼= g(R) (in fact g(Frac(R)) with logarithm poles along
the boundary if U intersects with the boundary) such that

(2.1) ∇(D)(α) = αX(D,α).

For v ∈ E(V )(U) we define the operator ∇E(V )(D) acting on it as

(2.2) (∇E(V )(D)(v))(α) := Dv(α) +X(D,α) · v(α).

Here D acts on v(α) ∈ V ⊗R through the action of DerZ[1/N ](R,R) on R,
i.e. by coefficients. The action of X(D,α) on v(α) is the action of the Lie
algebra g on V .

Proposition 2.4. — The above defined ∇E(V )(D)(v) belongs to
E(V )(U) and the formula (2.2) on local sections patches together to an
integrable connection with log poles along the boundary

∇E(V ) : E(V ) −→ E(V )⊗ Ω1
X(logC).

Proof. — What we need to show is that for any g ∈ Q(R)

(2.3) (∇E(V )(D)(v))(αg) = g−1 · (∇E(V )(D)(v))(α).

The Gauss–Manin connection ∇ satisfies that

∇(D)(αg) = ∇(D)(α) · g + αDg

= (αg)(g−1X(D,α)g + g−1Dg)

= (αg)(Ad(g−1)X(D,α) + g−1Dg)

TOME 69 (2019), FASCICULE 6



2448 Zheng LIU

i.e.
X(D,αg) = Ad(g−1)X(D,α) + g−1Dg.

We compute the left hand side of (2.3) by definition,

LHS = Dv(αg) +X(D,αg) · v(αg)

= D(g−1 · v(α)) + (Ad(g−1)X(D,α) + g−1Dg) · v(αg)

= ((Dg−1)g) · (g−1 · v(α)) + g−1 · (Dv(α))

+ (Ad(g−1)X(D,α) + g−1Dg) · (g−1 · v(α))

= −(g−1Dg) · (g−1 · v(α)) + g−1 · (Dv(α))

+ (g−1 ·X(D,α) · g) · (g−1 · v(α)) + (g−1Dg) · (g−1 · v(α))

= g−1 · (Dv(α) +X(D,α) · v(α)),

which equals to the right hand side. The compatibility of the action of g
and Q is used for the fourth equality. The integrability of the Gauss–Manin
connection implies that for D1, D2 ∈ TX(U)

X([D1, D2], α) = D1X(D2, α)−D2X(D1, α)
+X(D1, α)X(D2, α)−X(D2, α)X(D1, α).

Also,

∇E(V )(D1)∇E(V )(D2)
= D1D2v(α) + (D1X(D2, α)) · v(α) +X(D2, α) ·D1v(α)

+X(D1, α) ·D2v(α) +X(D1, α) ·X(D2, α) · v(α),

∇E(V )(D2)∇E(V )(D1)
= D2D1v(α) + (D2X(D1, α)) · v(α) +X(D1, α) ·D2v(α)

+X(D2, α) ·D1v(α) +X(D2, α) ·X(D1, α) · v(α).

Thus(
∇E(V )(D1)∇E(V )(D2)−∇E(V )(D2)∇E(V )(D1)

)
(α)

= [D1, D2]v(α)
+ (D1X(D2, α)−D2X(D1, α) + [X(D1, α), X(D2, α)]) · v(α)

= [D1, D2]v(α) +X([D1, D2], α) · v(α) = ∇E(V )([D1, D2])(α),

i.e. the connection ∇E(V ) is integrable. �
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Remark 2.5. — If the (g,Q)-module V can be constructed from the stan-
dard representation Vst of G by taking tensor products, symmetric pow-
ers and wedge products, then applying the same operations to the sheaf
H1

dR(A/Y )can = E(Vst) we get the locally free sheaf E(V ) attached to V ,
so the Gauss–Manin connection on H1

dR(A/Y )can immediately induces a
connection on E(V ). This is the approach adopted in [12]. The point of
our construction here is that V does not need to be a representation of G.
The construction works for all (g,Q)-modules and therefore can be eas-
ily adapted to deal with p-adic analytic weights and the universal weight
(see Sections 3.2, 3.4, 3.6). There is another construction for the connec-
tion ∇E(V ) in [47, Section 3.2] using Grothendieck’s sheaves of differentials
when V is a finite dimensional G-representation. That approach may be
modified to deal with the non-algebraic weight except that there might be
some issue with taking duality when infinite dimensional representations
are involved.

2.3. The (g,Q)-module Vκ

Now in order to use the constructions in Sections 2.1 and 2.2 to formulate
Shimura’s theory of nearly holomorphic forms in a sheaf-theoretic context,
what we need is to define a suitable (g,Q)-module for a given algebraic
representation of GL(n).
Let (ρ,Wρ) ∈ RepZ,f GL(n) be an algebraic representation of GL(n)

locally free of finite rank. We define the (g,Q)-module Vρ as follows. For
any algebra R, set

Vρ(R) := Wρ(R)⊗R R[Y ] = Wρ(R)⊗R R[Yij ]16i6j6n
where Y = (Yij)16i,j6n is the symmetric n × n matrix with the indeter-
minate Yij = Yji as its (i, j) entry. Elements in Vρ(R) can be regarded as
polynomials in the n(n+1)

2 variables Yij with coefficients in Wρ(R). Define
the Q-action on Vρ by

(2.4) (g · P )(Y ) = a · P (a−1b+ a−1 Y d)

for g =
(
a b
0 d
)
∈ Q(R) and P (Y ) ∈ Vρ(R). For the action of q ⊂ g on Vρ,

obviously we take the one induced from the Q-action. It remains to define
the action of u−, the Lie algebra of the unipotent subgroup opposite to
U ⊂ G, on Vρ. First, we pick the following basis of u−

µ−ii = Ei+n,i, 1 6 i 6 n, µ−ij = Ei+n,j + Ej+n,i, 1 6 i < j 6 n,
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where Eij is the 2n× 2n matrix with 1 as the (i, j) entry and 0 elsewhere.
We make u− act on Vρ by the formulas

(2.5)

(µ−ij · P )(Y ) =
∑

16k6n
(Ykiεkj + Ykjεki) · P (Y )

−
∑

16k6l6n
(YkiYjl + YkjYil)

∂

∂Ykl
P (Y ), i 6= j,

(µ−ii · P )(Y ) =
∑

16k6n
εki · P (Y )−

∑
16k6l6n

YkiYil
∂

∂Ykl
P (Y ),

where εij ∈ gl(n) is the n × n matrix with 1 as the (i, j) entry and 0
elsewhere, and it acts via the gl(n)-action on the coefficients of P (Y ). The
compatibility of such defined actions of Q and u− can be shown by direct
computation using the formulas. There is also a more conceptual proof. To
describe it we construct a representation of the group

IG(Zp) =
{(

a b
c d

)
∈ G(Zp)

∣∣ c ≡ 0 mod p
}
.

Let Q−IG
(Zp) be the subgroup of IG(Zp) whose elements have 0 as the

right upper n×n corner. we make it act on Wρ(Qp) through its Levi part.
Equip Wρ(Qp) with a p-adic norm by choosing a basis of Wρ(Qp), and
since it is finite dimensional all norms defined in this way are equivalent.
We consider the p-adic analytic induction IndIG(Zp)

Q−
IG

(Zp)Wρ(Qp). Thanks to
the Iwahori decomposition we know

IndIG(Zp)
Q−
IG

(Zp)Wρ(Qp) = Wρ(Qp)〈Yij〉16i<j6n = Wρ(Qp)〈Y 〉,

with g ∈ IG(Zp) acting on P (Y ) ∈Wρ(Qp)〈Y 〉 by

(2.6) (g · P )(Y ) = (a+ Y c) · P
(
(a+ Y c)−1(b+ Y d)

)
.

Here Wρ(Qp)〈Y 〉 is the space of strictly convergent power series in Y (i.e.
convergent on the closed unit ball). Then the formulas (2.4) and (2.5) can
be deduced from (2.6), and the compatibility of the actions of Q and u−

on Vρ follows.

Remark 2.6. — One can check that the formulas (2.4) and (2.5) actually
agree with the formulas (2.11) and (2.12) given in [29], so as g(C)-modules,
Vρ(C) defined here should agree with Of (G◦(R),KG◦(R),Wρ(C)) defined
in [29].

Remark 2.7. — A (g,Q)-module of finite rank comes from an algebraic
representation of G. However, the (g,Q)-module defined above is not of
finite rank, and it contains a sub-(g,Q)-module of finite rank. Compared
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to G-representations, (g,Q)-modules are more convenient for considering
p-adic deformations and p-adic families.

As a Q-representation, Vρ comes with an increasing filtration

(2.7) Filr Vρ = V rρ = Wρ[Y ]6r,

where the subscript 6 r means polynomials in Y of total degree less or
equal to r. Let η0 = −

∑
16i6nEi+n,i+n ∈ g. Then Filr Vρ can also be

characterized as the sum of generalized η0-eigenspaces with eigenvalues >
−r [16, p. 230]. The eigenvalues of η0 are also called F -weights [16]. Viewing
the GL(n)-representation Wρ as a Q-representation we have V 0

ρ = Wρ. It
follows from the definition formulas that

(2.8) g · V rρ ⊂ V r+1
ρ .

Let Vtriv be the (g,Q)-module constructed as above by taking ρ to be
the trivial representation. Denote by J the Q-representation V 1

triv. We note
here the following useful isomorphism of Q-representations

(2.9) V rρ
∼= V 0

ρ ⊗ Symr J = Wρ ⊗ Symr J.

For a dominant weight κ = (k1, . . . , k2) ∈ X(T◦)+ of GL(n) with respect
to B. Set κ′ = (−kn, . . . ,−k1). We define Wκ to be the algebraic GL(n)-
representation

(2.10)

f : GL(n)→ A1

∣∣∣∣∣∣
morphism of schemes satisfying
f(gb) = κ′(b)f(g)
for all g ∈ GL(n) and b ∈ B


with GL(n) acting by left inverse translation. Putting Wρ = Wκ we get the
(g,Q)-module Vκ and Q-representations V rκ , r > 0.
Denote by τ the symmetric square of the standard representation of

GL(n). Let τ∨ be the dual representation of τ . In the following we mostly
consider GL(n)-representations which are tensor products of some κ with
symmetric powers of τ and τ∨.

Remark 2.8. — We can twist Vρ by the i-th power of the multiplier char-
acter ν and denote the resulting (g,Q)-module by Vρ(i). Such a twist will
change the F -weights by −i and corresponds to a Tate twist [16, p. 222].

2.4. The sheaf Vrκ of nearly holomorphic forms

Let κ be a dominant weight of GL(n). With preparations in previous
sections we give the following definitions.
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Definition 2.9. — The locally free sheaf over X of weight κ, (non-
holomorphy) degree r nearly holomorphic forms is defined to be Vrκ =
E(V rκ ).

When r = 0, we also use ωκ to denote V0
κ which is the sheaf of weight

κ holomorphic forms. More generally for ρ ∈ RepZ,f GL(n) we define the
locally free sheaves Vρ = E(Vρ), Vrρ = E(V rρ ) and denote V0

ρ by ωρ. The
nearly holomorphic forms are defined to be global sections of the sheaf Vrκ.

Definition 2.10. — Let R be a Z[1/N ]-algebra. The space of
nearly holomorphic forms (resp. cuspidal nearly holomorphic forms)
over R of weight κ, principal level N and (non-holomorphy) degree r

is defined to be Nr
κ(Γ(N), R) = H0(X/R,Vrκ) (resp. Nr

κ,cusp(Γ(N), R) =
H0(X/R,Vrκ(−C))).

There is the moduli interpretation à la Katz for nearly holomorphic
forms. Away from the cusps, a nearly holomorphic form f over R of weight
κ, principal level N and degree r is a rule assigning to every quadruple
(A/S , λ, ψN , α) an element f(A/S , λ, ψN , α) inside V rκ (S) = Wκ(S)[Y ]6r,
where (A/S , λ) is a principally polarized dimension n abelian scheme de-
fined over the R-algebra S, ψN is a principal level N structure and α is
a basis of H1

dR(A/S) respecting the Hodge filtration and the symplectic
pairing up to similitude. Taking into account the definition of Wκ (2.10),
by evaluating f(A/S , λ, ψN , α) ∈Wκ(S)[Y ]6r at the identity, one may also
formulate Katz’s interpretation for f as follows. The nearly holomorphic
form f is a rule assigning to each quadruple (A/S , λ, ψN , α) an element
f sc(A/S , λ, ψN , α) ∈ S[Y ]6r such that for each g =

(
a b
0 d
)
∈ Q with a

belonging to B, we have f sc(A/S , λ, ψN , αg) = κ′(a)f sc(A/S , λ, ψN , α).
It follows directly from Proposition 2.4 and (2.8) that the sheaves Vρ,Vrρ

are equipped with the integrable connections

∇ρ : Vρ −→ Vρ ⊗ Ω1
X(logC)

and

(2.11) ∇ρ : Vrρ −→ Vr+1
ρ ⊗ Ω1

X(logC).

The global sections of the differential sheaf Ω1
X has a natural Hecke action

and the extended Kodaira–Spencer isomorphism [35, Proposition 6.9] says
that there is the Hecke-equivariant isomorphism

Ω1
X(logC) ∼= Sym2(ω(G/X))(−1) ∼= ωτ (−1).

There is a canonical isomorphism of locally free sheaves

t+ : Vr+1
ρ⊗τ (−1) −→ Vr+1

ρ⊗τ
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which is not Hecke equivariant but commutes with Hecke actions up to
a twist by the multiplier character. Composing ∇ρ with t+ we get the
differential operator

Dρ : Vrρ
∇ρ−→ Vr+1

ρ ⊗ Ω1
X(logC) KS−→ Vr+1

ρ⊗τ (−1) t+−→ Vr+1
ρ⊗τ .

It commutes with Hecke actions up to a multiplier twist (cf. Section 3.10,
[49, Section 2.5.2, Proposition 3.3.7]).
Put J = E(J) and J ∨ to be its dual. By (2.9) we have

Proposition 2.11. — Vrρ ∼= ωρ ⊗ Symr J as locally free sheaves over
X with Hecke actions.

Remark 2.12. — In [48, Sections 4.1.2, 4.3.1] Urban defined a locally
free sheaf J ′ to be the one making the diagram below commutative with
bottom row exact,

0

��

0

��
Sym2(ω(G/X))(−1) //� � //

��

ω(G/X)⊗ Lie(tG/X)∨

��
J ′

��

� � // H1
dR(A/Y )can ⊗ Lie(tG/X)∨

��
OX

��

� � // Lie(tG/X)⊗ Lie(tG/X)∨

��
0 0 ,

and he defined the sheaf of weight κ degree r nearly holomorphic forms
to be ωκ ⊗ Symr J ′∨. One can show that the sheaf J ∨ satisfies Urban’s
condition for defining J ′. Hence J ∼= J ′∨ and our definition of sheaves of
nearly holomorphic forms agrees with his.

We end this section with an example showing that the locally free sheaves
associated to two non-isomorphic Q-representations can be isomorphic as
locally free sheaves without considering the Hecke actions. It also illus-
trates that the sheaf J may have splitting that does not come from the
Q-representation and such a splitting can give rise to holomorphic but
non-Hecke equivariant differential operators.
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Example 2.13. — Take n = 1, G = GL(2) and G◦ = SL(2). We show
that the sheaf J ∨ = (V1

triv)∨ and the first jet sheaf P1(OX) are isomorphic
in QCoh(X) but their corresponding Q-representations are not isomorphic.
Let V1, V2 be the Q-representations giving rise to J ∨, P1(OX) respectively.
Write Y = Y11. Then V ∨1 = triv⊗Z[Y ]61 with basis {Y, 1}, and the action
of Q◦ is given by (

a b

0 a−1

)
· P (Y ) = P (a−1b+ a−2Y ),

or in the matrix form (
a b

0 a−1

)
7→
(
a−2 0
a−1b 1

)
.

Clearly V1 is indecomposable as a Q-representation. On the other hand
by [16, Proposition VI 5.1], V ∨2 ∼= U1(g◦)⊗U(q◦)triv as a Q◦-representation,
where g◦ = Lie G◦ = sl(2) = Span{h, x, y} and q◦ = Span{h, x} with h =( 1 0

0 −1
)
, x = ( 0 1

0 0 ), y = ( 0 0
1 0 ). As a basis of V ∨2 we can take {y ⊗ 1, 1⊗ 1},

and we have
(
a b
0 a−1

)
act on them by(

a b

0 a−1

)
· (y ⊗ 1) = a−2y ⊗ 1,

(
a b

0 a−1

)
· (1⊗ 1) = 1⊗ 1,

or in the matrix form (
a b

0 a−1

)
7→
(
a−2 0
0 1

)
.

This is saying that the Q-action on V2 splits. Hence V1 and V2 are not
isomorphic as Q-representations.
However as coherent sheaves J ∨ and P1(OX) are indeed isomorphic,

because the nearly holomorphic form E2 splits J ∨ ∼= ω(G/X)⊗2 ⊗ J as
locally free sheaves [49, Remark 2.3.7]. This non-Hecke equivariant splitting
gives rise to Serre’s ∂ operator that acts on a modular form f of weight
k by

∂f = 12θf − kPf,

where θ = q d
dq and P is the holomorphic funciton on the upper half plane

defined as P (q) = 1 − 24
∑
m>1 σ1(n)qn with q = e2πiz (cf. [30, Sec-

tion A1.4]). Serre’s ∂ operator is a holomorphic differential operator but
not Hecke equivariant.
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2.5. Equivalence to Shimura’s nearly holomorphic forms and
differential operators

First recall Shimura’s definition of nearly holomorphic forms and Maass–
Shimura differential operators. Let hn = {z ∈ Mn(C) : tz = z, Im z > 0}
be the genus n Siegel upper half space and Γ ⊂ G◦(Z) = Sp(2n,Z) be
a congruence subgroup. As usual γ =

(
aγ bγ
cγ dγ

)
∈ G(R) acts on hn by

γz = (aγz+ bγ) · (cγz+dγ)−1. Put s(z) = (z− z̄)−1 and µ(γ, z) = cγz+dγ .
For an algebraic representation (ρ,Wρ) of GL(n) free of finite rank,

Shimura defines [45, Section 13.11] the space of Wρ(C)-valued nearly holo-
morphic forms of degree r, denoted by Nr

ρ (hn,Γ), as the set consisting of
functions f ∈ C∞(hn,Wρ(C)) satisfying

(i) f(z) can be written as a degree 6 r polynomial in the components
of s(z) with coefficients being holomorphic maps from hn toWρ(C),

(ii) f transforms under γ ∈ Γ by f(γz) = ρ(µ(γ, z))f(z).
When n = 1 the function f is also required to satisfy the cusp condition,
i.e. for every γ ∈ SL(2,Z) there exists ain ∈ C and M ∈ N such that

ρ(µ(γ, z))−1f(γz) =
r∑
i=0

(πIm z)−i
∞∑
n=0

aine
2πiz/M .

The Maass–Shimura differential operator Dhn,ρ is defined as [45, Section
12.9]

(2.12)
Dhn,ρ : Nr

ρ (hn,Γ) −→ Nr+1
ρ⊗τ (hn,Γ)

f(z) 7−→ ρ(s(z))(dz(ρ(s(z)−1)f(z))).

Now we show that Nr
ρ (hn,Γ), together with the Maass–Shimura differ-

ential operator Dhn,ρ, is nothing but the global sections over Γ\hn of the
sheaf Vrρ equipped with the differential operator Dρ defined in the previous
sections. Let Y ◦C be a connected component of Y base changed to C. Then
Y ◦C
∼= Γ(N)\hn as complex manifolds and the universal abelian variety

p : AC → Y ◦C is isomorphic to p : Γ(N)\Cn × hn/Z2n → Γ(N)\hn. Here
(m1,m2) ∈ Z2n and γ ∈ Γ(N) act on (w, z) ∈ Cn × hn by

(w, z) · (m1,m2) = (w +m1z +m2, z),

γ · (w, z) = (wµ(γ, z)−1, γz).

Let q : hn → Γ(N)\hn be the quotient map and Ahn = Cn × hn/Z2n → hn
be the pullback of AC via q. For each z = (zij) ∈ hn the fibre Ahn,z

∼=
Cn/Λz, where Λz is the lattice spanned by ei, the vector with 1 as the
i-th entry and 0 elsewhere, 1 6 i 6 n, and zj = t(z1j , z2j , . . . , znj),
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1 6 j 6 n. Let λhn (resp. ψhn,N ) be the polarization (principal level N
structure) of Ahn such that its fibre at z is given by the real Riemann
form Ez : Cn × Cn → R, defined as Ez(w1, w2) = −Im (tw1(Im z)−1(iw2))
(resp. 1

N e1, . . . ,
1
N en,

1
N z1, . . . ,

1
N zn). The {ei, zj}16i,j6n form a basis of

H1(Ahn,z,Z). Over hn we have a global basis (α, β) = (α1, . . . , αn,

β1, . . . , βn) for the sheaf q∗H1
dR(AC/YC) = H1

dR(Ahn/hn) defined as

αi

 n∑
j=1

m1,jzj +m2,jej

 = m2,i, βi

 n∑
j=1

m1,jzj +m2,jej

 = m1,i.

The basis (α, β) is horizontal with respect to the Gauss–Manin connection,
i.e.

∇(αi) = ∇(βi) = 0, 1 6 i 6 n.

After base changing to C∞(hn,C), the Hodge decomposition gives an-
other basis (dw,dw̄) = (dw1, . . . ,dwn,dw̄1, . . . ,dw̄n) of H1

dR(Ahn/hn) ⊗
C∞(hn,C).
Neither (dw,dw̄) nor (α, β) gives rise to an element of (q∗T×H )(hn) ⊗

C∞(hn,C). The basis (dw,dw̄) does not satisfy the pairing condition, while
(α, β) is not compatible with the Hodge filtration. Nevertheless (dw, β)
(resp. (dw,−dw̄ s)) does give an element of (q∗T×H )(hn) (resp. (q∗T×H )(hn)⊗
C∞(hn,C)), and it is easily checked that

(2.13) (dw,−dw̄ s) = (dw, β)
(

1 −s
0 1

)
.

Evaluating global sections of Vrρ over Y ◦C at the test object

(Ahn/hn, λhn , ψhn,N , (dw,−dw̄ s))

defines a map

(2.14)
φ : H0(Y ◦C ,Vrρ) −→ Nr

ρ (hn,Γ(N))
f 7−→ f(Ahn , λhn , ψN,hn , (dw,−dw̄ s))|Y=0.

Proposition 2.14. — φ is well defined and is an isomorphism.

Proof. — We need to check that the above defined φ(f) does land in-
side Nr

ρ (hn,Γ(N)). First look at the evaluation of f at the test object
(Ahn , λhn , ψhn,N , (dw, β)). Since (dw, β) is holomorphic we have

f(Ahn , λhn , ψhn,N , (dw, β)) = Pf (Y ),
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a polynomial in Y of degree 6 r with coefficients being holomorphic maps
from hn to Wρ(C). Combining (2.4) and (2.13) we get

φ(f) = f(Ahn , λhn , ψhn,N , (dw,−dw̄ s))|Y=0

= f

(
Ahn , λhn , ψhn,N , (dw, β)

(
1 −s
0 1

))∣∣∣∣
Y=0

=
(

1 s

0 1

)
· f(Ahn , λhn , ψhn,N , (dw, β))

∣∣∣∣
Y=0

= Pf (Y + s)|Y=0 = Pf (s).

This shows that φ(f) satisfies condition (i) in the definition ofNr
ρ (hn,Γ(N)).

Under the isomorphism

γ : Ahn,z −→ Ahn,γz

w 7−→ wµ(γ, z)−1

for γ ∈ Γ(N) we have

γ∗(dw,−dw̄ s) = (dw,−dw̄ s)
(
µ(γ, z)−1 0

0 µ(γ, z)

)
,

from which we see that φ(f) also has the transformation property required
in condition (ii). Finally the bijectivity of φ can be seen from the fact that
essentially it sends Pf (Y ) to Pf (s) and we can recover one of them from
the other. �

Next we prove the compatibility of Dρ and Dhn,ρ under the map φ.

Proposition 2.15. — Dhn,ρ ◦ φ = φ ◦Dρ

Proof. — Let 〈 · , · 〉 be the canonical pairing between the sheaf of dif-
ferentials Ω1

hn
and the tangent bundle Thn . Take ∂/∂zij ∈ Thn and f ∈

H0(Y ◦C ,Vrρ). We show that 〈Dhn,ρ ◦ φ(f), ∂/∂zij〉 = 〈φ ◦ Dρ(f), ∂/∂zij〉.
Assume i 6= j (the computation for the case i = j is the same and we omit
it), the Gauss–Manin connection acts on (dw, β) as

(2.15) ∇(∂/∂zij)(dw, β) = (dw, β)
(

0 0
Eij + Eji 0

)
= (dw, β)µ−ij .
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Let Pf (Y ) be as in the above proof. According to the definition of Dρ

by (2.2),

〈(Dρf)(Ahn , λhn , ψhn,N , (dw, β)), ∂/∂zij〉

= ∂

∂zij
Pf (Y ) + µ−ij · Pf (Y )

= ∂

∂zij
Pf (Y ) +

∑
16k6n

(Ykiεkj + Ykjεki) · Pf (Y )

−
∑

16k6l6n
(YkiYjl + YkjYil)

∂

∂Ykl
Pf (Y ).

Hence,

〈φ ◦Dρ(f), ∂/∂zij〉
= 〈(Dρf)(Ahn , λhn , ψhn,N , (dw, β)), ∂/∂zij〉 |Y=s

= ∂

∂zij
Pf (Y )

∣∣∣∣
Y=s

+
∑

16k6n
(skiεkj + skjεki) · Pf (s)

−
∑

16k6l6n
(skisjl + skjsil)

∂

∂skl
Pf (s).

Using

∂skl
∂zij

= −
(
s

(
∂

∂zij
(z − z̄)

)
s

)
kl

= −(siksjl + silsjk),

we get

(2.16) 〈φ ◦Dρ(f), ∂/∂zij〉

= ∂

∂zij
Pf (Y )

∣∣∣∣
Y=s

+
∑

16k6n
(skiεkj + skjεki) · Pf (s) + ∂skl

∂zij

∂

∂skl
Pf (s)

= ∂

∂zij
(Pf (s)) +

∑
16k6n

(skiεkj + skjεki) · Pf (s)

= ∂

∂zij
φ(f) +

∑
16k6n

(skiεkj + skjεki) · φ(f).
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On the other hand according to the definition of Dhn,ρ (2.12)

〈Dhn,ρ ◦ φ(f), ∂/∂zij〉

= 〈ρ(s)(dz(ρ(s−1)φ(f))), ∂/∂zij〉

= ρ(s)
(

∂

∂zij
(ρ(s−1)φ(f))

)
= ∂

∂zij
φ(f) + ρ

(
s
∂s−1

∂zij

)
φ(f)

= ∂

∂zij
φ(f) +

(
n∑
k=1

skiεkj + skjεki

)
· φ(f).

Comparing with (2.16), we conclude. �

It is also explained in [43, Section 7], [45, Appendix A8] (see also [37,
Section 2.4]) that the Maass–Shimura differential operators correspond to
the action of the Lie algebra (Lie G)C on nearly holomorphic forms. There-
fore the sheaf-theoretic definition of the differential operators in Section 2.4
can be viewed as a geometric interpretation of the Lie algebra action at the
archimedean place, and we have the commutative diagram (1.2).

2.6. Polynomial q-expansions

We first define the Mumford objects. Thanks to the moduli interpretation
of Nr

κ(Γ(N), R) = H0 (X/R,Vrκ
)
, the evaluation of a nearly holomorphic

form at a Mumford object gives rise to its polymonial q-expansion. We also
include formulas for the action of differential operators on the polynomial
q-expansions.
Following [16, V.1], let L = Zn with fixed basis e1, . . . , en and L∗ be its

dual. Put SL to be the symmetric quotient of L × L and SL,>0 to be the
intersection of SL with the cone dual to the cone inside S∗L⊗ZR consisting of
semi-positive definite forms. Take a basis s1, . . . , sn(n+1)/2 of SL lying inside
SL,>0, and set Z((SL,>0)) = Z[[SL,>0]][1/s1s2 · · · sn(n+1)/2]. For β ∈ SL,>0,
the corresponding element in Z[[SL,>0]] is sometimes written as qβ .
The natural map L → SL ⊗ L∗ defines a period group L ⊂ L∗ ⊗

Gm/Z((SL,>0)), principally polarized by the duality between L and L∗. Mum-
ford’s construction [16] gives an abelian variety A/Z((SL,>0)) with a canon-
ical polarization λcan and a canonical basis ωcan = (ω1,can, . . . , ωn,can) of
ω(A/Z((SL,>0))). The exact sequence

0→ L∗ ⊗
∏
l

lim
←−
m

µlm →
∏
l

Tl(A)→ L⊗ Ẑ→ 0,
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after base changing to Z((N−1SL,>0))[ζN , 1/N ], gives rise to a princi-
pal level N structure ψN,can for A/Z((SL,>0)). Let Dij ∈ Der(Z((SL,>0)),
Z((SL,>0))) be the element dual to ωi,canωj,can and δi,can = ∇(Dii)ωi,can.
For β ∈ SL,>0 we have Dij(qβ) = (2 − δij)βijqβ with δij = 0 if i 6= j,
and 1 if i = j. Then δcan = (δ1,can, . . . , δn,can) together with ωcan forms a
basis of H1

dR(A/Z((SL,>0))) respecting both the Hodge filtration and the
symplectic pairing.
Evaluating a nearly holomorphic form f ∈ Nr

κ(Γ(N), R) at the test object

MumN (q) = (A/Z((N−1SL,>0))[ζN ,1/Np], λcan, ψN,can, ωcan, δcan)

defines its polynomial q-expansion

(2.17)
Nr
κ(Γ(N), R) −→ Z[ζN , 1/N ][[N−1SL,>0]]⊗Wκ(R)[Y ]6r

f 7−→ f(q, Y ) = f(MumN (q)).

Next we compute formulas of differential operators in terms of polyno-
mial q-expansions. Let X = (Xij)16i,j6n be the symmetric matrix with the
indeterminate Xij = Xji as the (i, j) and (j, i) entries for 1 6 i 6 j 6 n.
The Xij ’s form a basis of the GL(n)-representation τ . An element a ∈
GL(n) acts on X by a · X = taXa. Let X∨ij be the basis of τ∨ dual to Xij .
Then under the trivialization (ωcan, δcan), Xij corresponds to ωi,canωj,can
and X∨ij corresponds to Dij . From the construction of MumN (q) one can
see that

∇(Dij)(ωcan, δcan) = (ωcan, δcan)µ−ij , X(Dij , (ωcan, δcan)) = µ−ij .

Proposition 2.16. — Let f ∈ Nr
κ(Γ(N), R) be a nearly holomorphic

form with polynomial q-expansion f(q, Y ) ∈ Z[ζN , 1/N ][[N−1SL,>0]] ⊗
Wκ(R)[Y ]6r. Then

(Dκf)(q, Y ) =
∑

16i6j6n

(
Dijf(q, Y ) + µ−ij · f(q, Y )

)
⊗Xij

Example 2.17. — If we apply the above proposition to the case n =
1, κ = k ∈ N, we recover the formula given in [49, Proposition 2.4.1]
for Dk (denoted δk there). In this case the image of the polynomial q-
expansion belongs R[ζN , 1/N ][[q1/N ]][Y ]6r and D11 = q d

dq . Write Y = Y11.
The representations κ and τ are both one-dimensional and we omit writing
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down their basis.

(Dκf)(q, Y ) = D11f(q, Y ) +
(

0 0
1 0

)
· f(q, Y )

= q
d
dq f(q, Y ) + Y ε11 · f(q, Y )− Y 2 ∂

∂Y
f(q, Y )

=
(
q

d
dq − Y

2 ∂

∂q

)
f(q, Y ) + kY f(q, Y ).

2.7. Holomorphic differential operators

The purpose of this section is to illurstrate Shimura’s construction of
holomorphic differential operators in the sheaf-theoretic context. Let G ↪→
H be an embedding of reductive groups over Q, and we assume both G(R)
and H(R) have holomorphic discrete series. One of the motivations for
studying nearly holomorphic forms is that they help construct differential
operators sending holomorphic forms on H of weight κ0 (often taken to
be a scalar weight) to holomorphic forms on G of a specified weight κ.
Such holomorphic differential operators have been considered and applied
in many works on studying special L-values, e.g. [7, 11, 14, 15, 20, 22, 45].
Let G = G◦ = Sp(2n)/Q and H = Sp(4n)/Q with standard Siegel par-

abolic subgroups QG = Q◦ and QH . The Shimura variety YG (resp. YH)
of principal level N is defined over Q(ζN ) and is a connected component
of Y = YG,Γ(N) (resp. the Siegel variety parametrizing principally polar-
ized abelian schemes of relative dimension 2n with a principal level N
structure). In the following, sheaves over YH and (LieH,QH)-modules are
denoted with a superscript H .
Let ι : YG × YG ↪→ YH be the embedding corresponding to

G × G ↪−→ H(
a1 b1
c1 d1

)
×

(
a2 b2
c2 d2

)
7−→


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 .

Denote by p1, p2 : YG × YG → YG the projection to the first and second
factor.

Proposition 2.18. — Let k be an positive integer (viewed as a scalar
weight) and κ ∈ X(T◦)+ be a generic weight such that the holomorphic
projection Ak+κ : Vek+κ → ωk+κ (cf. [45, Proposition 14.2], Proposition 3.6,
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Corollary 3.10) exists for e = |κ| =
∑n
i=1 κi. Then there exists a nonzero

morphism
Dk,k+κ : ι−1ωHk −→ p∗1ωk+κ ⊗ p∗2ωk+κ.

By taking global sections, Dk,k+κ induces a holomorphic differential oper-
ator sending Siegel modular forms on Sp(4n) of scalar weight k to Siegel
modular forms on Sp(2n)× Sp(2n) of weight (k + κ, k + κ).

Proof. — First, by our construction of differential operators, there is the
map

De
k : ι−1ωHk −→ ι∗VH,e

k⊗Syme τH
,

so we consider the decomposition of the sheaf ι∗VH,e
k⊗Syme τH

, especially how
ωk+κ appears in the decomposition. Equivalently, we consider the decom-
position of V H,e

k⊗Syme τH
as a (g◦ × g◦, QG ×QG)-module.

Write

XH =
(
X1 X0

tX0 X2

)
, YH =

(
Y 1 Y 0

tY 0 Y 2

)
in n× n blocks. The subspace

(X1, X2, Y 0)WH
k [XH , YH ] ∩ WH

k [XH ]e[YH ] ⊂WH
k [XH ]e[YH ]

is stable under the action of g◦ × g◦ and QG × QG. Here the subscript e
means polynomials of degree equal to e. The quotient of WH

k [XH ]e[YH ]
by this submodule is canonically isomorphic to

(2.18) Wk[X0]e[Y 1, Y 2]

with the induced (g◦ × g◦, QG × QG)-action. Instead of looking at the
decomposition of the whole V H,e

k⊗Syme τH
|(g◦×g◦,QG×QG), we consider the de-

composition of the quotient (2.18). First it is easy to check that
(
a1 b1
0 ta−1

1

)
×(

a2 b2
0 ta−1

2

)
∈ QG ×QG acts on P (X0, Y 1, Y 2) ∈Wk[X0]e[Y 1, Y 2] as(

a1 b1
0 ta−1

1

)
×
(
a2 b2
0 ta−1

2

)
· P (X0, Y 1, Y 2)

= P
(ta1X0 a2, a

−1
1 Y 1

ta−1
1 + a−1

1 b1, a
−1
2 Y 2

ta−1
2 + a−1

2 b2
)
.

By [45, Theorem 12.7] we know that as representations of QG ×QG,

(2.19) Wk[X0]e[Y 1, Y 2] =
⊕

κ∈X(T◦)+, |κ|=e

Vk+κ � Vk+κ.

By checking the formulas defining the g-actions, we see that this decom-
position actually holds as modules of (g◦ × g◦, QG × QG). Moreover, for
each κ appearing in the decomposition, the highest weight vector inside
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V 0
k+κ � V 0

k+κ is given by
∏n
i=1 deti(X0)κi−κi+1 , where deti is the deter-

minant of the upper left i × i block. Therefore, for κ ∈ X(T◦)+, |κ|=e,
the (g◦ × g◦, QG × QG)-module Vk+κ � Vk+κ appears as a quotient of
V Hk⊗Syme τH |(g◦×g◦,QG×QG) and one can write down a map

V Hk⊗Syme τ ′

∣∣
(g◦×g◦,QG×QG

modX1,X2, Y 0−−−−−−−−−−→W ′k[X0]e[Y 1, Y 2] −→Vk+κ�Vk+κ,

which induces a morphism of sheaves over YG × YG,

%k,κ : ι∗VHk⊗Syme τH −→ p∗1Vk+κ ⊗ p∗2Vk+κ.

When the holomorphic projection Ak+κ : Vek+κ → ωk+κ exists, We define
the operator Dk,k+κ as the composition

Dk,k+κ : ι−1ωHk
Dek−→ ι∗VH,e

k⊗Syme τH
%k,κ−→ p∗1Vek+κ ⊗ p∗2Vek+κ

Ak+κ−→ p∗1ωk+κ ⊗ p∗2ωk+κ.

It remains to show that such defined Dk,k+κ is nonzero. This can be done
by some computation in local coordinates.
Take an affine open subset UH = Spec(R′) ⊂ YH such that UH×YH (YG×

YG) is of the form U ×U with U = Spec(R). Also we pick an ordered basis
α = (α1, . . . , α4n) of H1

dR (A/UH) respecting both the Hodge filtration and
the symplectic pairing such that α(1) × α(2) ∈ T×H (U)× T×H (U) with

α(1) = (ι∗α1, . . . , ι
∗αn, ι

∗α2n+1, . . . , ι
∗α3n),

α(2) = (ι∗αn+1, . . . , ι
∗α2n, ι

∗α3n+1, . . . , ι
∗α4n).

Then ωHk (UH) ' R′, Ω1
YH

(UH) ' R′[XH ]1, Ω1
YG×YG(U × U) ' R[X1]1 ⊗

R[X2]1, and Ω1
YH/YG×YG(UH) ' R′[X0]1.

Let ∂Hij ∈ DerQ(ζN )(R′, R′), 1 6 i 6 j 6 2n, be the dual basis of XH
ij and

write ∂H = (∂Hij ) in n×n blocks as ∂H =
(
∂1 ∂0
t∂0 ∂2

)
. According to (2.2) there

is a nonzero degree e homogeneous polynomial Pκ(Tij) ∈ Q[Tij ]16i6j6n and
a polynomial Q in X0, ∂0, Y 1, Y 2 whose degree in ∂0 is strictly less than e
such that

%k,κ ◦De
k = uι(Pκ(X0,ij∂0,ij) +Q(X0, ∂0, Y 1, Y 2)),

where uι : R′ → R⊗R is the quotient map corresponding to the embedding
YG × YG ↪→ YH . The holomorphic projection Ak+κ is purely defined on
YG × YG, so does not involve any ∂0. Thus,

Dk,k+κ = Ak+κ ◦ uι
(
Pκ(X0,ij∂0,ij) +Q(X0, ∂0, Y 1, Y 2)

)
= uι

(
Pκ(X0,ij∂0,ij) + Q̃(X0, ∂0, ∂1, ∂2)

)
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with Q̃ being a polynomial whose degree in ∂0 is still strictly less than
e. This implies that the differential operator Dk,k+κ 6= 0, and the coeffi-
cient for the highest weight vector

∏n
i=1 deti(X0) is

∏n
i=1 deti(∂0)κi−κi+1 +

c(∂0, ∂1, ∂2), where the total degree of the homogeneous polynomial of c is
e and every term involves either ∂1 or ∂2. �

Remark 2.19. — In the construction ofDk,k+κ, the increase of the weight
is contributed by the co-normal differential sheaf Ω1

YH/YG×YG . We do not
consider the part Ω1

YG×YG because its contribution will be killed by the
holomophic projection.

Remark 2.20. — Besides Shimura, holomorphic differential operators are
also studied by Böcherer [6], Ibukiyama [27] uisng invariant pluri-harmonic
polynomials and Harris [19] using Grothendieck’s sheaves of differentials.
Harris’ approach shows the uniqueness (up to scalars) of holomorphic dif-
ferential operators in many cases (including the case considered above).
Therefore, all the holomorphic differential operators constructed in differ-
ent approaches must be the same up to scalars. On the other hand, different
approaches yield different descriptions of the holomorphic differential op-
erators, and have their own advantages in applications.

3. Overconvergent nearly holomorphic forms and their
p-adic families

3.1. The weight space

Let p be an odd prime number. The weight space W is the rigid ana-
lytic space defined over Qp associated to the noetherian complete algebra
Zp[[T◦(Zp)]]. Its Cp-points parametrize continuous homomorphisms from
T◦(Zp) to C×p , i.e. W(Cp) = Homcont(T◦(Zp),C×p ). For κ ∈ W we can
write it as κ = (κ1, κ2, . . . , κn) with κi being a continuous character of
Gm(Zp) ∼= Z×p such that κ(diag(a1, . . . , an)) =

∏n
i=1 κi(ai). If we fix a

topological generator of 1 + pZp, say 1 + p, then W can be identified with
the disjoint union of n-dimensional open unit balls indexed by ̂T◦(Z/pZ),
the character group of the torsion part T◦(Z/pZ) of the group T◦(Zp).
Explicitly we can write the isomorphism as

W −→ ̂T◦(Z/pZ)×
n∏
i=1
B(1, 1−)

κ 7−→ (κ|T◦(Z/pZ), κ1(1 + p), κ2(1 + p), . . . , κn(1 + p)).
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Here B(1, 1−) is the 1-dimensional rigid open unit ball centered at 1. For an
affinoid subdomain U ⊂ W, we use A(U) to denote the affinoid algebra of
analytic functions on U and A(U)◦ to denote the subset of A(U) consisting
of power bounded elements.
Given κ we say it is algebraic if κ(diag(a1, . . . , an)) = ak1

1 a
k2
2 . . . aknn with

ki, 1 6 i 6 n, being integers, and it is arithmetic if it can be written as
the product of an algebraic weight and a locally constant character. If κ
is arithmetic, we denote by κalg (resp. κf) its algebraic part (resp. locally
constant part).
Let µp−1 be the group of (p − 1)-th roots of unity. There is a universal

character
κun :W ×T◦(Zp) −→ µp−1 × B(1, 1−).

Take L to be an extension of Qp inside Cp, complete with a valuation v such
that v(p) = 1. Denote by mL the maximal ideal of OL. For each w ∈ v(mL)
we can define over L the rigid analytic group T ◦1,w ∼=

∏n
i=1 B(1, pw) with

B(1, pw) being the 1-dimensional closed ball of radius pw centered at 1
and the rigid analytic group T ◦w = T ◦(Zp)T ◦1,w. For any affinoid subdomain
U ⊂ W there exists some w ∈ v(mL) such that the universal character
κun|U×T◦(Zp) extends to a map between rigid analytic spaces

κun : U × T ◦w −→ µp−1 × B(1, 1−).

For such U and w we say that the universal character κun over U is w-
analytic. In order to see the existence of such a w, it suffices to look at the
case where U is a closed ball inside the identity connected component W◦
of the weight space, i.e. U = W(t)◦ =

∏n
i=1 B(1, pt) for some t ∈ v(mL).

Let Y1, . . . , Yn (resp. S1, . . . , Sn) be the coordinates of W(t)◦ (resp. the
neighborhood a ·

∏n
i=1 B(1, pw) =

∏n
i=1 B(ai, pw) of a = diag(a1, . . . , an) ∈

T◦(Zp)) with coordinate ring A(W(t)◦) = L〈Y1, . . . , Yn〉 (resp.
L〈S1, . . . , Sn〉). The universal character can be extended to W(t)◦ × a ·∏n
i+1 B(1, pw) as long as (1+ptYi)ai(1+ptYi)

log(1+pwSi)
log(1+p) belongs to L〈Yi, Si〉

for all 1 6 i 6 n. The factor (1 + ptYi)ai =
∑∞
j=1

(
ai
j

)
ptjY ji is always

inside 1 + ptOL〈Yi〉, and the factor (1 + ptYi)
log(1+pwSi)

log(1+p) = exp(log(1 +
ptYi) · log(1+pwSi)

log(1+p) ) lies inside L〈Yi, Si〉 if we choose w large enough such
that the supreme norm of the function log(1 + X) over B(0, pt) satisfies
| log(1 +X)|B(o,pt) < pw−

1
p−1 . If the universal weight κun is w-analytic over

U , then it is obvious that any point κ ∈ U(L) is a w-analytic weight.
Let T◦1,w be the formal group defined by

(3.1) T◦1,w(R) = Ker (T◦(R) −→ T◦(R/pwR))
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for all flat, p-adically complete OL-algebras R. As a formal scheme T◦1,w
is isomorphic to Spf(OL〈S1, . . . , Sn〉). The identity component W(t)◦ of
W(t) has a natural formal model W(t)◦ isomorphic to Spf(OL〈Y1, . . . , Yn〉).
Given an affinoid subdomain U ⊂ W(t)◦ and an open formal subscheme U

of an admissible blow-up of W(t)◦ such that U is the rigid fibre of U, the
above discussion shows that for w ∈ v(mL) big enough the formal universal
character

κun : U× T◦1,w −→ Ĝm

can be defined and it specializes to a formal character κ : T◦1,w → Ĝm for
each κ ∈ U(L).

3.2. The analytic (g,Qw)-modules Vκ,w and Vκun,w

This section is an analogue of Section 2.3 in the p-adic analytic and
formal setting. Fix the p-adic field L and w ∈ v(mL) as in the previous
section. Let AL be the category of L-affinoid algebras and AdmOL be
the category of admissible OL-algebras, i.e. the flat OL-algebras that are
quotients of OL〈X1, . . . , Xs〉 for some s ∈ N. First we define several rigid
analytic groups and formal groups. Like the formal torus T◦1,w we define
the formal groups M◦1,w and B1,w over OL by

M◦1,w(R) = Ker (GL(n,R) −→ GL(n,R/pwR)),
B1,w(R) = Ker (B(R) −→ B(R/pwR))

for all R ∈ AdmOL . Define N1,w to be the unipotent part of B1,w. Let
GL(n)an, Ban, Nan, T◦an, Qan, Uan be the rigid analytic groups associated
to the groups schemes GL(n), B, N, T◦, Q, U, and GL(n)rig, Brig, T◦rig,
Qrig be the generic fibre of the formal completion of GL(n), B, T◦, Q
along p. The rigid fibreM◦1,w, B1,w, T ◦1,w of the formal groups M◦1,w, B1,w,
T◦1,w can be naturally regarded as rigid analytic subgroups of GL(n)rig,
Brig, T◦rig. Set I(Zp) = {g ∈ GL(n,Zp) : g mod p ∈ B(Z/pZ)} to be the
Iwahori subgroup of GL(n,Zp) andN−I (Zp) to be the unipotent subgroup of
I(Zp) consisting of lower triangular matrices with 1 on the diagonal. There
is the Iwahori decomposition I(Zp) = N−I (Zp) B(Zp). We define the rigid
analytic subgroup Iw of GL(n)rig by Iw = I(Zp) ·M◦1,w. Fixing a set S of
representatives in I(Zp) of I(Z/p[w]Z), the group Iw can be written as the
disjoint union

∐
γ∈S γ ·M◦1,w. Similarly we define Bw = B(Zp)·B1,w ⊂ Brig.

The group T ◦w = T◦(Zp) · T ◦1,w ⊂ T◦rig is already defined in last section.
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There is a projection π : Qan → GL(n)an sending
(
a b
0 d
)
to a. We define the

rigid analytic subgroup Qw ⊂ Qan as

(3.2) Qw = π−1(Iw)

Note that Qw is not contained inside Qrig.
Now take κ = (κ1, . . . , κn) ∈ W(Cp) to be a w-analytic weight and set

κ′ = (−κn, . . . ,−κ1) which is also w-analytic. Extend κ′ to a character of
Bw through the quotient map Bw → T ◦w . Define the w-analytic left Iw-
module Wκ,w by

Wκ,w(R) =
{
f : Iw(R)→ R analytic

∣∣∣∣ f(xb) = κ′(b)f(x)
for all b ∈ Bw(R), x ∈ Iw(R)

}
for all R ∈ AL, with Iw acting through the left inverse translation. Because
of the Iwahori decomposition, Wκ,w consists of analytic functions on

N−I (Z/p[w]Z)×


1 0 · · · 0

B(0, pw) 1 · · · 0
...

...
. . .

...
B(0, pw) B(0, pw) · · · 1

 .

Therefore as a module overR we seeWκ,w(R)=
⊕
N−
I

(Z/p[w]Z)R〈Tij〉16j<i6n,
i.e. |N−I (Z/p[w]Z)| copies of strictly convergent power series in n(n− 1)/2
variables.
From this description we see that there is a natural formal model ofWκ,w,

whose R-points are ⊕N−
I

(Z/p[w]Z)R〈Tij〉16j<i6n for R ∈ AdmOL , equipped
with a functorial action of I(Zp) and M◦1,w. We denote the formal model
still by Wκ,w.
With Wκ,w we define the w-analytic (g,Qw)-module Vκ,w in the same

way as we define the (g,Q)-module Vκ from the algebraic representation
Wκ of GL(n) in Section 2.3. For all R ∈ AL

Vκ,w(R) = Wκ,w(R)⊗R R[Y ] = Wκ,w(R)⊗R R[Yij ]16i6j6n.

The action of g =
(
a b
0 d
)
∈ Qw and µ−ij ∈ u− on P (Y ) ∈ Vκ,w is given by

the formulas

(3.3) (g · P )(Y ) = a · P (a−1b+ a−1 Y d),
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(3.4)

(µ−ij · P )(Y ) =
∑

16k6n
(Ykiεkj + Ykjεki) · P (Y )

−
∑

16k6l6n
(YkiYjl + YkjYil)

∂

∂Ykl
P (Y ), i 6= j,

(µ−ii · P )(Y ) =
∑

16k6n
Ykiεki · P (Y )−

∑
16k6l6n

YkiYil
∂

∂Ykl
P (Y ).

The compatibility is checked in the same way as in Section 2.3. As Qw-
representations we have the filtration

Filr Vκ,w(R) = V rκ,w(R) = Wκ,w(R)⊗R R[Y ]6r
satisfying g ·V rκ,w ⊂ V r+1

κ,w . By definition, if we regard the Iw-representation
Wκ,w as a Qw-representation via the projection Qw → Iw, then V 0

κ,w =
Wκ,w as Qw-representations. For i ∈ Z we can twist Vκ,w by the i-th power
of the multiplier ν and get the w-analytic (g,Qw)-module Vκ,w(i).

Recall that J is defined to be the algebraic representation V 1
triv of Q. It

restricts to an analytic Qw-representation. Parallel to (2.9) we have

V rκ,w
∼= V 0

κ,w ⊗ Symr J = Wκ,w ⊗ Symr J

as analytic Qw-representations.
More generally, given (ρ,Wρ) ∈ RepZ,f GL(n), an algebraic representa-

tion of GL(n) free of finite rank, the tensor product Wκ⊗ρ,w = Wκ,w ⊗Wρ

is an analytic Iw-representation, and we can define the corresponding an-
alytic (g,Qw)-module Vκ⊗ρ,w and Qw-representation V rκ⊗ρ,w for r > 0.
All of the above constructions carry over to the universal w-analytic

weight κun over an affinoid subdomain U ⊂ W.

3.3. The Andreatta–Iovita–Pilloni construction

We briefly recall the constructions in [2, Chapter 3,4,5]. Let σ be the
Frobenious endomorphism of OL/pOL. For any finite group scheme H over
OL, we denote by HD its Cartier dual and ωH its sheaf of invariant dif-
ferentials. Given a Barsotti–Tate group G over OL of dimension n, the
Hasse invariant Ha(G) ∈ det(ωG[p]D )⊗p−1 is defined to be the determinant
of the σ-linear endomorphism on ωG[p]D induced by the relative Frobenius.
The Hodge height Hdg(G) ∈ [0, 1] is defined as the truncated valuation of
Ha(G).
Let NAdmOL be subcategory of AdmOL consisting of those objects

that are normal. Fix R ∈ NAdmOL and suppose that G is a rank n
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semi-abelian scheme over S = Spec(R) whose restriction to an open dense
subscheme of S is abelian. Take a positive integer m ∈ N>0 and v < 1

2pm−1

(resp. v < 1
3pm−1 if p = 3) such that for any x ∈ Srig the Hodge height

Hdg(x) := Hdg(Gx[p∞]) 6 v. Write Rw to denote R/pwR. We summarize,
in the following theorem, some results about canonical subgroups in families
used in [2].

Theorem 3.1 ([2, Proposition 4.1.3, Proposition 4.3.1]). — There is a
finite flat canonical subgroup Hm ⊂ G[pm] of levelm over S, which, at each
point x ∈ Srig, specializes to the canonical subgroupHm,x ⊂ Gx[pm] as con-
structed in [17, Theorem 6]. Moreover, assuming HD

m(R[1/p]) ' (Z/pmZ)n,
then there is a free sub-sheaf of R-modules F ⊂ ωG of rank n containing
p

v
p−1ωG, equipped with an isomorphism

HTw : HD
m(R[1/p])⊗Z Rw

∼−→ F ⊗R Rw,

induced from the Hodge–Tate map on HD
m , for all w ∈ (0,m − v p

m

p−1 ] ∩
vp(OL).

Fix N > 3 prime to p. Let K be a finite extension of Qp with valuation
v such that v(p) = 1 and a uniformizer $. Denote by Y the Siegel variety
defined over OK parametrizing principally polarized abelian schemes of di-
mension n with principal level N structure. Let X be a smooth toroidal
compactification. The universal abelian scheme A→ Y extends to a semi-
abelian scheme G → X. Set X to be the formal scheme obtained by com-
pleting X along its special fibre. On the associated rigid analytic space
Xrig = Xan, we have the Hodge height function Hdg : Xrig → [0, 1]. For
v ∈ v(OK) we define the open subset X (v) = {x ∈ Xrig : Hdg(x) 6 v}.
Let X̃(v) be the admissible blow-up of X along the ideal (Ha, pv), and
X(v) be the p-adic completion of the normalization of the largest open
formal sub-scheme of X̃(v) where the ideal (Ha, pv) is generated by Ha.
This X(v) is a formal model of X (v). By construction the semi-abelian
scheme G → X gives rise to semi-abelian schemes over X (v) and X(v),
which we still denote by G. For m ∈ N>0 and v < 1

2pm−1 (resp. v < 1
3pm−1

if p = 3), there is the level m canonical subgroup Hm ⊂ G[pm]. Define
X1(pm)(v) = IsomX (v)((Z/pmZ)n, HD

m) to be the finite étale cover of X (v)
parametrizing the trivializations ψ of the Cartier dual of Hm. The group
GL(n,Z/pZ) acts on X1(p)(v). The quotient XIw(v) = X1(p)(v))/B(Z/pZ)
is also finite étale over X (v). As formal models of X1(pm)(v), XIw(v), we
take X1(pm)(v), XIw(v) to be the normalizations of X(v) inside the corre-
sponding rigid spaces. There is the chain of formal schemes

X1(pm)(v) π1−→ XIw(v) π0−→ X(v).
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Let Y, Y(v), Y1(pm)(v), YIw(v) be the open formal subschemes of X,X(v),
X1(pm)(v), XIw(v) that are the complements of the boundary C. Although
Y(v), Y1(pm)(v), YIw(v) are not moduli spaces, they admit modular in-
terpretations for R ∈ NAdm (cf. [2, Proposition 5.2.1.1]). Let Yan be
the analytification of Y with the natural open immersion Yan ↪→ Xan. Set
Y(v),Y1(pm)(v),YIw(v) to be the fibre products of X (v),X1(pm)(v),XIw(v)
with Yan over Xan.
By the construction of X1(pm)(v), we can apply Theorem 3.1 to construct

a locally free sub-sheaf F ⊂ ω(G/X1(pm)(v)) of rank n, equipped with the
isomorphism

(3.5) HTw ◦ψ : (Z/pmZ)n ⊗Z OX1(pm)(v),w
∼−→ F ⊗OK OK,w

for w ∈ (0,m− v p
m

p−1 ] ∩ v(OK).
From now on we assume w ∈ (m− 1 + v

p−1 ,m−
pmv
p−1 ] ∩ v(OK), so m is

determined by w. Define the M◦1,w-torsor T×F,w(v) over X1(pm)(v) by

T×F,w(v) = IsomX1(pm)(v),ψ,w(OnX1(pm)(v),F),

where the subscript ψ,w means that we require the isomorphism to be
w-compatible with (3.5) as explained below. We always fix the canon-
ical global basis of the n copies of the structure sheaf OnX1(pm)(v) and
the canonical basis of the Z/pmZ-module (Z/pmZ)n. Then locally over
U = Spf(R) ⊂ X1(pm)(v), an isomorphism α from Rn to F(U) corresponds
to an ordered basis α1, . . . αn of the free R-module F(U) and ψ gives rise to
an ordered basis x1, . . . , xn of HD

m(R[1/p]). We say that α is w-compatible
with (3.5) if αi ≡ HTw(xi) mod pwR for all 1 6 i 6 n. An element
a ∈ M◦1,w(R) acts on α by sending it to α ◦ a, or equivalently sending
the corresponding basis (α1, . . . , αn) to (α1, . . . , αn) a. This action makes
T×F,w(v) a M◦1,w-torsor over X1(pm)(v).
For a w-analytic weight κ ∈ W(K) we can form the contracted product

and get a locally free formal sheaf

w̃†κ,w := T×F,w(v)×M◦1,w Wκ,w

over X1(pm)(v). In particular this w̃†κ,w is a flat formal Banach sheaf in
the sense of [2, Definition A.1.1.1]. Therefore we can apply the procedure
worked out in [2, A.2.2] to get the associated Banach sheaf ω̃†κ,w over the
rigid analytic fibre X1(pm)(v) (see [2, Definition A.2.1.2] for the definition
of a Banach sheaf). For any affinoid subdomain U ⊂ X1(pm)(v) and an
admissible blow-up h : X′ → X1(pm)(v) such that U is the rigid fibre of an
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open formal subscheme U of X′, the local sections of ω̃†κ,w over U are

ω̃†κ,w(U) = h∗w̃†κ,w(U)⊗OK K,

which is naturally equipped with a complete norm (independent of h up to
equivalence) with w̃†κ,w(U) being the unit ball.

The group I(Z/pmZ) acts on X1(pm)(v) with XIw(v) as the quotient.
Under this action the sheaf ω̃†κ,w is I(Z/pmZ)-equivariant. Since I(Z/pmZ)
is a finite group, the I(Z/pmZ)-invariant of the pushforward π1,∗ω̃

†
κ,w is a

Banach sheaf over XIw(v).

Definition 3.2. — The Banach sheaf of w-analytic, v-overconvergent,
weight κ Siegel modular forms of principal level N is defined as

ω†κ,w := (π1,∗ω̃
†
κ,w)I(Z/p

mZ).

We also want to associate to the Banach sheaf ω†κ,w a contracted prod-
uct interpretation, which will bring us some convenience when defining
certain morphisms. By taking the rigid fibre of the M◦1,w-torsor T×F,w(v)
over X1(pm)(v), we get

T ×F,w(v) π2−→ X1(pm)(v) π1−→ XIw(v).

The rigid analytic space T ×F,w(v) is aM◦1,w-torsor over X1(pm)(v) and the
cover π1 : X1(pm)(v) → XIw(v) is finite étale. The group I(Zp) acts on
T ×F,w(v) over XIw(v). The I(Zp)-action together with theM◦1,w-torsor struc-
ture on T ×F,w(v) makes it an Iw-torsor over XIw(v). Let S be the category
whose objects are affinoid subdomains of XIw(v) admitting local sections
of the projection π1 ◦ π2 with inclusions as morphisms. We can define a
presheaf on S by the contracted product

(3.6) T ×F,w(v)×Iw Wκ,w.

It is isomorphic to the restriction of the sheaf ω†κ,w to S. We call (3.6)
a contracted product interpretation of ω†κ,w. Since the objects of S form
a basis of the Grothendieck topology on X1(pm)(v), in order to construct
morphisms between the sheaves over XIw(v), it suffices to construct mor-
phisms between their restrictions to S by using the contracted product
interpretation. By abuse of notation we write ω†κ,w = T ×F,w(v)×Iw Wκ,w.
Define OK schemes Tω = HomX(OnX , ω(G/X)), T×ω = IsomX(OnX ,

ω(G/X)) overX. Let Tω,an, T×ω,an be their rigid analytifications, and Tω, T×ω
be their formal completions along the special fibres. Also take Tω,rig, T×ω,rig
to be the rigid fibre of Tω, T×ω . Set Tω,an(v), T ×ω,an(v), Tω,rig(v), T ×ω,rig(v)
to be the corresponding base changes to XIw(v). Due to the requirement
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w ∈ (m−1+ v
p−1 ,m−v

pm

p−1 ]∩v(OK), the argument of [2, Proposition 5.3.1]
shows that there is a natural open immersion

T ×F,w(v) ↪−→ Tω,rig(v) ∩ T ×ω,an(v).

Local sections of the projection T ×F,w(v)→ XIw(v) correspond to local basis
of the sheaf ω(G/XIw(v)) satisfying w-compatibility conditions defined by
the Hodge–Tate map HTw. Note that T ×F,w(v) does not lie inside T ×ω,rig(v).
When κ is algebraic this open immersion induces a canonical inclusion of
ωκ|XIw(v) into ω†κ,w.
In [2] another two formal schemes are introduced. They are defined as

IWw(v) = T×F,w/B1,w, and IW+
w(v) = T×F,w/N1,w,

with maps

IW+
w(v) g−→ IWw(v) π3−→ X1(pm)(v) π1−→ XIw(v).

The group T◦1,w acts on IW+
w(v) over IWw(v), and so on the pushfor-

ward of the structure sheaf g∗OIW+
w(v). Define the invertible sheaf Lκ =

g∗OIW+
w(v)[κ′] to be the κ′-invariant of the T◦1,w-action on g∗OIW+

w(v).
Take the rigid fibres IW+

w (v), IW+
w (v), Lκ. There is a B(Zp)-action on

IW+
w (v) over XIw(v) which, together with κ, makes π3,∗Lκ a B(Z/pmZ)-

equivariant Banach sheaf with respect to the natural B(Z/pmZ)-action on
X1(pm)(v) over XIw(v). In [2] the invariant (π1,∗π3,∗Lκ)B(Z/pmZ) is defined
to be the Banach sheaf of w-analytic, v-overconvergent, weight κ Siegel
modular forms. It is easy to see that the map Wκ,w → A1

K by evaluation
at identity induces an isomorphism between (π1,∗π3,∗Lκ)B(Z/pmZ) and the
sheaf ω†κ,w in Definition 3.2.
All the above constructions run parallelly for the w-analytic universal

weight κun corresponding to U ⊂ W, so that we can define the Banach
sheaf ω†κun,w over XIw(v)×U and the flat formal Banach sheaf w̃†κun,w over
X1(pm)(v)× U.

3.4. Nearly overconvergent Siegel modular forms

3.4.1. The Banach sheaf V†,rκ,w and its global sections

Recall that in Section 2.4 we defined the locally free sheaf of finite rank
J over X, and for ρ ∈ RepZ,f GL(n) we have Vrρ ∼= ωρ ⊗ Symr J as locally
free sheaves with Hecke actions. Take the rigid analytification of J and
pull it back to XIw(v). We denote the resulting coherent sheaf over XIw(v)
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still by J . Similarly, let J be the locally free formal sheaf of finite rank
over XIw(v) obtained by completing J along the special fibre of X and
pulling it back. Then Symr J is the rigid fibre of Symr J. Since Symr J is
locally free of finite rank and XIw(v) is quasi-compact, it can be equipped
with a Banach sheaf structure by choosing a cover and local basis. All such
structures are equivalent to the one given by the formal model Symr J. The
tensor product of Symr J with a Banach sheaf is still a Banach sheaf under
the tensor product semi-norm. The flatness of Symr J guarantees that the
sheaf conditions of the Banach sheaf are preserved under the operation
of tensoring with Symr J . Also, the spaces of local sections of the tensor
product sheaf is complete with respect to the tensor product semi-norm.

Definition 3.3. — The Banach sheaf of w-analytic, v-overconvergent
nearly holomorphic forms of principal level N , weight κ (resp. universal
weight κun over U ⊂ W) and (non-holomorphy) degree r is defined as

V†,rκ,w := ω†κ,w ⊗ Symr J (resp. V†,rκun,w := ω†κun,w ⊗ Symr J ).

The space of global sections of a Banach sheaf over a quasi-compact
rigid analytic space can be equipped with a norm by choosing a suitable
admissible covering by affinoids. All such norms are equivalent and the
space of global sections are complete under these norms.

Definition 3.4. — The K-Banach space (resp. A(U)-Banach module)
of w-analytic, v-overconvergent nearly holomorphic forms of principal level
N , weight κ (resp. universal weight κun over U ⊂ W) and (non-holomorphy)
degree r is defined as

N†,rκ,w,v := H0(XIw(v),V†,rκ,w) (resp. N†,rU,w,v := H0(XIw(v)× U ,V†,rκun,w),

and the corresponding cuspidal part is defined as

N†,rκ,w,v,cusp := H0(XIw(v),V†,rκ,w(−C))

(resp. N†,rU,w,v,cusp := H0(XIw(v)× U ,V†,rκun,w(−C)).

Following [49] we also call overconvergent nearly holomorphic forms
nearly overconvergent forms.
For later use we also define a locally free formal Banach sheaf Ṽ†,rκ,w over

X1(pm)(v) as
Ṽ†,rκ,w := w̃†κ,w ⊗ Symr J.

Let Ṽ†,rκ,w be its rigid fibre which is an I(Z/pmZ)-equivariant Banach sheaf.
Then we have V†,rκ,w = (π1,∗Ṽ†,rκ,w)I(Z/pmZ).
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3.4.2. The Qw-torsor T ×H,w(v) and contracted product
interpretation of V†,rκ,w

The definition of the Banach sheaf V†,rκ,w as ω†κ,w ⊗ Symr J is already
convenient for constructing unramified Hecke operators and Up-operators.
However, for the construction of differential operators and holomorphic
projections, it is preferable to have a contracted product interpretation
involving a Qw-torsor and the Qw-submodule V rκ,w of the (g,Qw)-module
Vκ,w defined in Section 3.2.
The OK-scheme T×H = IsomX(O2n

X ,H1
dR(A/Y )can) is defined as in Sec-

tion 2.1. Let T×H,an be its analytification and T ×H,an(v) be the base change
to XIw(v). There is a natural projection

T ×H,an(v) −→ T ×ω,an(v).

We define the Qw-torsor T ×H,w over XIw(v) as

T ×H,w(v) := T ×H,an(v)×T ×ω,an(v) T
×
F,w(v).

It is not difficult to see that the Banach sheaf V†,rκ,w admits the following
contracted product interpretation

V†,rκ,w = T ×H,w(v)×Qw V rκ,w.

3.4.3. Summary

We record below several interpretations of the Banach sheaf V†,rκ,w over
XIw(v) and its global sections, which we will use later for convenience ac-
cording to different purposes.

(i) V†,rκ,w = ω†κ,w ⊗ Symr J ,
(ii) V†,rκ,w = (π1,∗π3,∗Lκ)B(Z/pmZ) ⊗ Symr J , and for global sections

N†,rκ,w,v = H0(IWw(v),Lκ ⊗ (π1 ◦ π3)∗ Symr J )B(Z/pmZ),

(iii) V†,rκ,w = (π1,∗Ṽ†,rκ,w)I(Z/pmZ), and for global sections

N†,rκ,w,v = H0(X1(pm)(v), Ṽ†,rκ,w)I(Z/p
mZ)

= (H0(X1(pm)(v), w̃†κ,w ⊗ π∗1 Symr J)[1/p])I(Z/p
mZ),

(iv) V†,rκ,w = T ×H,w(v)×Qw V rκ,w.
It is easy to see that in all the above constructions we can replace κ by the

w-analytic universal weight κun corresponding to U ⊂ W, and consider the
Banach sheaf V†,rκun,w over XIw(v) × U as well as the A(U)-Banach module
N†,rU,w,v := H0(XIw(v)× U ,V†,rκun,w).
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In the following we need also to consider the Banach sheaf V†,rκ⊗ρ,w :=
ω†κ,w ⊗ ωρ ⊗ Symr J and its global sections N†,rκ⊗ρ,w,v for some (ρ,Wρ) ∈
RepZ,f GL(n). Here ωρ is the base change to XIw(v) of the analytification
of the automorphic sheaf E(Wρ). From E(Wρ) one also gets the locally free
formal sheaf of finite rank wρ over XIw(v) whose rigid fibre is ωρ. When
working with V†,rκ⊗ρ,w and N†,rκ⊗ρ,w,v, we can replace Symr J and Symr J

in (ii), (iii) by ωρ ⊗ Symr J ,wρ ⊗ Symr J, and V rκ,w in (iv) by V rκ⊗ρ,w.

3.5. The Banach A(U)-module N†,rU,w,v,cusp is projective

The goal of this section is to prove the proposition below following the
arguments in [2, Section 8].

Proposition 3.5. — N†,rU,w,v,cusp is a projective Banach A(U)-module.
For every κ ∈ U with the corresponding maximal ideal mκ ⊂ A(U), we
have N†,rU,w,v,cusp ⊗A(U)/mκ

∼→ N†,rκ,w,v,cusp.

Proof. — We use the interpretation (iii) in Section 3.4.3 and the same
proof works if we replace κun by κun ⊗ ρ with ρ ∈ RepZ,f GL(n). Our case
differs very little from that in [2, Section 8]. Instead of repeating the whole
proof here, we just point out the main ingredients there and explain that
their arguments for the formal Banach sheaf w̃†κun,w(−C) are applicable
to Ṽ†κun,w(−C) = w̃†κun,w ⊗ π∗1 Symr J(−C). Below for simplicity we write
π∗1 Symr J as Symr J.

We use the notation in [2, Section 8.2]. Let X? be the minimal compact-
ification of Y . There is a proper morphism X → X?. Like X(v) one can
define X?(v) to be the p-adic completion of the normalization of the largest
open formal subscheme of the blow-up of X? along the ideal (Ha, pv) where
it is generated by Ha. We have the projection η : X1(pm)(v) → X?(v).
We may assume that U lies inside the identity component W◦ and take U

to be the open formal subscheme of an admissible blow-up of W◦ whose
rigid fibre is U . We use the subscript l to mean reduction modulo $l. [2,
Corollary 8.1.6.2] shows that Ṽ†,rκun,w is a small formal Banach sheaf over
X1(pm)(v) with Symr J1 as the required coherent sheaf in the definition of
small formal Banach sheaves (cf. [2, Definition A.1.2.1]).
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First we claim that the proposition follows from the following base change
property for Ṽ†κun,w(−C). For all l ∈ N, considering the diagram

X1(pm)(v)l × Ul
i //

ηl×1
��

X1(pm)(v)l+1 × Ul+1

ηl+1×1
��

X?(v)l × Ul
i′ // X?(v)l+1 × Ul+1

,

the base change property for Ṽ†κun,w(−C) is

(3.7) i′∗(ηl+1 × 1)∗Ṽ†κun,w,l+1(−C) = (ηl × 1)∗Ṽ†κun,w,l(−C).

Once this base change property is proved, we deduce that
(η × 1)∗Ṽ†κun,w(−C) is a small formal Banach sheaf with (η × 1)∗ Symr J1
as the required coherent sheaf. Then applying [2, Theorem A.1.2.2] and the
arguments in [2, Corollary 8.2.3.1, 8.2.3.2], we conclude that the module
H0(X1(pm)(v) × U , Ṽ†κun,w(−C)) is a projective Banach A(U)-module and
the map

H0(X1(pm)(v)×U , Ṽ†κun,w(−C))⊗A(U)/mκ −→ H0(X1(pm)(v), Ṽ†κ,w(−C))

is an isomorphism. The statement of the proposition follows by taking the
invariant of the finite group In(Z/pmZ).

We are left to show the base change property (3.7). Like in [2, Section 8],
we look at the projection ηl in a formal neighborhood of a geometric point
in the minimal compactification and reduce the base change property to
the vanishing of certain locally free sheaves over abelian schemes (3.11).
In [2, Section 8], only the vanishing for ρ being trivial is needed.

Let V ′ ⊂ V = Z⊕2n be an isotropic direct factor of rank r′. We start by
recalling the description given in [2, Section 8.2] of the localization of the
projection from the toroidal compactification to the minimal compactifica-
tion at a geometric point x̄ ∈ X?(v)l belonging to the stratum YV ′,l ⊂ X?

l .
Let AV ′ → YV ′ be the universal abelian scheme, and BV ′ → YV ′ be the
abelian scheme parametrizing the extensions of AV ′ by V ′ ⊗ Gm which is
isogenous to Ar′V ′ . Over BV ′ liesMV ′ which is a torsor under the torus with
character group S∨V ′ , isogenous to Hom(Sym2 V/V ′⊥,Gm). Let MV ′ →
MV ′,S be the torus embedding associated to a polyhedral decomposition S
of the cone C(V/V ′⊥) of symmetric semi-definite bilinear forms on V/V ′⊥.
Like in Section 3.3 one defines YV ′(v),Y1(pm)V ′(v),BV ′(v),MV ′,S(v).
Put B1(pm)V ′(v) = BV ′(v) ×Ar

V ′
(AV ′/Hm,V ′)r and M1(pm)V ′,S(v) =

MV ′,S(v) ×BV ′ (v) B1(pm)V ′(v). The completion ̂X1(pm)(v)l,x̄ at a geo-
metric point x̄ inside YV ′(v)l ⊂ X?(v)l is isomorphic to a disjoint union
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of spaces ̂M1(pm)V ′,S(v)l,ȳ/Γ1(pm)V ′ with some geometric point ȳ ∈
Y1(pm)V ′(v)l. The spaces fit into the diagram

(3.8)

̂M1(pm)V ′,S(v)l,ȳ

h1

��

h2 // ̂M1(pm)V ′,S(v)l,ȳ/Γ1(pm)V ′ //

��

̂X1(pm)(v)l,x̄.

̂B1(pm)V ′(v)l,ȳ // ̂Y1(pm)V ′(v)l,ȳ

Because of the exact sequence

0 −→ w̃†κ,w,1 ⊗ Symr J1(−C) $
l−1

−→ w̃†κ,w,l ⊗ Symr Jl(−C)

−→ w̃†κ,w,l−1 ⊗ Symr Jl−1(−C)→ 0,

the base change property for Ṽ†κun,w(−C) will follow from the vanishing
result

(3.9) H1( ̂M1(pm)V ′,S(v)1,ȳ/Γ1(pm)V ′ , w̃†κ,w,1 ⊗ Symr J1(−C)) = 0

for all κ ∈ U . The coherent Symr J has a filtration with graded pieces being
automorphic sheaves attached to algebraic GL(n)-representations that are
free of finite rank and the sheaf w̃†κ,w,1 is an inductive limit of iterated
extensions of the trivial sheaf [2, Corollary 8.1.6.2]. Therefore, (3.9) will
follow from the general vanishing result: For all ρ ∈ RepZ,f GL(n) and
i > 0,

(3.10) Hi( ̂M1(pm)V ′,S(v)1,ȳ/Γ1(pm)V ′ ,wρ,1(−C)) = 0,

where wρ,1 is the pullback to ̂M1(pm)V ′,S(v)1,ȳ/Γ1(pm)V ′ of the automor-
phic sheaf ωρ on X. The proof of (3.10) is an adaption of [36, Section 8.2]
in the situation (3.8). It is enough to show that

Hi
(

Γ1(pm)V ′ , Hj( ̂M1(pm)V ′,S(v)1,ȳ, h
∗
2wρ,1(−C))

)
= 0, if i+ j > 0.

Over BV ′ there is the universal semi-abelian scheme

0 −→ V ′ ⊗Gm −→ GV ′ −→ AV ′ −→ 0.

Using the GL(n)-torsor IsomBV ′ (O
n
BV ′ , ω(GV ′/BV ′)) one constructs a lo-

cally free sheaf of finite rank ωV ′, ρ over BV ′ , whose pullback wV ′, ρ,1 to
̂B1(pm)V ′(v)l,ȳ satisfies

h∗1wV ′, ρ,1 = h∗2wρ,1.
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The action of Γ1(pm)V ′ on SV ′ factors through a quotient which acts freely
on
{
λ ∈ SV ′ ∩ C(V/V ′⊥)∨ : λ > 0

}
. Take S0 to be a set of representatives

of the orbits. Applying [36, Lemma 8.2.3.12], [16, Theorem V.2.7] we get

Hi
(

Γ1(pm)V ′ , Hj( ̂M1(pm)V ′,S(v)1,ȳ, h
∗
2wρ,1(−C))

)
= Hi

(
Γ1(pm)V ′ ,

∏
λ∈SV ′∩C(V/V ′⊥)∨,

λ>0

Hj( ̂B1(pm)V ′(v)l,ȳ,L(λ)⊗wV ′, ρ,1)
)

=
{∏

λ∈S0
Hj( ̂B1(pm)V ′(v)l,ȳ,L(λ)⊗wV ′, ρ,1) i = 0

0 i > 0,

where L(λ) is an ample invertible sheaf over the abelian scheme
B1(pm)V ′(v) for λ ∈ S0 [16, p. 143]. We reduce to show

(3.11) Hj( ̂B1(pm)V ′(v)l,ȳ,L(λ)⊗wV ′, ρ,1) = 0, if j > 0.

Over BV ′ , the sheaf of invariant differentials of the torus part and the
quotient abelian part of the semi-abelian scheme GV ′ can be trivialized.
Hence the sheaf ωV ′, ρ can be constructed by using a torsor of a unipo-
tent subgroup NV ′ ⊂ GL(n) with the NV ′ -representation ρ |NV ′ . Then [36,
Lemma 8.2.4.16] says that ρ |NV ′ admits a filtration with NV ′ acting
trivially on each graded piece. Thus ωV ′, ρ is an iterated extension of
the trivial sheaf, and (3.11) follows from the vanishing results for
Hj( ̂B1(pm)V ′(v)l,ȳ,L(λ)), j > 0 [39, Section III.16]. �

3.6. The differential operators

Let Ω1
XIw(v) be the sheaf of differentials on XIw(v) defined as in [18,

Ex. 4.4.1]. Over XIw(v) we have the integrable Gauss–Manin connection

∇ : H1
dR(G/XIw(v))can → H1

dR(G/XIw(v))can ⊗ Ω1
XIw(v)(logC).

For a w-analytic weight κ ∈ W(Cp) and ρ ∈ RepZ,f GL(n), we defined
in Section 3.2 the (g,Qw)-module Vκ⊗ρ,w. The Banach sheaf V†,rκ⊗ρ,w =
ω†κ,w ⊗ ωρ ⊗ Symr J on XIw(v) has the contracted product interpretation
T ×H,w(v)×Qw Vκ⊗ρ,w. Using this contracted product interpretation and the
construction in Section 2.2, we obtain a connection

∇κ⊗ρ,w : V†,rκ⊗ρ,w −→ V
†,r+1
κ⊗ρ,w ⊗ ΩXIw(v)(logC) ∼= V†,r+1

κ⊗ρ⊗τ,w(−1).

Recall that τ is the symmetric square of the standard representation of
GL(n). Composing it with t+ : V†,r+1

κ⊗ρ⊗τ,w(−1) → V†,r+1
κ⊗ρ⊗τ,w we get the

ANNALES DE L’INSTITUT FOURIER



NEARLY OVERCONVERGENT SIEGEL MODULAR FORMS 2479

following differential operator which can be thought of as a p-adic analytic
version of the Maass–Shimura differential operators

Dκ⊗ρ,w : V†,rκ⊗ρ,w −→ V
†,r+1
κ⊗ρ⊗τ,w.

Besides, there is the Shimura’s E-operator [45, Section 12.9]

Eκ⊗ρ,w : V†,rκ⊗ρ,w
εκ⊗ρ,w−→ V†,r−1

κ⊗ρ⊗τ∨,w(1) t−−→ V†,r−1
κ⊗ρ⊗τ∨,w,

whose construction relies only on the fact that we have the morphism of
Qw-representations

V rκ⊗ρ,w/V
0
κ⊗ρ,w −→ V r−1

κ⊗ρ,w ⊗ V 0
τ∨(1) = V r−1

κ⊗ρ⊗τ∨,w(1).

We can also iterate the operators and obtain

De
κ⊗ρ,w : V†,rρ,w −→ V

†,r+e
κ⊗ρ⊗Syme τ,w,

Eeκ⊗ρ,w : V†,rρ,w −→ V
†,r−e
κ⊗ρ⊗Syme τ∨,w,

for e ∈ N. A section of the sheaf V†,rκ⊗ρ,w lies inside V†,r
′

κ⊗ρ,w for 0 6 r′ < r if
and only is it is annihilated by Er

′+1
κ⊗ρ,w.

Also, note that because there is a natural isomorphism V rκ⊗ρ,w/V
r−1
κ⊗ρ,w

∼−→
V 0
κ⊗ρ⊗Symr τ∨,w(r), we have

(3.12) 1
r!E

r
κ⊗ρ,w : V†,rρ,w

∼−→ V†,0κ⊗ρ⊗Symr τ∨,w.

3.7. The holomorphic projection

Besides the definition of the space of nearly holomorphic forms, its al-
gebraic structure and the Maass–Shimura differential operators, another
main ingredient in Shimura’s theory of nearly holomorphic forms is the
holomorphic projection. Shimura’s construction [45, Proposition 14.2] can
be adapted to our p-adic analytic context.

Define the functions Log1, . . . ,Logn on the weight space W by

Logi(κ) :=
logp(κi(1 + p)t)
logp((1 + p)t) ,

for κ = (κ1, . . . , κn) ∈ W and some t ∈ N sufficiently large. LetK(Log1, . . . ,

Logn) be the fraction field of K[Log1, . . . ,Logn]. For an affinoid subdomain
U ⊂ W such that κun|U is w-analytic, we prove in this section the following
proposition.
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Proposition 3.6. — There is an A(U)-linear continuous map

A : N†,rU,w,v −→ N†,0U,w,v ⊗K K(Log1, . . . ,Logn)

whose restriction to N†,0U,w,v is the identity.

In order to simplify notation for the rest of this section we omit all the
subscripts from the differential operators and E-operators as well as the
subscript w from V†,r

κun⊗Syme τ⊗Syme′ τ∨,w
.

Suppose that Spm(R) ⊂ XIw(v) is an affinoid subdomain such that there
exists a section α ∈ T ×H,w(v)(R), and we regard α as a basis (α1, . . . , α2n)
of H1

dR(A/R) satisfying certain conditions. Given D ∈ DerK(R,R), define
X(D,α) ∈ g⊗R by

∇(D)α = α ·X(D,α),

and denote by X(D,α) its image in the quotient g/q ∼= u−. The Levi sub-
group M acts on u− by conjugation, i.e. a ∈ GL(n,R) acts on X(D,α) by
sending it to ta−1X(D,α)a−1. This GL(n)-action is isomorphic to τ∨. Given
α ∈ T ×H,w(v)(R) and a basis {ei}16i6n(n+1)/2 of the GL(n)-representation τ ,
the dual basis {e∨i }16i6n(n+1)/2 gives rise to a basis {De∨

i
,α}16i6n(n+1)/2 of

the tangent space DerK(R,R). One can check by definition that the element
X(De∨

i
,α, α) inside u−⊗R is independent of the choice of α ∈ T ×H,w(v)(R),

and we abbreviate it as X(e∨i ).

Lemma 3.7. —
{
X(De∨

i
)
}

16i6n(n+1)/2
form a basis of u−⊗R ∼= τ∨(R),

which is dual to the basis {ei}16i6n(n+1)/2.

Proof. — The statement is an equality statement and does not depend
on the choice of {ei}16i6n(n+1)/2. Hence it suffices to prove it for the Siegel
variety Y , and we can further reduce to the Siegel upper half space hn and
take α to be the holomorphic basis (dw, β) of H1

dR(Ahn/hn) constructed in
Section 2.5. Denote by KS the Kodaira–Spencer map. Explicit computation
using (2.15) shows that

KS(dwidwj) = 2πi · dzij 1 6 i 6 j 6 n.(3.13)

Put X = (Xij) as in Section 2.6. Then (Xij)16i6j6n can be regarded
as a basis spanning the representation τ . It is dual to the basis µ−ij of
u−. (3.13) shows that dzij corresponds to Xij under the basis (dw, β) so
∂/∂zij = DX∨

ij
,(dw,β). By (2.15) we have X(X∨ij) = µ−ij and the statement

is proved. �
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The morphism τ ⊗ τ∨ → triv of GL(n)-representations induces the con-
traction operator

θe : V†,rκun⊗Syme τ⊗Syme τ∨ −→ V
†,r
κun .

Lemma 3.8. — The composition

EeθeDe : V†,0κun⊗Syme τ∨
De−→V†,eκun⊗Syme τ∨⊗Syme τ

θe−→V†,eκun
Ee−→V†,0κun⊗Syme τ∨

is an OXIw(v)×U -linear morphism of Banach sheaves over XIw(v)×U induced
by an endomorphism of the Qw-representation V 0

κun⊗Syme τ∨ .

Proof. — There exists a contraction map

θ̃e : V†,0κun⊗Syme τ∨⊗Syme τ⊗Syme τ∨ → V
†,0
κun⊗Syme τ∨

induced from a morphism of the corresponding representations such that

EeθeDe = θ̃eEeDe.

Therefore it is enough to show that the map

EeDe : V†,0κun⊗Syme τ∨ −→ V
†,0
κun⊗Syme τ∨⊗Syme τ⊗Syme τ∨

is induced from a morphism of Iw-representations. Still take X = (Xij) as
a basis of τ and write Vκun,w = Wκun,w[Y ] with Y = (Yij)16i6j6n as in
Section 3.2. Locally over Spm(R) ⊂ XIw(v), we fix a section α ∈ T ×H,w(v)(R)
and let DX∨

ij
,α be the basis of DerK(R,R) associated to X∨ij and α. With

these choices of local coordinates, the map EeDe can be written as

T ×H,w(v)(R)×Qw(R) V 0
κun⊗Syme τ∨(R)

EeDe−→ T ×H,w(v)(R)×Qw(R) V 0
κun⊗Syme τ∨⊗Syme τ⊗Syme τ∨(R)

(α, u) 7−→ (α, Pα,u,e(X, Y )),

with Pα,u,e(X, Y ) being a homogenous polynomial of degree e in X and
degree e in Y whose coefficients lie in V 0

κun⊗Syme τ∨(R). The claim that
EeDe is induced from a morphism of Iw-representations is equivalent to
the equality

(3.14) a · (Pα,u,e(X, Y )) = Pα·a,u,e(X, Y ),

for all a ∈ Iw(R) and u ∈ V 0
κun⊗Syme τ∨(R). By (2.2) the operator Ee

annihilates all terms in De ((α, u)) involving derivations of the base ring R
or the action of q ⊂ g, because they do not increase the degree in Y . Thus,

Pα,u,e(X, Y ) =
∑

16i6j6n

(
X(X∨ij) · Pα,u,e−1(X, Y )

)
Xij ,
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where X(X∨ij) is regarded as an element of u− through u− ∼= g/q. We
show (3.14) by induction. The e = 0 case is true by definition of the con-
tracted product. Assuming it is true for e− 1, then

a · Pα,u,e(X, Y )

= a ·
∑

16i6j6n

(
X(X∨ij) · Pα,u,e−1(X, Y )

)
Xij

=
∑

16i6j6n

((
ta−1X(X∨ij)a

−1
)
·
(
a · Pα,u,e−1(X, Y )

))(
a ·Xij

)
=

∑
16i6j6n

(
X(X∨ij) ·

(
a · Pα,u,e−1(X, Y )

))
Xij

=
∑

16i6j6n

(
X(X∨ij) · Pα·a,u,e−1(X, Y )

)
Xij

= Pα·a,u,e(X, Y ).

The second equality uses the compatibility of the action of g and Iw and
the third equality follows from Lemma 3.7. �

Denote by ϕ(κun, e) the endomorphism of Wκun⊗Syme τ∨ = V 0
κun⊗Syme τ∨

giving rise to EeθeDe.

Lemma 3.9. — There exists an element ϕ̃ ∈ End(Wκun⊗Syme τ∨,w) and
a nonzero η ∈ K[Log1, . . . ,Logn] such that ϕ̃◦ϕ(κun, e) = ϕ(κun, e)◦ϕ̃ = η.

Proof. — As an A(U)-Banach module, we have

Wκun,w
∼= ⊕N−(Z/p[w]Z)A(U)〈T〉,

the direct sum of |N−(Z/p[w]Z)| copies of strictly convergent power series
in T = (Tij)16i<j6n. Let W 0 = A(U)[T ] be the polynomial part of one
copy. Fix a basis Z = (Zij)16i,j6n, Zij = Zji of τ∨ with a ∈ GL(n) acting
by a · Z = ta−1Za−1. Then

Wκun⊗Syme τ∨,w
∼= ⊕N−(Z/p[w]Z)A(U)[Z]e〈T〉,

where the subscript emeans homogenous polynomials of degree e. LikeW 0,
setW 0

e = W 0⊗Syme τ∨ = A(U)[Z]e[T ]. BothW 0 andW 0
e are closed under

the action of gl(n), and ϕ(κun, e) restricts to an endomorphism of the gl(n)-
module W 0

e . We can write W 0
e as a direct sum of its weight spaces W 0

e =
⊕λW 0

e,λ with each W 0
e,λ free of finite rank generated by some monomials

of the form
∏

16i<j6n T
sij
ij ·

∏
16k6l6n Z

tkl
kl , sij , tkl > 0,

∑
tkl = e. The

endomorphism ϕ(κun, e) restricts to an A(U)-linear map ϕλ : W 0
e,λ →W 0

e,λ
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for each λ and the corresponding matrix, with respect to the basis consisting
of monomials, has entries in OK [Log1, . . . ,Logn].
The first claim is that the determinant of ϕλ in non-zero. For κ ∈ U

write ϕλ,κ to denote the specialization of ϕλ at κ. Fix an arbitrary κ =
(κ1, . . . , κn) ∈ U and consider κ+ k = (κ1 + k, . . . , κn + k) with k varying
in N. Set Q(k) to be the determinant of ϕλ,κ+k. It is a polynomial in k and
is non-zero as observed in [45, (14.3)]. Hence the determinant of ϕλ cannot
be zero.
Then in order to show the existence of the ϕ̃, it suffices to show that there

exists η ∈ OK [Log1, . . . ,Logn] such that the minimal polynomial Pλ of ϕλ
divides η in OK [Log1, . . . ,Logn] for all λ. Let L be the algebraic closure
of the field K(Log1, . . . ,Logn). For a generic κ ∈ U , the specialization
W 0
κ ofW 0 at κ is isomorphic to the irreducible Verma module with highest

weight κ. According to [3, Lemma 5], for generic κ, the gl(n)-moduleW 0
e,κ =

W 0
κ ⊗ Syme τ∨ admits a Jordan–Hölder series of finite length with graded

pieces being irreducible Verma modules, and the length is independent
of κ. Let l be this length. It follows that the subset of L consisting all
the eigenvalues of ϕλ for all λ is finite. Also, for each u ∈ W 0

e,λ,κ with κ

generic, the dimension of the space Span{ϕmλ,κ(u) : m ∈ N} is bounded by l.
Therefore as λ varies, the degree of the minimal polynomial Pλ is uniformly
bounded and all the roots are contained in a finite set. This implies the
existence of the desired η ∈ OK [Log1, . . . ,Logn]. �

Proof of Proposition 3.6. — Let ϕ̃, η be as in the previous lemma for
e = r. Then η−1ϕ̃ induces the morphism

Φr : V†,0κun⊗Symr τ∨,w −→ V
†,0
κun⊗Symr τ∨,w ⊗K K(Log1, . . . ,Logn),

which is the inverse of ErθrDr. Set Ar = 1− θrDrΦrEr. Then

ErAr = Er(1− θrDrΦrEr) = Er − (ErθrDrΦr)Er = Er − Er = 0,

showing that Ar sends N†,rU,w,v into N†,r−1
U,w,v ⊗K K(Log1, . . . ,Logn). Mean-

while Ar is identity on N†,r−1
U,w,v because Er annihilates N†,r−1

U,w,v . By induction
we obtain the desired A = A1 ◦A2 ◦ · · · ◦Ar. �

Corollary 3.10. — There exists a nonzero η ∈ K[Log1, . . . ,Logn]
such that each F ∈ N†,rU,w,v can be written as

ηF = F0 + θDF1 + · · ·+ θrDrFr

with Fi ∈ N†,0U⊗Symi τ∨,w,v
.
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3.8. Unramified Hecke operators

Let ` be a prime integer with (`,Np) = 1. For an element γ` of the double
coset GSp(2n,Z`)\GSp(2n,Q`)/GSp(2n,Z`), the action of the Hecke op-
erator Tγ` on N†,rκ,w,v can be defined in the standard way by using algebraic
correspondence of `-(quasi-)isogenies of type γ`. Let YIw,K be the moduli
scheme over K parametrizing principally polarized abelian schemes (A, λ)
with a principal level N structure and a self-dual full flag Fil•A[p]. Define
Cγ` ⊂ YIw,K × YIw,K to be the moduli space, whose R-points Cγ`(R) for
any K-algebra R consists of (quasi-)isogenies

π : (A1, λ1, ψN,1,Fil•A1[p])→ (A2, λ2, ψN,2,Fil•A2[p])

of type γ`. Here for i = 1, 2, λi, ψN,i and Fil•Ai[p] need to satisfy π∗λ2 =
ν(γ`)λ1, π ◦ ψN,1 = ψN,2, π ◦ Fil•A1[p] = Fil•A2[p]. Being of type γ`
means that under certain Z`-basis of the Tate modules T`(Ai), the matrix
of the morphism induced by π on Tate modules is γ`. Denote by p1 (resp.
p2) the projection of Cγ` to the first (resp. second) factor. Put Cγ`(v) =
Cγ`,an ×p1,YIw,K,an YIw(v). Then we have

(3.15)

Cγ`(v)
p1

zz

p2

$$
YIw(v) YIw(v).

Write p∗i T ×H,w(v) = Cγ`(v) ×pi,YIw(v) T ×H,w(v). Due to the functoriality of
the Hodge–Tate map and the canonical subgroups, the (quasi-)isogeny π
induces an isomorphism π∗ : p∗2T ×H,w(v)→ p∗1T ×H,w(v) (cf. [2, Lemma 6.1.1]).
Applying π∗ to the first factor of the contracted product p∗i T ×H,w(v) ×Qw
V rκ,w, we obtain

π∗ : p∗2V†,rκ,w
∼−→ p∗1V†,rκ,w.

The Hecke operator Tγ` is defined as the composition

H0(YIw(v),V†,rκ,w) p2∗−→ H0(Cγ`(v), p∗2V†,rκ,w) π∗−→ H0(Cγ`(v), p∗1V†,rκ,w)
Tr p1−→ H0(YIw(v),V†,rκ,w).

Such defined Tγ` maps bounded functions to bounded functions and re-
stricts to an action on N†,rκ,w,v by the discussion of [2, Section 5.5]. The
action also preserves the cuspidal part (see Remark 3.15).
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3.9. The Up-operators

Let T+ ⊂ T(Q) be the set

T+ = {diag(pa1 , . . . , pan , pa0−a1 , . . . , pa0−an) : a1 6 · · · 6 an, a0 > 2an}.

We want to attach a Hecke operator to each element of T+. All such oper-
ators will be called Up-operators. Let

(3.16) γp,i =


Ii 0 0 0
0 In−i 0 0
0 0 p2Ii 0
0 0 0 In−i

 1 6 i 6 n− 1,

and γp,n =
(
In 0
0 In

)
.

An element γp ∈ T+ can be uniquely written as γp = ps0
∏n
j=1 γ

sj
p,j with

s0 ∈ Z, s1 . . . , sn ∈ N. We make the scalar p act on YIw,K by sending
(A, λ, ψN ,Fil•A[p]) to (A, λ, ψN ◦p,Fil•A[p]). This action is invertible and
induces a map on the global sections of the sheaf V†,rκ,w, which we take as
the Hecke operator corresponding to p ∈ T+ and denote by 〈p〉. We define
the Hecke operator attached to ps0 as 〈p〉s0 for all s0 ∈ Z. It remains to
define the operators Up,i associated to γp,i for 1 6 i 6 n.

3.9.1. The operator Up,n

Let Cn ⊂ YIw,K × YIw,K be the moduli space parametrizing the quin-
tuples (A, λ, ψN ,Fil•A[p], L), with (A, λ, ψN ,Fil•A[p]) being the moduli
problem defining YIw,K and L ⊂ A[p] satisfying L ⊕ FilnA[p] = A[p].
Denote by π : A → A/L the universal isogeny. There are two projec-
tions p1, p2 from Cn to YIw,K . One is by forgetting L, and the other sends
(A, λ, ψN ,Fil•A[p], L) to (A/L, λ′, π ◦ ψN ,Fil•A/L[p]), with λ′ defined by
π∗λ′ = pλ and FiliA/L[p] = π ◦ FiliA[p], 1 6 i 6 n. Let

Cn(v) = Cn,an ×p1,YIw,K YIw(v) ⊂ YIw(v)× YIw(v).

Then by [17, Theorem 8], there is the diagram

(3.17)

Cn(v)
p1

{{

p2

%%
YIw(v) YIw(p)(vp ).
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The universal isogeny π induces an isomorphism π∗ : p∗2T ×H,w( vp ) →
p∗1T ×H,w(v) (cf. [2, Lemma 6.2.1.2]) that gives rise to π∗ : p∗2V†,rκ,w

∼−→ p∗1V†,rκ,w.
The operator Up,n is defined as the composition

(3.18) H0
(
YIw(p)

(
v

p

)
,V†,rκ,w

)
p2∗−→ H0(Cn(v), p∗2V†,rκ,w)

π∗−→ H0(Cn(v), p∗1V†,rκ,w) p−n(n+1)/2 Tr p1−−−−−−−−−−→ H0(YIw(v),V†,rκ,w).

See Section 3.9.5 for the normalizer p−n(n+1)/2.

3.9.2. The operators Up,i, i = 1, . . . , n− 1

In order to define the operators Up,i, we first generalize the notion of
w-analyticity to w-analyticity for w = (wjk)16k<j6n satisfying

(i) wjk = w or w − 1 for some w as before,
(ii) wj+1,k > wj,k, and wj,k−1 > wjk.

Recall N−I (Zp) ⊂ I(Zp) is the subgroup of lower triangular elements with
1 as diagonal entries. Let N−w be the rigid analytic group

N−(Zp) ·


1 0 · · · 0

B(0, pw21) 1 · · · 0
...

...
. . .

...
B(0, pwn1) B(0, pwn2) · · · 1



=


1 0 · · · 0

pZp + B(0, pw21) 1 · · · 0
...

...
. . .

...
pZp + B(0, pwn1) pZp + B(0, pwn2) · · · 1

 .

Then I ′w = N−w T ◦w−1 Nan is a rigid analytic space with the group T ◦w−1 Nan
acting by the right multiplication. Due to the requirement (i) (ii) on w, the
space I ′w is also stable under the left multiplication by the group Iw. Like
in Section 3.2 we define the Iw-module Wκ,w by

Wκ,w(R) =
{
f : I ′w(R)→ R, f |N−w is analytic and f(xtn) = κ′(t)f(x)
for all x ∈ I ′w(R), t ∈ T ◦w−1(R), n ∈ Nan(R)

}
for all R ∈ AL. The group Iw acts on it through the left inverse translation.
We write w′ 6 w if w′jk 6 wjk for all 1 6 k < j 6 n. If w′ 6 w, then
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Wκ,w′ ⊂Wκ,w and elements inWκ,w′ satisfy stronger analyticity condition.
We define Vκ,w, by the same formulas as (3.3) (3.4), and Banach sheaves

ω†κ,w =T ×F,w(v)×Iw Wκ,w ⊂ ω†κ,w, V†,rκ,w =T ×H,w(v)×Qw Vκ,w ⊂ V†,rκ,w.

Next we extend the action of Iw on Wκ,w to ∆−I,w = IwT ◦−Iw, where
T ◦− = {diag(pb1 , . . . , pbn) ∈ GL(n,Q) : b1 > · · · > bn}. With this extension
the Qw-action on V rκ,w extends to ∆−Q,w = QwT−Qw with T− ⊂ T(Q)
consisting of diag(pb1 , . . . , pbn , pb0−b1 , . . . , pb0−bn), b1 > · · · > bn, b0 > 2b1.
Given h = h′thh

′′ with h′, h′′ ∈ Iw and th ∈ T ◦−, we make it act on
f ∈Wκ,w by

(3.19) (f · h)(x) = f(h−1xth).

One can check that this action is well defined and has norm less or equal to 1
with respect to the supreme norm on Wκ,w. If th = diag(pb1 , . . . , pbn), then
h sends Wκ,w into Wκ,w′ , with w′jk = maxk6t<s6j{wst+ bs− bt, wjk−1} 6
wjk, and increases the analyticity.
Now fix 1 6 i 6 n − 1 and consider the moduli scheme Ci over K

parametrizing (A, λ, ψN ,Fil•A[p], L), where (A, λ, ψN ,Fil•A[p]) is the
moduli problem defining YIw, and L ⊂ A[p2] is a Lagrangian subgroup such
that L[p]⊕FiliA[p] = A[p]. Denote by π : A→ A/L the universal isogeny.
Define the projection p1 : Ci → YIw,K by forgetting L, and p2 : Ci → YIw,K
by sending (A, λ, ψN ,Fil•A[p], L) to (A/L, λ′, π◦ψN ,Fil•A/L[p]). Here the
polarization λ′ is defined by π∗λ′ = p2λ and Fil•A/L[p] is defined as

Filj A/L[p] =


π(Filj A[p]), if 1 6 j 6 i,
π(Filj A[p] + p−1(Filj A[p] ∩ L)), if i < j 6 n,

(Fil2n−j A/L[p])⊥, if n+ 1 6 j 6 2n.

For example if x1, . . . , xn, xn+1, . . . , x2n is a basis of A[p2] compatible with
Fil•A[p] and the Weil pairing, then we can take

L = 〈pxi+1, . . . , pxn, pxn+1, . . . , px2n−i, x2n−i+1, . . . , x2n〉,

and correspondingly we have

Fil•A/L[p] = 〈px̄1〉 ⊂ · · · ⊂ 〈px̄1, . . . , px̄i〉 ⊂ 〈px̄1, . . . , px̄i, x̄i+1〉 ⊂ · · ·
⊂ 〈px̄1, . . . , px̄i, x̄i+1, . . . , x̄n〉 ⊂ · · ·

where x̄j stands for xj mod L.
Set Ci(v) = Ci,an ×p1,YIw,an YIw(v).
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Proposition 3.11 ([2, Proposition 6.2.2.1]). — If Hdg(A[p∞])< p−2
p(2p−2)

and FilnA[p] is the canonical subgroup of level 1, then Hdg(A[p∞]/L) 6
Hdg(A[p∞]) and the FilnA/L[p] defined above is the canonical subgroup
of level 1 of A/L.

Now we have the diagram

(3.20)

Ci(v)
p1

{{

p2

$$
YIw(v) YIw(v).

The pullback π∗ : p∗2T ×H,an(v) ∼→ p∗1T ×H,an(v) does not send p∗2T ×H,w(v) into
p∗1T ×H,w(v), but to

p∗1T ×H,w(v) ◦


pIn−i 0 0 0

0 Ii 0 0
0 0 pIn−i 0
0 0 0 p2Ii

Qw ⊂ p∗1T ×H,w(v) ◦∆−Q,w.

Given local section (α, u) of the contracted product p∗2T ×H,w(v) ×Qw V rκ,w,
there is a γα ∈ ∆−Q,w such that (π∗α) ◦ γ−1

α lies inside p∗1T ×H,w(v), and we
can define

(3.21)
π̃∗ : p∗2T ×H,w(v)×Qw V rκ,w −→ p∗1T ×H,w(v)×Qw V rκ,w′

(α, u) 7−→ ((π∗α) ◦ γ−1
α , γα · u),

with

w′jk =
{

max{wjk − 1, w − 1}, if 1 6 k 6 n− i < j 6 n,

wjk, otherwise.

It is easy to see that the right hand side of (3.21) does not depend on the
choice of γα and π̃∗ is well defined.
The operator Up,i is defined as the composition

(3.22) H0(YIw(v),V†,rκ,w) p2∗−→ H0(Ci(v), p∗2V†,rκ,w) π̃∗−→ H0(Ci(v), p∗1V
†,r
κ,w′)

p−i(n+1) Tr p1−−−−−−−−−→ H0(YIw(v),V†,rκ,w′).

The normalizer p−i(n+1) is justified in Section 3.9.5.
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3.9.3. A compact operator Up

From (3.18) and (3.22) we see that the composition Up,n◦Up,n−1◦· · ·◦Up,1
maps N†,rκ,w,v continuously into N†,rκ,w−1,pv. Let res : N†,rκ,w−1,pv → N†,rκ,w,v be
the natural restriction map. Define the operator Up as

Up = res ◦ Up,n ◦ Up,n−1 ◦ · · · ◦ Up,1 : N†,rκ,w,v −→ N†,rκ,w,v.

In the following we show that the map res : N†,rκ,w−1,pv → N†,rκ,w,v is a
compact morphism between two K-Banach modules. To this end it will be
convenient to use the interpretation (ii) of N†,rκ,w,v in Section 3.4.3, i.e.

N†,rκ,w,v = H0(IWw(v),Lκ ⊗ (π1 ◦ π3)∗ Symr J )B(Z/pmZ).

Since the group B(Z/pmZ) is finite, there is a continuous projection from
H0(IWw(v),Lκ⊗(π1 ◦π3)∗ Symr J ) to its B(Z/pmZ)-invariant part. Thus
it is enough to show the compactness of the restriction

H0(IWw−1(pv),Lκ ⊗ (π1 ◦ π3)∗ Symr J )

−→ H0(IWw(v),Lκ ⊗ (π1 ◦ π3)∗ Symr J ).

Since the sheaf Lκ⊗(π1◦π3)∗ Symr J is coherent, by [34, Proposition 2.4.1]
we reduce to prove that IWw(v) is relatively compact inside IWw−1(pv)
(relative to Spm(K)).
According to [34, Definition 2.1.1], given a quasi-compact rigid analytic

space Z and an admissible open quasi-compact subset V ⊂ Z, V is called
relatively compact inside Z (relative to Spm(K)), written as V b Z, if
there exists a formal model Z of Z together with an open sub-formal scheme
V ⊂ Z with rigid fibre Vrig = V, such that the closure V0 of the reduction
V0 ⊂ Z0 is proper (over Spec(k), k = OK/$).

Lemma 3.12. — X1(pm)(v) is relatively compact inside X1(pm)(pv).

Proof. — First X (pv) b X becauseX is proper. Then using [34, Proposi-
ion 2.3.1] we get X (v) b X (pv). Both of the projections X1(pm)(v) →
X (v) and X1(pm)(pv)→ X (pv) are finite. The statement follows from [34,
Lemma 2.1.8]. �

Proposition 3.13. — IWw(v) is relatively compact inside IWw−1(pv).

Proof. — By construction we have the formal model f : IWw−1(pv) →
X1(pm)(pv). By the previous lemma we can take an admissible formal
blow-up X1(pm)(pv)′ → X1(pm)(pv) with an open formal subscheme
X1(pm)(v)′ ⊂ X1(pm)(pv)′, such that X1(pm)(v)′rig = X1(pm)(v) and the

TOME 69 (2019), FASCICULE 6



2490 Zheng LIU

closure X1(pm)(v)′0 inside X1(pm)(pv)′0 is proper. Base changing f via the
blow-up we get

IWw−1(v)′

�

� � //

��

IWw−1(pv)′

��
X1(pm)(v)′ �

� // X1(pm)(pv)′

.

There is an open covering of X1(pm)(pv)′ by affine open subschemes such
that over each member Spf(R) of it, IWw−1(pv)′ ×X1(pm)(pv)′ Spf(R) is
isomorphic to

Spf(R)×


1 0 · · · 0

pw−1B(0, 1) 1 · · · 0
...

...
. . .

...
pw−1B(0, 1) pw−1B(0, 1) · · · 1


∼= Spf(R)×B(0, 1)n(n−1)/2 ∼= Spf(R〈Tij〉16j<i6n).

Over IWw−1(pv)′ ×X1(pm)(pv)′ Spf(R) one can define the ideal sheaf at-
tached to the ideal generated by p and Tij , 1 6 j < i 6 n, which
is independent of the choice of the coordinate Tij . Such locally defined
ideal sheaves glue together to an ideal sheaf I over IWw−1(pv)′. Let
IWw−1(pv)′′ be the blow-up of IWw−1(pv)′ along I . Take IWw(pv)′′ to
be its open sub-formal scheme where the ideal sheaf I is generated by
p. From the local description of I , we know that the closure IWw(pv)′′0
of IWw(pv)′′0 inside IWw−1(pv)′′0 is proper over the base X1(pm)(pv)′0.
Take IWw(v)′′ to be the inverse image of X1(pm)(v)′ under the projection
IWw(pv)′′ → X1(pm)(pv)′. Then IWw(v)′′ is an open sub-formal scheme
of IWw−1(pv)′′ with rigid fibre equal to IWw(v). Now we have the picture

IWw(v)′′0
� � //

��

Z0
� � //

g

��
�

IWw(pv)′′0
� � //

h

��

IWw−1(pv)′′0

ww
X1(pm)(v)′0

� � // X1(pm)(v)′0
� � // X1(pm)(pv)′0

with the vertical map h being proper. Due to the properness of the scheme
X1(pm)(v)′0 and the map g (implied by that of h), the scheme Z0 is proper.
Then the closure of IWw(v)′′0 inside IWw−1(pv)′′0 must be proper since it
is contained in Z. �

All the arguments apply to the universal weight case by working rela-
tively over U ⊂ W, as well as the cuspidal case by replacing Symr J with
Symr J (−C). We record the following corollary.
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Corollary 3.14. — The operators

Up : N†,rκ,w,v → N†,rκ,w,v, Up : N†,rκ,w,v,cusp → N†,rκ,w,v,cusp

(resp. Up : N†,rU,w,v → N†,rU,w,v, Up : N†,rU,w,v,cusp → N†,rU,w,v,cusp)

are compact operators of K-Banach spaces (resp. A(U)-Banach modules).

3.9.4. Tensoring with τ, τ∨

We consider the algebraic GL(n)-representations (ρalg,Wρalg) that are
obtained by taking tensor products of symmetric powers Syme1 τalg and
Syme2 τ∨alg with e1, e2 ∈ N. Here we add the subscript alg to indicate that
the action of ∆−I,w is the one given by the algebraic action of GL(n). The
notation ρ, τ, τ∨ will be saved for the ∆−I,w-modules which are obtained
from the algebraic ones by a renormalization explained below.
First we define two characters χ1, χ2 on the semi-group ∆−I,w. Given

h = h′thh
′′ with h′, h′′ ∈ Iw and th = diag(pb1 , . . . , pbn) ∈ T ◦−, put

χ1(h) = p−2bn , χ2(h) = p2b1 .

We define the ∆−I,w-modules τ, τ∨ as

τ := τalg ⊗ χ1, τ∨ := τ∨alg ⊗ χ2.

By taking tensor products of τ, τ∨, we associate to each ρalg the renormal-
ized ∆−I,w-module ρ. The reason we consider this renormalization of ρalg is
that it makes the action of ∆−Q,w on V rρ integral.
Then all the Up-operators can be constructed for N†,rκ⊗ρ,w,v in exactly the

same way as when ρ is trivial and Corollary 3.14 holds for the action of Up
on N†,rκ⊗ρ,w,v and N†,rκ⊗ρ,w,v,cusp.

3.9.5. The normalizations of the Up-operators

We show that by our choice of the normalizations of the Up-operators,
all the eigenvalues of the compactor operator Up acting on N†,rκ⊗ρ,w,v are
p-adically integral. Since Vrκ⊗ρ,w has a filtration with V0

κ⊗ρ⊗Syme τ∨,w as
graded pieces, it is enough to consider the case r = 0.
For an integer l > 0, let Yl be the Siegel variety modulo pl and Yl[1/Ha]

be its ordinary locus. Denote by S(pm)l the finite étale cover of Yl[1/Ha]
parametrizing, the quintuples (A, λ, ψN ,Fil• tA[pm]ét, (φj)16j6n), where
the abelian scheme A over an OK/pl-algebra is ordinary, and Fil• tA[pm]ét

is a complete flag of the free Z/pmZ-module tA[pm]ét with trivializations
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of graded pieces φj : Z/pmZ ' Filj /Filj+1
tA[pm]ét. Put S(p∞) =

lim−→
l

lim←−
m

S(pm)l. The Hodge–Tate map gives rise to the embedding

(3.23)

S(p∞) �
� //

%%

IW+
w(v)

��
XIw(v),

which induces an injective map

(3.24) res : N†,rκ⊗ρ,w,v → H0(S(p∞),Vr
ρ)[1/p],

where Vr
ρ is the pullback to S(p∞) of the locally free sheaf Vrρ of finite rank

over X. We can define an Up-action on H0(S(p∞),Vr
ρ) such that (3.24)

is Up-equivariant. Then the integrality of the Up-eigenvalues on N†,rκ⊗ρ,w,v
follows. We deal with the case of the operator Up,i for 1 6 i 6 n− 1. Other
cases are basically the same.
First we construct the correspondence analogous to (3.20)

Ci,m,l(0)
p1

yy

p2

&&
S(pm)l S(pm−1)l,

where Ci,m,l(0) parametrizes sextuples (A, λ, ψN ,Fil• tA[pm]ét, (φj)16j6n,

L) whose first five components form the quintuple defining S(pm)l. The flag
Fil• tA[pm]ét gives a self-dual flag of Fil•A[p], and L ⊂ A[p2] is the one used
in defining Ci. The projection p1 is forgetting L. The projection p2 sends
(A, λ, ψN ,Fil• tA[pm]ét, (φj)16j6n, L) to (A′, λ′, π ◦ ψN ,Fil• tA′[pm−1]ét,

(φ′j)16j6n). Here A′ = A/L, and the universal isogeny π : A→ A′ induces
a map tπ : tA′[pm]ét → tA[pm]ét and a well-defined map p · tπ−1 : tA[pm]ét →
tA′[pm]ét. Set Filj tA′[pm−1]ét = p · tπ−1(Filj tA[pm]ét) ∩ tA′[pm−1]ét and

φ′j =
{
p2 · tπ−1 ◦ φj , if 1 6 j 6 n− i,
p · tπ−1 ◦ φj , if n− i+ 1 6 j 6 n.
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Taking the inverse limit with respect to m followed by the direct limit with
respect to l, we get Ci,∞(0) = lim−→

l

lim←−
m

Ci,m,l(0) and the correspondence

Ci,∞(0)
p1

zz

p2

%%
S(p∞) S(p∞).

By our normalization of the ∆−I,w-action on V rρ , the group I(Zp)T ◦−I(Zp)
acts on it integrally. This guarantees that the map π̃∗ : p∗2Vρ → p∗1Vρ

can be defined in a manner similar to (3.21). Once we have checked that
Im (Tr p1) ⊂ pi(n+1)H0(S(p∞),Vr

ρ), we can define the operator Up,i as

H0(S(p∞),Vr
ρ)

p2∗−→ H0(Ci,∞(0), p∗2Vr
ρ)

π̃∗−→ H0(Ci,∞(0), p∗1Vr
ρ)

p−i(n+1) Tr p1−−−−−−−−−→ H0(S(p∞),Vr
ρ).

It is not difficult to check that such defined Up-operators onH0(S(p∞),wρ)
make (3.24) Up-equivariant.
We are left to show the inclusion

Im (Tr p1) ⊂ pi(n+1)H0(S(p∞),Vr
ρ).

Essentially this containment reflects the fact that the projection p1 is ram-
ified and pi(n+1) is its pure inseparability degree. Thanks to the projection
formula we have

p1,∗p
∗
1V

r
ρ = p1,∗OCi,∞(0) ⊗Vr

ρ.

Therefore it suffices to show

(3.25) Tr p1(p1,∗OCi,∞(0)) ⊂ pi(n+1)OS(p∞).

Let S(p∞)0 be the reduction ofS(p∞). Take y0 ∈ S(p∞)0, y′0 ∈ p2(p−1
1 (y0)).

We show (3.25) in the formal neighborhoods Ŝ(p∞)y0
, Ĉi,∞(0)(y0,y′0).

We explicate the projection p1 using the Serre–Tate coordinates [26, Sec-
tions 8.2, 8.3]. The formal neighborhood Ŝ(p∞)y0

is isomorphic to
Homsym(TpAét

y0
× TptAét

y0
, Ĝm). A point z ∈ Ŝ(p∞)y0

corresponds to a bi-
linear map q : TpAét

y0
× TptAét

y0
→ Ĝm which is symmetric if we identify

tAét
y0

with Aét
y0

via the polarization. Given any basis x1, . . . , xn of TpAét
y0
, let

tx1, . . . ,
txn the basis of tAét

y0
which are obtained as the image of x1, . . . , xn

under the polarization. Write q(xi, txj) = 1 + Tjk, 1 6 j, k 6 n. We have
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Tjk = Tkj . The {Tjk}16j6k6n is a Serre–Tate coordinate of Ŝ(p∞)y0
. Sim-

ilarly, for Ŝ(p∞)y′0 with a given basis x′1, . . . , x′n of TpAét
y′0
, we get a cor-

responding Serre–Tate coordinate {T ′jk}16j6k6n. The isogeny π : Ay0 →
Ay′0 induces a map on the Tate modules. Now fix basis x1, . . . , xn and
x′1, . . . , x

′
n of TpAét

y0
and TpA

ét
y′0
, such that with respect to them the ma-

trix for the map π : TpAét
y0
→ TpA

ét
y′0

is given by
(
In−i 0

0 p2Ii

)
. Then un-

der the basis tx1, . . . ,
txn and tx′1, . . . ,

tx′n of TptAét
y0

and Tp
tAét
y′0
, the ma-

trix for tπ : TptAét
y′0
→ Tp

tAét
y0

is given by
(
In−i 0

0 Ii

)
. For each (z, z′) ∈

Ĉi,∞(0)(y0,y′0) ⊂ Ŝ(p∞)y0
× Ŝ(p∞)y′0 , let q : TpAét

y0
× TptAét

y0
→ Ĝm (resp.

q′ : TpAét
y′0
× TptAét

y′0
→ Ĝm) be the corresponding bilinear map for z (resp.

z′). We have q(xj , tπ(x′k)) = q′(π(xj), x′k). In terms of the coordinates
Tjk and T ′jk, we see that T ′jk can be taken to be the local coordinates of
Ĉi,∞(0)(y0,y′0), and the projection p1 : Ĉi,∞(0)(y0,y′0) → Ŝ(p∞)y0

is given by

OK [[Tjk]] −→ OK [[T ′jk]]

Tjk 7−→


T ′jk if 1 6 j 6 k 6 n− i,
(T ′jk + 1)p − 1 if 1 6 j 6 n− i < k 6 n,

(T ′jk + 1)p2 − 1 if n− i+ 1 6 j 6 k 6 n.

An easy computation shows that the pure inseparability degree of p1 is
pi(n+1) and Im (Tr p1) ⊂ pi(n+1)OK [[Tjk]].

Before ending this section we include the following remark concerning
the Hecke actions preserving the cuspidality.

Remark 3.15. — The injection (3.24) is equivariant under the action of
both unramified Hecke operators and Up-operators. It is also easy to check
that

N†,rκ⊗ρ,w,v,cusp = N†,rκ⊗ρ,w,v ∩H0(S(p∞),Vr
ρ(−C))[1/p].

Hence it is enough to notice that the space H0(S(p∞),Vr
ρ(−C)) is pre-

served under those operators. This follows from the fact that classical
cuspidal nearly homomorphic forms are stable under Hecke actions, and
that the classical cuspidal nearly homomorphic forms are dense inside
H0(S(p∞),Vr

ρ(−C)).

3.10. Interchanging the Hecke and differential operators

Let ρ be as in Section 3.9.4. In this section we discuss the commutator
of Hecke operators and differential operators. Recall that the operators
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Dκ⊗ρ,w and Eκ⊗ρ,w are defined as the compositions

(3.26)
Dκ⊗ρ,w : Vrκ⊗ρ,w,v

∇κ⊗ρ,w−→ Vr+1
κ⊗ρ⊗τalg,w,v

(−1) t+−→ Vr+1
κ⊗ρ⊗τ,w,v,

Eκ⊗ρ,w : Vrκ⊗ρ,w,v
εκ⊗ρ,w−→ Vr−1

κ⊗ρ⊗τ∨alg,w,v
(1) t−−→ Vr−1

κ⊗ρ⊗τ∨,w,v.

We first show that Hecke operators commute with the connection ∇κ⊗ρ,w
and the operator εκ⊗ρ,w.

Lemma 3.16. — The Up-operators and unramified Hecke operators com-
mute with the connection ∇κ⊗ρ,w and the operator εκ⊗ρ,w.

Proof. — The Q-representation J admits a filtration 0 → triv → J →
τ∨alg(1)→ 0. The operator εκ⊗ρ,w by definition is induced from the quotient
morphism J → τ∨alg(1), and is easily seen to commute with all Up-operators
as well as unramified Hecke operators.
The commutativity of the connection ∇κ⊗ρ,w with Hecke operators is a

result of the functoriality of the Gauss–Manin connection, which says that
for any map of abelian schemes

A
ϕ //

��
	

A′

��
S

f // R

,

we have

f∗H1
dR(A′/R)

f∗∇ //

ϕ∗

��

f∗H1
dR(A′/R)⊗ f∗Ω1

R
//

	

f∗H1
dR(A′/R)⊗ Ω1

S

ϕ∗⊗1
��

H1
dR(A/S) ∇ // H1

dR(A/S)⊗ Ω1
S

.

Let π be the universal isogeny A→ A′ = A/L over Ci(v). The commutativ-
ity of Up,i, 1 6 i 6 n− 1, with ∇κ⊗ρ,w will follow from the commutativity
if the following diagram

p∗2V
†,r
κ⊗ρ,w

π̃∗ //

p∗2∇κ⊗ρ,w
��

p∗1V
†,r
κ⊗ρ,w

p∗1∇κ⊗ρ,w
��

p∗2V
†,r+1
κ⊗ρ,w ⊗ Ω1

Ci(v)
π̃∗⊗1 // p∗1V

†,r+1
κ⊗ρ,w ⊗ Ω1

Ci(v).

Write a local section of p∗2V
†,r+1
κ⊗ρ,w = p∗2T ×H,w(v) ×Qw V rκ⊗ρ,w as (α, u). For

any g ∈ Qw, (α, u) = (α ◦ g, g−1 · u). Take γ ∈ ∆−Q,w such that π∗α ◦ γ−1 ∈
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p∗1T ×H,w(v). If D is a local section of the tangent bundle of Ci(v) then

(p∗1∇ρ,w(D) ◦ π̃∗)(α, v) = p∗1∇ρ,w(D)((π∗α ◦ γ−1, γ · v))

= (π∗α ◦ γ−1, D(γ · v) +X(D,π∗α ◦ γ−1) · γ · v)

= π̃∗(α, γ−1 ·D(γ · v) + γ−1 ·X(D,α ◦ γ−1) · γ · v)
= π̃∗(α, Dv +X(D,α) · v)
= (π̃∗ ◦ p∗2∇ρ,w(D))(α, v),

where the third equality follows from the functoriality of the Gauss–Manin
connection. The commutativity of ∇κ⊗ρ,w with other Hecke operators can
be shown similarly. �

Next we show that interchanging the order of Up-operators and t+, t−

in (3.26) leads to powers of p. Define the following two characters

νp,D, νp,E : T+ −→ Q×

t = diag(pa1 , . . . , pan , pa0−a1 , . . . , pa0−an) 7−→
{
νp,D(t) = pa0−2a1 ,

νp,E(t) = pa0−2an .

Both νp,D and νp,E are trivial on scalar matrices, and νp,D(γp,i) = p2,
νp,E(γp,i) = 1 for 1 6 i 6 n − 1, and νp,D(γp,n) = νp,E(γp,n) = p. For `
coprime to Np, define

ν` : GSp(2n,Z`)\GSp(2n,Q`)/GSp(2n,Z`) −→ Q×

γ` 7−→ |ν(γ`)|−1
` ,

where ν is the multiplier character.

Lemma 3.17.
(1) νp,D(γp) · t+Uγp = Uγpt

+, t−Uγp = νp,E(γp) · Uγpt−,
(2) ν`(γ`) · t+Tγ` = Tγ`t

+, t−Tγ` = ν`(γ`) · Tγ`t−.

Proof. — (2) is obvious since the corresponding representations differ by
a twist of the multiplier character. (1) is basically the same, but when defin-
ing the Up-operators, we renormalized the algebraic representations τalg,
τ∨alg to the ∆−I,w-modules τ , τ∨ by twisting the characters χ1, χ2. Therefore,
for γp = diag(pa1 , . . . , pan , pa0−a1 , . . . , pa0−an) ∈ T+, the commutators of
Uγp with t+, t− are νp(γp) · χ1(γ◦p) = νp,D(γp), and νp(γp) · χ2(γ◦p)−1 =
νp,E(γp). �

Corollary 3.18.
(1) νp,D(γp) ·Dκ⊗ρUγp = UγpDκ⊗ρ, Eκ⊗ρUγp = νp,E(γp) · UγpEκ⊗ρ,
(2) ν`(γ`) ·Dκ⊗ρTγ` = Tγ`Dκ⊗ρ, Eκ⊗ρTγ` = ν`(γ`) · Tγ`Eκ⊗ρ.
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In particular, for the compact operator Up we have

p2n−1 ·Dκ⊗ρUp = UpDκ⊗ρ, Eκ⊗ρUp = p · UpEκ⊗ρ.

3.11. The slope decomposition

We consider the slope decomposition of the operator Up acting on the
union of projective A(U)-Banach modules N†,∞U,w,v,cusp :=

⋃
r>0N

†,r
U,w,v,cusp.

On each N†,rU,w,v,cusp the action of Up is compact. Applying the Coleman–
Riesz–Serre theory developed in [9] on the spectrum of compact operators,
one can define the Fredohlm determinant Pr(T ) = det(1−TUp|N†,rU,w,v,cusp

),
which belongs to A(U){{T}}, the A(U)-algebra of power series with con-
vergence radius being infinity. Because of the integrality of the operator Up,
all the coefficients of Pr(T ) are power bounded, i.e. Pr(T ) ∈ A(U)◦{{T}}.

Proposition 3.19. — The sequence

(3.27) 0 −→ N†,r−1
κ,w,v,cusp −→ N†,rκ,w,v cusp

1
r!E

r
κ,w−−−−−→ N†,0κ⊗Symr τ∨,w,v cusp −→ 0

is exact.

Proof. — Let η : X1(pm)(v) → X?(v) be as in Section 3.5. Combining
the vanishing result (3.9) there and (3.12), we get the exact sequence of
small formal Banach sheaves over X?(v)

0 −→ η∗Ṽ
†,r−1
κ,w (−C) −→ η∗Ṽ

†,r
κ,w(−C)

1
r!E

r
κ,w−−−−−→ η∗Ṽ

†,0
κ⊗Symr τ∨,w(−C) −→ 0.

Due to the smallness we know that the augmented Cěch complexes of the
above sheaves are exact after inverting p [2, Theorem A.1.2.2]. Thus we
deduce the exactness of the sequence

0 −→ H0(X1(pm)(v), Ṽ†,r−1
κ,w (−C)) −→ H0(X1(pm)(v), Ṽ†,rκ,w(−C))

1
r!E

r
κ,w−−−−−→ H0(X1(pm)(v), Ṽ†,0κ⊗Symr τ∨,w(−C)) −→ 0.

The proposition follows by taking the invariants of I(Z/pmZ). �

Combining (3.27) and the equality

Erκ,wUp = prUpE
r
κ,w,

we see that there exist Cr(T ) ∈ A(U)◦{{T}} such that

Pr(T ) = Pr−1(T )Cr(prT ).
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Therefore we can define P∞(T ) ∈ A(U)◦{{T}} as the limit

P∞(T ) := lim
r→∞

Pr(T ).

Given Q(T ) ∈ A(U)[T ] dividing P∞(T ), one checks by definition [10,
p. 434–435] that for sufficiently large r, the resultant Res(Q(T ),
P∞(T )/Pr(T )) is a unit in A(U), so Q(T ) divides Pr(T ).
Now take Q(T ) ∈ A(U)[T ] whose constant term is 1 and the leading

coefficient is a unit of A(U), such that P∞(T ) = Q(T )S(T ) with S(T )
relatively prime to Q(T ). We call such a Q(T ) admissible for N†,∞U,w,v,cusp.
Applying [9, Theorem.3.3] to get the slope decomposition

(3.28) N†,rU,w,v,cusp = Nr
Q,U,cusp ⊕ F rQ,U ,

satisfying

(1) the direct summand Nr
Q,U,cusp is a projective A(U)-Banach module

of finite rank, and we have det(1− TUp|Nr
Q,U,cusp

) = Q(T ),
(2) the operator Q∗(Up) is invertible on F rQ,U , where Q∗(T ) =

T degQQ(1/T ).

Since Q(T ) is of finite degree and is picked such that Res(Q(T ),
P∞(T )/Pr(T )) is a unit in A(U) for r � 0, the module Nr

Q,U,cusp stops
increasing after r is sufficiently large. We define NQ,U,cusp as Nr

Q,U,cusp for
r � 0. The subscripts w, v are omitted. Since all eigenvalues of Up acting on
NQ,U,cusp are nonzero, and Up increases analyticity and overconvergence,
the module does not depend on w, v. Elements in the finite rank projec-
tive A(U)-Banach module NQ,U,cusp are Q-finite slope families of cuspidal
nearly overconvergnent forms, and we have the Q-finite slope projection

eQ,U : N†,∞U,w,v,cusp −→ NQ,U,cusp.

Remark 3.20. — With the finite rank projective A(U)-Banach module
NQ,U,cusp, one can apply the machinery developed in [9] to construct the
eigenvariety for nearly overconvergent Siegel modular forms. We do not at-
tempt this here because from the point of view of automorphic representa-
tions, if π is an irreducible cuspidal automorphic representation generated
by a cuspdial nearly holomorphic form, then π∞ has a lowest K∞-type
and forms inside the lowest K∞-types are holomorphic, i.e. cuspidal nearly
holomorphic forms do not provide new interesting Hecke eigensystems than
holomorphic forms.
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3.12. p-adic splitting of V†,rκ,w over ordinary locus

Let Y , X, X, X(v), XIw(v), X = Xrig, X (v), XIw(v) be defined as in
Section 3.3. Over X (resp. Y ) there is the semi-abelian scheme p : G → X

(resp. the universal abelian scheme p : A → Y ). Denote by p : G0 → X0
(resp. p : A0 → Y0) the reduction modulo $. Set X0,ord, Y0,ord to be the
ordinary locus of X0, Y0. Fix a lift σ : OK → OK of the Frobenius of the
residue field k = OK/$. Let F : X0,ord → X0,ord be the absolute Frobenius
and consider the commutative diagram

X0,ord

F

��

� � // X(0) //

u

��

Spf(OK)

σ

��
X0,ord

� � // X(0) // Spf(OK)

,

where u is the lift of the absolute Frobenius defined by sending an ordinary
semi-abelian scheme G to its quotient by the connected part of G[p], and
composing with the base change by σ. The isogeny A → A/A[p]◦ induces
a morphism

Φ : u∗H1
dR(A/Y(0))can −→ H1

dR(A/Y(0))can

of formal coherent sheaves over X(0). By [31, Theorem 4.1], the locally free
formal sheaf H1

dR(A/Y(0))can of rank 2n has a unique Φ-stable locally free
formal sub-sheaf UH of rank n, over which Φ restricts to an isomorphism.
This UH gives rise to a splitting, called the unit-root splitting, of the Hodge
filtration:

H1
dR(A/Y(0))can = ω(G/X(0))⊕ UH.

Moreover UH is stable under the Gauss–Manin connection. The unit-root
splitting pulls back to XIw(p)(0), and induces a projection J→ OXIw(p)(0).
Taking the generic fibre we get the projection

(3.29) H0(XIw(0),V†,rκ,w)

= H0(XIw(0), ω†κ,w ⊗ Symr J ) −→ H0(XIw(0), ω†κ,w).

The Igusa tower S(p∞) defined in Section 3.9.5 is étale over XIw(0) with
the group T◦(Zp) acting on it. The space of weight κ p-adic forms consists
of functions on S(p∞) that are κ′-invariant under the action of T◦(Zp), i.e.

Mp-adic
κ = H0(S(p∞),OS(p∞))[κ′].

Composing (3.24) with r = 0 and (3.29) we obtain the map

ξp : N†,rκ,w,v −→Mp-adic
κ [1/p],
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sending nearly overconvergent forms to p-adic forms.
Let κ ∈ W(K) be an arithmetic weight with algebraic part κalg and finite

order part κf . Set

Γ1(N, pm) =
{(

a b
c d

)
∈ Γ(N) : c ≡ 0 mod pm, a mod pm ∈ N(Z/pmZ)

}
.

Denote by Nr
κ(Γ1(N, pm),K) the space of weight κalg, degree r classical

nearly holomorphic Siegel modular forms of level Γ1(N, pm) with nebenty-
pus κf at p.

Proposition 3.21. — The following restriction of ξp to classical nearly
holomorphic Siegel modular forms

ξp,cl : Nr
κ(Γ1(N, pm),K) ↪−→ N†,rκ,w,v

ξp−→Mp-adic
κ [1/p]

is injective.

Proof. — Take f ∈ Ker ξp,cl. Under the map φ : Nr
κ(Γ1(N, pm),K) ⊗K

C → Nr
κ(hn,Γ1(N, pm)) defined as (2.14), the image φ(f) of f is a poly-

nomial in (Im z)−1 with coefficients being holomorphic maps from hn to
Wκalg(C). By definition φ is equivalent to the projection from Vrκ to
V0
κ through the C∞ splitting given by the Hodge decomposition of
H1

dR(Ahn/hn) ⊗ C∞(hn,C). Let S ⊂ hn be the subset consisting of or-
dinary CM points. It is analytically dense in hn. At each point of S, the
unit-root splitting agrees with the C∞ splitting [32, Lemma 5.1.27]. There-
fore f ∈ Ker ξp,cl implies that φ(f) = 0 and f=0. �

In general it is conjectured that for all w-analytic weight κ, the map ξp is
injective. The injectivity is proved in the n = 1 case [49, Proposition 3.2.4].

3.13. Polynomial q-expansions and p-adic q-expansions

The embedding (3.23) induces, by restriction, the injective map

(3.30) N†,rκ,w,v −→ H0(S(p∞),Symr J)[1/p].

For each geometrically connected component S(p∞)◦, with the Mumford
object constructed in Section 2.6, one can define a map

ι : Spf(OK [1/t][[N−1SL,>0]]) −→ S(p∞)◦.

The canonical basis (ωcan, δcan) induces an isomorphism

ι∗ Symr J ' OK [1/t][[N−1SL,>0]][Y ]6r,

which, together with (3.30), defines a p-adic polymonial q-expansion map

ει,q,poly : N†,rκ,w,v −→ OK [[N−1SL,>0]][Y ]6r[1/p].
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Remark 3.22. — Note that the image of ει,q,poly are polynomials in Y

with scalar coefficients, while the polynomial q-expansion f(q, Y ), defined
as (2.17) for a classical nearly holomorphic form f of an arithmetic weight
κ, is a polynomial in Y with coefficients inside the representation Wκ. To
obtain the polynomial q-expansion here from the polymonial q-expansion
in (2.17), one simply applies the canonical map ecan : Wκalg → A1, defined
as the evaluation at the identity.

If c is the number of geometrically connected components of Y1(p∞)(0),
we can choose ι1, . . . , ιc such that ιj maps MumN (q) to the j-th compo-
nent. We define the polynomial q-expansion map εq,poly as

⊕c
j=1 ειj ,q,poly.

Then it follows from the irreduciblity of the Igusa tower S(p∞) [26, Corol-
lary 8.17] that the map εq,poly is injective. Similarly, we can define the
polynomial q-expansion map for families of nearly overconvergent forms.

Proposition 3.23. — The polynomial q-expansion maps

εq,poly : N†,∞κ,w,v −→ (OK [[N−1SL,>0]][Y ][1/p])⊕ c,

εq,poly : N†,∞U,w,v −→ (A(U)◦[[N−1SL,>0]][Y ][1/p])⊕ c

are injective.

In Section 3.12 we defined a map ξp : N†,rκ,w,v −→ Mp-adic
κ [1/p] using

the unit root splitting. Composing ξp with the q-expansion map for p-adic
forms, we get the map

εq,p-adic : N†,∞κ,w,v −→Mp-adic
κ [1/p] −→ (OK [[N−1SL,>0]][1/p])⊕ c,

and we call it the p-adic q-expansion of nearly overconvergent forms. Simi-
larly, we define the p-adic q-expansion for N†,∞U,w,v. Since δcan is exactly the
unit-root part, εq,p-adic is nothing but εq,poly|Y=0. In the case when the
map ξp is injective, the p-adic q-expansion εq,p-adic will also be injective.
For families we define the p-adic q-expansion simply as εq,poly|Y=0.

Proposition 3.24. — Suppose that the subdomain U ⊂ W is a closed
ball centered at an arithmetic point and Q(T ) ∈ A(U)[T ] is admissible for
N†,∞U,w,v,cusp. Then

εq,p-adic : NQ,U,cusp −→ (A(U)◦[[N−1SL,>0]][1/p])⊕ c

is injective.

Proof. — Take F ∈ NQ,U,cusp with εq,p-adic(F ) = 0. Then Proposi-
tion 3.21 implies that for each κ ∈ U(Qp) such that the specialization
Fκ is a classical nearly holomorphic form, we have Fκ = 0. We reduce to
show that the subset of U(Qp) consisting of points κ with Fκ being classical
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is Zariski dense inside U . By the construction of NQ,U,cusp, we know that
F ∈ Nr

Q,U,cusp for some r ∈ N. Then F can be written as (Corollary 3.10)

ηF = F0 + θDF1 + · · ·+ θrDrFr

with Fi ∈ N†,0U⊗Symi τ∨,w,v
and η ∈ K[Log1, . . . ,Logn] nonzero. By Corol-

lary 3.18, the slopes of F0, F1, . . . , Fn are bounded in terms of Q and r.
Therefore, if an arithmetic weight κ ∈ U(Qp) is away from the zeroes of
η with κalg sufficiently regular with respect to the bound on slopes, then
the classicity of F0,κ, . . . , Fn,κ can be deduced from [2, Proposition 7.3.1]
and [5], from which the classicity of Fκ follows. Such arithmetic points are
Zariski dense in U as U is a closed ball centered at an arithmetic point. �

3.14. Families by q-expansions

Keep the assumption on U , Q as in Proposition 3.24. Let Σ ⊂ U(Qp) be
a Zariski dense subset consisting of arithmetic points. Define

NΣ,poly
Q,U,cusp ⊂ (A◦(U)[[N−1SL,>0]][Y ][1/p])⊕ c

(resp. NΣ
Q,U,cusp ⊂ (A◦(U)[[N−1SL,>0]][1/p])⊕ c)

as the sub-A(U)-module consisting of elements whose specializations at al-
most all κ ∈ Σ are the polynomial q-expansions (resp. p-adic q-expansions)
of forms in NQκ,κ,cusp.

Proposition 3.25. — With U , Q as in Proposition 3.24, the polynomial
q-expansion map induces an isomorphism from NQ,U,cusp to NΣ,poly

Q,U,cusp.

Proof. — We follow the argument of [50, Theorem 1.2.2], [25, Theo-
rem 7.3.1]. Abbreviate A(U), NQ,U cusp, NQκ,κ,cusp, NΣ,poly

Q,U,cusp, as A, N ,
Nκ, NΣ,poly. Let I be the set consisting of monomials qβi

∏
Y
ajk
jk , where

ajk ∈ N, 1 6 j 6 k 6 n, and βi ∈ N−1SL,>0 with the subscript 1 6 i 6 c

meaning the i-th connected component. By taking coefficients, there is a
natural embedding

(A(U)◦[[N−1SL,>0]][Y ][1/p])⊕ c ↪−→ AI .

Denote by K(A) the fraction field of A. The A-module N is finite projec-
tive. Let d = rankA(N) = dimK(A)(N⊗K(A)) <∞, and pick F1, . . . , Fd ∈
N such that they span N ⊗ K(A) over K(A). Write their images inside
AI under the polynomial q-expansion map as (a(Fj , i))i∈I , 1 6 j 6 d.
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Thanks to the injectivity of the map εq,poly, we can choose i1, . . . , id such
that D = det(a(Fj , it))16j,t6d 6= 0. We claim that

DNΣ,poly ⊂ εq,poly(N).

Otherwise, there exists G = (a(G, i))i∈I ∈ DNΣ,poly\εq,poly(N). Subtract-
ing from G a linear combination of the εq,poly(Fj)’s, we get a nonzero
G′ ∈ NΣ,poly with a(G, it) = 0 for all 1 6 t 6 d. The Zariski density of Σ
implies that there exists κ ∈ Σ such that εq,poly(F1)κ, . . . , εq,poly(Fd)κ, G′κ
are Qp-linearly independent and G′κ = εq,poly(f) for some f ∈ Nκ. Thus,
F1,κ, . . . , Fd,κ, f are linearly independent inside Nκ, but Nκ is of dimension
d. The claim is proved. Therefore,

NΣ,poly = εq,poly(N)⊗K(A) ∩ AI ,

and we also deduce that NΣ,poly is a finitely generated A-module because
A is noetherian. In fact A is a noetherian UFD and a Jacobson ring [8,
Section 5.2.6, Theorem 1, 3].
Now take an arbitrary G′′ ∈ εq,poly(N) ⊗K(A) ∩ AI , we want to prove

that G′′ actually lies inside εq,poly(N). Since A is a UFD we can take some
η ∈ A such that ηG′′ ∈ εq,poly(N) and η′G′′ /∈ εq,poly(N) for any η′ strictly
divides η. Take F ∈ N such that ηG′′ = εq,poly(F ). If m ⊂ A is a maximal
ideal containing η, then εq,poly(Fκm

) = η(κm)G′′κm
= 0. The injectivity of

εq,poly at weight κ implies that Fκm
= 0, and F ∈ mN by Proposition 3.5.

This shows that F ∈
⋂
η∈m mN . The A-module N is finite projective, so

there exists a1, . . . , al ∈ A such that A =
∑
aiA and each localization

Nai is free of finite rank over Aai . Each Aai is still a noetherian UFD [38,
Lemma (19.B)] and a Jacobson ring [46, Tag 00G6]. Let η1, . . . , ηb be all the
prime factors of η. Then ηjAai is a prime ideal that is the intersection of all
maximal ideals containing ηj in Aai . It follows that √ηAai =

⋂
j ηjAai =⋂

η∈m,m∈Max(Aai )
mAai and √ηNai =

⋂
η∈m,m∈Max(Aai )

mNai . Then since
F ∈

⋂
η∈m mN , we have F ∈ √ηNai for all i, and hence F ∈ √ηN . By our

choice of η this implies that η is a unit in A. �

If we apply the same argument to NΣ
Q,U,cusp, due to the lack of injectivity

of the map εq,p-adic at all points in U , we only get a weaker result.

Proposition 3.26. — With U , Q as in Proposition 3.24, there exists a
nonzero η ∈ A(U) such that ηNΣ

Q,U,cusp belongs to εq,p-adic(NQ,U,cusp).
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