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POSITIVE LEGENDRIAN ISOTOPIES AND FLOER
THEORY

by Baptiste CHANTRAINE,
Vincent COLIN & Georgios DIMITROGLOU RIZELL (*)

Abstract. — Positive loops of Legendrian embeddings are examined from
the point of view of Floer homology of Lagrangian cobordisms. This leads to new
obstructions to the existence of a positive loop containing a given Legendrian,
expressed in terms of the Legendrian contact homology of the Legendrian subman-
ifold. As applications, old and new examples of orderable contact manifolds are
obtained and discussed. We also show that contact manifolds filled by a Liouville
domain with non-zero symplectic homology are strongly orderable in the sense of
Liu.
Résumé. — On étudie les lacets positifs de plongements legendriens du point

de vue de l’homologie de Floer pour les cobordismes lagrangiens. On obtient ainsi
de nouvelles obstructions à l’existence d’un lacet positif contenant une sous-variété
legendrienne donnée, exprimées à l’aide de son homologie de contact legendrienne.
On applique ensuite ces obstructions pour revisiter d’anciens et donner de nou-
veaux exemples de variétés de contact ordonnables. On démontre également qu’une
variété de contact remplissable par un domaine de Liouville dont l’homologie sym-
plectique est non triviale est fortement ordonnable au sens de Liu.

1. Introduction

Since the groundbreaking work [33] by Eliashberg–Polterovich, the no-
tion of orderability has played an important role in the study of contact
geometry. Recall that a contact manifold is orderable if and only if it ad-
mits no positive loop of contactomorphisms which is contractible (amongst
loops of arbitrary contactomorphisms). In [32] it was shown that a large
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class of subcritically fillable contact manifolds are non-orderable, including
the standard odd-dimensional contact spheres, while it follows from Given-
tal’s non-linear Maslov index in [37] that the standard contact structures
on the odd-dimensional real projective spaces are orderable. In some cases
orderability is known to imply the existence of an unbounded bi-invariant
metric on the space of contactomorphisms (see [35]), having a number of
important consequences; see [47], [19], and [48] for more details.
There are conditions in terms of Floer homology that imply that a con-

tact manifold is orderable. Notably, in [6] Albers–Merry showed that if the
Rabinowitz Floer homology admits a non-trivial spectrally finite class, then
its contact boundary must be orderable. Here we strengthen this result by
showing that the non-vanishing of Rabinowitz Floer homology is sufficient
(see Theorem 1.18 combined with [45, Theorem 13.3], by which Rabinowitz
Floer homology vanishes if and only if symplectic homology does).

In this article we consider this notion from the relative point of view,
i.e. from the perspective of Legendrian submanifolds. Let (M, ξ = kerα) be
a co-oriented contact manifold. Through the paper we always assume that
the contact form α induces the given co-orientation. A Legendrian isotopy
{Λs}, s ∈ [0, 1], (where Λs : Λ ↪→ M is a smooth family of Legendrian
embeddings) is positive if for every q ∈ Λ and s ∈ [0, 1] we have

(1.1) H(s, q) := α
(
Λ̇s(q)

)
> 0.

This definition only depends on the co-orientation of ξ and not on the
parametrisation of Λs, nor on the choice of contact form α (as long as it
induces the positive co-orientation). The most basic example of a positive
isotopy is the displacement of a Legendrian submanifold by the Reeb flow
associated to a choice of contact form. A positive isotopy for which Λ0 = Λ1

will be called a positive loop of Legendrians containing Λ0. Since Legendrian
isotopies are realised by ambient contact isotopies, if Λ is in a positive loop
of Legendrians and Λ′ is Legendrian isotopic to Λ, then Λ′ is also sits in a
positive loop. (The reason is that φ(Λt) is positive when Λt is a positive loop
and φ is a contactomorphism preserving the coorientation of the contact
structure.)
Our goal is finding new obstructions for the existence of positive loops as

well as contractible positive loops containing a given Legendrian submani-
fold. By a contractible positive loop of Legendrians we mean a positive loop
which is contractible as a loop of Legendrian embeddings. The obstructions
that we find are in terms of Legendrian contact homology (LCH for short)
as well as wrapped Floer cohomology. These are two related symplectic
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invariants that algebraically encode counts of different types of pseudo-
holomorphic curves. Obviously, in the case when the contact manifold is
not orderable, each of its Legendrian submanifolds lives in a contractible
positive loop of Legendrians. Thus, when our obstructions apply, they can
be used as a condition that ensures orderability of the ambient contact
manifold.

1.1. Previous results

Concerning positive loops of Legendrian submanifolds, the second author
together with Ferrand and Pushkar used generating family techniques to
show the following.

Theorem 1.1 (Colin–Ferrand–Pushkar [18]). — Let Q denote a
smooth, not necessarily closed, manifold.

(1) There exists no positive loop of Legendrians containing the zero-
section in (J 1Q, ξstd).

(2) If the universal cover of Q is Rn then there exists no positive loop
of Legendrians containing a Legendrian fibre of the canonical pro-
jection π : S(T ∗Q)→ Q in (S(T ∗Q), ξstd).

The analogue of the above theorem cannot be expected to hold for general
Legendrian submanifolds, as is shown by the following example.

Example 1.2. — The global contact isotopy (q, p, z) 7→ (q + t, p, z) of
J 1S1, generated by the contact Hamiltonian H(q, p, z) = p for the stan-
dard contact form, is a loop of contactomorphisms starting and ending at
the identity. Moreover, it is positive when restricted to either of the two
Legendrian knots with the front diagrams shown in Figure 1.1: the positive
stabilisation S+(0S1) of the zero-section 0S1 ⊂ J 1S1 on the left, as well as
the representative of the standard Legendrian unknot shown on the right.

Example 1.3. — Since there is a contact embedding of a neighbourhood
of the zero-section of J 1S1 into any three-dimensional contact manifold,
any Legendrian unknot can be seen to sit inside a positive loop of Legendri-
ans. Such a positive Legendrian loop inside a Darboux ball, which moreover
is contractible, is shown in Figure 1.2. The isotopy is indeed positive if, in
the parts I and III of the isotopy, the translation is in a direction whose
slope is less than the maximal slope of the front projection of the unknot.
If the z-coordinate is decreased sufficiently during Steps I and III of the
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1682 B. CHANTRAINE, V. COLIN & G. DIMITROGLOU RIZELL

Figure 1.1. Fronts of Legendrian submanifolds in the subspace {p >
0} ⊂ J 1S1. On the left: the positive stabilisation S+(0S1) of the zero-
section. On the right: a representative of the standard Legendrian un-
knot.

isotopy, the rotation of the front taking place in Steps II and IV can be
made positive. Finally, observe that this loop is contractible amongst loops
of Legendrian submanifolds

I III
IIIV

Figure 1.2. A positive isotopy of the standard Legendrian unknot in-
side J 1R that, moreover, is contractible.

The above constructions of positive loops of Legendrians are generalised
in Liu’s work [39, 40]:

Theorem 1.4 (Liu [40]). — Every loose Legendrian submanifold is con-
tained in a contractible positive loop of Legendrians.
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We also refer to the more recent work [43] by Pancholi–Pérez–Presas.
Part (2) of Theorem 1.1 was generalised by Chernov–Nemirovski to more

general spaces of contact elements. Notably, they showed the following:

Theorem 1.5 (Chernov–Nemirovsky [15], [16]). — When Q is a con-
nected open manifold, there are no positive loops of Legendrians containing
a Legendrian fibre of S(T ∗Q). For general Q there is no positive loop con-
taining the Legendrian fibre in S(T ∗Q) which is contractible amongst loops
of Legendrians.

Also, see the work [20] by Dahinden for obstructions in certain cases
when the universal cover is not open.

In the second case of Theorem 1.5 the contractibility condition is essen-
tial. Indeed, if Sn denotes the round sphere in Rn+1, the Reeb flow on
the unit cotangent bundle S(T ∗Sn) for the contact form pdq given by the
restriction of the Liouville form corresponds to the geodesic flow. In this
way we see that any Legendrian submanifold sits inside a positive loop.
However, for the Legendrian fibre, such a loop fails to be contractible in
the space of Legendrian embeddings by the above results.

Remark 1.6. — In [38] Guillermou–Kashiwara–Shapira reprove Theo-
rem 1.5 using the method of microsupports of constructible sheaves. In
the present paper we consider a class of contact manifolds that is strictly
larger than jet-spaces and spaces of contact elements, i.e. contact mani-
folds where the methods based upon the microsupport of sheaves are not
yet applicable.

1.2. Results

In this paper we obtain generalisations of the above results. We say that a
contact manifold (M, ξ) is hypertight if it admits a (possibly degenerate, see
Section 2.4) contact form having no contractible periodic Reeb orbits; the
latter contact form will be called hypertight as well. Likewise, a Legendrian
submanifold Λ ⊂ (M, ξ) is called hypertight if there is a hypertight contact
form for which Λ, moreover, has no contractible Reeb chords (i.e. Reeb
chords in the homotopy class 0 ∈ π1(M,Λ)).
The contactisation of a Liouville manifold (P,dθ) is the (non-compact)

hypertight contact manifold (P × R, αstd), αstd = θ + dz, with z denoting
the coordinate on the R-factor. In such manifolds, lifts of exact Lagrangians
in P are particular cases of hypertight Legendrians.

TOME 69 (2019), FASCICULE 4
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Example 1.7. — The archetypal example of a contact manifold of the
above form is the jet-space J 1Q of a smooth manifold, which is the con-
tactisation of (T ∗Q,−dλQ) for the Liouville form λQ (note the sign in our
convention!). The zero-section 0Q ⊂ T ∗Q is an exact Lagrangian submani-
fold which lifts to the zero-section of J 1Q; this is an embedded hypertight
Legendrian submanifold.

In the present paper, when talking about hypertight contact manifolds,
we also assume that outside a compact set they are equivalent to the contac-
tisation of a Liouville manifold. The hypertightness assumption is mainly a
technical one, and we refer to Section 1.3 below for an explanation of what
we expect to hold more generally.

The first result is an obstruction to the existence of a positive Legen-
drian loop expressed in terms of Legendrian contact cohomology. This is
a Legendrian isotopy invariant originally defined in [14] by Chekanov, and
also sketched in [29] by Eliashberg–Givental–Hofer. The theory has been
rigorously defined in a wide range of contact manifolds; see [14] for one-
dimensional Legendrians and [27] for the case of a general contactisation.

Let Λ,Λ′ ⊂ (P × R, αstd) be Legendrian submanifolds of the contactisa-
tion of a Liouville domain, each of which having a Chekanov–Eliashberg
algebra admitting augmentations ε and ε′, respectively. As described in
Section 2.2 below, there is an associated linearised Legendrian contact co-
homology complex LCC ∗ε,ε′(Λ,Λ′) generated by Reeb chords from Λ′ to Λ
(observe the order!). The homotopy type of the complex LCC ∗ε,ε′(Λ,Λ′) can
be seen to only depend on the Legendrian isotopy class of the link Λ ∪ Λ′
and the augmentations chosen; see e.g. [26].

Theorem 1.8. — Assume that LCC ∗ε,ε′(Λ,Λ′) is not acyclic for Λ,Λ′ ⊂
(P × R, θ + dz). Then Λ is not part of a positive loop of Legendrian sub-
manifolds of the complementM \Λ′. Under the additional assumption that

min
Λ
z > max

Λ′
z

is satisfied, then Λ is not contained inside any positive loop of Legendrians.

Remark 1.9. — Under the stronger assumption minΛ z > maxΛ′ z, the
homotopy type of the complex LCC ∗ε,ε′(Λ,Λ′) can be interpreted as also
being invariant under Legendrian isotopy of each Λ and Λ′ separately with
the following caveat: we must first make the two Legendrian isotopies
disjoint by translating the second family Λ′t very far in the negative z-
direction (i.e. by applying the negative Reeb flow, which is a contact form
preserving isotopy).

ANNALES DE L’INSTITUT FOURIER



POSITIVE LEGENDRIAN ISOTOPIES AND FLOER THEORY 1685

In the case when minΛ z > maxΛ′ z is satisfied, the complex
LCC ∗ε,ε′(Λ,Λ′) can be interpreted a version of the Floer homology
complex

CF (ΠLag(Λ),ΠLag(Λ′)) ⊂ (P,dθ)
for a pair of exact Lagrangian immersions. We refer to [4] for general treat-
ment of Lagrangian Floer homology in the immersed case.
When neither of Λ nor Λ′ have any Reeb chords their Lagrangian projec-

tions are exact Lagrangian embeddings. In this case, both Legendrian sub-
manifolds have a unique canonical augmentation and, given that minΛ z >

maxΛ′ z, there is a canonical identification with the classical Lagrangian
Floer homology complex CF ∗(ΠLag(Λ),ΠLag(Λ′)) defined by Floer [34]. In
the case when Λ′ moreover is obtained from Λ by an application of the nega-
tive Reeb flow followed by a sufficiently C1-small Legendrian perturbation,
Floer’s original computation in [34] shows that there is an isomorphism

LCC ∗ε,ε′(Λ,Λ′) = CF ∗(Π(Λ),Π(Λ′)) = C∗(Λ)

of the Floer homology complex and Morse homology complex. From this
we now conclude that

Corollary 1.10. — The Legendrian lift ΛL ⊂ (P×R, αstd) of an exact
Lagrangian embedding L ⊂ (P,dθ) is not contained in a positive loop of
Legendrians.

Theorem 1.8 is proven using Lagrangian Floer homology for Lagrangian
cobordisms (which also goes under the name “Cthulhu homology”), which
was developed in [13] by the first and third authors together with Ghiggini
and Golovko. In particular, we use this theory to produce the crucial long
exact sequence in Theorem 4.1 below. By a variation of these techniques
we are also able to establish the following related result.

Theorem 1.11. — A hypertight Legendrian submanifold Λ ⊂ (M,α) of
a closed hypertight contact manifold is not contained inside a contractible
positive loop of Legendrians.

Example 1.12. — There are indeed examples of hypertight Legendrian
submanifolds contained in a positive non-contractible loop. Consider e.g.
the conormal lift of the simple closed curve S1×{θ} ⊂ T2 to a Legendrian
knot inside S(T ∗T2). The Reeb flow for the flat metric on T2 restricted to
this conormal lift induces a positive loop which is not contractible by mere
topological reasons.

The above example should be contrasted with the following result, whose
proof is similar to that of Theorem 1.11.

TOME 69 (2019), FASCICULE 4
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Theorem 1.13. — Let Λ ⊂ (M,α) be a hypertight Legendrian subman-
ifold of a closed contact manifold having vanishing Maslov number. Further
assume that, for every pair γ1, γ2 of Reeb chords on Λ in the same homo-
topy class, the Conley–Zehnder indices satisfy either CZ(γ1)−CZ(γ2) = 0
or |CZ(γ1) − CZ(γ2)| > dim Λ. Then Λ is not contained in a positive loop
of Legendrians.

Examples of Legendrian manifolds satisfying the hypothesis of the previ-
ous theorem are given by cotangent fibres in the space of contact elements
of manifolds with non-positive curvature.

Corollary 1.14 (Chernov–Nemirovsky [15]). — The unit cotangent
fibre of a manifold with non-positive sectional curvature is not contained
in a positive loop of Legendrians.

The ideas used for proving the above results can also be applied in the
case when the Legendrian submanifold admits an exact Lagrangian filling.
In this case, instead of the Floer theory from [13], ordinary wrapped Floer
cohomology can be used.

Theorem 1.15. — If a Legendrian Λ ⊂ (M, ξ) admits an exact La-
grangian filling L ⊂ (X,ω) inside a Liouville domain with contact bound-
ary (∂X = M, ξ), such that the wrapped Floer cohomology of L is nonva-
nishing (for some choice of coefficients), then Λ is not contained inside a
contractible positive loop of Legendrians.

We remind the reader that, in the case when we can exclude a Legendrian
submanifold from being contained in a positive loop, it also follows that the
ambient contact manifolds involved are orderable in the sense of [33]: non-
orderability would imply that any Legendrian is in a contractible positive
loop of Legendrians.

Remark 1.16. — Applying the previous theorem to the Lagrangian di-
agonal in a symplectic product allows us to show (strong) orderabilty of
(M, ξ) in the case when it admits a filling with non-vanishing symplectic
homology (see Theorem 1.18), thus strenghtening [6, Corollary 1.3]. In the
hypertight case, orderability of the contact manifold is proved in [5].

We notice also that we can state the following consequence, relying on
Bourgeois–Ekholm–Eliashberg [9]:

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.17. — Let (M+, ξ+) obtained by performing a contact
surgery along a Legendrian link Λ ⊂ (M−, ξ−) of spheres where

• (M−, ξ−) is the boundary of a subcritical Weinstein domain,
• the Legendrian contact homology DGA of each component of Λ is
not acyclic.

Then there is no contractible positive Legendrian loop containing a Legen-
drian co-core sphere inside (M+, ξ+) created by the surgery.

Indeed as predicted in [9], the wrapped Floer cohomology of the co-core
of a attaching handle is isomorphic to the Legendrian contact homology of
Λ. Hence, Theorem 1.15 shows that the co-core spheres are not contained
in a positive loop of Legendrians when LCH (Λ) 6= 0.
Our methods also apply to prove strong orderability of some contact

manifolds by passing to contact products (see below for the definition). Let
(M, ξ = kerα) be a contact manifold. The contact product is the contact
manifold (M ×M × R, α1 − etα2), where αi is the pullback of α by the
projection πi : M ×M × R → M on the ith factor, i = 1, 2. If φ is a con-
tactomorphism of (M, ξ) with φ∗α = eg(t)α, then the graph ∆φ of φ is the
Legendrian submanifold {(x, φ(x), g(x)), x ∈M} of the contact product. To
a contact isotopy (φt)t∈[0,1] of (M, ξ) we can thus associate a Legendrian
isotopy (∆φt)t∈[0,1] starting from the diagonal ∆Id = {(x, x, 0)}. When
(φt)t∈[0,1] is positive, then (∆φt)t∈[0,1] is negative. Following Liu, we can
say that (M, ξ) is strongly orderable whenever there is no contractible pos-
itive loop of Legendrians based at the diagonal in the contact product. In
that case, we can endow the universal cover of the identity component of
the group of contactomorphisms of (M, ξ) with a partial order, by saying
that [(φt)t∈[0,1]] 6 [(ψt)t∈[0,1]] if there exists a positive path of Legendrians
from ∆φ1 to ∆ψ1 which is homotopic to the concatenation of the opposite
of (∆φt)t∈[0,1] together with (∆ψt)t∈[0,1]. This is possibly a different notion
from Eliashberg–Polterovich’s order since the latter also requires paths of
Legendrians to stay amongst graphs of contactomorphisms.

In [40], Liu proved that if (M, ξ) is overtwisted (in the sense of Borman–
Eliashberg–Murphy [8]), then the contact product (M ×M ×R, α1− etα2)
is also overtwisted and its diagonal is a loose Legendrian. Thus the diagonal
is the base point of a contractible positive loop by Theorem 1.4 and (M, ξ)
is not strongly orderable.
Here we prove the following.

Theorem 1.18. — If (M, ξ = kerα) is the contact boundary of a Li-
ouville domain (W,ω = dα) whose symplectic cohomology does not vanish
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for some choice of coefficients, i.e. SH ∗(W,ω) 6= 0, then (M, ξ) is strongly
orderable.

Theorem 1.11 also relates to strong orderability of closed hypertight con-
tact manifolds. Namely, by using Zenaïdi’s compactness result [53, Theo-
rem 5.3.9], one can extend Theorem 1.11 to the Legendrian diagonal ∆Id
in M ×M × R. Indeed, when (M,α) is hypertight, the contact product
constructed above is hypertight as well as the Legendrian diagonal ∆Id.
Thus one has

Theorem 1.19. — If (M, ξ) is hypertight then (M, ξ) is strongly
orderable.

This is equivalent to say that any weakly non orderable (i.e. not strongly
orderable) contact manifold has a contractible periodic Reeb orbit and
thus satisfies the Weinstein conjecture. Note that the orderability of hyper-
tight manifolds is already proved by Albers-Fuchs-Merry in [6] and Sandon
in [49].

Theorem 1.11 was also recently announced by Sandon using a relative
version of her Floer homology for translated points defined in [49].

1.3. A note about the hypotheses

The results here are not proven in the full generality that we would wish.
The reason is that, for technical reasons, the construction of Cthulhu ho-
mology [13] is currently restricted to symplectisation of contactisations (or,
more generally, symplectisations of hypertight contact manifolds). However,
using recent work of Bao–Honda in [7] or Pardon [44], it should be possible
to define Legendrian contact homology as well as Cthulhu homology in a
less restrictive setup. The authors believe that the correct restrictions are
as follows:

(1) The non-existence of a positive loop of one of the components of a
link ΛtΛ′, such that the loop is contained in the complement of the
other component, should also hold in a general contact manifold in
the case when LCC ∗(Λ,Λ′) 6= 0 is nonzero. In other words, Theo-
rem 1.8 and its corollaries should hold more generally. Observe that
having a non-zero Legendrian contact homology in particular im-
plies that the full contact homology of the ambient contact manifold
also is nontrivial.

ANNALES DE L’INSTITUT FOURIER
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(2) The non-existence of a contractible positive loop in Theorem 1.11
is also expected to hold in a general contact manifold, under the as-
sumption that the Legendrian submanifold Λ satisfies the following
property: Consider a C1-small push-off Λ′ obtained as the one-jet
j1f ⊂ J 1Λ of a negative Morse function f : Λ→ (−ε, 0) where the
jet-space is identified with a standard contact neighbourhood of Λ.
Then, we either require that the Reeb chord corresponding to the
minimum of f is a cycle inside LCH n−1

ε,ε (Λ,Λ′) (which then defines
a non-zero class, since it a priori is not a boundary) or, equivalently,
that it is not a boundary inside LCH ε,ε

n−1(Λ,Λ′) (which then again
defines a non-zero class). This would provide a generalisation of
Theorem 1.15 to the non-fillable case; and

(3) The long exact sequence produced by Theorem 4.1 should be pos-
sible to construct in the general case of a contact manifold whose
full contact homology algebra is not acyclic. Again we must here
make the assumption that the Legendrian submanifolds admit aug-
mentations. The existence of this long exact sequence, along with
its properties, is at the heart of the arguments for the results that
we prove here.

1.4. Acknowledgements
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2. Floer theory for Lagrangian cobordisms

In this section we recall the necessary background needed regarding the
Floer homology complex constructed in [13] by the first and third authors
together with Ghiggini–Golovko. This is a version of Lagrangian intersec-
tion Floer homology defined for a pair consisting of two exact Lagrangian
cobordisms in the symplectisation. In order to circumvent technical diffi-
culties, we here restrict attention to the cases when either
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1690 B. CHANTRAINE, V. COLIN & G. DIMITROGLOU RIZELL

• (M,α) is a contactisation (P × R, αstd) of a Liouville manifold en-
dowed with its standard contact form, or

• (M,α) as well as all Legendrian submanifolds considered are hyper-
tight.

We refer to Section 1.3 for a discussion about these requirements, along
with descriptions of less restrictive settings in which we believe our results
hold.

2.1. Generalities concerning Lagrangian cobordisms

An exact Lagrangian cobordism Σ ⊂ (R×M,d(etα)) from Λ− ⊂ (M, ξ)
to Λ+ ⊂ (M, ξ) is a submanifold satisfying the following properties:

• Σ ⊂ R ×M is properly embedded and half-dimensional, and etα

is exact when pulled back to Σ. (I.e. Σ is an exact Lagrangian
submanifold.)

• Outside of a subset of the form (T−, T+)×M for some numbers T− 6
T+, the submanifold Σ coincides with the cylinders (−∞, T−] ×
Λ− (the so-called negative end) and [T+,+∞)× Λ+ (the so-called
positive end), respectively. (The Lagrangian condition implies that
Λ± ⊂ (M, ξ) are Legendrian submanifolds.)

• There is a primitive of the pull-back of etα which is globally constant
when restricted to either of the two cylindrical ends above. (When
Λ± both are connected, this automatically holds.)

In the case when Λ− = ∅ we say that Σ is a filling. A Lagrangian cobor-
dism for which L ∩ [T−, T+]×M is diffeomorphic to a cylinder is called a
Lagrangian concordance. Note that the exactness of the pull-back of etα is
automatic in this case.
The exactness allows us to associate a potential fΣ : Σ → R defined

uniquely by the requirements that it is the primitive of the pull-back of etα
that vanishes on the negative end of Σ.
Given exact Lagrangian cobordisms Σ− from Λ− to Λ, and Σ+ from Λ to

Λ+, their concatenation is the following exact Lagrangian cobordism. After
a translation of the R-coordinate, we may assume that Σ− ∩ {t > −1} and
Σ+ ∩ {t 6 1} both are trivial cylinders over Λ. The concatenation is then
defined to be

Σ− � Σ+ = (Σ− ∩ {t 6 0}) ∪ (Σ+ ∩ {t > 0}) ⊂ R×M,

which can be seen to be an exact Lagrangian cobordism from Λ− to Λ+.
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2.2. Linearised Legendrian contact cohomology

We start with a very brief recollection of the Chekanov–Eliashberg al-
gebra, which is a differential graded algebra (DGA for short) (A(Λ), ∂)
associated to a Legendrian submanifold Λ ⊂ (M,α) together with an aux-
iliary choice of cylindrical almost complex structure on the symplectisation
(R ×M,d(etα)). The algebra is unital, fully non commutative, and freely
generated by the set of Reeb chords R(Λ) on Λ (which are assumed to be
generic). Here we restrict attention to the case when the algebra is defined
over the ground field Z2 of two elements. There is a grading defined by the
Conley–Zehnder index, which we omit from the description. The differen-
tial is defined by counts of pseudoholomorphic discs in the symplectisation
(R ×M,d(etα)) that are rigid up to translation. In the cases under con-
sideration, the details can be found in [27]. Also see [21] for the relations
between the version defined by counting pseudoholomorphic discs on the
Lagrangian projection (which makes sense when M = P × R is a contac-
tisation) and the version defined by counting pseudoholomorphic discs in
the symplectisation.
We will be working on the level of the so-called linearised Legendrian

contact cohomology complexes; these are complexes obtained from the
Chekanov–Eliashberg DGA by Chekanov’s linearisation procedure in [14].
The latter complex has an underlying graded vector space with basis given
by the Reeb chords, and the differential is associated to a so-called aug-
mentation of the DGA, which is a unital DGA morphism

ε : (A(Λ), ∂)→ Z2.

Observe that augmentations need not exist in general. Even if augmen-
tations are purely algebraic objects, they are in many cases geometrically
induced. For instance, an exact Lagrangian filling of Λ gives rise to an aug-
mentation; see [24] by Ekholm as well as [28] by Ekholm–Honda–Kálmán.
Given augmentations εi : A(Λi)→ Z2, i = 0, 1, the fact that the differen-

tial counts connected discs implies that there is an induced augmentation
ε of the Chekanov–Eliashberg algebra A(Λ0 ∪Λ1) of the disconnected Leg-
endrian submanifold uniquely determined as follows: it restricts to εi on
the respective components while it vanishes on the chords between the two
components. Using this augmentation, Chekanov’s linearisation procedure
can be used to produce a complex

(LCC ε0,ε1
∗ (Λ0,Λ1), ∂ε0,ε1)

with underlying vector space having basis given by the Reeb chords
R(Λ1,Λ0) from Λ1 to Λ0 (note the order!). We will instead mostly be
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working with the associated dual complex

(LCC ∗ε0,ε1(Λ0,Λ1), dε0,ε1),

called the linearised Legendrian contact cohomology complex, with induced
cohomology group LCH ∗ε0,ε1(Λ0,Λ1).
In the hypertight case, we restrict our attention to Reeb chords living in

a fixed homotopy class α ∈ π1(M,Λ), which generate a subcomplex that
we denote by

LCC α,∗
ε0,ε1(Λ0,Λ1) ⊂ (LCC ∗ε0,ε1(Λ0,Λ1), dε0,ε1).

Recall that there is a canonical augmentation in this case which sends every
generator to zero. From now on we will only use the trivial augmentation in
the hypertight case, and therefore the aforementioned complex will simply
be denoted by LCC α,∗(Λ0,Λ1).

Remark 2.1. — Closed Legendrian submanifolds of a contactisation
generically have a finite number of Reeb chords. However, in the hyper-
tight case we cannot exclude the possibility of the existence of infinitely
many Reeb chords in a given homotopy class. The latter complex thus has
an underlying vector space which is a direct product.

We proceed by giving some more details concerning the definition of the
differential of the Legendrian contact cohomology complex for a pair of
Legendrian submanifolds.

Use γ± ∈ R(Λ1,Λ0) to denote Reeb chords from Λ1 to Λ0, and δ =
δ1 · · · δi−1, ζ = ζi+1 · · · ζd to denote words of Reeb chords in R(Λ0) and
R(Λ1), respectively. The differential is defined by the count

(2.1) dε0,ε0(γ−) =
∑

δ,ζ,γ+

#2M(γ+; δ, γ−, ζ)ε0(δ)ε1(ζ)γ+.

of pseudoholomorphic discs in R ×M having boundary on R × (Λ0 ∪ Λ1)
and strip-like ends, and which are rigid up to translation of the R-factor.
More precisely, the solutions inside M(γ+; δ, γ−, ζ) are required to have
a positive puncture asymptotic to γ+ at t = +∞, and negative punctures
asymptotic to γ−, δj , and ζj , at t = −∞. We refer to [13] for more details
on the definition of these moduli spaces.
The length of a Reeb chord is defined by the formula

`(γ) :=
∫
γ

dz > 0, γ ∈ R(Λ).

The positivity of the so-called dα-energy of the above pseudoholomorphic
discs implies that the differential respects the filtration induced by the
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length of the Reeb chords in the following way: the coefficient of γ+ above
vanishes whenever `(γ+) 6 `(γ−). Also, see Lemma 2.2 below.

One can interpret augmentations as being bounding cochains (in the
sense of [36]) for Legendrians. Using this terminology, the differential de-
fined by Equation (2.1) is induced by the choices of bounding cochains εi
for Λi, i = 0, 1.

2.3. The Cthulhu complex.

We proceed to describe the construction of the Cthulhu complex from [13]
defined for a pair (Σ0,Σ1) of exact Lagrangian cobordisms inside the sym-
plectisation (R×M,d(etα)). The starting point for this theory is the version
of wrapped Floer cohomology defined [25] by Ekholm using the analytic
setup of symplectic field theory. Wrapped Floer homology is a version of
Lagrangian intersection Floer homology for exact Lagrangian fillings. The
theory in [13] is a generalisation to the case when the negative end of the
cobordism is not necessarily empty.
In order to deal with certain bubbling phenomena involving negative

ends, one must require that the Legendrians at the negative ends admit
augmentations. Again, augmentations will be used as bounding cochains.
In the following we thus assume that we are given a pair Σi, i = 0, 1,
of exact Lagrangian cobordisms from Λ−i to Λ+

i , together with choices of
augmentations εi of Λ−i . There are augmentations ε+

i = εi ◦ ΦΣi of Λ+
i

obtained as the pull-backs of the augmentations ε−i under the unital DGA
morphism induced by the cobordism Σi; see [24] by Ekholm as well as [28]
for more details. LetCF ∗(Σ0,Σ1) be the graded Z2-vector space with basis
given by the intersection points Σ0 ∩ Σ1 (which all are assumed to be
transverse). Again, we omit gradings from the discussion.
We are now ready to define the Cthulhu complex, which is the graded

vector space

Cth∗(Σ0,Σ1) := C∗+∞ ⊕CF ∗(Σ0,Σ1)⊕ C∗−1
−∞ ,

C∗−∞(Σ0,Σ1) := LCC ∗ε0,ε1(Λ−0 ,Λ
−
1 ),

C∗+∞(Σ0,Σ1) := LCC ∗
ε+0 ,ε

+
1

(Λ+
0 ,Λ

+
1 ).

with differential of the form

dε0,ε1 =

d++ d+0 d+−
0 d00 d0−
0 d−0 d−−

 .
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The entries d++ = dε+0 ,ε
+
1
and d−− = dε0,ε1 are the linearised Legendrian

contact cohomology differentials described in Section 2.2, while the rest of
the entries are defined by augmented counts of pseudoholomorphic strips
with boundary on Σ0 and Σ1 having appropriate asymptotics. See Fig-
ure 2.1 for a schematic picture of the strips involved. Recall that, typically,
the strips also have additional negative asymptotics to Reeb chords on Λ−i ,
i = 0, 1, and that all counts are “weighted” by the values of the chosen
augmentations on these chords (similarly to as in Formula (2.1)).

R× Λ+
0 R× Λ+

1d++
Σ0 Σ1d+0

Σ0 Σ1d+−

Σ0 Σ1d00 Σ0 Σ1d0−

Σ0Σ1
d−0

R× (Λ−1 t Λ−0 )
Σ0 Σ1d−−

out

in

out

in
out

in
in

out

in
out

in
out

in

out

Figure 2.1. Curves contributing to the Cthulhu differential; in and out
denote the input and output of the respective component of the dif-
ferential.

For us it will be important to consider the behaviour of dε0,ε1 with respect
to a particular action filtration. To that end, for an intersection point p ∈
Σ0 ∩ Σ1 we associate the action

a(p) := fΣ1(p)− fΣ0(p) ∈ R.

Assuming that Σi are both cylindrical outside of (T−, T+)×M , to a Reeb
chord generator γ± ∈ R(Λ±1 ,Λ

±
0 ) we can then associate the action

a(γ±) := eT±`(γ±) + f±Σ1
− f±Σ0

∈ R,

where f±Σi ∈ R are defined to be the value of fΣi on the positive and
negative cylindrical ends, respectively (thus f−Σi = 0 by our conventions).
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Lemma 2.2. — If the coefficient of y is non-vanishing in the expression
dε0,ε1(x), then it follows that a(y) > a(x).

We now state the well-definedness and invariance properties of the
Cthulhu complex. For the precise requirements concerning the almost com-
plex structure we refer to [13].

Assume that (M,α) is the contactisation of a Liouville manifold, and
that Σi ⊂ (R × M,d(etα)), i = 0, 1, are exact Lagrangian cobordisms
whose negative ends Λ−i admit augmentations εi.

Theorem 2.3 ([13, Theorems 4.1 and 6.6]). — For an appropriate choice
of an almost complex structure on the symplectisation, d2

ε0,ε1 = 0 and the
induced complex Cth∗(Σ0,Σ1) is acyclic.

Theorem 2.4 ([13, Proposition 6.4]). — If the cobordisms Σi, i = 0, 1,
are compactly supported Hamiltonian isotopic to Σ′i, then there is an in-
duced quasi-isomorphism

φ : Cth∗(Σ0,Σ1)→ Cth∗(Σ′0,Σ′1),

φ =

φ+ ∗ ∗
0 ∗ ∗
0 φ−0 IdC−∞(Λ−0 ,Λ

−
1 )

 ,

where φ−0 vanishes in the case when there are no Reeb chords from Λ0 to
Λ1, and:

(1) The component

φ+ : LCC ∗ε0◦ΦΣ0 ,ε1◦ΦΣ1
(Λ+

0 ,Λ
+
1 )→ LCC ∗ε0◦ΦΣ′0

,ε1◦ΦΣ′1
(Λ+

0 ,Λ
+
1 )

is an isomorphism of complexes which for generators a, b satisfies
〈φ+(a), a〉 = 1, while 〈φ+(a), b〉 = 0 holds whenever `(a) > `(b).

(2) Consider the subspaces Cth[a0,+∞)
∗ (Σs0,Σs1) ⊂ Cth∗(Σs0,Σs1) consist-

ing of the generators of action at least a0 ∈ R where (Σs0,Σs1) is the
Hamiltonian isotopy of the pair of cobordisms. Under the additional
geometric assumption that a neighbourhood of these generators, as
well as their actions, are fixed during the entire isotopy, it follows
that

φ(Cth[a0,+∞)
∗ (Σ0,Σ1)) ⊂ Cth[a0,+∞)

∗ (Σ′0,Σ′1)

holds as well.

Proof. — The claims not contained in the formulations of the referred
result in [13] are the following:

(i) The condition for the vanishing of φ−0;
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(ii) The statement in Part (1) which claims that the chain isomorphism
φ+ is “upper triangular” with respect to the action filtration; and

(iii) The action preserving properties stated in Part (2).
The statements follow from studying the proof of the invariance re-

sult [13, Proposition 6.4] which is shown using bifurcation analysis. Here
there is one caveat: it is necessary first to apply Proposition 8.2 in the
same article. This is done in order to interchange the Reeb chord genera-
tors of C∗±∞(Σ0,Σ1) with intersection points by geometrically “wrapping”
the ends, e.g. by an application of the Hamiltonian isotopy φs(β−1)∂z to the
component Σ0 (see Section 2.5). According to the aforementioned result,
we may assume that the isomorphism class of the complex is left unchanged
under such a modification. Alternatively, one may also argue as the invari-
ance proof [25, Section 4.2.1], which is based upon abstract perturbations
(and which stays in the more symmetric setup of SFT).
The bifurcation analysis roughly works as follows. A generic Hamiltonian

isotopy produces a finite number of “handle-slides” and “birth/deaths” on
the geometric side. On the algebraic side handle-slides and birth/deaths
then correspond to chain isomorphisms of the form x 7→ x+K(x) (defined
on each generator) and stabilisations by an acyclic complex (up to a chain
isomorphism), respectively.
In this case we are only concerned with generators which cannot undergo

any birth/death moves, and we can therefore ignore them. What suffices
is thus to check the action properties for each chain isomorphism induced
by a handle-slide. Recall that the term K(x) in such a chain isomorphism
is defined by a count of pseudoholomorphic strips of expected dimension
−1; such strips generically exist inside a one-parameter family, where they
appear as rigid solutions.

Claim (i): This follows by a neck-stretching argument, since a pseudo-
holomorphic disc contributing to a nonzero term K(x) in the definition of
φ−0 would break into a configuration involving a Reeb chord from Λ0 to
Λ1. This configuration is similar to the one which in the definition of the
term d−0 of the differential shown in Figure 2.1.
Claims (ii) and (iii): The claims follow by the same reason as to why the

differential is action increasing, i.e. since non-constant pseudoholomorphic
discs are of positive energy. �

It will also be useful to formulate the following refined invariance proper-
ties, which applies under certain additional assumptions on the cobordisms.

Corollary 2.5 ([13]). — In the above setting, we make the additional
assumption that there are no Reeb chords starting on Λ−0 and ending on Λ−1 ,
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and that each cobordism Σi is compactly supported Hamiltonian isotopic
to cobordisms Σ′i satisfying Σ′0∩Σ′1 = ∅. Then d−0 = 0 holds for both com-
plexes, and the quasi-isomorphism φ in Theorem 2.4 can be assumed to map
all intersection points into the subcomplex C∗+∞(Σ′0,Σ′1) ⊂ Cth∗(Σ′0,Σ′1)
(i.e. φ−0 = 0).

2.4. The Cthulhu complex in the hypertight case

We are also interested in the (very) special situation when the negative
ends Λ−i ⊂ (M,α), i = 0, 1, of both cobordisms are hypertight Legendrian
submanifolds of a closed hypertight contact manifold.
At a first glance, this is a slightly more general setting than that con-

sidered in [13]. However having hypertight Legendrian ends implies no ad-
ditional difficulties regarding transversality results for holomorphic curves.
Indeed, since we consider the canonical augmentation only, every holomor-
phic curve involved in the definition of the Cthulhu complex will be an
honest strip, and thus in particular have at least one mixed Reeb chord
among its asymptotics. For that reason, we can apply [13, Proposition 3.2]
to achieve transversality (in particular this proposition makes no use of the
special type of almost complex structure used on the symplectisation of a
contactisation). As already mentioned in [13, Section 1.4.1] the other rea-
son contactisations were used in [13] was to get acyclicity of the complex.
This property we will here deduce in the special case considered, using
the assumption that the cobordisms are either trivial cylinders or traces of
contractible loops.

Our definition of hypertight Legendrian leaves us with the following
caveat (recall that our notion of hypertightness does not require the Reeb
chords, or orbits, to be non-degenerate):

In the case when the Legendrian is hypertight, we do not know if it is
possible to make a small perturbation Λ1 of Λ0 that simultaneously satisfies
the properties that:

(1) each of Λi is hypertight and has non-degenerate Reeb chords,
(2) the contact manifold is hypertight with non-degenerate Reeb orbits,

and
(3) the Reeb chords between Λ0 and Λ1 are non-degenerate.

However, given any choice of L > 0, it is possible to ensure that the above
properties are satisfied for all the chords of length at most L.
For that reason, we must use the following modified versions of the com-

plexes. We tacitly restrict attention to the generators below some fixed, but
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sufficiently large, action L � 0 when considering the different complexes.
That this indeed makes sense follows from the action properties satisfied
by the differential and the maps appearing in the invariance statements.
Obviously, working below a fixed action is in general not possible to

combine with a full invariance. However, when interested in the invariance
under a fixed deformation, we can always adjust the parameter L > 0
in order for this invariance to hold. Here it is important to note that we
only consider invariance properties under compactly supported Hamilton-
ian isotopies of a pair of exact Lagrangian cobordisms. For a fixed such
deformation, all generators concerned that can undergo a deformation thus
satisfy an a priori action bound (depending only on the involved cobordisms
together with the fixed Hamiltonian isotopy).
In this case the Chekanov–Eliashberg algebra generated by the con-

tractible chords has a canonical augmentation that sends every generator
to zero. Restricting attention to only those chords being of action smaller
than L > 0, the induced differential dL is defined by counting honest pseu-
doholomorphic strips, i.e. strips without additional boundary punctures
asymptotic to Reeb chords of Λ−. This situation is very similar to that in
the paper [31], in which both Lagrangians also are non-compact.

Theorem 2.6 ([13]). — For any two exact Lagrangian cobordisms Σi ⊂
(R ×M,d(etα)) having hypertight negative ends in a hypertight contact
manifold, we have d2

L = 0.

In the hypertight case, we only formulate the invariance theorem for the
special case that is needed in our proofs. Assume that the two Legendrian
submanifolds Λi ⊂ (M,α), i = 0, 1, are hypertight, where Λ0 moreover is
obtained from Λ1 by the time-Z Reeb flow, Z > 0, followed by a generic
C1-small Legendrian perturbation.

We begin with the case when the two exact Lagrangian cobordisms Σi ⊂
(R×M,d(etα)) have been obtained from R×Λi by a compactly supported
Hamiltonian isotopy. We consider the Cthulhu complex generated by only
those Reeb chords and intersection points living in the component

0 ∈ π0(Π(R×M ; Σ0,Σ1))

of paths from Σ1 to Σ0 in R×M containing the (perturbations of the) Reeb
chords from {T−} × Λ1 to {T−} × Λ0 of length precisely equal to Z > 0.
Since the differential counts honest strips (i.e. with no additional boundary
punctures), it is clear that this defines a subcomplex that will be denoted
by Cth0

∗(Σ0,Σ1).
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Theorem 2.7. — Under the above assumptions, the complex
Cth0

∗(Σ0,Σ1) is acyclic and satisfies d−0 = 0. Moreover, there is a ho-
motopy equivalence

φ : Cth0
∗(Σ0,Σ1)→ Cth0

∗(R× Λ0,R× Λ1)

of acyclic complexes such that:
(1) Its restriction to the subcomplex C∗+∞(Σ0,Σ1) is the identity map

C∗+∞(Σ0,Σ1) =−→ C∗+∞(R× Λ0,R× Λ1)

of complexes having the same set of generators; and
(2) All intersection points are mapped into the subcomplex

C∗+∞(R× Λ0,R× Λ1) ⊂ Cth0
∗(R× Λ0,R× Λ1).

Proof. — The proof is similar to that of Corollary 2.5. Observe that,
since the cylindrical ends are fixed during the isotopy, it makes sense to
restrict attention to the specified homotopy class of intersection points
whilst performing the bifurcation analysis.

We have d−0 = 0 when restricted to the generators in the homotopy
class under consideration. Here the crucial point is that, by hypertightness
together with the choice of push-off, there are no Reeb chords from Λ0 to
Λ1 that end up in the homotopy class 0 ∈ π0(Π(R × M ; Σ0,Σ1)) when
parametrised by backwards time, i.e. using the negative Reeb flow. The
rest follows as in the aforementioned proof.
Note that the restriction of the homotopy equivalence to C∗+∞(Σ0,Σ1)

is the identity morphism, as opposed to the more general isomorphism of
complexes in Part (1) of Theorem 2.4. This follows by topological reasons
together with the fact that we are using the trivial augmentation; the latter
obviously pulls back to the trivial augmentation under the DGA morphisms
induced by the cobordisms Σi under consideration (and their deformations
by a compactly supported Hamiltonian isotopy). �

The following invariance holds in the more general situation when Σi
both are invertible Lagrangian cobordisms; by this, we mean that there are
cobordisms Ui, Vi for which the concatenations Σi � Ui as well as Ui � Vi
both can be performed, and such that the resulting exact Lagrangian cobor-
disms all are compactly Hamiltonian isotopic to trivial cylinders. See [21,
Section 5.3] for the basic properties of invertible Lagrangian cobordisms.

Remark 2.8. — If Σi are Lagrangian cylinders from Λi to itself that are
not compactly supported Hamiltonian isotopic to trivial cylinders, a path
inside the slice {T−}×M living in the component 0 ∈ π0(Π(R×M ; Σ0,Σ1))
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specified above (e.g. a Reeb chord from Λ1 to Λ0) may end up in a different
homotopy class when placed inside the slice {T+} ×M .

Theorem 2.9 ([21, Theorem 5.7]). — If Σi are invertible exact La-
grangian cobordisms between hypertight Legendrians, then Cth0

∗(Σ0,Σ1)
is an acyclic complex.

Proof. — Since the negative ends are kept fixed during the Hamiltonian
isotopy considered, the statement follows from the same proof as in the case
of a pair of fillings (i.e. in the case when the negative ends are empty). See
e.g. the proof of [21, Theorem 5.7], which is based upon [25, Section 4.2]. �
In the situation where the Legendrian is the diagonal in the contact prod-

uct of an hypertight contact manifold, we apply the theory from Zenaïdi’s
work [53] in the following way. One can consider a contact form of the type
pα = f1α1 + f2α2 on the contact product, where f1, f2 : R → R are linear
away from a compact set [−N,N ] and δ(t) = f ′1(t)f2(t)−f ′2(t)f1(t) 6= 0 for
all t ∈ R (this is the contact condition). The associated Reeb vector field is
R

pα = (− f
′
2
δ R,

f ′1
δ R, 0). Note that periodic orbits of R

pα are given as curves
on the product of orbits of R, and thus the form is still hypertight. A chord
of the Legendrian diagonal is given by a path (γ1(t), γ2(t), 0) such that
γ1 ? γ

−1
2 is a periodic orbit of R, thus ∆ is also relatively hypertight. Since

R
pα has vanishing ∂t-component, all chords are confined inM×M×{0}. By

an argument based upon the maximum principle (see [53, Theorem 5.3.9])
it follows that all holomorphic curves asymptotic to periodic orbits stay in
the symplectisation of the compact regionM×M× [−ε, ε]. For this reason,
the Floer theory for cobordisms considered here can also be extended to
the non-compact settings of the contact product.

2.5. Wrapping

In the Hamiltonian formulation of wrapped Floer cohomology the Reeb
chord generators are exchanged for Hamiltonian chords arising when “wrap-
ping” the ends of one of the Lagrangians. It will sometimes be necessary
for us to perform such a wrapping as well, and for that reason we need to
introduce the following Hamiltonian vector fields.

We start by observing the general fact that the isotopy φsg(t)R generated
by a vector field of the form g(t)R ∈ T (R ×M) generates a Hamiltonian
isotopy, where R denotes the Reeb vector field and g : R→ R is an arbitrary
smooth function.
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Now consider the function β : R → R>0 shown in Figure 2.2, which
satisfies the following properties:

• β(t) ≡ 0 for all t /∈ [−δ, T + δ],
• β(t) ≡ 1 for all t ∈ [0, T ], and
• β′(t) > 0 and β′(t) < 0 holds for t ∈ (−δ, 0) and t ∈ (T, T + δ),
respectively.

The induced Hamiltonian vector field φs(β−1)R can now be seen to wrap the
ends of R×M by the negative Reeb flow.

β(t)

t
−δ

1

T T + δ

Figure 2.2. The compactly supported bump-function β(t).

In addition, denote by β+(t) the function which is constantly equal to
β+(t) ≡ 1 when t 6 T and which coincides with β(t) on [T,+∞); and
β−(t) to denote the function which is constantly equal to β−(t) ≡ 1 when
t > 0 and which coincides with β(t) on (−∞, 0).

2.6. Stretching the neck

Consider a (possibly disconnected) hypersurface

{t1, . . . , tn} ×M ⊂ (R×M,d(etα))

of contact type near which both Lagrangian cobordisms Σi, i = 0, 1, are
cylindrical. As described in [10, Section 3.4], we can stretch the neck along
this hypersurface by considering an appropriate sequence Jτ , τ > 0, of com-
patible almost complex structures and then applying the SFT compactness
theorem [10]. More precisely, in neighbourhoods [ti−ε, ti+ε]×M the almost
complex structure Jτ is induced by pulling back a fixed choice of cylindrical
almost complex structure on ([ti− ε− τ, ti+ ε+ τ ]×M,d(etα)) by a diffeo-
morphism induced by an identification [ti− ε, ti+ ε] ∼= [ti− ε− τ, ti+ ε+ τ ].
Also, see [13, Section 5.1] for a description in the setting considered here.
When stretching the neck by taking τ → +∞, a sequence of Jτ -holo-

morphic curves in R ×M with boundary on Σ0 ∪ Σ1 have subsequences

TOME 69 (2019), FASCICULE 4



1702 B. CHANTRAINE, V. COLIN & G. DIMITROGLOU RIZELL

converging to so-called pseudoholomorphic buildings; we refer to [10] and [1]
for its definition. Roughly speaking, a pseudoholomorphic building consists
of many levels containing pseudoholomorphic curves with boundary on the
(completed) Lagrangian cobordisms contained between (ti, ti+1) ×M for
i = 0, . . . , tn, and where t0 = −∞, tn+1 = +∞. See Figure 4.1 below for
an example in the case when the building has three levels.
In order to obtain a bijection between rigid configurations before the limit

and rigid pseudoholomorphic buildings one must assume that all involved
components are transversely cut out, and then perform pseudoholomorphic
gluing.

3. Positive isotopies and Lagrangian concordance

The starting point of our analysis is the construction of a Lagrangian
concordance from a Legendrian isotopy which should be though of as the
“trace” of the isotopy. We choose to follow the construction of Eliashberg
and Gromov [30]. Given a Legendrian isotopy

φ : [0, 1]× Λ ↪→ (M, ξ),
Λs := φ(s,Λ),

from Λ0 to Λ1, they produce an associated Lagrangian concordance

Σ{Λs} ⊂ (R×M,d(etα))

from Λ0 to Λ1 inside the symplectisation.

Remark 3.1. — Lagrangian concordances can be constructed out of a
Legendrian isotopy in several different ways; see e.g. [11] or [24] for al-
ternatives to the construction presented here. Note that, the primitive of
etα for the construction from [11] has the same value on the negative and
positive ends. For the construction in [24], the symplectic and Liouville
structure are changed, making action considerations more delicate. The
advantage of the techniques in [30] that we here choose to adapt is that,
in the case of a positive (resp. negative) isotopy, the obtained cobordism
has a primitive with value at the positive end being strictly greater (resp.
strictly smaller) than the negative end. This property will turn out to be
crucial.

Using a standard construction (for instance described in [19]), deforming
the above Legendrian isotopy while fixing the endpoints, we can assume
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that the Legendrian isotopy {Λs} has an associated contact Hamiltonian

H : [0, 1]× Λ→ R,

(s, q) 7→ α

(
d
dt

∣∣∣∣
t=s

Λt(q)
)
,

that satisfies the following properties. There exists a decomposition 0 =
s0 < s1 < · · · < sk = 1 of the interval, and a number δ > 0, such that for
all i = 0, . . . , k − 1:

• H(s, q)|(si−δ,si+δ) = ρi(s) (i.e. H does not depend on q near si);
• H(s, q)|(si,si+1) 6= 0 (i.e. the isotopy is either positive or negative);

and
• H(si, q) = 0.

The third condition enables us to extend the isotopy to be constant in the
time intervals s < 0 and s > 1, while the contact Hamiltonian H smoothly
extends to zero for these times. Such an isotopy will be called a zig-zag
isotopy.
To construct the sought concordance it suffices to perform the construc-

tion for the isotopy Λs restricted to each interval [si, si+1]. The resulting
concordances can then be stacked together by repeated concatenations in
order to produce the sought Lagrangian concordance from Λ0 to Λ1.

3.1. The concordance in the definite case

In view of the above, we now restrict our attention to an isotopy
{Λs}s∈[0,1] for which the contact Hamiltonian H(s, q) satisfies H(s, q) =
ρ0(s) for s < δ, H(s, q) = ρ1(s) for s > 1 − δ, ρ0(0) = ρ1(1) = 0, and
|H(s, q)| 6= 0 for all s ∈ (0, 1). For all ε < 1

4 we choose a function χε : R→ R
such that

(1) χε(s) = 0 for s < 0 and s > 1;
(2) χε(s) = 1 for s ∈ [2ε, 1− 2ε];
(3) χε(s) = |ρ0(s)| for s < min{δ, ε}; and
(4) χε(s) = |ρ1(s)| for s > max{1− ε, 1− δ}.
Given numbers T > 0 and ε > 0 we are now ready to define the smooth

map

(3.1)

CT,ε : R× Λ→ R×M

(s, q) 7→


(Ts+ ln χε(s)

|H(s,q)| ,Λs(q)), for s ∈ [0, 1],
(Ts,Λ0(q)), for s < 0,
(Ts,Λ1(q)), for s > 1.
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Note that, from the definition of χ, it follows that CT,ε is a smooth map.
Namely, the function χ(s)ε

H(s,q) approaches 1 as s approaches either 0 or 1.
The following theorem is from [30, Lemma 4.2.5].

Proposition 3.2. — For all T, ε > 0 the map CT,ε is an immersed
Lagrangian concordance. For T sufficiently large, CT,ε is an embedded
Lagrangian concordance from Λ0 = Λ to Λ1. Moreover, the pull back
(CT,ε)∗(etα) is exact with primitive given by

fCT,ε(s, q) = sign(H)
∫ s

−1
χε(t)eTtdt,

vanishing at −∞. In particular, for a positive (resp. negative) isotopy, the
primitive is positive (resp. negative) when restricted to the positive cylin-
drical end.

Proof. — A simple computation shows that

(CT,ε)∗(etα) = H

|H|
χε(s)eTsds

which implies the first and last statements.
For the second statement, we note first that, since the isotopy is trans-

verse to ξ for all s ∈ [0, 1], there always exists a small δ > 0 such that the
projection of CT,ε|(s−δ,s+δ)×Λ to M is an embedding. This imply that ev-
ery pair of points (s1, q1) and (s2, q2) (with s2 > s1) such that C(s1, q1) =
C(s2, q2) satisfies

s2 − s1 > 2δ,(3.2)

T (s2 − s1) = ln H(s2)
H(s1) − ln χε(s2)

χε(s1) .(3.3)

After choosing

T >
1
2δ ln maxH

minH ,

it follows that no such double point can exist. �

Remark 3.3. — After increasing T � 0 even further, it is the case that

CT,ε(R× Λ) ∩ ((−∞, 0)×M) = (−∞, 0)× Λ0,

CT,ε(R× Λ) ∩ ((T,∞)×M) = (T,∞)× Λ1,

are satisfied. We assume that such choices are made when using these con-
cordances.

ANNALES DE L’INSTITUT FOURIER



POSITIVE LEGENDRIAN ISOTOPIES AND FLOER THEORY 1705

3.2. The general case

Given a general Legendrian isotopy {Λs}, we homotope it to a zig-zag
isotopy. Concatenating the pieces of concordances produced Proposition 3.2
above, we thus obtain the sought Lagrangian concordance

Σ{Λs} ⊂ (R×M,d(etα))

from Λ0 to Λ1.

Proposition 3.4. — For a contractible Legendrian loop {Λs} with Λ =
Λ0, the Lagrangian concordance constructed above is compactly supported
Hamiltonian isotopic to R× Λ.

Proof. — The construction of these cylinders and of the homotopy mak-
ing the Legendrian isotopy a zig-zag isotopy as in Lemma 2.1 of [19] is
parametric. Thus, a homotopy of Legendrian isotopies will lead to an iso-
topy of Lagrangian concordances fixed outside of a compact subset. Since
concordances are exact Lagrangians, we can use the standard fact that an
exact Lagrangian isotopy is generated by a Hamiltonian in order to obtain
our sought isotopy. (The noncompactness causes no issue since the exact
Lagrangian isotopy is compactly supported and since, at least near the La-
grangian, the Hamiltonian is locally constant outside of the support by its
construction.)

More precisely, if {Λs} is a contractible loop, the parametric construction
gives a homotopy of zig-zag Legendrian isotopies from a small deformation
of {Λs} to a small deformation of the constant isotopy {Λ0}. The latter
deformation is a concatenation of isotopies of the form {φεχ(t)(Λ0)} where
φ is the Reeb flow and χ is a bump function similar to the one considered
above.
By construction the resulting Lagrangian concordance associated to {Λs}

is isotopic through exact Lagrangian embeddings, and by a standard re-
sult hence Hamiltonian isotopic, to the cylinder associated to the cylinder
C ′(t, q) that is the concatenation of the “graphs” {(t, q); q ∈ φεχ(t)(Λ0)}.
The latter cylinder can finally be explicitly seen to be Hamiltonian isotopic
to the trivial cylinder R × Λ0 by taking ε → 0 in each piece simultane-
ously. �

4. The Floer homology of the trace of a positive loop

Consider the Lagrangian concordance Σ0 := Σ{Λs} obtained from the
trace of a positive loop as constructed in Section 3. We assume that the
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starting point of the loop is the Legendrian Λ0 = Λ0, and we let Σ1 :=
R × Λ1 be the trivial cylinder over the Legendrian Λ1. In particular, each
of Σi, i = 0, 1, is an exact Lagrangian concordance from Λi to itself.
In this section we compute the Floer homology complex Cth∗(Σ0,Σ1)

for this pair of cobordisms, as defined in Section 2. We start by proving
some results of a more technical nature concerning these complexes, which
later will be used when showing the nonexistence of positive loops. For all
results the assumption that Λi has an augmentation is crucial. Denote by
εi this augmentation, and by ε+

i := εi ◦ ΦΣi its pull-back under the DGA
morphism associated to Σi. The differential of the complex dε0,ε1 will be
taken to be induced by the augmentations εi, and we denote its components
by d+−, d+0, . . ., etc.
Our first goal is establishing the following long exact sequence (or, in

the ungraded case, exact triangle) which exists in the above setting. Its
existence depends heavily on the fact that Σ{Λs} is the trace of a positive
Legendrian loop.

Theorem 4.1.
(1) In the case when (M,α) is a contactisation (P × R, αstd) endowed

with its standard symplectic form, then there exists a long exact
sequence

(4.1) · · · // LCH k−1+µ
ε+0 ,ε

+
1

(Λ0,Λ1)

δ��
HF k

ε0,ε1(Σ{Λs},R× Λ1)
d−0��

LCH k
ε0,ε1(Λ0,Λ1)

d+− // LCH k+µ
ε+0 ,ε

+
1

(Λ0,Λ1) // · · · ,

for some fixed µ ∈ Z, in which

δ := [π] ◦
[(
d+0 d+−

)]−1
,

with π : CF ∗(Σ1,Σ0) ⊕ C∗−∞ → CF ∗(Σ0,Σ1) being the canonical
projection.

(2) In the case when the Legendrian submanifolds Λ0,Λ1 ⊂ (M,α)
are hypertight, there again exists an analogous long exact sequence
satisfying the same properties, but where the middle and rightmost
terms are replaced by LCH α,k(Λ0,Λ1) and LCH β,k+µ(Λ0,Λ1), re-
spectively, for suitable homotopy classes α, β ∈ π0(Π(R ×M ;R ×
Λ0,R× Λ1)). In this case we, moreover, have d−0 = 0.
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Remark 4.2. — Here we give some explanations concerning the formula-
tion of the above theorem.

(1) In either of the Cases (1) and (2) above, there may be a relative dif-
ference of Maslov potentials of the Legendrians at the positive and
negative ends induced by the cobordism Σ{Λs}. Such a difference
would induce a nonzero shift of grading by µ ∈ Z in the rightmost
homology group.

(2) In Case (2), i.e. the hypertight case, we only consider the canoni-
cal augmentation for each of Λi, i = 0, 1, which obviously is pre-
served under the pull-back by a DGA morphism induced by any
Lagrangian concordance. Unless the isotopy is homotopically triv-
ial, the homotopy classes can indeed be different, i.e. α 6= β. In this
case, fixing one of them also determines the other one. Also, see
Remark 2.8.

Proof. — The Cthulhu differential takes the form

dε0,ε1 =

d++ d+0 d+−
0 d00 0
0 d−0 d−−

 ,

since d0− = 0 by the action computation in Proposition 4.4 which we have
postponed to Section 4.1 below. In other words, the complex Cth∗(Σ{Λs},
R× Λ1) is the mapping cone of the chain map(

d+0 d+−
)

: CF (Σ0,Σ1)⊕ C−∞(Σ0,Σ1)→ C+∞(Σ0,Σ1),

whose domain, in turn, is the mapping cone of

d−0 : CF (Σ0,Σ1)→ C−∞(Σ0,Σ1).

By Theorem 2.3 (in Case (1)) or Theorem 2.9 (in Case (2)) the total com-
plex is moreover acyclic. For Case (2) we must here use the fact that the
trace of a Legendrian isotopy as constructed in Section 3 always is an in-
vertible Lagrangian cobordism, as follows from Proposition 3.4.
The existence of the long exact sequence is now standard consequence

of this double cone structure, together with the acyclicity of the total
complex. �

In certain particular situations the above long exact sequence degenerates
into the statement that d+− is an isomorphism.
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Theorem 4.3. — If assumptions (1) and (2) of Theorem 4.1 are
strengthened to

(1) the Legendrian submanifolds Λ0,Λ1 ⊂ (P × R, αstd) satisfy the
properties that no Reeb chord starts on Λ0 and ends on Λ1,

(2) in the hypertight case, the positive loop of Legendrians is con-
tractible amongst Legendrian loops,

respectively, then it moreover follows that d+− is an isomorphism or, equiv-
alently, that d−0 = δ = 0.

Proof. — First we note that in Case (1) we can “wrap” the inner part
of the cobordism Σ1 by an application of the negative Reeb flow, thereby
removing all intersection points with Σ0. More precisely, we can use e.g. the
Hamiltonian flow φs−β∂z generated by the Hamiltonian vector field −β(t)∂z
for the compactly supported bump-function β : R → R>0 shown in Fig-
ure 2.2. See Section 2.5 for more details. We thus take Σ′0 := Σ0 and
Σ′1 := φs−β∂z (Σ1), and then note that Σ′0 ∩Σ′1 = ∅ whenever s� 0 is taken
to be sufficiently large.
In Case (2) a compactly supported Hamiltonian of which removes all

intersection points between the cobordisms exists by the contractibility
of the positive loop; combined with Proposition 3.4 we deduce that Σ0
is compactly supported Hamiltonian isotopic to the trivial cylinder Σ′0 :=
R×Λ0. In this case, we write Σ′1 := Σ1, and observe that again Σ′0∩Σ′1 = ∅.

In either of the Cases (1) and (2), the result is now a consequence of the
refined invariance results Corollary 2.5 (in the case of a contactisation) and
Theorem 2.7 (in the hypertight case); the previously established Hamil-
tonian isotopies imply that the assumptions of these theorems indeed are
satisfied. We proceed with the details.

First, the refined invariance results give us d−0 = 0. To show δ = 0, we
consider the quasi-isomorphism(

d+0 d+−
)

: CF ∗(Σ0,Σ1)⊕ C∗−∞(Σ0,Σ1)→ C∗+∞(Σ0,Σ1),

where the latter is a subcomplex of Cth∗(Σ0,Σ1), and where the former
is the corresponding quotient complex. (The property of being a quasi-
isomorphism is equivalent to the acyclicity of Cth∗(Σ0,Σ1).) The vanishing
δ = 0 will be established by showing that the restriction(

d+0 d+−
)
|CF ∗(Σ0,Σ1) : (CF ∗(Σ0,Σ1), d00)→ (C∗+∞(Σ0,Σ1), d++)

vanishes in homology; cf. the definition of δ in the formulation of Theo-
rem 4.1.
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For any cycle a ∈ (CF ∗(Σ0,Σ1), d00), the vanishing d−0 = 0 implies that(
d+0 d+−

)(a
0

)
= dε0,ε1(a) ∈ C∗+∞(Σ0,Σ1),

i.e. the quasi-isomorphism restricted to the intersection points coincides
with the differential of the Cthulhu complex.
The aforementioned invariance results Corollary 2.5 and Theorem 2.7,

moreover, produce a homotopy equivalence φ from Cth∗(Σ0,Σ1) to the
complex Cth∗(Σ′0,Σ′1), where the latter has no generators corresponding to
intersection points. We then use the chain map property together with the
fact that φ(a) ∈ C∗+∞(Σ′0,Σ′1) (cf. the refined invariance results) in order
to deduce that

φ(dε0,ε1(a)) = dε′0,ε′1 ◦ φ(a).

In other words, the image

φ

((
d+0 d+−

)(a
0

))
∈ C∗+∞(Σ′0,Σ′1)

vanishes in homology. Since, moreover, φ+ : C∗+∞(Σ0,Σ1)→ C∗+∞(Σ′0,Σ′1)
is a chain isomorphism (again, cf. the refined invariance), we thus conclude
that (

d+0 d+−
)(a

0

)
∈ C∗+∞(Σ0,Σ1)

itself vanishes in homology as sought. �

4.1. Action computations

The assumption that the isotopy is positive implies that

Proposition 4.4. — The generators of CF ∗(Σ{Λs},R × Λ1) are all of
negative action. In particular, the term d0− in the Cthulhu differential
vanishes.

Proof. — The first statement follows from the computation in Proposi-
tion 3.2. Observe that the potential fR×Λ1 ≡ 0 necessarily vanishes by our
conventions. Since the Reeb chord generators at the negative end are of
positive action, the fact that d0− = 0 is now an immediate consequence of
Lemma 2.2. �

The following simple action computation will also be used repeatedly.
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Lemma 4.5. — When computing the action in Cth∗(Σ{Λs},R × Λ1),
we may take T− = 0 and T+ = T (i.e. the constant from the construc-
tion in Section 3). With these conventions, a Reeb chord generator γ+ ∈
C∗+∞(Σ{Λs},R× Λ1) has action equal to

a(γ+) = eT `(γ+)− f+
Σ{Λs} ,

with a positive constant f+
Σ{Λs} > 0.

Proof. — The positivity f+
Σ{Λs} > 0 follows from Proposition 3.2, while

f+
R×Λ1

≡ 0 is a consequence of our conventions. �

4.2. The proof of Theorem 1.11 (the hypertight case)

We argue by contradiction. Let Λ0 := Λ be our given hypertight Legen-
drian submanifold and let Σ{Λs} be the cylinder induced by a contractible
positive loop containing Λ. We take Λ1 to be obtained from Λ by, first, ap-
plying the time-(−ε) Reeb flow and, second, perturbing the resulting Leg-
endrian by the one-jet j1f ⊂ J 1Λ inside a standard Legendrian neighbour-
hood (in which Λ is identified with the zero-section). Here f : Λ → [−ε, 0]
is assumed to be a Morse function.

Lemma 4.6. — For ε > 0 sufficiently small, the generators of the sub-
complex and quotient complex

C∗±∞(Σ{Λs},R× Λ1) ⊂ Cth0
∗(Σ{Λs},R× Λ1)

correspond bijectively to the critical points of the above Morse function
f . Further, the generators of the subcomplex C∗+∞(Σ{Λs},R × Λ1) are of
negative action, while the generators of C∗−∞(Σ{Λs},R×Λ1) are of positive
action.

Proof. — There is a correspondence between critical points {p} ⊂ Λ of
f and a subset of the Reeb chords from Λ1 to Λ0. Moreover, the length
of the Reeb chord corresponding to the critical point p ∈ Λ is equal to
−f(p) + ε 6 2ε.
First, using the assumption that {Λs} is contractible, and hence that

Σ{Λs} is Hamiltonian isotopic to a trivial cylinder by Proposition 3.4, it
follows that all these Reeb chords also are generators of C∗+∞. Second, using
the assumption of hypertightness (i.e. that there are no contractible Reeb
chords on Λ), it follows that these are all of the generators of C∗+∞. Here
we recall that Cth0

∗(Σ{Λs},R × Λ1) is generated by only those generators
which live in the “contractible” homotopy class; also see Remark 2.8.
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The negativity of the action is then a consequence of the inequality

a(γ+) 6 eT (2ε)− f+
Σ{Λs} ,

given that ε > 0 is chosen sufficiently small, and where the primitive f+
Σ{Λs}

at t = +∞ is positive by the positivity of the loop of Legendrians; see
Lemma 4.5. �

Lemma 4.7. — For ε > 0 sufficiently small, the subcomplex and quo-
tient complex

C∗±∞(Σ{Λs},R× Λ1) ⊂ Cth0
∗(Σ{Λs},R× Λ1)

both compute the Morse homology of Λ.

Proof. — The identification on the level of generators follows from Lem-
ma 4.6. The differential can be identified with the Morse differential, fol-
lowing a standard computation that carries over from the computation
made “locally” in the jet-space of Λ using the theory from e.g. [23]. To that
end, we must choose the almost complex structure in some neighbourhood
R×U appropriately, for U ⊂M of Λ contactomorphic to a neighbourhood
of the zero-section of J 1Λ. In particular, in that neighbourhood we want
the almost complex structure to be a cylindrical lift of the almost complex
structure on T ∗Λ that is produced by [23]. (The monotonicity property
for the symplectic area of pseudoholomorphic discs can then be used to
ensure that the strips in the differential do not leave the neighbourhood
R× U ⊂ R×M of R× Λ in the symplectisation; see e.g. the proof of [21,
Lemma 6.4].) �

We now prove Theorem 1.11 by invoking the above lemmas in conjunc-
tion with Theorem 4.1.

Proof of Theorem 1.11. — The rightmost term H(C∗+∞, d++) in the
long exact sequence produced by Theorem 4.1 is non-zero by Lemma 4.7,
while the map d+− in this long exact sequence vanishes by Lemma 4.6
combined with Lemma 2.2. This is in contradiction with the fact that d+−
is an isomorphism, as established by Theorem 4.3. �

4.3. The proof of Theorem 1.13

We consider the setup of the proof of Theorem 1.11 given in Section 4.2
above, but where Σ{Λs} is not necessarily compactly supported Hamiltonian
isotopic to a trivial cylinder. The only difference with the case above is that
the consequences of Lemmas 4.6 and 4.7 might not hold for the subcomplex
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C∗+∞(Σ{Λs},R × Λ1). However, we note that it always is the case that
C∗−∞(Σ{Λs},R× Λ1) is the Morse homology complex of Λ.

The reason for why Lemmas 4.6 and 4.7 can fail is that, depending on
the homotopy properties of Σ{Λs}, it is possible that the subcomplex

C∗+∞(Σ{Λs},R× Λ1) ⊂ Cth∗(Σ{Λs},R× Λ1)

is in fact generated by chords corresponding to the non-contractible Reeb
chords on Λ in some fixed homotopy class α 6= 0 (see Part (2) of Re-
mark 4.2).
Notwithstanding, when α 6= 0 we can use our assumptions on the Conley–

Zehnder indices in order to show that d+− is not injective in this case either
(thus leading to a contradiction). Namely, the map d+− restricted to the
two-dimensional subspace of

H(C∗−∞(Σ{Λs},R× Λ1), d−−)

that is generated by the maximum and the minimum of the Morse function
must have a non-trivial kernel. Indeed, the maximum and the minimum are
two non-zero classes of degrees that differ by precisely dim Λ = n; however,
by the assumptions of the theorem, the target homology group does not
contain two classes with such an index difference unless α = 0. In either
case, the deduced non-injectivity is again in contradiction with d−0 = 0
and the exactness of the sequence in Theorem 4.1.

4.4. Spectral invariants for pairs of Legendrians

Spectral invariants where introduced by Viterbo [51] and later developed
by Oh [42]. They are now a well-established technique for studying quan-
titative questions in symplectic topology. They have also been defined for
Legendrian submanifolds in certain contact manifolds by Zapolsky in [52],
and Sabloff–Traynor considered some of their properties under Lagrangian
cobordisms in their work [46]. Here we study further properties that are
satisfied under Lagrangian cobordisms and positive isotopies which will be
used when proving Theorem 1.8. Since that theorem concerns the contac-
tisation of a Liouville domain, we will for simplicity restrict ourselves to
that geometric setting in this subsection.

For any pair of Legendrian submanifolds Λi ⊂ (M,α), i = 0, 1, together
with a pair εi of augmentations, we consider the canonical inclusion

ι` : LCC ∗ε0,ε1(Λ0,Λ1)[`,+∞] ⊂ LCC ∗ε0,ε1(Λ0,Λ1)
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of the subcomplex spanned by the Reeb chords being of length at least
` > 0 and use [ι`] to denote the induced map on the homology level.

Definition 4.8. — The spectral invariant of the pair (ε0, ε1) of aug-
mentations is defined to be

cε0,ε1(Λ0,Λ1) := sup {` ∈ R; coker[ι`] = 0} ∈ (0,+∞],

which is a finite positive real number if and only if LCH ∗ε0,ε1(Λ0,Λ1) 6= 0.

Note that the latter property holds since, for a closed Legendrian sub-
manifold of a contactisation, the Legendrian contact homology complex is
generated by finitely many Reeb chords (which have positive length) and
thus for `� 0 it is the case that LCC ∗ε0,ε1(Λ0,Λ1)[`,+∞] = 0.
By construction we obtain a non-zero homology class whenever the spec-

tral capacity is finite, namely:

Lemma 4.9.
(1) All non-zero homology classes in LCH ∗ε0,ε1(Λ0,Λ1) can be repre-

sented by a linear combination of generators being of length at
least cε0,ε1(Λ0,Λ1).

(2) If LCH ∗ε0,ε1(Λ0,Λ1) 6= 0, then there exists a non-zero class

αε0,ε1(Λ0,Λ1) ∈ im[ιcε0,ε1 (Λ0,Λ1)] ∈ LCH ∗ε0,ε1(Λ0,Λ1)

which is not in the image of [ι`] for any ` > cε0,ε1(Λ0,Λ1).

The following propositions give the crucial behaviour for our spectral
invariant under the relation of Lagrangian cobordisms.

Let Σ0 = Σ{Λs} be a concordance from Λ−0 to Λ+
0 induced by a Legen-

drian isotopy as constructed in Section 3, while Σ1 := R × Λ1 is a trivial
Lagrangian cylinder over a Legendrian Λ1 = Λ±1 .

Proposition 4.10. — For any choice of augmentations εi of Λ+
i , i =

0, 1, there exists augmentations ε−i of Λ−i for which

cε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) = cε0,ε1(Λ+

0 ,Λ
+
1 )

is satisfied with ε+
i := ε−i ◦ ΦΣi .

Proof of Proposition 4.10. — We prove this by using Part (1) of the
invariance result Theorem 2.4 combined with a neck-stretching argument.
The augmentation ε−0 will be taken to be equal to ε0 ◦ ΦΣ{Λ1−s}

.
To show the statement we consider the concatenation

Σ̃ := Σ{Λ1−s} � Σ{Λs} ⊂ (R×M,d(etα))
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of Lagrangian concordances, which is compactly supported Hamiltonian
isotopic to the trivial cylinder R × Λ0 by Proposition 3.4. After a neck-
stretching along the hypersurface {t0} × M along which the two cobor-
disms in the concatenation are joined, together with a gluing argument
(see Section 2.6), we can establish the last equality in

ε+
0 := ε−0 ◦ ΦΣ{Λs} = ε0 ◦ ΦΣ{Λ1−s}

◦ ΦΣ{Λs} = ε0 ◦ ΦΣ̃.

See e.g. [13, Lemma 5.4] for a similar result.
The claim now follows from the existence of the isomorphism

φ+ : C∗+∞(R× Λ0,R× Λ1)→ C∗+∞(Σ̃,R× Λ1),

established in Part (1) of Theorem 2.4, where

C∗+∞(R× Λ0,R× Λ1) = LCH ∗ε0,ε1(Λ0,Λ1),

C∗+∞(Σ̃,R× Λ1) = LCH ∗
ε+0 ,ε

+
1

(Λ0,Λ1).

More precisely, the latter theorem has here been applied to the complex
(Cth∗(R × Λ0,R × Λ1), dε0,ε1) while using the existence of the previously
established Hamiltonian isotopy from R × Λ0 to Σ̃. Here it is crucial that
φ+, and hence φ−1

+ as well, are upper triangular with respect to the action
filtration, from which one readily deduces that

cε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) = cε0,ε1(Λ+

0 ,Λ
+
1 )

holds as sought. �

Theorem 4.11. — Further assume that Σ0 ∩ Σ1 = ∅ and that the
Legendrian isotopy {Λs} is positive. For any pair of augmentations ε−i
of Λ−i it is then the case that

cε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) > cε−0 ,ε

−
1

(Λ−0 ,Λ
−
1 )

for the pull-back augmentations ε+
i := ε−i ◦ΦΣi . Moreover, cε+0 ,ε+1 (Λ+

0 ,Λ
+
1 ) =

+∞ holds if and only if cε−0 ,ε−1 (Λ−0 ,Λ
−
1 ) = +∞.

The following subsection will be devoted to the proof of this theorem.

4.5. Proof of Theorem 4.11

There are two possible strategies for proving this theorem. One is by
studying the invariance properties of the Legendrian contact homology
complex under a Legendrian isotopy, and one involves studying the Floer
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homology of the Lagrangian cobordism corresponding to the trace of the
isotopy as constructed in Section 3. Here we take the latter approach.
For technical reasons we will in the following need to make use of the so-

called cylindrical lift JP of a tame almost complex structure JP on (P,dθ);
these are cylindrical almost complex structures for which the canonical
projection Π: R×P ×R→ P is (J̃P , JP )-holomorphic. In particular, such
an almost complex structure J̃P is invariant under translations of both the
t and z coordinates.
First we perform some general computations for a pair Λi, i = 0, 1, of

Legendrians together with augmentations εi. By Λs1 we denote the image
of Λ1 under the time-s Reeb flow, i.e. translation of the z coordinate by
s ∈ R.

Lemma 4.12. — For a suitable cylindrical lift of an almost complex
structure on P and generic ` > 0, the canonical isomorphism

LCC ∗ε0,ε1(Λ0,Λ1)[`,+∞] = LCC ∗ε0,ε1(Λ0,Λ`1)

is an isomorphism of complexes.

Proof. — The fact that the differentials agree follows from [21, Theo-
rem 2.1]. Namely, the differentials of both complexes can be computed in
terms of JP -holomorphic discs inside P that have boundary on the La-
grangian projection

Π((R× Λ0) ∪ (R× Λ1)) = Π((R× Λ0) ∪ (R× Λ`1)) ⊂ (P,dθ),

which is an exact Lagrangian immersion. In particular, the translation in
the z-coordinate does not play a role for the counts of the relevant pseu-
doholomorphic discs. �

Now consider the exact Lagrangian cobordism φ`β+∂z
(R×Λ+

1 ) from (Λ+
1 )`

to Λ+
1 induced by wrapping the trivial cylinder, where β+(t) is the function

described in Section 2.5.

Lemma 4.13. — Consider the complex Cth∗(R × Λ+
0 , φ

`
β+∂z

(R × Λ+
1 ))

with differential d(+)
ε+0 ,ε

+
1
. The cylindrical lift J̃P may be assumed to be reg-

ular for the strips in the differential of this complex, for which we compute

C∗−∞(R× Λ+
0 , φ

`
β+∂z

(R× Λ+
1 )) = LCC ∗

ε+0 ,ε
+
1

(Λ+
0 , (Λ

+
1 )`),

C∗+∞(R× Λ+
0 , φ

`
β+∂z

(R× Λ+
1 )) = LCC ∗

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ),

and there is an equality ε+
1 ◦ Φφ`

β+∂z
(R×Λ+

1 ) = ε+
1 of augmentations. Fur-

thermore, the component d(+)
+− of d(+)

ε+0 ,ε
+
1
is equal to the canonical inclusion
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ι`, i.e.

d
(+)
+− = ι` : LCC ∗

ε+0 ,ε
+
1

(Λ+
0 , (Λ

+
1 )`)→ LCC ∗

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ).

(See Lemma 4.12 for the identifications used here.)

Proof. — The computations are analogous to those carried out in [12,
Lemma 2.10]. We here give the details only for how to establish the iden-
tification

ε+
1 ◦ Φφ`

β+∂z
(R×Λ+

1 ) = ε+
1 ,

where the left-hand side is the pull-back of the augmentation ε+
1 under the

DGA morphism induced by the cobordism φ`β+∂z
(R×Λ+

1 ). The remaining
claims follow by similar arguments.
It suffices to show that the DGA morphism induced by the cobordism

φ`β+∂z
(R× Λ+

1 ) is the canonical identification of complexes. This is indeed
the case, given the assumption that the DGA morphism is defined using
an almost complex structure that is a cylindrical lift. Namely, the image
under the canonical projection

Π: R× P × R→ P

of the discs in the definition of the DGA morphism are JP -holomorphic
discs having boundary on Π(R×Λ+

1 ). By a simple index computation (see
e.g. [21, Lemma 8.3]) these discs are, moreover, of negative expected di-
mension and must hence be constant (under the assumption that JP is
regular).
Finally, the discs in the definition of the DGA morphism can even be seen

to bijectively correspond to the double points of the Lagrangian projection
Π((R×Λ+

0 )∪(R×Λ+
1 )) ⊂ (P,dθ); namely, there is an explicit and uniquely

defined rigid J̃P -holomorphic disc in R × P × R contributing to the DGA
morphism living above each such double point. The regularity of the latter
explicitly defined discs was shown in [21, Lemma 8.3]. �

Similar computations can be made concerning the exact Lagrangian
cobordism φ`β−∂z (R × Λ−1 ) from Λ−1 to (Λ−1 )` (again, see Section 2.5).
Namely, we have:

Lemma 4.14. — Consider the complex Cth∗(R × Λ−0 , φ`β−∂z (R × Λ−1 ))
with differential d(−)

ε−0 ,ε
−
1
. The cylindrical lift J̃P may be assumed to be reg-

ular for the strips in the differential of this complex, for which we compute

C∗−∞(R× Λ−0 , φ`β−∂z (R× Λ−1 )) = LCC ∗
ε−0 ,ε

−
1

(Λ−0 ,Λ
−
1 ),

C∗+∞(R× Λ−0 , φ`β−∂z (R× Λ−1 )) = LCC ∗
ε−0 ,ε

−
1

(Λ−0 , (Λ
−
1 )`),
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and there is an equality ε−1 ◦ Φφ`
β−∂z

(R×Λ1) = ε−1 of augmentations. (See
Lemma 4.12 for the identifications made here.)

Now we consider the Lagrangian cobordisms Σ0 = Σ{Λs} and Σ1 =
φ`β∂z (R×Λ1), where the function β(t) is as described in Section 2.5; i.e. Σi
is a cobordism from Λ−i = Λi to Λ+

i = Λi. Consider the non-zero ele-
ment αε+0 ,ε+1 (Λ+

0 ,Λ
+
1 ) ∈ LCH ∗

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) as in Part (2) of Lemma 4.9

for ε+
i = ε−i ◦ ΦΣi . Here Recall that each of its representatives is a linear

combination of Reeb chord generators of which at least one is of length
equal to cε+0 ,ε+1 (Λ+

0 ,Λ
+
1 ) > 0.

Lemma 4.15. — Assume that {Λs} is a positive isotopy from Λ−0 to Λ+
0 ,

that Σ{Λs} ∩ (R× Λ1) = ∅, and that

0 < ` < cε−0 ,ε
−
1

(Λ−0 ,Λ
−
1 ).

It follows that αε+0 ,ε+1 (Λ+
0 ,Λ

+
1 ) 6= 0 ∈ LCH ∗

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) has a representa-

tive which is in the image of the component d′+− of the differential d′
ε−0 ,ε

−
1

of the complex Cth(Σ{Λs}, φ`β∂z (R× Λ1)).

Proof. — Denote by d′′
ε−0 ,ε

−
1
the differential of Cth(Σ{Λs},R×Λ1), whose

components will be denoted by d′′+−(a), . . . , etc.
Take a ∈ C∗−∞(Σ{Λs},R× Λ1) satisfying d′′

ε−0 ,ε
−
1

(a) = d′′+−(a) as well as

(4.2) [d′′+−(a)] = [(φ+)−1](αε+0 ,ε+1 (Λ+
0 ,Λ

+
1 )),

where φ+ is the chain isomorphism induced by Theorem 2.3 applied to the
compactly supported Hamiltonian isotopy from R × Λ1 to φ`β∂z (R × Λ1).
Here we need to use the fact that the complex Cth(Σ{Λs},R×Λ1) is acyclic,
which also is a consequence of the invariance result Theorem 2.3. The non-
zero element [a] ∈ LCH ∗

ε−0 ,ε
−
1

(Λ−0 ,Λ
−
1 ) can be represented by Reeb chords

all being of length at least cε−0 ,ε−1 (Λ−0 ,Λ
−
1 ) by Part (1) of Lemma 4.9, and

we replace a by such a representative.
An intersection point generator ofCF ∗(Σ{Λs}, φrβ∂z (R×Λ1)) can be com-

puted to be of action equal to at most ` > 0 whenever 0 < r 6 `. Part (2)
of Theorem 2.4 with a0 = ` thus shows that the chain homotopy

φ : (Cth(Σ{Λs},R× Λ1), d′′
ε−0 ,ε

−
1

)→ (Cth(Σ{Λs}, φ`β∂z (R× Λ1)), d′
ε−0 ,ε

−
1

)

satisfies

φ(a) = (A−, A+) ∈ C∗−∞(Σ{Λs}, φ`β∂z (R×Λ1))⊕C∗+∞(Σ{Λs}, φ`β∂z (R×Λ1)).
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In addition,

φ+ ◦ d′′+−(a) = φ ◦ d′′
ε−0 ,ε

−
1

(a) = d′
ε−0 ,ε

−
1
◦ φ(a) = (d′+− + d′−−)A− + d′++A+,

where the last equality follows from the above action considerations of φ(a).
From this together with Equality (4.2) we then conclude that

[d′+−(A−)] = αε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 )

holds as sought. �

Lemma 4.16. — Under the assumptions of Lemma 4.15, we consider
the element αε+0 ,ε+1 (Λ+

0 , (Λ
+
1 )`) 6= 0 ∈ LCH ∗

ε+0 ,ε
+
1

(Λ+
0 , (Λ

+
1 )`) induced by the

identification in Lemma 4.12. It follows that αε+0 ,ε+1 (Λ+
0 , (Λ

+
1 )`) satisfies the

properties that

(1) any representative is a linear combination of the basis of Reeb
chords of which at least one chord of length cε+0 ,ε+1 (Λ+

0 ,Λ
+
1 )− ` > 0

appears with a non-zero coefficient, and
(2) some representative is contained in the image of the component d+−

of the differential dε−0 ,ε−1 of the complex Cth(Σ{Λs},R× (Λ1)`).

Proof.

(1). — This is a straight-forward consequence of Part (2) of Lemma 4.9.

(2). — This follows from analysing the possible breakings when stretch-
ing the neck along the disconnected hypersurface

{0, T} × P × R ⊂ (R× P × R, d(etαstd))

of contact type (see Section 2.5).
Namely, let us consider a generator A− ∈ C∗−∞(Σ{Λs}, φ`β∂z (R × Λ1))

which gives a non-zero contribution 〈d′+−(A−), ι`(α0)〉 6= 0, where ι`(α0)
is a generator appearing with a non-zero coefficient in a representative
αε+0 ,ε

+
1

(Λ+
0 , (Λ

+
1 )); this is possible by Lemma 4.15 combined with Part (1)

of Lemma 4.9. The limit of a pseudoholomorphic disc of this type when
stretching the neck is shown in Figure 4.1. The pseudoholomorphic curve in
the middle level corresponds to a non-zero contribution to 〈d′+−(b), α0〉 6= 0,
and the claim now follows. �

The proof of Theorem 4.11 can now be finished without much effort by
considering the complex Cth(Σ{Λs},R × (Λ1)`)) with differential dε−0 ,ε−1 .
The computation in the proof of Lemma 4.5 shows that the action of a
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R× Λ+
0 φ`β+∂z

(R× Λ1)

d
(+)
+−

ι`(α0)

α0

d+−Σ{Λs} R× Λ`1

b

d
(−)
+−R× Λ−0 φ`β−∂z (R× Λ1)

A−

Figure 4.1. Possible limits of pseudoholomorphic discs contributing to
〈d′
ε−0 ,ε

−
1

(A−), ι`(α0)〉 after stretching the neck along {0, T} × P × R.
The middle level is a pseudoholomorphic disc contributing to
〈dε−0 ,ε−1 (b), α0〉.

Reeb chord generator γ± from Λ±1 to (Λ±0 )` is given by

a(γ−) = `(γ−),

a(γ+) = eT `(γ+)− f+
Σ{Λs} ,

for a constant f+
Σ{Λs} > 0. By Part (1) of Lemma 4.16 we see that any rep-

resentative of αε+0 ,ε+1 (Λ+
0 , (Λ

+
1 )`) 6= 0 ∈ LCH ∗

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) must contain a

generator of action equal to

eT (cε+0 ,ε+1 (Λ+
0 ,Λ

+
1 )− `)− f+

Σ{Λs} .

We now argue by contradiction, assuming that

cε−0 ,ε
−
1

(Λ−0 ,Λ
−
1 ) > cε+0 ,ε

+
1

(Λ+
0 ,Λ

+
1 )

holds. Hence, in view of Lemmas 4.15 and 4.16, we can choose a number
` > 0 satisfying

0 < cε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) < ` < cε−0 ,ε

−
1

(Λ−0 ,Λ
−
1 ).

In other words, every representative of αε+0 ,ε+1 (Λ+
0 , (Λ

+
1 )`) contains a non-

zero multiple of a generator of negative action. Since the differential in-
creases action (see Lemma 2.2), and since the Reeb chords at the negative
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end are of positive action, it finally follows that

αε+0 ,ε
+
1

(Λ+
0 , (Λ

+
1 )`) /∈ im[d+−].

This clearly contradicts Part (2) of Lemma 4.16.

4.6. The proof of Theorem 1.8 (the case of a contactisation)

Write Λ0 := Λ and Λ1 := Λ′. Let Σ{Λs} be the cylinder induced by a
positive loop of Legendrians inside M \ Λ1 starting at Λ0 = Λ0. By the
construction in Section 3, this cylinder may be assumed to be disjoint from
the cylinder Σ1 := R× Λ1.

We argue by contradiction and assume that there are augmentations εi,
i = 0, 1, of the Chekanov–Eliashberg algebra of Λi for which LCC ∗ε0,ε1(Λ0,

Λ1) is not acyclic.

Remark 4.17. — The non-existence of an arbitrary positive loop of Leg-
endrians containing Λ under the stronger assumption that the Legendrian
submanifolds have separated z-coordinates is an immediate consequence.
Namely, in this case we can always arrange so that Σ{Λs} and R× Λ1 be-
come disjoint by translating the latter component sufficiently far in the
negative z-direction.

First observe that the assumption of having a non-vanishing Legendrian
contact homology can be translated into the fact that 0 < cε0,ε1(Λ0,Λ1) <
+∞ is a finite positive number. Since the length of the Reeb chords from
Λ1 to Λ0 form a discrete subset of (0,+∞) by the genericity assumptions,
after possibly replacing the above augmentations we may even assume that
the pair of augmentations is minimal in the sense that

(4.3) 0 < cε0,ε1(Λ0,Λ1) 6 cε′0,ε′1(Λ0,Λ1)

is satisfied for any other pair (ε′0, ε′1) of augmentations.
By Proposition 4.10 we can find augmentations ε+

i for which

cε+0 ,ε
+
1

(Λ0,Λ1) = cε0,ε1(Λ0,Λ1)

and where ε+
i = ε−i ◦ ΦΣi . This, however, is in contradiction with the

Inequality (4.3) combined with the Inequality

cε+0 ,ε
+
1

(Λ0,Λ1) > cε−0 ,ε
−
1

(Λ0,Λ1)

established by Theorem 4.11 (here the assumption Σ0 ∩ Σ1 = ∅ is used).
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5. Wrapped Floer cohomology and non-existence of
contractible positive loops

Here we prove Theorem 1.15, which gives an obstruction to the existence
of a contractible positive loop of a Legendrian in terms of the wrapped
Floer cohomology of an exact Lagrangian filling. This theory was originally
defined in [2] by Abbondandolo–Schwarz and later developed by Abouzaid–
Seidel [3] and Ritter [45].

5.1. Setup of wrapped Floer cohomology

Here we give a very brief outline of the definition of wrapped Floer co-
homology. We refer to [45] as well as [17] for more details.

Consider a Legendrian Λ ⊂ (Y, ξ = kerα) living in the contact boundary
of a compact Liouville domain (X, dθ), and assume that Λ admits an exact
Lagrangian filling L ⊂ (X,dθ) inside the completion of the latter. More
precisely, we will assume that

(X \X, dθ) = ((−1,+∞)× Y, d(etα)),

L ∩ (X \X) = ((−1,+∞)× Λ,

are convex cylindrical ends, while L := L ∩X is compact with Legendrian
boundary ∂L = Λ ⊂ (Y = ∂X,α).

Now, for each generic λ > 0, consider the autonomous Hamiltonian
Hλ : X → R which vanishes in the compact part X, while it is of the
form λρ(t)et−e2Tλ in the cylindrical end [−1,+∞)×Y . Here the function
ρ : R→ R>0 satisfies ρ(t) = 1 for t > 2T + δ, ρ(t) = 0 for t 6 2T − δ, and
d2

dt2 (ρ(t)et) > 0 for all t ∈ R, where 0 < δ < 1 is small. Such a function
along with its induced Hamiltonian vector field is schematically depicted
in Figure 5.1.
Given two generic Lagrangian fillings Li, i = 0, 1, which are cylindrical

inside the subset [T,+∞)× Y , the associated Floer cohomology complex

(CF ∗(L0, L1;Hλ), ∂)

is now defined as follows.
• The generators: These are the Hamiltonian time-one chords x(t)
of Hλ from x(0) ∈ L0 to x(1) ∈ L1. Equivalently, such chords are
intersection points φ1

Hλ
(L0)∩L1, which moreover can be seen to be

of the following two kinds:
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– Intersection points inside {2T − δ 6 t 6 2T + δ}: these are in
bijective correspondence with the Reeb chords from Λ0 to Λ1
of length at most λ, and

– Intersection point inside {t < 2T − δ}: these are simply the
intersection points L0 ∩ L1.

• The differential: For two generators x±, the coefficient 〈∂(x+), x−〉
of the differential ∂ counts the number of rigid finite-energy solu-
tions of the ∂-equation with Hamiltonian perturbation term

u : R× [0, 1]→ X,

∂su(s, t) + Jt(∂tu(s, t)−XHλ(u(s, t))) = 0,
u(s, i) ∈ Li, i = 0, 1,
lims→±∞ u(s, t) = x±(t),

i.e. so called Floer strips with boundary on L0 ∪ L1. The chords
x+ and x− are also called the input and output, respectively, for
obvious reasons.

Recall that there are primitives fi : Li → R of the pull-back of the Liouville
form θ to Li, i = 0, 1, by the exactness assumption. For a choice of such
primitives, the action of a Hamiltonian chord x(t) = φtHλ from x(0) ∈ L0
to x(1) ∈ L1 is defined to be

(5.1) A(x) := f0(x(0))− f1(x(1)) +
∫ 1

0
(x∗θ −Hλ(x(t)) dt).

It follows that the differential decreases the action in the sense that

〈∂(x+), x−〉 6= 0

implies that A(x−) < A(x+).
Furthermore, whenever λ� 0 is sufficiently large and δ > 0 is sufficiently

small (both depending on Li, i = 0, 1), Part (1b) of Lemma 5.2 below shows
that there is a subcomplex

(CF ∗0(L0, L1;Hλ), ∂0) ⊂ (CF ∗(L0, L1;Hλ), ∂)

consisting of the generators L0 ∩ L1 ⊂ X \ ([2T − δ,+∞)× Y ). Moreover,
the quotient complex

(CF ∗+∞(L0, L1;Hλ), ∂∞) := (CF ∗(L0, L1;Hλ), ∂)/CF ∗0(L0, L1;Hλ)

has a canonical generating set which is in a canonical bijective correspon-
dence with the set of Reeb chords from Λ0 to Λ1 of length less than λ.

The wrapped Floer cohomology is finally defined as the direct limit

HW ∗(L0, L1) := lim
λ→+∞

HF ∗(L0, L1;Hλ)
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for a directed system defined by suitable continuation maps. Note that
HW ∗(L0, L1), L0 = L1 is a unital algebra; we refer to [45] for the details.

Remark 5.1. — In the cases when it is possible to define the Floer com-
plex Cth∗(L1, L0) of Section 2.3 (which with the current technology imposes
some constraints), there is an isomorphism

HW ∗(L0, L1) ' H(Cth∗(L1, L0))

(note the order!) where the right-hand side is the homology of the associated
dual complex.

Hλ(log τ) = Hλ(t)

d
dτHλ(log τ) = e−t d

dtHλ(t)

τ = et

τ = et

λ

e2T

e2T

Figure 5.1. Above: The autonomous Hamiltonian Hλ(t) = Hλ(log τ)
that is used for wrapping the cylindrical end of the Lagrangian fill-
ing L0. Below: the corresponding Hamiltonian vector field is given by
e−t d

dtHλ(t)Rα, which is parallel to the Reeb vector field.

5.2. Proof of Theorem 1.15

In the following we will make heavy use of the fact that, if on an exact
Lagrangian i : L → X the Liouville form θ satisfies i∗θ = df and if φ1

G is
the time one flow of a Hamiltonian G, then (φ1

G ◦ i)∗θ = d(f +K) for the
function

(5.2) K(q) =
∫ 1

0
(θ(XG)φt

G
(q) −H(φtG(q)))dt

(compare with the definition of action in Equation (5.1)).
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A central technique that also will be used over and over is to use neck
stretching in order prevent Floer strips from crossing a given barrier (in
the form of a dividing contact hypersurface). There are several different
conditions that will be used for this purpose, all which are more or less
standard; see e.g. [17, Section 2.3] as well as [22, Section 6.1]. For the sake
of completeness we here recollect the needed results.

For now we assume that the exact Lagrangian cobordisms Li ⊂ (X,ω),
i = 0, 1, both are cylindrical in a neighbourhood of the slice {t0}×Y in the
cylindrical end; this is a dividing hypersurface of contact type intersecting
Li in a Legendrian submanifold. We moreover assume that Gs : X → R is a
time-dependent Hamiltonian that vanishes near this slice. The subsets that
we consider are XL, XR ⊂ X in the decomposition X = XL∪XR into con-
nected closed subsets such that XL∩XR = {t0}×Y , i.e. XR = [t0,+∞)×Y
while XL = X \XR. When here speaking about Floer strips or continu-
ation strips we mean either a Floer strip defined for the time-dependent
Hamiltonian G, or a continuation strip involving the Hamiltonian that van-
ishes equivalently and the Hamiltonian G. (The latter continuation strips
are those appearing in the definition of the continuation maps that turn
on or off the Hamiltonian perturbation-term G, as well as for the chain
homotopies between their compositions.) Also, recall the definition

‖Gs‖osc :=
∫ 1

0
(max
X

Gs −min
X

Gs)dt > 0

of the oscillatory norm.

Lemma 5.2. — Under the above assumptions, and while using primi-
tives fi : Li → R that vanish in the slice Li ∩ {t = t0} in order to define
the action, the following is satisfied:

(1) A Floer strip or continuation strip with either
(a) input being a generator of negative action contained in XR,

or
(b) output being a generator of positive action contained in XR,
has both of its asymptotics contained inside XR;

(2) (a) A Floer strip whose input and output chords are both con-
tained in XL is contained entirely inside XL,

(b) The same is true for a continuation strip, under the addi-
tional assumptions that Gs vanishes inside XL, while its input
and output chords xin and xout satisfies A(xout) − A(xin) >
‖Gs‖osc; and
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(3) Under the additional assumption that Gs vanishes inside XR, it
follows that a continuation strip having both input and output con-
tained inside XR satisfies the property that
(a) the action of the output is not greater than the action of the

input, and
(b) if its symplectic area moreover vanishes (i.e. if the actions of

the input and output agree), then the strip is contained entirely
inside XR (and is thus constant).

Proof. — It was shown in [22, Lemma 6.2] that stretching the neck along
{t0} × Y can be interpreted as having the following effect on the action of
the generators:

• the action of a generator in XR is rescaled by an arbitrarily large
positive constant eλ, λ� 0, while

• the action of a generator in XL is kept fixed.
Also, recall that the following basic facts about the symplectic area of
Floer strip and continuation strip (see e.g. [22, Section 3.2]). First, an el-
ementary application of Stokes’ theorem implies that the symplectic area
of either a Floer strip or a continuation strip is given by the action dif-
ference A(xin) − A(xout) when the input and output asymptotics are the
intersection points xin and xout, respectively. The symplectic area moreover
satisfies the following:

(i) The symplectic area of a Floer strip is non-negative, and vanishes
if and only if the strip is constant; and

(ii) For a continuation strip u : R × [0, 1] → X between the vanishing
Hamiltonian and the Hamiltonian Gs, the symplectic area of the
restriction to any open domain U ⊂ R × [0, 1] is bounded from
below by the oscillatory norm −‖Gs‖osc 6 0, under the assumption
that G◦u vanishes on some neighbourhood of U \U (we can always
take e.g. U = R× [0, 1]).

For the second property, recall the estimate

0 6
∫
U

ω(∂tu(s, t), J∂tu(s, t)) dtds 6
∫
U

u∗ ω + ‖Gs‖osc

of the Floer energy under the assumptions of the support of G ◦ u.
(1a), (1b), and (3a). — The statements all follow from the above com-

putations and considerations of the action.
(2a). — This is the “no escape lemma” from [45, Lemma D.6].
(2b). — This is similar to the no escape lemma, but where we first

must use the SFT compactness theorem [10] applied to the neck-stretching
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sequence in order to extract a piece of the strip inside XL which is of sym-
plectic area greater than ‖Gs‖osc. The existence of such a strip implies the
existence of a piece inside XR with symplectic area smaller than −‖Gs‖osc,
thus contradicting Property (ii) above. (N.B. here we do not rescale the
symplectic form on XR whilst stretching the neck: we only deform the
conformal structure.)
(3b). — This follows from the monotonicity property of the symplectic

area of pseudoholomorphic curves with boundary [50, Propositions 4.3.1
and 4.7.2], together with the effect on the action by a neck stretching.
Namely, the total symplectic area still vanishes after the neck has been
stretched, while the symplectic area concentrated near {t0} × Y becomes
arbitrarily large by the monotonicity property. In other words, the piece of
the strip contained insideXL necessarily has arbitrarily negative symplectic
area, which is in contradiction with the bound from Property (ii) above. �

Step 1. Write L1 := L. Consider a small push-off L0 of L obtained by,
first, applying the small negative Reeb flow

φε−et : ([−1,+∞)× Y, d(etα))→ ([−1,+∞)× Y, d(etα)), ε > 0,

in the cylindrical end and, second, performing a generic Hamiltonian per-
turbation in the compact part.
We proceed to perturb the Legendrian ends Λi = ∂Li ⊂ Y, i = 0, 1, of the

fillings. After a small Hamiltonian isotopy of the cylindrical end induced
by a contact isotopy, we may assume that Λ0 is identified with a section
−j1f ⊂ (J 1Λ1,dz − pdq) inside a standard Legendrian neighbourhood in
which Λ1 is identified with the zero-section. Here the function f : Λ1 →
(0, ε) is taken to be a C2-small positive Morse function. We write γ+

M for
the Reeb chord from Λ0 to Λ1 corresponding to the maximum of f , which
from now on is assumed to be unique.
Consequently, L0 is a section −dF ⊂ (T ∗L1, d(pdq)) in a standard We-

instein neighbourhood of L1 ⊂ (X,dθ) which satisfies ∂tF > 0 outside of
a compact subset. We further assume that F : L1 → R is a Morse function
with no local maximum.
Note that the two potential functions f0 and f1 on the two Lagrangian

fillings L0 and L1 can be taken to be C2-close at this step (under the
obvious identifications).

Lemma 5.3. — For each λ > 1 the chain γ+
M given as the Reeb chord

from Λ0 to Λ1 corresponding to the maximum of f is a cycle whose limit
as λ→ +∞ represents the unit in HW ∗(L,L).
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qγMpγM γ+
M

τ = et

L1 = L

L0

e1 e2 e3 e2T

Figure 5.2. A schematic picture of the perturbation of L0 after wrap-
ping by φ1

Hλ
together with L1. In this picture the Floer strips con-

tributing to the identities ∂(γ+
M ) = qγM = ∂(pγM ) are both visible here.

Proof. — Partially wrap the end of L so that the chords corresponding to
critical points of f becomes intersection points contributing to
CF 0(L,L,Hλ), the proposition follows now from the description of the
unit in [45, Section 6.3 and 6.13]. Note that this generator is the global
maximum of a Morse function on L1, the differential of which has graph
identified with L0. �

Step 2. Inside the cylindrical part X \X there exists a Weinstein neigh-
bourhood identifying L1 with the zero-section in (T ∗L1, d(pdq)), while L0
is given by the graph of −d(etf). Here the coordinate t : L1 → R is induced
by the coordinate on the R-factor of the symplectisation R × Y . We refer
to [13, Section 8.4] for the construction of such a Weinstein neighbourhood.
Now we perform the following modification inside the subset [0, 4] × Y .

Consider a Morse function g : [−1,+∞) → R satisfying g(t) = t for t > 4
as well as for t 6 0, while g′(1) = g′(3) = 0, g′′(1) < 0, g′′(3) > 0, are
its unique critical points. I.e. g(t) has a non-degenerate local maximum at
t = 1 and a non-degenerate local minimum at t = 3. We moreover require
that g′(t) ≡ −C < 0 is constant in the subset {2− 2δ 6 t 6 2 + 2δ}.
We replace L0 by the graph −d(eg(t)f) and again denote the resulting

Lagrangian cobordism by L0. There are now additional intersection points
of L0 ∩ L1 contained in the slices {t = 1} and {t = 3}. In particular, we
have the unique local maximum pγM of eg(t)f contained in the slice {t = 1}
and the unique critical point qγM of index dimL− 1 contained in the slice
{t = 3}. If g(t)− t is chosen to be sufficiently C0-small, it follows that the
new potential function f0 is C2-close to the original one. Cf. Figure 5.2.

Lemma 5.4. — For each λ > 1 the chain pγM +γ+
M is a cycle whose limit

as λ → +∞ represents the unit in HW ∗(L,L). Moreover, ∂(γ+
M ) = qγM =

∂(pγM ) is satisfied. (See Figure 5.2.)
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Proof. — The first statement is the same as Lemma 5.3 as now the unit in
HF 0(L0, L

′
0) where L′0 is the partially wrapped Lagrangian is given by the

sum of intersection points coming from pγM and γ+
M . The second statement

follows from the explicit description of holomorphic curves in the Weinstein
neighbourhood similarly to Floer’s computation in [34] of the differential
in the case of a small Hamiltonian push-off. �

h(log τ) = h(t)

d
dτ h(log τ) = e−t d

dth(t)

τ = et

τ = et

e2−δ e2 e2+δ

e2−δ e2 e2+δ

1

Figure 5.3. Above: The autonomous Hamiltonian h(t) = h(log τ) that
is used to perform the “finger move” in Step 3. Below: the correspond-
ing Hamiltonian vector field is given by e−t d

dth(t)Rα, which is parallel
to the Reeb vector field.

Step 3. We use a C0-small Hamiltonian to introduce a very long “finger
move” at t = 2. More precisely, we apply a Hamiltonian isotopy of the
form φκh for κ� 0, where the Hamiltonian h(t) satisfies the property that
e−t d

dth(t) > 0 is a bump-function supported inside (2−δ, 2+δ) ⊂ [−1,+∞)
and which is constantly equal to e−t d

dth(t) ≡ 1 near t = 2. Moreover, we
assume that d

dt (e
−t d

dth(t)) 6 0 and d
dt (e

−t d
dth(t)) > 0 holds on t > 2 and

t 6 2, respectively. Such a bump function is shown in Figure 5.3. We denote
the resulting filling by Lκ0 . Note that it follows from Equation (5.2) that for
κ� 0, the newly created intersection points all correspond to Reeb chords
from Λ0 to Λ1 of length longer than the chords corresponding Crit(f); these
chords themselves correspond to Reeb chords on Λ being of length at most
κ. More precisely, for each such Reeb chord γ on Λ of length `(γ) 6 κ there
is a corresponding pair of intersection points γa ∈ {2 − δ < t < 2} and
γb ∈ {2 < t < 2 + δ}, both being of action roughly equal to e2`(γ).
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Part (1a) of Lemma 5.2 applied to {2}×Y then shows that the Floer dif-
ferential ∂0 satisfies the property that the generators contained in [2,+∞)×
Y form a subcomplex

(CF rel(Lκ0 , L1;Hλ), ∂rel) ⊂ (CF (Lκ0 , L1;Hλ), ∂)

whenever κ � 0 is sufficiently large. This is related to the definition of
relative wrapped Floer cohomology in [17] as well as the construction of
the Viterbo transfer map. By elementary action reasons, we also have a
subcomplex

CF rel,60(Lκ0 , L1;Hλ), ∂rel,60) ⊂ (CF rel(Lκ0 , L1;Hλ), ∂rel),
CF rel,60(Lκ0 , L1;Hλ) := CF rel(Lκ0 , L1;Hλ) ∩CF 0(Lκ0 , L1;Hλ).

generated by intersection points L0∩L1 as well as those intersection points
of Lκ0 ∩ L1 contained inside {2 < t < 3}, i.e. corresponding to Reeb chords
from Λ0 to Λ1 being of length at most κ.

Lemma 5.5. — For any κ > 0 we still have

qγM = ∂(γ+
M ) = ∂rel(γ+

M ) = ∂(pγM ) = ∂0(pγM ) ∈ (CF rel(Lκ0 , L1;Hλ), ∂rel).

Moreover, if the cycle qγM is a ∂rel,60-boundary for some κ > 0, then
HW ∗(L,L) = 0.

Proof. — Since the Hamiltonian h : X → R used to perform the finger
move is C0-small, the continuation map φκ induced by h may be assumed
to be action decreasing. Recall that

φκ : CF (L0, L1;Hλ) ∼−→CF (Lκ0 , L1;Hλ),

φκ|CF 0(L0,L1;Hλ) : CF 0(L0, L1;Hλ) ∼−→CF 0(Lκ0 , L1;Hλ)

is a chain homotopy equivalence defined by counting “continuation” strips.
Here, Part (1b) of Lemma 5.2 has been applied to the slice {2T − δ} × Y
in order to infer that also φκ|CF 0(L0,L1;Hλ) is a homotopy equivalence.

Moreover, we have the identities

φκ(pγM ) = pγM + b, b ∈ CFrel,60(Lκ0 , L1;Hλ),
φκ(qγM ) = qγM ,

φκ(γ+
M ) = γ+

M .

To see this, recall that h vanishes near the generators pγM , qγM and γ+
M

by construction. These three equalities now follow from Lemma 5.2, by
inferring that only the constant strips give contributions. More precisely,
the first equality is shown by applying Part (2b) to {2− δ} × Y , while the
second and third equalities are shown by applying Part (3b) to {2+δ}×Y .
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Combining these three equalities with the explicit computation made in
Lemma 5.4, we can now conclude the first claim.
Now assume that ∂rel,60(a) = qγM , where the action of a thus can be

assumed to be significantly larger than that of both qγM and pγM . By the
above, we now compute ∂0(pγM − a) = 0, i.e. pγM − a is a nontrivial cycle.
However, since no chain of the form pγM − a + ∂0(b) is in the image of φκ
by its action-decreasing properties, and since φκ|CF 0(L0,L1;Hλ) is a chain
homotopy equivalence, the cycle pγM − a must be a ∂0-boundary. In partic-
ular, there exists a chain c for which ∂0(c) = pγM holds modulo an element
in CF rel(Lκ0 , L1;Hλ).

Note that the quotient complex (CF0(Lκ0 , L1;Hλ), ∂0)/CFrel(Lκ0 , L1;Hλ)
again can be used to compute HW ∗(L,L), when taking the appropriate
direct limit κ→ +∞. Cf. the definition of the Viterbo transfer map whose
construction goes via such a quotient. (In this case we are computing the
Viterbo transfer of a trivial cobordism, which hence gives an isomorphism).
Since the limit of pγM becomes the unit of the algebra HW ∗(L,L), the
statement now follows. �

Step 4. Replace Lκ0 ∩ ([5,+∞) × Y ) with the concordance Σ{Λs} in-
duced by a positive loop, thereby producing the exact Lagrangian filling
L̃κ0 which is Hamiltonian isotopic to L0 for a Hamiltonian having compact
support contained inside (5, T )×Y (here we used the assumption that the
isotopy is contractible together with Proposition 3.4). Here it is necessary
that the constant T > 0 chosen in the initial setup for the computation
of the wrapped Floer cohomology is sufficiently large. Recall that the con-
stant T > 0 was taken so that all our data is cylindrical inside the subset
[T,+∞)× Y .
The invariance proof for the Floer complex under compactly supported

Hamiltonian isotopies produces a chain homotopy equivalence

φ : (CF (Lκ0 , L1;Hλ), ∂)→ (CF (L̃κ0 , L1;Hλ), ∂′).

For κ� 0 sufficiently large, Lemma 5.2 again shows that

φ(CF 0(Lκ0 , L1;Hλ)) ⊂CF 0(L̃κ0 , L1;Hλ),

φ(CF rel(Lκ0 , L1;Hλ)) ⊂CF rel(L̃κ0 , L1;Hλ)

are satisfied; for the first statement we apply Part (1b) of this lemma to
{2T −δ}×Y while for the second statement we apply Part (1a) to the slice
{2} × Y .

Lemma 5.6. — The Reeb chord γ+
M ∈ (CF ∗(L̃κ0 , L1;Hλ), ∂′) is a

∂′-cycle which can be assumed to be of negative action. Moreover,
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qγM ∈ CF ∗(L̃κ0 , L1;Hλ) is of positive action, while all the generators cor-
responding to the intersection points L̃κ0 ∩ L1 ∩ {t > 5} are of negative
action.

Proof. — This is a straight-forward action computation; cf. the compu-
tation made in Lemma 4.5. �

Lemma 5.7. — If some chain of the form qγM +c ∈CF ∗rel,60(L̃κ0 , L1;Hλ)
is a ∂′rel,60-boundary, where c is a linear combination of generators of neg-
ative action, then HW (L,L) = 0.

Proof. — By the action properties established in Lemma 5.6 together
with the fact that the differential decreases action, we clearly have

〈∂′rel(c′), qγM 〉 = 0

whenever c′ has negative action. The generators of CF ∗rel,60(L̃κ0 , L1;Hλ)
being of non-negative action are contained inside {t 6 4}. An application
of Part (2a) of Lemma 5.2 to {4}×Y now shows that any Floer trajectory
contributing to 〈∂′rel(a), qγM 〉 = 1 in fact must live entirely inside the same
subset. These Floer trajectories are thus in bijective correspondence with
the Floer trajectories corresponding to 〈∂rel,60(a), qγM 〉. The result is then
deduced from Lemma 5.5. �

Lemma 5.8. — We have

φ(γ+
M ) = γ+

M + b, b ∈CF ∗rel,60(L̃κ0 , L1;Hλ)

while, for κ� 0 sufficiently large, we also have

φ(qγM ) = qγM + ∂′rel,60(c) + d, c, d ∈CF ∗rel,60(L̃κ0 , L1;Hλ),

where d moreover is a sum of generators of negative action.

Proof. — For the first claim, we argue as follows. Applying Part (3a) of
Lemma 5.2 to {2T − δ} × Y , it follows that the continuation map must
decrease the action when restricted to the Reeb chord generators in {t >
2T − δ}. Since γ+

M is the shortest Reeb chord from Λ0 to Λ1, it is of least
action amongst the generators of the quotient

CF (Lκ0 , L1;Hλ)/CF 0(Lκ0 , L1;Hλ).

What remains is thus now to show that 〈φ(γ+
M ), γ+

M 〉 = 1. This count is
established by inferring that a continuation strip which contributes to this
count must be confined to the subset {t > 2T − δ} where the Hamiltonian
vanishes. We can then use the standard fact that a rigid continuation strip
must be constant for a vanishing Hamiltonian. That the strip is contained
in the region is the case by Part (3b) of Lemma 5.2 applied to {2T−δ}×Y .
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We now continue with the second claim. Part (2a) of Lemma 5.2 applied
to {4} × Y shows that

(5.3) 〈∂′0(a1), a2〉 = 〈∂0(a1), a2〉

whenever ai, i = 1, 2, are generators contained inside {t < 4}. Namely, the
Floer strips contributing to these counts must be confined to the subset
{t 6 4} in which L̃κ0 ∩ {t 6 4} = Lκ0 ∩ {t 6 4} is satisfied.

If, in addition, κ� 0 is taken sufficiently large, a further application of
Part (2b) of Lemma 5.2 to {2} × Y shows that

φ(pγM ) = pγM + c, c ∈CF rel,60(L̃κ0 , L1;Hλ)

holds as well. Indeed, in this case the strips contributing to 〈φ(a1), a2〉,
for generators ai, i = 1, 2, contained inside {t < 2}, must be contained
entirely inside the subset {t < 2} where the Hamiltonian vanishes. Again,
such strips are hence constant.
The chain map property now gives

φ(qγM ) = φ(∂0(pγM )) = ∂′0(φ(pγM )) = ∂′0(pγM + c) = ∂0(pγM ) + d+ ∂′rel,60(c)

where we rely on Lemma 5.5 for the first equality and Equality (5.3) for
the last equality. �

Step 5. We are now ready to finish the proof of Theorem 1.15. From the
chain map property together with Lemma 5.8 we see that

∂′(γ+
M + b) = ∂′(φ(γ+

M )) = φ(∂(γ+
M )) = φ(qγM ) = qγM + ∂′rel,60(c) + d,

where b, c, d ∈CF rel,60(L̃κ0 , L1;Hλ), and d is a sum of generators of negative
action. Since

〈∂′(a), qγM 〉 = 〈∂′rel,60(a), qγM 〉 = 0, ∀ a ∈CF rel,60(L̃κ0 , L1;Hλ),

holds by Lemma 5.7 together with the assumption that HW ∗(L,L) 6= 0,
we now conclude that necessarily 〈∂′(γ+

M ), qγM 〉 6= 0. This, however, is in
contradiction with the action computation in Lemma 5.6. In other words,
the hypothetical contractible positive Legendrian isotopy containing Λ0
cannot exist.

6. Applications to strong orderability

In this paragraph, we apply our techniques to the study of strong or-
derability in the sense of Liu [40]: we prove Theorem 1.18 by using Theo-
rem 1.15.
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The proof of Theorem 1.18 relies on the following equivalence, known to
experts:

Theorem 6.1. — Let (W,ω = dα) be a Liouville domain and denote
by (xW, pω) its completion by addition of the positive half symplectisation
([0,+∞)×∂W, d(esα)) of (∂W,α) along ∂W . Let ∆

xW×xW
be the Lagrangian

diagonal in the symplectic product (xW ×xW, pω ⊕ −pω). Then the wrapped
Floer cohomology of ∆

xW×xW
is isomorphic to the symplectic homology of

(W,dα).

Proof. — We sketch a proof following closely the lines proposed by
Zenaïdi. We start from a time-dependant Hamiltonian function H : R ×
xW → R which equals to (a perturbation of) e2s in [0,+∞) × ∂W , s ∈
[0,+∞). On xW×xW , we consider the split Hamiltonian H⊕ : R×xW×xW →
R defined by H⊕(t, x, y) = H(t, x) + H(t, y), as well as a split almost
complex structure J⊕ = J ⊕ (−J) compatible with pω ⊕ −pω. With these
data, we define a relative symplectic homology, by counting Floer strips
in (xW ×xW,J⊕, H⊕) with boundary on ∆

xW×xW
between time-1 chords of

the Hamiltonian ΦH⊕ . Notice here that a Hamiltonian chord from (x, x) to
(y, y) consists of H-chords from x to y on the first factor and from y to x
on the second factor.
We first show that this homology is isomorphic to SH (W ). For that, we

let τ : (R × [0, 1], i) → (R × [0, 1], i) be the anti-holomorphic involution
of the strip given by τ(s, θ) = (s, 1 − θ). It switches the two boundary
components. If u : (R× [0, 1], i)→ (xW ×xW,J⊕, H⊕) is a Floer strip, then
its projection/twisted projection to the first and second factors u1 = π1 ◦u
and u2 = π2 ◦ u ◦ τ satisfy the Floer equation in (xW,J,H). Moreover,
since u(s, 1) = (u1(s, 1), u2(s, 0)) and u(s, 0) = (u1(s, 0), u2(s, 1)) belong to
∆

xW×xW
, one has that u1(s, 1) = u2(s, 0) and u1(s, 0) = u2(s, 1). This means

that we can glue the two strips u1 and u2 together along their boundary
components to obtain a Floer cylinder u1]u2 : R×S1 → (xW,J,H) which is
exactly of the type counted by the differential in symplectic Floer homology
of (xW,J,H) (defined by the time-2 periodic orbits of the Hamiltonian H).
Conversely, if we parametrise the circle S1 by R/(2Z), any cylinder u :
R × S1 → (xW,J,H) counted in the differential of the Floer complex of
(xW,J,H) can be decomposed in two strips u1 : R × [0, 1] → (xW,J,H)
and u2 : R × [1, 2] → (xW,J,H) with matching boundary conditions. We
reparametrise u2 to u′2(s, θ) = u2(s, θ − 1). The map u = (u1, u

′
2 ◦ τ) :

(R × [0, 1], i) → (xW ×xW,J⊕, H⊕) is then a Floer strip with boundary on
∆

xW×xW
.

TOME 69 (2019), FASCICULE 4



1734 B. CHANTRAINE, V. COLIN & G. DIMITROGLOU RIZELL

To conclude, it remains to deform the Hamiltonian data (J⊕, H⊕) to one
(J ,H) needed to define the wrapped complex. This can be done amongst
Hamiltonians with exponential growth in the direction of the Liouville vec-
tor field in (xW ×xW, pω⊕−pω). Such a path of data induces an isomorphism
at the homology level given by continuation maps defined by counts of
strips satisfying parametrised Floer equations, as carried out by Oancea in
his thesis [41]. We also recall the standard fact that the homology count-
ing Hamiltonian self chords on ∆

xW×xW
and Floer strips with boundary on

∆
xW×xW

is isomorphic to the Lagrangian Floer homology counting inter-
section points between ∆

xW×xW
and ΦH⊕(∆

xW×xW
) as well as holomorphic

strips. �

We now complete the proof of Theorem 1.18.
Proof. — We consider the completion (xW, pω) of (W,ω) obtained by the

addition of the positive half symplectisation ([0,+∞)×M,d(esα)) of (M,α)
to (W,ω) along M = ∂W . Let φ1 be a Hamiltonian diffeomorphism of
(xW, pω) whose Hamiltonian H equals e2s in [0,+∞) ×M . The symplectic
homology of (W,ω) is the Hamiltonian Floer homology of φ1. By The-
orem 6.1, it is the wrapped Floer cohomology of the diagonal ∆

xW×xW
in

(xW×xW,ω⊕−ω). Note that (xW×xW,ω⊕−ω) has an ideal contact boundary
(V, ζ) in which the Lagrangian ∆

xW×xW
has an ideal Legendrian boundary

L. The diagonal ∆
xW×xW

is a Lagrangian filling of the Legendrian L. From
Theorem 1.15, we get that L is not the basepoint of a contractible positive
loop in (V, ζ). To conclude it remains to observe that the contact product
(M ×M × R, α1 − etα2) is a contact submanifold of (V, ζ) which contains
L: it is a standard neighbourhood of ∂W × ∂W ⊂ V in (V, ζ). �
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