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BORDERED FLOER HOMOLOGY AND
INCOMPRESSIBLE SURFACES

by Akram ALISHAHI & Robert LIPSHITZ (*)

Abstract. — We show that bordered Heegaard Floer homology detects ho-
mologically essential compressing disks, and that bordered-sutured Floer homology
detects partly boundary-parallel tangles and bridges, in natural ways. For exam-
ple, there is a bimodule Λ so that the tensor product of ĈFD(Y ) and Λ is Hom-
orthogonal to ĈFD(Y ) if and only if the boundary of Y admits a homologically
essential compressing disk. In the process, we sharpen a nonvanishing result of
Ni’s. We also extend Lipshitz–Ozsváth–Thurston’s “factoring” algorithm for com-
puting ĤF to compute bordered-sutured Floer homology, making both results on
detecting essential incompressibility practical. In particular, this makes computing
Zarev’s tangle invariant manifestly combinatorial.
Résumé. — Nous montrons que l’homologie de Heegaard Floer bordée détecte

les disques de compression homologiquement essentiels et que l’homologie de Floer
bordée-suturée détecte les enchevêtrements partiellement parallèles au bord, de
manière naturelle. Par exemple, il y a un bimodule Λ tel que le produit tensoriel
de ĈFD(Y ) et Λ est Hom-orthogonal à ĈFD(Y ) si et seulement si le bord de Y
admet un disque du compression homologiquement essentiel. Nous affinons aussi
un résultat de Ni sur la non annulation de l’homologie de Heegaard Floer et nous
étendons l’algorithme “factorisation” de Lipshitz–Ozsváth–Thurston pour calculer
l’homologie de Floer bordée-suturée, de sorte que les deux résultats sur la détection
des surfaces incompressibles sont effectifs. En particulier, nous montrons que le
calcul de l’invariant de l’enchevêtrement de Zarev est combinatoire.

1. Introduction

Around the turn of the century, Ozsváth and Szabó introduced a new
family of 3-manifold invariants, now called Heegaard Floer homology [29].
These invariants, which are isomorphic to Seiberg–Witten Floer homol-
ogy [3, 4, 5, 15, 16, 17, 18, 19, 32, 33, 34, 35, 36], have led to remarkable
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1526 Akram ALISHAHI & Robert LIPSHITZ

new theorems in 3-manifold topology. Instrumental in their success is some
of the geometric information they are known to carry: Heegaard Floer ho-
mology detects the Thurston norm on the homology of 3-manifolds [27]
and whether 3-manifolds fiber over the circle with fiber in a given homol-
ogy class [25]. The goal of this paper is to develop some more, albeit related,
geometric properties detected by Heegaard Floer homology.
While studying the Cosmetic Surgery problem, Ni proved a non-vanishing

theorem for Heegaard Floer homology twisted by a closed 2-form ω [26];
this is quoted as Theorem 3.1 below. (See also [10, Theorem 2.2], [11, Corol-
lary 5.2].) Using a little homological algebra, we strengthen Ni’s result to
prove:

Theorem 1.1. — Fix a closed, oriented 3-manifold Y and a closed 2-
form ω ∈ Ω2(Y ). Then ĤF(Y ; Λω) = 0 if and only if Y contains a 2-sphere
S so that

∫
S
ω 6= 0.

By contrast, in the untwisted case, results of Ozsváth–Szabó [28, Propo-
sition 5.1] and Hedden–Ni [10, Theorem 2.2] imply that Heegaard Floer
homology is always non-vanishing:

Theorem 1.2. — For any closed, oriented 3-manifold Y we have
ĤF(Y ) 6= 0.

(This result is well-known to experts, but we do not know a reference.
An extension to link complements is Theorem 3.3, below.)

Recall that a compressing disk for a closed surface Σ in a 3-manifold Y is
an embedded, closed diskD in Y such that ∂D = D∩Σ is an essential curve
in Σ. A compressing disk D is homologically essential if 0 6= [∂D] ∈ H1(Σ).
(See also Remark 4.4.) If no homologically essential compressing disk exists
then we say ∂Y is essentially incompressible.
Let Y be a 3-manifold with boundary. Using Theorem 1.1 we show that

bordered Floer homology detects whether ∂Y is essentially incompressible:

Theorem 1.3. — Fix any pointed matched circle Z representing a sur-
face of genus k. There is a type DA bimodule A(Z)Λ(Z)A(Z) with the
following property. Suppose ∂Y is a surface of genus k and choose any
parametrization φ : F (−Z)→ ∂Y . Then

(1.1) H∗MorA(Z)
(A(Z)ĈFD(Y, φ),A(Z)Λ(Z)A(Z) �

A(Z)ĈFD(Y, φ)
)

= 0

if and only if ∂Y has a homologically essential compressing disk.

One could abbreviate Equation 1.1 by saying that ĈFD(Y ) and Λ(Z)�
ĈFD(Y ) are Hom-orthogonal. (The terminology is justified by the fact
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that the Euler characteristic of the morphism complex is a bilinear form
on the Grothendieck group of dg modules or type D structures. In the
case of bordered Floer homology, this bilinear form is closely related to the
symplectic form on H1(F (Z)) [12].)
Heegaard Floer homology seems not to detect connected sums, and con-

sequently it seems unlikely that bordered Floer homology detects boundary
sums. This is the main reason for the restriction to homologically essential
compressing disks in Theorem 1.3. (See also Remark 4.4.)

Convention 1.4. — In this paper, unless otherwise noted, compress-
ible (respectively incompressible) means essentially compressible (incom-
pressible), i.e., possessing (not possessing) a homologically essential com-
pressing disk.

Theorem 1.3 gives a simple procedure to detect incompressibility of sur-
faces Σ in closed 3-manifolds Y , and incompressibility of Seifert surfaces
Σ for nontrivial knots, as long as Σ is not an (embedded) connected sum.
Specifically, let Y ′ = Y \ nbd(Σ). Then ∂Y ′ is incompressible if and only if
Σ is incompressible, so apply Theorem 1.3 to Y ′.

Remark 1.5. — In the case that b1(Y ) = g(∂Y ) = 1, the fact that bor-
dered Floer homology detects whether ∂Y is incompressible is immediate
from a result of Gillespie’s [7, Corollary 2.7].

We also prove a relative version of Theorem 1.3, for Zarev’s bordered-
sutured Floer homology [37]. A tangle (Y, T ) is a properly embedded 1-
manifold-with-boundary T in compact, oriented 3-manifold Y with con-
nected boundary. Two tangles are equivalent if they are isotopic fixing the
boundary. For a tangle (Y, T ), an interval component T0 of T is called
boundary parallel, if it is isotopic, in Y \ (T \T0), to an arc in ∂Y . The pair
(Y, T ) is called partly boundary parallel if it has an interval component
which is boundary parallel, and (Y, T ) is called boundary parallel if T has
no closed component and all of its components are boundary parallel. In
B3, a tangle is boundary parallel if it consists of a collection of bridges.

Convention 1.6. — A tangle is nullhomologous if every component is
trivial inH1(Y, ∂Y ). From now on, tangle means nullhomologous tangle. We
also require that any tangle under consideration intersect every component
of ∂Y .

Note that T being nullhomologous implies that every component of T has
both endpoints on the same component of ∂Y . Since T is nullhomologous,
for each interval component T0 of T there is an arc γ in ∂nbd(T0) with
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1528 Akram ALISHAHI & Robert LIPSHITZ

endpoints on ∂Y , intersecting a merdian of T0 once, and an arc η in ∂Y

with ∂η = ∂γ and [γ − η] = 0 ∈ H1(Y \ T0). Any such γ is a longitude of
T0. Longitudes are not unique up to isotopy rel boundary: one can twist a
longitude around a meridian of T0 to obtain a new longitude.

Construction 1.7. — Given a tangle (Y, T ), we can make Y (T ) =
Y \ nbd(T ) into a bordered-sutured manifold (see Section 2.3.2) YΓ(T ) by:

• declaring ∂Y \ nbd(∂T ) to be bordered boundary and ∂nbd(T ) to
be sutured boundary,

• placing two meridional sutures around each closed component of T ,
• placing two longitudinal sutures running along each interval com-
ponent of T , and

• choosing a parametrization of the bordered boundary of Y (T ) by
some arc diagram −Z for a surface F (−Z) with 2n boundary com-
ponents.

See Figure 1.1. Let Γ denote the set of sutures. Note that there are many
equally valid choices of longitudinal sutures, so Γ is not unique. The region
R+ (respectively R−) consists of n rectangles, one per arc of T , and n

annuli, one per closed component of T . Each of S+ and S− consists of 2n
arcs, one per component of ∂T .

Further, for any interval component Ti of T , let Γi be the set of sutures
obtained from Γ by replacing the longitudinal sutures for each interval
component Tj of T \ Ti with sutures parallel to the boundary, so that
∂Γi = ∂Γ. For each Tj , the new sutures decompose the corresponding
annulus component of ∂nbd(T ) into two disks (bigons) and an annulus.
Again, Γi is not unique: there are two choices of sutures for each Tj , j 6= i,
depending on whether we choose to make R+ or R− consist of bigons, and
the same infinitude of options for Ti. Let YΓi(T ) be the resulting bordered-
sutured manifold for some choice of Γi.

Note that the tangle T induces a pairing of the boundary components of
F (−Z).

Theorem 1.8. — For any arc diagram −Z as above and pairing of the
boundary components of F (−Z) there is a type DA bimodule A(Z)τA(Z)
with the following property. Given a null-homologous tangle (Y, T ),

H∗MorA(Z)
(A(Z)B̂SD(YΓ(T )),A(Z)τA(Z) �

A(Z)B̂SD(YΓ(T ))
)

= 0

if and only if T is partly boundary parallel.
Similarly, for any pair of boundary components of F (−Z), for instance

specified by a choice of interval component Ti of T , there is a DA bimodule
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FLOER HOMOLOGY AND INCOMPRESSIBLE SURFACES 1529

Figure 1.1. From a tangle to a bordered-sutured manifold. Top:
a tangle. Bottom left: the bordered-sutured manifold YΓ(T ). The su-
tures Γ are thin, dash-dotted lines, the region R− is shaded, and the
arcs parameterizing the bordered boundary are thin, solid lines. The
boundary of Γ is γ and the boundary of R− is S− (see Section 2.3.2).
Bottom right: the manifold YΓ1(T ).

A(Z)τ iA(Z) so that

(1.2) H∗MorA(Z)
(A(Z)B̂SD(YΓi

(T )),A(Z)τ iA(Z)�
A(Z)B̂SD(YΓi

(T ))
)

= 0

if and only if Ti is boundary parallel.

(The bimodule τ consists of a boundary Dehn twist around one end of
each interval component of T , while τ i is the boundary Dehn twist around
one of the endpoints of Ti.)

Corollary 1.9. — A tangle (Y, T ) with no closed components is
boundary parallel if and only if Equation 1.2 holds for all components
of T .

TOME 69 (2019), FASCICULE 4



1530 Akram ALISHAHI & Robert LIPSHITZ

Finally, note that ĈFD(Y, φi) is algorithmically computable from a Hee-
gaard decomposition of Y [22]. Essentially the same algorithm also com-
putes bordered-sutured Floer homology, as we explain in Section 7. The
bimodule Λ(Z) is described below explicitly, but involves power series, so
it is not immediately obvious if Theorems 1.3 and 1.8 give effective crite-
ria. Nonetheless, the underlying techniques are effective, and Section 7 also
gives computationally effective versions of Theorems 1.3 and 1.8.
This paper is organized as follows. Section 2 collects some background re-

sults on Heegaard Floer homology with Novikov coefficients and on sutured,
bordered, and bordered-sutured Floer homology. Section 3 proves the non-
vanishing theorems we need for Heegaard Floer homology, Theorems 1.1
and 1.2, as well as a non-vanishing result for sutured Floer homology, The-
orem 3.3. Section 4 shows that bordered Floer homology detects essential
compressing disks for 3-manifolds with connected boundary, Theorem 1.3.
An extension to disconnected boundary is given in Section 5. Section 6
proves that bordered-sutured Floer homology detects partly boundary par-
allel tangles, Theorem 1.8. The long final section of the paper (Section 7) is
devoted to showing that these results are effective and, at least plausibly,
computationally useful. The main work in that section is extending the
“factoring” algorithm for computing ĤF [22] to compute bordered-sutured
Floer homology; this extension seems of independent interest.

Acknowledgments. We thank Nick Addington, Paolo Ghiggini, Jake
Rasmussen, and Sarah Rasmussen for helpful conversations. A similar result
to Theorem 1.1 appears in forthcoming work of Juhász–Levine–Marengon.
RL also thanks the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for support and hospitality during the programme “Homol-
ogy theories in low-dimensional topology,” supported by EPSRC grant no
EP/K032208/1, where part of this work undertaken. Finally, we thank the
referee for many helpful suggestions.

2. Background

2.1. Variants on Novikov coefficients

Fix a closed 3-manifold Y and a field k. Let Λ denote the universal
Novikov field with coefficients in k, so elements of Λ are formal sums∑
ai→∞ cai

T ai where {ai}∞i=0 is a sequence of real numbers with
limi→∞ ai = ∞, cai

∈ k, and T is a formal variable. (The cai
may be 0
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FLOER HOMOLOGY AND INCOMPRESSIBLE SURFACES 1531

so, in particular, finite linear combinations of T -powers are allowed.) Any
closed 2-form ω induces a map eω : H2(Y )→ R by setting eω(A) =

∫
A
ω.

Write elements of the group ring k[H2(Y )] as formal finite sums
∑
i nie

αi

where ni ∈ k, αi ∈ H2(Y ), and e is just notation. Using the map eω one
may define a map ψω : k[H2(Y )]→ Λ as

ψω(eα) = T eω(α).

The map ψω gives the Novikov field Λ the structure of a k[H2(Y )]-module,
denoted by Λω. Thus, we can consider Heegaard Floer homology with co-
efficients in Λω [28, Section 8] and, in particular, ĤF(Y ; Λω). Up to iso-
morphism, ĤF(Y ; Λω) depends only on the cohomology class of ω [25,
Proposition 2.1].
Let Iω = ker(eω). The map ψω induces an injection k[H2(Y )/Iω] ↪→ Λω

and thus a field homomorphism

ıω : k(H2(Y )/Iω)→ Λω
where k(H2(Y )/Iω) is the field of fractions of k[H2(Y )/Iω]. Let Rω =
k[H2(Y )/Iω] and Kω = k(H2(Y )/Iω). Since

ĤF(Y ; Λω) ∼= H∗

(
ĈF(Y ;Rω)⊗Rω Λω

)
∼= H∗

(
ĈF(Y ;Kω)⊗Kω Λω

)
and Kω is a field, the universal coefficients theorem implies that

ĤF(Y ; Λω) ∼= ĤF(Y ;Kω)⊗Kω Λω.

Furthermore, since Kω and Λω are fields,

(2.1) dimΛω

(
ĤF(Y ; Λω)

)
= dimKω

(
ĤF(Y ;Kω)

)
.

Lemma 2.1. — For any closed 2-form ω ∈ Ω2(Y ), we have

dimΛω

(
ĤF(Y ; Λω)

)
> dimk(H2(Y ))

(
ĤF(Y ; k(H2(Y )))

)
.

Proof (thanks to N. Addington). — The complex ĈF(Y ; k[H2(Y )]) is
the free k[H2(Y )]-module generated by the intersection points of Tα and
Tβ . Let N = #(Tα ∩ Tβ). Then the differential ∂ is represented by an
N ×N matrix D ∈MN×N (k[H2(Y )]).
For any subgroup I of H2(Y ) let rankk[H2(Y )/I](D) be the largest n such

that there is an n × n minor of D which has a nonvanishing determinant
in k[H2(Y )/I]. Thus,

rankk[H2(Y )](D) > rankk[H2(Y )/I](D).

On the other hand, if the quotient group H2(Y )/I has no torsion then

dimk(H2(Y )/I)

(
ĤF(Y ; k(H2(Y )/I))

)
= N − 2 rankk[H2(Y )/I](D).
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1532 Akram ALISHAHI & Robert LIPSHITZ

Therefore, for such I,

dimk(H2(Y )/I)

(
ĤF(Y ; k(H2(Y )/I))

)
> dimk(H2(Y ))

(
ĤF(Y ; k(H2(Y )))

)
and the claim follows from the Equation (2.1). �

Definition 2.2. — A closed 2-form ω is generic if the corresponding
map eω is injective.

Note that the set of generic 2-forms is dense (in fact, co-meager).

Corollary 2.3. — Let ω ∈ Ω2(Y ) be a generic closed 2-form. Then
for any closed 2-form ω′ ∈ Ω2(Y ) we have

dimΛω′ (ĤF(Y ; Λω′)) > dimΛω
(ĤF(Y ; Λω)).

We conclude this section by recalling the Künneth theorem with Novikov
coefficients (stated in [25, Section 2.3]):

Lemma 2.4. — Suppose that Y ∼= Y1#Y2, ωi ∈ H2(Yi;R), and ω =
ω1#ω2. Then

ĤF(Y ; Λω) ∼= ĤF(Y1; Λω1)⊗Λ ĤF(Y2; Λω2)

as Λ-vector spaces.

Proof. — This follows from the definitions of the twisted complexes and
the (easy) proof of the Künneth theorem for untwisted ĤF [28, Proposi-
tion 6.1]. �

2.2. Sutured Floer homology

For the reader’s convenience, we recall a few of the basic definitions and
properties of sutured Floer homology.

A sutured manifold (without toroidal sutures) is an oriented 3-manifold-
with-boundary Y along with a set Γ of pairwise disjoint circles in ∂Y ,
called sutures, which divide ∂Y into positive and negative regions, denoted
R+(Γ) and R−(Γ), so that ∂R+(Γ) = ∂R−(Γ) = Γ. Note that we may
oriented the components of Γ by the induced orientation from R+(Γ). The
sutured manifold (Y,Γ) is called balanced if χ(R+(Γ)) = χ(R−(Γ)) and all
components of ∂Y intersect Γ, and (Y,Γ) is called taut if Y is irreducible
and R+(Γ) and R−(Γ) are incompressible and Thurston-norm minimizing
inH2(Y,Γ). Note that if Γ intersects all components of ∂Y , Y is irreducible,
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FLOER HOMOLOGY AND INCOMPRESSIBLE SURFACES 1533

and R+(Γ) and R−(Γ) are Thurston-norm minimizing in H2(Y,Γ), then
(Y,Γ) is taut if and only if every annular component of R+(Γ) and R−(Γ)
is incompressible.
Given a sutured manifold (Y,Γ), the definition of the sutured Floer com-

plex SFC (Y,Γ) is an extension of the definition of ĈF [13]. Unlike ĤF(Y ),
sutured Floer homology can vanish:

Theorem 2.5 ([13, Proposition 9.18]). — If an irreducible balanced su-
tured manifold (Y,Γ) is not taut then SFH (Y,Γ) = 0.

If one decomposes a balanced sutured manifold along a surface then the
sutured Floer homology of the resulting sutured manifold is a direct sum-
mand of the sutured Floer homology of the original sutured manifold [14,
Theorem 1.3]. As a corollary of this, Juhász shows:

Theorem 2.6 ([14, Theorem 1.4]). — If (Y,Γ) is a taut, balanced su-
tured manifold then SFH (Y,Γ) 6= 0.

2.3. Bordered Floer homology

In this section, we review some aspects of bordered Floer homology,
mainly to fix notation.

2.3.1. Bordered basics

In bordered Floer homology, a surface is represented by a pointed
matched circle Z = (Z,a,M, z) where Z is an oriented circle, a is 4k
points in Z, M is a pairing of points in a, and z ∈ Z \ a. There is a re-
quirement that attaching 1-handles to [0, 1] × Z along {0} × a, according
to the matching M , gives a surface of genus k (with two boundary compo-
nents); the result of filling in these two boundary components with disks
is denoted F (Z) [20, Section 3.2]. Given a pointed matched circle Z, re-
versing the orientation of Z gives a new pointed matched circle −Z, and
F (−Z) = −F (Z), the orientation reverse of F (Z).
Associated to a pointed matched circle Z is a dg algebra A(Z) over F2.

A basis for A(Z) over F2 is given by strand diagrams, which consist of a
subset of a and a collection of intervals in Z \ {z} with endpoints on a,
satisfying some conditions. In particular, a strand diagram b has a support
[b] ∈ H1(Z \ {z},a) ∼= Z4k−1. Also, corresponding to any subset s of the
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matched pairs in a is a basic idempotent I(s). These basic idempotents
span a subalgebra I(Z) ⊂ A(Z); in fact, as a ring, I(Z) ∼= F22k

2 .
A bordered 3-manifold is a 3-manifold Y together with a homeomorphism

φ : F (Z) → ∂Y for some pointed matched circle Z. Given a bordered 3-
manifold Y , there is a corresponding left dg module A(−Z)ĈFD(Y ) over
A(−Z) [20, Section 6.1] and right A∞-module ĈFA(Y )A(Z) over A(Z) [20,
Section 7.1]. In fact, ĈFD(Y ) has a special form: it is a type D structure
or twisted complex, a generalization of projective modules.

The bordered invariants relate to the Heegaard Floer complex ĈF via the
pairing theorem: given bordered 3-manifolds (Y0, φ0 : F (Z) → ∂Y0) and
(Y1, φ1 : F (−Z) → ∂Y1) there is a closed 3-manifold Y0 φ0∪φ1Y1 obtained
by gluing the boundaries together as prescribed by φ0 and φ1, and a chain
homotopy equivalence

ĈF(Y0 φ0∪φ1Y1) ' ĈFA(Y0, φ0)A(Z) �
A(Z)ĈFD(Y1, φ1)

[20, Theorem 1.2]. Here � is a version of the (derived) tensor product
between an A∞-module and a type D structure [20, Section 2.4]. Subscripts
indicate A∞-actions, and superscripts type D structures, so � satisfies a
kind of Einstein convention.
To keep notation simple, we will generally denote ĈFA(Y0, φ0) by

ĈFA(Y0), ĈFD(Y1, φ1) by ĈFD(Y1), and Y0 φ0∪φ1Y1 by Y0 ∪∂ Y1.
There are also dualities relating ĈFD(Y )∗, the dual type D structure to

ĈFD(Y ), to ĈFA(−Y ), which lead to pairing theorems in terms of mor-
phism complexes: with notation as above,

ĈF(Y0 ∪∂ Y1) ' MorA(Z)(ĈFD(−Y0), ĈFD(Y1))

' MorA(−Z)(ĈFA(−Y0), ĈFA(Y1))

[21, Theorem 1].
There are generalizations to manifolds with multiple boundary compo-

nents [23]. In particular, given a 3-manifold Y with two boundary com-
ponents, ∂0Y and ∂1Y , a framed arc from ∂0Y to ∂1Y , and homeomor-
phisms F (Z0)→ ∂0Y and F (Z1)→ ∂1Y there are corresponding bimodules
ĈFAA(Y )A(Z0),A(Z1), A(−Z0)ĈFDA(Y )A(Z1), and A(−Z0),A(−Z1)ĈFDD(Y ).
Here, for instance, the invariant ĈFAA(Y ) is an A∞-bimodule with two
right actions, by A(Z0) and A(Z1). (The appearance of bimodules with
commuting right or commuting left actions is an artifact of the original
definitions, and is sometimes convenient, sometimes inconvenient.) One
can drill out a neighborhood of the framed arc to obtain a bordered 3-
manifold Ydr with one boundary component. The bimodules ĈFDD(Y ) and
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ĈFAA(Y ) are determined by ĈFD(Ydr) and ĈFA(Ydr) by induction and re-
striction functors associated to maps of the algebras [23, Section 6]. The
bimodule ĈFDA(Y ) is also determined by, say, ĈFA(Ydr), but in a more
complicated way. These satisfy analogues of the pairing theorem, where one
always glues type D boundaries to type A boundaries [23, Theorems 11 and
12].

2.3.2. Bordered-sutured Floer homology

Next, we recall some definitions and properties of bordered-sutured Floer
homology [37], as well as the reformulation of the bordered-sutured pairing
theorem in terms of morphism complexes [38].

A sutured surface (F, γ) is a compact, oriented surface-with-boundary F ,
with no closed components, together with a finite set γ of marked points on
∂F , such that γ intersects all boundary components of F and splits ∂F as
∂F = S+(γ)∪γ S−(γ) with ∂S+(γ) = ∂S−(γ) = γ. Sutured surfaces can be
parametrized by arc diagrams, a generalization of pointed matched circles.
An arc diagram Z = (Z,a,M) is a finite collection Z of oriented, closed
intervals together with a set a of 2k points in Z and a pairing M of a. It is
required that the pairing M is nondegenerate, i.e., attaching 1-handles to
[0, 1]×Z along {0}×a as specified byM results in a surface-with-boundary
F such that {1}×∂Z intersects all boundary components of F . This surface
along with the set of points γ = {1}×∂Z and the division S+(γ) = {1}×Z
and S−(γ) its complement, is a sutured surface denoted by F (Z).
Let F̄ (Z) denote the sutured surface obtained from F (Z) by reversing the

orientation of the underlying surface and switching S+ and S−. Let −F (Z)
be the sutured surface obtained from F (Z) by reversing the orientation of
the underlying surface but not switching S+ and S−. So, if we think of γ
as oriented as the boundary of S+ then the orientation of γ in −F (Z) is
reversed.
Given sutured surfaces (F, γ) and (F ′, γ′), a sutured cobordism (Y,Γ)

from (F, γ) to (F ′, γ′) is an oriented 3-manifold Y with boundary, together
with a decomposition ∂Y ∼= ∂sY ∪ (−F q F ′) and a properly embedded
1-manifold-with-boundary Γ ⊂ ∂sY satisfying the following:

• Y has no closed components,
• π0(Γ)→ π0(∂sY ) is surjective and ∂Γ = γ q γ′, and
• Γ divides ∂sY = R+∪ΓR− such that ∂R+∩∂R− = Γ. Furthermore,
R• ∩ F = S•(γ) and R• ∩ F ′ = S•(γ′) for • ∈ {+,−}.

A sutured cobordism from the empty set to the empty set is a sutured
manifold. Given a sutured cobordism (Y,Γ), let −(Y,Γ) be the cobordism
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obtained by reversing the orientation of Y and let m(Y,Γ), the mirror of
(Y,Γ), be the cobordism obtained by reversing the orientation of Y and
switching the roles of R+ and R−.
Given arc diagrams Z and Z ′, a sutured cobordism (Y,Γ) from F (Z)

to F (Z ′) is called a bordered-sutured cobordism. The subspace −F (Z) q
F (Z ′) of ∂Y is called the bordered boundary and ∂sY is called the sutured
boundary. Note that the bordered boundary of −(Y,Γ) is −F (Z ′)q F (Z)
while the bordered boundary of m(Y,Γ) is −F̄ (Z)q F̄ (Z ′).

If one of Z or Z ′ is empty then (Y,Γ) is called a bordered-sutured man-
ifold.

Definition 2.7. — A bordered-sutured Heegaard diagram is a 4-tuple
(Σ,α,β, z, ∂LΣ) where:

• Σ is a compact surface with boundary.
• z = zc ∪ za is a subspace of ∂Σ such that zc is a disjoint union

of some components of ∂Σ and za is a finite set of disjoint arcs in
∂Σ \ zc.

• ∂LΣ is a union of some of the connected components of ∂Σ \ int(z).
We let ∂RΣ be the union of the remaining components of ∂Σ\int(z).

• β is a union of pairwise disjoint circles in the interior of Σ.
• α = αa,L q αa,R q αc is a union of pairwise disjoint, properly
embedded arcs and circles in Σ, so that for • ∈ {L,R}, each element
of αa,• is an arc with boundary on ∂•Σ, while each element of αc

is a circle.
We require that z intersects every component of ∂Σ, Σ \ β, and Σ \α.

Any bordered-sutured Heegaard diagram H specifies two arc diagrams:

ZL(H) = (∂LΣ,αa,L ∩ ∂LΣ,ML)

ZR(H) = (∂RΣ,αa,R ∩ ∂RΣ,MR)

where ML and MR are the matchings that pair the endpoints of each arc
in αa,L and αa,R, respectively.

Given a bordered-sutured Heegaard diagram H we get a bordered-
sutured cobordism Y(H) from F (−ZL(H)) to F (ZR(H)) as follows. Let
Y be the 3-manifold obtained from Σ× [0, 1] by attaching 2-handles along
the α-circles in Σ × {0} and β-circles in Σ × {1}. The α-arcs specify two
embedded sutured surfaces

F (ZL(H)) =
(
∂LΣ× [0, 1] ∪ nbd(αa,L)× {0}, (∂LΣ ∩ z)× {1}

)
F (ZR(H)) =

(
∂RΣ× [0, 1] ∪ nbd(αa,R)× {0}, (∂RΣ ∩ z)× {1}

)
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in ∂Y . Finally, let Γ = z×{1}, and let R+ (respectively R−) be the closure
of the union of the components of ∂Y \ (F (ZL)∪F (ZR)∪Γ) that intersect
Σ×{1} (respectively Σ×{0}). Thus, R+ is the result of performing surgery
on the β-circles in H and R− is the result of performing surgery on the α-
circles and deleting neighborhoods of the α-arcs.
Associated to an arc diagram Z is a dg algebra A(Z), spanned by

strand diagrams; if Z corresponds to a pointed matched circle, A(Z) is
the same as the bordered algebra associated to the pointed matched cir-
cle. Next, let Y be a bordered-sutured cobordism from F (Z) to F (Z ′). To
Y, Zarev [37] associates bordered-sutured bimodules A(Z),A(−Z′)B̂SDD(Y),
A(Z)B̂SDA(Y)A(Z′), and B̂SAA(Y)A(−Z),A(Z′). If Z is empty then,
B̂SDA(Y) is a right A∞-module over A(Z ′) denoted B̂SA(Y)A(Z′), while
if Z ′ is empty, B̂SDA(Y) is a left type D structure over A(Z) denoted
A(Z)B̂SD(Y). Furthermore, if both Z and Z ′ are empty, i.e., Y is a sutured
manifold, then B̂SDA(Y) is the sutured Floer complex. Similar statements
are true for the other bimodules. Finally, if Y is a bordered-sutured mani-
fold with bordered boundary F̄ (Z), then A(Z)B̂SD(Y) is a type D structure
over A(Z) and B̂SA(Y)A(−Z) is an A∞-module over A(−Z). A similar
statement is true for bimodules associated with bordered-sutured cobor-
disms from F̄ (Z) or to F̄ (Z ′).
Suppose that Y is a cobordism from F (Z1) to F (Z2). We can also regard

Y as a cobordism from F
(
Z1q (−Z2)

)
to the empty set. It is evident from

the definitions (which we have not given) that there is an isomorphism
A(Z1 q (−Z2)) ∼= A(Z1) ⊗F2 A(−Z2). Furthermore, a type DD structure
over A(Z1) and A(−Z2) is exactly the same as a type D structure over
A(Z1)⊗F2 A(−Z2). With respect to these identifications,

A(Z1),A(−Z2)B̂SDD(Y) ∼= A(Z1)⊗F2A(−Z2)B̂SD(Y).

So, in the bordered-sutured setting, one is justified in talking about the
module B̂SD associated to a cobordism from F (Z1) to F (Z2). Also, com-
puting the modules B̂SD associated to all bordered-sutured manifolds is
equivalent to computing the bimodules B̂SDD associated to all bordered-
sutured cobordisms. (Similar statements hold for B̂SA and B̂SAA, but are
slightly complicated by the fact that an A∞ (A1,A2)-bimodule is not quite
the same as an A∞-module over A1 ⊗F2 A2.)
Given a bordered-sutured Heegaard diagram H, we may switch α circles

and arcs with β circles to get a diagram with β arcs, called a β-bordered-
sutured Heegaard diagram, and denoted by Hβ . This diagram represents
the mirror m(Y(H)).
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The algebras A(Z) satisfy A(−Z) = A(Z)op so, for instance, we can
regard A(Z)B̂SD(Y) as a right typeD structure B̂SD(Y)A(−Z) over A(−Z).
Similarly, B̂SD(m(Y))A(Z) is a left type D structure over A(−Z) or a right
type D structure over A(Z). In fact, since given a Heegaard diagram H for
Y, Hβ represents m(Y), it is immediate from the definitions that

(2.2) B̂SD(m(Y))A(Z) ∼=
(
A(Z)B̂SD(Y)

)∗
[38, Proposition 3.11].
Zarev’s construction has a pairing theorem as follows:

Theorem 2.8 ([37, Theorem 10.4]). — Let Zi be an arc diagram for
i = 1, 2, 3. Given bordered-sutured cobordisms Y1 from F (Z1) to F (Z2)
and Y2 from F (Z2) to F (Z3) we have

A(Z1)B̂SDA(Y1)A(Z2) �
A(Z2)B̂SDA(Y2)A(Z3)

' A(Z1)B̂SDA
(
Y1 ∪F (Z2) Y2

)
A(Z3).

Similar statements hold for tensor products of the other types of bimodules,
as long as one tensors together one type A and one type D action. In
particular, if Z1 and Z3 are empty, then Y1∪F (Z2)Y2 is a sutured manifold
and

SFC
(
Y1 ∪F (Z2) Y2

)
' B̂SA(Y1)A(Z2) �

A(Z2)B̂SD(Y2)

As in the bordered case, one can reformulate the pairing theorem in terms
of morphism complexes [38]. Suppose Y1 and Y2 are bordered-sutured man-
ifolds with bordered boundary F (−Z). From m(Y1) one gets a bordered-
sutured manifold with bordered boundary F (Z) by gluing the negative
twisting slice T WF (−Z),−. This negative twisting slice is a bordered-sutured
cobordism from F̄ (−Z) to F (Z) obtained from [0, 1] × F (Z) by making
the sutures veer left, the minimum amount possible [38, Definition 2.8].
There is a particular (α, β)-bordered Heegaard diagram for the negative

twisting slice T WF (−Z),− with the property that

(2.3) A(Z)B̂SAA(T WF (−Z),−)A(Z) ' A(Z)A(Z)A(Z)

[38, Proposition 3.12]. Note that we always treat the β-boundary of
T WF (−Z),− as corresponding to the left action of B̂SAA(T WF (−Z),−),
while Zarev treats the β-boundary as the right action. This means the al-
gebras that show up Formula (2.3) are the opposites of the algebras in
Zarev’s result. The diagram T WF (−Z),− was also discovered by Auroux [1]
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and, in other papers, has been denoted AZ(−Z) [21]. Formula (2.2) and
Theorem 2.8 imply that

B̂SA(m(Y1) ∪ T WF (−Z),−)A(Z) '
(

B̂SD(Y1)∗
)A(Z)

� A(Z)A(Z)A(Z).

Recall that for any type D structures A(Z)P and A(Z)Q,

MorA(Z)(A(Z)P,A(Z)Q) = (P ∗)A(Z) � A(Z)A(Z)A(Z) �
A(Z)Q

[21, Proposition 2.7]. So, applying the pairing theorem again, we obtain:

Theorem 2.9. — [38] Let Y1 = (Y1,Γ1) and Y2 = (Y2,Γ2) be bordered-
sutured 3-manifolds with bordered boundaries parametrized by F (−Z).
Then

MorA(Z)(A(Z)B̂SD(Y1),A(Z)B̂SD(Y2)
)

' SFC (m(Y1) ∪ T WF (−Z),− ∪ Y2).

Given an arc diagram Z and a component C of ∂F (Z) there is a corre-
sponding bordered-sutured cobordism τC from F (Z) to F (Z), the Dehn
twist along C, obtained from the identity bordered-sutured cobordism
[0, 1] × F (Z) by performing a right-veering Dehn twist on the sutures in
[0, 1]× C.

Next, fix an arc diagram Z so that ∂F (Z) has 2n components
C1, . . . , C2n, which we think of as identified in pairs via Ci ↔ Ci+n. Let
A(Z)τA(Z) be the type DA bimodule corresponding to performing Dehn
twists on exactly half of these components, by choosing one from each pair.
That is, assuming that for each i we have chosen Ci from {Ci, Ci+n} then

A(Z)τA(Z) = A(Z)B̂SDA(τC1 ◦ τC2 ◦ · · · ◦ τCn)A(Z)

' A(Z)B̂SDA(τC1)A(Z) � · · ·� A(Z)B̂SDA(τCn
)A(Z).

Then, Theorem 2.9 has the following corollary:

Corollary 2.10. — Let (Y, T ) be a tangle and YΓ(T ) be a bordered-
sutured manifold corresponding to (Y, T ) as in Construction 1.7. Let
D(Y, T ) = −YΓ(T )∪YΓ(T ) be the double of YΓ(T ). (See also the beginning
of Section 6.) Then

MorA(Z)(A(Z)B̂SD(YΓ(T )),A(Z)τA(Z) �
A(Z)B̂SD(YΓ(T ))

)
' SFC (D(Y, T )).

Proof. — The negative twisting slice adds a negative half boundary Dehn
twist at each endpoint of the tangle, and hence a negative Dehn twist on
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each component of the doubled tangle. The bimodule τ undoes these Dehn
twists. �

2.3.3. Twisted coefficients

Given a bordered 3-manifold (Y, φ : F (Z) → ∂Y ), there are totally
twisted bordered Floer modules ĈFA(Y, φ)A(Z) and A(−Z)ĈFD(Y, φ), which
are equipped with free actions of F2[H2(Y, ∂Y )] commuting with the struc-
ture maps over A(Z) and A(−Z), respectively [20, Sections 6.4 and 7.4].
So, given an F2[H2(Y, ∂Y )]-module M , we can extend scalars and define

ĈFA(Y, φ;M) = ĈFA(Y, φ)⊗F2[H2(Y,∂Y )] M

ĈFD(Y, φ;M) = ĈFD(Y, φ)⊗F2[H2(Y,∂Y )] M.

The invariant ĈFA(Y, φ;M) is an A∞-module over the dg algebra
A(Z)⊗F2 F2[H2(Y, ∂Y )] over the ground ring I(Z)⊗F2 F2[H2(Y, ∂Y )], and
ĈFD(Y, φ;M) is a type D structure over A(−Z) with an action of
F2[H2(Y, ∂Y )] commuting with the type D operation δ1 (a very special
case of a type DA bimodule).

Suppose that Y0 and Y1 are bordered 3-manifolds, Y = Y0 ∪∂ Y1, and
F = ∂Y0 ⊂ Y . Then there is an abelian group homomorphism H2(Y ) →
H2(Y, F ) ∼= H2(Y0, ∂Y0) ⊕ H2(Y1, ∂Y1), which induces a ring homomor-
phism i : F2[H2(Y )] → F2[H2(Y, F )]. In particular, via i we can regard
F2[H2(Y, F )] as an F2[H2(Y )]-module and so use F2[H2(Y, F )] as a coeffi-
cient system for ĈF(Y ).

The following is the totally twisted pairing theorem:

Theorem 2.11 ([20, Theorem 9.44]). — Given bordered 3-manifolds
Y0 and Y1 with boundaries F = F (Z) and −F (Z), respectively, there is a
homotopy equivalence of differential F2[H2(Y, F )]-modules

ĈFA(Y0)A(Z) �
A(Z)ĈFD(Y1) ' ĈF

(
Y ;F2[H2(Y, F )]

)
.

(The reference refines this slightly to keep track of spinc-structures.)
From this we can deduce a general twisted-coefficient pairing theorem:

Corollary 2.12. — Let Y0 and Y1 be bordered 3-manifolds with
boundaries F (Z) and −F (Z). Let Y = Y0 ∪∂ Y1 and F = ∂Y0. Given
modules M over F2[H2(Y0, ∂Y0)] and N over F2[H2(Y1, ∂Y1)] there is a
homotopy equivalence

(2.4) ĈFA(Y0;M)A(Z) �
A(Z)ĈFD(Y1;N) ' ĈF(Y ;M ⊗F2 N).
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of differential modules over the ring F2[H2(Y, F )] = F2[H2(Y0, ∂Y0)] ⊗
F2[H2(Y1, ∂Y1)].

Proof. — The left side of Equation (2.4) is(
ĈFA(Y0)⊗F2[H2(Y0,∂Y0)] M

)
�
(
ĈFD(Y1)⊗F2[H2(Y1,∂Y1)] N

)
which is the same as(

ĈFA(Y0)� ĈFD(Y1)
)
⊗F2[H2(Y0,∂Y0)]⊗F2[H2(Y1,∂Y1)] (M ⊗F2 N).

The right side is

ĈF
(
Y ;F2[H2(Y )]

)
⊗F2[H2(Y )] (M ⊗F2 N)

which is isomorphic to

ĈF
(
Y ;F2[H2(Y )]

)
⊗F2[H2(Y )] F2[H2(Y, F )]⊗F2[H2(Y,F )] (M ⊗F2 N)

= ĈF
(
Y ;F2[H2(Y, F )]

)
⊗F2[H2(Y,F )] (M ⊗F2 N).

So, the corollary follows from Theorem 2.11. �

3. Non-vanishing results

Fix a field k. Except as indicated, in this section Λ denotes the universal
Novikov field over k and Floer homology groups have coefficients in k or
modules over k.
The goal of this section is to deduce Theorem 1.1 from a non-vanishing

theorem of Ni’s, specifically:

Theorem 3.1 ([26, Theorem 3.6]). — Suppose Y is a closed, irreducible
3-manifold and F a closed surface in Y such that F is Thurston-norm
minimizing and no subsurface of F is nullhomologous. Then there exists a
nonempty open set U ⊂ H1(Y ;R) so that for any ω ∈ U ,

HF+(Y, 1
2x(F ); Λω) 6= 0 and ĤF(Y, 1

2x(F ); Λω) 6= 0.

(Here, x([F ]) is the Thurston norm of the homology class of F , and the
notation 1

2x(F ) indicates a certain set of spinc-structures.)

(Ni proves Theorem 3.1 for k = R, but the result for general ground
fields k is then immediate from the universal coefficients theorem.)

Corollary 3.2. — Let Y be a closed, orientable 3-manifold with no
S1×S2 connected summands. Then, there exists a non-empty, open set of
closed 2-forms U ⊂ Ω2(Y ) such that for any ω ∈ U ,

ĤF(Y ; Λω) 6= 0.
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Proof. — Write Y = Y1# · · ·#Yn where each Yi is irreducible. By the
Künneth theorem (Lemma 2.4), it suffices to prove the result for each Yi.
If b1(Yi) = 0 then

ĤF(Yi; Λωi) = ĤF(Yi)⊗k Λ,

so

χ(ĤF(Yi; Λωi
)) = |H1(Yi)| 6= 0

[28, Proposition 5.1]. If b1(Yi) > 0 then choose a Thurston-norm mini-
mizing, connected surface F in Yi which represents some non-zero class in
H2(Yi). Theorem 3.1 implies that 0 6= ĤF(Yi, 1

2x(F ); Λω) ⊂ ĤF(Yi; Λω), as
desired. �

Proof of Theorem 1.1. — The “if” direction is essentially the same as
an argument of Ni’s [25, Lemma 2.1]. Specifically, suppose Y contains a
2-sphere S with

∫
S
ω 6= 0. It follows that S is homologically essential,

hence nonseparating. Thus, Y decomposes as Y = Y0#(S1 × S2) such
that S = {p} × S2 for a point p in S1. (The submanifold (S1 × S2) \ B3

of Y is a neighborhood of S union an arc connecting the two sides of
S.) Let ω0 ∈ Ω2(Y0) and ω′ ∈ Ω2(S1 × S2) be closed 2-forms such that
[ω0]#[ω′] = [ω]. Since

∫
S
ω 6= 0, then

∫
S
ω′ 6= 0 and so, by direct calculation,

ĤF(S1 × S2; Λω′) = 0. So, the claim follows from the Künneth theorem,
Lemma 2.4.
For the “only if” direction, split Y = Y0#k(S1 × S2) where Y0 has no

homologically essential embedded S2. If
∫
S2 ω 6= 0 for the generator of the

second homology of some summand then we are done. Otherwise, let ω0 ∈
Ω2(Y0) denotes the restriction of ω. Since ĤF(S1×S2; Λω0) 6= 0 if

∫
S2 ω0 =

0 (by direct computation), by the Künneth theorem, it suffices to show that
ĤF(Y0; Λω0) 6= 0. By Corollary 3.2, there is an open set of closed 2-forms
U ⊂ Ω2(Y0) such that for any α ∈ U we have ĤF(Y0; Λα) 6= 0. In particular,
there is a generic closed 2-form ω̃ ∈ Ω2(Y0) such that ĤF(Y0; Λω̃) 6= 0. It
then follows from Corollary 2.3 that ĤF(Y0; Λω0) 6= 0. �

Proof of Theorem 1.2. — Split Y = Y1# · · ·#Yn such that every Yi is
irreducible. By the connected sum formula

ĤF(Y ) = ĤF(Y1)⊗ · · · ⊗ ĤF(Yn).

So, it is enough to prove the theorem for an irreducible closed 3-manifold.
If Y is a rational homology sphere then the result follows from the fact

that χ(ĤF(Y )) 6= 0 [28, Proposition 5.1] and so ĤF(Y ) 6= 0.
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If b1(Y ) > 0, then let F be a Thurston-norm minimizing surface in Y

such that [F ] 6= 0 in H2(Y ). Then, F is taut and a result of Hedden–
Ni [10, Theorem 2.2] implies that ĤF(Y, [F ], 1

2x(F )) ⊗ Q 6= 0 and thus
ĤF(Y ) 6= 0. �

Theorem 1.2 has an extension to the sutured Floer homology of link
complements. Let L be a link in a closed, oriented 3-manifold Y . We make
Y (L) = Y \ nbd(L) into a sutured manifold by adding two parallel copies,
with opposite orientations, of a homologically essential curve on each com-
ponent of ∂nbd(L) as sutures. Denote the set of sutures by Γ. Note that Γ
is not unique.
Recall that a sutured manifold (Y,Γ) is irreducible if every embedded S2

in Y bounds a 3-ball. Otherwise, Y is reducible.

Theorem 3.3. — There is a suture γ ∈ Γ which bounds an embedded
disk in Y (L) if and only if SFH (Y (L),Γ) = 0.

Proof. — Consider a decomposition of (Y (L),Γ) as

(Y (L),Γ) = (Y0,Γ0)# · · ·#(Yk,Γk)#Yk+1# · · ·#Yn#
(
#m(S1 × S2)

)
so that:

• for any k + 1 6 i 6 n, Yi is an irreducible closed 3-manifold,
• for any 0 6 i 6 k, (Yi,Γi) is an irreducible sutured manifold where

Γi = Γ ∩ Yi.
Denote the sublink of L whose corresponding set of sutures is Γi by Li.
It follows from the connected sum formula for sutured Floer homol-

ogy [13, Proposition 9.15] that

SFH (Y (L),Γ) =
(

k⊗
i=0

SFH (Yi,Γi)
)
⊗

 n⊗
j=k+1

ĤF(Yj)

⊗ (k2)⊗(m+k).

Thus, Theorem 1.2 implies that SFH (Y (L),Γ) = 0 if and only if
SFH (Yi,Γi) = 0 for some 0 6 i 6 k.

Suppose SFH (Yi,Γi) = 0 for some i. Theorem 2.6 implies that (Yi,Γi)
is not taut. All components of R(Γi) are annuli, hence R+(Γi) and R−(Γi)
are Thurston-norm minimizing, so there is a suture γ ∈ Γi which bounds
a properly embedded disk in Yi.
Conversely, if a suture γ ∈ Γi bounds a disk D in Y (L), we inductively

construct a disk Di in Yi whose boundary is γ. Perturb D so it intersects
the connected sum 2-spheres transversely, and denote the intersection by
Z. If Z = ∅, then D lies in Yi and set Di = D. Otherwise, choose an
innermost circle Z0 in Z ⊂ D and let D′ be the disk in D bounded by
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Z0. For some 0 6 j 6 n, the disk D′ is in Yj . Let S be the connected
sum sphere that contains Z0. Since Yj is irreducible, for one of the disks
bounding Z0 in S, denoted by D′′, D′ ∪D′′ bounds a 3-ball in Yj ∩ Y (L).
Replace S with an isotopic copy of (S \D′′) ∪D′, to get a connected sum
decomposition of (Y (L),Γ) into irreducible closed or sutured manifolds,
such that the intersection of D with the connected sum spheres has fewer
components. Continue this process until Z is empty, and the result is a disk
Di in Yi with ∂Di = γ. Thus, the irreducible sutured manifold (Yi,Γi) is
not taut. It follows from Theorem 2.5 that SFH (Yi,Γi) = 0, which implies
SFH (Y (L),Γ) = 0. �

4. Bordered Heegaard Floer homology detects
incompressible surfaces

The goal of this section is to prove Theorem 1.3. We start by defining the
bimodule A(Z)Λ(Z)A(Z). Fix a pointed matched circle Z for a surface of
genus k. Fix also, once and for all, 4k−1 real numbers λ1, . . . , λ4k−1 which
are linearly independent over Q; for instance, λ1 =

√
2, λ2 =

√
3, λ3 =√

5, · · · . There is an induced injection ψ : Z4k−1 → R which sends the ith

standard basis vector to λi.
Recall that a strand diagram a ∈ A(Z) has a support [a] ∈ Z4k−1.

Definition 4.1. — As a Λ ⊗F2 I(Z)-module, define Λ(Z) = Λ ⊗F2

I(Z). The structure maps δ1
n on Λ(Z) are defined to vanish if n 6= 2, and

δ1
2 : Λ(Z)⊗A(Z)→ A(Z)⊗Λ(Z) is a homomorphism of Λ-vector spaces.
So, it only remains to define δ1(i⊗ a) for i a basic idempotent (viewed as
a generator of Λ(Z)) and a a strand diagram. Define

δ1
2(i⊗ a) =

{
a⊗ Tψ([a])j if ia 6= 0, where aj 6= 0,
0 otherwise.

It is immediate from the definitions that A(Z)Λ(Z)A(Z) is a type DA
bimodule over A(Z) and, in fact, over A(Z)⊗F2 Λ.
The homomorphism ψ also induces an element [ψ] ∈ H2(Y, ∂Y ;R) =

Hom(H2(Y, ∂Y ),R) as follows. The identification of ∂Y with F (Z) gives an
embedding ι : H1(∂Y ) ↪→ Z4k−1. So, given an element A ∈ H2(Y, ∂Y ) there
is a corresponding element ι(∂A) ∈ Z4k−1. Define [ψ](A) = ψ(ι(∂A)) ∈ R.
Next, let (−Y ) ∪∂ Y be the double of Y along its boundary. Via the

homomorphism

H2(Y, ∂Y ;R) ∼= H2((−Y ) ∪∂ Y,−Y ;R)→ H2((−Y ) ∪∂ Y ;R)
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we can view [ψ] as an element of H2((−Y ) ∪∂ Y ;R) and hence there is a
corresponding Novikov coefficient system Λ[ψ] on (−Y )∪∂ Y . Note that [ψ]
vanishes on A ∈ H2((−Y )∪∂ Y ) if and only if A · [∂Y ] = 0 ∈ H1(∂Y ). (This
uses the fact that the λi are linearly independent over Q.) This intersection
product agrees with the second map in the Mayer–Vietoris sequence

H2(−Y )⊕H2(Y )→ H2((−Y ) ∪∂ Y )→ H1(∂Y ),

so [ψ](A) = 0 if and only if A comes from H2(−Y ) ⊕ H2(Y ). In other
words, [ψ] is in the image of the map H1(∂Y )→ H2((−Y )∪∂ Y ) from the
Mayer–Vietoris sequence.
Finally, given a bordered 3-manifold (Y, φ : F (−Z) → ∂Y ), the compo-

sition
H2(Y, ∂Y ) ∂−→ H1(∂Y ) φ−1

∗−→ H1(F (−Z)) [ψ]−→ R

makes the universal Novikov field Λ into an algebra over F2[H2(Y, ∂Y )].
Call this coefficient system Λψ and the resulting twisted bordered module
ĈFD(Y ; Λψ). It is straightforward from the definitions that

(4.1) A(Z)ĈFD(Y ; Λψ) ∼= A(Z)Λ(Z)A(Z) �
A(Z)ĈFD(Y ).

Lemma 4.2. — Fix a bordered 3-manifold (Y, φ : F (−Z)→ ∂Y ). Then
there is a quasi-isomorphism

MorA(Z)(A(Z)ĈFD(Y, φ),A(Z)Λ(Z)A(Z) �
A(Z)ĈFD(Y, φ))

' ĈF((−Y ) ∪∂ Y ; Λ[ψ]).

Proof. — Since ĈFA(−Y, φ) is dual to ĈFD(Y, φ) [21, Theorem 2], the
statement is equivalent to

ĈFA(−Y, φ)A(Z) �
A(Z)Λ(Z)A(Z) �

A(Z)ĈFD(Y, φ))

' ĈF((−Y ) ∪∂ Y ; Λ[ψ]).

So, the result follows from Equation (4.1) and the twisted pairing theorem,
Corollary 2.12. �

Call an element of H1(∂Y ;R) generic if the induced map H1(∂Y )→ R is
an embedding. The element [ψ] ∈ H2((−Y )∪∂ Y ) is the image of a generic
element ofH1(∂Y ;R). Since we continue to think of real cohomology classes
as represented by differential forms, we will use integral signs to represent
the pairing between homology and cohomology. The following is a variant
on a well-known lemma in 3-manifold topology (cf. [6, Lemma 3.4], [8,
Section 7]):
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Lemma 4.3. — Let Y be a 3-manifold with connected boundary and ω a
generic element ofH1(∂Y ;R). Let ω′ be the induced element ofH2((−Y )∪∂
Y ;R). There is an embedded sphere S in (−Y ) ∪∂ Y with

∫
S
ω′ 6= 0 if and

only if there is an embedded disk in (Y, ∂Y ) with
∫
∂D

ω 6= 0.

Since ω is generic, the condition that
∫
∂D

ω 6= 0 is equivalent to [∂D] 6=
0 ∈ H1(∂Y ).

Proof. — If there is an embedded disk in (Y, ∂Y ) with
∫
∂D

ω 6= 0 then,
letting S = (−D) ∪∂ D ⊂ (−Y ∪∂ Y ), we have

∫
S
ω′ =

∫
∂D

ω 6= 0.
For the converse, suppose there is an embedded sphere S in (−Y ) ∪∂ Y

with
∫
S
ω 6= 0. Perturbing S slightly, we may assume that S is transverse

to ∂Y , so Z = S ∩ ∂Y is an embedded 1-manifold in S. If Z has a single
component then we can take D to be either hemisphere of S \ Z. So, we
will inductively reduce the number of components of Z, while preserving
the properties that:

•
∫
S
ω′ 6= 0 and

• there is an open neighborhood U ⊂ (−Y )∪∂ Y of ∂Y so that S ∩U
is an embedded submanifold. That is, S is embedded near ∂Y .

At the intermediate steps, S may not itself be embedded. Our goal is to
find a disk D in Y or −Y which is embedded near ∂Y and so that

∫
∂D

ω =∫
D
ω′ 6= 0. Dehn’s lemma then gives an embedded disk D′ in Y with the

same boundary, proving the result.
So, choose an innermost circle Z0 in Z ⊂ D and let D0 be the disk

in S bounded by Z0. Without loss of generality, suppose D0 ⊂ Y . Let
S0 = (−D0) ∪Z0 D0 be the double of D0, which is a sphere in (−Y ) ∪∂ Y ,
embedded near ∂Y . Since

∫
∂D0

ω =
∫
S0
ω′, if

∫
S0
ω′ 6= 0 then we are done.

If
∫
S0
ω′ = 0 then S′ = (S \D0) ∪ (−D0) is another sphere in (−Y ) ∪∂ Y ,

and
∫
S′
ω′ =

∫
S
ω′ −

∫
S0
ω′ =

∫
S
ω′ 6= 0. We can isotope S′ to intersect ∂Y

in Z \ Z0. In particular, S′ is still embedded near ∂Y . So, by induction on
the number of components of Z, we are done. �

Proof of Theorem 1.3. — By Lemma 4.2, we want to show that
ĤF((−Y ) ∪∂ Y ; Λ[ψ]) = 0 if and only if ∂Y has a homologically essential
compressing disk. By Lemma 4.3, ∂Y has a homologically essential com-
pressing disk if and only if (−Y )∪∂ Y contains an embedded sphere S with∫
S

[ψ] 6= 0. By Theorem 1.1, this condition is equivalent to ĤF((−Y ) ∪∂
Y ; Λ[ψ]) = 0. �

Remark 4.4. — Call a compressing disk D in Y weakly homologically
essential if [D] 6= 0 ∈ H2(Y, ∂Y ). If Y has no S2 × S1 summands then the
totally twisted bordered Floer module ĈFD(Y, ∂Y ) detects whether ∂Y
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Figure 5.1. Framed prongs. This is an analogue of an arced cobor-
dism for Y = B̄3 \ (B3qB3). The embedded disk which plays the role
of the framed arc is shaded.

has a weakly homologically essential compressing disk, as follows. Choose
an injection ω : H2(Y, ∂Y ) → R, making the universal Novikov field into
a module Λω over F2[H2(Y, ∂Y )]. From ĈFD(Y, ∂Y ) we can construct
ĈFD(Y, ∂Y ; Λω). Then

H∗Mor(ĈFD(Y, ∂Y ), ĈFD(Y, ∂Y ; Λω)) = 0

if and only if ∂Y has a weakly homologically essential compressing disk.
To see this, imitate the proof of Lemma 4.3 to show that Y has a weakly
homologically essential compressing disk if and only if the double of Y has
a homologically essential 2-sphere S such that ω evaluates nontrivially on
[S ∩ Y ] ∈ H2(Y, ∂Y ). Then apply Theorem 1.1.

5. Multiple boundary components

Theorem 1.3 has generalizations to manifolds with multiple boundary
components. For notational simplicity we will focus on the case of manifolds
with two boundary components; there are no essential differences in the
general case.

So, consider a compact 3-manifold Y with boundary components ∂LY
and ∂RY . Choosing parametrizations φL :F (ZL)→ ∂LY and φR :F (ZR)→
∂RY and a framed arc γ in Y from φL(z) to φR(z) makes Y into an arced
cobordism. (Thinking of the framed arc as a ribbon, the generalization to
the case of more than two boundary components is to choose an embedding
of a closed disk D2 so that one arc on ∂D2 maps to each component of ∂Y .
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See Figure 5.1, as well as [23, Remark 5.7] and [9, Section 2].) There is
a corresponding left-left type DD structure A(−ZL),A(−ZR)ĈFDD(Y ) [23,
Section 6]. Equivalently, we can think of ĈFDD(Y ) as a left type D struc-
ture over A(−ZL)⊗F2 A(−ZR).
The endomorphism complex of A(−ZL)⊗F2A(−ZR)ĈFDD(Y ) does not com-

pute the Heegaard Floer homology of the double of Y . Rather, if we let
K = (−γ) ∪∂ γ ⊂ (−Y ) ∪∂ Y then

(5.1) MorA(−ZL)⊗F2A(−ZR)(ĈFDD(Y ), ĈFDD(Y ))

' ĈFK
(
[(−Y ) ∪∂ Y ]−1(K),K ′

)
where K ′ is the core of the surgery torus in the result of −1-surgery on
K [21, Theorem 6].

To obtain the Heegaard Floer homology of (−Y ) ∪∂ Y involves an extra
bimodule, denoted B̂SDA(TC(Z)) in earlier work [24] (see also [9]). We can
think of an arced cobordism (Y, φL, φR, γ) as a bordered-sutured manifold
Y (γ) by deleting a neighborhood of γ and placing two longitudinal sutures
along the result (using the framing). (In the multiple boundary component
case, the sutures are the edges of the ribbon.) In this setting, Formula (5.1)
follows from Theorem 2.9; the surgery comes from the two twisting slices.
For a pointed matched circle Z, if we think of F (Z) as a surface with one
boundary component (i.e., think of Z as an arc diagram) then the bordered-
sutured cobordism TC(Z) is obtained from [0, 1] × F (Z) by attaching a
3-dimensional 2-handle to {1/2} × (∂F (Z)). The bordered boundary of
TC(Z) is {0, 1} × F (Z). The remainder of ∂TC(Z) consists of two 2-disks.
There is a single suture arc on each of these 2-disks, so R+ and R− each
consists of two disks, one on each component of ∂TC(Z).
It follows that(
−Y (γ)

)
∪F (−ZL)qF (−ZR)

(
TC(−ZR) ∪F (−ZR) Y (γ)

) ∼= (−Y ∪∂ Y ) \ D3,

as sutured manifolds. Thus, the following result is the natural generalization
of Theorem 1.3:

Theorem 5.1. — Fix a compact, connected, oriented 3-manifold Y with
two boundary components, ∂LY and ∂RY . Make Y into an arced cobordism
with boundary F (−ZL) and F (−ZR) for some pointed matched circles ZL
and ZR. Then

(5.2) H∗MorA(ZL)⊗A(ZR)(ĈFDD(Y ),

Λ(ZR)�A(ZR) B̂SDA(TC(ZR))�A(ZR) ĈFDD(Y )
)

= 0
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if and only if ∂RY is compressible.

(The generalization of Theorem 5.1 to n > 2 boundary components in-
volves n− 1 copies of TC.)
Proof. — From the discussion above, the left side of Formula (5.2) com-

putes ĤF((−Y ) ∪∂ Y ; Λω) where ω ∈ H2((−Y ) ∪∂ Y ;R) is the image of
[ψ] ∈ H1(∂RY ;R) under the composition

H1(∂RY ;R) (Id,0)−→ H1(∂RY ;R)⊕H1(∂LY ;R) ∼= H1(∂Y ;R)

−→ H2(Y, ∂Y ;R) ∼= H2((−Y ) ∪∂ Y,−Y ;R)

−→ H2((−Y ) ∪∂ Y ;R)

(see Section 4). So, the result follows from an analogue of Lemma 4.3:

Lemma 5.2. — Let Y be a compact 3-manifold with boundary ∂LY q
∂RY and ω a generic element of H1(∂RY ;R). Let ω′ be the induced element
of H2((−Y ) ∪∂ Y ;R). There is an embedded sphere S in (−Y ) ∪∂ Y with∫
S
ω′ 6= 0 if and only if there is an embedded disk D in (Y, ∂RY ) with∫

∂D
ω 6= 0.

The proof of Lemma 5.2 is similar to the proof of Lemma 4.3 and is left
to the reader. �

Note in particular that one can use Theorem 5.1 to test whether Seifert
surfaces are incompressible (from either side).

6. Partly boundary parallel tangles

In this section, we prove Theorem 1.8.
Suppose Y is an oriented 3-manifold and T is a tangle in Y . (Recall our

convention that all components of all tangles are assumed to be nullho-
mologous. So, in particular, their meridians are homologically essential in
Y (T ) = Y \ nbd(T ).) An embedded disk (D, ∂D) in (Y \ nbd(T ), ∂Y ) is
called essential, if D is not isotopic relative boundary, in Y \nbd(T ), to an
embedded disk in ∂Y . The tangle (Y, T ) is called irreducible if it has no
essential disk, and otherwise, it is called reducible. Let L denote the null-
homologous link specified by doubling T i.e., L = −T ∪∂T T in the closed
3-manifold X = −Y ∪∂Y Y .

Associated to the pair (Y, T ) is a bordered-sutured manifold YΓ(T ) =
(Y (T ),Γ) with bordered and sutured boundaries as described in Con-
struction 1.7. Further, for any interval component Ti of T , we can mod-
ify Γ to get a new set Γi of sutures and a bordered-sutured manifold
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YΓi
(T ) = (Y (T ),Γi). Let F (−Z) be the bordered boundary of YΓ(T ) (and

YΓi
(T )). The double D(Y, T ) = −YΓ(T ) ∪F (Z) YΓ(T ) is the sutured mani-

fold constructed from X(L) = X \ nbd(L) by adding a pair of meridional
sutures on any closed components of −T or T and a pair of longitudi-
nal sutures on the rest of the components. Note that despite there being
many choices of longitudinal sutures in Γ, the sutures −Γ ∪∂ Γ of D(Y, T )
are unique: the doubles of the longitudinal sutures are longitudes for the
nullhomologous knot −T ∪∂ T , and hence are well-defined up to isotopy.
Moreover, for any choice of interval component Ti of T , one may construct

a sutured manifold from X(L) by adding a pair of longitudinal sutures
along −Ti ∪∂ Ti and a pair of meridional sutures around the rest of the
components. Denote this sutured manifold by Di(Y, T ).
Proof of Theorem 1.8. — By Corollary 2.10 we have:

H∗MorA(Z)
(
A(Z)B̂SD(YΓ(T )),A(Z)τA(Z) �

A(Z)B̂SD(YΓ(T ))
)

∼= SFH (D(Y, T )).

Therefore,

H∗MorA(Z)

(
A(Z)B̂SD(YΓ(T )),A(Z)τA(Z) �

A(Z)B̂SD(YΓ(T ))
)

= 0.

if and only if SFH (D(Y, T )) = 0.
Choose a set D = {D1, . . . , Dn} of disjoint essential disks in (Y, T ) so

that for the decomposition

Y \ nbd(D) = Y0 q · · · q Yn

all pairs (Yi, Ti = Yi∩T ) are irreducible. Note that some Ti might be empty.
This decomposition corresponds to a decomposition of the form

D(Y, T ) = D(Y0, T0)# · · ·#D(Yk, Tk)#
(
#n−k(S1 × S2)

)
By the connected sum formula, SFH (D(Y, T )) = 0 if and only if for some

0 6 i 6 k we have SFH (D(Yi, Ti)) = 0. Therefore, it is enough to prove
the theorem for an irreducible tangle.
Assume that (Y, T ) is irreducible. It follows from Theorem 3.3 that

SFH (D(Y, T )) = 0 if and only if there is a suture γ that bounds an em-
bedded disk in X(L). Since L is nullhomologous, meridional sutures are
homologically essential. So, γ is a longitudinal suture and the correspond-
ing component of L bounds a disk in X \L. Therefore, SFH (D(Y, T )) = 0
is equivalent to existence of an interval component T0, such that −T0∪∂ T0
bounds a disk in X \L. It remains to show that −T0∪∂ T0 bounding a disk
in X \L is equivalent to T0 being partly boundary parallel. One direction,
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that T0 partly boundary parallel implies −T0 ∪∂ T0 bounds a disk, is obvi-
ous. For the other, let D denote the corresponding embedded disk in X \L
where ∂D = −T0 ∪∂ T0 and Z = D ∩ ∂Y . If Z is a single arc connecting
the points in ∂T0, then T is partly boundary parallel. If Z has some circle
components, consider an innermost circle Z0 in Z which bounds an empty
disk D0 ⊂ D. Since (Y, T ) is irreducible, we can isotope D so that after the
isotopy it intersects ∂Y at Z \ Z0. Continue this process until Z has only
one component, and we are done.
For the second part, note that the sutured manifold m(YΓi

(T )) ∪
T WF (−Z),− ∪ YΓi(T ) is obtained from Di(Y, T ) by a negative Dehn twist
on the component corresponding to −Ti ∪∂ Ti. Thus,

H∗MorA(Z)

(
A(Z)B̂SD(YΓi

(T )),A(Z)τ iA(Z) �
A(Z)B̂SD(YΓi

(T ))
)

∼= SFH (Di(Y, T )),

where A(Z)τ iA(Z) is the DA bimodule corresponding to performing a Dehn
twist on one of the components of ∂F (−Z) specified by Ti. On the other
hand, since L is nullhomologous, the meridional sutures do not bound disks,
so SFH (Di(Y, T )) = 0 if and only if the longitudinal suture corresponding
to −Ti ∪∂ Ti bounds a disk in X(L). Equivalently, −Ti ∪∂ Ti bounds a disk
in X \L. The rest of the proof is completely similar to the proof of the first
part. �

7. Computationally effective versions

Finally, we show that Theorems 1.3 and 1.8 can be adapted for machine
verification. (This is not the first algorithm for detecting incompressibility.)
There are three barriers to applying these theorems to verify incompress-
ibility and partial boundary parallelness:

(i) Computing A(Z)ĈFD(Y, φ) (Theorem 1.3) or A(Z)B̂SD(YΓ(T ))
(Theorem 1.8).

(ii) In the case of Theorem 1.8, computing the bimodule A(Z)τA(Z).
(iii) Computing the homology of the morphism complex.

The difficulty in (i) and (ii) is that the bordered or bordered-sutured
modules are defined by counting pseudoholomorphic curves. The difficulty
in (iii) is that a general element of the Novikov field Λ consists of infinitely
much data (the sequence ai of real numbers) and so is not well-adapted to
computer linear algebra.
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7.1. Computing bordered and bordered-sutured modules

For ĈFD, (i) was addressed in earlier work of Ozsváth, Thurston, and
the second author [22, Section 8]. The strategy is to decompose Y as the
union of a handlebody H0 and a compression body H1, glued via a diffeo-
morphism ψ. For standard parametrizations φ0 of ∂H0 and φ1qφ′1 of ∂H1

it is straightforward to compute ĈFA(H0, φ0) and ĈFDA(H1, φ1qφ′1), say.
One then factors φ−1

1 ◦ ψ ◦ φ0 = ψ1 ◦ · · · ◦ ψn as a product of generators of
the mapping class groupoid, called arcslides. One also factors φ−1 ◦φ′1 into
arcslides χ1 ◦ · · · ◦χm. The bimodules ĈFDD(ψi) and ĈFDD(χi) are com-
plicated but can be described explicitly (cf. Section 7.1.2); this is the main
work. One can then compute the type DA bimodules for these arcslides
using some dualities (cf. Section 7.1.1). Finally, one has

ĈFD(Y, φ) ' ĈFA(H0, φ0)� ĈFDA(ψ1)� · · ·� ĈFDA(ψn)

� ĈFDA(H1, φ1 q φ′1)� ĈFDA(χ1)� · · ·� ĈFDD(χm).

Though it has not appeared in the literature, a similar strategy works to
compute bordered-sutured modules. There are a few more basic bordered-
sutured pieces that must be computed:

(1) Arcslides between arc diagrams. This is a simple extension of the
bordered computation [22] (see Section 7.1.2).

(2) One- and two-handle attachments to the bordered boundary. The
bimodules for 1- and 2-handle attachments are the same, except
for which action corresponds to which boundary component. It will
be sufficient to consider 1-handles with both feet in the same bor-
dered boundary component, and 2-handles which do not disconnect
a boundary component.
The relevant bordered-sutured Heegaard diagrams are shown in

Figure 7.1. In the case of 1-handle attachments to a pointed matched
circle, the bimodule was already computed [22, Section 8.1], and the
extension to arc diagrams is straightforward (see Section 7.1.3). (In
fact, the pointed matched circle case suffices for us.)

(3) Attaching a 1-handle to R−. The Heegaard diagram is shown in
Figure 7.2. Topologically, this cobordism is a product [0, 1]×F (Z),
but there is a (particular) 1-handle H in F (Z) so that R− is(
[0, 1]× S−(F (Z))

)
∪
(
{1} ×H

)
. The set R+ is [0, 1]× S+(F (Z)).

The bordered-sutured invariant can be deduced from the bordered-
sutured invariant of the identity cobordism (See Section 7.1.4).
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(4) Attaching a 1-handle to R+. The Heegaard diagram is shown in
Figure 7.3. This is similar to the previous case, except that {1}×H
becomes part of R+ instead of R−. Again, the bordered-sutured
invariant can be deduced from the bordered-sutured invariant of
the identity cobordism (See Section 7.1.4).

(5) An R+-cup or cap. The Heegaard diagram is shown in Figure 7.4.
Topologically, this cobordism is a product [0, 1]×F (Z). All but one
component of R− (respectively R+) in the sutured boundary is of
the form [0, 1] × S−(F (Z)) (respectively [0, 1] × S+(F (Z))). For a
cup, one component of R− is a hexagon with three sides components
of Γ, two sides on {1}×S−(F (Z)) and one side on {0}×S−(F (Z)),
and one component of R+ is a bigon with one side a component
of Γ and one side on {1} × S−(F (Z)). A cap is similar, except
with two sides of the hexagon on {0} × S−(F (Z)) and one side on
{1} × S−(F (Z)), and the bigon has boundary in {0} × S−(F (Z)).
These bordered-sutured invariants are easy to describe, given the
invariants of the identity cobordism (See Section 7.1.5).

(6) An R−-cup or cap. The Heegaard diagram is shown in Figure 7.5.
This is similar to the previous case, but with the roles of R± ex-
changed. Again, these bordered-sutured invariants are easy to de-
scribe (See Section 7.1.5).

(7) Capping off a pointless bordered arc. Given an arc diagram Z =
({Zj},a,M) so that one of the arcs, say Z0, has Z0 ∩ a = ∅, let
Z ′ = ({Zj | j 6= 0},a,M) be the arc diagram consisting of all the
arcs except Z0. There is a bordered-sutured cobordism from Z to
Z ′ which is the disjoint union of the identity cobordism of Z ′ and
a 3-ball with one suture. The corresponding Heegaard diagram is
shown in Figure 7.6. The bordered-sutured invariant for this cobor-
dism is easy to describe (see Section 7.1.6). There is also a dual
operation, creating a pointless bordered arc, but we will not need
this operation.

Our first milestone is to prove that any bordered-sutured manifold can
be decomposed into these basic pieces. We start by showing that arcslides
generate the mapping class groupoid in the bordered-sutured case. (In the
connected boundary case, this is well-known [2, 22, 30].)

Definition 7.1. — The mapping class groupoid has objects the arc di-
agrams Z. The morphism set Hom(Z1,Z2) is the set of isotopy classes of
diffeomorphisms F (Z1)→ F (Z2) taking the arcs S+ ⊂ ∂F (Z1) homeomor-
phically to the arcs S+ ⊂ F (Z2).
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Figure 7.1. Attaching a 1- or 2-handle to the interior of Y .
(a) Attaching a 1-handle with both feet on the same boundary com-
ponent. (b) Attaching a 2-handle without disconnecting a boundary
component. The β-circles are solid, the α-arcs are dashed, and the su-
tured boundary is thick. Beyond the dotted lines, each diagram is the
same as the standard Heegaard diagram for the identity cobordism.

Figure 7.2. Attaching a 1-handle to R−. Left: part of a bordered-
sutured Heegaard diagram corresponding to attaching a 1-handle to
R−. The β-circles are solid, the α-arcs are dashed, and the sutured
boundary is the thick horizontal lines. Right: an illustration of attach-
ing a 1-handle to R−. The shaded parts of the diagrams on the left
and right correspond, as do the thick parts of the left boundaries.

The mapping class groupoid is a disjoint union of groupoids, one for each
topological type of sutured surface.

Given an arcslide from Z1 to Z2 there is a corresponding arcslide diffeo-
morphism from F (Z1) to F (Z2) (see, e.g., [22, Figure 3]). Abusing termi-
nology, we will typically refer to the arcslide diffeomorphism as an arcslide.
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Figure 7.3. Attaching a 1-handle to R+. Left: part of a bordered-
sutured Heegaard diagram corresponding to attaching a 1-handle to
R+. Right: the corresponding 1-handle being attached to R+.

Figure 7.4. A cup in R−, i.e., an R+-cup. Left: the Heegaard dia-
gram. Note that this piece of the diagram has two boundary compo-
nents. Right: the effect on part of R−. The rest of R± is unchanged.
For a cap instead of a cup, rotate the diagram by π.

Figure 7.5. A cup or cap in R+, i.e., an R−-cup. Left: the Heegaard
diagram for a cup. Right: the Heegaard diagram for a cap. The effect
of the cup on R± is similar to Figure 7.4, except with the roles of R±
exchanged.
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Figure 7.6. Capping off a pointless bordered arc. Left: the rele-
vant component of the bordered-sutured Heegaard diagram. The bor-
dered boundary is on the left, and thin, and the sutured boundary
is on the right, and thick. The rest of the Heegaard diagram is the
standard Heegaard diagram fro the identity map of Z ′. Right: the
non-identity component of the corresponding bordered-sutured cobor-
dism. The bordered boundary is lightly shaded and R± are darkly
shaded.

Lemma 7.2. — The arcslide diffeomorphisms generate the mapping
class groupoid.

Proof. — Fix arc diagrams Z1 and Z2 and a diffeomorphism φ : F (Z1)→
F (Z2) respecting the markings of the boundary. Choose Morse functions fi
on F (Zi) compatible with the arc diagrams (Z-compatible Morse functions
in Zarev’s language [37, Definition 2.3]), and so that there is a neighborhood
U of ∂F (Z2) so that f1|φ−1(U) = f2 ◦ φ|φ−1(U). The functions f1 and f2 ◦ φ
can be connected by a 1-parameter family of Morse functions ft, t ∈ [0, 1],
all of which agree with f1 over φ−1(U). (See, e.g., [31].) For a generic choice
of metric, there are finitely many t for which ft is not Morse–Smale, because
of a flow between two index 1 critical points. These are the arcslides. �

A second lemma allows us to restrict to bordered-sutured manifolds with
connected boundary. Given a bordered-sutured manifold Y = (Y,Γ, φ), a
decomposing disk is a disk D in Y with boundary in the sutured boundary
of Y , and so that ∂D ∩R+ and ∂D ∩R− each consists of one arc. Given a
decomposing diskD, Y \nbd(D) can be made into a bordered-sutured man-
ifold by including ∂nbd(D) in the sutured boundary, and adding a single
arc in each of the components of ∂nbd(D) to Γ. The bordered boundary of
Y \nbd(D) inherits a parametrization from Y. We say that such bordered-
sutured manifolds differ by a disk decomposition.

Lemma 7.3. — If Y and Y ′ are bordered-sutured manifolds which differ
by a disk decomposition then B̂SD(Y) ' B̂SD(Y ′).
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Figure 7.7. Attaching a 3-dimensional 1-handle to Γ. Top: part
of a bordered-sutured cobordism Y . The part of ∂Y shown is lightly
shaded. Outside the dashed cubes, Y is arbitrary. Bottom: the result
of attaching a 1-handle to connect these two components of ∂Y .

Proof. — This is a special case of Zarev’s surface decomposition theo-
rem [37, Theorem 10.6], but is also easy to see directly. We can find a
bordered-sutured Heegaard diagram (Σ,α,β) for Y so that D ∩Σ is a sin-
gle arc η with ∂η contained in the sutures of Σ and so that η is disjoint
from α and β. Then (Σ \ nbd(η),α,β) is a bordered-sutured Heegaard
diagram for Y ′, where we include ∂nbd(η) as part of the sutured boundary
of Σ \ nbd(η). If we choose corresponding almost complex structures, the
generators and differential for B̂SD(Σ,α,β) and B̂SD(Σ\nbd(η),α,β) are
exactly the same. �

In particular, given any bordered-sutured manifold Y = (Y,Γ, φ) one can
attach 3-dimensional 1-handles to ∂Y with attaching points on Γ to make
∂Y connected, without changing B̂SD(Y). In this operation, each attaching
disk intersects Γ in an arc, and Γ changes by surgery at the attaching points
so that these arcs are replaced with two parallel arcs that go over the 1-
handle and the result is a bordered-sutured manifold. See Figure 7.7 for an
illustration of this operation and Figure 7.8 for the corresponding operation
on Heegaard diagrams.
Thus, it suffices to compute B̂SD(Y) where Y has connected boundary.
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Figure 7.8. Making the boundary connected. Left: a bordered-
sutured Heegaard diagram for a bordered-sutured manifold with two
boundary components. Right: a bordered-sutured Heegaard diagram
for a bordered-sutured manifold with connected boundary, and an arc
η, so that a disk decomposition along η gives the diagram on the left.

Lemma 7.4. — Up to disk decomposition, any bordered-sutured mani-
fold Y = (Y,Γ, φ : F (Z)→ ∂Y ) can be decomposed as a union of the seven
basic bordered-sutured pieces above.

Proof. — Since attaching a 1-handle to Γ is the inverse of a disk decom-
position, we may assume that ∂Y is connected and that the sutured part
of ∂Y is connected.
Choose some parametrization ψ : F (Z ′) → ∂Y of ∂Y by the surface

associated to a pointed matched circle Z ′. Then we can view Y as the com-
position of the bordered manifold (Y, ψ) and a bordered-sutured cobor-
dism (Y ′,Γ′) from F (Z ′) to F (Z) so that Y ′ is topologically a cylinder
[0, 1]× F (Z ′).
From the bordered case [22, Section 8], we can decompose (Y, ψ) as a

composition of arcslides and 1- and 2-handle attachments to the bordered
boundary. It remains to decompose Y ′ into 1- and 2-handle attachments to
R±, R± cups and caps, capping pointless arcs, and arcslides. To this end,
let ∂sY ′ ⊂ ∂Y ′ denote the sutured boundary. Choose a Morse function
f : ∂sY ′ → [0, 1] so that f−1(0) = ∂sY

′ ∩ F (Z ′), f−1(1) = ∂sY
′ ∩ F (Z), f

has no index 0 critical points, and each critical level of f has a single critical
point. By a possibly large perturbation of the sutures, we can arrange that
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for each t ∈ [0, 1] and each connected component C of f−1(t), C ∩ Γ 6= ∅.
Further perturbing the sutures slightly, we may assume that:

(1) If p1, . . . , pk are the critical points of f then each pi is in the interior
of either R+ or R− (i.e., pi 6∈ Γ).

(2) The restriction of f to Γ is a Morse function, with critical points
q1, . . . , q`, say.

(3) The real numbers f(p1), . . . , f(pk), f(q1), . . . , f(q`) are all distinct.

Choose 0 = t0 < t1 < · · · < tk+` = 1 so that each f−1((ti, ti+1)) contains
exactly one pi or qi. Then f−1([ti, ti+1]) corresponds to a 1-handle attach-
ment to R+ or R− (for a pi) or an R+- or R−-cup or cap or capping off a
pointless bordered arc (for a qi). Let

Yi = (Yi, φi,L : −F (Zi,L)→ ∂LYi, φi,R : F (Zi,R)→ ∂RYi)

be the corresponding bordered-sutured cobordism (parametrized as in Fig-
ures 7.2–7.6, above). For i = 1, . . . , k + ` − 2, let Yi,i+1 be the mapping
cylinder of a composition of arclides from φi,R to φi+1,L. Let Yk+`−1,k+`
be the mapping cylinder of a sequence of arcslides from φk+` to φ. Then,

Y = (Y, ψ) ∪ Y1 ∪ Y1,2 ∪ Y2 ∪ · · · ∪ Yk+`−1,k+` ∪ Yk+`−1 ∪ Yk+`−1,k+`,

as bordered-sutured manifolds. This completes the proof. �

Our next task is to compute the bordered-sutured modules associated
to the seven basic bordered-sutured pieces. We start with some tools for
deducing bordered-sutured computations from bordered computations.

Definition 7.5. — Let Z = (Z,a,M) and Z ′ = (Z ′,a′,M ′) be arc
diagrams. We say that Z is a subdiagram of Z ′ if there is an embedding
φ : Z → Z ′ so that φ(a) ⊂ a′ and M is induced from M ′. Note that we do
not require that φ be proper, i.e., send the boundary of Z to the boundary
of Z ′, or that φ−1(a′) = a. If φ(a) = a′ (so, in particular, φ−1(a′) = a)
then we say that Z is a full subdiagram of Z ′.
Similarly, let H = (Σ,α,β, z) and H′ = (Σ′,α′,β′, z′) be bordered-

sutured Heegaard diagrams. We say that H is a subdiagram of H′ if there
is an embedding φ : Σ→ Σ′ with the following properties:

(1) φ sends the bordered boundary of Σ to the bordered boundary of Σ′.
(2) φ(α) ⊂ α′.
(3) φ(β) = β′ and φ(α) contains every circle in α′.

If further φ(α) = α′ and then we say that H is a full subdiagram of H′.
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Figure 7.9. Examples of subdiagrams of arc diagrams and Hee-
gaard diagrams. Top: a pointed matched circle Z, a full subdiagram
of Z, and a non-full subdiagram of Z. Bottom: the standard Heegaard
diagram for an arcslide, a full subdiagram of this Heegaard diagram,
and a non-full subdiagram of this Heegaard diagram.

In other words, a full subdiagram is obtained by turning some of the
bordered boundary of Σ into sutured boundary, and in a non-full subdia-
gram one can also forget some α-arcs. See Figure 7.9 for some examples of
subdiagrams.
If Z is a subdiagram of Z ′ then there is an injective homomorphism

i : A(Z) → A(Z ′) obtained by regarding a strand diagram in Z as lying
in Z ′. If Z is a full subdiagram of Z ′ then there is also a projection map
p : A(Z ′) → A(Z) which is the identity on strand diagrams contained
entirely in Z and sends any strand diagram not entirely contained in Z
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Figure 7.10. The diagram Zb and its use. Left: the arc diagram
Zb. Center: an arc diagram which is not a full subdiagram of a pointed
matched circle and the result of gluing this diagram to Zb, to give an
arc diagram which is a full subdiagram of a pointed matched circle.
Right: the standard Heegaard diagram for the identity cobordism
of Zb.

to 0. Associated to i is a restriction of scalars functor

i∗ : ModA(Z′) → ModA(Z)

and associated to p is an extension of scalars functor

p∗ : A(Z′)Mod→ A(Z)Mod
A(Z′)P 7→ A(Z)[p]A(Z′) �

A(Z′)P,

where A(Z)[p]A(Z′) denotes the rank 1 type DA bimodule associated to
p [23, Definition 2.2.48].

Lemma 7.6. — If H is a subdiagram of H′ then there is an isomorphism
B̂SA(H) ∼= i∗B̂SA(H′). If H is a full subdiagram of H′ then there is an
isomorphism B̂SD(H) ∼= p∗B̂SD(H′).

(Compare [23, Sections 6.1 and 6.2].)
Proof. — This is immediate from the definitions. �

Let Zb be the arc diagram with two intervals so that a has a single point
on each. See Figure 7.10.

Lemma 7.7. — Let Z be an arc diagram. Then there is a pointed
matched circle Z so that either Z or Z q Zb is a full subdiagram of Z.

Proof. — Write Z = (Z,a,M). There is a pairing of the endpoints of Z
by saying that z is paired with z′ if, after doing surgery on Z according
to (a,M) the points z and z′ are on the same connected component. If Z
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has more than two components then we can choose a top endpoint z of an
interval I and a bottom endpoint z′ of a different interval I ′ so that z is
not paired to z′ and glue z to z′. If Z has two components then either we
can choose such a pair of points or we can do so after gluing on a copy
of Zb as in Figure 7.10. This gluing gives an arc diagram with one fewer
intervals. �

Lemma 7.8. — If H = H1 q H2 is a disconnected bordered-sutured
Heegaard diagram then

B̂SD(H) ∼= B̂SD(H1)⊗F2 B̂SD(H2).

Proof. — This is immediate from the definitions. �

There is another operation which has essentially no effect on the
bordered-sutured invariants. Suppose that H is a bordered-sutured Hee-
gaard diagram and η is an arc in H starting on the sutured boundary of H
and ending on the bordered boundary, and so that η is disjoint from the
α- and β-curves. Cutting along η gives a new bordered-sutured Heegaard
diagram H′. We will say that H′ is obtained from H by a safe cut. The
modules B̂SD(H) and B̂SD(H′) are essentially the same, the subtlety being
that they are over different algebras.

Lemma 7.9. — Suppose that H′ is obtained from H by a safe cut. Let
Z (respectively Z ′) be the arc diagram on the boundary of H (respectively
H′). Then there is an inclusion i : A(Z ′) ↪→ A(Z) (induced by the inclusion
of Z ′ into Z) and a projection p : A(Z)→ A(Z ′) (induced by setting any
strand diagram not contained in Z ′ to zero) so that

B̂SD(H) ' i∗B̂SD(H′)(7.1)

B̂SD(H′) ' p∗B̂SD(H)(7.2)

B̂SA(H) ' p∗B̂SA(H′)(7.3)

B̂SA(H′) ' i∗B̂SA(H).(7.4)

(Here, i∗ and p∗ are induction, or extension of scalars and i∗ and p∗ are
restriction of scalars.)

Proof. — Write H = (Σ,α,β, z) and H′ = (Σ′,α′,β′, z′). There is a
map ι : Σ′ → Σ (which is 2-to-1 on the new sutured part of the boundary
of Σ′ and 1-to-1 otherwise). Abusing notation, we will also let ι denote the
induced map Σ′ × [0, 1]× R→ Σ× [0, 1]× R.

ANNALES DE L’INSTITUT FOURIER



FLOER HOMOLOGY AND INCOMPRESSIBLE SURFACES 1563

The map ι induces a bijection of generators, x′ = {x′i} 7→ ι(x′) = {ι(x′i)},
and a bijection of domains ι∗ : π2(x′,y′) → π2(ι(x′), ι(y′)). Choose a suf-
ficiently generic almost complex structure J on Σ × [0, 1] × R [20, Defi-
nition 5.7] and let J ′ = ι∗J be the induced almost complex structure on
Σ′ × [0, 1]×R. Then for B′ ∈ π2(x′,y′), a map u : S → Σ′ × [0, 1]×R is a
J ′-holomorphic curve in the moduli spaceMB′(x′,y′) if and only if ι ◦u is
a J-holomorphic curve in Mι∗(B′)(ι(x′), ι(y′)). The assignment u 7→ ι ◦ u
is clearly injective; from positivity of domains [20, Proof of Lemma 5.4], it
is also surjective.
Thus, if a ⊗ y is a term in δ1(x) for some generators x,y ∈ B̂SD(H)

and strand diagram a ∈ A(Z) then a is the image of a strand diagram
a′ ∈ A(Z ′). Further, a′⊗y′ occurs in the differential of x′, where ι(x′) = x
and ι(y′) = y. The results about B̂SD follow. The proofs for B̂SA are only
notationally different. �

Lemma 7.10. — The module B̂SD(IdZb
) associated to the identity

cobordism of Zb has two generators and trivial differential.

Proof. — Again, this is immediate from the definitions. (See also Fig-
ure 7.10.) �

7.1.1. The identity cobordism

Fix an arc diagram Z = (Z,a,M). Given a set of matched pairs s in
Z, let sc denote the complementary set of matched pairs, but viewed as
lying in −Z. We call the pair of idempotents I(s)⊗ I(sc) ∈ A(Z)⊗A(−Z)
complementary.

A chord in Z is an interval in Z with endpoints in a. Given a chord ρ
in Z there is a corresponding algebra element a(ρ), which is the sum of
all strand diagrams in which ρ is the only moving strand. There is also a
corresponding chord ρ′ in −Z.

Lemma 7.11. — For any arc diagram Z, the bordered-sutured bimod-
ules B̂SDD(IdZ) associated to the identity cobordism of Z is generated by
the set of pairs of complementary idempotents (I ⊗ J) ∈ A(Z) ⊗ A(−Z),
and has differential

δ1(I ⊗ J) =
∑
I′⊗J′

∑
chords ρ

(I ⊗ J)(a(ρ)⊗ a(ρ′))⊗ (I ′ ⊗ J ′),

where the first sum is over the pairs of complementary idempotents.
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Proof. — We deduce the lemma from the corresponding statement for
pointed matched circles [22, Theorem 1]. Provisionally, let DDId(Z) be
the type DD bimodule described in the statement of the lemma, and let
B̂SDD(IdZ) be the type DD bimodule associated to the standard Heegaard
diagram for the identity cobordism of Z (with respect to any sufficiently
generic almost complex structure). We want to show that DDId(Z) '
B̂SDD(IdZ). Note that there is a unique isomorphism of underlying I(Z)⊗
I(−Z)-modules between DDId(Z) and B̂SDD(IdZ); we will show that this
identification intertwines the operations δ1.

By definition, DDId(Z qZb) ∼= DDId(Z)⊗F2 DDId(Zb). Similarly, Lem-
ma 7.8 implies B̂SDD(IdZqZb

) ∼= B̂SDD(IdZ) ⊗F2 B̂SDD(IdZb
). If the

unique isomorphism of underlying modules DDId(ZqZb)∼= B̂SDD(IdZqZb
)

intertwines the operations δ1 then so does the unique isomorphism
DDId(Z) ∼= B̂SDD(IdZ). So, by Lemma 7.7, we may assume that Z is a full
subdiagram of a pointed matched circle Z. By Lemma 7.6, B̂SDD(IdZ) ∼=
p∗B̂SDD(IdZ). Further, by inspection, DDId(Z) ∼= p∗DDId(Z). Finally,
from the bordered case [22, Theorem 1], B̂SDD(IdZ) ∼= DDId(Z). The
result follows. �

We note that we have also computed B̂SAA(IdZ), by an analogue of a
duality result in the bordered case [21, Theorem 5]:

Proposition 7.12. — Fix an arc diagram Z and let A′ = A(−Z)⊗F2

A(Z). There is a homotopy equivalence of A∞-bimodules

MorA(Z)
(
A′A′ � A

′
B̂SDD(IdZ), A(Z)

)
' B̂SAA(IdZ)A(Z),A(−Z).

Proof. — The proof is the same as in the bordered case [21, Thm. 5]. �

Corollary 7.13. — If Y is a bordered-sutured cobordism from Z1 to
Z2 then

MorA(−Z2)(A(Z2)� B̂SDD(IdZ2),A(Z1),A(−Z2)B̂SDD(Y)
)

' A(Z1)B̂SDA(Y)A(Z2).

(Here, Mor is the chain complex of type D structure morphisms.)

Proof. — This is immediate from Proposition 7.12 and the fact that
A(−Z2) � · is a quasi-equivalence of dg categories from the category of
type D structures to the category of A∞-modules. �
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7.1.2. Arcslides

Let φ : Z → Z ′ be an arcslide and Hφ the standard Heegaard diagram
for φ [22, Figure 16] (see also Figures 7.9 and 7.11). Let Z be the pointed
matched circle from Lemma 7.7 and φ : Z → Z ′ the corresponding arcslide.

Proposition 7.14. — The bimodule B̂SDD(Hφ) is generated by the
near-complementary pairs of idempotents [22, Definition 1.5] in A(Z) ⊗
A(Z ′) and the differential is given by

δ1(I ⊗ J) =
∑
I′⊗J′

(I ⊗ J)A⊗ (I ′ ⊗ J ′)

where A is the sum of all near-chords in (Z,Z ′) [22, Definition 4.19] which
are contained in (Z,Z ′) if φ is an underslide, and is the sum of all near-
chords in (Z,Z ′) determined by any basic choice [22, Definition 4.32] which
are contained in (Z,Z ′) if φ is an overslide.

Proof. — The proof is similar to the proof of Proposition 7.11. By Lem-
mas 7.8 and 7.10, it suffices to consider the case that Z (rather than ZqZb)
is a full subdiagram of a pointed matched circle. In this case, Hφ is a full
subdiagram of the standard Heegaard diagram for φ. So, this is immedi-
ate from Lemma 7.6 and the computation for pointed matched circles [22,
Propositions 4.20 and 4.37]. �

7.1.3. Interior 1- and 2-handle attachments

In this section we will give the bimodule for a 2-handle attachment;
the bimodule for a 1-handle attachment is the same except for exchanging
which action corresponds to which boundary component.
Before giving the bimodule we need notation for the algebra A(T 2) asso-

ciated to the torus (with two boundary sutures). This algebra is the path
algebra with relations

ι0 ι1

ρ1

ρ2

ρ3

/(ρ2ρ1 = ρ3ρ2 = 0).

(Compare [20, Section 11.1]. We are following the convention that ρ1ρ2
means the arrow labeled ρ1 followed by the arrow labeled ρ2; this is the
opposite of composition order. So, for instance, ρ1 = ι0ρ1ι1.)
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Let H∞ be the∞-framed solid torus, with boundary the genus 1 pointed
matched circle. The type D structure ĈFD(H∞) over A(T 2) has a single
generator r, and differential

δ1(r) = (ρ2ρ3)⊗ r.

[23, Section 11.2]. We can regard ĈFD(H∞) as a type DD bimodule over
A(T 2) and F2.

Given an arc diagram Z, let IdZ denote the identity cobordism of F (Z),
and B̂SDD(IdZ) the corresponding type DD bimodule.
Consider a non-disconnecting 2-handle attachment as in Figure 7.1(b)

where the pointed matched circle on the right is ZR and the pointed
matched circle on the left is ZL. Then there is an inclusion map

(7.5) A(T 2)⊗F2 A(ZR) ↪→ A(ZL).

Proposition 7.15. — The type DD bimodule for a 2-handle attach-
ment from A(ZL) to A(ZR) is the image of B̂SDD(IdZR

) ⊗F2 ĈFD(H∞)
under extension of scalars with respect to the map (7.5).

Proof. — This is immediate from Lemmas 7.9 and 7.8. �

7.1.4. Attaching handles to R±

We describe the bimodules for attaching a 1-handle to R− or R+.
Let Z ′ = (Z ′,a′,M ′) be an arc diagram, and let z1, z2 be terminal

endpoints of two different components of Z ′. Let Z = (Z ′,a,M) where
a = a′ ∪ {b, c} and b is slightly below z1 and c is slightly below z2; and M
agrees with M ′ on a′ and pairs b and c. That is, −Z (respectively Z ′) is
as on the left (respectively right) of the Heegaard diagram in Figure 7.2.
Given a strand diagram a ∈ A(Z ′), composing a with the inclusion map
i : Z ′ ↪→ Z gives a strand diagram i(a) ∈ A(Z), and this induces an algebra
homomorphism ibc : A(Z ′) ↪→ A(Z). There is an induced homomorphism

(ibc ⊗ Id) : A(Z ′)⊗A(−Z ′) ↪→ A(Z)⊗A(−Z ′).

Proposition 7.16. — If Y is the bordered-sutured cobordism from
A(Z) to A(Z ′) associated to a 1-handle attachment to R− (Figure 7.2)
then there is a homotopy equivalence

A(Z),A(−Z′)B̂SDD(Y) ' (ibc ⊗ Id)∗A(Z′),A(−Z′)B̂SDD(IdZ′).

Proof. — This is immediate from Lemmas 7.8 and 7.9 and the observa-
tion that there are no holomorphic curves with image in the non-identity
part of the Heegaard diagram from Figure 7.2. �
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Next, let Z = (Z,a,M) be an arc diagram. Suppose that b and c are
points in a which are adjacent to terminal endpoints of arcs in Z and so
that b is matched with c. Let Z ′ = (Z ′,a′,M ′) be the result of performing
surgery on the pair (b, c), with a′ = a \ {b, c}. So, −Z (respectively Z ′) is
the arc diagram on the left (respectively right) of the Heegaard diagram in
Figure 7.3.
There is an inclusion map ibc : A(Z ′) ↪→ A(Z), defined as follows. Recall

that a strand diagram in Z consists of subsets S, T of the set of matched
pairs in a and a collection of arcs ρ with initial endpoints in S and terminal
endpoints in T , satisfying some conditions. Given a strand diagram b =
(S, T, ρ) in Z ′, let

ibc(b) = (S ∪ {b, c}, T ∪ {b, c}, ρ).

There is an induced homomorphism

(ibc ⊗ Id) : A(Z ′)⊗A(−Z ′) ↪→ A(Z)⊗A(−Z ′).

Proposition 7.17. — If Y is the bordered-sutured cobordism from
A(Z) to A(Z ′) associated to a 1-handle attachment to R+ (Figure 7.3)
then there is a homotopy equivalence

A(Z),A(−Z′)B̂SDD(Y) ' (ibc ⊗ Id)∗A(Z′),A(−Z′)B̂SDD(IdZ′).

Proof. — Again, this is immediate from Lemma 7.9 and the observation
that there are no holomorphic curves with image in the non-identity part
of the Heegaard diagram from Figure 7.3. �

7.1.5. Cupping and capping sutures

We describe the type DD bimodules associated to introducing an R+-cup
(Figure 7.4) and an R−-cup (Figure 7.5). The bimodules associated to cap-
ping sutures are the same as these, except with the actions reversed. These
bimodules are also essentially the same as the bimodules from Section 7.1.4.
Given an arc diagram Z = (Z,a,M) and a terminal endpoint z of a

component of Z, let Z ′ = (Z ′,a′,M ′) be the arc diagram where:
• Z ′ = Z q Z0, where Z0 is a single interval.
• a′ = a∪{b, c} where b is a point in Z adjacent to z and c is a point
in the interior of Z0.

• M ′ agrees with M on a and matches b with c.
There is an inclusion map ibc : A(Z) ↪→ A(Z ′), which simply views a strand
diagram in Z as lying in Z ′. There is also an inclusion map ibc : A(Z) ↪→
A(Z ′) which sends a strand diagram (S, T, ρ) to (S ∪ {b, c}, (T ∪ {b, c}, ρ),
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i.e., places a pair of horizontal strands at b and c and otherwise leaves the
strand diagram unchanged.

Proposition 7.18. — Let Y+∪ (respectively Y−∪) be the bordered-
sutured cobordism from Z to Z ′ which creates an R+-cup (respectively
R−-cup) as in Figure 7.4 (respectively Figure 7.5). Then there are homo-
topy equivalences

A(Z),A(−Z′)B̂SDD(Y+∪) ' (Id ⊗ ibc)∗A(Z),A(−Z)B̂SDD(IdZ)(7.6)
A(Z),A(−Z′)B̂SDD(Y−∪) ' (Id ⊗ ibc)∗A(Z),A(−Z)B̂SDD(IdZ).(7.7)

Proof. — This is the same as the proofs of Propositions 7.16 and 7.17,
and is left to the reader. �

7.1.6. Capping off pointless arcs

Suppose that Z = ({Zj},a,M) is an arc diagram so that Z0 ∩ a = ∅
and that Z ′ = ({Zj | j 6= 0},a,M). That is, Z ′ is obtained from Z by
deleting a pointless bordered arc. Then there is a canonical isomorphism
A(Z) ∼= A(Z ′).

Proposition 7.19. — If Y is a bordered-sutured cobordism from Z to
Z ′ corresponding to capping off a pointless bordered arc then B̂SDD(Y) ∼=
B̂SDD(IdZ) as a type DD structure over A(Z) and A(−Z ′) ∼= A(−Z).

Proof. — This is immediate from Lemma 7.8. �

7.1.7. Putting it all together

Theorem 7.20. — For any bordered-sutured manifold Y, the modules
B̂SD(Y) and B̂SA(Y) are algorithmically computable.

Proof by factoring. — By Lemma 7.4, we can decompose Y as a sequence
of bordered-sutured cobordisms Yn ◦ · · · ◦ Y1 where each Yi is one of the
seven basic bordered-sutured pieces. The type DD bimodule B̂SDD(Yi) is
computed in Proposition 7.14, 7.15, 7.16, 7.17, 7.18, or 7.19. Corollary 7.13
then computes B̂SDA(Yi), and Proposition 7.12 computes B̂SAA(Yn), by
tensoring B̂SDD(Yn) with B̂SAA(Id) on each side. Then, we have

B̂SD(Y) ' B̂SDA(Yn)� B̂SDA(Yn−1)� · · ·� B̂SDA(Y2)� B̂SD(Y1)

B̂SA(Y) ' B̂SAA(Yn)� B̂SDA(Yn−1)� · · ·� B̂SDA(Y2)� B̂SD(Y1),

with every term computable. �
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We note that a less computationally useful proof of Theorem 7.20, via
nice diagrams, already appears in Zarev’s work:

Alternative proof via nice diagrams. — Any bordered-sutured Heegaard
diagram can be made nice by a sequence of Heegaard moves [37, Proposi-
tion 4.17], and the computation of B̂SD from a nice diagram is algorith-
mic [37, Theorem 7.14]. �

As an aside, the first proof of Theorem 7.20 also gives an algorithm
for computing sutured Floer homology which is independent from, and
presumably faster than, the “nice diagram” approach [14, Theorems 6.4
and 7.4].

7.1.8. The twisting bimodule

Theorem 7.20 gives a way of computing the bimodule τ , resolving dif-
ficulty (ii). Explicitly, if the boundary of Y has genus k and T consists of
` arcs and some number of circles then, for an appropriate choice of arc
diagram we can factor τ as a product of ` arcslides; see Figure 7.11. So, the
bimodule for τ is straightforward to compute from Proposition 7.14 and
Corollary 7.13.

7.2. Evading the Novikov ring

Next we turn to difficulty (iii). The idea is to replace the Novikov field Λ
with the field of rational functions F2(x1, . . . , x4k−1), over which computing
the homology of chain complexes is clearly algorithmic, and A(Z)Λ(Z)A(Z)
by a type DA bimodule A(Z)FoF(Z)A(Z). Note that there is an embedding
ν : Z4k−1 ↪→ F2(x1, . . . , x4k−1)× given by

ν(a1, . . . , a4k−1) = xa1
1 · · ·x

a4k−1
4k−1 .

Definition 7.21. — As an F2(x1, . . . , x4k−1)⊗F2 I(Z)-module, define

FoF(Z) = F2(x1, . . . , x4k−1)⊗F2 I(Z).

The structure maps δ1
n on FoF(Z) are defined to vanish if n 6= 2, and δ1

2 :
FoF(Z)⊗A(Z)→ A(Z)⊗FoF(Z) is a homomorphism of F2(x1, . . . , x4k−1)-
vector spaces. So, it only remains to define δ1(i⊗a) for i a basic idempotent
(viewed as a generator of FoF(Z)) and a a strand diagram. Define

δ1
2(i⊗ a) =

{
a⊗ ν([a])j if ia 6= 0, where aj 6= 0
0 otherwise.
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Figure 7.11. Bordered-sutured Heegaard diagram for τ . The
case shown has ∂Y of genus 1 and ` = 2. Note that this diagram is a
destabilization of the composition of the standard Heegaard diagrams
for two arcslides.

Theorem 7.22. — Theorems 1.3 and 1.8 hold with A(Z)Λ(Z)A(Z) re-
placed by A(Z)FoF(Z)A(Z).

Proof. — The map ψ induces an injection F2(x1, . . . , x4k−1) ↪→ Λ, and

A(Z)Λ(Z)A(Z) ∼= A(Z)FoF(Z)A(Z) ⊗F2(x1,...,x4k−1) Λ.

So, the result follows from the fact that, over a field, tensor product is an
exact functor. �
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A somewhat improved version of the bordered algorithm for comput-
ing ĈFD(Y ) has been implemented by Zhan [39]. Although we have not
done so, it should be relatively straightforward to extend his code to com-
pute bordered-sutured Floer homology, check incompressibility, and check
boundary parallelness.

BIBLIOGRAPHY

[1] D. Auroux, “Fukaya categories of symmetric products and bordered Heegaard–
Floer homology”, J. Gökova Geom. Topol. GGT 4 (2010), p. 1-54.

[2] A. J. Bene, “A chord diagrammatic presentation of the mapping class group of a
once bordered surface”, Geom. Dedicata 144 (2010), p. 171-190.

[3] V. Colin, P. Ghiggini & K. Honda, “The equivalence of Heegaard Floer homology
and embedded contact homology III: from hat to plus”, https://arxiv.org/abs/
1208.1526, 2012.

[4] ———, “The equivalence of Heegaard Floer homology and embedded contact ho-
mology via open book decompositions I”, https://arxiv.org/abs/1208.1074, 2012.

[5] ———, “The equivalence of Heegaard Floer homology and embedded contact
homology via open book decompositions II”, https://arxiv.org/abs/1208.1077,
2012.

[6] P. Ghiggini & P. Lisca, “Open book decompositions versus prime factorizations
of closed, oriented 3-manifolds”, in Interactions between low-dimensional topology
and mapping class groups, Geometry and Topology Monographs, vol. 19, Geometry
and Topology Publications, 2015, p. 145-155.

[7] T. J. Gillespie, “L-space fillings and generalized solid tori”, https://arxiv.org/
abs/1603.05016, 2016.

[8] W. Haken, “Some results on surfaces in 3-manifolds”, in Studies in modern topol-
ogy, Mathematical Association of America, 1968, p. 39-98.

[9] J. Hanselman, “Bordered Heegaard Floer homology and graph manifolds”, Algebr.
Geom. Topol. 16 (2016), no. 6, p. 3103-3166.

[10] M. Hedden & Y. Ni, “Manifolds with small Heegaard Floer ranks”, Geom. Topol.
14 (2010), no. 3, p. 1479-1501.

[11] ———, “Khovanov module and the detection of unlinks”, Geom. Topol. 17 (2013),
no. 5, p. 3027-3076.

[12] J. Hom, T. Lidman & L. Watson, “The Alexander module, Seifert forms, and
categorification”, J. Topol. 10 (2017), no. 1, p. 22-100.

[13] A. Juhász, “Holomorphic discs and sutured manifolds”, Algebr. Geom. Topol. 6
(2006), p. 1429-1457.

[14] ———, “Floer homology and surface decompositions”, Geom. Topol. 12 (2008),
no. 1, p. 299-350.

[15] Ç. Kutluhan, Y.-J. Lee & C. H. Taubes, “HF = HM I: Heegaard Floer homology
and Seiberg–Witten Floer homology”, https://arxiv.org/abs/1007.1979, 2010.

[16] ———, “HF = HM II: Reeb orbits and holomorphic curves for the ech/Heegaard–
Floer correspondence”, https://arxiv.org/abs/1008.1595, 2010.

[17] ———, “HF = HM III: Holomorphic curves and the differential for the
ech/Heegaard–Floer correspondence”, https://arxiv.org/abs/1010.3456, 2010.

[18] ———, “HF = HM IV: The Seiberg–Witten Floer homology and ech correspon-
dence”, https://arxiv.org/abs/1107.2297, 2011.

TOME 69 (2019), FASCICULE 4

https://arxiv.org/abs/1208.1526
https://arxiv.org/abs/1208.1526
https://arxiv.org/abs/1208.1074
https://arxiv.org/abs/1208.1077
https://arxiv.org/abs/1603.05016
https://arxiv.org/abs/1603.05016
https://arxiv.org/abs/1007.1979
https://arxiv.org/abs/1008.1595
https://arxiv.org/abs/1010.3456
https://arxiv.org/abs/1107.2297


1572 Akram ALISHAHI & Robert LIPSHITZ

[19] ———, “HF = HM V: Seiberg–Witten Floer homology and handle additions”,
https://arxiv.org/abs/1204.0115, 2012.

[20] R. Lipshitz, P. S. Ozsváth & D. P. Thurston, “Bordered Heegaard Floer ho-
mology: Invariance and pairing”, https://arxiv.org/abs/0810.0687v4, 2008.

[21] ———, “Heegaard Floer homology as morphism spaces”,Quantum Topol. 2 (2011),
no. 4, p. 381-449.
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