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ARITHMETIC PROPERTIES OF SIGNED SELMER
GROUPS AT NON-ORDINARY PRIMES

by Jeffrey HATLEY & Antonio LEI

Abstract. — We extend many results on Selmer groups for elliptic curves and
modular forms to the non-ordinary setting. More precisely, we study the signed
Selmer groups defined using the machinery of Wach modules over Zp-cyclotomic
extensions. First, we provide a definition of residual and non-primitive Selmer
groups at non-ordinary primes. This allows us to extend techniques developed by
Greenberg (for p-ordinary elliptic curves) and Kim (p-supersingular elliptic curves)
to show that if two p-non-ordinary modular forms are congruent to each other,
then the Iwasawa invariants of their signed Selmer groups are related in an explicit
manner. Our results have several applications. First of all, this allows us to relate
the parity of the analytic ranks of such modular forms generalizing a recent result
of the first-named author for p-supersingular elliptic curves. Second, we can prove
a Kida-type formula for the signed Selmer groups generalizing results of Pollack
and Weston.

Résumé. — Nous généralisons de nombreux résultats sur les groupes de Sel-
mer des courbes elliptiques et des formes modulaires dans le cas non-ordinaire.
Plus précisément, nous étudions les groupes de Selmer signés définis au moyen
de la théorie du module de Wach sur les Zp-extensions cyclotomiques. Nous com-
mençons par donner une définition de groupes de Selmer résiduels et non-primitifs
pour les nombres premiers non-ordinaires. Cela nous permet d’étendre les tech-
niques développées par Greenberg (pour les courbes elliptiques ordinaires en p) et
par Kim (pour les courbes elliptiques supersingulières en p) pour démontrer que
si deux formes modulaires non-ordinaires p sont congruentes, alors les invariants
d’Iwasawa de leurs groupes de Selmer sont reliés de manière explicite. Nos résultats
ont plusieurs applications. Dans un premier temps, ils nous permettent de relier la
parité des rangs analytiques de telles formes modulaires en généralisant un résultat
récent du premier auteur sur les courbes elliptiques supersingulières en p. Dans un
deuxième temps, nous pouvons démontrer une formule à la Kida pour les groupes
de Selmer signés en généralisant les résultats de Pollack et Weston.

Keywords: Cyclotomic extensions, Selmer groups, modular forms, non-ordinary primes.
2010 Mathematics Subject Classification: 11R18, 11F11, 11R23, 11F85.
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1. Introduction

1.1. Overview

Suppose that ρ̄ : GQ → GL2(F) is an absolutely irreducible Galois rep-
resentation, where F is a finite field of characteristic p. If ρ̄ is modular,
then we can find many modular forms f such that the associated Galois
representation ρf : GQ → GL2(Q̄p) gives rise to ρ̄, in the sense that its
semisimple reduction mod p is isomorphic to ρ̄. For the purposes of this
introduction, let us write C(ρ̄) for the set of all such modular forms. Two
modular forms f, g ∈ C(ρ̄) are said to be congruent mod p.
Suppose that f, g ∈ C(ρ̄) are of weight k = 2 with rational Fourier coeffi-

cients, so that they correspond to elliptic curves, and suppose further that
they are p-ordinary. Let K∞ be the Zp-cyclotomic extension of Q. In [11],
Greenberg and Vatsal study the relation between the Iwasawa invariants
of the Selmer groups Sel(f/K∞) and Sel(g/K∞). By defining auxiliary
Selmer groups (which they call non-primitive), they are able to show that
knowledge of the Iwasawa invariants for Sel(f/K∞) is sufficient to compute
those for Sel(g/K∞). The ideas and techniques in loc. cit. were extended
to more general modular forms (still p-ordinary) in [7], in which Emerton,
Pollack, and Weston show that Iwasawa invariants are well-behaved in Hida
families.
In all of this work, the p-ordinary assumption is crucial, as the classical

Selmer group for f at a non-ordinary prime p is not Λ-cotorsion, where Λ is
the Iwasawa algebra Zp[[X]]. So, initially it does not even make sense to talk
about Iwasawa invariants at such primes. However, Kobayashi [18] defined
the so-called plus/minus Selmer groups when f corresponds to an elliptic
curve with ap = 0 and showed that they are Λ-cotorsion. Subsequently, the
results of [11] were generalized to these plus/minus Selmer groups by Kim
in [16, 17].
Kobayashi’s definition of plus/minus Selmer groups has been generalized

to supersingular elliptic curves with ap 6= 0 by Sprung [32] and to gen-
eral non-ordinary modular forms by Loeffler and Zerbes together with the
second-named author in [20] using the machinery of Wach modules. Indeed,
it is possible to define two signed Selmer groups over K∞ attached to f ,
which we denote by Seli(f/K∞) in the introduction. These Selmer groups
have been proved to be Λ-cotorsion in a large number of cases. Accord-
ingly, at a non-ordinary prime, f has pairs of Iwasawa invariants. We shall
review the definition of Seli(f/K∞) in Section 2. Along the way, we shall
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also define the counterparts over Q and the non-primitive version of these
groups, which are denoted by Seli(f/Q) and SelΣ0

i (f/K∞) respectively.
The goal of the present paper is to extend the results of Greenberg–

Vatsal, Emerton–Pollack–Weston and Kim to modular forms of even weight
k > 2 at non-ordinary primes. Below is a summary of our main results.

• The signed Selmer groups have no proper Λ-submodules of finite
index (Theorem 3.1).

• If f and g are two forms of the same weight inside C(ρ̄), the µ-inva-
riant of Seli(f/K∞) vanishes if and only if that of Seli(g/K∞) does.
In this case, the λ-invariants of SelΣ0

i (f/K∞) and SelΣ0
i (g/K∞)

coincide (Theorem 4.6).
• Let f and g be as above. There exist some explicitly computable
finite sets Sf and Sg such that

corank Seli(f/Q) + |Sf | ≡ corank Seli(g/Q) + |Sg| mod 2

(Theorem 5.7). Furthermore, if rf and rg denote the analytic ranks
of f and g respectively, and if f and g have trivial nebentypus, then

ran(f) + |Sf | ≡ ran(g) + |Sg| mod 2

(Corollary 5.8).
• If F/Q is a finite extension where p is unramified, we may extend
the definition of signed Selmer groups to Seli(f/F∞), where F∞ is
the cyclotomic Zp-extension of F (this is the content of Section 6.1).

• A Kida-type formula as proved by Pollack–Weston in [30] holds, re-
lating the λ-invariants of Seli(f/F ′∞) and Seli(f/F∞), where F ′/F
is a finite Galois p-extension (Theorem 6.7).

• In the final section, we discuss the various hypotheses imposed in
our paper and mention some computational verification of Corol-
lary 5.8.

1.2. Notation

Throughout this article, p denotes a fixed odd prime.
For each integer n > 0, we write Qp,n = Qp(µpn). Let Q∞ = Q(µp∞)

and Γ = Gal(Q∞/Q) = Gal(Qp(µp∞)/Qp), which we decompose as Γ0×∆,
where Γ0 ∼= Zp and ∆ ∼= Z/(p− 1)Z. Let χ be the cyclotomic character on
Γ and let κ and ω be the restriction of χ to Γ0 and ∆ respectively. Note
that p is totally ramified in Q∞. If K is a subfield of Q∞, we shall abuse
notation and write p for the unique prime of K lying above p.

TOME 69 (2019), FASCICULE 3
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Let K∞ be the Zp-cyclotomic extension of Q (so K∞ = Q∆
∞, with

Gal(K∞/Q) ∼= Γ0). For n > 0, we write Kn for the subextension of K∞/Q
of degree pn. Let E be a fixed finite extension of Qp with ring of integers
OE . We write Λ for the Iwasawa algebra OE [[Γ0]], which may be identified
with the power series ring OE [[X]]. We also write Λ(Γ) for the Iwasawa
algebra of Γ over OE [[Γ]], which we may identify with the power series ring
OE [∆][[X]].

Given a character θ on ∆, we write eθ = 1
p−1

∑
σ∈∆ θ(σ)−1 · σ for the

corresponding idempotent element in O[∆]. If M is an OE [[Γ]]-module M ,
we shall write Mθ = eθ ·M for its θ-isotypic component. When θ is the
trivial character on ∆, we write M∆ = Mθ.

1.3. Sketch of proofs

For the reader’s convenience, we now briefly outline the main ideas of the
arguments which culminate in the proof of our parity result (Corollary 5.8).
It will be clear to the reader that we were greatly influenced by the work
of Greenberg–Vatsal [11].

We begin in Section 2.1 by recalling the theory of Wach modules related
to p-adic representations, especially some of the structure theorems due
to Berger. Upon choosing a basis for the Wach module associated to a
modular form f , we construct Coleman maps

Colf,i : H1
Iw(Qp, Tf ) −→ Λ(Γ), i = 1, 2

from the Iwasawa cohomology of Tf to the Iwasawa algebra, where Tf is
a certain lattice inside Deligne’s p-adic representation attached to f . For
any subfield K ⊂ Q∞, we then define our signed Selmer groups Seli(f/K)
in terms of the kernels of these Coleman maps.
Upon relaxing the local conditions away from p, we also define non-

primitive signed Selmer groups SelΣ0
i (f/K), and in Section 2.2 we study

the relationship between Seli(f/K) and SelΣ0
i (f/K). In particular, we show

that their quotient is a finite product of local Galois cohomology groups
which are computable in practice (see Corollary 2.10).
In Section 2.3 we study the relation between our signed Selmer groups

and the standard Bloch–Kato Selmer groups, showing that our Sel2(f/Q)
is equal to SelBK(f/Q) (see Proposition 2.14).
We begin proving our main results in Section 3, where we first establish

the non-existence of submodules of finite index (Theorem 3.1). This result is
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a crucial ingredient in the proofs of Section 4, where we prove that the non-
primitive signed Selmer groups SelΣ0

i (f/Q∞) are completely determined
by the residual Galois representation associated to f ; therefore, if f, g ∈
C(ρ̄) then the Iwasawa invariants of their associated signed Selmer groups
Seli(f/Q) and Seli(g/Q) are related by an explicit formula in terms of local
Galois cohomology groups by Corollary 2.10. In Section 5, we study the
dimensions of these local Galois cohomology groups modulo 2, and in light
of Proposition 2.14 (which relates our signed Selmer groups to the Bloch–
Kato Selmer groups), we invoke proven cases of the Parity Conjecture to
obtain our own parity result.

2. Signed Selmer groups

2.1. Definition of Coleman maps and signed Selmer groups

Let f =
∑
an(f)qn be a normalised new cuspidal modular eigenform of

even weight k > 2, level N and nebentypus ε. We assume that an(f) is
defined over a totally real field for all n and that f is non-ordinary at p
(that is, ap(f) is not a p-adic unit). We also assume that p - N .
We fix a finite extension E of Qp such that an(f) ∈ E for all n and

$ a uniformizer of E. We let Vf be the E-linear Galois representation
attached to f constructed by Deligne [5]. Then Vf has Hodge–Tate weights
{0, 1 − k}, where our convention is that the Hodge–Tate weight of the
cyclotomic character is 1. Let Tf be the canonical GQ-stable OE-lattice in
Vf defined by Kato [15, Section 8.3]. Let Af = Vf/Tf (1) and Tf the Tate
twist Tf (k−1), which has Hodge–Tate weights {0, k−1}. There is a perfect
pairing

Af × Tf∗ −→ µp∞ ,

where f∗ is the modular form whose Fourier coefficients are given by the
complex conjugation of those of f (see for example [15, Section 14.10]).
Since we assume that an(f) ∈ R for all n, we have in fact a perfect pairing

Af × Tf −→ µp∞ .

Let A+
Qp = Zp[[π]], which is equipped with the Frobenius map ϕ(π) =

(1+π)p−1 and an action by Γ given by γ ·π = (1+π)χ(γ)−1 for γ ∈ Γ. For
a free rank-d OE-module T equipped with a continuous action by GQp , we
write N(T ) and Dcris(T ) for the Wach module and the Dieudonné module
of T (cf. [1, 2]). We write

H1
Iw(Qp, T ) = lim←−H

1(Qp,n, T )

TOME 69 (2019), FASCICULE 3
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where the connecting maps are corestrictions.
Recall the canonical Λ(Γ)-isomorphism

(2.1) H1
Iw(Qp, Tf ) ∼= N(Tf )ψ=1

proved by Berger [1], where ψ is a left-inverse of ϕ as described in [1,
Section I.2]. By an abuse of notation, we shall identify the two modules
with each other. The Wach module N(Tf ) is free of rank 2 over OE ⊗A+

Qp .
We fix a basis n1, n2. Via the Λ(Γ)-homomorphism

1− ϕ : N(Tf )ψ=1 −→ ϕ∗N(Tf )ψ=0

and the fact that ϕ∗N(Tf )ψ=0 is a free Λ(Γ)-module of rank 2 generated by
the elements (1 + π)ϕ(n1) and (1 + π)ϕ(n2), we define the Coleman maps

Colf,i : H1
Iw(Qp, Tf ) −→ Λ(Γ)

for i = 1, 2, given by the relation

(1− ϕ)(z) = Colf,1(z) · (1 + π)ϕ(n1) + Colf,2(z) · (1 + π)ϕ(n2).

If T is an OE-linear representation of GQp , we write

LT : H1
Iw(Qp, T ) −→ Frac(HE(Γ))⊗ Dcris(T )

for Perrin–Riou’s big logarithm map, where HE(Γ) is the algebra of E-
valued distributions on Γ. When the Hodge–Tate weights of T are non-
negative (e.g. Tf ), this map lands inside HE(Γ)⊗ Dcris(T ).
For every integer m, we have the Tate twist T (m) = T · em, where em

is a basis on which Γ acts via χm. Recall that there is an element t in
Fontaine’s ring BdR such that ϕ(t) = pt and γ · t = χ(γ)t for all γ ∈ Γ. We
have the natural maps

H1
Iw(Qp, T (−m)) em−→ H1

Iw(Qp, T ), Dcris(T ) e−mt
m

−−−−→ Dcris(T (−m))

and

(2.2) LT (−m)(z) = (`−1 · · · `−m)−1 · Tw−m ◦LT (z · em)⊗ e−mtm

for all z ∈ H1
Iw(Qp, T (−m)). Here, `i = log(γ)/ log(χ(γ)) − i and Tw−m

denotes the E-linear map that sends σ ∈ Γ to χm(σ)σ.
Let ν1, ν2 be the basis of Dcris(Tf ) obtained from n1, n2 modulo π. The

Coleman maps defined above give rise to the decomposition

(2.3) LTf =
(
ν1 ν2

)
·M ·

(
Colf,1
Colf,2

)
for some 2×2 logarithmic matrixM that is defined overHE(Γ) (see [21, Sec-
tion 3A]). We shall choose n1, n2 so that ν1 is an OE-basis of Fil0 Dcris(Tf )
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and ϕ(ν1) = ν2 [22, Lemma 3.1]. Let vi = νi ⊗ e2−kt
k−2 ∈ Dcris(Tf (1)).

Then v1, v2 is a basis of Dcris(Tf (1)). Under the crystalline pairing

〈 · , · 〉cris : Dcris(Tf )× Dcris(Tf (1)) −→ Dcris(OE(1)) ∼= OE ,

we have

(2.4) 〈νi, vi〉cris = 0, i = 1, 2, 〈ν1, v2〉cris = −〈ν2, v1〉cris

(see [20, p. 494]).
The following is a generalization of [23, Lemma 3.2].

Lemma 2.1. — Let

〈 · , · 〉 : H1
Iw(Qp, Tf )×H1

Iw(Qp, Tf (1)) −→ Λ(Γ)

((xn), (yn)) 7→ lim←−
∑

σ∈Γ/Γpn
〈xn, yσn〉n,

where 〈 · , · 〉n is the Tate pairing

H1(Qp,n, Tf )×H1(Qp,n, Tf (1)) −→ OE .

Under this pairing, ker Colf,i ⊂ H1
Iw(Qp, Tf ) is the orthogonal complement

of its natural image in H1
Iw(Qp, Tf (1)) under the natural map

H1
Iw(Qp, Tf ) e2−k−→ H1

Iw(Qp, Tf (1)).

Proof. — Let x ∈ H1
Iw(Qp, Tf ) and y ∈ H1

Iw(Qp, Tf (1)). By [27, Lem-
me 3.6.1(ii)], 〈x, y〉 = 0 if and only if 〈x · e(2−k)/2, y · e(k−2)/2〉 = 0. The
explicit reciprocity law of Perrin–Riou from [27, Section 3.6.4] (as proved
in [25, Theorem B.6]) tells us that this is equivalent to

〈LTf (k/2)(x · e(2−k)/2),LTf (k/2)(y · e(k−2)/2)〉cris = 0,

where the pairing 〈 · , · 〉cris is extended Frac(HE(Γ))-linearly. From (2.2),
(2.3), and (2.4), we deduce that this is the same as saying

Tw(2−k)/2 det
(
M ·

(
Colf,1(x) Colf,1(y · ek−2)
Colf,2(x) Colf,2(y · ek−2)

))
= 0.

This shows that 〈x, y〉 = 0 for all x ∈ ker Colf,i if and only if y · ek−2 ∈
ker Colf,i. Hence the result. �

By Tate duality, we have the pairing

(2.5) H1(K, Tf )×H1(K,Af ) −→ Qp/Zp
for all finite extensions K/Qp contained inside Q∞,p.
For the rest of the paper, we make the following two hypotheses.

(irred) The GQ-representation Tf/$Tf is irreducible.
(inv) For all m > 0, Af (m)GQ∞,p = 0.
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Remark 2.2. — The first hypothesis is very mild, since all but finitely
many of the residual GQ-representations associated to f are irreducible (cf.
Lemma 7.1 below). The second hypothesis also holds in many cases. For
instance, if k 6 p then this follows from the proof of [19, Lemma 4.4].

Lemma 2.3. — If K/Qp is a finite Galois extension contained inside
Q∞,p, then the natural projection map H1

Iw(Qp, Tf )→ H1(K, Tf ) is surjec-
tive, whereas the restriction map H1(K,Af )→ H1(Q∞,p, Af ) is injective.

Proof. — If K ⊂ L ⊂ Q∞,p are Galois extensions of Qp, then (inv)
together with the inflation-restriction exact sequence tells us that the re-
striction map H1(K,Af )→ H1(L,Af ) is injective. Hence, the corestriction
map H1(L, Tf ) → H1(K, Tf ) is surjective. Since the inverse limit is left-
exact, we see that H1(K,Af )→ H1(Q∞,p, Af ) is injective, and by duality
we have that H1

Iw(Qp, Tf )→ H1(K, Tf ) is surjective. �

For each finite Galois extension K/Qp that is contained inside Q∞,p, we
define

H1
i (K, Tf ) ⊂ H1(K, Tf )

to be the image of ker Colf,i under the natural map

H1
Iw(Qp, Tf )→ H1(K, Tf ).

Similarly, we define H1
i (K,Tf (1)) to be the image of ker Colf,i ·e2−k under

the natural projection map

H1
Iw(Qp, Tf (1))→ H1(K,Tf (1)).

We have a natural exact sequence

(2.6) 0 −→ H1(K,Tf (1)) ιK−−→ H1(K,Vf (1)) πK−−→ H1(K,Af ) −→ 0,

where the injectivity of ιK follows from (inv), and the surjectivity of πK
follows by the same lemma combined with Tate duality. We define
H1
i (K,Vf (1)) to be the E-vector space generated by the image of

H1
i (K,Tf (1)) under ιK , and we define H1

i (K,Af ) to be the image of
H1
i (K,Vf (1)) under πK . In particular, we have the isomorphism

H1
i (K,Af ) ∼= H1

i (K,Vf (1))/H1
i (K,Tf (1)) ∼= H1

i (K,Tf (1))⊗ E/OE .

Lemma 2.4. — Under (2.5), H1
i (K, Tf ) and H1

i (K,Af ) are orthogonal
complements of each other.

Proof. — Let Y ⊂ H1(K,Af ) be the orthogonal complement of
H1
i (K, Tf ) under (2.5). Then H1

i (K,Af ) ⊂ Y by Lemma 2.1 and the bilin-
earity of the Tate pairing. The reverse containment follows from Lemma 2.1
and the exactness of (2.6). �
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Remark 2.5. — Lemma 2.3 tells us that

H1
Iw(Qp, Tf )Gal(Q∞,p/K) = H1(K, Tf )

and H1(Q∞,p, Af )Gal(Q∞,p/K) = H1(K,Af ).

Hence,

(ker Colf,i)Gal(Q∞,p/K) = H1
i (K, Tf )

and H1
i (Q∞,p, Af )Gal(Q∞,p/K) = H1

i (K,Af ).

On taking inverse and direct limits in (2.5), we have the pairing

(2.7) [ · , · ] : H1
Iw(Qp, Tf )×H1(Q∞,p, Af ) −→ Qp/Zp.

We define H1
i (Q∞,p, Af ) to be the direct limit lim−→H1

i (K,Af ). Then
ker Colf,i and H1

i (Q∞,p, Af ) are orthogonal complements of each other un-
der (2.7) by Lemma 2.4.
If v is a place of Q∞ that does not divide p, we define

H1
i (Q∞,v, Af ) = H1

ur(Q∞,v, Af ),

that is, the unramified subgroup ofH1(Q∞,v, Af ). We shall use the notation
H1
/i( · ) to denote that quotient H1( · )/H1

i ( · ). We define the signed Selmer
group over Q∞ by

Seli(Af/Q∞) = ker
(
H1(Q∞, Af ) −→

∏
v

H1
/i(Q∞,v, Af )

)
,

where v runs through all places of Q∞.
If K is any subfield of Q∞ (e.g. K∞, Kn, etc.), we may define

H1
i (Kv, Af ) ⊂ H1(Kv, Af ) for any place v - p of K in the same way and

define the signed Selmer groups

Seli(Af/K) = ker
(
H1(K,Af ) −→

∏
v

H1
/i(Kv, Af )

)
.

In particular, we have the equality

Seli(Af/K∞) = Seli(Af/Q∞)∆.

Let Σ be a set of places of Q that contains p, all the primes that divide
N and ∞. We write QΣ for the maximal extension of Q that is unramified
outside Σ. If K is a field contained inside Q∞, we shall write Hi

Σ(K, · ) for
the Galois cohomology Hi(QΣ/K, · ). Note that we have the equality

Seli(Af/K) ∼= ker

H1
Σ(K,Af ) −→

∏
v|`,`∈Σ

H1
/i(Kv, Af )

 .

TOME 69 (2019), FASCICULE 3
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If Σ0 is a subset of Σ that does not contain p and ∞, we define the
non-primitive signed Selmer groups

SelΣ0
i (Af/K) = ker

H1
Σ(K,Af ) −→

∏
v|`,`∈Σ\Σ0

H1
/i(Kv, Af )

 .

Given an integer s, we write Af,s = Af ⊗ χs and Tf,s = Tf ⊗ χ−s. We
have the natural isomorphism

H1(Q∞, Af,s) ∼= H1(Q∞, Af )⊗ χs,

which is compatible with

H1(K∞,v, Af,s) ∼= H1(K∞,v, Af )⊗ χs

for all v. On defining H1
i (Q∞,v, Af,s) to be the image of H1

i (Q∞,v, Af ), we
may equally define the signed Selmer groups for Af,s, namely,

Seli(Af,s/Q∞) = ker
(
H1(Q∞, Af,s) −→

∏
v

H1
/i(Q∞,v, Af,s)

)
.

As before, given a subfield K of Q∞, we may define H1
i (Kp, Tf,s) ⊂

H1(Kp, Tf,s) to be the image of the projection of ker Colf,i⊗χ−s, which
allows us to define H1

i (Kp, Af,s) as before. On defining H1
i (Kv, Af,s) for

v - p similarly, we may define Seli(Af,s/K) as before. Given a subset Σ0 of
Σ that does not contain p and ∞, we may equally define the non-primitive
Selmer groups SelΣ0

i (Af,s/K) in the same way.

Remark 2.6. — We note that Seli(Af,s/Q∞) and SelΣ0
i (Af,s/Q∞) are

isomorphic to Seli(Af/Q∞) ⊗ χs and SelΣ0
i (Af/Q∞) ⊗ χs respectively as

OE [[Γ]]-modules. Since χs = κs × ωs, which corresponds to the decomposi-
tion Γ = Γ0 ×∆, we have the Λ-isomorphism

Seli(Af,s/K∞) ∼= Seli(Af,s/Q∞)∆ ∼= Seli(Af/Q∞)ω
−s
⊗ κs,

where Seli(Af/Q∞)ω−s is the ω−s-isotypic component of Seli(Af/Q∞).
More generally, if θ is any character on ∆, the following isomorphism of
Λ-modules holds:

Seli(Af,s/Q∞)θ ∼= Seli(Af/Q∞)θω
−s
⊗ κs.

In fact, via the isomorphism

H1(Q∞, Af,s)θ ∼= H1(K∞, Af,s(θ−1)),

we may define H1
i (K∞,v, Af,s(θ−1)) for any place v of K∞ and hence

Seli(Af,s(θ−1)/K∞) in a natural way. This would coincide with the iso-
typic component Seli(Af,s/Q∞)θ.
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Finally, for a subfield K of Q∞, we define the corresponding signed
Selmer groups for Tf,s over K by

Seli(K, Tf,s) := ker
(
H1(Kn, Tf,s) −→

∏
v

H1
/i(Kv, Tf,s)

)
,

where the product runs through all places of K.

2.2. Relation between signed Selmer groups and their
non-primitive counterparts

Let s ∈ Z and n > 0 be integers. We recall the following Poitou–Tate
exact sequences from [28, Proposition A.3.2]:

(2.8) 0 −→ H1
i (Q(µpn), Tf,s) −→ H1

Σ(Q(µpn), Tf,s)

−→
⊕

H1
/i(Q(µpn)v, Tf,s) −→ Seli(Af,s/Q(µpn))∨

−→ H2
Σ(Q(µpn), Tf,s),

(2.9) 0 −→ Seli(Af,s/Q(µpn)) −→ H1
Σ(Q(µpn), Af,s)

−→
⊕

H1
/i(Q(µpn), Af,s) −→ H1

i (Q(µpn), Tf,s)∨

−→ H2
Σ(Q(µpn), Af,s) −→

⊕
H2(Q(µpn)v, Af,s).

On taking inverse (resp. direct) limits, we have:

(2.10) 0 −→ lim←−H
1
i (Q(µpn), Tf,s) −→ lim←−H

1
Σ(Q(µpn), Tf,s)

−→ lim←−
⊕

H1
/i(Q(µpn)v, Tf,s) −→ Seli(Af,s/Q∞)∨

−→ lim←−H
2
Σ(Q(µpn), Tf,s),

(2.11) 0 −→ Seli(Af,s/Q∞) −→ H1
Σ(Q∞, Af,s)

−→
⊕

H1
/i(Q∞,v, Af,s) −→ lim−→H1

i (Q(µpn), Tf )∨

−→ H2
Σ(Q∞, Af,s) −→ lim−→

⊕
H2(Q(µpn)v, Af,s).

From now on we shall assume the following hypothesis holds.
(tor) Let θ be a character on ∆ and i ∈ {1, 2}. The Selmer group

Seli(Af,s/Q∞)θ is cotorsion over Λ.
This is known to hold in many cases; see for instance [18, Theorem 7.3],

[19, Proposition 6.4], [20, Theorem 6.5] and [32, Theorem 7.14].
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Lemma 2.7. — The inverse limit lim←−H
1
i (Q(µpn), Tf,s) is 0.

Proof. — By twisting, Remark 2.6 allows us to assume that s = 0.
Furthermore, it is enough to show that the claim holds at each ∆-isotypic
component. Let θ be a character on ∆. We shall show that

lim←−H
1
i (Q(µpn), Tf )θ = 0.

We recall from [19, Lemma 6.2] that if v - p, we have

lim←−H
1
/i(Q(µpn)v, Tf ) = 0.

Consequently, the third term of the exact sequence (2.10) simplifies to be

H1
/i(Q∞,p, Tf ) ∼= Im Colf,i ⊂ OE [[Γ]].

Our claim would therefore follow from the injectivity of the morphism

g : lim←−H
1
Σ(Q(µpn), Tf,s)θ −→ Im Colθf,i ⊂ Λ.

By [15, Theorem 12.4(3)], the hypothesis (irred) tells us that the inverse
limit lim←−H

1(Q(µpn), Tf )θ is free of rank 1 over Λ. Let z be any generator.
Then, g is injective if and only if g(z) 6= 0. But if g(z) = 0, then the exact
sequence (2.10) would then give

Im Colθf,i ↪→ Seli(Af,s/Q∞)∨,θ.

This is impossible since the former is a non-zero sub-module of Λ, whereas
the latter is Λ-torsion due to (tor). Hence we are done. �

Corollary 2.8. — We have H2
Σ(Q∞, Af,s) = 0.

Proof. — By Lemma 2.7 and (2.11), H2
Σ(Q∞, Af,s) injects into

lim−→
⊕
H2(Q(µpn)v, Af,s). By local Tate duality, this is isomorphic to

lim←−
⊕
H0(Q(µpn)v, Tf,s). We now show that each of these inverse limits

is zero.
Suppose that lim←−H

0(Q(µpn)v, Tf,s) 6= 0 for some v. Then,
H0(Q(µpn)v, Tf,s) 6= 0 for some n. It is a free OE-module of either rank 1
or rank 2. In either case, for n sufficiently large,

H0(Q(µpn+m)v, Tf,s) = H0(Q(µpn)v, Tf,s) for all m > 0.

The corestriction map from H0(Q(µpn+m+1)v, Tf,s) to H0(Q(µpn+m)v, Tf,s)
is simply multiplication by p. But lim←−

×p
OE = 0, hence the claim. �

Corollary 2.9. — The natural map

H1
Σ(Q∞, Af,s) −→

∏
v|`,`∈Σ

H1
/i(Q∞,v, Af,s)

is surjective for both i = 1, 2.
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Proof. — This follows on combining (2.11) and Lemma 2.7. �

Corollary 2.10. — We have the isomorphism

SelΣ0
i (Af,s/Q∞)/ Seli(Af,s/Q∞) ∼=

∏
v|l,l∈Σ0

H1
/i(Q∞,v, Af,s).

Proof. — This is a consequence of (2.11) and Corollary 2.9. �

Remark 2.11. — By [11, Proposition 2.4], H1
/i(K∞,v, Af,s) is Λ-cotorsion

with zero µ-invariant for all v - p. Let θ ∈ ∆̂. Since H1
/i(Q∞,v, Af,s)θ ∼=

H1
/i(K∞,v, Af,s(θ−1)), the same can be said about the latter. Therefore,

under the hypothesis (tor), the isomorphism of Corollary 2.10 tells us
that SelΣ0

i (Af,s/Q∞)θ is also Λ-cotorsion. Furthermore, its µ-invariant co-
incides with that of Seli(Af,s/Q∞)θ. (See Section 4 for the definition of
µ-invariants.)

2.3. Signed Selmer groups over Q

In this section, we study the signed Selmer groups Seli(Af,s/Q) and
compare them to the Bloch–Kato Selmer group SelBK(Af,s/Q). We begin
by comparing our local condition at p, H1

i (Qp, Af,s), with the Bloch–Kato
local condition H1

f (Qp, Af,s). By definition, this is equivalent to comparing
H1
i (Qp, Tf,s) and H1

f (Qp, Tf,s).
Recall that H1

i (Qp, Tf,s) is defined to be the image of ker Colf,i⊗χ−s un-
der the natural map H1

Iw(Qp, Tf,s)→ H1(Qp, Tf,s). We recall the definition
of the Bloch–Kato local condition H1

f (Qp, Tf,s) later, but in the next proof
we will use the fact that it is the kernel of the Bloch–Kato dual-exponential
map exp∗.

Proposition 2.12. — Let s ∈ {0, 1, . . . , k − 2}, z ∈ H1
Iw(Qp, Tf ) and

write zs to be the image of z inside H1(Qp, Tf,s). Then, χs(Colf,2(z)) = 0
if and only if zs ∈ H1

f (Qp, Tf,s).

Proof. — By [25, Theorem B.5], we have the interpolation formula

χs
(
LTf (z)

)
= s!(1− psϕ)(1− p−1−sϕ−1)−1 (exp∗(zs)⊗ t−ses

)
,

which is equal to (
ν1 ν2

)
· χs(M) ·

(
χs (Colf,1(z))
χs(Colf,2(z))

)
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thanks to (2.3). We recall from [22, Lemma 3.6] that χs(M) is equal to the
matrix of ϕ with respect to the basis ν1, ν2. Hence, we deduce that

(2.12) s!
(
exp∗(zs)⊗ t−ses

)
= (1− psϕ)−1(ϕ− p−1−s)

(
ν1 ν2

)
·
(
χs (Colf,1(z))
χs(Colf,2(z))

)
.

Since ϕ(ν1) = ν2 and ϕ2 − app1−kϕ+ p1−kε(p) = 0 on Dcris(Tf ), the right-
hand side can be rewritten as(

ν1 ν2
)
·Bs ·

(
χs (Colf,1(z))
χs(Colf,2(z))

)
,

where Bs is the matrix given by
1

1− apps−k+1 + p2s−k+1ε(p)

×
(
−p−1−s − p1−k+sε(p) + app

−k p−k(1− p)ε(p)
1− p−1 −p−1−s − ps−k+1ε(p) + app

−k+1

)
.

For simplicity, we write Bs =
(
a b
c d

)
.

Since exp∗(zs) ⊗ t−ses lies inside Fil0 Dcris(Tf ), the coefficient of ν2 is
forced to be zero. That is,

c× χs (Colf,1(z)) + d× χs (Colf,2(z)) = 0.

Note that c 6= 0. Using this relation, we deduce that the right-hand side
of (2.12) is equal to

(a× χs (Colf,1(z)) + b× χs (Colf,2(z))) · ν1 = bc− ad
c

×χs (Colf,2(z)) · ν1.

Consequently, χs (Colf,2(z)) = 0 if and only if exp∗(zs) ⊗ t−ses = 0. But
the kernel of exp∗ is H1

f (Q, Tf,s), hence we are done. �

Remark 2.13. — In fact, if the entry d in the matrix Bs is non-zero, then
we may replace Colf,2 by Colf,1 in the statement of Proposition 2.12.

We may now compare our Selmer groups to those of Bloch–Kato. Let us
first recall the relevant definitions. If V is a Qp-vector space equipped with
a GQ-action, then

H1
f (Q`, V ) =

{
H1

ur(Q`, V ) ` 6= p,

ker
(
H1(Q`, V )→ H1(Q`, V ⊗ Bcris)

)
` = p,

where Bcris is Fontaine’s ring of periods. If T is a Zp-lattice of V stable under
GQ, then H1

f (Q`, T ) (resp. H1
f (Q`, V/T )) is defined as the pre-image (resp.

image) of H1
f (Q`, V ) under the natural inclusion map (resp. projection
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map). Letting H1
/f ( · ) denote the quotient H1( · )/H1

f ( · ), the Bloch–Kato
Selmer group is defined to be

SelBK(A/Q) = ker
(
H1

Σ(Q, A) −→
∏
`∈Σ

H1
/f (Q`, A)

)
.

Proposition 2.14. — For s ∈ {0, . . . , k − 2}, we have an equality of
Selmer groups

Sel2(Af,s/Q) = SelBK(Af,s/Q).

Proof. — For ` 6= p the local conditionsH1
i (Af,s/Q) andH1

f (Af,s/Q) are
identical, and at p the local conditions are equivalent by Proposition 2.12,
giving the desired result. �

Remark 2.15. — By Remark 2.13, the same is true for Sel1(Af,s/Q) if
ap 6= ε(p)ps + pk−s−2.

3. Submodules of finite index

The goal of this section is to prove the following theorem, which is a
generalization of [10, Proposition 4.8] (in the ordinary case) and [17, The-
orem 3.14] (in the supersingular case).

Theorem 3.1. — For i ∈ {1, 2} and θ ∈ ∆̂, Seli(Af/Q∞)θ contains no
proper Λ-submodule of finite index.

Let us first prove the following generalization of [16, Proposition 18]. Our
proof is based on that of [9, Proposition 5].

Proposition 3.2. — Let θ ∈ ∆̂ be any character and s ∈ Z. The Λ-
module H1

Σ(K∞, Af (κsθ−1)) has no non-trivial submodule of finite index.

Proof. — By the Hochschild–Serre spectral sequence and Corollary 2.8,
we have the isomorphism

H1(Γ0, H
1
Σ(K∞, Af (κsθ−1))) ∼= H2

Σ(Q, Af (κsθ−1)).

By [10, Lemma 4.5], H2
Σ(Q, Af (κsθ−1)) is a divisible group, so this tells us

that
H1

Σ(Q∞, Af (κsθ−1))Γ0

is divisible. Hence we may conclude as in [9, proof of Proposition 5]. �

The following is a generalization of [17, Proposition 3.8].
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Proposition 3.3. — Let θ ∈ ∆̂ and i ∈ {1, 2}. There exists an integer
s, such that the natural map

H1
Σ(Q, Af (κsθ−1)) −→

∏
v|`,`∈Σ

H1
/i(Qv, Af (κsθ−1))

is surjective.

Proof. — Let s be any integer. The Pontryagin dual of Af (κsθ−1) is
Tf (κ−sθ) = Tf,s(θωs). Let Af,s = Tf,s ⊗ E/OE = Af,k−s−2. Then, the
orthogonality of the local conditions as proved in Lemma 2.4 allows us
to apply [10, Proposition 4.13], which tells us that if Seli(Af,s(θωs)/Q) is
finite, then the cokernel of the map

H1
Σ(Q, Af (κsθ−1)) −→

∏
H1
/i(Qp, Af (κsθ−1))

would be isomorphic to Af,s(θωs)GQ . But the latter is zero thanks to (inv).
In other words, the surjectivity of the map above would follow from the
finiteness of Seli(Af,s(θωs)/Q).
Consider the Selmer group

Seli(Af,s(θωs)/K∞) ∼= Seli(Af (θωk−2)/K∞)⊗ κk−s−2.

Let η = θ−1ω2−k (which is independent of s), then this can be rewritten as

Seli(Af/Q∞)η ⊗ κk−s−2

as explained in Remark 2.6. Since (tor) says that Seli(Af/Q∞)η is Λ-
cotorsion, for all but finitely many s ∈ Z,(

Seli(Af/Q∞)η ⊗ κk−s−2)Γ0

is finite. Therefore, in order to show that Seli(Af,s(θωs)/Q) is finite, it
suffices to find s satisfying this and that the kernel and cokernel of the
restriction map

Seli(Af,s(θωs)/Q) −→ Seli(Af,s(θωs)/K∞)Γ0

are both finite.
To show this, we consider the commutative diagram

0 // Seli(A/Q) //

��

H1
Σ(Q, A)

ψ //

��

∏
H1
/i(Q`, A)

��
0 // Seli(A/K∞)Γ0 // H1

Σ(K∞, A)Γ0 // ∏H1
/i(K∞,v, A)Γ0 ,

where A := Af,s(θωs). The middle vertical map is an isomorphism thanks
to (inv) and the inflation-restriction exact sequence. We shall show that the
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kernel of the third vertical map is finite; then, upon replacing
∏
H1
/i(Qv, A)

in the diagram with Imψ, the result would then follow from the snake
lemma.
Let ` be a place of Q, and let v be one of the finitely many places of

K∞ lying over `. By the inflation-restriction exact sequence, the kernel of
the map H1(Q`, A) → H1(K∞,v, A) is H1(K∞,v/Q`, AGK∞,v ). If ` = p,
this group is trivial by (inv), so we may suppose that ` 6= p. The kernel is
clearly trivial if ` splits completely over K∞, so assume otherwise. Let γv
be a topological generator for Gal(K∞,v/Q`) and write B = AGK∞,v , so
H1(K∞,v/Q`, AGK∞,v ) ' B/(γv − 1)B. We have an exact sequence

0 −→ AGQ` −→ B
γv−1−−−→ B −→ B/(γv − 1)B −→ 0.

Note that AGQ` is finite for all but finitely many s. In this case, we have
that Bdiv ⊂ (γv − 1)B, where Bdiv is the maximal divisible subgroup of B.
It follows that B/(γv − 1)B is bounded by B/Bdiv, which is finite. Hence,
this finishes the proof. �

Proposition 3.4. — Let θ ∈ ∆̂. There exists an integer s such that the
natural map

H1
Σ(K∞, Af (κsθ−1))Γ0 −→

∏
v|`,`∈Σ

H1
/i(K∞,v, Af (κsθ−1))Γ0

is surjective.

Proof. — By Proposition 3.3 we can pick s such that the map

H1
Σ(Q, A) −→

∏
v

H1
/i(Qv, A)

is surjective, where A = Af (κsθ−1). As Γ0 has cohomological dimension 1,
the Hochschild–Serre spectral sequence shows that the map

H1
Σ(Q, A) −→ H1

Σ(K∞, A)Γ0

is also surjective. Since we have the commutative diagram

H1
Σ(Q, A) //

��

∏
H1
/i(Q`, A)

��
H1

Σ(K∞, A)Γ0 // ∏H1
/i(K∞,v, A)Γ0

it suffices to show that for every `, the natural map

H1
/i(Q`, A) −→

∏
v|`

H1
/i(K∞,v, A)Γ0
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is surjective. For ` 6= p, this similarly follows from the fact that Γ0 has
cohomological dimension 1 (see also the proof of [10, Lemma 4.7]).
We now consider ` = p. By duality, we have the isomorphism

H1
i (K∞,p, A) = H1

i (K∞,p, Af (κsθ−1)) ∼=
(
Im(Colf,i)θ ⊗ κ−s

)∨
.

Since Im(Colf,i)θ ⊂ Λ, we have (Im(Colf,i)⊗ κ−s)
Γ0 = 0. Consequently,

(3.1) H1
i (K∞,p, A)Γ0 = 0.

Consider the short exact sequence

0 −→ H1
i (K∞,p, A) −→ H1(K∞,p, A) −→ H1

/i(K∞,p, A) −→ 0.

We deduce that

H1
/i(K∞,p, A)Γ0 ∼=

H1(K∞,p, A)Γ0

H1
i (K∞,p, A)Γ0

∼= H1
/i(Qp, A),

where the first isomorphism follows from (3.1), and the second follows from
Hochschild–Serre and Remark 2.5. �

We now prove Theorem 3.1. We note that it is enough to show that
it holds for Seli(Af/Q∞)θ ⊗ κs = Seli(Af (κsθ−1)/K∞) for some s ∈ Z.
Let s be an integer satisfying the conclusion of Proposition 3.3 and write
A = Af (κsθ−1). Recall from Corollary 2.9 that we have the short exact
sequence

0 −→ Seli(A/K∞) −→ H1
Σ(K∞, A) −→

∏
H1
/i(K∞,v, A) −→ 0.

This gives the exact sequence

H1
Σ(K∞, A)Γ0 −→

∏
H1
/i(K∞,v, A)Γ0

−→ Seli(A/K∞)Γ0 −→ H1
Σ(K∞, A)Γ0 .

Therefore, on combining this with Propositions 3.2 and 3.4, we deduce that
Seli(A/K∞)Γ0 = 0, which concludes our proof.

4. Algebraic Iwasawa invariants

Given a finitely generated Λ-torsion module M , we have the pseudo-
isomorphism

M ∼
⊕
i

Λ/$ni ⊕
⊕
j

Λ/Fmjj

for some integers ni,mj and distingushed polynomials Fj ∈ OE [X]. The
µ-invariant of M is defined to be

∑
ni whereas its λ-invariant is defined to

be
∑
mj×deg(Fj). Let θ ∈ ∆̂. Since Seli(Af/Q∞)θ is Λ-cotorsion by (tor),
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we may define λ- and µ-invariants for its Pontryagin dual, which we shall
refer simply as the λ- and µ-invariants of Seli(Af/Q∞)θ. The goal of this
section is to generalize results of [16].

4.1. Mod $ Selmer groups

Consider Af [$] = 1
$Tf/Tf (1) ⊂ Vf/Tf (1). Recall from hypothesis (inv)

that AGQ∞,p
f = 0.

Lemma 4.1. — Let s be any integer. We have the isomorphism
H1(K,Af,s[$]) ∼= H1(K,Af,s)[$] if K is a field that is contained in Q∞,p.

Proof. — This follows from the long exact sequence induced from

0 −→ Af,s[$] −→ Af,s
$−→ Af,s −→ 0. �

Consequently, we may define

H1
i (Q∞,p, Af,s[$]) = H1

i (Q∞,p, Af,s)[$] ⊂ H1(Q∞,p, Af,s[$])

for i = 1, 2. For v a place of Q∞ with v - p, we define

H1
i (Q∞,v, Af,s[$]) = H1

ur(Q∞,v, Af [$])⊗ κs

as before. This allows us to define the mod $ signed Selmer groups

Seli(Af,s[$]/Q∞)

= ker

H1
Σ(Q∞, Af,s[$])→

∏
v|`,`∈Σ

H1
/i(Q∞,v, Af,s[$])


and

SelΣ0
i (Af,s[$]/Q∞)

= ker

H1
Σ(Q∞, Af,s[$]) −→

∏
v|`,`∈Σ\Σ0

H1
/i(Q∞,v, Af,s[$])


as before.

Remark 4.2. — Note that under the pairing (2.7), H1
i (Q∞,p, Af [$]) is

the Pontryagin dual of Im Colf,i /$ Im Colf,i.

We now prove the following generalization of [11, Proposition 2.8] (ordi-
nary case) and [16, Proposition 10] (supersingular case).
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Proposition 4.3. — For any Σ0 ⊂ Σ that contains all primes that
divide N but not p and ∞, we have the Λ(Γ)-isomorphism

SelΣ0
i (Af,s/Q∞)[$] ∼= SelΣ0

i (Af,s[$]/Q∞).

for i = 1 or 2 and any j ∈ Z.

Proof. — By Lemma 4.1, we have the isomorphism

H1
Σ(Q∞, Af,s[$]) ∼= H1

Σ(Q∞, Af,s)[$].

It is therefore enough to check that the local conditions which define the
corresponding Selmer groups are compatible.
Let ` ∈ Σ \ Σ0 and v a place of Q∞ such that v|`. If v = p, the local

conditions are compatible by definition, so suppose l 6= p, and let Iv be the
corresponding inertia group. Since v - Np, we have AIvf = Af . Hence the
short exact sequence 0→ Af [$]→ Af → Af → 0 gives rise to

Af/$Af −→ H1(Iv, Af [$]) −→ H1(Iv, Af )[$] −→ 0.

Since Af is divisible, the first term in this sequence is zero, hence we have
an isomorphism

H1(Iv, Af [$]) ∼= H1(Iv, Af )[$].

By Lemma 4.1 and the definition of H1
i , we deduce that

H1
i (Q∞,v, Af,s)[$] ∼= H1

i (Q∞,v, Af,s[$])

for all places v that divide ` 6= p for some ` ∈ Σ \ Σ0, which concludes the
proof. �

If θ ∈ ∆̂ is any character, we may consider the θ-isotypic component of
Seli(Af,s[$]/Q∞) and SelΣ0

i (Af,s[$]/Q∞) as before. These groups can be
considered as Selmer groups of Af,s(θ−1) over K∞.

4.2. Congruent modular forms

Let g =
∑
an(g)qn be a second modular form of weight k, level N ′ with

p - N ′. On enlarging E if necessary, we assume that an(g) ∈ E for all n.
Similarly, on enlarging Σ if necessary, we assume that Σ is a set places of
Q that contains p, ∞ and the primes that divide NN ′. Furthermore, we
impose the following hypothesis that comes from [3].
(BLZ) ordp(ap(f)), ordp(ap(g)) > b(k − 2)/(p− 1)c.
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By [3, Theorem 4.1.1], this hypothesis implies that

Tf/$Tf ∼= Tg/$Tg
as GQp -representations. Indeed, as explained in the proof of loc. cit., we
may choose an OE ⊗A+

Qp basis {nf,1, nf,2} (resp. {ng,1, ng,2}) of the Wach
module of N(Tf ) (resp. N(Tg)) so that the respective matrices of ϕ and
γ ∈ Γ are congruent modulo $. In particular,

(4.1)
N(Tf )/$N(Tf ) −→ N(Tg)/$N(Tg)

x1 · nf,1 + x2 · nf,2 7−→ x1 · ng,1 + x2 · ng,2
is an isomorphism ofOE⊗A+

Qp -modules. Furthermore, such an isomorphism
is ϕ- and Γ-equivariant.
As explained in Section 2.1, these bases allow us to define Coleman

maps Colf,i (resp. Colg,i) and the signed Selmer groups Seli(Af,s/Q∞),
Seli(Ag,s/Q∞), Seli(Af,s[$]/Q∞), Seli(Ag,s[$]/Q∞) for i = 1, 2.

Lemma 4.4. — We have the OE [[Γ]]-isomorphism

H1
i (Q∞,p, Af,s[$]) ∼= H1

i (Q∞,p, Ag,s[$])

for both i = 1, 2 and all s ∈ Z.

Proof. — By duality and twisting, Remark 4.2 tells us that it suffices to
show that

Im Colf,i /$ Im Colf,i ∼= Im Colg,i /$ Im Colg,i .

But this is immediate from the isomorphism (4.1). �

From now on, we assume the following hypothesis holds for f and g.
(Cong) Tf/$Tf ∼= Tg/$Tg as GQ-representations.

Proposition 4.5. — Let Σ0 = Σ \ {p,∞}. The hypothesis (Cong) im-
plies that

SelΣ0
i (Af,s[$]/Q∞) ∼= SelΣ0

i (Ag,s[$]/Q∞)
as OE [[Γ]]-modules for both i = 1, 2 and any s ∈ Z.

Proof. — Note that Tf/$Tf (1) ∼= Af [$] as GQ-modules and similarly
for g. Hence, (Cong) tells us that

H1
Σ(Q∞, Af,s) ∼= H1

Σ(Q∞, Ag,s);

H1
i (Q∞,v, Af,s) ∼= H1

i (Q∞,v, Ag,s)

for all v - p. Hence, together with Lemma 4.4, we deduce that

H1
i (Q∞,v, Af,s) ∼= H1

i (Q∞,v, Ag,s)

for all v and i = 1, 2. The result then follows. �

TOME 69 (2019), FASCICULE 3



1280 Jeffrey HATLEY & Antonio LEI

Theorem 4.6. — Let θ ∈ ∆̂ be any character. The µ-invariant of
Seli(Af,s/Q∞)θ vanishes if and only if that of Seli(Ag,s/Q∞)θ vanishes.
In this case, the λ-invariants of SelΣ0

i (Af,s/Q∞)θ and SelΣ0
i (Ag,s/Q∞)θ

coincide.

Proof. — By Remark 2.11, we may replace the Selmer groups Seli by
SelΣ0

i in the first statement of the theorem. Now, the µ-invariant of
SelΣ0

i (Af,s/Q∞)θ vanishes if and only if SelΣ0
i (Af,s/Q∞)θ[$] is cofinitely

generated over E. Therefore, the first statement is a consequence of Propo-
sitions 4.3 and 4.5.
We now prove the second statement. We assume that the µ-invariant

of Seli(Af,s/Q∞)θ vanishes (hence so do those of SelΣ0
i (Af,s/Q∞)θ and

SelΣ0
i (Ag,s/Q∞)θ). By Theorem 3.1 and [16, Lemma 12], the λ-invariant

of SelΣ0
i (Af/Q∞)θ (resp. SelΣ0

i (Ag,s/Q∞)θ) are given by the length of the
OE-modules SelΣ0

i (Af,s/Q∞)θ[$] (resp. SelΣ0
i (Ag,s/K∞)θ[$]). Hence, we

are done by Propositions 4.3 and 4.5. �

In light of the previous theorem, we now make the following assumption
for the rest of the paper.
(µ = 0) The µ-invariants of Seli(Af/K∞) and Seli(Ag/K∞) vanish.

Remark 4.7. — We note that our earlier hypothesis (irred) is conjectured
to imply (µ = 0) when k = 2. (See e.g. [29, Conjecture 7.1] in the elliptic
curve case.) The situation is less clear for higher weights; see Section 7.

5. Parity of ranks

In this section we compute the OE-corank of some cohomology groups
before using the results of Section 4 to obtain our main result.
Throughout this section, we fix Σ0 = Σ \ {p,∞}. Recall that by Corol-

lary 2.10 we have an isomorphism

SelΣ0
i (Af,s/Q∞)/Seli(Af,s/Q∞) ∼=

∏
v|l,l∈Σ0

H1
/i(Q∞,v, Af,s)

for any s ∈ Z. Let θ ∈ ∆̂. On taking θ-isotypic components, this becomes

SelΣ0
i (Af,s/Q∞)θ/Seli(Af,s/Q∞)θ ∼=

∏
v|l,l∈Σ0

H1
/i(K∞,v, Af,s(θ−1)).

By Remark 2.11, H1
/i(K∞,v, Af,s(θ−1)) is Λ-cotorsion with zero µ-invariant

for all v. We write τv,f (s, θ) for its λ-invariant.
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Let us write

H`(K∞, Af,s(θ−1)) =
∏
v|`

H1
/i(K∞,v, Af,s(θ−1)).

Then H`(K∞, Af,s(θ−1)) is again Λ-cotorsion with zero µ-invariant. Its
λ-invariant is given by δ`,f (s, θ) :=

∑
v|`

τv,f (s, θ).

For a prime ` ∈ Σ0, let I` ⊂ GQ` denote the inertia subgroup, and let
Frob` denote the corresponding arithmetic Frobenius element in
Gal(Qunr

` /Q`). Let kE be the residue field of E and x 7→ x̃ denote the
reduction map modulo ($). For s ∈ Z, we write Vf,s = Vf (s). The follow-
ing proposition explains how to compute the values τv,f (s, θ).

Proposition 5.1. — Let ` ∈ Σ0 and write

P`,s,θ(X) = det((1− Frob`X|(Vf,s(θ−1))I` )) ∈ OE [X].

Let d`,f (s, θ) denote the multiplicity of X = ˜̀−1 as a root of P̃`,s,θ ∈ kE [X].
Then for each v | `, we have τv,f (s, θ) = d`,f (s, θ).

Proof. — This follows from the same proof as [11, Proposition 2.4]. �

Corollary 5.2. — For each ` ∈ Σ0, we have δ`,f (s, θ) ≡ d`,f (s, θ)
mod 2.

Proof. — For any v | `, let Γv denote the corresponding decomposition
subgroup of Γ; then the number of v above ` is exactly r` = [Γ0 : Γv]. It
follows that

δ`,f (s, θ) = r` × d`,f (s, θ).
Since r` is a power of p, it is necessarily odd, so the result follows. �

We now compute the parity of d`,f (s, θ) for each ` ∈ Σ0. First we deal
with primes which do not divide the level of f .

Lemma 5.3. — If ` - N , then d`,f (s, θ) = 1 if and only if a`(f) ≡
θ(`)`s+1 + ε(`)θ−1(`)`k−s−2 mod $ and ε(`)−1θ2(`)`2s−k+3 6≡ 1 mod $.

Proof. — If ` - N , then Vf is unramified at `, hence (Vf,s(θ−1))I` =
Vf,s(θ−1) is two-dimensional, and it is a standard result that P`,s,θ is
given by

P`,s,θ(X) = 1− a`(f)θ−1(`)`−sX + ε(`)θ−2(`)`−2s+k−1X2.

By Proposition 5.1, d`,f (s, θ) is odd if and only if ˜̀−1 is a simple root of
P̃`,s,θ(X).
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Since the product of the roots of P`,s,θ(X) is ε(`)−1θ2(`)`2s−k+1, we have

˜̀−1 is a root⇐⇒
(
ε(`)−1

θ2(`)`2s−k+2
)̃

is a root.

Therefore, ˜̀−1 is a root if and only if

a`(f) ≡ θ(`)`s+1 + ε(`)θ−1(`)`k−s−2 mod $.

Hence, if ˜̀−1 is a root, then it is simple if and only if `−1 6≡
ε(`)−1θ2(`)`2s−k+2 mod $, which proves the lemma. �

Now we consider primes which divide the level of f . Let M denote the
conductor of the nebentypus ε.

Lemma 5.4. — Suppose ` | N . Then d`(f, s) = 1 if and only if a`(f) ≡
θ(`)`s mod $.

Proof. — It is known (see [24]) that when ` | N we have a`(f) 6= 0 if and
only if one of the following holds:

• ` || N and ` -M ; or
• ord`(M) = ord`(N).

By the results of [33], these are precisely the situations in which the residual
mod $ representation associated to (Vf,s(θ−1))I` is one-dimensional, with
Frobenius polynomial P̃`(X) = 1− ã`(f)θ−1(`)`−sX; in any other situation
the residual (Vf,s(θ−1))I` = 0. The lemma follows. �

We define Sθf,s ⊂ Σ0 to be the subset consisting of the primes ` such that
• ` - N , a`(f) ≡ θ(`)`s+1 + ε(`)θ−1(`)`k−s−2 mod $ and
ε(`)−1θ2(`)`2s−k+3 6≡ 1 mod $; or

• ` | N and a`(f) ≡ θ(`)`s mod $.

Remark 5.5. — For any particular example, this subset is easy to com-
pute using a computer algebra system such as [4]. See also Section 7.

The results of this section can be summarized by the following result.

Proposition 5.6. — We have the congruence∑
`∈Σ0

δ`,f (s, θ) ≡ |Sθf,s| mod 2.

Proof. — This follows immediately from Corollary 5.2, the definition of
Sθf,s, and Lemmas 5.3 and 5.4. �

We are now prepared to prove the main result of this section, which
relates the Selmer-coranks of f and g.
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Theorem 5.7. — For any θ ∈ ∆̂, we have the congruence

corankOE Seli(Af,s(θ−1)/Q) + |Sθf,s|

≡ corankOE Seli(Ag,s(θ−1)/Q) + |Sθg,s| mod 2.

Proof. — Let λθf,i and λθg,i be the λ-invariants of Seli(Af,s/Q∞)θ and
Seli(Af,s/Q∞)θ respectively. By Theorem 4.6, the λ-invariants of
SelΣ0

i (Af,s/Q∞)θ and SelΣ0
i (Ag,s/Q∞)θ are equal, so by Corollary 2.10 and

Proposition 5.6 we have the congruence

(5.1) λθf,i + |Sθf,s| ≡ λθg,i + |Sθg,s| mod 2.

The proof of [10, Proposition 3.10] shows that

(5.2) corankOE Seli(Af,s(θ−1)/Q) ≡ λθf,i mod 2,

and similarly for g. We note that, while the proof in loc. cit. uses the
Cassels–Tate pairing to prove that an appropriate-defined Shafarevich–
Tate group has square order, for our purposes we must use the generalized
pairing of Flach [8]. The auto-orthogonality of Lemma 2.4 shows that [8,
Theorem 2] applies, and the rest of the proof goes through verbatim.
Combining (5.1) and (5.2) now gives the desired result. �

Denote by Lf (s) the complex L-function associated to the modular form
f . Recall that f is of even weight k = 2r, and let ran(f) = ords=r Lf (s)
denote the analytic rank of f . We have the following generalization of [13,
Theorem 4].

Corollary 5.8. — Assume that f and g have trivial nebentypus. Then
we have the congruence

ran(f) + |S1
f,r−1| ≡ ran(g) + |S1

g,r−1| mod 2,

where 1 denotes the trivial character on ∆.

Proof. — Let us first recall the parity result of Nekovar [26, Theorem B],
which relates the complex L-function of f to the Selmer group at the central
critical twist:

corankOE SelBK(Af,r−1/Q) ≡ ran(f) mod 2.

As shown in [10, p. 100],

dimE Seli(Vf,s/Q) = corankOE Seli(Af,s/Q)

for all s ∈ Z. Furthermore, Proposition 2.14 tells us that the signed Selmer
group Sel2(Af,s/Q) is equal to the Bloch–Kato Selmer group SelBK(Af,s/Q)
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for s ∈ {0, . . . , k − 2}. Therefore, we deduce that

ran(f) ≡ corankOE Seli(Af,r−1/Q) mod 2

and similarly for g. Now the result follows from Theorem 5.7. �

Remark 5.9. — The hypothesis that f and g have trivial nebentypus is
made solely so that we can use known cases of the parity conjecture [26,
Theorem B]. Since the parity conjecture is expected to hold more generally,
our result should also hold for modular forms of nontrivial nebentypus; in-
deed, there are four pairs of modular forms of level N 6 60 of weight
k = 2, with nontrivial nebentypus, which are congruent mod p = 3 and
satisfy ap(f) = 0, and each of these pairs has been computationally shown
to satisfy this theorem. Finding congruences between such forms is compu-
tationally taxing, hence the small sample size. Once a congruence is known
to exist between two modular forms, computing the relevant data to verify
Corollary 5.8 is fast. See Section 7 for further discussion of the hypotheses
imposed throughout our paper.

6. Unramified base fields and a transition formula

6.1. Signed Selmer groups over unramified base fields

Let K/Qp be a finite unramified extension. We may identify Γ with the
Galois group Gal(K(µp∞)/K). If T is a free rank-d OE-module equipped
with a crystalline continuous GK-action, we write NK(T ) for its Wach
module over K. This is now a module over OE ⊗A+

K , where A+
K is defined

to be OK [[π]] = OK ⊗ A+
Qp . Note that if T is equipped with a GQp -action,

then NK(T ) and N(T ) (the Wach module over Qp) are related by

(6.1) NK(T ) = OK ⊗Zp N(T ), NK(T )GQ∞,p = N(T ).

Define H1
Iw(K,T ) to be the inverse limit lim←−H

1(K(µpn), T ). The isomor-
phism (2.1) generalizes to

H1
Iw(K, Tf ) ∼= NK(Tf )ψ=1.

If n1, n2 is an OE ⊗ A+
Qp -basis of N(T ), then (6.1) tells us that it is an

OE ⊗ A+
K-basis of NK(T ). Furthermore, we may define the two Coleman

maps
ColK,f,i : H1

Iw(K, Tf ) −→ Λ(Γ)⊗OK ,
given by the relation

(1− ϕ)(z) = ColK,f,1(z) · (1 + π)ϕ(n1) + ColK,f,2(z) · (1 + π)ϕ(n2).
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Then, ker(ColK,f,i) allows us to define the local conditions

H1
i (K(µp∞), Af ) ⊂ H1(K(µp∞), Af )

via the Tate duality

H1
Iw(K, Tf )×H1(K(µp∞), Af ) −→ E/OE

as before. Consequently, if F/Q is a number field where p is unramified, we
have the signed Selmer groups

Seli(Af/F (µp∞)) = ker
(
H1(F (µp∞), Af ) −→

∏
v

H1
/i(F (µp∞)v, Af )

)
,

where v runs through all places of F (µp∞) and the local conditions outside
p are defined using the unramified subgroups. We may equally define the
corresponding Selmer groups for twists of Af , namely, for s ∈ Z,

Seli(Af,s/F (µp∞)) = ker
(
H1(F (µp∞), Af,s) −→

∏
v

H1
/i(F (µp∞)v, Af,s)

)
,

where the local conditions H1
i (F (µp∞)v, Af,s) are given by

H1
i (F (µp∞)v, Af )⊗ χs.

As before, we may take Σ to be a finite set of primes containing p, ∞, and
the primes which divide N , and then we have

Seli(Af,s/F (µp∞))

∼= ker

H1
Σ(F (µp∞), Af,s) −→

∏
v|`,`∈Σ

H1
/i(F (µp∞)v, Af,s)

 ,

We write F∞ for the Zp-cyclotomic extension of F . If θ ∈ ∆̂, then we may
take θ-isotypic components everywhere as before and we have the local
conditions

H1
i (F∞, Af,s(θ−1)) = H1

i (F (µp∞), Af,s)θ

and the Selmer groups

Seli(Af,s(θ−1)/F∞) = Seli(Af,s/F (µp∞))θ.

6.2. Twists of signed Selmer groups and control theorems

The local conditions at p we defined in Section 6.1 are compatible in the
following sense.
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Lemma 6.1. — Let K/Qp be a finite unramified extension, and let N =
Gal(K(µp∞)/Q∞,p). For any s ∈ Z and i ∈ {1, 2}, we have the isomorphism

H1
i (K(µp∞), Af,s)N ∼= H1

i (Q∞,p, Af,s).

Proof. — We may assume that s = 0 by twisting. By duality, this is
equivalent to saying that

(6.2) (ker ColK,f,i)N ∼= ker Colf,i .

We remark that since K/Qp is unramified, the proof of [19, Lemma 4.4]
shows that A

GK(µp∞ )

f = 0. Hence, the inflation-restriction exact sequence
tells us that

H1(K(µp∞), Af,s)N ∼= H1(Q∞,p, Af,s).

This implies that
H1

Iw(K, Tf )N ∼= H1
Iw(Qp, Tf ).

Therefore, our claim in (6.2) follows from the corresponding compatibility
condition of the Coleman maps, which is a consequence of (6.1). �

From now on, we fix an integer s and θ ∈ ∆̂. In order to ease notation,
we shall write A for Af,s(θ−1).
Let F be a number field as in the previous section. We suppose that F/Q

is Galois and write G = Gal(F∞/K∞). We now establish analogues of the
results of [30, Section 2.3], beginning with the following control lemma.

Lemma 6.2. — For i ∈ {1, 2}, the restriction map

Seli(A/K∞)→ Seli(A/F∞)G

has finite kernel and cokernel.

Proof. — By definition of the signed Selmer groups, we have the com-
mutative diagram

0 // Seli(A/K∞) //

α

��

H1
Σ(K∞, A) //

β

��

∏
H1
/i(K∞,`, A)

γv

��
0 // Seli(A/F∞)G // H1

Σ(F∞, A)G // ∏H1
/i(F∞,v, A)G.

Lemma 6.1 tells us that ker γv = 0 for all v|p. Since G is finite and A

is cofinitely generated, the inflation-restriction exact sequence shows that
kerβ and cokerβ are finite. Similarly, the same is true for ker γv whenever
v - p. Hence the result follows from the snake lemma. �
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Recall our running assumptions (tor) and (µ = 0), which say that
Seli(A/K∞) is Λ-cotorsion with zero µ-invariant. The following result tells
us that these properties persist over F .

Proposition 6.3. — If Seli(A/K∞) is Λ-cotorsion with µ-invariant
zero, then the same is true for Seli(A/F∞).

Proof. — This follows from Lemma 6.2 and Nakayama’s lemma for com-
pact local rings. We refer the reader to the proof of [12, Corollary 3.4] for
details. �

Now suppose [F : Q] = pj for some j, and fix an extension E′/E which
contains µpj . Let OE′ be the ring of integers of E′, and let Λ′ = OE′ [[Γ0]]
denote the corresponding Iwasawa algebra. By abuse of notation, let Ĝ be
the set of all characters ψ : G→ O×E′ ; since |G| is odd, any such character
is necessarily even. For each ψ ∈ Ĝ we may form the twist

Aψ = A⊗OE OE′(ψ),

and we regard the corresponding Selmer group Seli(Aψ/K∞) as a Λ′-
module (so its λ-invariant refers to its OE′ -corank rather than its OE-
corank). The following is [30, Proposition 2.6].

Proposition 6.4. — If G is abelian, then there is a natural map∑
ψ∈Ĝ

Seli(Aψ/K∞) −→ Seli(A/F∞)⊗OE OE′

with finite kernel and cokernel.

Proof. — Using Proposition 6.3, the proof in loc. cit. carries over verba-
tim. �

For each ψ ∈ Ĝ, we write λ(Aψ,K∞) for the λ-invariant of Seli(Aψ/K∞),
and similarly for Selmer groups over F∞. The following is an immediate
corollary.

Corollary 6.5. — If Seli(A/K∞) is Λ-cotorsion with zero µ-inva-
riant, then Seli(Aψ/K∞) is Λ′-cotorsion with zero µ-invariant for each
ψ ∈ Ĝ. Moreover, if G is abelian, then we also have

λ(A,F∞) =
∑
ψ∈Ĝ

λ(Aψ,K∞).
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6.3. Kida formula

We retain the notation from the previous section. If L is a finite extension
of the cyclotomic Zp-extension of Q`, then by restriction we may view any
E-linear representation V of GQ as a representation of GL, and we set

mL(V ) = dimE(VIL)GL .

Remark 6.6. — In the notation of Section 5, we have mK∞,v(A) =
τv,f (s, θ) by [9, Proposition 2]. A similar description can be made of
mF∞,v(A).

Noting that mL(V ) is invariant under extension of scalars, if L′/L is a
finite p-extension, we enlarge E if necessary so that it contains the [L′ : L]th
roots of unity, and we define

m(L′/L, V ) =
∑

ψ∈Gal(L′/L)

mL(V )−mL(V (ψ)).

Denote by R(F∞/K∞) the set of prime-to-p places of F∞ which are
ramified in F∞/K∞. The results of this paper yield the following “Kida-
type formula”, which is a generalization of [30, Theorem 2.8] to the non-
ordinary setting.

Theorem 6.7. — Let F/Q be a finite Galois p-extension which is un-
ramified at p. If Seli(A/K∞) is Λ-cotorsion with µ-invariant zero, then
Seli(A/F∞) is also Λ-cotorsion with µ-invariant zero. The corresponding
λ-invariants are related by the transition formula

λ(A,F∞) = pj · λ(A,K∞) +
∑

v∈R(F∞/K∞)

m(F∞,v/K∞,`, A).

Proof. — By [30, Lemma 2.9] we may assume F∞/K∞ is cyclic of degree
p. In light of Corollary 6.5, the first part of the theorem is already proved,
and we have

λ(A,F∞) =
∑
ψ∈Ĝ

λ(Aψ,K∞).

By our choice of E′, each ψ ∈ Ĝ is trivial modulo a uniformizer $′ of OE′ .
It follows that we have an isomorphism Aψ[$′] ∼= A[$], and the formula
follows from Proposition 4.5 and Remark 6.6. �

Remark 6.8. — If F/Q is a finite extension which is unramified at p,
and if F ′/F is any finite p-extension which is unramified at p, then upon
replacing the pair (Q, F ) with the pair (F, F ′), the results of this section
go through in this slightly more general setting.
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7. Hypotheses and Numerical Computations

At the beginning of this paper, we assumed p is an odd prime, and we
have considered modular forms f, g of level N and even weight k > 2
whose Fourier coefficients define totally real fields. At various points in the
paper, we have added additional assumptions on our modular forms. For
the reader’s convenience, we begin by recalling these hypotheses, and when
applicable we also give some sufficient conditions for each to hold.

Label Hypothesis Sufficient Conditions
(irred) The GQ-representation Tf/$Tf

is irreducible.
See Lemma 7.1 below.

(inv) For all m > 0, Af (m)GQ∞,p = 0. k 6 p
(tor) Seli(Af,s/Q∞)θ is cotorsion over

Λ
ap(f) = 0 or k > 3

(BLZ) ordp(ap(f)), ordp(ap(g))
> b(k − 2)/(p− 1)c

(Cong) Tf/$Tf ∼= Tg/$Tg as GQ-repre-
sentations.

Sturm’s bound

(µ = 0) The µ-invariants of Seli(Af/K∞)
and Seli(Ag/K∞) vanish.

Conjecturally: k = 2

The following lemma is useful when checking whether (irred) is satisfied.

Lemma 7.1. — Let f =
∑
an(f)qn be a newform of weight k and level

N . Let $ | p be a prime such that the GQ-representation Tf/$Tf is re-
ducible. If p - N and p > k, then

a`(f) ≡ `k−1 + 1 mod $ for all ` ≡ 1 mod N.

Proof. — See the proof of [6, Lemma 2.4]. �

The explicit nature of the terms in Corollary 5.8 make them highly
amenable to computation using a computer algebra system such as
Magma [4], and it is easy to compute many examples which verify this
result. The code used by the authors to verify the following examples can
be found at [14].

It is also interesting to test which of the above hypotheses are really nec-
essary; for instance, computational experiments suggest that the theorem
still holds when k = 2 and ap(f) 6= 0, which suggests that (tor) also holds
in this setting.

Remark 7.2. — From the table, we see that the most interesting hy-
pothesis (and the most difficult to check) is certainly (µ = 0). As noted
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earlier, when f is weight 2 and nonordinary at p, its µ-invariant is always
expected to vanish, but the higher-weight cases are more mysterious. See
for example [31, Remarks 5.2.3 and 5.2.4].

Example 7.3. — Let p = 5 and k = 4, so (inv) and (tor) are automatically
satisfied. Consider the modular forms

f = q − 8q3 − 10q5 − 16q7 + 37q9 + 40q11 +O(q12) ∈ S4(Γ0(32))
[LMFDB Label 32.4.1.a]

and

g = q − 3q3 + 10q5 − 4q7 + 9q9 + 20q11 +O(q12) ∈ S4(Γ0(96))
[LMFDB Label 96.4.1.c]

Both have trivial nebentypus and are defined over Q. It is plain to see
that (BLZ) is satisfied, and one easily checks that these forms are congruent
mod 5 using Sturm’s bound. Applying Lemma 7.1 with ` = 97 shows
that (irred) holds.
Since k = 4, we set s = k

2 − 1 = 1, and the levels give us Σ0 = {2, 3}.
We compute the following data to check Corollary 5.8. Note that, in the
notation of Section 5, ε = θ = 1.

f g

a2 0 0
a2 − 2s 3 6≡ 0 mod 5 3 6≡ 0 mod 5
a3 −8 −3

a3 − 3s N/A −6 6≡ 0 mod 5
a3 − 3s+1 − 3k−s−2 −20 ≡ 0 mod 5 N/A

32s−k+3 − 1 2 6≡ 0 mod 5 N/A
S {3} ∅

Analytic Rank 1 0

Thus we have |Sf | = 1, |Sg| = 0, ran(f) = 1, and ran(g) = 0, so

|Sf |+ ran(f) ≡ |Sg|+ ran(g) mod 2.

Since f has positive analytic rank while g does not, this example illustrates
the role that the “error terms” |Sf | and |Sg| play in the congruence of
Corollary 5.8.

We have verified our theorem on many pairs of modular forms; the ma-
jor difficulty in computing these examples is in generating the pairs of
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congruent modular forms. Once a pair is in hand, computing the terms
in Corollary 5.8 is extremely fast. We have yet to find a pair of congru-
ent modular forms which violates our theorem, which can be considered
evidence for the vanishing of the µ-invariant for each of these forms.

In the appendix, we present a table of the pairs of congruent modular
forms for which we have computationally verified Corollary 5.8 using the
code [14]. Modular forms are listed according to their LMFDB label.
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Appendix: Tables of Data

Table 7.1. Pairs (f, g) for p = 3, k = 2

17.2.1.a 119.2.1.b
187.2.1.b
187.2.1.c

26.2.1.b 52.2.1.a
182.2.1.c
182.2.1.d

40.2.1.a 200.2.1.a
46.2.1.a 92.2.1.a
52.2.1.a 182.2.1.c

182.2.1.e
58.2.1.a 116.2.1.a
62.2.1.a 124.2.1.b
70.2.1.a 140.2.1.b

71.2.1.b 71.2.1.a
142.2.1.b
142.2.1.c
142.2.1.d

71.2.1.a 142.2.1.b
142.2.1.c
142.2.1.d

73.2.1.a 73.2.1.c
73.2.1.c 122.2.1.b

188.2.1.b
77.2.1.a 154.2.1.a

154.2.1.c
94.2.1.a 188.2.1.b

119.2.1.b 187.2.1.b
187.2.1.c

122.2.1.b 188.2.1.b
142.2.1.b 142.2.1.c

142.2.1.d
142.2.1.c 142.2.1.d
154.2.1.a 154.2.1.c
163.2.1.a 163.2.1.b
182.2.1.c 182.2.1.e
184.2.1.c 184.2.1.d
187.2.1.b 187.2.1.c
200.2.1.c 200.2.1.e
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Table 7.2. Pairs (f, g) for p = 5, k = 2

14.2.1.a 182.2.1.b
37.2.1.b 111.2.1.a
38.2.1.a 114.2.1.a
71.2.1.a 213.2.1.b
92.2.1.b 276.2.1.a
197.2.1.a 197.2.1.b
253.2.1.a 267.2.1.e
267.2.1.b 267.2.1.e

Table 7.3. Pairs (f, g) for p = 5, k = 4

32.4.1.c 96.4.1.c
32.4.1.a 96.4.1.f
51.4.1.c 102.4.1.d
51.4.1.b 102.4.1.b
74.4.1.c 91.4.1.c

118.4.1.d
91.4.1.c 118.4.1.d
118.4.1.a 118.4.1.d
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