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RESULTS ON THE HOMOTOPY TYPE OF THE
SPACES OF LOCALLY CONVEX CURVES ON S3

by Emília ALVES & Nicolau C. SALDANHA

Abstract. — A curve γ : [0, 1]→ Sn of class Ck (k > n) is locally convex if the
vectors γ(t), γ′(t), γ′′(t), . . . , γ(n)(t) are a positive basis to Rn+1 for all t ∈ [0, 1].
Given an integer n > 2 and Q ∈ SOn+1, let LSn(Q) be the set of all locally convex
curves γ : [0, 1] → Sn with fixed initial and final Frenet frame Fγ(0) = I and
Fγ(1) = Q. Saldanha and Shapiro proved that there are just finitely many non-
homeomorphic spaces among LSn(Q) when Q varies in SOn+1 (in particular, at
most 3 for n = 3). For any n > 2, one of these spaces is proved to be homeomorphic
to the (well understood) space of generic curves (see below), but very little is known
in general about the others. For n = 2, Saldanha determined the homotopy type
of the spaces LS2(Q). The purpose of this work is to study the case n = 3. We will
obtain information on the homotopy type of one of these two other spaces, allowing
us to conclude that none of the connected components of LS3(−I) is homeomorphic
to a connected component of the space of generic curves.
Résumé. — La courbe γ : [0, 1] → Sn de classe Ck (k > n) est localement

convexe si les vecteurs γ(t), γ′(t), γ′′(t), . . . , γ(n)(t) forment une base positive de
Rn+1 pour chaque t ∈ [0, 1]. Pour un entier n > 2 et Q ∈ SOn+1, soit LSn(Q)
l’ensemble de toutes les courbes localement convexes γ : [0, 1] → Sn avec repères
de Frenet initial et final fixes Fγ(0) = I et Fγ(1) = Q. Saldanha et Shapiro ont
demontré qu’il n’y a qu’un nombre fini d’espaces non-homéomorphes parmi les
LSn(Q) avec Q ∈ SOn+1 (en particulier, au plus 3 pour n = 3). Pour n > 2, ils
demontrent qu’un de ces espaces est homéomorphe à l’espace (bien compris) des
courbes génériques (défini ci-dessous) mais on connaît très peu les autres espaces.
Pour n = 2, Saldanha a déterminé le type d’homotopie des espaces LS2(Q). Le but
de ce travail est d’étudier le cas n = 3. On obtient des informations sur le type
d’homotopie d’un de ces autres deux espaces, ce qui nous permet de déduire qu’au-
cune des composantes connexes de LS3(−I) n’est homéomorphe à une composante
connexe de l’espace des courbes génériques.

Keywords: Locally convex curves, homotopy type, Bruhat decomposition.
2010 Mathematics Subject Classification: 57N12, 57N35, 57N65.
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1. Introduction

A curve γ : [0, 1] → S3 of class Ck (k > 3) is called locally convex if its
geodesic torsion is always positive, or equivalently, if

det(γ(t), γ′(t), γ′′(t), γ′′′(t)) > 0

for all t. For Q ∈ SO4, let LS3(Q) be the set of all locally convex curves
γ with γ(0) = e1, γ(1) = Qe1, γ′(0) = e2, γ′(1) = Qe2 and γ′′(0) =
e3, γ′′(1) = Qe3. Shapiro and Anisov proved that LS3(−I) (where I is
the identity matrix) has three connected components, that we denote by
LS3(1,−1)c, LS3(−1,1) and LS3(1,−1)n, where LS3(1,−1)c is the set of
convex curves, which is contractible (this notation will be clarified later).
Our aim is to understand the two other spaces. Even though we do not
have a complete answer yet, in this work we present new partial results.
The space LS3(I) has two connected components: LS3(−1,−1) and

LS3(1,1). For

Q0 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

the space LS3(Q0) has two connected components LS3(i,−i) and LS3(−i, i).
It follows from [18] that for, any Q ∈ SO4, the space LS3(Q) is homeomor-
phic to one of these: LS3(I), LS3(−I) or LS3(Q0). For any Q ∈ SO4, there
is a natural inclusion F̃ (to be described below) of each connected compo-
nent into Ω(S3×S3). Furthermore, the inclusions LS3(±i,∓i) ⊂ Ω(S3×S3)
are homotopy equivalences ([18]). We prove that the same does not hold
for the spaces LS3(−1,1) and LS3(1,−1)n:

Theorem 1.1. — The inclusions

LS3(−1,1) ⊂ Ω(S3 × S3), LS3(1,−1)n ⊂ Ω(S3 × S3)

are not homotopy equivalences. Moreover

dim H2(LS3(−1,1),R) > 3 and dim H4(LS3(1,−1)n,R) > 4.

In particular, LS3(−1,1) and LS3(1,−1)n are not homotopy equivalent
to LS3(±i,∓i). Recall that H2(Ω(S3×S3),R) = R2 and H4(Ω(S3×S3),R) =
R3. The methods in this papers do not immediately yield upper estimates
for these dimensions or results for the other two spaces (LS3(1,1) and
LS3(−1,−1)).
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We now proceed to construct the inclusion F̃ . We do this in greater
generality, for any dimension n > 2.

A locally convex curve on Sn is a curve γ of class Ck (k > n) such
that det(γ(t), γ′(t), γ′′(t), . . . , γ(n)(t)) > 0. Given a locally convex curve
γ : [0, 1] → Sn, we associate a Frenet frame curve Fγ : [0, 1] → SOn+1
by applying the Gram–Schmidt orthonormalization to the (n + 1)-vectors
(γ(t), γ′(t), . . . , γ(n)(t)).

Definition 1.2. — For Q ∈ SOn+1, LSn(Q) is the set of all locally
convex curves γ : [0, 1]→ Sn such that Fγ(0) = I and Fγ(1) = Q.

For n > 2, let Πn+1 : Spinn+1 → SOn+1 be the universal double cover.
We denote by 1 the identity element in Spinn+1, and by −1 the unique
non-trivial element in Spinn+1 such that Πn+1(−1) = I. The Frenet frame
curve Fγ : [0, 1] → SOn+1 can be uniquely lifted to a continuous curve
F̃γ : [0, 1]→ Spinn+1 such that Fγ = Πn+1 ◦ F̃γ and F̃γ(0) = 1.

Definition 1.3. — For z ∈ Spinn+1, let LSn(z) be the set of curves
γ ∈ LSn(Πn+1(z)) for which F̃γ(1) = z.

It turns out that LSn(z) is always non-empty. Clearly, LSn(Πn+1(z)) is
the disjoint union of LSn(z) and LSn(−z).
Recall that Spin4 can be identified with S3 × S3 (see Subsection 2.1). In

particular, given z = (zl, zr) ∈ S3 × S3 (where l and r just stand for left
and right) we will denote by LS3(zl, zr) the space of locally convex curves
in S3 with the initial and final lifted Frenet frame respectively (1,1) and
(zl, zr), i.e.,

LS3(zl, zr) = {γ : [0, 1]→ S3 | F̃γ(0) = (1,1) and F̃γ(1) = (zl, zr)}.

Though the study of the spaces of locally convex curves may seem a
rather specific topic, it has attracted the attention of many researchers
both for its topological richness and for its connection with other areas
(for example, symplectic geometry [3], differential equations [4], control
theory [14] and engineering [6]).

The study of the topology of the spaces of locally convex curves on the
2-sphere started with Little in 1970. He proved that the space LS2(I) has
3 connected components ([12]), that we denote by LS2(1),LS2(−1)c and
LS2(−1)n. Here LS2(−1)c is the component of convex curves ([8]) and this
component is contractible ([2]) while LS2(−1)n is the component associated
to non-convex curves (see Figure 1.1 below).
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Figure 1.1. Examples of curves in the components LS2(−1)c, LS2(1)
and LS2(−1)n, respectively.

The topology of the spaces of locally convex curves on Sn and their vari-
ations was also studied by others authors. Among many, we mention the
work of M. Z. Shapiro, B. Z. Shapiro and B. A. Khesin ([20], [21], [11]
and [19]) which in the 1990’s determined the number of connected compo-
nents of the space of locally convex curves on the n-sphere, in the Euclidean
space, and in the Projective space. The beautiful paper of V. I. Arnold [3]
also considers related questions. More recently, the study of Engel struc-
tures also used related methods ([5] and [13]). For a longer list of references,
see [23].
Even though the number of connected components of those spaces has

been completely understood, little information on the cohomology or higher
homotopy groups was available, even on the 2-sphere. The topology of the
spaces LS2(1) and LS2(−1)n remained mysterious until [15], [16] and [17]:

Theorem 1.4 (Saldanha [17]). — We have the following homotopy
equivalences

LS2(1) ≈ (ΩS3)∨ S2 ∨ S6 ∨ S10 ∨ · · · , LS2(−1)n ≈ (ΩS3)∨ S4 ∨ S8 ∨ · · · .

Now we will introduce a larger space of curves that will have an impor-
tant role in this work. Let γ be a curve in Sn of class Ck (k > n): γ is
called generic if the vectors γ(t), γ′(t), γ′′(t), . . . , γ(n−1)(t) are linearly in-
dependent for all t ∈ [0, 1]. One can still define a Frenet frame for generic
curves (which are not necessarily locally convex). Indeed, one can apply
Gram–Schmidt to the linearly independent vectors γ(t), γ′(t), . . . , γ(n−1)(t)
to obtain n orthonormal vectors u0(t), u1(t), . . . , un−1(t). Then, there is a
unique vector un(t) for which u0(t), u1(t), . . . , un−1(t), un(t) is a positive
orthonormal basis. So, the continuous curve Fγ : [0, 1]→ SOn+1 defined by
Fγ(t) = (u0(t), u1(t), . . . , un−1(t), un(t)) is called the Frenet frame curve of
the generic curve γ : [0, 1]→ Sn.

Definition 1.5. — For Q ∈ SOn+1, GSn(Q) is the space of all generic
curves γ : [0, 1]→ Sn such that Fγ(0) = I and Fγ(1) = Q. For z ∈ Spinn+1,
GSn(z) is the subset of GSn(Πn+1(z)) for which F̃γ(1) = z.

ANNALES DE L’INSTITUT FOURIER
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We thus have LSn(Q) ⊂ GSn(Q) and LSn(z) ⊂ GSn(z).
The homotopy type of the spaces GSn(z), z ∈ Spinn+1, is well under-

stood. Indeed, let us define ΩSpinn+1(z) to be the space of all continuous
curves α : [0, 1] → Spinn+1 with α(0) = 1 and α(1) = z. It is well-
known that different values of z ∈ Spinn+1 give rise to homeomorphic
spaces ΩSpinn+1(z), therefore we can drop z from the notation and write
ΩSpinn+1. Using the Frenet frame, we define the following Frenet frame
injection F̃ : GSn(z)→ ΩSpinn+1 defined by (F̃(γ))(t) = F̃γ(t). The inclu-
sion F̃ : GSn(z) → ΩSpinn+1 is a homotopy equivalence: this follows from
the results of Hirsch and Smale ([10] and [22]) or from the h-principle ([9]
and [7]); see Subsection 5.2 for a self-contained explanation.
In [18], Saldanha and Shapiro gave an explicit finite list z0, . . . , zk of

elements of Spinn+1 such that, for any z ∈ Spinn+1, there is zj in that
list such that LSn(z) is homeomorphic to LSn(zj). Moreover, LSn(z0) and
GSn(z0) are homeomorphic. Also, the inclusions LSn(zj) ⊂ GSn(zj) induce
surjective maps between homotopy or homology groups.
For n = 3, the result in [18] says that given (zl, zr) ∈ S3 × S3, the space

LS3(zl, zr) is homeomorphic to at least one of the five spaces:

LS3(i,−i), LS3(1,−1), LS3(−1,1), LS3(1,1), LS3(−1,−1).

The following homeomorphism also holds:

LS3(i,−i) ' Ω(S3 × S3) = ΩS3 × ΩS3.

Recall that

Hj(Ω(S3 × S3),R) =
{

0, j odd
Rl+1, j = 2l, l ∈ N.

We would like to determine which among these 5 spaces are homeomor-
phic. We do not know the complete answer yet but we present some results:

Theorem 1.6. — For any even integer j > 1, we have

dimHj(LS3(−1,1),R) > 1 + dimHj(GS3(−1,1),R), 4|(j + 2),

dimHj(LS3(1,−1),R) > 1 + dimHj(GS3(1,−1),R), 4|j.

Moreover, explicit generators will be constructed. Notice that Theo-
rem 1.1 follows directly from Theorem 1.6.

We will prove that any generic curve in S3 can be decomposed as a pair
of related generic curves in S2 (a generic curve in S2 is just an immersion);
moreover, if the curve in S3 is locally convex, then one of the associated
curves in S2 is also locally convex (see Theorems 1.7 and 1.8). These results
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are very useful because they enable us to use what is known in the case
n = 2 for the case n = 3.
Given γ ∈ GS2(z), let us denote by tγ(t) the unit tangent vector of γ at

the point γ(t), that is tγ(t) := γ′(t)
‖γ′(t)‖ ∈ S2. Let nγ(t) be the unit normal

vector of γ at the point γ(t), that is nγ(t) := γ(t) × tγ(t) where × is the
cross-product in R3. Recall that the geodesic curvature κγ(t) is given by
κγ(t) := t′γ(t)·nγ(t)

‖γ′(t)‖ where · is the Euclidean inner product.

Theorem 1.7. — There exists a homeomorphism between the space
GS3(zl, zr) and the space of pairs of curves (γl, γr) ∈ GS2(zl) × GS2(zr)
satisfying the condition

(G) ‖γ′l(t)‖ = ‖γ′r(t)‖, κγl(t) > κγr (t), t ∈ [0, 1].

Theorem 1.8. — There exists a homeomorphism between the space
LS3(zl, zr) and the space of pairs of curves (γl, γr) ∈ LS2(zl) × GS2(zr)
satisfying the condition

(L) ‖γ′l(t)‖ = ‖γ′r(t)‖, κγl(t) > |κγr (t)|, t ∈ [0, 1].

We now proceed to give a brief overview of the paper.
In Section 2 we start with some algebraic preliminaries. There we recall

some basic notions on the spin group and on signed permutation matrices
which will be necessary to explain the Bruhat decomposition of the special
orthogonal group and the lifted decomposition to the spin group. This
decomposition was already an important tool in [18], and it will also be
very important for us.

In Section 3 we present some basic notions on locally convex curves
and generic curves. We also define globally convex curves, which are of
fundamental importance in the study of locally convex curves. In Subsec-
tion 3.2 we introduce another class of curves, the Jacobian (or holonomic)
and quasi-Jacobian curves. These are nothing but a different point of view
on Frenet frame curves associated to locally convex curves and generic
curves.

In Section 4 we prove Theorem 1.7 and Theorem 1.8, which will be crucial
in the sequel. Also in this section we give some examples of these results.

Finally, Section 5 is devoted to the proof of Theorem 1.6. To do this, in
Subsection 5.1 we will introduce a notion of “adding a pair of spirals” to
a given curve. This notion is a slight modification of the notion of “adding
a pair of loops” to a given curve in S2, introduced in [17]. We will do
this in order to adapt more easily the results from [17] to our case; this is
possible thanks to Theorems 1.7 and 1.8. This adaptation will be done in

ANNALES DE L’INSTITUT FOURIER
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the Subsections 5.2 and 5.3, while our main result, Theorem 1.6, will be
proved in Subsection 5.4.
Notice that Theorems 1.7 and 1.8 still work in the remaining spaces

LS3(1,1) and LS3(−1,−1). It is the adaptation process of results from S2

to S3 (explained in Section 5) that has limitations and appears to produce
only some examples of tight maps (see Section 5).
This paper is based on the Ph.D. thesis [1] of the first author, who was ad-

vised by the second. The authors gratefully acknowledge the financial sup-
port of CAPES, CNPq, FAPERJ and PUC-Rio, particularly during the first
author’s graduate studies. We thank Carlos Tomei, Leonardo Navarro de
Carvalho, Paul Schweitzer, Pedro Zühlke and Umberto Hryniewicz, mem-
bers of the Ph.D. committee, for several valuable suggestions. We also thank
Boris Shapiro and Victor Goulart for remarks and conversations, and the
referee for a careful and helpful report.

2. Basic definitions and properties

In this section we start with some algebraic preliminaries: first we recall
some definitions and basic properties of the special orthogonal groups and
the spin groups, and then we explain a decomposition of these groups (the
Bruhat decomposition) into finitely many subsets which will play an im-
portant role in this work. This is closely related to but not identical to the
classical Bruhat decomposition.

2.1. Spin groups

By definition, n > 2, the spin group Spinn+1 is the universal cover of
SOn+1, and it comes with a natural projection Πn+1 : Spinn+1 → SOn+1
which is a double covering map. Throughout this work, the unit element
in the group Spinn+1 will be denoted by 1 ∈ Spinn+1.
For our purposes it will be sufficient to recall a description of Spinn+1

in the cases n = 2 and n = 3 and it is well known that Spin3 ' S3 and
Spin4 ' S3 × S3.
Let us start by identifying R4 with the algebra of quaternions H, the set

of quaternions with unit norm can be naturally identified with S3 and the
space of imaginary quaternions (i.e., of real part 0) is naturally identified
to R3.

TOME 69 (2019), FASCICULE 3
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The canonical projection Π3 : Spin3 → SO3 is given by Π3(z)(h) = zhz̄

for any h ∈ R3. In matrix notations, this map can be defined by

Π3(a+ bi + cj + dk)

=

a2 + b2 − c2 − d2 −2ad+ 2bc 2ac+ 2bd
2ad+ 2bc a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .

The canonical projection Π4 : Spin4 → SO4 is given by Π4(zl, zr)(q) =
zlqz̄r for any q ∈ R4. The following rather cumbersome description of
Π4 : Spin4 → SO4 in matrix notation will be used in Lemma 5.16.

Π4(al + bli + clj + dlk, ar + bri + crj + drk) =
(
C1 C2 C3 C4

)
where the columns Ci, for 1 6 i 6 4, are given by

C1 =


alar + blbr + clcr + dldr
−albr + blar − cldr + dlcr
−alcr + bldr + clar − dlbr
−aldr − blcr + clbr + dlar

 C2 =


albr − blar − cldr + dlcr
alar + blbr − clcr − dldr
aldr + blcr + clbr + dlar
−alcr + bldr − clar + dlbr



C3 =


alcr + bldr − clar − dlbr
−aldr + blcr + clbr − dlar
alar − blbr + clcr − dldr
albr + blar + cldr + dlcr

 C4 =


aldr − blcr + clbr − dlar
alcr + bldr + clar + dlbr
−albr − blar + cldr + dlcr
alar − blbr − clcr + dldr

.

2.2. Signed permutation matrices

Let Sn+1 be the group of permutations on the set of n + 1 elements
{1, . . . , n + 1}. An inversion of a permutation π ∈ Sn+1 is a pair (i, j) ∈
{1, . . . , n+ 1}2 such that i < j and π(i) > π(j). The number of inversions
of a permutation π ∈ Sn+1 is denoted by inv(π). The number of inversions
is at most n(n+ 1)/2, and this number is only reached by the permutation
ρ ∈ Sn+1 defined by ρ(i) = n + 2 − i for all i ∈ {1, . . . , n + 1}. In other
words, ρ is the product of transpositions ρ = (1 n+ 1)(2 n) · · · ∈ Sn+1.

A matrix P is a permutation matrix if each column and each row of
P contains exactly one entry equal to 1, and the others entries are zero.
Permutation matrices form a finite sub-group of On+1. There is an obvious
isomorphism between the group of permutation matrices and Sn+1: to a
permutation π ∈ Sn+1 we can associate a permutation matrix Pπ = (pi,j)
where Pπ(ei) = eπ(i), where ei denotes the i-th vector of the canonical basis
of Rn+1. We also write inv(Pπ) = inv(π).

ANNALES DE L’INSTITUT FOURIER
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More generally, a signed permutation matrix is a matrix for which each
column and each row contains exactly one entry equal to 1 or −1, and
the others entries are zero. In the notation of Coxeter groups, the set of
signed permutation matrices is Bn+1 ⊂ On+1, |Bn+1| = 2n+1(n+1)!. Given
a signed permutation matrix P , let abs(P ) be the associated permutation
matrix obtained by dropping the signs (put differently, the entries of abs(P )
are the absolute values of the entries of P ). This defines a homomorphism
from Bn+1 to Sn+1, and we set inv(P ) = inv(abs(P )).
The group of signed permutation matrices of determinant one is B+

n+1 =
Bn+1 ∩ SOn+1, and it has a cardinal equal to 2n(n+ 1)!.

2.3. Bruhat decomposition

Let us denote by Up+
n+1 the group of upper triangular matrices with

positive diagonal entries.

Definition 2.1. — Given Q ∈ SOn+1, we define the Bruhat cell BruQ
as the set of matrices UQU ′ ∈ SOn+1, where U and U ′ belong to Up+

n+1.

Each Bruhat cell contains a unique signed permutation matrix P ∈ B+
n+1,

hence two Bruhat cells associated to two different signed permutation ma-
trices are disjoint. We summarize this in the following result.

Proposition 2.2 (Bruhat decomposition for SOn+1). — We have the
decomposition

SOn+1 =
⊔

P∈B+
n+1

BruP .

Therefore there are 2n(n + 1)! different Bruhat cells. Each Bruhat cell
BruP is diffeomorphic to Rinv(P ), hence they are open if and only if they
have maximal dimension, that is, if they correspond to the permutation ρ
we previously defined by ρ = (1 n+ 1)(2 n) . . . .
The Bruhat decomposition of SOn+1 can be lifted to the universal double

cover Πn+1 : Spinn+1 → SOn+1. Let us define the following sub-group of
Spinn+1:

B̃+
n+1 := Π−1

n+1(B+
n+1).

The cardinal of B̃+
n+1 is twice the cardinal of B+

n+1, that is 2n+1(n+ 1)!.

Definition 2.3. — Given z ∈ Spinn+1 we define the Bruhat cell Bruz
as the connected component of Π−1

n+1(BruΠn+1(z)) which contains z.

TOME 69 (2019), FASCICULE 3
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It is clear, from the definition of Πn+1, that Π−1
n+1(BruΠn+1(z)) is the dis-

joint union of Bruz and Bru−z, where each set Bruz, Bru−z is contractible
and non-empty.
From Proposition 2.2 we have the following result.

Proposition 2.4 (Bruhat decomposition for Spinn+1). — We have the
decomposition

Spinn+1 =
⊔

P̃∈B̃+
n+1

Bru
P̃
.

In Spinn+1, there are 2n+1(n + 1)! disjoint Bruhat cells. Each lifted
Bruhat cell Bru

P̃
is still diffeomorphic to Rinv(P ), where P = Πn+1(P̃ ) ∈

B+
n+1.
Two matrices Q ∈ SOn+1 and Q′ ∈ SOn+1 (respectively two spins z ∈

Spinn+1 and z′ ∈ Spinn+1) are said to be Bruhat-equivalent if they belong
to the same Bruhat cell.
Let us conclude by quoting Lemma 3.1 in [18], which will be very impor-

tant in this work.

Proposition 2.5. — If Q ∈ SOn+1 and Q′ ∈ SOn+1 (respectively z ∈
Spinn+1 and z′ ∈ Spinn+1) are Bruhat-equivalent, then the spaces LSn(Q)
and LSn(Q′) (respectively LSn(z) and LSn(z′)) are homeomorphic.

3. Spaces of curves

In this section we start with some definitions and then we characterize
locally convex curves on S2 and on S3 (Subsection 3.1). Finally, we will
characterize the Frenet frame curve associated to a locally convex curve on
S2 and on S3 (Subsection 3.2).

3.1. Preliminaries

In this subsection we give some new definitions about locally convex and
generic curves. We will deduce some fundamental properties about these
curves.

Definition 3.1. — We define LSn to be the set of all locally convex
curves γ : [0, 1]→ Sn such that Fγ(0) = I. We define GSn to be the set of
all generic curves γ : [0, 1]→ Sn such that Fγ(0) = I.

ANNALES DE L’INSTITUT FOURIER
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Clearly, LSn(Q) ⊂ LSn and GSn(Q) ⊂ GSn.
We will consider that our curves are smooth, but in the construction,

we will not be bothered by the loss of smoothness due to juxtaposition of
curves. The class of differentiability is not important: see [18], [17] or [1]
for a discussion of this technical point.

Definition 3.2. — A curve γ : [0, 1] → Sn is called globally convex if
any hyperplane H ⊆ Rn+1 intersects the image of γ in at most n points,
counting with multiplicity.

We need to clarify the notion of multiplicity in this definition. First,
endpoints of the curve are not counted as intersections. Then, if γ(t) ∈ H
for some t ∈ (0, 1), the multiplicity of the intersection point γ(t) is the
smallest integer k > 1 such that

γ(j)(t) ∈ H, 0 6 j 6 k − 1.

So the multiplicity is one if γ(t) ∈ H but γ′(t) /∈ H, it is two if γ(t) ∈ H,
γ′(t) ∈ H but γ′′(t) /∈ H, and so on. Obviously, all globally convex curves
are locally convex.
Consider a curve γ ∈ GS2(z). Recall that

tγ(t) := γ′(t)
‖γ′(t)‖ , nγ(t) := γ(t)× tγ(t) and κγ(t) :=

t′γ(t) · nγ(t)
‖γ′(t)‖ .

We then define Fγ(t) = (γ(t), tγ(t),nγ(t)) ∈ SO3. A generic curve γ :
[0, 1] → S2 is locally convex if and only if κγ(t) > 0 for all t ∈ (0, 1); for a
proof, see Proposition 18 in [1].
Next we will consider γ a generic curve on S3, that is, γ(t), γ′(t), γ′′(t)

are linearly independent, so that its Frenet frame Fγ(t) can be defined:

Fγ(t)e1 = γ(t), Fγ(t)e2 = tγ(t) = γ′(t)
‖γ′(t)‖ .

The unit normal nγ(t) and binormal bγ(t) are defined by

nγ(t) = Fγ(t)e3, bγ(t) = Fγ(t)e4

so that Fγ(t) = (γ(t), tγ(t),nγ(t),bγ(t)) ∈ SO4. The geodesic curvature
κγ(t) and the geodesic torsion τγ(t) are given by:

κγ(t) :=
t′γ(t) · nγ(t)
‖γ′(t)‖ , τγ(t) :=

−b′γ(t) · nγ(t)
‖γ′(t)‖ .

The geodesic curvature is never zero for generic curves. We can then char-
acterize locally convex curves in S3: a generic curve γ : [0, 1]→ S3 is locally
convex if and only if τγ(t) > 0 for all t ∈ (0, 1); for a proof, see Proposi-
tion 19 in [1].
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Example 3.3. — [18] Consider the curve ξ : [0, 1]→ Sn defined as follows.
For n+ 1 = 2k, take positive numbers c1, . . . , ck such that c21 + · · ·+ c2k = 1
and a1, . . . , ak > 0 mutually distinct, and set

ξ(t) = (c1 cos(a1t), c1 sin(a1t), . . . , ck cos(akt), ck sin(akt)).

Similarly, for n+ 1 = 2k + 1, set

ξ(t) = (c0, c1 cos(a1t), c1 sin(a1t), . . . , ck cos(akt), ck sin(akt)).

In both cases, the fact that the curve ξ is locally convex follows from a
simple computation.

In the case n = 3, a locally convex curve looks like an ancient phone wire
(see the Figure 3.1 below).

Figure 3.1. An ancient phone wire is locally convex in S3.

3.2. Holonomic and quasi-holonomic curves

We will be interested in characterizing the Frenet frame curve associated
to a locally convex curve. Consider a curve Γ : [0, 1] → SOn+1 and define
its logarithmic derivative Λ(t) by Λ(t) = (Γ(t))−1Γ′(t), that is, Γ′(t) =
Γ(t)Λ(t). Since Γ takes values in SOn+1, Λ takes values in its Lie algebra,
that is, Λ(t) is a skew-symmetric matrix for all t ∈ [0, 1].
When Γ = Fγ is the Frenet frame curve of a locally convex curve, its

logarithmic derivative Λ(t) is not an arbitrary skew-symmetric matrix. For
instance, if γ : [0, 1]→ S2 is locally convex, then

Fγ(t) = (γ(t), tγ(t),nγ(t)) ∈ SO3

and by simple computations one obtains

(3.1) Λγ(t) = (Fγ(t))−1F ′γ(t) =

 0 −‖γ′(t)‖ 0
‖γ′(t)‖ 0 −‖γ′(t)‖κγ(t)

0 ‖γ′(t)‖κγ(t) 0

.
In the same way, if γ : [0, 1]→ S3 is locally convex, then

Fγ(t) = (γ(t), tγ(t),nγ(t),bγ(t)) ∈ SO4
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and one gets

(3.2) Λγ(t) =


0 −‖γ′(t)‖ 0 0

‖γ′(t)‖ 0 −‖γ′(t)‖κγ(t) 0
0 ‖γ′(t)‖κγ(t) 0 −‖γ′(t)‖τγ(t)
0 0 ‖γ′(t)‖τγ(t) 0

 .

This is in fact a general phenomenon. Let us define the set J ⊂ son+1
of Jacobi matrices, i.e., tridiagonal skew-symmetric matrices with positive
subdiagonal entries, in other words, matrices of the form

0 −c1 0 . . . 0
c1 0 −c2 0

. . . . . . . . .
0 cn−1 0 −cn
0 0 cn 0

 , c1 > 0, . . . , cn > 0.

Definition 3.4. — A curve Γ : [0, 1] → SOn+1 is Jacobian if its loga-
rithmic derivative Λ(t) = (Γ(t))−1Γ′(t) belongs to J for all t ∈ [0, 1].

The interest of this definition is that Jacobian curves characterize Frenet
frame curves of locally convex curves. Indeed, we have the following propo-
sition.

Proposition 3.5. — Let Γ : [0, 1] → SOn+1 be a smooth curve with
Γ(0) = I. Then Γ is Jacobian if and only if there exists γ ∈ LSn such that
Fγ = Γ.

This is exactly the content of Lemma 2.1 in [18], to which we refer for a
proof. Hence there is a one-to-one correspondence between locally convex
curves in LSn and Jacobian curves starting at the identity: if γ ∈ LSn,
its Frenet frame curve is such a Jacobian curve, and conversely, if Γ is a
Jacobian curve with Γ(0) = I, then if we define γΓ by setting γΓ(t) = Γ(t)e1
then γΓ ∈ LSn.
Now consider a smooth curve Λ : [0, 1] → J. Then Λ is the logarithmic

derivative of a Jacobian curve Γ : [0, 1]→ SOn+1 if and only if Γ solves

Γ′(t) = Γ(t)Λ(t).

If Γ solves the above equation, then so does QΓ, for Q ∈ SOn+1, since the
logarithmic derivative of Γ and QΓ are equal. But the initial value problem

Γ′(t) = Γ(t)Λ(t), Γ(0) = I

has a unique solution. Thus, given a curve Λ : [0, 1]→ J, there is a unique
curve γ ∈ LSn such that Λγ(t) = Fγ(t)−1F ′γ(t) = Λ(t).

TOME 69 (2019), FASCICULE 3



1160 Emília ALVES & Nicolau C. SALDANHA

Consider the locally convex curve ξ : [0, 1]→ Sn defined in Example 3.3.
It is easy to see that the logarithmic derivative Λξ(t) is constant. From what
we explained, any other curve which has constant logarithmic derivative has
to be of the form Qξ, for some Q ∈ SOn+1. More precisely, given any matrix
Λ ∈ J, the map

ΓΛ(t) = exp(tΛ) ∈ SOn+1

is a Jacobian curve whose logarithmic derivative is constant equal to Λ.
The curve γΛ defined by γΛ(t) = ΓΛ(t)e1 is then locally convex, and there
exists Q ∈ SOn+1 such that γΛ = Qξ.
Now the Frenet frame curve Fγ : [0, 1]→ SOn+1 of γ ∈ LSn can be lifted

to a curve

F̃γ : [0, 1]→ Spinn+1,

that is Fγ = F̃γ ◦ Πn+1 where Πn+1 : Spinn+1 → SOn+1 is the universal
cover projection. Such a lifted Frenet frame curve F̃γ is thus characterized
by the following definition.

Definition 3.6. — A curve Γ̃ : [0, 1] → Spinn+1 is holonomic if the
projected curve Γ = Γ̃ ◦Πn+1 is a Jacobian curve.

To conclude, we can also characterize the Frenet frame curve associated
to a generic curve. Let us define the set Q of tridiagonal skew-symmetric
matrices of the form

0 −c1 0 . . . 0
c1 0 −c2 0

. . . . . . . . .
0 cn−1 0 −cn
0 0 cn 0

 , c1 > 0, . . . , cn−1 > 0, cn ∈ R.

Clearly, J is contained in Q and we have the following definition and propo-
sition:

Definition 3.7. — A curve Γ : [0, 1] → SOn+1 is quasi-Jacobian if its
logarithmic derivative Λ(t) = (Γ(t))−1Γ′(t) belongs to Q for all t ∈ [0, 1].
Let Γ : [0, 1]→ SOn+1 be a smooth curve with Γ(0) = I. Then Γ is quasi-
Jacobian if and only if there exists γ ∈ GSn such that Fγ = Γ.

Proposition 3.8. — A curve Γ̃ : [0, 1] → Spinn+1 is quasi-holonomic
if the projected curve Γ = Γ̃ ◦Πn+1 is a quasi-Jacobian curve.
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4. Decomposition of locally convex curves on S3

The goal of this section is to prove Theorem 1.7, which states that a
generic curve in S3 can be decomposed as a pair of immersions in S2. When
restricted to locally convex curves, this gives Theorem 1.8 which states that
a locally convex curve in S3 can be decomposed as a pair of curves in S2, one
of which is locally convex and the other is an immersion. This theorem will
be proved in Subsection 4.1. We then give some examples (Subsection 4.2)
illustrating this general procedure for locally convex curves.

4.1. Proof of Theorem 1.7 and Theorem 1.8

Consider γ ∈ GS3 and its associated Frenet and lifted Frenet frame curve

Fγ : [0, 1]→ SO4, F̃γ : [0, 1]→ S3 × S3.

These are respectively quasi-Jacobian and quasi-holonomic curves, and we
recall that any quasi-Jacobian or quasi-holonomic curve is of this form.
Hence, characterizing generic curves in S3 is the same as characterizing
quasi-holonomic curves Γ̃ : [0, 1] → S3 × S3. Recall that the Lie algebra of
S3, viewed as the group of unit quaternions, is the vector space of imaginary
quaternions

ImH := {bi + cj + dk | (b, c, d) ∈ R3}
and hence the Lie algebra of S3 × S3 is the product ImH × ImH. The
logarithmic derivative of Γ̃ belongs to the Lie algebra of S3 × S3, that is

ΛΓ̃(t) = Γ̃(t)−1Γ̃′(t) ∈ ImH× ImH, t ∈ [0, 1].

In the proposition below, we characterize the subset of ImH × ImH to
which the logarithmic derivative of a quasi-holonomic curve belongs. Let

Q̃ := {(bli + dk, bri + dk) ∈ ImH× ImH | (bl, br, d) ∈ R3, bl > br, d > 0}.

Proposition 4.1. — Let Γ̃ : [0, 1] → S3 × S3 be a smooth curve with
Γ̃(0) = (1,1). Then Γ̃ is quasi-holonomic if and only if its logarithmic
derivative satisfies

ΛΓ̃(t) ∈ Q̃, t ∈ [0, 1].

Moreover, if ΛΓ̃(t) = (bl(t)i + d(t)k, br(t)i + d(t)k) ∈ Q̃, t ∈ [0, 1], then

bl(t)− br(t) = ‖γ′(t)‖, 2d(t) = ‖γ′(t)‖κγ(t), bl(t) + br(t) = ‖γ′(t)‖τγ(t)

where the curve γ : [0, 1]→ S3 is defined by γ(t) = (Π4 ◦ Γ̃(t))e1.
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Proof. — By definition, Γ̃ is quasi-holonomic if and only if the projected
curve

Γ = Π4 ◦ Γ̃ : [0, 1]→ SO4

is quasi-Jacobian, and by definition, Γ is quasi-Jacobian if only if its loga-
rithmic derivative belongs to the subset Q of matrices of the form

0 −c1 0 0
c1 0 −c2 0
0 c2 0 −c3
0 0 c3 0

 , c1 > 0, c2 > 0, c3 ∈ R.

By the chain rule we have Γ′(t) = (DΓ̃(t)Π4)Γ̃′(t) hence

ΛΓ(t) = Γ(t)−1Γ′(t) = Γ(t)−1(DΓ̃(t)Π4)Γ̃′(t) = Γ(t)−1(DΓ̃(t)Π4)Γ̃(t)ΛΓ̃(t).

But since Γ(t)−1(DΓ̃(t)Π4)Γ̃(t) is the differential of Π4 at the identity (1,1),
we obtain ΛΓ(t) = (D(1,1)Π4)ΛΓ̃(t) hence to prove the first part of the
proposition, one needs to prove that Q = D(1,1)Π4(Q̃). The differential

D(1,1)Π4 : ImH× ImH→ so4

is given by D(1,1)Π4(hl, hr) : z ∈ H 7→ hlz − zhr ∈ H for (hl, hr) ∈
ImH× ImH. If we let hl = bli + clj + dlk, hr = bri + crj + drk then

D(1,1)Π4(hl, hr)z = bliz + cljz + dlkz − (brzi + crzj + drzk).

Let us denote by il, jl and kl the matrices in so4 that correspond to left
multiplication by respectively i, j and k; similarly we define ir, jr and kr
the matrices in so4 that correspond to right multiplication by respectively
ī, j̄ and k̄. These matrices are given by

il =


0 −1 0 0

+1 0 0 0
0 0 0 −1
0 0 +1 0

 ir =


0 +1 0 0
−1 0 0 0
0 0 0 −1
0 0 +1 0



jl =


0 0 −1 0
0 0 0 +1

+1 0 0 0
0 −1 0 0

 jr =


0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0



kl =


0 0 0 −1
0 0 −1 0
0 +1 0 0

+1 0 0 0

 kr =


0 0 0 +1
0 0 −1 0
0 +1 0 0
−1 0 0 0

 .
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We can then express D(1,1)Π4(hl, hr) in matrix notation:

D(1,1)Π4(hl, hr) =


0 −(bl − br) −(cl − cr) −(dl − dr)

bl − br 0 −(dl + dr) −(−cl − cr)
cl − cr dl + dr 0 −(bl + br)
dl − dr −cl − cr bl + br 0

 .

From this expression, (hl, hr) ∈ Q̃ if and only if D(1,1)Π4(hl, hr) ∈ Q.
This proves the equality Q = D(1,1)Π4(Q̃), and hence the first part of the
proposition.
Concerning the second part of the proposition, if

ΛΓ̃(t) = (bl(t)i + d(t)k, br(t)i + d(t)k) ∈ Q̃, t ∈ [0, 1],

then ΛΓ(t) = D(1,1)Π4(ΛΓ̃(t)) is equal to
0 −(bl(t)− br(t)) 0 0

bl(t)− br(t) 0 −2d(t) 0
0 2d(t) 0 −(bl(t) + br(t))
0 0 bl(t) + br(t) 0

 .

But recall (see (3.2), Subsection 3.2) that we also have

ΛΓ(t) = Λγ(t) =


0 −‖γ′(t)‖ 0 0

‖γ′(t)‖ 0 −‖γ′(t)‖κγ(t) 0
0 ‖γ′(t)‖κγ(t) 0 −‖γ′(t)‖τγ(t)
0 0 ‖γ′(t)‖τγ(t) 0


where γ(t) = Γ(t)e1 = (Π4 ◦ Γ̃(t))e1. So a simple comparison between the
two expressions of ΛΓ(t) proves the second part of the proposition. �

This proposition will allow us to prove Theorem 1.7.

Proof of Theorem 1.7. — Let γ ∈ GS3(zl, zr). Consider its Frenet frame
curve Fγ(t), its lifted Frenet frame curve Γ̃(t) = F̃γ(t) and the logarithmic
derivative

ΛΓ̃(t) = Γ̃(t)−1Γ̃′(t).

From Subsection 3.2, we know that Fγ is quasi-Jacobian, hence Γ̃ = F̃γ is
quasi-holonomic. Thus we can apply Proposition 4.1 and we can uniquely
write ΛΓ̃(t) = (bl(t)i + d(t)k, br(t)i + d(t)k) with

bl(t)−br(t) = ‖γ′(t)‖, 2d(t) = ‖γ′(t)‖κγ(t), bl(t)+br(t) = ‖γ′(t)‖τγ(t).
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Equivalently,

(4.1)


d(t) = ‖γ′(t)‖κγ(t)/2,
bl(t) = ‖γ′(t)‖(τγ(t) + 1)/2,
br(t) = ‖γ′(t)‖(τγ(t)− 1)/2.

Let us then define the curves Γ̃l : [0, 1]→ S3, Γ̃r : [0, 1]→ S3 by

Γ̃l(0) = 1, Γ̃l(1) = zl, ΛΓ̃l
(t) = bl(t)i + d(t)k ∈ ImH,

and Γ̃r(0) = 1, Γ̃r(1) = zr, ΛΓ̃r
(t) = br(t)i + d(t)k ∈ ImH.

The curves Γ̃l and Γ̃r are uniquely defined. Let us further define

Γl := Π3 ◦ Γ̃l : [0, 1]→ SO3, Γr := Π3 ◦ Γ̃r : [0, 1]→ SO3.

We want to compute the logarithmic derivative of Γl and Γr. The differen-
tial of Π3 at 1 can be computed exactly as we computed the differential of
Π4 at (1,1) (in the proof of Proposition 4.1); we have D1Π3 : ImH→ so3
and for h = (bi + cj + dk) ∈ ImH, we can write in matrix notation

D1Π3(h) =

 0 −2d −2c
2d 0 −2b
2c 2b 0

 .

From this expression we obtain

(4.2) ΛΓl(t) = D1Π3(ΛΓ̃l
(t)) =

 0 −2d(t) 0
2d(t) 0 −2bl(t)

0 2bl(t) 0


and

ΛΓr (t) = D1Π3(ΛΓ̃r
(t)) =

 0 −2d(t) 0
2d(t) 0 −2br(t)

0 2br(t) 0

 .

From (4.1), we see that d(t) > 0 and bl(t) ∈ R, hence Γl is a quasi-Jacobian
curve, and therefore if we define γl(t) := Γl(t)e1 then γl ∈ GS2(zl). More-
over, recall from (3.1), Subsection 3.2, that

ΛΓl(t) = Λγl(t) =

 0 −‖γ′l(t)‖ 0
‖γ′l(t)‖ 0 −‖γ′l(t)‖κγl(t)

0 ‖γ′l(t)‖κγl(t) 0
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so that comparing this with (4.2) and recalling (4.1), we find

‖γ′l(t)‖ = 2d(t) = ‖γ′(t)‖κγ(t)

and κγl(t) = 2bl(t)
‖γ′l(t)‖

= ‖γ
′
l(t)‖(τγ(t) + 1)
‖γ′l(t)‖κγ(t) = τγ(t) + 1

κγ(t) .

Now Γr is also a quasi-Jacobian curve, hence if we define γr(t) := Γr(t)e1,

then γr ∈ GS2(zr), and as before, we have

ΛΓr (t) = Λγr (t) =

 0 −‖γ′r(t)‖ 0
‖γ′r(t)‖ 0 −‖γ′r(t)‖κγr (t)

0 ‖γ′r(t)‖κγr (t) 0


and ‖γ′r(t)‖ = ‖γ′(t)‖κγ(t), κγr (t) = τγ(t)− 1

κγ(t) .

This shows that given γ ∈ LS3(zl, zr), there exists a unique pair of curves
(γl, γr), with γl ∈ GS2(zl) and GS2(zr) such that ‖γ′l(t)‖ = ‖γ′r(t)‖, κγl(t) >
κγr (t) and moreover ‖γ′l(t)‖ = ‖γ′r(t)‖ = ‖γ′(t)‖κγ(t), κγl(t) = τγ(t)+1

κγ(t) ,
κγr (t) = τγ(t)−1

κγ(t) . This defines a map γ 7→ (γl, γr), which, by construction is
continuous. Conversely, given a pair of curves (γl, γr), with γl ∈ GS2(zl) and
GS2(zr) such that ‖γ′l(t)‖ = ‖γ′r(t)‖, κγl(t) > κγr (t), by simply reversing
the construction above, we can find a unique curve γ ∈ GS3(zl, zr) such
that

κγ(t) = 2
κγl(t)− κγr (t)

,

τγ(t) = κγ(t)(κγl(t) + κγr (t))
2 = κγl(t) + κγr (t)

κγl(t)− κγr (t)
,

‖γ′(t)‖ = ‖γ
′
l(t)‖
κγ(t) = ‖γ

′
l(t)‖(κγl(t)− κγr (t))

2 .

This also defines a map (γl, γr) 7→ γ, which is also clearly continuous, and
this completes the proof of the theorem. �

The proof of Theorem 1.8 follows directly from the statement of The-
orem 1.7. Alternatively, one can proceed exactly as in the proof of The-
orem 1.7, replacing quasi-holonomic curves (respectively quasi-Jacobian
curves) by holonomic curves (respectively Jacobian curves), replacing Q

and Q̃ by respectively J and

J̃ := {(bli + dk, bri + dk) ∈ ImH× ImH | (bl, br, d) ∈ R3, bl > |br|, d > 0}.

A locally convex curve in S3 is rather hard to understand from a geo-
metrical point of view; Theorem 1.8 allows us to see such a curve as a pair
of curves in S2, a situation where one can use geometrical intuition.
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4.2. Examples

Before the examples let’s introduce some notation that is going to be
useful for what follows.

For a real number 0 < c 6 2π, let σc : [0, 1]→ S2 be the unique circle of
length c, that is ‖σ′c(t)‖ = c, with fixed initial and final Frenet frame equals
to the identity (see Figure 4.1). Setting c = 2π sin ρ (where ρ ∈ (0, π/2] is
the radius of curvature), this curve can be given by the following formula

σc(t) = cos ρ(cos ρ, 0, sin ρ) + sin ρ(sin ρ cos(2πt), sin(2πt),− cos ρ cos(2πt)).

The geodesic curvature of this curve is given by cot(ρ) ∈ [0,+∞). Given
m > 0, let us define the curve σmc as the curve σc iterated m times, that is

σmc (t) = σc(mt), t ∈ [0, 1].

Figure 4.1. The curves σmc , σm2π and σm/22π .

Example 4.2. — This first example (see Figure 4.2) is a convex curve
γ1

1 ∈ LS3(−1,k). Consider Γ1
1 : [0, 1]→ SO4, t 7→ exp(tΛΓ1

1
(t)), where

ΛΓ1
1
(t) = π

2


0 −

√
3 0 0√

3 0 −2 0
0 2 0 −

√
3

0 0
√

3 0

 .

Define γ1
1(t) := Γ1

1(t)(e1).

Figure 4.2. The curve γ1
1 , where γ1

1,l = σ1
π and γ1

1,r = σ
1/2
2π .
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Example 4.3. — This second example (see Figure 4.3) also is a convex
curve; denoted by γ2

1 ∈ LS3(1,−1). Consider Γ2
1 : [0, 1] → SO4, t 7→

exp(tΛΓ2
1
(t)), where

ΛΓ2
1
(t) = π

2


0 −2

√
3 0 0

2
√

3 0 −4 0
0 4 0 −2

√
3

0 0 2
√

3 0

 .

Define γ2
1(t) := Γ2

1(t)(e1).

Figure 4.3. The curve γ2
1 , where γ2

1,l = σ2
π and γ2

1,r = σ1
2π.

5. Spaces LS3(1,−1) and LS3(−1,1)

Recall that the spaces we are interested in are LS3(1,−1) and LS3(−1,1).
In each case, the final lifted Frenet frame does not belong to an open Bruhat
cell.
Using the chopping operation, we can replace these spaces by other equiv-

alent spaces where the final lifted Frenet frame does belong to an open
Bruhat cell.

Proposition 5.1. — We have homeomorphisms

LS3(1,−1) ' LS3(−1,k) and LS3(−1,1) ' LS3(1,−k).

Proof. — This is an application of the chopping lemma ([18, Proposi-
tion 6.4]); see also [1, Proposition 70]. �

In the sequel, when convenient, we will look at the spaces LS3(−1,k)
and LS3(1,−k). The spins (or pair of quaternions) (1,−k) and (−1,k)
belong to open Bruhat cells.
In this section we prove our main result: Theorem 1.6 (see Subsec-

tion 5.4). In particular, the spaces LS3(−1,1) and LS3(1,−1) are not
homotopically equivalent to the space of generic curves.
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5.1. Adding loops and spirals

In this subsection, we describe an operation which geometrically consists
in adding a pair of loops to a generic curve in S2, and adding a closed
spiral to a generic curve in S3. In order to avoid repeating definitions, we
will describe many constructions in Sn but we are interested in n = 2 and
n = 3. We will study in more detail the case n = 3 in Subsection 5.2.

For n = 2 or n = 3, let us fix an element ωn ∈ LSn(1). For n = 2,
we choose ω2 = σ2

c ∈ LS2(1) where 0 < c < 2π. For n = 3, we choose
ω3 = γ4

1 ∈ LS3(1,1), with

γ4
1(t) =

(
1
4 cos (6tπ) + 3

4 cos (2tπ) ,
√

3
4 sin (6tπ) +

√
3

4 sin (2tπ) ,
√

3
4 cos (2tπ)−

√
3

4 cos (6tπ) , 3
4 sin (2tπ)− 1

4 sin (6tπ)
)
.

Also the left and right part of this curve are given by

γ4
1,l = σ4

π ∈ LS2(1), γ4
1,r = σ2

2π ∈ GS2(1).

Coming back to the general case let us now define the operation of adding
the closed curve ωn to some curve γ ∈ GSn(z) at some time t0 ∈ [0, 1].

Definition 5.2. — Take γ ∈ GSn(z), and choose some point t0 ∈ [0, 1].
We define the curve γ ∗t0 ωn ∈ GSn(z) as follows. Given ε > 0 sufficiently
small, for t0 ∈ (0, 1) we set

γ ∗t0 ωn(t) =



γ(t), 0 6 t 6 t0 − 2ε
γ(2t− t0 + 2ε), t0 − 2ε 6 t 6 t0 − ε
Fγ(t0)ωn

(
t−t0+ε

2ε
)
, t0 − ε 6 t 6 t0 + ε

γ(2t− t0 − 2ε), t0 + ε 6 t 6 t0 + 2ε
γ(t), t0 + 2ε 6 t 6 1.

For t0 = 0, we set

γ ∗0 ωn(t) =


ωn
(
t
ε

)
, 0 6 t 6 ε

γ(2t− 2ε), ε 6 t 6 2ε
γ(t), 2ε 6 t 6 1,

and for t0 = 1, we set

γ ∗1 ωn(t) =


γ(t), 0 6 t 6 1− 2ε
γ(2t− 1 + 2ε), 1− 2ε 6 t 6 1− ε
ωn
(
t−1+ε
ε

)
, 1− ε 6 t 6 1.
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Figure 5.1. Definition of the curve γ∗ = (γ∗l , γ∗r ) ∈ LS3(zl, zr).

This operation can be understood as follows (see Figure 5.1 for an illus-
tration in the case n = 3). For t0 ∈ (0, 1), we start by following the curve
γ as usual, then we speed a little slightly before t0 in order to have time to
insert ωn at time t0 (ωn was moved to the correct position by a multiplica-
tion with Fγ(t0)), we speed again a little and finally at the end we follow
γ as usual. For t0 = 0 or t0 = 1, we have a similar interpretation. The
precise value of ε is not important; a different value will yield a different
parametrization but the same curve.
The precise choice of ωn will not be important either. Indeed, the space

LSn(1) is path-connected for n = 2 and n = 3 hence if we choose any other
element ω′n ∈ LSn(1), a homotopy between ωn and ω′n in LSn(1) will give
a homotopy between the curves γ ∗t0 ωn and γ ∗t0 ω′n in LSn(z). We will see
later that the homotopy class of γ ∗t0 ωn is the only information we will be
interested in. Therefore, to simplify notations, in the sequel we will write
γ∗t0 instead of γ ∗t0 ωn.

It is clear from Definition 5.2 that if γ ∈ LSn(z), then γ∗t0 ∈ LS
n(z).

Definition 5.3. — Let K be a compact set. A continuous map α :
K → LSn(z) is loose if there exist a continuous map t0 : K → [0, 1] and
a homotopy A : K × [0, 1] → LSn(z) such that for all s ∈ K: A(s, 0) =
α(s), A(s, 1) = α(s)∗t0(s). If the map α : K → LSn(z) is not loose, then
we call it tight.

If we identify α with a continuous (and hence uniform) family of curves
α(s) ∈ LSn(z), s ∈ K, then α is loose if each curve α(s) is homotopic (with
a homotopy depending continuously on s ∈ K) to the curve α(s)∗t0(s),
where the time t0(s) also depends continuously on s. Since the definition
of being loose or tight just depends on the homotopy class of α(s)∗t0(s), it is
independent of the choice of ωn ∈ LSn(1) when n = 2 or n = 3. To further
simplify notation, we will often write γ∗ instead of γ∗t0 for a curve, and α∗
for the family of curves α(s)∗t0(s) where s varies in a compact set K.
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We are interested in finding tight maps in order to find some extra ho-
motopy in LS3(z) with respect to the space of generic curves. This will be
explained in more detail in Subsection 5.2.
We have the following proposition.

Proposition 5.4. — Consider two continuous maps α, β : K→LSn(z),
and assume that they are homotopic. Then α is loose if and only if β is
loose.

Proof. — Since α and β are homotopic, there exists a continuous map
H : K×[0, 1]→ LSn(z) such that for all s ∈ K:H(s, 0) = α(s), H(s, 1) =
β(s). Let us define H∗ : K × [0, 1] → LSn(z) by setting, for all (s, t) ∈
K × [0, 1]: H∗(s, t) = (H(s, t))∗. This is clearly a homotopy between α∗

and β∗. Assume that α is loose; we have a homotopy between α and α∗,
but since we also have a homotopy between β and α and a homotopy
between α∗ and β∗, we obtain a homotopy between β and β∗, hence β is
loose. Assuming that β is loose, the exact same argument shows that α is
loose. �

Note that α∗ is always loose.
A curve γ ∈ LSn(z) can be identified with the image of a continuous

map α : K → LSn(z), where K is a set with one element. In this way, a
curve γ ∈ LSn(z) can be either loose or tight. The following proposition is
well-known (from the works of Shapiro [21] and Anisov [2]).

Proposition 5.5. — A curve γ ∈ LSn(z) is tight if and only if it is
convex.

Now let us look at the case where n = 3. Given a continuous map α :
K → LS3(zl, zr), one can define its left part, αl : K → LS2(zl) simply by
setting αl(s) = (α(s))l, for s ∈ K. The following proposition gives us the
relation between the tightness of α and the tightness of its left part αl.

Proposition 5.6. — If α : K → LS3(zl, zr) is loose, then αl : K →
LS2(zl) is loose. As a consequence, if αl : K → LS2(zl) is tight, then
α : K → LS3(zl, zr) is tight.

Proof. — We assume that α is loose. Then there exists a continuous
map A : K × [0, 1] → LS3(zl, zr) such that for all s ∈ K: A(s, 0) =
α(s), A(s, 1) = α(s)∗. Let us define the map Al : K × [0, 1] → LS2(zl)
simply by setting Al(s, t) = (A(s, t))l. Since the map giving the left part of
a curve is a continuous map, Al is continuous. But now it is easy to observe
that Al(s, 1) = αl(s)∗ which proves that αl is loose. �

Using Propositions 5.5 and 5.6, one immediately obtains the following:
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Proposition 5.7. — Take γ ∈ LS3(zl, zr). If γl is convex, then γ is
convex.

The converse is not true in general. The curve γ2
1 defined in Example 4.3

is convex ([1]), but its left part, which is of the form σ2
c for some 0 < c < 2π,

is clearly not convex.

5.2. Generalizations for the case n = 3

In order to understand the difference between the homotopy types of
LS3(z) and GS3(z), as in [17], one would like to find maps, say defined on
K = Sp for some p > 1, which are homotopic to a constant in GS3(z) but
not homotopic to a constant in LS3(z). Indeed, if one finds such a map,
this would give a non-zero element in πp(LS3(z)) which is mapped to zero
in πp(GS3(z)). Notice that such a map is tight.
In [17], it is proven that a map α : K → LS2(z) is always homotopic to

α∗ inside the space GS2(z) (Lemma 6.1). A similar result holds in the case
n = 3, but in order to state and prove it we need to take a small detour.
Using the result in the case n = 2, we will prove below that a map α : K →
LS3(zl, zr) is always homotopic, in GS3(zl, zr), to the map α to which we
attached (curve by curve) a pair of loops with zero geodesic torsion, that is
an element in GS3(1,1) with zero geodesic torsion. One could then change
the definition of α∗ so that instead of attaching an element in LS3(1,1), one
attaches an element in GS3(1,1) with zero geodesic torsion. The obvious
problem is that if α takes values in LS3(zl, zr), this would no longer be the
case of α∗.
To resolve this issue, recall that to an element g ∈ GS3(1,1) with zero

geodesic torsion is associated a pair of curves (gl, gr) ∈ LS2(1) × GS2(1)
such that κgl = −κgr > 0 (which follows from Theorem 1.7). Given a curve
γ ∈ GS3(zl, zr), let us decompose it into its left and right parts γ = (γl, γr),
and let γ ∗g be the curve γ to which we attached the curve g at some point.
Then it is easy to see that γ∗g = (γl∗gl, γr∗gr), that is the left (respectively
right) part of γ ∗g is obtained by attaching the left (respectively right) part
of g to the left (respectively right) part of γ. As we already explained, if γ is
locally convex, then γ∗g is not locally convex because it does not satisfy the
condition on the geodesic curvature. A first attempt would be to slightly
modify gl (or gr) into g̃l so that the geodesic curvature condition is met; but
then the condition on the norm of the speed would not be satisfied, that is
‖(γl ∗ g̃l)′(t)‖ 6= ‖(γr ∗ gr)′(t)‖. Hence in order to satisfy both conditions at
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the same time, we will have to modify the whole curve in a rather subtle
way.
At the end we should obtain a curve, that we shall call γ# (to distinguish

from the curve γ∗ which we previously defined); γ# has the property that
if γ is locally convex, then so is γ#. Then of course one has to know how
this procedure is related to the procedure of adding loops we defined. The
curve γ# is of course different from the curve γ∗, but we will see later that
γ is loose (meaning that γ is homotopic to γ∗) if and only if γ is homotopic
to γ#; hence defining loose and tight with respect to γ∗ or γ# is just a
matter of convenience.
We will use the Lemma below to construct the curve γ#.
Lemma 5.8. — Consider a convex arc γ : [t0 − 2ε, t0 + 2ε] → S2 and

positive numbersK0,K1, withK1 > κγ(t) > K0, for all t ∈ [t0−2ε, t0+2ε].
Then given t−−− ∈ [t0−2ε, t0) and t+++ ∈ (t0, t0 +2ε] there exist a unique
arc ν : [t0−2ε, t0 +2ε]→ S2 (up to reparametrization) and times t−−, t++
with t−− ∈ (t−−−, t0) and t++ ∈ (t0, t+++) such that

ν(t) = γ(t), t /∈ [t−−−, t+++],(5.1)
κν(t) = K0, t ∈ [t−−−, t−−] ∪ [t++, t+++],(5.2)
κν(t) = K1, t ∈ [t−−, t++](5.3)

and

(5.4)
∫ t+++

t−−−

‖γ′(t)‖dt <
∫ t+++

t−−−

‖ν′(t)‖dt

Futhermore, t−−− and t+++ can be chosen so that there exist t−, t+,
with t− ∈ (t−−, t0) and t+ ∈ (t0, t++) and∫ t0

t−−−

‖γ′(t)‖dt =
∫ t−

t−−−

‖ν′(t)‖dt,(5.5) ∫ t+++

t0

‖γ′(t)‖dt =
∫ t+++

t+

‖ν′(t)‖dt.(5.6)

Proof. — Construct large tangent circles of curvatureK0 at γ(t+++) and
γ(t−−−), as in Figure 5.2. Notice that they are external to the arc. Con-
struct a (small) circle of curvature K1 tangent to the first two circles. The
curve ν is obtained by following arcs of these three circles as in Figure 5.2.
Convexity implies that the outside curve ν is longer than the inside curve
γ. This takes care of conditions (5.1), (5.2), (5.3) and (5.4). Define t+ and
t− by equations (5.5) and (5.6). By choosing t+++ and t−−−, we can guar-
antee that ν(t+) and ν(t−) fall on the (smaller) circle of curvature K1. We
then choose t++, t0 and t−− in the appropriate order. �
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Figure 5.2. How we modify a curve γ ∈ LS2(z).

Given a curve γ ∈ LS3(zl, zr), let γl ∈ LS2(zl) and γr ∈ GS2(zr). To
define the curve γ# ∈ LS3(zl, zr), we will define its pair of curves γ#

l ∈
LS2(zl) and γ#

r ∈ GS2(zr), using the Lemma 5.8. (The reader should follow
the construction in Figure 5.3.) Fix t0 ∈ (0, 1) (the cases t0 = 0 and t0 = 1
can be treated in a similar way). The curve we are going to define depends
of course on t0, but as before, we will simply write γ#

t0 = γ#.
The curvatures of γl and γr at the point t0 satisfy κγl(t0) > |κγr (t0)|.

Since κγl(t) and |κγr (t)| can be assumed to be continuous, there exist ε > 0
and K0 > 0, K1 > 0 such that for all tl ∈ [t0 − 2ε, t0 + 2ε] and tr ∈
[t0 − 2ε, t0 + 2ε], one has

(5.7) K1 > κγl(tl) > K0 > |κγr (tr)|.

Now we are in the situation of the Lemma 5.8, which we will use to
construct γ# = (γ#

l , γ
#
r ).

Outside the interval [t0 − 2ε, t0 + 2ε], we will not modify the curves γl
and γr, that is, we set

(5.8) γ#
l (t) = γl(t), γ#

r (t) = γr(t), t /∈ [t0 − 2ε, t0 + 2ε].

Hence for t /∈ [t0 − 2ε, t0 + 2ε], condition (L) is clearly satisfied.
In the set [t0 − 2ε, t0 − ε] ∪ [t0 + ε, t0 + 2ε], γ#

r will simply correspond
to a reparametrization of γr, such that the curve γ#

r on these intervals
has two times the velocity of γr in the same interval. For γ#

l , t ∈ [t0 −
2ε, t0 − ε] ∪ [t0 + ε, t0 + 2ε] we will follow the curve ν reparametrized by
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Figure 5.3. Definition of the curve γ# = (γ#
l , γ

#
r ) ∈ LS3(zl, zr).

ϕ− : [t0− 2ε, t0− ε]→ [t0− 2ε, t−] and ϕ+ : [t0 + ε, t0 + 2ε]→ [t+, t0 + 2ε].
Therefore, from this and (5.5) and (5.6) the condition on the length is
satisfied. The condition on the geodesic curvature is also satisfied, since in
this set

κγ#
l

(t) > K0 > |κγ#
r

(t)|.
It remains to define the curve on the interval [t0−ε, t0 +ε]. Observe here

that γ#
r (t0− ε) = γr(t0) = γ#

r (t0 + ε), while γ#
l (t0− ε) 6= γ#

l (t0 + ε). Note
that, by construction, γ#

l (t0 − ε) = ν(t−) and γ#
l (t0 + ε) = ν(t+). The

curve γ#
l for t ∈ [t0 − ε, t0 + ε] follows a circle of length c1 with geodesic

curvature K1, performing slightly more than 2 turns. Therefore, for all
t ∈ [t0 − ε, t0 + ε], one has

κγ#
l

(t) = K1 and
∫ t0+ε

t0−ε
‖(γ#

l )′(t)‖dt = 2c1 +
∫ t+

t−

‖(ν′(t)‖dt.

Choose 0 < c0 < 2π such that the geodesic curvature of the curve σc0 is
equal to K0.
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Let us now choose c2 = c1 + 1
2
∫ t+
t−
‖ν′(t)‖dt, and let σ̄c2 be the curve ob-

tained by reflecting the curve σc2 with respect to the hyperplane {(x, y, z) ∈
R3 | z = 0} (that is, σ̄c2 is the image of σc2 under the map (x, y, z) 7→
(x, y,−z)). Such a curve σ̄c2 has constant negative geodesic curvature −K2
(hence it is negative locally convex). Now define γ#

r on [t0 − ε, t0 + ε] by
setting

γ#
r (t) = (Fγr (t0))σ̄2

c2

(
t− t0 + ε

2ε

)
, t ∈ [t0 − ε, t0 + ε].

So, since c2 > c1 and the absolute value K2 of the geodesic curvature of
σc2 satisfies K2 < K1, hence

κγ#
l

(t) = K1 > K2 = |κγ#
r

(t)|.

Therefore condition (L) is also satisfied on [t0−ε, t0 +ε]. Again, Figure 5.3
summarizes the definition of the curve γ# = (γ#

l , γ
#
r ).

Definition 5.9. — Given a curve γ ∈ LS3(zl, zr) and a time t0 ∈ [0, 1],
we define γ#

t0 = γ# ∈ LS3(zl, zr) by setting γ# = (γ#
l , γ

#
r ), where γ#

l ∈
LS2(zl) and γ#

r ∈ GS2(zr) are defined as in the construction above. Given
continuous maps α : K → LS3(zl, zr) and t0 : K → [0, 1], we define
α#
t0 = α# : K → LS3(zl, zr) by setting α#

t0(s) = (α(s))#
t0(s) for all s ∈ K.

Definition 5.10. — Let K be a compact set. A continuous map α :
K → LS3(z) is #-loose if there exist a continuous map t0 : K → [0, 1] and
a homotopy A : K × [0, 1] → LS3(z) such that for all s ∈ K: A(s, 0) =
α(s), A(s, 1) = α(s)#

t0(s). If the map α : K → LS3(z) is not #-loose, then
we call it #-tight.

Remark 5.11. — A continuous map α : K → LS3(z) is #-loose if and
only if it is loose. Therefore a continuous map α : K → LS3(z) is #-tight
if and only if it is tight.

One can prove this remark using the techniques of “spreading loops along
a curve” (see for instance [17]), which can be seen as an easy instance of
the h-principle of Gromov ([9] and [7]). We will not prove this remark since
we will not use it; in the sequel it will be more convenient to deal with
these concepts since they will enable us to apply more easily results in the
case n = 2.

We can now prove the following result:

Proposition 5.12. — Let α : K → GS3(zl, zr) be a continuous map.
Then α is homotopic to α# inside the space GS3(zl, zr).
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Proof. — We know from the h-principle that the desired homotopy ex-
ists. We want, however, to have a picture of the process: this is described
in detail in [1]. In nutshell, given a curve γ ∈ GS3(zl, zr), we define γ1 by
deforming the unit tangent vector tγ(t) as in Figure 5.4. This has the effect
of adding two loops (with opposite orientations) to both γl and γr, as in
Figure 5.5.

Figure 5.4. A path from tγ to tγ1 .

Figure 5.5. The curves γ1,l and γ1,r.

�

Note that Proposition 5.12 is the analogous result for S3 of Lemma 6.1
from [17]. The following remark is analogous to Proposition 6.4 from [17].
Remark 5.13. — Let α : K → GS3(zl, zr) be a continuous map. Then α

is homotopic to a constant map in GS3(zl, zr) if and only if α# is homotopic
to a constant map in LS3(zl, zr).
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One direction follows directly from Proposition 5.12: if α# is homotopic
to a constant map in LS3(zl, zr), since α is always homotopic to α# in
GS3(zl, zr), we obtain that α is homotopic to a constant in GS3(zl, zr). The
other direction can be proved exactly as in Proposition 6.4 from [17] using
again the techniques of spreading loops along a curve. We will not use this
statement and therefore a careful proof is not given.
In [17], tight maps

h2k−2 : S2k−2 → LS2((−1)k)

are constructed for an integer k > 2; these are homotopic to constants
maps in GS2((−1)k). These maps are going to be very important in this
work too. To prove that these maps are not homotopic to a constant in
LS2((−1)k), the following notion is introduced.

Definition 5.14. — A curve γ ∈ LS2(z) is multiconvex of multiplicity
k if there exist times 0 = t0 < t1 < · · · < tk = 1 such that Fγ(ti) = I for
0 6 i < k, and the restrictions of γ to the intervals [ti−1, ti] are convex arcs
for 1 6 i 6 k.

Let us denote byMk(z) the set of multiconvex curves of multiplicity k
in LS2(z). Lemma 7.1 on [17] proves that the set Mk(z) is a closed con-
tractible submanifold of LS2(z) of codimension 2k − 2 with trivial normal
bundle. Therefore we can associate toMk(z) a cohomology class m2k−2 ∈
H2k−2(LS2(z),R) by counting intersection with multiplicity. Given any
continuous map α : K → LS2(z), by a perturbation we can make it smooth
and transverse toMk(z), and we denote by m2k−2(α) ∈ R the intersection
number of α withMk(z).
Therefore, h2k−2 defines extra generators in π2k−2(LS2((−1)k)) (as com-

pared to π2k−2(GS2((−1)k)). Similarly, m2k−2 defines extra generators in
H2k−2(LS2((−1)k),R) (as compared to H2k−2(GS2((−1)k,R)).
Our objective will be to use this extra topology given by h2k−2 and

m2k−2 to LS2((−1)k) with respect to the space of generic curves, together
with our decomposition results Theorem 1.7 and Theorem 1.8, to draw
similar conclusions in the case n = 3. We will be able to do this only in two
cases, namely for LS3(1,−1) and LS3(−1,1). But first some extra work is
needed.

5.3. Relaxation-reflexion of curves in LS2(1) and LS2(−1)

The goal of this subsection is to address the following problem: given
a continuous map α : K → LS2(zl), how to find a way to construct a
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continuous map α̂ : K → LS3(zl, zr) such that α̂l = α. If we are able to
do this, then we will be in a good position to use what is know in the case
n = 2 to obtain information on our spaces of locally convex curves.
It will be sufficient to consider first the case of curves, that is given

γ ∈ LS2(zl), we will construct γ̂ ∈ LS3(zl, zr) such that γ̂l = γ. The first
idea is simply to define γ̂r to have a length equals to the length of γ̂l = γ,
and just slightly less geodesic curvature, say the geodesic curvature of γ
reduced by a small constant δ. Let us denote this curve by Rδγ for the
moment.
A first difficulty is that if γ̂ = (γ,Rδγ), then the final Frenet frame of γ̂

will depend on δ and also possibly on the curve γ itself. But this is not a
serious problem: instead of looking at the final Frenet frame we can look
at its Bruhat cell which will be independent of δ small enough and of γ,
hence after a projective transformation we may assume that the curve has
a fixed final Frenet frame.
Let us denote by R(zl) a representative of the final Frenet frame of Rδγ;

the final Frenet frame of γ̂ would then be (zl, R(zl)). Here, zr is a function of
zl, and many pairs (zl, zr) are probably not reached by this procedure. But
this can (and in fact will) work for the two spaces LS3(−1,1) ' LS3(1,−k)
and LS3(1,−1) ' LS3(−1,k).
Yet this is not sufficient. We also want this relaxation process to be

compatible with the operation # defined in Subsection 5.1. More precisely,
one would like to know that if γ is such that γr = Rδγl, then γ# still has
this property, namely we want γ#

r = Rδγ
#
l . To obtain this symmetry, we

will have to relax the geodesic curvature in a symmetric way by introducing
another small parameter ε > 0, and to reflect the curve obtained: this is
what we will call the relaxation-reflection of a curve γ, and it will be denoted
by RRε,δγ. We will show that for γ ∈ LS2(1), this will produce a curve
γ̂ = (γ,RRε,δγ) ∈ LS3(1, RR(1)) ' LS3(1,−k) and for γ ∈ LS2(−1),
γ̂ = (γ,RRε,δγ) ∈ LS3(−1, RR(−1)) ' LS3(−1,k).
Let us now give proper definition.

Definition 5.15. — Given γ ∈ LS2(±1), ε > 0 and δ > 0 sufficiently
small, let us define RRε,δγ to be the unique curve in GS2 such that

‖(RRε,δγ)′(t)‖ = ‖γ′(t)‖,

and κRRε,δγ(t) =
{
−κγ(t) + δ, t ∈ (0, ε) ∪ (1− ε, 1),
−κγ(t) + δ2ε2, t ∈ (ε, 1− ε).

This definition should be understood as follows. On the small union of
intervals (0, ε)∪ (1− ε, 1), which is a symmetric interval around the initial
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point since our curve is closed, we relax the curvature by a constant δ. On
the large interval (ε, 1 − ε), the curvature is relaxed by the much smaller
constant δ2ε2, so that the product of the relaxation of the curvature with
the length of (ε, 1−ε), which is δ2ε2(1−2ε) ∼ δ2ε2 is much smaller than the
product of the relaxation of the curvature with the length of (0, ε)∪(1−ε, 1),
which is 2δε ∼ δε.

It follows from Subsection 3.2, that this curve RRε,δγ is well-defined. For
γ ∈ LS2(±1), the final Frenet frame of RRε,δγ, which for the moment may
depend upon ε, δ and γ, will be denoted by RRε,δ,γ(±1).
Given γ ∈ LS2(±1) and ε, δ > 0 sufficiently small, let us define

γ̂ε,δ = (γ,RRε,δγ) ∈ LS2(±1)× GS2(RRε,δ,γ(±1)).

Lemma 5.16. — Consider γ ∈ LS2(±1). For sufficiently small ε, δ > 0,
the pair (±1, RRε,δ,γ(±1)) belongs to the open Bruhat cell (±1,∓k).

Proof. — We prove that (1, RRε,δ,γ(1)) is Bruhat-equivalent to (1,−k);
the proof that (−1, RRε,δ,γ(−1)) is Bruhat-equivalent to (−1,k) will be
analogous.
We will first prove this for a specific curve γ = γl ∈ LS2(1); at the end

we will explain how this implies the result for an arbitrary curve in LS2(1).
Let us choose

γl(t) = Π3(Γ̃l(t))(e1), t ∈ [0, 1]
where

Γ̃l(t) = exp (2πhlt) ∈ S3, t ∈ [0, 1]
with hl = cos(θl)i + sin(θl)k and θl = π/4, that is

Γ̃l(t) = exp
(

2π
(

i + k√
2

)
t

)
.

Then for t ∈ [0, 1] close to one, and given ε, δ > 0 small, we set

γr,δ,ε(t) = Π3(Γ̃r,δ,ε(t))(e1)

where Γ̃r,δ,ε is defined by

Γ̃r,δ,ε(t) = exp ((2π − ε)hr,δt)

with ε > 0 small and

hr,δ = − cos θr,δi + sin θr,δk

with θr,δ = π/4 + δ, with δ small. Observe that this curve γr,δ,ε, is not
exactly the curve RRε,δγl that we defined; yet clearly the two are homo-
topic hence it is enough to prove the result by considering γr,δ,ε instead of
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RRε,δγl. To simplify notations, we will suppress the dependence on ε and
δ and write γr instead of γr,δ,ε (and similarly for Γ̃r,δ,ε, hr,δ and θr,δ).
Hence we can write again

hr = cos δ
(
−i + k√

2

)
+ sin δ

(
i + k√

2

)
and the final lifted Frenet frame of γr is

Γ̃r(1) = exp ((2π − ε)hr) = exp (−εhr) .

Let us first compute to which Bruhat cell the image of (Γ̃l(1), Γ̃r(1)) =
(1, Γ̃r(1)) under the universal cover projection Π4 : S3×S3 ' Spin4 → SO4
belongs. Using the explicit expression of the map Π4 (see Subsection 2.1),
we can compute Π4(1, Γ̃r(1)) and we find that it is equal to the matrix

Π4(1, Γ̃r(1)) =
(
P1 P2 P3 P4

)
,

where the columns Pi, for 1 6 i 6 4, are given by

P1 =


cos(ε)

(− cos δ + sin δ) sin ε√
2

0
(cos δ + sin δ) sin ε√

2

 P2 =


(cos δ − sin δ) sin ε√

2
cos(ε)

(− cos δ − sin δ) sin ε√
2

0



P3 =


0

(cos δ + sin δ) sin ε√
2

cos(ε)
(cos δ − sin δ) sin ε√

2

 P4 =


(− cos δ − sin δ) sin ε√

2
0

(− cos δ + sin δ) sin ε√
2

cos(ε)

 .

Since ε > 0 and δ > 0 are small, in particular 0 < ε < π and 0 < δ < π/4,
one can check that this matrix is Bruhat-equivalent to the matrix

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ∈ SO4.

Therefore (1, RRε,δ,γl(1)) is Bruhat-equivalent to (1,−k) for the specific
curve γl we choose.
To conclude, observe that for the curve γl we choose, the final lifted

Frenet frame of (γl, RRε,δγl) belongs to an open cell. Using this obser-
vation, and the fact that for any curve γ ∈ LS2(1), the curve RRε,δγ
is obtained from γ by relaxing its geodesic curvature essentially in a small
ε-neighborhood of γ(0) = γ(1) (outside this neighborhood the geodesic cur-
vature is only slightly altered), we deduce that for any curve γ ∈ LS2(1),
the final lifted Frenet frame of (γ,RRε,δγ) belongs to the same open cell as
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the final lifted Frenet frame of (γl, RRε,δγl). This shows that (1, RRε,δ,γ(1))
is Bruhat-equivalent to (1,−k) for any curve γ ∈ LS2(1). �

We will use Bruhat cells to remove the dependence on ε, δ and γ from
the final lifted Frenet frame (±1, RRε,δ,γ(±1)).
Recall from Proposition 2.5 that there exist natural homeomorphisms

T+
ε,δ : LS3(1, RRε,δ,γ(1))→ LS3(1,−k),

T−ε,δ : LS3(−1, RRε,δ,γ(−1))→ LS3(−1,k).

Let us now make the following definition.

Definition 5.17. — For γ ∈ LS2(±1) and ε, δ > 0 sufficiently small,
we define

γ̂ = T±ε,δ(γ̂ε,δ) ∈ LS
3(±1,∓k).

Similarly, for a continuous map α : K → LS2(1) (respectively a con-
tinuous map α : K → LS2(−1)), we define a continuous map α̂ : K →
LS3(1,−k) (respectively a continuous map α̂ : K → LS3(−1,k)) by set-
ting α̂(s) = α̂(s).

Proposition 5.18. — Let α : K → LS3(1,−k) (respectively α : K →
LS3(−1,k)) a continuous map. Assume that α = β̂ for some continuous
map β : K → LS2(1) (respectively β : K → LS3(−1)). Then α# is homo-
topic in LS3(1,−k) (respectively in LS3(−1,k)) to β̂∗.

Proof. — This follows easily from our definitions of α∗ (in the case n =
2), α# (in the case n = 3) and α̂. �

5.4. Proof of Theorem 1.6

Now we define M̂k(zl, zr) to be the set of curves γ = (γl, γr) ∈ LS3(zl, zr)
such that γl ∈ Mk(zl). Exactly as in Lemma 7.1 of [17], we have the
following result.

Proposition 5.19. — The set M̂k(zl, zr) ⊂ LS3(zl, zr) is a closed sub-
manifold of codimension 2k − 2 with trivial normal bundle.

Notice that, whileMk is contractible, it is not clear whether M̂k(zl, zr)
also is; fortunately, we do not need to settle this question.
Proof. — The fact that M̂k(zl, zr) is a closed set follows directly from

the closure ofMk.
In the proof of Lemma 7.1 in [17], a tubular neighborhood for Mk is

explicitely constructed. The exact same construction (using γl only) still
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works, and obtains a basis for the normal bundle, which is therefore trivial.
�

As before, we can associate to M̂k(zl, zr) a cohomology class m̂2k−2 ∈
H2k−2(LS3(zl, zr),R) by counting intersection with multiplicity.

In order to prove Theorem 1.6, we will need the following proposition.

Proposition 5.20. — Let α0, α1 : K → LS3(1,−k) (and respectively
α0, α1 : K → LS3(−1,k)) be two continuous maps. Assume that α0 = β̂0

and α1 = β̂1 for some continuous map β0, β1 : K → LS2(1) (respectively
β0, β1 : K → LS2(−1)). Then α0 and α1 are homotopic in LS3(1,−k)
(respectively in LS3(−1,k)) if and only if β0 and β1 are homotopic in
LS2(1) (respectively in LS2(−1)).

Proof. — It is sufficient to consider the case α0, α1 : K → LS3(1,−k)
(the case where α0, α1 : K → LS3(−1,k) is, of course, the same). We know
that α0 = β̂0 and α1 = β̂1 for some continuous map β0, β1 : K → LS2(1).
On the one hand, if H is a homotopy between α0 and α1, it can be

decomposed as H = (Hl, Hr), and it is clear that Hl gives a homotopy
between β0 and β1. On the other hand, if H is a homotopy between β0 and
β1, Ĥ provides a homotopy between α0 and α1. �

Theorem 1.6 will now be an easy consequence of the following proposi-
tion. Here the functions h2k−2 : S2k−2 → LS2((−1)k) are as in [17] and in
Subsection 5.2 above.

Proposition 5.21. — Consider an integer k > 2. If k is even, the maps

ĥ2k−2 : S2k−2 → LS3(1,−k)

are homotopic to constant maps in GS3(1,−k), but m̂2k−2(ĥ2k−2) = ±1.
If k is odd, the maps

ĥ2k−2 : S2k−2 → LS3(−1,k)

are homotopic to constant maps in GS3(1,−k), but m̂2k−2(ĥ2k−2) = ±1.

Proof. — Let us consider the case where k is even (the case where k is
odd is exactly the same). By definition of ĥ2k−2 and m̂2k−2, it is clear that

m̂2k−2(ĥ2k−2) = m2k−2(h2k−2)

and therefore we have m̂2k−2(ĥ2k−2) = ±1.
It remains to prove that the map ĥ2k−2 is homotopic to a constant map in

GS3(1,−k). From Lemma 7.3 on [17], we know that h2k−2 is homotopic to a
constant map in GS2(1). Therefore this implies that h∗2k−2 is homotopic to
a constant map in LS2(1) (see Proposition 6.4 on [17]). Let us denote by c :
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K → LS2(1) this constant map; then ĉ : K → LS3(1,−k) is also a constant
map. Now, by Proposition 5.18, ĥ#

2k−2 is homotopic in LS3(1,−k) to ĥ∗2k−2.
Since h∗2k−2 is homotopic to c in LS2(1), it follows from Proposition 5.20
that ĥ∗2k−2 is homotopic to the constant map ĉ in LS3(1,−k), and so ĥ#

2k−2
is homotopic to the constant map ĉ in LS3(1,−k). Using Proposition 5.13
(we will only use the easy direction which follows from Proposition 5.13),
this shows that ĥ2k−2 is homotopic to a constant map in GS3(1,−k), which
is what we wanted to prove. �

Therefore, given a integer k > 2,

ĥ2k−2 : S2k−2 → LS3((−1)k, (−1)(k−1)k)

defines extra generators in π2k−2(LS3((−1)k, (−1)(k−1)k)) as compared to
π2k−2(GS3((−1)k, (−1)(k−1)k)).
Using Proposition 5.21, it will be easy to conclude.
Proof of Theorem 1.6. — Recall that LS3(zl, zr) ⊂ GS3(zl, zr) always

induces surjective homomorphisms between homology groups with real co-
efficients ([18]). Also, for any j > 1, we have injective homomorphisms
between cohomology groups with real coefficients

Hj(GS3(zl, zr),R) ' Hj(Ω(S3 × S3),R)→ Hj(LS3(zl, zr),R).

In our case, this implies

dimHj(LS3(−1,1),R) = dimHj(LS3(1,−k),R) >
{

0 j odd
l + 1 j = 2l,

and

dimHj(LS3(1,−1),R) = dimHj(LS3(−1,k),R) >
{

0 j odd
l + 1 j = 2l.

But now Proposition 5.21 gives, for k > 2 even, an extra element m̂2k−2
in the cohomology of degree 2k − 2 for LS3(−1,1) ' LS3(1,−k). Writing
j = 2l, this gives an extra element when j = 2l with l odd, therefore

dimHj(LS3(−1,1),R) >


0 j odd
l + 2 j = 2l, l odd
l + 1 j = 2l, l even.

Similarly, Proposition 5.21 gives, for k > 2 odd, an extra element m̂2k−2
in the cohomology of degree 2k − 2 for LS3(1,−1) ' LS3(−1,k). Writing
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j = 2l, this gives an extra element when j = 2l with l even, and so

dimHj(LS3(1,−1),R) >


0 j odd
l + 1 j = 2l, l odd
l + 2 j = 2l, l even.

This ends the proof. �
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