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GLASNER’S PROBLEM FOR POLISH GROUPS WITH
METRIZABLE UNIVERSAL MINIMAL FLOW

by Lionel NGUYEN VAN THÉ (*)

Abstract. — A problem of Glasner, now known as Glasner’s problem, asks
whether there exists a minimally almost periodic, monothetic, Polish group that
is not extremely amenable. The purpose of this short note is to observe that a
negative answer is obtained under the additional assumption that the universal
minimal flow is metrizable.
Résumé. — Un problème dû à Glasner, et désormais connu sous de nom de pro-

blème de Glasner, demande s’il existe un groupe polonais, minimalement presque
périodique et monothétique, qui n’est pas extrêmement moyennable. Le but de
cette courte note est d’observer qu’une réponse négative s’obtient sous l’hypothèse
supplémentaire de la métrisablité du flot minimal universel.

1. Introduction

In [3], Eli Glasner asked whether there exists a minimally almost periodic,
monothetic, Polish group that is not extremely amenable. (Recall that a
topological group G is minimally almost periodic when it admits no non-
trivial continuous character, monothetic when it contains a dense cyclic
subgroup, and extremely amenable when every continuous G-action on a
compact Hausdorff space has a fixed point.) While many experts in the field,
including Glasner himself, seem to be convinced that such a group does
exist, this problem, now known as Glasner’s problem, is still largely open
in general (a detailed account can be found in Pestov’s contribution in [14]).
The main purpose of this short paper is to observe that recent results in
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942 Lionel NGUYEN VAN THÉ

topological dynamics provide an easy negative answer under additional
assumptions.
The proof is based on a simple description of two classical flows (i.e. con-

tinuous actions on compact Hausdorff spaces) attached to any (Hausdorff)
topological group G, which we will describe now. Given a flow Gy X and
x, y ∈ X, the ordered pair (x, y) is proximal when there exists a net (gα)α
of elements of G such that limα gα · x = limα gα · y. It is distal if x = y

or (x, y) is not proximal. The flow X is then proximal (resp. distal) when
every (x, y) ∈ X2 is proximal (resp. distal). Particular cases of distal flows
are provided by equicontinuous flows, which are those for which for every
x ∈ X and ε ∈ UX (the uniformity of X), there exists a neighborhood U of
x so that (g · x, g · y) ∈ ε for every g ∈ G and y ∈ U .

By classical results, every topological group G admits a unique universal
minimal object M(G) within the class of all flows (that is, a minimal flow
that maps onto every other minimal flow), and the same holds in restriction
to the classes of all distal, equicontinuous and proximal flows. For these two
latter classes, the universal minimal flows are denoted by B(G) and Π(G)
respectively. It may happen that these flows trivialize, in the sense that they
reduce to a single point: this happens forM(G) exactly whenG is extremely
amenable, and for B(G) exactly when G is minimally almost periodic.
Clearly, every extremely amenable group is minimally almost periodic, so
Glasner’s problem really asks whether the converse holds for monothetic
groups. Now, every such group being abelian, it is also strongly amenable
in the sense that Π(G) trivializes (see [4, II.3.4]). Therefore, the following
result provides an answer in the case where M(G) is metrizable:

Theorem 1.1. — Let G be a Polish group and assume that M(G) is
metrizable. Suppose that G is strongly amenable and minimally almost
periodic. Then G is extremely amenable.

Polish groups with metrizable universal minimal flows have been at the
center of several recent developments in topological dynamics due to their
connection with Ramsey theory. For example, building on the seminal work
of Kechris, Pestov and Todorcevic [6] and its extension [12], universal min-
imal flows and their proximal analogues have been described in [10] when
G is Polish and M(G) metrizable with a generic orbit. Combining the cor-
responding result with those of [2] by Ben Yaacov, Melleray and Tsankov
(which itself builds on [19] by Zucker) leads to the following theorem:
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Theorem 1.2 ([10, 2]). — Let G be a Polish group with metrizable uni-
versal minimal flow GyM(G). Then there exists a closed, co-precompact,
extremely amenable, subgroup G∗ of G such that M(G) = Ĝ/G∗. In ad-
dition, there exists a closed, co-precompact, strongly amenable, subgroup
G∗∗ of G such that Π(G) = Ĝ/G∗∗; namely, G∗∗ = N(G∗), the normalizer
of G∗ in G. In particular, G is strongly amenable iff G∗ is normal in G iff
M(G) is a compact group iff M(G) is distal iff M(G) is equicontinuous.

The first observation at the origin of the present paper is that a result
of the same flavor holds for the distal and the equicontinuous universal
minimal flows:

Theorem 1.3. — Let G be a Polish group with metrizable universal
minimal flow. Then the universal minimal distal flow coincides with B(G),
and B(G) = G/H for some closed, co-compact subgroup H of G. More pre-
cisely, writing M(G) = Ĝ/G∗ with G∗ a closed, co-precompact, extremely
amenable subgroup of G, one can take H = (G∗)G, where (G∗)G denotes
the closed normal closure of G∗ in G, i.e.

(G∗)G =
〈 ⋃
g∈G

gG∗g−1

〉
The second observation is that the combination of the two previous re-

sults, yields a direct proof of Theorem 1.1: by Theorem 1.2,M(G) = Ĝ/G∗

with G∗ a closed, co-precompact subgroup of G, and because G is strongly
amenable, G∗ is normal in G. Therefore, (G∗)G = G∗ and by Theorem 1.3,
B(G) = G/G∗. But G is minimally almost periodic, so G∗ = G, as required.
The paper is organized as follows: Theorem 1.3 is proved and discussed

in Section 2. The proof is completely elementary. In Section 3, it is used
to provide an explicit description of the Bohr compactifications of all those
groups G 6 S∞ that are given as automorphism groups of homogeneous
graphs and tournaments. Some familiarity with Fraïssé theory and with [6]
is assumed. Finally, an open question is presented in Section 4.

2. About Theorem 1.3

2.1. Proof of Theorem 1.3

The proof of Theorem 1.3 rests on some well-known facts about the
universal minimal distal and equicontinuous flows, which we shortly recall
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944 Lionel NGUYEN VAN THÉ

for completeness. Following [17], these objects can be described in terms
of enveloping semigroups of G. Recall first that a compact right topologi-
cal semigroup is a compact Hausdorff space S together with a associative
binary operation ∗ so that for every t ∈ S, the map s 7→ s ∗ t is contin-
uous from S to S. An enveloping semigroup for a topological group G is
a compact right topological semigroup S together with a continuous (not
necessarily injective) map φ : G→ S so that:

(1) φ is a homomorphism of semigroups,
(2) φ has dense image and
(3) the map from G×S to S defined by (g, s) 7→ φ(g) ∗ s is continuous.

When, in addition (S, ∗) is a group, it is a group-like compactification of
G. If one further assumes that (S, ∗) is a topological group, it is a group
compactification of G. Among all group compactifications of G, there is
a universal one, called the Bohr compactification of G and denoted by
φB : G → φB(G). It has the following property: for every group com-
pactification φ : G → K, there is a continuous homomorphism ψ from
φB(G) onto K so that φ = ψ ◦ φB . The homomorphism φB allows to see
φB(G) as a G-flow, and Gy φB(G) turns out to be the universal minimal
equicontinuous flow of G, which we already denoted G y B(G) (see [4,
Chapter VIII]). For distal flows, the situation is similar, except that one
considers group-like compactifications of G instead of group compactifica-
tions (see [17, Chapter IV, Section 6.18]).
Let us now turn to the proof of Theorem 1.3. The fact that the universal

minimal distal and equicontinuous flows of G coincide is a consequence of
a general fact in topological dynamics (see [17, IV(6.18-6.19)]): any regular
distal minimal flow is equicontinuous whenever it is metrizable. (Recall that
X is regular when for every almost periodic point (x, y) in X2, there is an
endomorphism γ of X such that y = γ(x).) Here, the universal minimal
distal flow is always regular, and it is metrizable because M(G) is.

Next, let φB : G → B(G) denote the Bohr compactification of G. Be-
cause it is a minimal G-flow, it is a factor of M(G) = Ĝ/G∗ via a map
π. Write y0 for G∗, seen as an element of M(G). It is G∗-fixed in M(G),
so π(y0) is G∗-fixed in B(G), and π(y0) = φB(g∗)π(y0) for every g∗ ∈ G∗.
Therefore, G∗ ⊆ KerφB , and (G∗)G ⊆ KerφB . As a result, φB : G→ B(G)
induces a continuous morphism φB : G/(G∗)G → B(G) with dense image.
Notice that since G∗ is coprecompact in G, so is (G∗)G, and the Polish
group G/(G∗)G is in fact compact. Thus, φB is surjective, and witnesses
that B(G) is a continuous image of G/(G∗)G. As this latter group is a
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group compactification of G, it follows from the definition of the Bohr
compactification of G that B(G) = G/(G∗)G.

2.2. Comments on Theorem 1.3

Several comments are in order when comparing the statements of Theo-
rem 1.2 and Theorem 1.3.

First, one may wonder whether B(G) can be shown to be a continuous
image of G without assuming M(G) being metrizable. This turns out to
be the case: by Ben Yaacov’s work [1], assuming that G is Roelcke precom-
pact is actually enough for this. The group G is then of the form Aut(F)
for some metric ω-categorical Fraïssé structure F, and H coincides with
the automorphism group of the structure F∗ obtained from F by naming
all the elements of acl(∅) in Feq. Note that when G is non-Archimedean,
this is also a consequence of [16] or of [13]. The situation becomes differ-
ent if we simply assume that B(G) is metrizable, as pointed out kindly
by Todor Tsankov: consider the countable discrete group G = SL(3,Z). It
is known to have Kazhdan’s property (T) [5], which implies that it has a
metrizable Bohr compactification [18, Theorem 2.6]. Next, using the natu-
ral projections Z� Z/nZ, G is residually finite, and as such has an infinite
profinite completion, hence an infinite Bohr compactification. Being a com-
pact group, B(G) must therefore be uncountable. Assume now that B(G)
is of the form Ĝ/H. Since G is discrete, so is the uniform structure on the
quotient G/H and B(G) = G/H is countable, a contradiction.
Second, one may ask whether the group H in Theorem 1.3 is minimally

almost periodic. This is unclear in general, but holds when G is Roelcke
precompact, again in virtue of the results from [1].
Last, let us point out that G may be minimally almost periodic without

M(G) being necessarily proximal. For example, gathering results from [6,
12, 10] and Section 3 below, for F = N, the random graph, a Henson graph,
the random tournament or the rational Urysohn space, Aut(F) is minimally
almost periodic, the universal minimal flow of Aut(F) is the logic action
on the space LO(F) of all linear orders on F, while the proximal universal
minimal flow is the logic action on the space of all betweenness relations of
F. For S(2), the automorphism group is also minimally almost periodic, the
universal minimal flow is the orbit closure of the “natural” partition into
two halves, and the proximal universal minimal flow is the orbit closure of
the corresponding equivalence relation.

TOME 69 (2019), FASCICULE 2



946 Lionel NGUYEN VAN THÉ

3. Examples of universal minimal distal and
equicontinuous flows

In this section, we use Theorem 1.3 to calculate the universal minimal
equicontinuous flows for the groups G 6 S∞ that are given as automor-
phism groups of homogeneous graphs and tournaments. Note that our
interest here is really to gather a small catalogue of simple applications
of Theorem 1.1, as opposed to prove new results. Indeed, several groups
among those considered below are already known to have a simple (in the
abstract group-theoretic sense) automorphism group. As a result, the Bohr
compactification is trivial. This is so for the random graph by a result of
Truss [15], and for the Henson graphs and the random tournament, by
some unpublished work of Rubin. (The interested reader may consult [9]
for several specific references.) On the other hand, in the Roelcke precom-
pact case, by the aforementioned result of Ben Yaacov from [1], the Bohr
compactification can also be obtained by determining acl(∅) in Feq, a task
which can apparently be carried out without any substantial obstruction
in the present cases, but may turn out to be difficult in general. For all the
arguments that follow, some familiarity with Fraïssé theory and with [6] is
assumed.

3.1. Betweenness relations and minimally almost periodic
groups

Lemma 3.1. — Assume that F is a homogeneous structure and that
there is an order expansion F∗ = (F, <) so that M(G) = Ĝ/G∗, where
G = Aut(F) and G∗ = Aut(F∗). Assume also that there exist u, v ∈ F∗
such that u < v and for every x < y ∈ F∗, there are x0, . . . , xn+1 ∈ F∗
such that x0 = x, xn+1 = y and

∃ g0, . . . , gn ∈ G∗ ∀ i 6 n gi(u) = xi & gi(v) = xi+1

Then N(G∗) = Aut(F, B), where B is the betweenness relation induced
by <.

Proof. — See [10, Lemma 5.1]. �

Lemma 3.2. — Assume that F is a homogeneous structure and that
there is an order Fraïssé expansion F∗ = (F, <) so that M(G) = Ĝ/G∗ =
LO(F), where G = Aut(F) and G∗ = Aut(F∗). Assume also that there
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exist u, v ∈ F∗ such that u < v and for every x < y ∈ F∗, there are
x0, . . . , xn+1 ∈ F∗ such that x0 = x, xn+1 = y and

∃ g0, . . . , gn ∈ G∗ ∀ i 6 n gi(u) = xi & gi(v) = xi+1

Then Age(F) has the strong amalgamation property.

Proof. — First,M(G) = LO(F) is equivalent to the fact that Age(F∗) is
the class of all those structures (A, <A) where A ∈ Age(F) and <A is a lin-
ear ordering on A. Therefore, the strong amalgamation property of Age(F)
is equivalent to the amalgamation property of Age(F∗) (see [6, Proposi-
tion 5.3]). Next, extreme amenability of G∗ implies that Age(F∗) has the
Ramsey property, which in turn implies that Age(F∗) has the amalgama-
tion property because it is made of rigid elements, and has the hereditary
and the joint embedding properties ([11, Lemma 1]). �

Lemma 3.3. — Let F be a Fraïssé structure whose age has the strong
amalgamation property. Let h ∈ Aut(F) with finitely many fixed points,
and A be a finite substructure of F. Then there exists a copy Ã of A in F
so that Ã ∩ h(Ã) = ∅.

Proof. — We proceed by induction on |A|. The case |A| = 1 is handled
thanks to the finiteness of the set of h-fixed points, and to the fact that
every 1-point substructure of F has infinitely many copies in F (thanks to
the strong amalgamation property). For the induction step, assume that
|A| = n+ 1. Take an enumeration {a1, . . . , an+1} of A and consider A′ the
substructure supported by {a1, . . . , an}. By induction hypothesis, we can
find a copy Ã′ = {ã1, . . . , ãn} of A′ in F so that Ã′ ∩ h(Ã′) = ∅. Thanks
to the hypotheses on h and of strong amalgamation, we can find x ∈ F
so that h(x) /∈ {x} ∪ h(Ã′) ∪ h−1(Ã′) and Ã′ ∪ {x} ∼= A via ai 7→ ãi and
an+1 7→ x. Then Ã := Ã′ ∪ {x} is as required. �

Lemma 3.4. — Suppose that F and F∗ = (F, <) are Fraïssé structures
that satisfy the hypothesis of Lemma 3.2. Let A0 and A1 be finite disjoint
isomorphic substructures of F. Then there exists k ∈ G that preserves <
on A0 and reverses it on A1.

Proof. — Consider the substructure B of F supported by A0 ∪ A1, to-
gether with the ordering < that F∗ induces on it. Define on B a new linear
ordering <B as follows: first, declare A0 <

B A1. Next, keep < on A0, but
reverse it on A1. The resulting structure (B, <B) is in Age(F∗) so it has a
copy B̃ in F∗. Furthermore, the identity map from (B, <) to (B, <B) is an

TOME 69 (2019), FASCICULE 2



948 Lionel NGUYEN VAN THÉ

isomorphism between elements of Age(F). As such, it induces an isomor-
phism from B to B̃ which is order-preserving on A0, order-reversing on A1,
and can be extended to an element k of G. �

Proposition 3.5. — Suppose that F and F∗ = (F, <) are Fraïssé struc-
tures that satisfy the hypothesis of Lemma 3.2. Then B(G) is trivial.

Proof. — Consider B the betweenness relation on F induced by <. Then
Aut(F, B) is the closed subgroup of G generated by G∗ and any σ ∈ G,
which we fix from now on, that reverses the ordering. From Lemma 3.1,
this is also the normalizer of G∗ in G. We show that this subgroup is
contained in (G∗)G by showing that σ ∈ (G∗)G. This will suffice to show
that B(G) is trivial, because B(G) = G/(G∗)G will be an equicontinuous
factor of G/N(G∗), which is the universal minimal proximal flow of G by
Theorem 1.2.
To show that σ ∈ (G∗)G, consider A ⊂ F finite and A the substructure

of F supported by A. By Lemma 3.2, the age of F has the strong amal-
gamation property. Moreover, σ has at most one fixed point as it reverses
the ordering, so Lemma 3.3 applies and we can find Ã ∼= A in F so that
Ã∩σ(Ã) = ∅. Applying Lemma 3.4, there is k ∈ G which is order-preserving
on Ã and order-reversing on σ(Ã). Because k(σ(Ã)) and A are isomorphic
as substructures of F∗, there is j ∈ G∗ sending k(σ(Ã)) on A. Set g = j ◦k.
It is order-preserving from Ã to A and order-reversing on σ(Ã). Therefore,
the restriction of gσg−1 to A is order-preserving. �

Proposition 3.5 allows to capture at once many structures, such as the
structure in the empty language, the random graph, all Henson graphs,
the random tournament, and the rational Urysohn space (note that the
automorphism group of this latter object is not Roelcke-precompact).

3.2. Homogeneous graphs

We already computed B(G) in the case of the automorphism groups of
the infinite complete graph KN, the Henson graphs and the random graph.
According to the Lachlan–Woodrow classification [8], the remaining cases
of countable homogeneous graphs are, up to a switch of the edges and the
non-edges:

(1) In[KN], made of n many disjoint copies of KN, where n ∈ N is fixed;
(2) IN[Kn], made of infinitely many disjoint copies of Kn, where n ∈ N

is fixed;
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(3) IN[KN], made of infinitely many disjoint copies of KN.
To deal with those, we will use that the relevant groups G∗ have been

described in [6], and that the normal closure of Aut(Q, <) in S∞ is S∞
itself.

3.2.1. In[KN]

Recall that G = Sn n Sn∞ and that G∗ = {e} ×Aut(Q, <)n.
Working independently in each part, every element of the normal sub-

group {e} × Sn∞ is in (G∗)G. Therefore,

(G∗)G = {e} × Sn∞ = Aut(In[KN], (A∗i )i∈[n]) and B(G) = Sn.

3.2.2. IN[Kn]

G = S∞ n SN
n and G∗ = Aut(Q, <)× {e}.

First, notice that S∞ × {e} ⊆ (G∗)G. From this, it is easy to prove that
(G∗)G = G, so B(G) is trivial.

3.2.3. IN[KN]

G = S∞ n SQ
∞ and G∗ = Aut(Q, <) n Aut(Q, <)Q. Stabilizing each part

setwise, we obtain {e} × SQ
∞ ⊆ (G∗)G. From this, as before, it is easy to

prove that (G∗)G = G and that B(G) is trivial.

3.3. Homogeneous tournaments

By Lachlan’s classification [7], the three countable homogeneous tour-
naments are (Q, <), the random tournament, and the dense local order
S(2). In the first case, the automorphism group is known to be extremely
amenable, while the second case follows from the results of Section 3.1.
Therefore, the only remaining case to treat is S(2). This will be done with
the same scheme as for Proposition 3.5. In what follows, we write G for
Aut(S(2)). For this structure, it was shown [12] thatM(G) = Ĝ/G∗, where
G∗ = Aut(S(2), P ∗0 , P ∗1 ) 6 G and P ∗0 , P ∗1 is the partition of S(2) into right
part and left part. Let E∗ denote the equivalence relation induced by the
partition (P ∗0 , P ∗1 ). We will make use of the following known fact: the struc-
ture (S(2), P ∗0 , P ∗1 ) is simply bi-definable with Q2 = (Q, <,Q0, Q1), where
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both Q0 and Q1 are dense. To see this, view (Q, <) as a directed graph
where x ←− y iff x < y, and observe that (S(2), P ∗0 , P ∗1 ) is obtained from
(Q, <,Q0, Q1) by reversing the edges that are between vertices belonging
to different parts. In what follows, we will make use of the ordering < as a
relation in S(2)∗ without any further indication.

Lemma 3.6. — N(G∗) = Aut(S(2), E∗).

Proof. — Let xE∗y ∈ S(2). Let g ∈ N(G∗) and g∗ ∈ G∗ so that g∗(x) =
y. Fix j ∈ {0, 1} such that g(x) ∈ P ∗j . Then because gg∗g−1 ∈ G∗, we
have gg∗g−1(g(x)) ∈ P ∗j , i.e., g(y) ∈ P ∗j . In other words, g(x)E∗g(y). So
N(G∗) ⊆ Aut(S(2), E∗). The other inclusion is easy. �

Lemma 3.7. — Let σ ∈ Aut(S(2), E∗) r Aut(S(2), P ∗0 , P ∗1 ). Let A be a
finite subset of S(2) and let A (resp. A∗) be the finite substructure that it
supports in S(2) (resp. S(2)∗). Then there exists a copy Ã∗ of A∗ in S(2)∗
so that Ã∗ < σ(Ã∗) or σ(Ã∗) < Ã∗.

Proof. — The proof is similar to that of Lemma 3.3 and is by induction
on |A∗|. The base case |A∗| = 1 is trivial as σ has no fixed point. For the
induction step, assume that |A∗| = n+ 1. Take an increasing enumeration
{a1, . . . , an+1} of A∗ and consider A′ the substructure of A∗ supported by
{a1, . . . , an}. By induction hypothesis, we can find a copy Ã′ = {ã1, . . . , ãn}
of A′ in S(2)∗ so that Ã′ < σ(Ã′) or σ(Ã′) < Ã′. In the first case, find
x ∈ S(2)∗ so that ãn < x < σ(ã1) and Ã′ ∪ {x} ∼= A via ai 7→ ãi and
an+1 7→ x. This is possible because both P ∗0 and P ∗1 are dense. Then,
because σ is order-preserving, we have σ(ãn) < σ(x) and Ã := Ã′ ∪ {x}
is as required. In the second case, choose y so that σ(ãn) < y < ã1 and
σ(Ã′)∪{y} ∼= A via ai 7→ σ(ãi) and an+1 7→ y. Then, ãn < σ−1(y) because
σ−1 is order-preserving, and Ã := Ã′ ∪ {σ−1(y)} is as required. �

Lemma 3.8. — Let A0 and A1 be finite disjoint isomorphic substruc-
tures of S(2) so that in S(2)∗, A0 < A1 or A1 < A0. Then there exists
k ∈ Aut(S(2)) that preserves P ∗0 and P ∗1 on A0 and permutes them on A1.

Proof. — Consider the substructure B of S(2) supported by A0∪A1. As
a substructure of S(2)∗, it inherits a partition into two parts P ∗0 and P ∗1 ,
and a linear ordering <. Define on B a new partition with parts PB

0 , P
B
1

and a new linear ordering <B as follows: set PB
0 = P ∗0 and PB

1 = P ∗1 on
A0, but set PB

0 = P ∗1 and PB
1 = P ∗0 on A1. As for <B, if x < y, set

x <B y if x, y are both in A0 or A1; otherwise, set y <B x. This is still a
linear ordering on B because A0 < A1 or A1 < A0. The directed graph
constructed from (B,PB

0 , P
B
1 , <

B) by reversing the arcs between elements
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of different parts is still B: the arcs supported by A0 or A1 are not affected
by the change of label of the parts, and the arcs between these two sets
are preserved because the original ordering has been reversed. In other
words, (B, PB

0 , P
B
1 , <

B) is still an expansion of B in S(2)∗. As such, it
has a copy B̃ in S(2)∗. Furthermore, the identity map from (B, P ∗0 , P ∗1 , <)
to (B, PB

0 , P
B
1 , <

B) is an isomorphism between elements of Age(S(2)). As
such, it induces an isomorphism k from B to B̃ which preserves P ∗0 and
P ∗1 on A0 and permutes them on A1. Extending it to some element of
Aut(S(2)) finishes the proof. �

Proposition 3.9. — B(Aut(S(2))) is trivial.

Proof. — We have seen in Lemma 3.6 that the normalizer of
Aut(S(2), P ∗0 , P ∗1 ) in Aut(S(2)) is Aut(S(2), E∗). We are going to show
that this latter group is contained in (Aut(S(2)∗))Aut(S(2)). This will imply
that

B(Aut(S(2))) = Aut(S(2))/(Aut(S(2)∗))Aut(S(2))

is trivial as an equicontinuous factor of Aut(S(2))/N(Aut(S(2)∗)), which
is the universal minimal proximal flow of Aut(S(2)) by Theorem 1.2.
To prove Aut(S(2), E∗) ⊆ Aut(S(2)∗)Aut(S(2)), let σ ∈ Aut(S(2), E∗) r

Aut(S(2)∗). As σ and Aut(S(2)∗) generate Aut(S(2), E∗), it suffices to
show

σ ∈ Aut(S(2)∗)Aut(S(2))

Let A be a finite subset of S(2) and let A (resp. A∗) be the finite sub-
structure that it supports in S(2) (resp. S(2)∗). By Lemma 3.7, there exists
a copy Ã∗ of A∗ in S(2)∗ so that Ã∗ < σ(Ã∗) or σ(Ã∗) < Ã∗. Lemma 3.8
applies, and there exists k ∈ Aut(S(2)) that preserves P ∗0 and P ∗1 on Ã and
permutes them on σ(Ã). Because k(σ(Ã)) and A∗ are isomorphic as sub-
structures of S(2)∗, there is j ∈ G∗ sending k(σ(Ã)) on A∗. Set g = j ◦ k.
It sends Ã to A, preserves P ∗0 and P ∗1 on Ã and permutes them on σ(Ã).
Therefore, the restriction of gσg−1 to A preserves P ∗0 and P ∗1 . �

4. Comments and questions

We close this paper with a question.

Question 4.1. — Let G be a Polish group such that Π(G) and B(G)
are metrizable. Is M(G) necessarily metrizable?
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In view of Theorem 1.1, a positive answer would solve Glasner’s problem
in a rather strong sense. However, let us mention again that such an out-
come would go against the intuition of many experts in the field, including
Glasner himself.
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