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SCALAR CURVATURE AND FUTAKI INVARIANT OF
KÄHLER METRICS WITH CONE SINGULARITIES

ALONG A DIVISOR

by Yoshinori HASHIMOTO (*)

Abstract. — We study the scalar curvature of Kähler metrics that have cone
singularities along a divisor, with a particular focus on certain specific classes of
such metrics that enjoy some curvature estimates. Our main result is that, on the
projective completion of a pluricanonical bundle over a product of Kähler–Einstein
Fano manifolds with the second Betti number 1, momentum-constructed constant
scalar curvature Kähler metrics with cone singularities along the ∞-section exist
if and only if the log Futaki invariant vanishes on the fibrewise C∗-action, giving a
supporting evidence to the log version of the Yau–Tian–Donaldson conjecture for
general polarisations.

We also show that, for these classes of conically singular metrics, the scalar
curvature can be defined on the whole manifold as a current, so that we can com-
pute the log Futaki invariant with respect to them. Finally, we prove some partial
invariance results for them.
Résumé. — Nous étudions la courbure scalaire de certaines classes de métriques

kählériennes qui ont des singularités coniques le long d’un diviseur. Notre résultat
principal concerne le complété projectif du fibré pluricanonique sur un produit de
variétés Fano Kähler–Einstein avec second nombre de Betti égal à 1. Sur cette
variété, en utilisant une construction due à Hwang, nous démontrons qu’il existe
une métrique kählérienne à courbure scalaire constante et singularités coniques si
et seulement si l’invariant logarithmique de Futaki est nul pour l’action de C∗ sur le
fibré. Ce résultat conforte la version logarithmique de la conjecture de Yau–Tian–
Donaldson pour des polarisations quelconques.

Nous démontrons aussi que la courbure scalaire peut être définie sur le lieu singu-
lier comme un courant pour certaines classes de métriques à singularités coniques,
ce qui nous permet de calculer l’invariant logarithmique de Futaki par rapport à
des métriques singulières.
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with cone singularities.
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1. Introduction and the statement of the results

1.1. Kähler metrics with cone singularities along a divisor and
log K-stability

LetD be a smooth effective divisor on a polarised Kähler manifold (X,L)
of dimension n. Our aim is to study Kähler metrics that have cone singu-
larities along D, which can be defined as follows (cf. [27, §2]).

Definition 1.1. — A Kähler metric with cone singularities along D

with cone angle 2πβ is a smooth Kähler metric on X \ D which satisfies
the following conditions when we write ωsing =

∑
i,j gij̄

√
−1dzi ∧ dz̄j in

terms of the local holomorphic coordinates (z1, . . . , zn) on a neighbourhood
U ⊂ X with D ∩ U = {z1 = 0}:

(1) g11̄ = F |z1|2β−2 for some strictly positive smooth bounded function
F on X \D,

(2) g1j̄ = gi1̄ = O(|z1|2β−1),
(3) gij̄ = O(1) for i, j 6= 1.

Although this definition makes sense for any β ∈ R, we are primarily
interested in the case 0 < β < 1 (cf. [21]). On the other hand, we some-
times need to consider the case β > 1 (cf. Remark 3.5), while some results
(e.g. Theorem 1.13) will hold only for 0 < β < 3/4. We thus set our conven-
tion as follows: we shall assume 0 < β < 1 in what follows, and specifically
point out when this assumption is violated.

Remark 1.2. — We recall that the usual (cf. [9, 27, 43] amongst many
others) definition of the conically singular Kähler metric ωsing is that ωsing
is a smooth Kähler metric on X \D which is asymptotically quasi-isometric
to the model cone metric |z1|2β−2√−1dz1∧dz̄1+

∑n
i=2
√
−1dzi∧dz̄i around

D, with coordinates (z1, . . . , zn) as above. The above definition is more
restrictive than this usual definition, but will include all the cases that we
shall treat in this paper (cf. Definition 1.10).

Remark 1.3. — We can regard a conically singular metric ωsing as a
(1, 1)-current on X, and hence can make sense of its cohomology class
[ωsing] ∈ H2(X,R).

Kähler–Einstein metrics with cone singularities along a divisor, studied
initially in [26, 37, 47, 50], attracted renewed interest since the foundational
work of Donaldson [21] on the linear theory of Kähler–Einstein metrics with
cone singularities along a divisor. Since then, there has already been a huge
accumulation of research on such metrics.
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KÄHLER METRICS WITH CONE SINGULARITIES 593

We now recall the log K-stability, which was introduced by Donald-
son [21] and played a crucially important role in proving the Yau–Tian–
Donaldson conjecture (Conjecture 2.6) for Fano manifolds; see Remark 2.16.
We first recall (cf. Theorem 2.10) that the notion of K-stability can be re-
garded as an “algebro-geometric generalisation” of the vanishing of the
Futaki invariant

Fut(Ξf , [ω]) =
∫
X

f(S(ω)− S̄)ω
n

n!
in the sense that Fut(Ξf , [ω]) = 0 is equivalent to DF (X ,L) = 0 for the
product test configuration (X ,L) generated by Ξf (cf. Remark 2.9). Look-
ing at the product log test configurations, we have an analogue of the Futaki
invariant in the log case, which was first introduced by Donaldson [21]. It
is defined as

FutD,β(Ξf , [ω])

= 1
2π

∫
X

f(S(ω)− S̄)ω
n

n! −(1−β)
(∫

D

f
ωn−1

(n− 1)!−
Vol(D,ω)
Vol(X,ω)

∫
X

f
ωn

n!

)
,

and may be called the log Futaki invariant (cf. Section 2, particularly The-
orem 2.17). As in the case of the (classical) Futaki invariant, FutD,β is
expected to vanish on Kähler classes which contain a Kähler–Einstein or
constant scalar curvature Kähler metric with cone singularities along D

with cone angle 2πβ.(1)
Now, in view of the work of Donaldson [17, 18, 19], we are naturally led

to the idea of replacing the ample −KX by an arbitrary ample line bundle
L, on a general smooth projective variety X, and consider the constant
scalar curvature Kähler metrics in c1(L) with cone singularities along a
divisor D (cf. Remark 1.3). Conically singular metrics having the constant
scalar curvature can be defined as follows.

Definition 1.4. — A Kähler metric ωsing with cone singularities along
D with cone angle 2πβ is said to be of constant scalar curvature Kähler
or cscK if its scalar curvature S(ωsing), which is a well-defined smooth
function on X \D, satisfies S(ωsing) = const on X \D.

Remark 1.5. — There are several important points when we consider
cscK metrics with cone singularities in c1(L), which we list as follows.

(1) Unlike in the Fano case where D ∈ |−λKX | for some λ ∈ N is
natural, D and L can be chosen completely independently; D can

(1)This certainly holds for Kähler–Einstein metrics on Fano manifolds; see [43, Theo-
rem 2.1] and also [11, Theorem 7].
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594 Yoshinori HASHIMOTO

be any smooth effective divisor in X and the corresponding line
bundle OX(D) does not even have to be ample.

(2) There are several definitions of cscK metrics with cone singularities
for general polarisations that appeared in the literature, such as [29,
35, 36].

(3) Compared with the conically singular Kähler–Einstein metrics that
are discussed above, there seem to be relatively few results con-
cerning conically singular Kähler metrics in a general polarisation
and many basic properties of conically singular cscK metrics seem
yet to be clarified. In particular, there are very few known exam-
ples of such metrics. There is, however, a growing number of re-
sults [8, 28, 29, 34, 35, 36, 52] on this problem appearing in the
literature.

Remark 1.6. — In general, if ωsing is a metric with cone singularities
along D (as in Remark 1.2), then it follows that any f ∈ C∞(X,R) is
integrable with respect to the measure ωnsing on any open set U ⊂ X \D;
this is because there exist positive constants C1, C2 such that

C1|z1|2β−2
n∏
i=1

√
−1dzi ∧ dz̄i 6 ωnsing 6 C2|z1|2β−2

n∏
i=1

√
−1dzi ∧ dz̄i

locally around D, which is locally integrable on Cn ∩ {z1 6= 0}.
In particular, the volume

∫
X\D ω

n
sing of X \ D is finite. By regarding

ωnsing as an absolutely continuous measure on the whole of X, we shall
write Vol(X,ωsing) :=

∫
X\D ω

n
sing in what follows.

1.2. Momentum-constructed metrics and log Futaki invariant

The study of cscK metrics is considered to be much harder than that of
Kähler–Einstein metrics, since there is no analogue of the complex Monge–
Ampère equation which reduces the fourth order fully nonlinear partial
differential equation (PDE) to a second order fully nonlinear PDE. How-
ever, when the space X is endowed with some symmetry, it is often possible
to simplify the PDE by exploiting the symmetry of the space X. One such
example, which we shall treat in detail in what follows, is the momentum
construction introduced by Hwang [24] and generalised as in [1, 2, 3, 25]
which works, for example, when X is the projective completion P(F ⊕ C)
of a pluricanonical bundle F over a product of Kähler–Einstein manifolds
(see Section 3.1 for details). The point is that this theory converts the cscK
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equation to a second order linear ordinary differential equation (ODE), as
we recall in Section 3.1.
Moreover, it is also possible to describe the cone singularities in terms

of the boundary value of the function called momentum profile; a detailed
discussion on this can be found in Section 3.2. This means that we have on
P(F⊕C) a particular class of conically singular metrics, which we may call
momentum-constructed conically singular metrics, whose scalar curvature
is easy to handle.
By using the above theory of momentum construction, we obtain the

following main result of this paper. Suppose that (M,ωM ) is a product of
Kähler–Einstein Fano manifolds (Mi, ωi), i = 1, . . . , r, each with b2(Mi) =
1, and of dimension ni so that n − 1 =

∑r
i=1 ni. Let F :=

⊗r
i=1 p

∗
iK
⊗li
i ,

li ∈ Z, Ki be the canonical bundle of Mi, and pi : M �Mi be the obvious
projection. The statement is as follows.

Theorem 1.7. — Let X := P(F ⊕C), and write D for the ∞-section of
P(F ⊕ C) and Ξ for the generator of the fibrewise C∗-action. Then, each
Kähler class [ω] ∈ H2(X,R) of X admits a momentum-constructed cscK
metric with cone singularities along D with cone angle 2πβ ∈ [0,∞) if and
only if FutD,β(Ξ, [ω]) = 0.

In fact, β 6= 1 since P(F⊕C) admits no cscK metrics as F⊕C is Mumford
unstable [40, Theorem 5.13]. The reader is referred to Section 3.1 for more
details on this statement, including where the various hypotheses on X
came from. See also Remark 3.5 for some examples.

Remark 1.8. — Note that the value of β for which this happens is unique
in each Kähler class [ω] ∈ H2(X,R), given by the equation FutD,β(Ξ, [ω]) =
0 which we can re-write as

β = 1− Fut(Ξ, [ω])
(∫

D

f
ωn−1

(n− 1)! −
Vol(D,ω)
Vol(X, ω)

∫
X
f
ωn

n!

)−1

,

where f is the holomorphy potential of Ξ; the denominator in the second
term is equal to Q(b)(b− B/A) in the notation of (3.23), which is strictly
positive. We also need to note that we do not necessarily have 0 < β < 1;
although we can show β > 0, there are examples where β > 1. See Re-
mark 3.5 for more details.

Remark 1.9. — A naive re-phrasing of the above result is that each ra-
tional Kähler class (or polarisation) of X = P(F ⊕C) admits a momentum-
constructed cscK metric with cone singularities along D with cone angle
2πβ if and only if it is log K-polystable with cone angle 2πβ with respect
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to the product log test configuration generated by the fibrewise C∗-action
on X. To the best of the author’s knowledge, this is the first supporting
evidence for the log Yau–Tian–Donaldson conjecture (Conjecture 2.15) for
the polarisations that are not anticanonical.

1.3. Log Futaki invariant computed with respect to the
conically singular metrics

Although the log Futaki invariant is conjectured to be related to the
existence of conically singular cscK metrics, the log Futaki invariant itself
is computed with respect to a smooth Kähler metric in c1(L). We now
consider the following question: what is the value of the log Futaki invariant
if we compute it with respect to a conically singular Kähler metric?(2)
Namely, we wish to compute FutD,β(Ξf , ωsing) defined as∫

X

f

(
Ric(ωsing)−

S(ωsing)
n

ωsing

)
∧

ωn−1
sing

(n− 1)!

− 2π(1− β)
(∫

D

f
ωn−1
sing

(n− 1)! −
Vol(D,ωsing)
Vol(X,ωsing)

∫
X

f
ωnsing
n!

)
,

where S(ωsing) := 1
Vol(X,ωsing)

∫
X

Ric(ωsing) ∧
ωn−1
sing

(n−1)! . However, this is not
a priori well-defined for any conically singular metric ωsing; first of all∫
D
f
ωn−1
sing

(n−1)! does not naively make sense as ωsing is not well-defined on

D, and also it is not obvious that the integral
∫
X

Ric(ωsing) ∧
ωn−1
sing

(n−1)! or∫
X
f Ric(ωsing) ∧

ωn−1
sing

(n−1)! makes sense.(3)
In what follows, we do not claim any result on this problem that is true

for all conically singular metrics, and restrict our attention to the case
where the conically singular metric ωsing has some “preferable” form. By
this, we mean that ωsing is either of the following types.

Definition 1.10.
(1) Let OX(D) be the line bundle associated to D and s be a global

section that defines D by {s = 0}. Giving a hermitian metric h
on OX(D), we define ω̂ := ω + λ

√
−1∂∂̄|s|2βh which is indeed a

(2)Auvray [4] established an analogous result for the Poincaré type metric, which can
be regarded as the β = 0 case.
(3)Note that Vol(X,ωsing) does make sense by Remark 1.6.
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Kähler metric if λ > 0 is chosen to be sufficiently small. Metrics of
such form have been studied in many papers ([7, 8, 21, 27] amongst
others). In this paper, we call such a metric ω̂ a conically singular
metric of elementary form.

(2) When X is a projective completion P(F⊕C) of a line bundle F over
a Kähler manifold M , with the projection map p : F →M , we can
consider a momentum-constructed metric ωϕ (as we mentioned in
Section 1.2; see also Section 3.1 for the details). We have an explicit
description of cone singularities, as we shall see in Section 3.2.

Throughout in what follows, we shall write X to denote a projective
Kähler manifold, and X for the projective completion P(F ⊕ C).
What is common in the above two classes of metrics is that they can

be written as a sum of a globally defined smooth differential form and
a term of order O(|z1|2β), together with some more explicit estimates on
the second O(|z1|2β) term, which will be important for us in proving that
these metrics enjoy some nice estimates on the Ricci (and scalar) curvature
(cf. Section 3.2, Section 4.1); see also Remark 4.9.
For these types of metrics, ω̂ and ωϕ, we first show that Ric(ω̂)∧ω̂n−1 and

Ric(ωϕ)∧ωn−1
ϕ define a current that is well-defined on the whole manifold.

In fact, we can even show that they are well-defined as a current on any
open subset Ω in X, as stated in the following. They are the main technical
results that are used in what follows to compute the log Futaki invariant.

Theorem 1.11. — Let ω̂ be a conically singular Kähler metric of ele-
mentary form ω̂ = ω + λ

√
−1∂∂̄|s|2βh with 0 < β < 1. Then the following

equation∫
Ω
f Ric(ω̂) ∧ ω̂n−1

(n− 1)! =
∫

Ω\D
fS(ω̂) ω̂

n

n! + 2π(1− β)
∫

Ω∩D
f
ωn−1

(n− 1)!

holds for any open set Ω ⊂ X and any f ∈ C∞(X,R), and all the integrals
are finite.

Theorem 1.12. — Let p : F → M be a holomorphic line bundle
with hermitian metric hF over a Kähler manifold (M,ωM ), and ωϕ be a
momentum-constructed conically singular Kähler metric on X := P(F ⊕C)
with a real analytic momentum profile ϕ and 0 < β < 1. Then the following
equation∫

Ω
f Ric(ωϕ)∧

ωn−1
ϕ

(n− 1)! =
∫

Ω\D
fS(ωϕ)

ωnϕ
n! +2π(1−β)

∫
Ω∩D

f
p∗ωM (b)n−1

(n− 1)!
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holds for any open set Ω ⊂ X and any f ∈ C∞(X,R), and all the integrals
are finite, where ωM (b) is as defined in (3.1).

See Remark 4.6 for the comparison to similar results in the literature.
Recalling (cf. Theorem 2.17) that the log Futaki invariant FutD,β is de-

fined as a sum of the classical Futaki invariant (cf. Theorem 2.10) and
a “correction” term, we need to ensure that the classical Futaki invari-
ant with respect to the conically singular metrics, of elementary form and
momentum-constructed, is well-defined. Theorem 1.11 enables us to make
sense(4) of the following quantity

Fut(Ξ, ω̂) :=
∫
X

Ĥ

(
Ric(ω̂)− S̄(ω̂)

n

)
∧ ω̂n−1

(n− 1)! ,

where Ĥ is the holomorphy potential of Ξ with respect to ω̂ (cf. (2.1)). Sim-
ilarly, Theorem 1.12 gives us an analogous statement for the momentum-
constructed conically singular metrics. The detailed statement of these re-
sults is given in Corollary 4.14. Given all these results, we can finally com-
pute the log Futaki invariant, as in Theorem 1.13; a key step in the proof
is that the “distributional” term in Fut(Ξ, ω̂) (resp. Fut(Ξ, ωϕ)) exactly
cancels the “correction” term in the log Futaki invariant (cf. Corollary 5.3
(resp. Corollary 5.7)). We also prove a partial invariance result for the
Futaki invariant, when it is computed with respect to these classes of con-
ically singular metrics. For the smooth metrics, that the Futaki invariant
depends only on the Kähler class is a well-known theorem of Futaki [22]
(cf. Theorem 2.10), where the proof crucially relies on the integration by
parts. When we compute it with respect to conically singular metrics, we
are essentially on the noncompact manifoldX\D, and hence cannot naively
apply the integration by parts. Still, we can claim the following result.

Theorem 1.13. — Suppose 0 < β < 3/4.
(1) The log Futaki invariant computed with respect to a conically sin-

gular metric of elementary form ω̂, evaluated against a holomorphic
vector field Ξ which preserves D and with the holomorphy potential
Ĥ, is given by

FutD,β(Ξ, ω̂) = 1
2π

∫
X\D

Ĥ(S(ω̂)− S(ω̂)) ω̂
n

n! ,

and it is invariant under the change ω̂ 7→ ω̂ +
√
−1∂∂̄ψ for any

smooth function ψ ∈ C∞(X,R) with ω̂ +
√
−1∂∂̄ψ > 0 on X \D,

(4) In fact, there is also a subtlety involving the asymptotic behaviour of the holomorphy
potential Ĥ, cf. Section 4.3.2 and Section 4.3.3.
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i.e. FutD,β(Ξ, ω̂ +
√
−1∂∂̄ψ) = FutD,β(Ξ, ω̂). In particular, if ω̂ is

cscK, FutD,β(Ξ, ω̂ +
√
−1∂∂̄ψ) = 0 for any ψ ∈ C∞(X,R) with

ω̂ +
√
−1∂∂̄ψ > 0 on X \D.

(2) Suppose that the σ-constancy hypothesis (cf. Definition 3.1) is satis-
fied for our data, and let D be the∞-section of X = P(F⊕C). Then
the log Futaki invariant computed with respect to a momentum-
constructed conically singular metric ωϕ, evaluated against the gen-
erator Ξ of fibrewise C∗-action, is given by

FutD,β(Ξ, ωϕ) =
∫
X\D

τ(S(ωϕ)− S(ωϕ))
ωnϕ
n! ,

and it is invariant under the change ωϕ 7→ ωϕ +
√
−1∂∂̄ψ for any

smooth function ψ ∈ C∞(X,R) with ωϕ +
√
−1∂∂̄ψ > 0 on X \D.

Remark 1.14. — The author conjectures that the result should be true
for 0 < β < 1 in general.

1.4. Organisation of the paper

We first review the basics on log K-stability and log Futaki invariant in
Section 2.
Section 3 discusses in detail the momentum-constructed conically sin-

gular metrics and log Futaki invariant, in particular our main result The-
orem 1.7; Section 3.1 is a general introduction, and Section 3.2 discusses
some basic properties of momentum-constructed metrics that have cone
singularities. Section 3.3 is devoted to the proof of Theorem 1.7.

Section 4 and Section 5 discuss in detail the log Futaki invariant com-
puted with respect to conically singular metrics, as presented in Section 1.3.
After collecting some basic estimates on conically singular metrics of el-
ementary form in Section 4.1, we prove in Section 4.2 that the current
Ric(ω̂) ∧ ω̂n−1 (and Ric(ωϕ) ∧ ωn−1

ϕ ) is well-defined on the whole of X, as
stated in Theorems 1.11 and 1.12. Corollary 4.14 is proved in Section 4.3.
Section 5 is concerned with the proof of Theorem 1.13; the main result of

Section 5.1 is Corollary 5.3 (see also Remark 5.4), which reduces the claim
(for the conically singular metrics of elementary form) to the computations
that we do in Section 5.2 along the line of proving the invariance of the
classical Futaki invariant (i.e. the smooth case). Section 5.3 establishes the
claim for the momentum-constructed conically singular metrics.

TOME 69 (2019), FASCICULE 2
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2. Log Futaki invariant and log K-stability

2.1. Test configurations and K-stability

We first recall the “usual” K-stability. This was first introduced by
Tian [48] and made a purely algebro-geometric notion by Donaldson [19].

Definition 2.1. — A test configuration for a polarised Kähler manifold
(X,L) with exponent r ∈ N is a projective scheme X together with a
relatively ample line bundle L over X and a flat morphism π : X → C with
a C∗-action on X , which covers the usual multiplication in C and lifts to
L in an equivariant manner, such that the fibre π−1(1) is isomorphic to
(X,L⊗r).

Remark 2.2. — We recall the following important and well known obser-
vations.

(1) By virtue of the (equivariant) C∗-action on X , all non-central fibres
Xt := π−1(t) (t ∈ C∗) are isomorphic and the central fibre X0 :=
π−1(0) is naturally acted on by C∗.

(2) Although X is a smooth manifold, the central fibre X0 of a test
configuration is usually not smooth. In fact, X0 is a priori just a
scheme and not even a variety.

(3) A test configuration (X ,L) is called product if X is isomorphic
X × C. Note that this isomorphism is not necessarily equivariant,
so X may have a nontrivial C∗-action. (X ,L) is called trivial if X is
equivariantly isomorphic to X×C, i.e. with trivial C∗-action on X.

Remark 2.3. — A well-known pathology found by Li and Xu [33] means
that we may have to assume that X is a normal variety when (X ,L) is
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not product or trivial. Alternatively, we may have to assume that the L2-
norm of the test configuration (as introduced by Donaldson [20]) is non-
zero to define the non-triviality of the test configuration, as proposed by
Székelyhidi [45, 46]. See also [6, 15, 44].

Let (Xt,Lt) be any fibre of a test configuration (X ,L) with the polari-
sation given by Lt := L|Xt . By the Riemann–Roch theorem and flatness,

dk := dimH0(Xt,L⊗kt ) = a0k
n + a1k

n−1 +O(kn−2)

with a0, a1 ∈ Q. On the other hand, the C∗-action on the central fibre
(X0,L0) induces a representation C∗ y H0(X0,L⊗k0 ). Let wk be the weight
of the representation C∗ y

∧max
H0(X0,L⊗k0 ). Equivariant Riemann–Roch

theorem (cf. [19]) shows that

wk = b0k
n+1 + b1k

n +O(kn−1).

Now expand
wk
kdk

= b0
a0

+ a0b1 − a1b0
a2

0
k−1 +O(k−2).

Definition 2.4. — The Donaldson–Futaki invariant DF (X ,L) of a
test configuration (X ,L) is a rational number defined by DF (X ,L) =
(a0b1 − a1b0)/a0.

Definition 2.5. — A polarised projective scheme (X,L) is K-semi-
stable if DF (X ,L) > 0 for any test configuration (X ,L) for (X,L). (X,L)
is K-polystable if DF (X ,L) > 0 with equality if and only if (X ,L) is
product, and is K-stable if DF (X ,L) > 0 with equality if and only if
(X ,L) is trivial.

We see that the sign of DF (X ,L) is unchanged when we replace L by
L⊗r. Therefore, once X is fixed, we may assume that the exponent of the
test configuration is always 1 with L being very ample.
The following conjecture, usually referred to as Yau–Tian–Donaldson

conjecture, is well-known; see Remark 2.16 for the special case when X is
a Fano manifold.

Conjecture 2.6 (Yau [51], Tian [48], Donaldson [19]). — (X,L) ad-
mits a cscK metric in c1(L) if and only if it is K-polystable.

We now discuss product test configurations and the automorphism group
of (X,L) in detail. In this case, the Donaldson–Futaki invariant admits a
differential-geometric formula as given in Theorem 2.10, which is called
the (classical) Futaki invariant. We first briefly review the automorphism
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group of (X,L); the reader is referred to [30, 32] for more details on what
is discussed here.
Let Aut(X) be the group of holomorphic transformations of X which

consists of diffeomorphisms of X which preserve the complex structure J ,
and we write Aut0(X) for the connected component of Aut(X) containing
the identity.

Definition 2.7. — A vector field v on X is called real holomorphic if
it preserves the complex structure, i.e. the Lie derivative LvJ of J along v
is zero. A vector field Ξ is called holomorphic if it is a global section of the
holomorphic tangent sheaf TX , i.e. Ξ ∈ H0(X,TX).

Remark 2.8. — It is well-known (cf. [31, Proposition 2.11, Chapter IX])
that there exists a one-to-one correspondence between the elements in
aut(X) and H0(X,TX); the map f1,0 : aut(X) 3 v 7→ v1,0 ∈ H0(X,TX)
defined by taking the (1, 0)-part and the map fRe : H0(X,TX) 3 Ξ 7→
Re(Ξ) ∈ aut(X) defined by taking the real part are the inverses of each
other.

We now write Aut(X,L) for the subgroup of Aut(X) consisting of the
elements whose action lifts to an automorphism of the total space of the line
bundle L, and write Aut0(X,L) for the identity component of Aut(X,L).
It is known that for any v ∈ LieAut0(X,L) and a Kähler metric ω on X
there exists f ∈ C∞(X,C) such that

(2.1) ι(v1,0)ω = −∂̄f,

where ι denotes the interior product. Such f is called the holomorphy po-
tential of v1,0 with respect to ω. Conversely, if Ξ ∈ H0(X,TX) admits a
holomorphy potential, then Re(Ξ) ∈ LieAut0(X,L) (cf. [32, Theorem 1]
and [30, Theorems 9.4 and 9.7]).

Remark 2.9. — It is immediate that a (nontrivial) product test con-
figuration for (X,L) is exactly a choice of 1-parameter subgroup C∗ in
Aut0(X,L), where we recall that the C∗-action has to lift to the total
space of the line bundle L to define a test configuration (cf. Definition 2.1).
If we write v ∈ LieAut0(X,L) for the generator of this subgroup C∗ 6
Aut0(X,L), the above argument shows that v1,0 ∈ H0(X,TX) admits a
holomorphy potential, and that conversely Ξ ∈ H0(X,TX) admitting a
holomorphy potential defines a 1-parameter subgroup C∗ 6 Aut0(X,L)
under the correspondence in Remark 2.8. To summarise, a product test
configuration is exactly a choice of Ξ ∈ H0(X,TX) which admits a holo-
morphy potential.
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Finally, we recall the following well-known theorem.

Theorem 2.10 (Donaldson [19], Futaki [22]). — Let f ∈ C∞(X,C)
be the holomorphy potential of a holomorphic vector field Ξf on X with
respect to a Kähler metric ω ∈ c1(L). If (X ,L) is the product test configu-
ration generated by Ξf , the Donaldson–Futaki invariant can be written as

DF (X ,L) = 1
4π

∫
X

f(S(ω)− S̄)ω
n

n! ,

where S(ω) is the scalar curvature of ω and S̄ is the average of S(ω) over
X. The integral in the right hand side

Fut(Ξf , [ω]) :=
∫
X

f(S(ω)− S̄)ω
n

n! ,

called the Futaki invariant or classical Futaki invariant, does not depend on
the specific choice of Kähler metric ω, i.e. is an invariant of the cohomology
class [ω].

2.2. Log K-stability

Donaldson [21] introduced the notion of log K-stability, in the attempt
to solve Conjecture 2.6 for the Fano manifolds; see also Remark 2.16. This
is a variant of K-stability that is expected to be more suited to conically
singular cscK metrics. We refer to [21, 39] for a general introduction.
This purely algebro-geometric notion can be defined for an n-dimensional

polarised normal variety (X,L) together with an effective integral reduced
divisor D ⊂ X, but we will throughout assume that (X,L) is a polarised
Kähler manifold and D ⊂ X is a smooth effective divisor as this is the case
we will be exclusively interested in. We write ((X,D);L) for these data.

Suppose now that we have a test configuration (X ,L) for (X,L). As
in Section 2.1, the equivariant C∗-action on X induces an action on the
central fibre X0, and hence an action on H0(X0,L⊗k|X0) for any k ∈ N. We
write dk for dimH0(X0,L⊗k|X0) and wk for the weight of the C∗-action on∧max

H0(X0,L⊗k|X0). As we saw in Section 2.1, these admit an expansion
in k � 1 as

dk = a0k
n + a1k

n−1 + · · ·

wk = b0k
n+1 + b1k

n + · · ·

where ai, bi are some rational numbers.
The C∗-action on X naturally induces a test configuration (D,L|D) of

(D,L|D) by supplementing the orbit of D (under the C∗-action) with the
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flat limit. Similarly to the above, writing D0 for the central fibre, we write
d̃k for dimH0(D0,L⊗k|D0) and w̃k for the weight of the C∗-action on∧max

H0(D0,L⊗k|D0). We have the expansion

d̃k = ã0k
n−1 + ã1k

n−2 + · · ·

w̃k = b̃0k
n + b̃1k

n−1 + · · ·

exactly as above, where ãi, b̃i are some rational numbers.
Thus a test configuration (X ,L) and a choice of divisor D ⊂ X gives

us two test configurations (X ,L) and (D,L|D). We call the pair (X ,L)
and (D,L|D) constructed as above a log test configuration for the pair
((X,D);L), and write ((X ,D);L) to denote these data. We now define the
log Donaldson–Futaki invariant

(2.2) DF (X ,D,L, β) := 2(a0b1 − a1b0)
a0

− (1− β)
(
b̃0 −

ã0

a0
b0

)
,

analogously to Definition 2.4.
We now consider a special case where the log test configuration

((X ,D);L) is given by a C∗-action on X which lifts to L and preserves
D. We then have isomorphisms X ∼= X ×C and D ∼= D×C, and in partic-
ular the central fibre X0 (resp. D0) is isomorphic to X (resp. D). Note that
the above isomorphisms are not necessarily equivariant, and hence the cen-
tral fibres X0 ∼= X and D0 ∼= D could have a nontrivial C∗-action. In this
case the log test configuration ((X ,D);L) is called product. In the more
restrictive case where the above isomorphisms are equivariant, i.e. when
C∗-action acts trivially on the central fibres X0 ∼= X and D0 ∼= D, the log
test configurations is called trivial.

Remark 2.11. — As in Remark 2.9, a product log test configuration is
exactly a choice of Ξ ∈ H0(X,TX) that admits a holomorphy potential and
preserves D (i.e. is tangential to D).

With these preparations, the log K-stability can now be defined as fol-
lows.

Definition 2.12. — A pair ((X,D);L) is called log K-semistable
with cone angle 2πβ if DF (X ,D,L, β) > 0 for any log test configuration
((X ,D);L) for ((X,D);L). It is called log K-polystable with cone angle
2πβ if it is log K-semistable with cone angle 2πβ and DF (X ,D,L, β) = 0
if and only if ((X ,D);L) is product. It is called logK-stable with cone angle
2πβ if it is log K-semistable with cone angle 2πβ and DF (X ,D,L, β) = 0
if and only if ((X ,D);L) is trivial.
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Remark 2.13. — We need some restriction on the singularities of X and
D to define logK-stability (cf. Remark 2.3), when the log test configuration
is not product or trivial (cf. [39]), but we do not discuss this issue since
only the product log test configurations will be important for us later.

Remark 2.14. — While we shall see later (cf. Corollary 5.3 and Re-
mark 5.4 that follows) in differential-geometric context how the “extra”
terms (1 − β)

(
b̃0 − ã0

a0
b0
)
in (2.2) (or the corresponding terms in (2.3))

come out, they come out naturally in the blow-up formalism in algebraic
geometry (cf. [39, Theorem 3.7]).

The following may be called the log Yau–Tian–Donaldson conjecture.
This seems to be a folklore conjecture in the field, and is mentioned in
e.g. [14, 28].

Conjecture 2.15. — ((X,D);L) is log K-polystable with cone angle
2πβ if and only if X admits a cscK metric in c1(L) with cone singularities
along D with cone angle 2πβ.

Remark 2.16. — When X is Fano with L = −λKX (for some λ ∈ N)
and D ∈ | − λKX |, this conjecture is solved in the affirmative. Berman [5]
first proved that the existence of conically singular Kähler–Einstein metric
with cone angle 2πβ implies log K-stability of ((X,D);−λKX) with cone
angle 2πβ. Chen–Donaldson–Sun [9, 10, 11] proved that the log K-stability
with cone angle 2πβ implies the existence of the conically singular Kähler–
Einstein metric with cone angle 2πβ, in the course of proving the “ordinary”
version of the Yau–Tian–Donaldson conjecture (Conjecture 2.6) for Fano
manifolds; see also Tian [49].

Let f ∈ C∞(X,C) be the holomorphy potential, with respect to ω, of
the holomorphic vector field Ξf on X which preserves D. Recall that we
use the sign convention ι(Ξf )ω = −∂̄f for the holomorphy potential. Let
((X ,D);L) be the product log test configuration defined by Ξf (cf. Re-
mark 2.11). In this case, a straightforward adaptation of the argument
in [19, Section 2] shows the following.

Theorem 2.17 (Donaldson [19, 21]). — The log Donaldson–Futaki in-
variant reduces to the following differential-geometric formula

(2.3) DF (X ,D,L, β) = FutD,β(Ξf , [ω])

:= 1
2π Fut(Ξf , [ω])−(1−β)

(∫
D

f
ωn−1

(n− 1)!−
Vol(D,ω)
Vol(X,ω)

∫
X

f
ωn

n!

)
,
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defined for some (in fact any) smooth Kähler metric ω ∈ c1(L), when the
log test configuration ((X ,D);L) is product, defined by the holomorphic
vector field Ξf on X which preserves D. In the formula above, Vol(D,ω) :=∫
D

ωn−1

(n−1)! and Vol(X,ω) :=
∫
X
ωn

n! are the volumes given by the smooth
Kähler metric ω ∈ c1(L).

We may call the above FutD,β the log Futaki invariant, where the fact
that FutD,β(Ξf , [ω]) depends only on the Kähler class [ω] (and not on the
specific choice of the metric) can be shown exactly as the classical case; see
e.g. [45, Section 4.2].

3. Momentum-constructed cscK metrics with cone
singularities along a divisor

3.1. Background and overview

Consider a Kähler manifold (M,ωM ) of complex dimension n−1 together
with a holomorphic line bundle p : F → M , endowed with a hermitian
metric hF with curvature form γ := −

√
−1∂∂̄ log hF . We first consider

Kähler metrics on the total space of F , which can be regarded as an open
dense subset of X := P(F ⊕ C); we shall later impose some “boundary
conditions” for these metrics to extend to X. Consider a Kähler metric on
the total space of F of the form(5) p∗ωM +ddcf(t), where f is a function of
t, and t is the log of the fibrewise norm function defined by hF serving as a
fibrewise radial coordinate. A Kähler metric of this form is said to satisfy
the Calabi ansatz.

This setting was studied by Hwang [24] in terms of the moment map
associated to the fibrewise U(1)-action on the total space of F ; see also [1,
2, 3, 25]. Suppose that we write ∂

∂θ for the generator of this U(1)-action,
normalised so that exp(2π ∂

∂θ ) = 1, and τ for the corresponding moment
map with respect to the Kähler form ωf := p∗ωM+ddcf(t). An observation
of Hwang and Singer [25] was that the function ‖ ∂∂θ‖

2
ωf

is constant on each
level set of τ , and hence we have a function ϕ : I → R>0, defined on the
range I ⊂ R of the moment map τ , given by

ϕ(τ) :=
∥∥∥∥ ∂∂θ

∥∥∥∥2

ωf

which is called the momentum profile in [25].

(5)We shall use the convention dc :=
√
−1(∂̄ − ∂).
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An important point of this theory is that we can in fact “reverse” the
above construction as follows. We start with some interval I ⊂ R (called
momentum interval in [25]) and τ ∈ I such that

(3.1) ωM (τ) := ωM − τγ > 0,

and write {p : (F , hF ) → (M,ωM ), I} for this collection of data. We now
consider a function ϕ which is smooth on I and positive on the interior
of I. Proposition 1.4 (and also Section 2.1) of [25] shows that the Kähler
metric on F defined by

(3.2) ωϕ := p∗ωM − τp∗γ + 1
ϕ

dτ ∧ dcτ = p∗ωM (τ) + 1
ϕ

dτ ∧ dcτ

is equal to ωf = p∗ωM + ddcf(t) satisfying the Calabi ansatz, where (f, t)
and (ϕ, τ) are related in the way as described in (2.2) and (2.3) of [25].
We now come back to the projective completion X = P(F ⊕C) of F , and

suppose that ωf = p∗ωM +ddcf(t) extends to a well-defined Kähler metric
on X. In this case, without loss of generality we may write I = [−b, b] for
some b > 0; τ = b (resp. τ = −b) corresponds to the ∞-section (resp.
0-section) of X = P(F ⊕C), cf. [25, Section 2.1]. Hwang [24] proved(6) that
the condition for ωϕ defined by (3.2) to extend to a well-defined Kähler
metric on X is given by the following boundary conditions for ϕ at ∂I:
ϕ(±b) = 0 and ϕ′(±b) = ∓2. We can thus construct a Kähler metric ωϕ
on X from the data {p : (F , hF )→ (M,ωM ), I}, and such ωϕ is said to be
momentum-constructed.
We recall the following notion.

Definition 3.1. — The data {p : (F , hF )→ (M,ωM ), I} are said to be
σ-constant if the curvature endomorphism ω−1

M γ has constant eigenvalues
on M , and the Kähler metric ωM (τ) (on M) has constant scalar curvature
for each τ ∈ I.

The advantage of assuming the σ-constancy is that the scalar curvature
S(ωϕ) of ωϕ can be written as

(3.3) S(ωϕ) = R(τ)− 1
2Q

∂2

∂τ2 (ϕQ)(τ)

in terms of τ , where

(3.4) Q(τ) := ωM (τ)n−1

ωn−1
M

(6)See also [25, Proposition 1.4 and Section 2.1]. The boundary condition of ϕ at ∂I =
{±b} will be discussed later in detail.
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and

(3.5) R(τ) := trωM (τ) Ric(ωM )

are both functions of τ by virtue of the σ-constancy hypothesis. Note
that (3.3) means that the cscK equation S(ωϕ) = const is now a second
order linear ODE.
In what follows, we assume that (M,ωM ) is a product of Kähler–Einstein

manifolds (Mi, ωi), and F :=
⊗r

i=1 p
∗
iK
⊗li
i , where li ∈ Z, pi : M � Mi is

the obvious projection, and Ki is the canonical bundle of Mi (we can in
fact assume li ∈ Q as long as K⊗lii is a genuine line bundle, rather than a
Q-line bundle). It is easy to see that this satisfies the σ-constancy. We also
assume that each Mi is Fano, as in [24]; this hypothesis is needed in the
Appendix A of [24], which will also be used in Section 3.3.1.
We now recall the work of Hwang (cf. [24, Theorem 1]), who constructed

an extremal metric on X = P(F ⊕ C) in every Kähler class.

Theorem 3.2 (Hwang [24, Corollary 1.2 and Theorem 2]). — The pro-
jective completion P(F ⊕ C) of a line bundle F :=

⊗r
i=1 p

∗
iK
⊗li
i , over a

product of Kähler–Einstein Fano manifolds, each with the second Betti
number 1, admits an extremal metric in each Kähler class.

Remark 3.3. — We also recall that the scalar curvature of these extremal
metrics can be written as S(ωϕ) = σ0 + λτ where σ0 and λ are constants
(cf. [24, Lemma 3.2]).

Whether this extremal metric is in fact cscK depends on if the (classical)
Futaki invariant vanishes (Theorem 2.10); see also e.g. [45, Corollary 4.22].
Hwang’s argument, however, gives the following alternative viewpoint on
this problem. The above formula S(ωϕ) = σ0 + λτ for the scalar curvature
of the extremal metric implies that ωϕ is cscK if and only if λ = 0, and
hence the question reduces to whether there exists a well-defined extremal
Kähler metric ωϕ such that S(ωϕ) has λ = 0. As Hwang [24] shows, the
obstruction for achieving this is the following boundary conditions for ϕ
at ∂I = {−b,+b}: ϕ(±b) = 0 and ϕ′(±b) = ∓2. They are the conditions
that must be satisfied for ωϕ to be a well-defined smooth metric on X;
ϕ(±b) = 0 means that the fibres “close up”, and ϕ′(±b) = ∓2 means that
the metric is smooth along the ∞-section (resp. 0-section).
It is not possible to achieve λ = 0, ϕ(±b) = 0, ϕ′(±b) = ∓2 all at the

same time if the Futaki invariant is not zero. On the other hand, however,
we can brutally set λ = 0 and try to see what happens to ϕ(±b) and ϕ′(±b).
In fact, it is possible to set λ = 0, ϕ(±b) = 0, and ϕ(−b) = 2 all at the
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same time(7) , as discussed in [24, Section 3.2] and recalled in Section 3.3.1
below. Thus, we should have ϕ′(b) 6= −2 if the Futaki invariant is not zero.
A crucially important point for us is that the value −πϕ′(b) = 2πβ is the
angle of the cone singularities that the metric develops along the∞-section,
if ϕ is real analytic on I. This point is briefly mentioned in [25, 2299] and
seems to be well-known to the experts (cf. [34, Lemma 2.3]). However, as
the author could not find an explicitly written proof in the literature, the
proof of this fact is provided in Lemma 3.6, Section 3.2.
What we prove in Section 3.3.1 is that it is indeed possible to run the

argument as above, namely it is indeed possible to have a cscK metric on X
in each Kähler class, at the cost of introducing cone singularities along the
∞-section. An important point here is that the cone angle 2πβ is uniquely
determined in each Kähler class; we can even obtain an explicit formula
(equation (3.20)) for the cone angle.
We compute in Section 3.3.2 the log Futaki invariant. The point is that

the computation becomes straightforward by using the extremal metric,
afforded by Theorem 3.2. It turns out that the vanishing of the log Futaki
invariant gives an equation for β to satisfy (equation (3.24)); in other words,
there is a unique value of β for which the log Futaki invariant vanishes. The
content of our main result, Theorem 1.7, is that this value of β agrees with
the one for which there exists a momentum-constructed conically singular
cscK metric with cone angle 2πβ (equation (3.20)).

Remark 3.4. — The hypothesis b2(Mi) = 1 in Theorem 1.7 is to en-
sure that each Kähler class of X can be represented by a momentum-
constructed metric, as we now explain. Observe first that b2(Mi) = 1
implies H2(M,R) =

⊕
i R[p∗iωi], by recalling that every Fano manifold

is simply connected (cf. [12]). Thus recalling the Leray–Hirsch theorem, we
have

H2(X,R) = p∗H2(M,R)⊕ Rc1(ξ) = p∗

(⊕
i

R[p∗iωi]
)
⊕ Rc1(ξ),

i.e. each Kähler class on X can be written as
∑r
i=1 αip

∗[p∗iωi] + αr+1c1(ξ)
for some αi > 0, where ξ is the dual of the tautological bundle on X. We can
now prove (cf. [24, Lemma 4.2]) that each Kähler class can be represented
by a momentum-constructed metric ωφ = p∗ωM − τp∗γ + 1

φdτ ∧ dcτ as

(7) It is possible to set ϕ(b) = −2 instead of ϕ(−b) = 2 in here, and in this case ωϕ will be
smooth along the ∞-section with cone singularities along the 0-section; this is purely a
matter of convention. However, just to simplify the argument, we will assume henceforth
that ωϕ is always smooth along the 0-section with the cone singularities forming along
the ∞-section.
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follows. Observe now that the form −τp∗γ + 1
φdτ ∧ dcτ is closed. Thus its

cohomology class can be written as[
−τp∗γ + 1

φ
dτ ∧ dcτ

]
=

r∑
i=1

α′ip
∗[p∗iωi] + α′r+1c1(ξ)

for some α′i > 0. We shall prove in Lemma 3.10 that any momentum-
constructed metric with the momentum interval I = [−b, b] has fibrewise
volume 4πb. This proves α′r+1 = 4πb. Thus, writing ωM =

∑r
i=1 α̃iωi,

we see that [ωφ] =
∑r
i=1(α′i + α̃i)p∗[p∗iωi] + 4πbc1(ξ). Thus, given any

Kähler class in κ ∈ H2(X,R), we can choose α̃i and b appropriately so that
[ωφ] = κ.

Remark 3.5. — We do not necessarily have 0 < β < 1 in Theorem 1.7;
although β > 0 always holds, as we prove in Section 3.3.1, there are
examples(8) where β > 1. Indeed, when we take M = P1 × P1, ωM =
p∗1ωKE + p∗2ωKE for the Kähler–Einstein metric ωKE ∈ 2πc1(−KP1) and
F = p∗1(−KP1) ⊗ p∗2(2KP1), we always have β > 1 as shown in Figure 3.1,
by noting that 0 < b < 0.5 gives a well-defined momentum interval.

Figure 3.1. Graph of β as a function of b for F = p∗1(K−1
P1 )⊗ p∗2(K2

P1)
on M = P1 × P1.

(8)Results with β > 1 are also given in [38].
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On the other hand, as shown in Figure 3.2, F = p∗1(−2KP1) ⊗ p∗2(KP1)
with M and ωM as above, 0 < b < 0.5 implies 0.3 . β < 1; in particular
Theorem 1.7 is not vacuous even if we impose an extra condition 0 < β < 1.

Figure 3.2. Graph of β as a function of b for F = p∗1(K−2
P1 )⊗ p∗2(KP1)

on M = P1 × P1.

The author could not find an example where β = 0 is achieved, which
(at least heuristically) corresponds to the cuspidal singularity (cf. [23]).

3.2. Some properties of momentum-constructed metrics with
ϕ′(b) = −2β

We do not assume in this section that the σ-constancy hypothesis (cf. Def-
inition 3.1) is necessarily satisfied, but do assume that ϕ is real analytic.

We first prove that ϕ′(b) = −2β does indeed define a Kähler metric that
is conically singular along the∞-section. The author thanks Michael Singer
for the advice on the proof of the following lemma.

Lemma 3.6 (Singer [41], Li [34, Lemma 2.3]). — Suppose that ωϕ is a
momentum-constructed Kähler metric on X = P(F ⊕C) with the momen-
tum interval I = [−b, b] and the momentum profile ϕ that is real analytic
on I with ϕ(±b) = 0, ϕ′(−b) = 2, and ϕ′(b) = −2β. Then ωϕ is smooth
on X \D, where D = {τ = b} is the ∞-section, and has cone singularities
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along D with cone angle 2πβ. Moreover, choosing the local coordinate sys-
tem (z1, . . . , zn) on X so that D = {z1 = 0} and that (z2, . . . , zn) defines a
local coordinate system on the base M , b − τ can be written as a locally
uniformly convergent power series

b− τ = A0|z1|2β
(

1 +
∞∑
i=1

Ai|z1|2βi
)

around D = {τ = b} = {z1 = 0}, where Ai’s are smooth functions which
depend only on the local coordinates (z2, . . . , zn) on M , and A0 > 0 is in
addition bounded away from 0.
Thus ϕ(τ) can be written as a locally uniformly convergent power series

around D

(3.6) ϕ(τ) = 2βA′1|z1|2β +
∞∑
i=2

A′i|z1|2βi,

where A′i’s are smooth functions which depend only on the local coordi-
nates (z2, . . . , zn) on M , and A′1 > 0 is in addition bounded away from 0.
This means that the metric gϕ corresponding to ωϕ satisfies the following
estimates around D:

(1) (gϕ)11̄ = O(|z1|2β−2),
(2) (gϕ)1j̄ = O(|z1|2β−1) (j 6= 1),
(3) (gϕ)ij̄ = O(1) (i, j 6= 1),

i.e. ωϕ is a Kähler metric with cone singularities along D with cone angle
2πβ (cf. Definition 1.1).

Remark 3.7. — Since we can expand τ and ϕ(τ) in the powers of |z1|2β ,
we see from the estimates for gϕ that the Kähler potential for ωϕ is an
element of C4,α,β as defined e.g. in [29, 36].

Proof. — Since Lemma 2.5 and Proposition 2.1 in [24] imply that ωϕ is
smooth on X \ D, we only have to check that the condition ϕ′(b) = −2β
implies that ωϕ has cone singularities along D with cone angle 2πβ.

Writing t for the log of the fibrewise length measured by hF , we have

(3.7) dt = dτ
ϕ(τ) ,

by recalling the equation (2.2) in [25]. We now write ϕ as a convergent
power series in b− τ around τ = b as

(3.8) ϕ(τ) = 2β(b− τ) +
∞∑
i=2

a′i(b− τ)i,
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since we assumed that ϕ is real analytic, where a′i’s are real numbers. Note
that the coefficient of the first term is fixed by the boundary condition
ϕ′(b) = −2β. This gives

t = 1
2 log hF (ζ, ζ) = − 1

2β log(b− τ) +
∞∑
i=2

a′′i (b− τ)i−1 + const

with some real numbers a′′i , where ζ is a fibrewise coordinate on F →M .
On the other hand, since ζ is a fibrewise coordinate on F →M , it gives a

fibrewise local coordinate of P(F ⊕C)→M around the 0-section; in other
words, at each point p ∈ M , ζ gives a local coordinate on each fibre P1

in the neighbourhood containing 0 = [0 : 1] ∈ P1. Since τ = b defines the
∞-section of P(F⊕C)→M , it is better to pass to the local coordinates on
P1 in the neighbourhood containing ∞ = [1 : 0] ∈ P1 in order to evaluate
the asymptotics as τ → b. The coordinate change is of course given by
ζ 7→ 1/ζ =: z1, and hence we have

1
2 log hF (ζ, ζ) = 1

2φF −
1
2 log |z1|2

= − 1
2β log(b− τ) +

∞∑
i=2

a′′i (b− τ)i−1 + const

by writing hF = eφF locally around a point p ∈M . This means that there
exists a smooth function A = A(z2, . . . , zn) which is bounded away from 0
and depends only on the coordinates (z2, . . . , zn) on M such that

|z1|2 = A(b− τ)
1
β

(
1 +

∞∑
i=1

a′′′i (b− τ)
)
,

with some real numbers a′′′i and hence, by raising both sides of the equation
to the power of β and applying the inverse function theorem, we have

(3.9) b− τ = A0|z1|2β
(

1 +
∞∑
i=1

Ai|z1|2βi
)

as a locally uniformly convergent power series around D = {τ = b} =
{z1 = 0}, where each Ai = Ai(z2, . . . , zn) is a smooth function which de-
pends only on the coordinates (z2, . . . , zn) on M , and A0 > 0 is in addition
bounded away from 0. In particular, we have b− τ = O(|z1|2β), and com-
bined with the equation (3.8), we thus get the result (3.6) that we claimed.
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We now evaluate 1
ϕdτ ∧ dcτ in ωϕ = p∗ωM − τp∗γ + 1

ϕdτ ∧ dcτ . The
above equation (3.9) means

∂(b− τ) = A0β|z1|2β−2z̄1B1dz1 + |z1|2β
n∑
i=2

B2,idzi

and

∂̄(b− τ) = A0β|z1|2β−2z1B1dz̄1 + |z1|2β
n∑
i=2

B2,idz̄i,

where we defined B1 and B2 as B1 := 1 +
∑∞
i=1 iAi|z1|2βi and B2,i :=

∂
∂zi

(
A0 +A0

∑∞
j=1Ai|z1|2βj

)
. We thus have

dτ ∧ dcτ = d(b− τ) ∧ dc(b− τ)

= 2A2
0B

2
1β

2|z1|4β−2√−1dz1 ∧ dz̄1

+ 2β|z1|4β−2z̄1A0B1

n∑
i=2

B2,i
√
−1dz1 ∧ dz̄i + c.c.+O(|z1|4β).(3.10)

where O(|z1|4β) stands for a term of the form

|z1|4β × (smooth function in (z2, . . . , zn))

× (locally uniformly convergent power series in |z1|2β),

and c.c. stands for complex conjugate of the preceding terms.
We now estimate the behaviour of each component (gϕ)ij̄ of the Käh-

ler metric ωϕ =
∑n
i,j=1(gϕ)ij̄

√
−1dzi ∧ dz̄j in terms of the local holo-

morphic coordinates (z1, z2, . . . , zn) on X. The above computation with
ϕ(τ) = O(|z1|2β) means that (gϕ)11̄ = O(|z1|2β−2), (gϕ)1j̄ = O(|z1|2β−1)
(j 6= 1), (gϕ)ij̄ = O(1) (i, j 6= 1) as it approaches the ∞-section, proving
that ωϕ has cone singularities of cone angle 2πβ along D. �

We also see that the above means that the inverse matrix (gϕ)ij̄ satisfies
the following estimates.

Lemma 3.8. — Suppose that gϕ is a momentum-constructed conically
singular Kähler metric with cone angle 2πβ along D = {z1 = 0}, with the
real analytic momentum profile ϕ. Then, around D,

(1) (gϕ)11̄ = O(|z1|2−2β),
(2) (gϕ)1j̄ = O(|z1|) if j 6= 1,
(3) (gϕ)ij̄ = O(1) if i, j 6= 1.

Thus, ∆ωϕf =
∑n
i,j=1(gϕ)ij̄ ∂2

∂zi∂z̄j
f is bounded if f is a smooth function on

X. Also, if f ′ is a smooth function on X \D that is of order |z1|2β around
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D, then ∆ωϕf
′ = O(1) +O(|z1|2β). In particular, ∆ωϕf

′ remains bounded
on X \D.

We now prove the following estimates on the Ricci curvature and the
scalar curvature of ωϕ around the ∞-section, i.e. when τ → b.

Lemma 3.9. — Choosing a local coordinate system (z1, . . . , zn) on X so
that z1 is the fibrewise coordinate which locally defines the ∞-section D

by z1 = 0 and that (z2, . . . , zn) defines a local coordinate system on the
base M , we have, around D,

(1) Ric(ωϕ)11̄ = O(1) +O(|z1|2β−2),
(2) Ric(ωϕ)1j̄ = O(1) +O(|z1|2β−1) (j 6= 1),
(3) Ric(ωϕ)ij̄ = O(1) +O(|z1|2β) (i, j 6= 1),

for a momentum-constructed metric ωϕ with smooth ϕ and ϕ′(b) = −2β.
In particular, combined with Lemma 3.8, we see that S(ωϕ) is bounded on
X \D if 0 < β < 1.

Proof. — First note that (cf. Lemma 3.6, the equation (3.2), and [25,
2296]) ωnϕ = n

ϕp
∗ωM (τ)n−1 ∧ dτ ∧ dcτ is of order

ωnϕ = |z1|2β−2Fp∗ωM (τ)n−1 ∧
√
−1dz1 ∧ dz̄1,

where F stands for some locally uniformly convergent power series in |z1|2β
that is bounded from above and away from 0 on X \D (this follows from
Lemma 3.6).
Writing ω0 := p∗ωM+δωFS for a reference Kähler form on X = P(F⊕C),

where ωFS is a fibrewise Fubini-Study metric and δ > 0 is chosen to be
small enough so that ω0 > 0, we thus have

ωnϕ
ωn0

= p∗ωM (τ)n−1

p∗ωn−1
M

|z1|2β−2F ′

with another locally uniformly convergent power series F ′ in |z1|2β on X \
D, which is bounded from above and away from 0 (note also that the
derivatives of F ′ in the z1-direction are not necessarily bounded on X\D due
to the dependence on |z1|2β ; they may have a pole of fractional order along
D). Recalling (3.1), we see that p∗ωM (τ)n−1/ωn−1

M depends polynomially
on τ . We thus have a locally uniformly convergent power series

(3.11)
ωnϕ
ωn0

= |z1|2β−2

F0 +
∞∑
j=1

Fj |z1|2βj


with some smooth functions Fj depending only on the coordinates
(z2, . . . , zn) on M , where F0 is also bounded away from 0.
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Choosing a local coordinate system (z1, . . . , zn) on X so that D =
{z1 = 0} and that (z2, . . . , zn) defines a local coordinate system on the
base M , we evaluate the order of each component of the Ricci curva-
ture Ric(ωϕ) = −

√
−1∂∂̄ log

(
ωnϕ
ωn0

)
around the ∞-section, i.e. as τ → b.

Writing Ric(ωϕ)ij̄ = − ∂2

∂zi∂z̄j
log
(
ωnϕ
ωn0

)
and noting ∂2

∂zi∂z̄j
log |z1|2 = 0 on

X \D for all i, j, we see that Ric(ωϕ)11̄ = O(1) +O(|z1|2β−2), Ric(ωϕ)1j̄ =
O(1) +O(|z1|2β−1) (j 6= 1), and Ric(ωϕ)ij̄ = O(1) +O(|z1|2β) (i, j 6= 1). In
particular, we see that S(ωϕ) is bounded if 0 < β < 1. �

3.3. Proof of Theorem 1.7

3.3.1. Construction of conically singular cscK metrics on X = P(F ⊕ C)

We start from recalling the materials in Section 3.2 of [24], particu-
larly [24, Propositions 3.1 and 3.2]. We first define a function
(3.12)

φ(τ) := 1
Q(τ)

(
2(τ + b)Q(−b)− 2

∫ τ

−b
(σ0 + λx−R(x))(τ − x)Q(x)dx

)
where Q(τ), R(τ) are defined as in (3.4) and (3.5). These being functions
of τ follows from σ-constancy (Definition 3.1). We re-write this as

(3.13) (φQ)(τ) = 2(τ + b)Q(−b)− 2
∫ τ

−b
(σ0 + λx−R(x))(τ − x)Q(x)dx,

and differentiate both sides of (3.13) twice, to get

(3.14) R(τ)− 1
2Q

∂2

∂τ2 (φQ)(τ) = σ0 + λτ.

We can show, as in [24, Proposition 3.1], that there exist constants σ0 and
λ such that φ satisfies φ(±b) = 0, φ′(±b) = ∓2, and φ(τ) > 0 if τ ∈ (−b, b);
namely that φ defines a smooth momentum-constructed metric ωφ. We thus
have S(ωφ) = σ0 +λτ , by recalling (3.3) and (3.14), so that ωφ is extremal.
Roughly speaking, our strategy is to “brutally substitute λ = 0” in the

above to get a cscK metric with cone singularities along the ∞-section.
More precisely, we aim to solve the equation

(3.15) R(τ)− 1
2Q

∂2

∂τ2 (ϕQ)(τ) = σ′0

with some constant σ′0, for a profile ϕ that is strictly positive on the interior
(−b, b) of I with boundary conditions ϕ(b) = ϕ(−b) = 0 and ϕ′(−b) = −2.
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The value ϕ′(b) has more to do with the cone singularities of the metric
ωϕ, and we shall see at the end that the metric ωϕ associated to such ϕ

defines a Kähler metric with cone singularities along the ∞-section with
cone angle −πϕ′(b) = 2πβ.
Since

ϕ(τ) := 1
Q(τ)

(
2(τ + b)Q(−b)− 2

∫ τ

−b
(σ′0 −R(x))(τ − x)Q(x)dx

)
certainly satisfies the equation (3.15), we are reduced to checking the
boundary conditions at ∂I and the positivity of ϕ on the interior of I.
Note first that the equality

(3.16) (ϕQ)(τ) = 2(τ + b)Q(−b)− 2
∫ τ

−b
(σ′0 −R(x))(τ − x)Q(x)dx

immediately implies that ϕ(−b) = 0 and ϕ′(−b) = 2 are always satisfied.
Imposing ϕ(b) = 0, we get

(3.17) 0 = 2bQ(−b)−
∫ b

−b
(σ′0 −R(x))(b− x)Q(x)dx

from (3.16), which in turn determines σ′0. Differentiating both sides of (3.16)
and evaluating at b, we also get

(3.18) ϕ′(b)Q(b) = 2Q(−b)− 2
∫ b

−b
(σ′0 −R(x))Q(x)dx.

Writing A :=
∫ b
−bQ(x)dx and B :=

∫ b
−b xQ(x)dx we can re-write (3.17),

(3.18) as

(3.19)
(
Aσ′0
Bσ′0

)
=
(

Q(−b)− ϕ′(b)Q(b)/2 +
∫ b
−bR(x)Q(x)dx

−bQ(−b)− bϕ′(b)Q(b)/2 +
∫ b
−b xR(x)Q(x)dx

)
,

which can be regarded as an analogue of the equations (26) and (27) in [24].
The consistency condition B(Aσ′0) = A(Bσ′0) gives an equation for ϕ′(b),
which can be written as

(3.20) − ϕ′(b)
2

=
Q(−b)(bA+B)−A

∫ b
−b xR(x)Q(x)dx+B

∫ b
−bR(x)Q(x)dx

Q(b)(bA−B) .

Summarising the above argument, we have now obtained a profile func-
tion ϕ which solves (3.15) with boundary conditions ϕ(b) = ϕ(−b) = 0,
ϕ′(−b) = −2, and ϕ′(b) as specified by (3.20). Now, Hwang’s argument [24,
Appendix A] applies word by word to show that ϕ is strictly positive on the
interior of I, and hence it now remains to show that the Kähler metric ωϕ
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has cone singularities along the ∞-section. Since Q(τ) is a polynomial in
τ and R(τ) is a rational function in τ (with no poles when τ ∈ [−b, b]), we
see from (3.15) that ϕ is real analytic on I = [−b, b] by the standard ODE
theory. Thus the value −πϕ′(b) = 2πβ is the angle of the cone singularities
that ωϕ develops along the ∞-section of X = P(F ⊕ C), by Lemma 3.6.
This completes the construction of the momentum-constructed conically
singular metric ωϕ, with cone angle −πϕ′(b) = 2πβ as specified by (3.20).
We also see ϕ′(b) 6 0 since otherwise ϕ′(−b) > 0, ϕ′(b) > 0, and ϕ(±b) =

0 imply that ϕ has to have a zero in (−b, b), contradicting the positivity
ϕ > 0 on (−b, b). Hence β > 0.

Finally, we identify the Kähler class [ωϕ] ∈ H2(X,R) of the momentum-
constructed conically singular cscK metric ωϕ. We first show that the re-
striction ωϕ|fibre of ωϕ to each fibre has (fibrewise) volume 4πb. This is
well-known when the metric is smooth, but we reproduce the proof here to
demonstrate that the same argument works even when ωϕ has cone singu-
larities. Related discussions can also be found in Section 5.3 (see Lemma 5.6
in particular).

Lemma 3.10 ([24, Section 4] or [25, Section 2.1]). — Suppose that ωϕ
is a (possibly conically singular) momentum-constructed metric with the
momentum profile ϕ : [−b, b] → R>0. Then the fibrewise volume of ωϕ is
given by 4πb.

Proof. — The equation (3.7) means that the restriction of ωϕ at each
fibre (which is isomorphic to P1) is given by (cf. [25, equation (2.5)])

ωϕ|fibre = 1
2ϕ(τ)|ζ|−2√−1dζ ∧ dζ̄ = ϕ(τ)r−2rdr ∧ dθ

where ζ = re
√
−1θ is a holomorphic coordinate on each fibre (| · | denotes

the fibrewise Euclidean norm defined by hF ; see [25, Section 2.1] for more
details). By using (3.7), we can re-write this as

(3.21) ωϕ|fibre = dτ
dt r

−1dr ∧ dθ = dτ
dr dr ∧ dθ

since t = log r. Integrating this over the fibre, we get∫
fibre

ωϕ = 2π
∫ ∞

0

dτ
dr dr = 2π

∫ b

−b
dτ = 4πb

since τ = b corresponds to ∞ ∈ P1 and τ = −b to 0 ∈ P1. �

Thus we can write [ωϕ] =
∑r
i=1 αip

∗[p∗iωi] + 4πbc1(ξ) for some αi > 0,
in the notation used in Remark 3.4. Since the same proof applies to the
smooth metric ωφ, we also have [ωφ] =

∑r
i=1 α̃ip

∗[p∗iωi] + 4πbc1(ξ) for
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some α̃i > 0. On the other hand, since ωϕ|M = ωM (b) = ωφ|M (where M
is identified with the 0-section), it immediately follows that αi = α̃i for all
i, i.e. [ωϕ] = [ωφ].

3.3.2. Computation of the log Futaki invariant

We again take the (smooth) momentum-constructed extremal metric ωφ,
with φ defined as in (3.12), and write S(ωφ) = σ0 + λτ for its scalar
curvature.
Recall that the generator vf of the fibrewise U(1)-action has aτ as its

Hamiltonian function with respect to ωφ (cf. [25, Section 2.1]), with some
a ∈ R up to an additive constant which does not change vf . This means
that aτ (up to an additive constant) is the holomorphy potential for the
holomorphic vector field Ξf := v1,0

f (cf. Remark 2.8) which generates the
complexification of the fibrewise U(1)-action, i.e. the fibrewise C∗-action.
Thus we can take f = a(τ − τ̄), with τ̄ being the average of τ over X
with respect to ωφ, for the holomorphy potential f in the formula (2.3).
Then, noting that S(ωφ)− S̄ = λ(τ − τ̄), we compute the (classical) Futaki
invariant as

Fut(Ξf , [ωφ]) =
∫
X
aλ(τ − τ̄)2ω

n
φ

n! = 2πaλVol(M,ωM )
∫ b

−b
(τ − τ̄)2Q(τ)dτ

with Vol(M,ωM ) :=
∫
M

ωn−1
M

(n−1)! , by [24, Lemma 2.8]. Recalling D = {τ = b},
the second term in the log Futaki invariant can be obtained by computing∫

D

f
ωn−1
φ

(n− 1)! =
∫
D

a(τ − τ̄)
ωn−1
φ

(n− 1)! =
∫
D

a(b− τ̄)p
∗ωM (b)n−1

(n− 1)!

= a(b− τ̄)Q(b)
∫
M

ωn−1
M

(n− 1)!
= a(b− τ̄)Q(b) Vol(M,ωM )

where we used

(3.22) ωn−1
φ = p∗ωM (τ)n−1 + n− 1

φ
p∗ωM (τ)n−2dτ ∧ dcτ

which was proved in [25, 2296], and the definitional Q(b) = ωM (b)n−1/ωn−1
M

(cf. equation (3.7)). We also note the trivial equality
∫
X f

ωnφ
n! =∫

X λ(τ − τ̄)ω
n
φ

n! = 0 to see that the third term of the log Futaki invari-
ant is 0. Collecting these calculations together, the log Futaki invariant
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evaluated against Ξf is given by

FutD,β(Ξf , [ωφ])

= aλVol(M,ωM )
∫ b

−b
(τ − τ̄)2Q(τ)dτ − (1− β)a(b− τ̄)Q(b) Vol(M,ωM ).

Thus, writing A :=
∫ b
−bQ(τ)dτ , B :=

∫ b
−b τQ(τ)dτ , and C :=

∫ b
−b τ

2Q(τ)dτ
and noting τ̄ = B/A, setting FutD,β(Ξf , [ωφ]) = 0 gives an equation for
the cone angle β as

β = 1−
λ
∫ b
−b(τ − τ̄)2Q(τ)dτ

(b− τ̄)Q(b) =
Q(b)(bA−B)− λ

(
AC −B2)

Q(b)(bA−B)(3.23)

Applying (3.17) and (3.18) to the case of smooth extremal metric ωφ, i.e.
with φ′(b) = −2, we get the equations (26) and (27) in [24] which can be
re-written as(

A B

B C

)(
σ0
λ

)
=
(

Q(−b) +Q(b) +
∫ b
−bR(x)Q(x)dx

−bQ(−b) + bQ(b) +
∫ b
−b xR(x)Q(x)dx

)
,

and hence, noting AC − B2 > 0 by Cauchy–Schwarz (where we regard
Q(τ)dτ as a measure on I = [−b, b]), we get λ as

(AC −B2)−1

[
−B

(
Q(−b) +Q(b) +

∫ b

−b
R(x)Q(x)dx

)

+A
(
−bQ(−b) + bQ(b) +

∫ b

−b
xR(x)Q(x)dx

)]
,

and hence

(3.24) β =
Q(b)(bA−B)− λ

(
AC −B2)

Q(b)(bA−B)

=
Q(−b)(bA+B) +B

∫ b
−bR(x)Q(x)dx−A

∫ b
−b xR(x)Q(x)dx

Q(b)(bA−B)

which agrees with (3.20). This is precisely what was claimed in Theo-
rem 1.7.

Remark 3.11. — In fact, in the above proof we did not need the Kähler
class [ωϕ] to be rational, since the log Futaki invariant can be defined
for a nonrational Kähler class as well. It seems interesting to speculate
connections to the recent works on nonrational Kähler classes [16, 42]; see
also [40, Section 4.4].
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4. Futaki invariant computed with respect to the conically
singular metrics

4.1. Some estimates for the conically singular metrics of
elementary form

We now consider conically singular metrics of elementary form ω̂ = ω +
λ
√
−1∂∂̄|s|2βh , as defined in Definition 1.10. We collect here some estimates

that we need later.

Remark 4.1. — What we discuss in here is just a review of well-known
results, and in fact for the most part, they are contained in Section 2 of
the paper of Jeffres–Mazzeo–Rubinstein [27] or Section 3 of the paper of
Brendle [7].

Pick a local coordinate system (z1, . . . , zn) around a point in X so that
D is locally given by {z1 = 0}. We then write

ω̂ =
∑
i,j

ĝij̄
√
−1dzi∧dz̄j =

∑
i,j

gij̄
√
−1dzi∧dz̄j+λ

∑
i,j

∂2|s|2βh
∂zi∂z̄j

√
−1dzi∧dz̄j

which means

(ĝij̄)ij̄ =


g11̄ +O(|z1|2β−2) g12̄ +O(|z1|2β−1) . . . g1n̄ +O(|z1|2β−1)
g21̄ +O(|z1|2β−1) g22̄ +O(|z1|2β) . . . g2n̄ +O(|z1|2β)

...
...

. . .
...

gn1̄ +O(|z1|2β−1) gn2̄ +O(|z1|2β) . . . gnn̄ +O(|z1|2β)

.
Thus, writing ĝ for the metric corresponding to ω̂, we have (cf. Defini-
tion 1.1)

(1) ĝ11̄ = O(|z1|2β−2),
(2) ĝ1j̄ = O(|z1|2β−1) if j 6= 1,
(3) ĝij̄ = O(1) if i, j 6= 1.

The above also means that the volume form ω̂n can be estimated as (cf. [7,
10])

ω̂n =

|z1|2β−2
n−1∑
j=0

aj |z1|2βj +
n∑
j=0

bj |z1|2βj
ωn0

where ω0 is a smooth reference Kähler form on X, aj ’s and bj ’s being
smooth functions on X, and a0 is also strictly positive. Thus we immedi-
ately have the following lemma.
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Lemma 4.2. — We may write ω̂n = |z1|2−2βα with some (n, n)-form α,
which is smooth on X \D and bounded as we approach D = {z1 = 0}, but
whose derivatives (in z1-direction) may not be bounded around D due to
the dependence on the fractional power |z1|2β .

We also see, analogously to Lemma 3.8, that the above means that the
inverse matrix ĝij̄ satisfies the following estimates.

Lemma 4.3. — Suppose that ĝ is a conically singular Kähler metric of
elementary form with cone angle 2πβ alongD = {z1 = 0}. Then, aroundD,

(1) ĝ11̂ = O(|z1|2−2β),
(2) ĝ1j̄ = O(|z1|) if j 6= 1,
(3) ĝij̄ = O(1) if i, j 6= 1.

Thus, ∆ω̂f =
∑n
i,j=1 ĝ

ij̄ ∂2

∂zi∂z̄j
f is bounded if f is a smooth function on

X. Also, if f ′ is a smooth function on X \D that is of order |z1|2β around
D, then ∆ω̂f

′ = O(1) +O(|z1|2β). In particular, ∆ω̂f
′ remains bounded on

X \D.

We now evaluate the Ricci curvature of ω̂. In terms of the local coordinate
system (z1, . . . , zn) as above, we have

Ric(ω̂)ij̄ = − ∂2

∂zi∂z̄j
log
(
ω̂n

ωn0

)

= − ∂2

∂zi∂z̄j
log

|z1|2β−2
n−1∑
j=0

aj |z1|2βj +
n∑
j=0

bj |z1|2βj
 .

Since ∂∂̄ log |z1|2 = 0 on X \D, we have

Ric(ω̂)ij̄ = − ∂2

∂zi∂z̄j
log

n−1∑
j=0

aj |z1|2βj +
n∑
j=0

bj |z1|2−2β+2βj

 .

Note now that we can write

(4.1) log

n−1∑
j=0

aj |z1|2βj +
n∑
j=0

bj |z1|2−2β+2βj


= F0 + log

(
O(1) +O(|z1|2−2β) +O(|z1|2β)

)
= O(1) +O(|z1|2−2β) +O(|z1|2β)

with some smooth function F0, around the divisor D. Thus, we eventu-
ally get Ric(ω̂)11̄ = O(1) + O(|z1|−2β) + O(|z1|2β−2), Ric(ω̂)1j̄ = O(1) +
O(|z1|1−2β)+O(|z1|2β−1) (j 6= 1), and Ric(ω̂)jk̄ = O(1) (j, k 6= 1). Together
with Lemma 4.3, this means the following.

ANNALES DE L’INSTITUT FOURIER



KÄHLER METRICS WITH CONE SINGULARITIES 623

Lemma 4.4. — Suppose that ĝ is a conically singular Kähler metric of
elementary form with cone angle 2πβ along D locally defined by z1 = 0.
Then

(1) Ric(ω̂)11̄ = O(1) +O(|z1|−2β) +O(|z1|2β−2),
(2) Ric(ω̂)1j̄ = O(1) +O(|z1|1−2β) +O(|z1|2β−1) (j 6= 1),
(3) Ric(ω̂)jk̄ = O(1) (j, k 6= 1).

In particular, combined with Lemma 4.3, we see that the scalar curvature
S(ω̂) can be estimated as S(ω̂) = O(1) +O(|z1|2−4β).

Remark 4.5. — We observe that the above estimate implies∣∣∣∣∣
∫

Ω\D
S(ω̂) ω̂

n

n!

∣∣∣∣∣ < const.
∫
unit disk in C

(1 + |z1|2−4β)|z1|2β−2√−1dz1 ∧ dz̄1

< const.
∫ 1

0
(r2β−1 + r−2β+1)dr <∞

for any open set Ω ⊂ X with Ω ∩D 6= ∅, as 0 < β < 1.

4.2. Scalar curvature as a current

In order to compute the log Futaki invariant with respect to a coni-
cally singular metric ωsing, we need to make sense of Ric(ωsing) ∧ ωn−1

sing

globally on X. However, this is not well-defined for a general conically
singular metric ωsing, as we discuss in Remark 4.9. We thus restrict our
attention to the case of conically singular metrics of elementary form ω̂ or
the momentum-constructed conically singular metrics ωϕ. Theorems 1.11
and 1.12 state that in these cases it is indeed possible to have a well-defined
current Ric(ω̂) ∧ ω̂n−1 or Ric(ωϕ) ∧ ωn−1

ϕ on the whole manifold, and this
section is devoted to the proof of these results.

Remark 4.6. — There are some results in the literature that are similar
to Theorems 1.11 and 1.12. We discuss their similarities and differences
below.

(1) Li [35, Proposition 2.16] also worked on the distributional meaning
of the scalar curvature. An important difference to the above results
is that Li considered the distributional term [D] ∧ ωn−1

sing as a non-
pluripolar product [35, Lemma 2.14], which is zero. Theorems 1.11
and 1.12 clarify the non-zero contribution from the distributional
term [D], by assuming that the conically singular metrics have the
preferable forms as in Definition 1.10; Li assumed, on the other
hand, a condition on the Ricci curvature as in [35, Definition 2.7].
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(2) Theorems 1.11 and 1.12 also bear some similarities to the equa-
tion (4.60) in Proposition 4.2 of the paper [43] by Song and Wang.
The main difference is that our theorems show that Ric(ω̂) ∧ ω̂n−1

(resp. Ric(ωϕ)∧ωn−1
ϕ ) is a current well-defined over any open sub-

set Ω in X, as opposed to just computing
∫
X

Ric(ω̂) ∧ ω̂n−1 (resp.∫
X

Ric(ωϕ) ∧ ωn−1
ϕ ); indeed our proof is quite different to theirs,

although we have in common the basic strategy of doing the inte-
gration by parts “correctly”.

Remark 4.7. — We decide to present the argument for the conically
singular metric of elementary form ω̂ in parallel with the one for the
momentum-constructed conically singular metric ωϕ, as they have much
in common.
To distinguish these two cases, we continue to denote ωϕ for a momentum-

constructed conically singular metric on X = P(F ⊕C) over a base Kähler
manifold (M,ωM ), with the projection p : (F , hF ) → (M,ωM ). We do
not necessarily assume that p : (F , hF ) → (M,ωM ) satisfies σ-constancy
(cf. Definition 3.1), but do need to assume that ϕ is real analytic; we will
only rely on the results proved in Section 3.2, in which we did not assume
σ-constancy but assumed that ϕ is real analytic.

On the other hand, when we consider the conically singular metrics of
elementary form ω̂ = ω + λ

√
−1∂∂̄|s|2βh , X can be any (projective) Kähler

manifold with some smooth effective divisor D ⊂ X.

Remark 4.8. — Suppose that we write, for a conically singular metric of
elementary form ω̂,

S̄(ω̂) := 1
Vol(X, ω̂)

∫
X

Ric(ω̂) ∧ ω̂n−1

(n− 1)!

for the “average of S(ω̂) on the whole of X”, where we note Vol(X, ω̂) :=∫
X
ω̂n/n! =

∫
X\D ω̂

n/n! < ∞ (by recalling Remark 1.6). We then have,
from Theorem 1.11,

S̄(ω̂) = S(ω̂) + 2π(1− β)Vol(D,ω)
Vol(X, ω̂) ,

where S(ω̂) :=
∫
X\D S(ω̂) ω̂

n

n! /Vol(X, ω̂) is the average of S(ω̂) over X \D,
which makes sense by Remark 4.5. Similarly, for a momentum-constructed
conically singular metric ωϕ, we have (by recalling Theorem 1.12 and
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Lemma 3.9)

S̄(ωϕ) = S(ωϕ) + 2π(1− β)Vol(D, p∗ωM (b))
Vol(X, ωϕ)

= S(ωϕ) + 2π(1− β)Vol(M,ωM (b))
Vol(X, ωϕ) .

The reader is warned that the average of the scalar curvature S̄(ω̂) com-
puted with respect to the conically singular metrics may not be a coho-
mological invariant since Ric(ω̂) is not necessarily a de Rham represen-
tative of c1(L) due to the cone singularities of ω̂, whereas Vol(D,ω) =∫
D
c1(L)n−1/(n− 1)! certainly is. Exactly the same remark of course ap-

plies to the momentum-constructed conically singular metric ωϕ. On the
other hand, we can show Vol(X, ω̂) =

∫
X
c1(L)n/n! (cf. Lemma 5.1), and

Vol(X, ωϕ) = 4πbVol(M,ωM ) (cf. Remark 3.4) for X = P(F ⊕ C).

Remark 4.9. — We will use in the proof the estimates established in Sec-
tion 3.2 and Section 4.1, and our proof will not apply to conically singular
metrics in full generality. Most importantly, we do not know what the “dis-
tributional” component (i.e. the second term in Theorems 1.11 and 1.12)
should be for a general conically singular metric ωsing; the proof below
shows that it should be equal to [D]∧ωn−1

sing, [D] being a current of integra-
tion over D, but it is far from obvious that it is well-defined (particularly
so since ωsing is singular along D). Indeed, even for the case of conically
singular metrics of elementary form ω̂, [D] ∧ ω̂n−1 being well-defined as a
current with nontrivial contribution from [D] (Lemma 4.11) seems to be a
new result (cf. Remark 4.6).

Proof of Theorems 1.11 and 1.12. — The proof is essentially a repetition
of the usual proof of the Poincaré–Lelong formula (cf. [13]), with some
modifications needed to take care of the cone singularities of ω̂ and ωϕ.

We first consider the case of the conically singular metric of elementary
form ω̂. We first pick a C∞-tubular neighbourhood D0 around D with
(small but fixed) radius ε0, meaning that points in D0 have distance less
than ε0 from D measured in the metric ω. We then write∫

Ω
f Ric(ω̂)∧ ω̂n−1

(n− 1)! =
∫

Ω\D0

f Ric(ω̂)∧ ω̂n−1

(n− 1)!+
∫

Ω∩D0

f Ric(ω̂)∧ ω̂n−1

(n− 1)!

and apply the partition of unity on the compact manifold Ω ∩D0 (i.e. the
closure of Ω ∩ D0) to reduce to the local computation in a small open
set U ⊂ Ω ∩ D0 around the divisor D. Confusing U ⊂ Ω ∩ D0 with an
open set in Cn, this means that we take an open set U in Cn (by abuse of
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notation) endowed with the Kähler metric ω, where we may also assume
that U is biholomorphic to the polydisk {(z1, . . . , zn) | |z1|ω < ε0/2, |z2|ω <
ε0/2, . . . , |zn|ω < ε0/2}, in which the divisorD is given by the local equation
z1 = 0. Thus our aim now is to show∫
U

f Ric(ω̂)∧ ω̂n−1

(n− 1)! =
∫
U\{z1=0}

fS(ω̂) ω̂
n

n! +2π(1−β)
∫
{z1=0}

f
ωn−1

(n− 1)! ,

where we recall that the partition of unity allows us to assume that f is
smooth and compactly supported on U .

Note that exactly the same argument applies to the momentum-constr-
ucted conically singular metric ωϕ, by using some reference smooth metric
ω0 on X (in place of ω) to define D0. Hence our aim for the momentum-
constructed conically singular metric ωϕ is to show

∫
U

f Ric(ωϕ) ∧
ωn−1
ϕ

(n− 1)!

=
∫
U\{z1=0}

fS(ωϕ)
ωnϕ
n! + 2π(1− β)

∫
{z1=0}

f
p∗ωM (b)n−1

(n− 1)! ,

for a smooth and compactly supported f .
For the conically singular metrics of elementary form ω̂, we recall Lem-

ma 4.2 and write ω̂n = |z1|2β−2α with some smooth bounded (n, n)-form
α on X \D, and hence have ∂∂̄ log det(ω̂) = (β − 1)∂∂̄ log |z1|2 +R where
R is a 2-form which is smooth on U \ {z1 = 0} but may have a pole (of
fractional order) along {z1 = 0}. We thus write

Ric(ω̂) ∧ ω̂n−1 = −
√
−1∂∂̄ log det(ω̂) ∧ ω̂n−1(4.2)

= (1− β)
√
−1∂∂̄ log |z1|2 ∧ ω̂n−1 −

√
−1R ∧ ω̂n−1.

On the other hand, we can argue in exactly the same way, by using (3.11)
in place of Lemma 4.2, to see that for a momentum-constructed conically
singular metric ωϕ, we can write

Ric(ωϕ) ∧ ωn−1
ϕ = −

√
−1∂∂̄ log det(ωϕ) ∧ ωn−1

ϕ(4.3)

= (1− β)
√
−1∂∂̄ log |z1|2 ∧ ωn−1

ϕ −
√
−1Rϕ ∧ ωn−1

ϕ

for some 2-form Rϕ that is smooth on U \ {z1 = 0} but may have a pole
(of fractional order) along {z1 = 0}.
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We aim to show that these formulae (4.2) and (4.3) are well-defined in
the weak sense. This means that we aim to show that∫

U

f Ric(ω̂) ∧ ω̂n−1

(n− 1)!

=
∫
U

f
√
−1R ∧ ω̂n−1

(n− 1)! + (1− β)
∫
U

f
√
−1∂∂̄ log |z1|2 ∧

ω̂n−1

(n− 1)!
is well-defined and is equal to∫

U\{z1=0}
fS(ω̂) ω̂

n

n! + 2π(1− β)
∫
{z1=0}

f
ωn−1

(n− 1)!

for any smooth function f with compact support in U . Theorem 1.11 ob-
viously follows from this, and exactly the same argument applies to ωϕ to
prove Theorem 1.12.
We prove these claims as follows. Let Uε be a subset of U defined for

sufficiently small ε � ε0 by Uε := {(z1, . . . , zn) ∈ U | 0 < ε < |z1|} (the
norm in the inequality ε < |z1| is given by the Euclidean metric on Cn). In
Lemma 4.10, we shall prove that

−n
∫
U

f
√
−1R ∧ ω̂n−1 = −n lim

ε→0

∫
Uε

f
√
−1R ∧ ω̂n−1

=
∫
U\{z1=0}

fS(ω̂)ω̂n

for a conically singular metric of elementary form ω̂, and

−n
∫
U

f
√
−1Rϕ ∧ ωn−1

ϕ = −n lim
ε→0

∫
Uε

f
√
−1Rϕ ∧ ωn−1

ϕ

=
∫
U\{z1=0}

fS(ωϕ)ωnϕ

for a momentum-constructed conically singular metric ωϕ, and that both
of these terms are finite if f is compactly supported on U ,

In Lemma 4.11 we shall prove∫
U

f
√
−1∂∂̄ log |z1|2 ∧ ω̂n−1 = 2π

∫
{z1=0}

fωn−1,

and in Lemma 4.13 we shall prove∫
U

f
√
−1∂∂̄ log |z1|2 ∧ ωn−1

ϕ = 2π
∫
{z1=0}

fp∗ωM (b)n−1,

if f is smooth. Granted these lemmas, we complete the proof of Theo-
rems 1.11 and 1.12. �
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Lemma 4.10. — For a conically singular metric of elementary form ω̂,
we have

−n
∫
U

f
√
−1R ∧ ω̂n−1 = −n lim

ε→0

∫
Uε

f
√
−1R ∧ ω̂n−1

=
∫
U\{z1=0}

fS(ω̂)ω̂n

and the integral is well-defined for any smooth function f compactly sup-
ported on U , i.e.

∣∣∫
U
f
√
−1R ∧ ω̂n−1

∣∣ is finite.
For a momentum-constructed conically singular metric ωϕ, we have

−n
∫
U

f
√
−1Rϕ ∧ ωn−1

ϕ = −n lim
ε→0

∫
Uε

f
√
−1Rϕ ∧ ωn−1

ϕ

=
∫
U\{z1=0}

fS(ωϕ)ωnϕ

and the integral is well-defined for any smooth function f compactly sup-
ported on U .

Proof. — We first consider the case of the conically singular metric of
elementary form ω̂. Although R is not bounded on the whole of U\{z1 = 0},
Lemma 4.4 shows that the metric contraction of R with ω̂ (which is equal
to S(ω̂)/n on X \D) satisfies

(4.4) |Λω̂R| < const.(1 + |z1|2−4β).

on U \ {z1 = 0}, thus

|R∧ ω̂n−1|ω 6 const.(|z1|2β−2 + |z1|2−4β+2β−2) = const.(|z1|2β−2 + |z1|−2β)

on U \ {z1 = 0}. Since f is bounded on the whole of U , we see, by writing
r := |z1| and choosing a large but fixed number A which depends only on
U and ω, that

lim
ε→0

∣∣∣∣∫
Uε

f
√
−1R ∧ ω̂n−1

∣∣∣∣
6 const. lim

ε→0

∫
Uε

(|z1|2β−2 + |z1|−2β)ωn

6 const. lim
ε→0

∫
ε<|z1|<A

(|z1|2β−2 + |z1|−2β)
√
−1dz1 ∧ dz̄1

6 const. lim
ε→0

∫ A

ε

(r2β−2 + r−2β)rdr <∞
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since 0 < β < 1. In other words, the above shows that the signed measure
defined by

√
−1R ∧ ω̂n−1 on U is well-defined. Observe also∣∣∣∣∣

∫
U\Uε

f
√
−1R ∧ ω̂n−1

∣∣∣∣∣ 6 const.
∫
U\Uε

|f
√
−1R ∧ ω̂n−1|ωωn

6 const.
∫ ε

0
sup
|z1|=r

|f
√
−1R ∧ ω̂n−1|ωrdr(4.5)

6 const.
∫ ε

0
(r2β−1 + r1−2β)dr → 0

as ε → 0, where we used the elementary
∫ ε

0 =
∫

[0,ε] =
∫

(0,ε] in (4.5) to
apply (4.4), by noting that sup|z1|=r |f

√
−1R ∧ ω̂n−1|ω is continuous in

r ∈ (0, ε] and its only singularity is the pole of fractional order at r = 0.
We thus have∫
U

f
√
−1R ∧ ω̂n−1 = lim

ε→0

∫
Uε

f
√
−1R ∧ ω̂n−1 =

∫
U\{z1=0}

f
√
−1R ∧ ω̂n−1

and the above integrals are all finite.
On the other hand, we know that ∂∂̄ log |z1|2 = 0 on U \ {z1 = 0}, and

hence, recalling (4.2), S(ω̂)ω̂n = −n
√
−1R ∧ ω̂n−1 on U \ {z1 = 0}. Thus

we can write

−n
∫
U

f
√
−1R ∧ ω̂n−1 = −n lim

ε→0

∫
Uε

f
√
−1R ∧ ω̂n−1 =

∫
U\{z1=0}

fS(ω̂)ω̂n

as claimed.
For the case of momentum-constructed conically singular metric ωϕ,

Lemma 3.9 shows that |ΛωϕRϕ| is bounded on U \ {z1 = 0}. Since this
is better than the estimate (4.4), all the following argument applies word
by word. We thus establish the claim for the momentum-constructed coni-
cally singular metric. �

Lemma 4.11. — For a conically singular metric of elementary form ω̂,∫
U

f
√
−1∂∂̄ log |z1|2 ∧ ω̂n−1 = 2π

∫
{z1=0}

fωn−1,

if f is smooth and compactly supported in U .

Remark 4.12. — Note that we cannot naively apply the usual Poincaré–
Lelong formula, since the metric ω̂ is singular along {z1 = 0}. Note also
that the integral

∫
{z1=0} fω

n−1 is manifestly finite.
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Proof. — We start by re-writing

(4.6)
∫
U

√
−1∂∂̄ log |z1|2 ∧ fω̂n−1

= 1
2 lim
ε→0

∫
U\Uε

ddc log |z1|2 ∧ fω̂n−1

= 1
2 lim
ε→0

∫
U\Uε

d
(
dc log |z1|2 ∧ fω̂n−1)

+ 1
2 lim
ε→0

∫
U\Uε

dc log |z1|2 ∧ df ∧ ω̂n−1

since ∂∂̄ log |z1|2 = 0 if |z1| 6= 0, where we used d = ∂ + ∂̄ and dc =√
−1(∂̄ − ∂).
We first claim limε→0

∫
U\Uε dc log |z1|2 ∧ df ∧ ω̂n−1 = 0. We start by

observing that ω̂n−1 cannot contain the term proportionate to dz1 ∧ dz̄1
when we take the wedge product of it with dc log |z1|2 or d log |z1|2, since
it will be cancelled by them. Namely, writing |s|2βh = eφ|z1|2β and defining

(4.7) ω̃ := ω̂ − λ
√
−1 ∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

= ω + λ
√
−1

 n∑
j=2

β|z1|2β−2z1(∂j̄eφ)dz1 ∧ dz̄j + c.c.+ |z1|2βη′


where η′ := ∂∂̄eφ− ∂2eφ

∂z1∂z̄1
dz1∧dz̄1 is a smooth 2-form, we have dc log |z1|2∧

ω̂n−1 = dc log |z1|2 ∧ ω̃n−1 and d log |z1|2 ∧ ω̂n−1 = d log |z1|2 ∧ ω̃n−1. It
should be stressed that ω̃ is not necessarily closed; indeed we observe dω̃ =
−λ
√
−1d

(
∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
. Note also that ω̃ 6 const.ω̂.

Combined with the well-known equality dc log |z1|2 ∧ df ∧ ω̂n−1 =
−d log |z1|2 ∧ dcf ∧ ω̂n−1, we find

(4.8)
∫
Vε

dc log |z1|2 ∧ df ∧ ω̂n−1

= −
∫
Vε

d
(
log |z1|2dcf ∧ ω̃n−1)+

∫
Vε

log |z1|2ddcf ∧ ω̃n−1

−
∫
Vε

log |z1|2dcf ∧ dω̃n−1

where we decide to write Vε := U \ Uε.
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We evaluate each term separately and show that all of them go to 0 as
ε→ 0. To evaluate the first term of (4.8), we write∫

Vε

d
(
log |z1|2dcf ∧ ω̃n−1) =

∫
∂Vε

log |z1|2dcf ∧ ω̃n−1.

Observe now that

(4.9) ω̃|∂Vε = ω|∂Vε

+ λ
√
−1
(∑

ε2β(∂j̄eφ)
√
−1e

√
−1θdθ∧dz̄j + c.c.+ ε2βη′|∂Vε

)
where we wrote z1 = εe

√
−1θ on ∂Vε = {|z1| = ε}. This means that

(4.10)
∣∣∣∣∫
∂Vε

log |z1|2dcf ∧ ω̃n−1
∣∣∣∣

6 const. log ε
∣∣∣∣∫
∂Vε

(ε2β + ε)dθ ∧ dz2 ∧ dz̄2 ∧ . . . dzn ∧ dz̄n
∣∣∣∣

6 const.ε2β log ε→ 0

as ε → 0, by noting that dz1 = ε
√
−1e

√
−1θdθ on ∂Vε and f is smooth on

U .
The second term of (4.8) can be evaluated as∣∣∣∣∫

Vε

log |z1|2ddcf ∧ ω̃n−1
∣∣∣∣ 6 const.

∣∣∣∣∫
Vε

log r2∆ω̂fω̂
n

∣∣∣∣(4.11)

6 const.
∣∣∣∣∫
Vε

log r2ω̂n
∣∣∣∣

6 const.
∣∣∣∣∫ ε

0
r2β−1 log rdr

∣∣∣∣→ 0

as ε→ 0, by noting that ∆ω̂f is bounded since f is smooth on U (cf. Lem-
ma 4.3).
In order to evaluate the third term of (4.8), we start by re-writing it as

(4.12)
∫
Vε

log |z1|2dcf ∧ dω̃n−1

= −λ(n− 1)
∫
Vε

log |z1|2dcf

∧ d
(

∂2

∂z1∂z̄1
(eφ|z1|2β)

√
−1dz1 ∧ dz̄1

)
∧ ω̃n−2.
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We have

d
(

∂2

∂z1∂z̄1
(eφ|z1|2β)

√
−1dz1 ∧ dz̄1

)
=

n∑
j=2

(
β2(∂jeφ)|z1|2β−2 + β∂j((∂1φ)eφ)|z1|2β−2z1

+ β∂j((∂1̄φ)eφ)|z1|2β−2z̄1 + |z1|2β
∂3eφ

∂z1∂z̄1∂zj

)√
−1dz1 ∧ dz̄1 ∧ dzj + c.c.

Since ω̃ does not have any term proportionate to dz1 or dz̄1 when wedged
with d

(
∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
, we have, from (4.7),

∣∣∣∣dcf ∧ d
(

∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
∧ ω̃n−2

∣∣∣∣
ω

6 const.
∣∣∣∣dcf ∧ d

(
∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
∧ ωn−2

∣∣∣∣
ω

and noting that f is smooth on U , we have

(4.13)
∣∣∣∣dcf ∧ d

(
∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
∧ ωn−2

∣∣∣∣
ω

6 const.|z1|2β−2.

Thus

(4.14)
∣∣∣∣∫
Vε

log |z1|2dcf ∧ dω̃n−1
∣∣∣∣

=
∣∣∣∣λ(n−1)

∫
Vε

log |z1|2dcf ∧d
(

∂2

∂z1∂z̄1
(eφ|z1|2β)dz1∧dz̄1

)
∧ ω̃n−2

∣∣∣∣
6 const.

∣∣∣∣∫
Vε

r2β−2 log rωn
∣∣∣∣ 6 const.

∣∣∣∣∫ ε

0
r2β−1 log rdr

∣∣∣∣→ 0

as ε→ 0, finally establishing
∫
Vε

dc log |z1|2 ∧ df ∧ ω̂n−1 → 0 as ε→ 0.
Going back to (4.6), we have thus shown limε→0

∫
Vε

√
−1∂∂̄ log |z1|2 ∧

fω̂n−1 = 1
2 limε→0

∫
Vε

d
(
dc log |z1|2 ∧ fω̂n−1), and hence are reduced to

evaluating

lim
ε→0

∫
Vε

d
(
dc log |z1|2 ∧ fω̂n−1) = lim

ε→0

∫
∂Vε

dc log |z1|2 ∧ fω̂n−1

= lim
ε→0

∫
∂Vε

dc log |z1|2 ∧ fω̃n−1.
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Recall that dc log |z1|2 = 2dθ on {|z1| = ε}, and also that limε→0 ω̃|∂Vε =
ω|{z1=0}, which follows from (4.7). We thus have

lim
ε→0

∫
∂Vε

dc log |z1|2 ∧ fω̃n−1 = lim
ε→0

∫
∂Vε

2dθ ∧ fω̃n−1

=
∫ 2π

0
2dθ

∫
{z1=0}

fωn−1 = 4π
∫
{z1=0}

fωn−1.

This means that

lim
ε→0

∫
Vε

√
−1∂∂̄ log |z1|2 ∧ fω̂n−1 = 1

2 lim
ε→0

∫
Vε

ddc log |z1|2 ∧ fω̂n−1

= 2π
∫
{z1=0}

fωn−1

as claimed. �

Lemma 4.13. — For a momentum-constructed conically singular met-
ric ωϕ, ∫

U

f
√
−1∂∂̄ log |z1|2 ∧ ωn−1

ϕ = 2π
∫
{z1=0}

fp∗ωM (b)n−1,

if f is smooth and compactly supported in U .

Proof. — The proof is essentially the same as the one for Lemma 4.11.
We note that we can proceed almost word by word, except for the places
where we used the explicit description of ω̂ and ω̃: the estimates (4.10),
(4.11), and in estimating (4.12).
We certainly need to define a differential form, say ω̃ϕ, which replaces ω̃

in the proof of Lemma 4.11. We define it as

ω̃ϕ := ωϕ −
2A2

0B
2
1β

2|z1|4β−2

ϕ

√
−1dz1 ∧ dz̄1,

by recalling the estimate (3.10).
Note again that this is not necessarily closed, and also that ω̃ϕ does not

even define a metric, since it is degenerate in the dz1 ∧ dz̄1-component,
whereas we certainly have ω̃ϕ 6 const.ωϕ. Observe that (3.10) and ϕ =
O(|z1|2β) (as proved in Lemma 3.6) imply that

ω̃ϕ|∂Vε = ωϕ|∂Vε + 1
ϕ

(
2β|z1|4β−2z̄1A0B1

n∑
i=2

B2,i
√
−1dz1 ∧ dz̄i(4.15)

+ c.c.+O(|z1|4β)
)∣∣∣∣

∂Vε

= ωϕ|∂Vε +O(ε2β),
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which replaces (4.9) in the proof of Lemma 4.11. Note also that, by recall-
ing (3.10),

(4.16) ωϕ|∂Vε =
(
p∗ωM (τ) + 1

ϕ
dτ ∧ dcτ

)∣∣∣∣
∂Vε

= p∗ωM (τ)|∂Vε + 1
ϕ

(
− 2ε4ββA0B1

n∑
i=2

B2,idθ ∧ dz̄i

+ c.c.+O(ε4β)
)∣∣∣∣

∂Vε

where we wrote z1 = εe
√
−1θ on ∂Vε = {|z1| = ε} and used dz1 =

ε
√
−1e

√
−1θdθ. Thus, recalling ϕ = O(|z1|2β), ωM (τ) 6 const.ωM , and

that ωM depends only on (z2, . . . , zn), i.e. the coordinates on the base M ,
we have the estimate
(4.17)

ωϕ|∂Vε 6 const.

∑
i,j 6=1

√
−1dzi ∧ dz̄j + ε2β

n∑
j=2

√
−1dθ ∧ dzj + c.c.

∣∣∣∣∣∣
∂Vε

from which it follows that

(4.18)
∣∣∣∣∫
∂Vε

log |z1|2dcf ∧ ωn−1
ϕ

∣∣∣∣
6 const. log ε

∣∣∣∣∫
∂Vε

(ε2β + ε)dθ ∧ dz2 ∧ dz̄2 ∧ . . . dzn ∧ dz̄n
∣∣∣∣

6 const.ε2β log ε→ 0

as ε → 0, for any smooth f ∈ C∞(X,R). This means that the esti-
mate (4.10) in the proof of Lemma 4.11 is still valid for momentum-constr-
ucted metrics ωϕ.
Also, Lemma 3.8 and the estimate (3.11) (and also ω̃ϕ 6 const.ωϕ) means

that the estimate in (4.11) in the proof of Lemma 4.11 is still valid for
momentum-constructed metrics ωϕ.
We are thus reduced to estimating (4.12), which is the third term of (4.8)

in the proof of Lemma 4.11. We first note

d
(

2A2
0B

2
1β

2|z1|4β−2

ϕ

√
−1dz1 ∧ dz̄1

)
=

n∑
i=2

∂

∂zi

(
2A2

0B
2
1β

2|z1|4β−2

ϕ

)√
−1dz1 ∧ dz̄1 ∧ dzi + c.c.
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Recalling the estimate (4.17) and ω̃ϕ 6 const.ωϕ, we thus have, by using a
smooth reference metric ω0 on X,

(4.19)
∣∣∣∣dcf ∧ d

(
2A2

0B
2
1β

2|z1|4β−2

ϕ

√
−1dz1 ∧ dz̄1

)
∧ ω̃n−2

ϕ

∣∣∣∣
ω0

6 const.|z1|2β−2,

where in the last estimate we used the fact that f is smooth and that
ϕ is of order O(|z1|2β) (cf. Lemma 3.6). This replaces (4.13) in the proof
of Lemma 4.11, and hence we see that the estimate (4.14) is still valid
for the momentum-constructed metrics, establishing that the third term
of (4.8) in the proof of Lemma 4.11 goes to 0 as ε → 0. Since all the
other arguments in the proof of Lemma 4.11 do not need the estimates
that use the specific properties of ω̂, and hence applies word by word to
the momentum-constructed case, we finally have

lim
ε→0

∫
∂Vε

dc log |z1|2 ∧ fω̃n−1
ϕ = lim

ε→0

∫
∂Vε

2dθ ∧ fω̃n−1
ϕ

=
∫ 2π

0
2dθ

∫
{z1=0}

fp∗ωM (b)n−1 = 4π
∫
{z1=0}

fp∗ωM (b)n−1,

where we used ω̃n−1
ϕ |D = ωn−1

ϕ |D = p∗ωM (b)n−1 by recalling (4.15), (4.16)
and D = {z1 = 0} = {τ = b}. We can thus conclude, as in Lemma 4.11,
that∫

U

√
−1∂∂̄ log |z1|2 ∧ fωn−1

ϕ

= lim
ε→0

∫
Vε

√
−1∂∂̄ log |z1|2 ∧ fωn−1

ϕ = 2π
∫
{z1=0}

fp∗ωM (b)n−1,

to get the claimed result. �

4.3. Computation of Futaki invariant with respect to the
conically singular metrics

4.3.1. Statement of the result

The aim of this section is to prove the following corollary of Theo-
rems 1.11 and 1.12, which computes the Futaki invariant of conically sin-
gular metrics on the whole manifold. This result will be used in Section 5
to prove Theorem 1.13.
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Corollary 4.14.
(1) Suppose that Ξ is a holomorphic vector field on X which preserves

D. Write H for the holomorphy potential of Ξ with respect to ω,
and Ĥ for the one with respect to a conically singular metric of
elementary form ω̂ with 0 < β < 1. Then we have

Fut(Ξ, ω̂) =
∫
X\D

Ĥ(S(ω̂)− S(ω̂)) ω̂
n

n!

+ 2π(1− β)
(∫

D

H
ωn−1

(n− 1)! −
Vol(D,ω)
Vol(X, ω̂)

∫
X

Ĥ
ω̂n

n!

)
,

where S(ω̂) is the average of S(ω̂) over X \D and all the integrals
are finite.

(2) Writing Ξ for the generator of the fibrewise C∗-action on X =
P(F ⊕ C), and τ for the holomorphy potential with respect to a
momentum-constructed conically singular metric ωϕ with 0 < β <

1, we have

Fut(Ξ, ωϕ) =
∫
X\D

τ(S(ωϕ)− S(ωϕ))
ωnϕ
n!

+ 2π(1− β)
(
bVol(M,ωM (b))− Vol(M,ωM (b))

Vol(X, ωϕ)

∫
X
τ
ωnϕ
n!

)
,

where D is the∞-section defined by τ = b, and ωM (b) is as defined
in (3.1); see Section 3.1. All the integrals in the above are finite.

4.3.2. Proof of the first item of Corollary 4.14

We first consider the conically singular metric of elementary form ω̂ =
ω+λ

√
−1∂∂̄|s|2βh . Suppose now that Ξ is a holomorphic vector field with the

holomorphy potential H ∈ C∞(X,C), with respect to ω, so that ι(Ξ)ω =
−∂̄H. The holomorphy potential of Ξ with respect to ω̂ is given by H −
λ
√
−1Ξ(|s|2βh ), since, writing Ξ =

∑n
i=1 v

i ∂
∂zi

with ∂̄vi = 0 in terms of local
holomorphic coordinates (z1, . . . , zn), we have (cf. [45, Lemma 4.10])

(4.20) ι

(
vi

∂

∂zi

)√
−1∂∂̄|s|2βh =

√
−1vi

∂2|s|2βh
∂zi∂z̄j

dz̄j = ∂̄

(
√
−1vi

∂|s|2βh
∂zi

)
.

Suppose we write |s|2βh = eβφ|z1|2β in local coordinates on U , where
h = eφ for some function φ that is smooth on the closure of U . We now
wish to evaluate Ξ(eβφ|z1|2β). If we assume that Ξ preserves the divisor
D = {z1 = 0}, we need to have Ξ|D =

∑n
i=2 v

i ∂
∂zi

, and so v1 has to be
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a holomorphic function that vanishes on {z1 = 0}. This means that we
can write v1 = z1v

′ for another holomorphic function v′. We thus see that
Ξ(eβφ|z1|2β) =

∑n
i=1 v

i∂i(eβφ|z1|2β) is of order |z1|2β near D. We thus
obtain that, for a holomorphic vector field Ξ preserving D, there exists a
(C-valued) function H ′ that is smooth on X \D and is of order |z1|2β near
D and satisfies

(4.21) ι(Ξ)ω̂ = −∂̄(H +H ′),

i.e. Ĥ := H +H ′ is the holomorphy potential of Ξ with respect to ω̂.
We wish to extend Theorem 1.11 to the case when f is replaced by the

holomorphy potential Ĥ of a holomorphic vector field Ξ with respect to ω̂.
This means that we need to extend Theorem 1.11 to functions f ′ that are
not necessarily smooth on the whole of X but merely smooth on X \ D
and are asymptotically of order O(|z1|2β) near D. Note that most of the
proof carries over word by word when we replace f by such f ′, except
for the place where we showed limε→0

∫
U\Uε dc log |z1|2 ∧ df ∧ ω̂n−1 = 0

in the equation (4.6) when we proved Lemma 4.11. More specifically, the
smoothness of f was crucial in the estimates (4.10), (4.11), and (4.13) but
not anywhere else. Thus the Lemma 4.11 still applies to f ′ if we can prove
the estimates used in (4.10), (4.11), and (4.13) for f ′. Note that we may
still assume that f ′ is compactly supported on U , since this is the property
coming from applying the partition of unity.
For (4.10), note first that on ∂Vε,

|dcf ′|ω 6 const.

∣∣∣∣∣ε(∂1f)dθ +
n∑
i=2

(∂if ′) + c.c.

∣∣∣∣∣
ω

= O(ε2β)

by noting that dz1 =
√
−1εe

√
−1θdθ on ∂Vε. Thus we have

(4.22)
∣∣∣∣∫
∂Vε

log |z1|2dcf ′ ∧ ω̃n−1
∣∣∣∣

6 const.ε2β log ε
∣∣∣∣∫
∂Vε

(ε2β + ε)dθ ∧ dz2 ∧ dz̄2 ∧ . . . dzn ∧ dz̄n
∣∣∣∣

6 const.ε4β log ε→ 0

in place of (4.10).
For (4.11), we need to estimate ∆ω̂f

′, but we simply recall Lemma 4.3
and see that ∆ω̂f

′ is bounded on the whole of U . Thus the estimate estab-
lished in (4.11)

(4.23)
∣∣∣∣∫
Vε

log |z1|2ddcf ′ ∧ ω̃n−1
∣∣∣∣ 6 const.

∣∣∣∣∫
Vε

log r2ω̂n
∣∣∣∣
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still holds for f ′.
We are left to verify that the estimate (4.13) holds for f ′. We remark that,

in computing (4.13), we may replace dcf with
√
−1
∑n
j=2(∂j̄fdz̄j−∂jfdzj),

since any term proportionate to dz1 or dz̄1 will vanish when wedged with
d
(

∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
. Thus, since ∂j̄f ′ and ∂jf

′ (2 6 j 6 n) are
of order O(r2β), we have

(4.24)
∣∣∣∣dcf ′ ∧ d

(
∂2

∂z1∂z̄1
(eφ|z1|2β)dz1 ∧ dz̄1

)
∧ ωn−2

∣∣∣∣
ω

6 const.|z1|4β−2

in place of (4.13), so that the conclusion (4.14) still holds.
Thus the proof of Lemma 4.11 carries over to f ′. Noting that f ′ vanishes

on D, we have
∫
U
f ′
√
−1∂∂̄ log |z1|2∧ω̂n−1 = 0. In particular, if Ξ is a holo-

morphic vector field on X that preserves D whose holomorphy potential
with respect to ω (resp. ω̂) is H (resp. Ĥ := H +H ′), we get

∫
X

Ĥ Ric(ω̂) ∧ ω̂n−1

(n− 1)! =
∫
X\D

ĤS(ω̂) ω̂
n

n! + 2π(1− β)
∫
D

H
ωn−1

(n− 1)! .

Combined with Remark 4.8, we thus get the first item of Corollary 4.14.

4.3.3. Proof of the second item of Corollary 4.14

We now consider the momentum-constructed conically singular metrics
ωϕ and the generator Ξ of the fibrewise C∗-action that has τ as its holo-
morphy potential (see the argument at the beginning of Section 3.3.2).
Recalling that τ − b is of order O(|z1|2β), as we proved in Lemma 3.6, we
are thus reduced to establishing the analogue for ωϕ of the statement that
we proved in Section 4.3.2 for the conically singular metric of elementary
form ω̂. In fact, the proof carries over word by word, where we only have
to replace ω̃ by ω̃ϕ (cf. the proof of Lemma 4.13); (4.18) is replaced by
the analogue of (4.22), ∆ωϕf

′ is bounded by Lemma 3.8 to establish the
analogue of (4.23), and (4.19) can be established by observing that we can
replace dcf ′ by

√
−1
∑n
j=2(∂j̄f ′dz̄j − ∂jf ′dzj), as we did in (4.24).

Thus, arguing exactly as in Section 4.3.2, we get the second item of
Corollary 4.14.
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5. Some invariance properties for the log Futaki invariant

5.1. Invariance of volume and the average of holomorphy
potential for conically singular metrics of elementary form

We first specialise to the conically singular metric of elementary form
ω̂. Momentum-constructed conically singular metrics will be discussed in
Section 5.3.
We recall that the volume Vol(X, ω̂) or the average of the integral

∫
X
Ĥ ω̂n

n!
is not necessarily a invariant of the Kähler class, unlike in the smooth case.
This is because, as we mentioned in Section 1.3, the singularities of ω̂
mean that we have to work on the noncompact manifold X \D, on which
we cannot naively use the integration by parts. The aim of this section is
to find some conditions under which the boundary integrals vanish, as in
the smooth case. We first prove the following lemma.

Lemma 5.1. — The volume Vol(X, ω̂) of X measured by a conically sin-
gular metric with cone angle 2πβ of elementary form ω̂ = ω+λ

√
−1∂∂̄|s|2βh

with ω ∈ c1(L) is equal to the cohomological
∫
X
c1(L)n/n! if β > 0.

Proof. — Consider a path of metrics {ω̂t := ω + t
√
−1∂∂̄|s|2βh } defined

for 0 6 t 6 λ for sufficiently small λ > 0, and write ĝt for the metric cor-
responding to ω̂t, with g := ĝ0. Then we have d

dt
∣∣
t=T ω̂

n
t = n

√
−1∂∂̄|s|2βh ∧

ω̂n−1
T = ∆T |s|2βh ω̂nT , where ∆T is the (negative ∂̄) Laplacian with respect to
ω̂T . If we show that d

dt
∣∣
t=T

∫
X
ω̂nt = d

dt
∣∣
t=T

∫
X\D ω̂

n
t =

∫
X\D

d
dt
∣∣
t=T ω̂

n
t = 0

for any 0 6 T 6 λ� 1 (where we used the Lebesgue convergence theorem
in the second equality), then we will have proved Vol(X, ω̂T ) = Vol(X,ω) =∫
X
c1(L)n/n!. We thus compute

∫
X\D ∆T |s|2βh ω̂nT for any 0 6 T 6 λ. We

treat the case T = 0 and T 6= 0 separately. Note that in both cases, we
may reduce to a local computation on U ⊂ X by applying the partition of
unity as we did in the proof of Theorems 1.11 and 1.12.
First assume T = 0. We now choose local holomorphic coordinates

(z1, . . . , zn) on U so that D = {z1 = 0}. Writing z1 = re
√
−1θ, we de-

fine a local C∞-tubular neighbourhood Dε around D = {z1 = 0} by
Dε := {x ∈ X | |s|h(x) 6 ε}. Then we have∫

U\D
∆ω|s|2βh ω

n =
∫
U\Dε

∆ω|s|2βh ω
n +

∫
Dε\D

∆ω|s|2βh ω
n

=
∫
U\Dε

∆ω|s|2βh ω
n +

∫
Dε\D

∑
i,j

gij̄
∂2

∂zi∂z̄j
|s|2βh ω

n.
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Writing r = |z1| and noting that |s|h = fr for some locally defined smooth
bounded function f , we can evaluate

∣∣∣∑i,j g
ij̄ ∂2

∂zi∂z̄j
|s|2βh

∣∣∣ 6 const.(r2β−2 +
r2β−1 + r2β). Thus∣∣∣∣∣∣
∫
Dε\D

∑
i,j

gij̄
∂2

∂zi∂z̄j
|s|2βh ω

n

∣∣∣∣∣∣ 6 const.
∫ ε

0
(r2β−2 + r2β−1 + r2β)rdr → 0

as ε→ 0, if β > 0.
We thus have to show that

∫
U\Dε goes to 0 as ε → 0. Note that this

is reduced to the boundary integral on ∂Dε by the Stokes theorem (by
recalling that we have been assuming |s|2βh is compactly supported in U

as a consequence of applying the partition of unity) as
∫
U\Dε ∆ω|s|2βh ωn =∫

∂Dε
n
√
−1∂̄|s|2βh ∧ ωn−1. Recalling dz̄1 ||z1|=r= (−

√
−1 cos θ − sin θ)rdθ,

we may write

∂̄|s|2βh ∧ ω
n−1
∣∣∣
∂Dε

=
∂|s|2βh
∂z̄1

Fεdθ ∧
√
−1dz2 ∧ dz̄2 ∧ · · · ∧

√
−1dzn ∧ dz̄n

with some smooth function F , in the local coordinates (z1, . . . , zn). We thus
have

∣∣∣∫∂Dε n√−1∂̄|s|2βh ∧ ωn−1
∣∣∣ 6 const.ε2β−1ε→ 0 as ε→ 0, if β > 0.

When T > 0, note that ∆T |s|2βh = O(1) by Lemma 4.3. By Lemma 4.2,
we have ω̂nT = O(r2β−1), which shows that

∣∣∣∫Dε\D∑i,j ĝ
ij̄
T

∂2

∂zi∂z̄j
|s|2βh ω̂nT

∣∣∣ 6
const.

∫ ε
0 r

2β−1dr → 0 as ε → 0. We are thus reduced to showing that
the boundary integral

∫
U\Dε ∆T |s|2βh ω̂nT =

∫
∂Dε

n
√
−1∂̄|s|2βh ∧ ω̂

n−1
T goes

to 0 as ε → 0. We first evaluate
∫
∂Dε

n
√
−1∂|s|

2β
h

∂z̄1
dz̄1 ∧ ω̂n−1

T . By noting
dz1 ∧dz̄1 = 0 on ∂Dε, we observe that dz̄1 ∧ ω̂n−1

T |∂Dε = Fεdθ∧
√
−1dz2 ∧

dz̄2 ∧ · · · ∧
√
−1dzn ∧ dz̄n for some function F , bounded as ε→ 0, on ∂Dε.

Thus
∣∣∣∣∫∂Dε n√−1∂|s|

2β
h

∂z̄1
dz̄1 ∧ ω̂n−1

T

∣∣∣∣ = O(ε2β−1ε)→ 0 as ε→ 0 if β > 0.

Again by noting dz1∧dz̄1 = 0 on ∂Dε, we observe that dz̄i∧ ω̂n−1
T |∂Dε =

Fεdθ∧
√
−1dz2∧dz̄2∧· · ·∧

√
−1dzn∧dz̄n for some function F = O(ε2β−1)

on ∂Dε. Thus
∣∣∣∣∫∂Dε n√−1∂|s|

2β
h

∂z̄i
dz̄i ∧ ω̂n−1

T

∣∣∣∣ = O(ε2βε2β−1ε) → 0 as ε → 0

if β > 0. �

Lemma 5.2. — The average of the holomorphy potential
∫
X
Ĥ ω̂n

n! in
terms of the conically singular metric with cone angle 2πβ of elementary
form ω̂ = ω + λ

√
−1∂∂̄|s|2βh with ω ∈ c1(L) is equal to the one

∫
X
H ωn

n!
measured in terms of the smooth Kähler metric ω, if β > 0.
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In particular, it is equal to b0 (in Section 2.1) of the product test config-
uration for (X,L) defined by the holomorphic vector field on X generated
by H (cf. [19, Section 2]), if β > 0.

Proof. — Recall that the holomorphy potential varies as (cf. (4.20))
d
dt
∣∣
t=T Ĥt = ĝij̄T

(
∂
∂z̄j

ĤT

)(
∂
∂zi
|s|2βh

)
. Thus, using the Lebesgue conver-

gence theorem (as in the proof of Lemma 5.1), we get

d
dt

∣∣∣∣
t=T

∫
X

Ĥtω̂
n
t =

∫
X\D

√
−1n

(
∂|s|2βh ∧ ∂̄ĤT + ĤT∂∂̄|s|2βh

)
∧ ω̂n−1

T

= −
√
−1n

∫
X\D

d
(
ĤT∂|s|2βh

)
∧ ω̂n−1

T .

We proceed as we did above in proving Lemma 5.1. When T = 0 we
evaluate

∫
U\D

d
(
H∂|s|2βh

)
∧ ωn−1

= lim
ε→0

∫
U\Dε

d
(
H∂|s|2βh

)
∧ ωn−1 + lim

ε→0

∫
Dε\D

d
(
H∂|s|2βh

)
∧ ωn−1

Noting that H is a smooth function defined globally on the whole of X, we
apply exactly the same argument that we used in proving Lemma 5.1 to
see that both these terms go to 0 as ε→ 0.
When T > 0, we evaluate

∫
U\D

d
(
ĤT∂|s|2βh

)
∧ ω̂n−1

T

=
∫
U\Dε

d
(
ĤT∂|s|2βh

)
∧ ω̂n−1

T +
∫
Dε\D

d
(
ĤT∂|s|2βh

)
∧ ω̂n−1

T .

Recalling that |ĤT | < const.(1 + r2β), we can apply exactly the same
argument as we used in the proof of Lemma 5.1. Hence we finally get
d
dt
∣∣
t=T

∫
X\D Ĥtω̂

n
t = 0 for all 0 6 T � 1 if β > 0. �

As a consequence of Corollary 4.14 and Lemmas 5.1, 5.2, we have the
following.
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Corollary 5.3. — If 0 < β < 1, we have

Fut(Ξ, ω̂) =
∫
X

Ĥ(S(ω̂)− S̄(ω̂)) ω̂
n

n!

=
∫
X\D

Ĥ(S(ω̂)− S(ω̂)) ω̂
n

n!

+ 2π(1− β)
(∫

D

H
ωn−1

(n− 1)! −
Vol(D,ω)
Vol(X,ω)

∫
X

H
ωn

n!

)
,

where we note that the last two terms are invariant under changing the
Kähler metric ω 7→ ω +

√
−1∂∂̄φ by φ ∈ C∞(X,R) (cf. Theorem 2.17).

Remark 5.4. — Note that the “distributional” term

2π(1− β)
(∫

D

H
ωn−1

(n− 1)! −
Vol(D,ω)
Vol(X,ω)

∫
X

H
ωn

n!

)
in the above formula is precisely the term that appears in the definition of
the log Futaki invariant (up to the factor of 2π). Note also that Vol(D, ω̂) =∫
X

[D] ∧ ω̂n−1

(n−1)! =
∫
D

ωn−1

(n−1)! = Vol(D,ω) and
∫
D
Ĥ ω̂n−1

(n−1)! =
∫
D
H ωn−1

(n−1)! by
Lemma 4.11 (and its extension given in Section 4.3.2), where [D] is the
current of integration over D. This means that, combined with Lemmas 5.1
and 5.2, we get∫
D

Ĥ
ω̂n−1

(n− 1)!−
Vol(D, ω̂)
Vol(X, ω̂)

∫
X

Ĥ
ω̂n

n! =
∫
D

H
ωn−1

(n− 1)!−
Vol(D,ω)
Vol(X,ω)

∫
X

H
ωn

n! .

Thus, if we compute the log Futaki invariant FutD,β in terms of the
conically singular metrics of elementary form ω̂, we get FutD,β(Ξ, ω̂) =
1

2π
∫
X\D Ĥ(S(ω̂)− S(ω̂)) ω̂

n

n! , which will certainly be 0 if ω̂ satisfies S(ω̂) =
S(ω̂) on X \D, i.e. ω̂ is cscK as defined in Definition 1.4.

5.2. Invariance of the Futaki invariant computed with respect
to the conically singular metrics of elementary form

We first recall how we prove the invariance of the Futaki invariant in
the smooth case, following the exposition given in Section 4.2 of Székely-
hidi’s textbook [45]. Write ω for an arbitrarily chosen reference metric in
c1(L) and write ωt := ω + t

√
−1∂∂̄ψ with some ψ ∈ C∞(X,R). Defining

Futt(Ξ) :=
∫
X
Ht(S(ωt) − S̄)ω

n
t

n! , where Ht is the holomorphy potential of
Ξ with respect to ωt, we need to show d

dt |t=0 Futt(Ξ) = 0.
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Arguing as in [45, Section 4.2], we get

d
dt

∣∣∣∣
t=0

Futt(Ξ)

=
∫
X

√
−1n

(
(S(ω)− S̄)∂ψ ∧ ∂̄H

−H(D∗ωDωψ − ∂ψ ∧ ∂̄S(ω)) +H(S(ω)− S̄)∂∂̄ψ
)
∧ ωn−1

where D∗ωDω is a fourth order elliptic self-adjoint linear operator defined
as

D∗ωDωφ := ∆2
ωφ+∇j(Ric(ω)k̄j∂k̄φ).

We now perform the following integration by parts

∫
X

(S(ω)− S̄)∂ψ ∧ ∂̄H ∧ ωn−1

= −
∫
X

d
(
H(S(ω)− S̄)∂ψ ∧ ωn−1)+

∫
X

H∂̄S(ω) ∧ ∂ψ ∧ ωn−1

−
∫
X

(H(S(ω)− S̄)∂∂̄ψ ∧ ωn−1

=
∫
X

H∂̄S(ω) ∧ ∂ψ ∧ ωn−1 −
∫
X

(H(S(ω)− S̄)∂∂̄ψ ∧ ωn−1

by using Stokes’ theorem. This means

d
dt

∣∣∣∣
t=0

Futt(Ξ) = −
∫
X

HD∗ωDωψω
n = −

∫
X

ψD∗ωDωHω
n = 0

as required, again integrating by parts.
We now wish to perform the above calculations when the Kähler metric

ω̂ has cone singularities along D. An important point is that, since we are
on the noncompact manifold X \ D, we have to evaluate the boundary
integral when we apply Stokes’ theorem, and that the remaining integrals
may not be finite.
As we did in the proof of Lemma 5.1, we apply the partition of unity and

reduce to a local computation around an open set U on which the integrand
is compactly supported. Writing Ĥ = H+H ′ for the holomorphy potential
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of Ξ with respect to ω̂, as we did in (4.21), we first evaluate∫
U\D

d
(
Ĥ(S(ω̂)− S(ω̂))∂ψ ∧ ω̂n−1

)
= lim
ε→0

∫
U\Dε

d
(
Ĥ(S(ω̂)− S(ω̂))∂ψ ∧ ω̂n−1

)
= lim
ε→0

∫
∂Dε

Ĥ(S(ω̂)− S(ω̂))∂ψ ∧ ω̂n−1.

Note dz1 ∧ dz̄1 = 0 on ∂Dε, which implies

(5.1) ∂ψ ∧ ω̂n−1|∂Dε

= ∂ψ

∂z1
F1εdθ ∧

√
−1dz2 ∧ dz̄2 ∧ · · · ∧

√
−1dzn ∧ dz̄n

+
∑
i 6=1

∂ψ

∂zi
Fiεdθ ∧ F1

√
−1dz2 ∧ dz̄2 ∧ · · · ∧

√
−1dzn ∧ dz̄n

where F1 is bounded as ε→ 0 and Fi (i 6= 1) is at most of order ε2β−1, we
see that ∂ψ ∧ ω̂n−1|∂Dε = O(ε) + O(ε2β). Recalling Ĥ = O(1) + O(|z1|2β)
and S(ω̂) = O(1) + O(|z1|2−4β), we see that the integrand of the above
is at most of order O(ε1+2−4β). Thus we need β < 3/4 for the boundary
integral to be 0.
We now evaluate

∫
X
Ĥ∂̄S(ω̂) ∧ ∂ψ ∧ ω̂n−1. Writing

∂̄S(ω̂)∧ ∂ψ ∧ ω̂n−1 = ∂S(ω̂)
∂z̄1

dz̄1 ∧ ∂ψ ∧ ω̂n−1 +
∑
i 6=1

∂S(ω̂)
∂z̄i

dz̄i ∧ ∂ψ ∧ ω̂n−1,

we see that the order of the first term is at most O(|z1|2−4β−1|z1|2β−1+1) =
O(|z1|1−2β), and the second term is at most of order O(|z1|2−4β |z1|2β−1) =
O(|z1|1−2β), and hence we need 1 − 2β > −1, i.e. β < 1 for the integral
to be finite, by recalling Ĥ = O(1) + O(|z1|2β). Since the second term∫
X

(∆ω̂ψ)Ĥ(S(ω̂) − S(ω̂))ω̂n is manifestly finite (by Lemma 4.3 and Re-
mark 4.5), we can perform the integration by parts to have d

dt
∣∣
t=0 Futt(Ξ) =

−
∫
X\D ĤD∗ω̂Dω̂ψω̂

n if 0 < β < 3/4. It remains to prove∫
X\D

ĤD∗ω̂Dω̂ψω̂
n =

∫
X\D

ψD∗ω̂Dω̂Ĥω̂
n = 0.

Recalling D∗ω̂Dω̂ψ = ∆2
ω̂ψ + ∇̂j̄(Ric(ω̂)kj̄∂kψ) (by noting ψ̄ = ψ as ψ is a

real function), where ∇̂ is the covariant derivative on TX defined by the
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Levi-Civita connection of ω̂, we first consider∫
U\D

Ĥ∇̂j̄(Ric(ω̂)kj̄∂kψ)ω̂n

=
∫
U\D

Ĥ(∇̂j̄ Ric(ω̂)kj̄)∂kψω̂n +
∫
U\D

Ĥ Ric(ω̂)kj̄ ∂̄j∂kψω̂n

=
√
−1n

∫
U\D

Ĥ∂ψ ∧ ∂̄S(ω̂) ∧ ω̂n−1 +
∫
U\D

ĤS(ω̂)∆ω̂ψω̂
n

−
√
−1n(n− 1)

∫
U\D

Ĥ Ric(ω̂) ∧ ∂∂̄ψ ∧ ω̂n−2

where we used the Bianchi identity ∇̂j̄ Ric(ω̂)kj̄ = ĝkj̄∂j̄S(ω̂) and the iden-
tity in [45, Lemma 4.7]. We perform the integration by parts for the second
and the third term. We re-write the second term as∫

U\D
ĤS(ω̂)∆ω̂ψω̂

n

=
√
−1n

(
−
∫
U\D

d(ĤS(ω̂)∂ψ ∧ ω̂n−1)−
∫
U\D

d(S(ω̂)∂̄Ĥψ ∧ ω̂n−1)

+
∫
U\D

∂S(ω̂) ∧ ∂̄Ĥ ∧ ψω̂n−1 +
∫
U\D

S(ω̂)∂∂̄Ĥ ∧ ψω̂n−1

+
∫
U\D

Ĥ∂̄S(ω̂) ∧ ∂ψ ∧ ω̂n−1

)
and the third term as∫

U\D
Ĥ Ric(ω̂) ∧ ∂∂̄ψ ∧ ω̂n−2

=
∫
U\D

d(Ĥ Ric(ω̂) ∧ ∂̄ψ ∧ ω̂n−2) +
∫
U\D

d(∂Ĥ ∧ Ric(ω̂) ∧ ψω̂n−2)

−
∫
U\D

ψ∂̄∂Ĥ ∧ Ric(ω̂) ∧ ω̂n−2.

We thus have∫
U\D

Ĥ∇̂j̄(Ric(ω̂)kj̄∂kψ)ω̂n

=
∫
U\D

ψ∇̂j(Ric(ω̂)k̄j∂k̄Ĥ)ω̂n −
√
−1n(n− 1)(B1 +B2)

−
√
−1n(B3 +B4),
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where the Bi’s stand for the boundary integrals

B1 := lim
ε→0

∫
∂Dε

Ĥ Ric(ω̂) ∧ ∂̄ψ ∧ ω̂n−2,

B2 := lim
ε→0

∫
∂Dε

ψ∂Ĥ ∧ Ric(ω̂) ∧ ω̂n−2,

B3 := lim
ε→0

∫
∂Dε

ĤS(ω̂)∂ψ ∧ ω̂n−1,

B4 := lim
ε→0

∫
∂Dε

ψS(ω̂)∂̄Ĥ ∧ ω̂n−1,

which we now evaluate.
We first evaluate

∫
∂Dε

Ĥ Ric(ω̂)∧∂̄ψ∧ω̂n−2 in terms of ε. Since dz1∧dz̄1 =
0 on ∂Dε, we can see that this converges to 0 (ε→ 0) as long as 0 < β < 1,
by recalling Lemma 4.4. We thus get B1 = 0.
We then evaluate

∫
∂Dε

ψ∂Ĥ ∧Ric(ω̂)∧ ω̂n−2. We see that this converges
to 0 (ε → 0) as long as 0 < β < 1, exactly as we did before. We thus get
B2 = 0.
Now we see that

∫
∂Dε

ĤS(ω̂)∂ψ ∧ ω̂n−1 is at most of order ε3−4β , since
S(ω̂) is at most of order ε2−4β and ∂ψ ∧ ω̂n−1 is of order O(ε) + O(ε2β)
(cf. (5.1)), and hence converges to 0 (as ε → 0) if β < 3/4. Similarly, we
can show that

∫
∂Dε

ψS(ω̂)∂̄Ĥ ∧ ω̂n−1 converges to 0 if β < 3/4. Thus, we
get B3 = B4 = 0.
Note that

∫
U\D ψ∇̂k(Ric(ω̂)j̄k(∂j̄Ĥ))ω̂n converges if 0 < β < 1, since

Lemma 4.4, combined with Lemma 4.3, implies Ric(ω̂)11̄ = O(|z1|2−2β) +
O(|z1|4−4β), Ric(ω̂)1j̄ = O(|z1|) + O(|z1|3−4β) + O(|z1|2−2β) (j 6= 1), and
Ric(ω̂)ij̄ = O(1) + O(|z1|2β) + O(|z1|2−2β) (i, j 6= 1). We thus see that we
can perform the integration by parts in the above computation if we have
0 < β < 3/4.

We are now left to prove
∫
X\D ψ∆2

ω̂Ĥω̂
n =

∫
X\D Ĥ∆2

ω̂ψω̂
n. We write∫

X\D
Ĥ∆2

ω̂ψω̂
n =
√
−1n

∫
X\D

Ĥ∂∂̄(∆ω̂ψ) ∧ ω̂n−1

=
√
−1n

∫
X\D

d(Ĥ∂̄(∆ω̂ψ) ∧ ω̂n−1) +
√
−1n

∫
X\D

d(∂Ĥ ∧ (∆ω̂ψ)ω̂n−1)

+
∫
X\D

(∆ω̂Ĥ)(∆ω̂ψ)ω̂n−1

and evaluate the boundary integrals limε→0
∫
∂Dε

Ĥ∂̄(∆ω̂ψ) ∧ ω̂n−1 and
limε→0

∫
∂Dε

∂Ĥ ∧ (∆ω̂ψ)ω̂n−1 which, as before, can be shown to converge
to zero as long as β > 0.
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We finally evaluate
∫
U\D(∆ω̂Ĥ)(∆ω̂ψ)ω̂n, where we recall from Lem-

ma 4.3 that ∆ω̂Ĥ = O(1) + O(|z1|2−2β) + O(|z1|2β). Thus, computing as
we did above, we see that this is finite.
Summarising the above argument, together with the results in Section 5.1,

we have the following. Suppose that we compute the log Futaki invariant
FutD,β(Ξ, ω̂) defined as

1
2π

∫
X

Ĥ(S(ω̂)−S̄(ω̂)) ω̂
n

n! −(1−β)
(∫

D

Ĥ
ω̂n−1

(n− 1)! −
Vol(D, ω̂)
Vol(X, ω̂)

∫
X

Ĥ
ω̂n

n!

)
,

with respect to the conically singular metric of elementary form ω̂ for a
holomorphic vector field v that preserves the divisor D, with Ĥ as its
holomorphy potential. As we mentioned in Remark 5.4, Lemmas 5.1, 5.2,
Corollary 5.3, combined with Lemma 4.11 (and its extension given in Sec-
tion 4.3.2), show FutD,β(Ξ, ω̂) = 1

2π
∫
X\D Ĥ(S(ω̂)− S(ω̂)) ω̂

n

n! , and the cal-
culations that we did above prove the first item of Theorem 1.13.

5.3. Invariance of the log Futaki invariant computed with
respect to the momentum-constructed conically singular

metrics

Now consider the case of momentum-constructed metrics on X :=
P(F ⊕C) with the P1-fibration structure p : P(F ⊕C)→M over a Kähler
manifold (M,ωM ). In this section, we shall assume that the σ-constancy hy-
pothesis (Definition 3.1) is satisfied for our data {p : (F , hF )→(M,ωM ), I}.
Let D ⊂ P(F ⊕ C) = X be the ∞-section, as before.

We first prove some lemmas that are well-known for smooth momentum-
constructed metrics; the point is that they hold also for conically singular
momentum-constructed metrics, since, as we shall see below, the proof ap-
plies word by word. We start with the following consequence of Lemma 3.10.

Lemma 5.5 ([24, Lemma 2.8]). — Suppose that the σ-constancy hy-
pothesis (Definition 3.1) is satisfied for our data. For any function f(τ) of
τ , we have ∫

X
f(τ)

ωnϕ
n! = 2πVol(M,ωM )

∫ b

−b
f(τ)Q(τ)dτ,

where Q(τ) is as defined in (3.4). In particular,
∫
X f(τ)ω

n
ϕ

n! does not depend
on the choice of ϕ or the boundary value ϕ′(±b).
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Proof. — σ-constancy hypothesis implies that Q(τ) = ωM (τ)n−1/ωn−1
M

is a function which depends only on τ . We thus have

∫
X
f(τ)

ωnϕ
n! =

∫
X

ωn−1
M

(n− 1)! ∧
(
f(τ)Q(τ)

ϕ
dτ ∧ dcτ

)
= 2πVol(M,ωM )

∫ b

−b
f(τ)Q(τ)dτ,

by (3.21) in Lemma 3.10. �

We summarise what we have obtained as follows.

Lemma 5.6. — Suppose that the σ-constancy hypothesis is satisfied for
our data. Let ϕ : [−b, b] → R>0 be a real analytic momentum profile with
ϕ(±b) = 0 and ϕ(−b) = 2, ϕ(−b) = −2β, so that ωϕ = p∗ωM − τp∗γ +
1
ϕdτ ∧ dcτ has cone singularities with cone angle 2πβ along the ∞-section.
Let φ : [−b, b] → R>0 be another momentum profile with ϕ(±b) = 0
and ϕ(±b) = ∓2, so that ωφ = p∗ωM − τp∗γ + 1

φdτ ∧ dcτ is a smooth
momentum-constructed metric. Then we have the following.

(1) [ωϕ] = [ωφ],

(2) Vol(X, ωϕ) = 2πVol(M,ωM )
∫ b

−b
Q(τ)dτ = Vol(X, ωφ),

(3)
∫
X
τ
ωnϕ
n! = 2πVol(M,ωM )

∫ b

−b
τQ(τ)dτ =

∫
X
τ
ωnφ
n! .

Proof. — The first item follows from Lemma 3.10, and the second and
the third from Lemma 5.5. �

The second and the third item of the above lemma shows that the second
“distributional” term in Corollary 4.14 agrees with the “correction” term in
the log Futaki invariant, as we saw in the case of conically singular metrics
of elementary form (cf. Corollary 5.3 and Remark 5.4). We thus get the
following result.

Corollary 5.7. — Suppose that the σ-constancy hypothesis is sat-
isfied for our data {p : (F , hF ) → (M,ωM ), I}. Writing Fut(Ξ, ωϕ) for
the Futaki invariant computed with respect to the momentum-constructed
conically singular metric ωϕ with cone angle 2πβ and with real analytic
momentum profile ϕ and 0 < β < 1, evaluated against the generator Ξ of
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fibrewise C∗-action of X = P(F ⊕ C), we have

Fut(Ξ, ωϕ) =
∫
X\D

τ(S(ωϕ)− S(ωϕ))
ωnϕ
n!

+ 2π(1− β)
(
b

∫
M

ωM (b)n−1

(n− 1)! −
Vol(M,ωM (b))

Vol(X, ωφ)

∫
X
τ
ωnφ
n!

)
where ωφ is a smooth momentum-constructed metric in the same Kähler
class as ωϕ. In particular,

FutD,β(Ξ, ωϕ) =
∫
X\D

τ(S(ωϕ)− S(ωϕ))
ωnϕ
n! .

We now wish to establish the analogue of the first item of Theorem 1.13.
We first of all have to estimate the Ricci and scalar curvature of the metric
ωϕ +

√
−1∂∂̄ψ for ψ ∈ C∞(X,R). We show that this is exactly the same

as the ones for the conically singular metrics of elementary form.

Lemma 5.8. — Ric(ωϕ +
√
−1∂∂̄ψ) and S(ωϕ +

√
−1∂∂̄ψ) satisfy the

estimates as given in Lemma 4.4.

Proof. — Choose a local coordinate system (z1, . . . , zn) around a point in
X so thatD is locally given by {z1 = 0}. Lemma 3.6 and the estimate (3.10)
imply that we have

ωϕ +
√
−1∂∂̄ψ

= p∗ωM − τp∗γ + 1
ϕ

dτ ∧ dcτ +
√
−1

n∑
i,j=1

∂2ψ

∂zi∂z̄j

√
−1dzi ∧ dz̄j

= |z1|2β−2
(
F11 + |z1|2−2β ∂2ψ

∂z1∂z̄1

)√
−1dz1 ∧ dz̄1

+
n∑
j=2
|z1|2β−2

(
F1j z̄1 + |z1|2−2β ∂2ψ

∂z1∂z̄j

)√
−1dz1 ∧ dz̄j + c.c.

+
n∑

i,j=2

(
Fij |z1|2β + ∂2ψ + ψM

∂zi∂z̄j

)√
−1dzi ∧ dz̄j

where Fij ’s stand for locally uniformly convergent power series in |z1|2β
with coefficients in smooth functions which depend only on the base coor-
dinates (z2, . . . , zn). We also wrote ψM for the local Kähler potential for
p∗ωM . When we Taylor expand ψ and ψM , we thus get (ωϕ+

√
−1∂∂̄ψ)n =

|z1|2β−2[O(1)+O(|z1|2β)+O(|z1|2−2β)]
∏n
i=1(
√
−1dzi∧dz̄i). Writing ω0 :=
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∏n
i=1(
√
−1dzi ∧ dz̄i), we thus get

log (ωϕ +
√
−1∂∂̄ψ)n

ωn0
= (β − 1) log |z1|2 +O(1) +O(|z1|2β) +O(|z1|2−2β).

This is exactly the same as (4.1), from which Lemma 4.4 follows (since
∂∂̄ log |z1|2 = 0 on X \D). �

Since that the holomorphy potential for Ξ with respect to ωϕ+
√
−1∂∂̄ψ

is given by τ −
√
−1Ξ(ψ) = O(|z1|2β) + O(1) (cf. [45, Lemma 4.10]), it

is now straightforward to check that the calculations in Section 5.2 apply
word by word. We thus get the second item of Theorem 1.13.
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