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ON A NIELSEN–THURSTON CLASSIFICATION
THEORY FOR CLUSTER MODULAR GROUPS

by Tsukasa ISHIBASHI (*)

Abstract. — We classify elements of a cluster modular group into three types.
We characterize them in terms of fixed point property of the action on the tropical
compactifications associated with the corresponding cluster ensemble. The charac-
terization gives an analogue of the Nielsen–Thurston classification theory on the
mapping class group of a surface.
Résumé. — Nous classons les éléments d’un groupe modulaire de cluster en

trois types. Nous les caractérisons en termes de propriété de point fixe de l’action
sur les compactifications tropicales associées à l’ensemble de cluster correspondant.
La caractérisation donne un analogue de la théorie de classification de Nielsen–
Thurston sur le groupe modulaire d’une surface.

Introduction

A cluster modular group, defined in [14], is a group associated with a
combinatorial data called a seed. An element of the cluster modular group
is a finite composition of permutations of vertices and mutations, which
preserves the exchange matrix and induces non-trivial (A- and X -)cluster
transformations. The cluster modular group acts on the cluster algebra
as automorphisms (only using the A-cluster transformations). A closely
related notion of an automorphism group of the cluster algebra, which is
called the cluster automorphism group, is introduced in [1] and further
investigated by several authors [2, 6, 7, 23]. Relations between the cluster
modular group and the cluster automorphism group are investigated in [19].
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It is known that, for each marked hyperbolic surface F , the cluster mod-
ular group associated with the seed associated with an ideal triangulation
of F includes the mapping class group of F as a subgroup of finite index [3].
Therefore it seems natural to ask whether a property known for mapping
class groups holds for general cluster modular groups. In this paper we at-
tempt to provide an analogue of the Nielsen–Thurston theory [10, 30] on
mapping class groups, which classifies mapping classes into three types in
terms of fixed point property of the action on the Thurston compactifica-
tion of the Teichmüller space. Not only is this an attempt at generalization,
but also it is expected to help deepen understanding of mapping classes as
cluster transformations. A problem, which is equivalent to classifying map-
ping classes in terms of the cluster transformations, was originally raised
in [26].
The cluster ensemble associated with a seed, defined in [14], plays a sim-

ilar role as the Teichmüller space when we study cluster modular groups.
It can be thought of two spaces on which the cluster modular group acts.
Technically, it consists of two functors ψA, ψX : G → Pos(R), called A-
and X -spaces respectively, which are related by a natural transformation
p : ψA → ψX . Here the objects of the target category are split algebraic
tori over R, and the values of these functors patch together to form a
pair of contractible manifolds A(R>0) and X (R>0), on which the clus-
ter modular group acts analytically. These manifolds are naturally com-
pactified to a pair of topological closed disks A = A(R>0) t PA(Rt) and
X = X (R>0) t PX (Rt), called the tropical compactifications [15, 24], on
which the actions of the cluster modular group extend continuously. These
are algebraic generalizations of the Thurston compactifications of Teich-
müller spaces. In the case of the seed associated with a triangulated surface,
U(R>0) = p(A(R>0)) is identified with the Teichmüller space, A(R>0) and
X (R>0) are the decorated Teichmüller space and the enhanced Teichmüller
space introduced by Penner [27] and Fock–Goncharov [13], respectively.
The tropical compactification U is identified with the Thurston compacti-
fication of the Teichmüller space [15]. For an investigation of the action of
the cluster modular group on U(Zt), see [25].
For each seed, a simplicial complex called the cluster complex, defined

in [14] and [18], admits a simplicial action of the cluster modular group. In
the case of the seed associated with an ideal triangulation of a surface F ,
the cluster complex is a finite covering of the arc complex of F . In terms
of the action on the cluster complex, we define three types of elements of
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the cluster modular group, called Nielsen–Thurston types. They constitute
an analogue of the classification of mapping classes.

Definition A (Nielsen–Thurston types: Definition 2.1). — Let i be a
seed, C = C|i| be the corresponding cluster complex and Γ = Γ|i| the corre-
sponding cluster modular group. An element φ ∈ Γ is called

(1) periodic if φ has finite order,
(2) cluster-reducible if φ has a fixed point in the geometric realization
|C| of the cluster complex, and

(3) cluster-pseudo-Anosov (cluster-pA) if no power of φ is cluster-
reducible.

These types give a classification of elements of the cluster modular group
in the sense that the cyclic group generated by any element intersects with
at least one of these types. We have the following analogue of the classical
Nielsen–Thurston theory for general cluster modular groups, which is the
main theorem of this paper.

Theorem B (Theorem 2.2). — Let i be a seed of Teichmüller type (see
Definition 2.17) and φ ∈ Γ|i| an element. Then the followings hold.

(1) The element φ ∈ Γ is periodic if and only if it has fixed points in
A(R>0) and X (R>0).

(2) The element φ ∈ Γ is cluster-reducible if and only if there exists a
point L ∈ X (Rt)+ such that φ[L] = [L].

(3) If the element φ ∈ Γ is cluster-pA, there exists a point L ∈
X (Rt)\X (Rt)+ such that φ[L] = [L].

We will show that the seeds of Teichmüller type include seeds of finite
type, the seeds associated with triangulated surfaces, and the rank 2 seeds
of finite mutation type.
In the theorem above, we neither characterize cluster-pA elements in

terms of fixed point property, nor describe the asymptotic behavior of the
orbits as we do in the original Nielsen–Thurston classification (see Defini-
tion 3.9). However we can show the following asymptotic behavior of orbits
similar to that of pA classes in the mapping class groups, for certain classes
of cluster-pA elements.

Theorem C (Cluster reductions and cluster Dehn twists: Theorem 2.33).
(1) Let i be a seed, φ ∈ Γ|i| be a cluster-reducible element. Then some

power φl induces a new element in the cluster modular group asso-
ciated with a seed which has smaller mutable rank n. We call this
process the cluster reduction.
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(2) After a finite number of cluster reductions, the element φl induces
a cluster-pA element.

(3) Let i be a skew-symmetric connected seed which has mutable rank
n > 3, φ ∈ Γ|i| an element of infinite order. If some power of the
element φ is cluster-reducible to rank 2, then there exists a point
[G] ∈ PA(Rt) such that we have

lim
n→∞

φ±n(g) = [G] in A

for all g ∈ A(R>0).

We call a mapping class which satisfies the assumption of Theorem C(3)
cluster Dehn twist. Dehn twists in the mapping class groups are cluster
Dehn twists. The above theorem says that cluster Dehn twists have the
same asymptotic behavior of orbits on A as Dehn twists. We expect that
cluster Dehn twists together with seed isomorphisms generate cluster mod-
ular groups, as Dehn twists do in the case of mapping class groups. The
generation of cluster modular groups by cluster Dehn twists and seed iso-
morphisms will be discussed elsewhere.
This paper is organized as follows. In Section 1, we recall some basic def-

initions from [14]. Here we adopt slightly different treatment of the frozen
vertices and definition of the cluster complex from those of [14, 18]. In Sec-
tion 2, we define the Nielsen–Thurston types for elements of cluster modular
groups and study the fixed point property of the actions on the tropical
compactifications. Our basic examples are the seeds associated with trian-
gulated surfaces, studied in Section 3. Most of the contents of this section
seem to be well-known to specialists, but they are scattered in literature.
Therefore we tried to gather results and give a precise description of these
seeds. Other examples are studied in Appendix A.

1. Definition of the cluster modular groups

1.1. The cluster modular groups and the cluster ensembles

We collect here the basic definitions on cluster ensembles and cluster
modular groups. This section is based on Fock–Goncharov’s seminal pa-
per [14], while the treatment of frozen variables here is slightly different
from them. In particular, the dimensions of the A- and X -spaces equal to
the rank and the mutable rank of the seed, respectively. See Definition 1.10.
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Definition 1.1 (Seeds). — A seed consists of the following data i =
(I, I0, ε, d);

(1) I is a finite set and I0 is a subset of I called the frozen subset. An
element of I − I0 is called a mutable vertex.

(2) ε = (εij) is a Q-valued function on I × I such that εij ∈ Z for
(i, j) /∈ I0 × I0, which is called the exchange matrix.

(3) d = (di) ∈ ZI>0 such that gcd(di) = 1 and the matrix ε̂ij := εijd
−1
j

is skew-symmetric.
The seed i is said to be skew-symmetric if di = 1 for all i ∈ I. In this case
the exchange matrix ε is a skew-symmetric matrix. We simply write i =
(I, I0, ε) if i is skew-symmetric. We call the numbers N := |I|, n := |I − I0|
the rank and the mutable rank of the seed i, respectively.

Remark 1.2. — Note that unlike Fomin–Zelevinsky’s definition of seeds
(e.g. [18]), our definition does not include the notion of cluster variables.
A corresponding notion, which we call the cluster coordinate, is given in
Definition 1.4 below.

Skew-symmetric seeds are in one-to-one correspondence with quivers
without loops and 2-cycles. Here a loop is an arrow whose endpoints are the
same vertex, and a 2-cycle is a pair of arrows sharing both endpoints and
having different orientations. Given a skew-symmetric seed i = (I, I0, ε),
the corresponding quiver is given by setting the set of vertices I, and draw-
ing |εij | arrows from the vertex i to the vertex j (resp. j to i) if εij > 0
(resp. εij < 0).

Definition 1.3 (Seed mutations). — For a seed i = (I, I0, ε, d) and a
vertex k ∈ I − I0, we define a new seed i′ = (I ′, I ′0, ε′, d′) as follows:

• I ′ := I, I ′0 := I0, d
′ := d,

• ε′ij :=

−εij if k ∈ {i, j},

εij + |εik|εkj + εik|εkj |
2 otherwise.

We write i′ = µk(i) and refer to this transformation of seeds as the mutation
directed to the vertex k.

Next we associate cluster transformation with each seed mutation. For
a field k, let k∗ denote the multiplicative group. Our main interest is the
case k = R. A direct product (k∗)n is called a split algebraic torus over k.

Definition 1.4 (Seed tori). — Let i = (I, I0, ε, d) be a seed and Λ :=
Z[I], Λ′ := Z[I − I0] be the lattices generated by I and I − I0, respectively.
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(1) Xi(k) := HomZ(Λ′, k∗) is called the seed X -torus associated with i.
For i ∈ I − I0, the character Xi : Xi → k∗ defined by φ 7→ φ(ei)
is called the cluster X -coordinate, where (ei) denotes the natural
basis of Λ′.

(2) Let fi := d−1
i e∗i ∈ Λ∗ ⊗Z Q and Λ◦ := ⊕i∈IZfi ⊂ Λ∗ ⊗Z Q another

lattice, where Λ∗ denotes the dual lattice of Λ and (e∗i ) denotes
the dual basis of (ei). Then Ai(k) := HomZ(Λ◦, k∗) is called the
seed A-torus associated with i. For i ∈ I, the character Ai : Ai →
k∗ defined by ψ 7→ ψ(fi) is called the cluster A-coordinate. The
coordinates Ai (i ∈ I0) are called frozen variables.

Note that Xi(k) = (k∗)n and Ai(k) = (k∗)N as split algebraic tori. These
two tori are related as follows. Let p∗ : Λ′ → Λ◦ be the linear map defined by

p∗(v) =
∑

i∈I−I0
k∈I

viεikfk

for v =
∑
i∈I−I0 viei ∈ Λ′. By taking HomZ(−, k∗), it induces a monomial

map pi : Ai → Xi, which is represented in cluster coordinates as p∗iXi =∏
k∈I A

εik
k .

Remark 1.5. — Note that we assign cluster X -coordinates only on muta-
ble vertices, which is a different convention from that of [14]. It seems to be
natural to adopt our convention from the point of view of the Teichmüller
theory (see Section 3).

Definition 1.6 (Cluster transformations). — For a mutation µk : i→
i′, we define transformations on seed tori called the cluster transformations
as follows:

(1) µxk : Xi → Xi′ ,

(µxk)∗X ′i :=
{
X−1
k if i = k,

Xi(1 +Xsgn εki
k )εki otherwise,

(2) µak : Ai → Ai′ ,

(µak)∗A′i :=
{
A−1
i (
∏
εkj>0A

εkj
j +

∏
εkj<0A

−εkj
j ) if i = k,

Ai otherwise.

Note that the frozen A-variables are not transformed by mutations, while
they have an influence on the transformations of the mutable A-variables.

Definition 1.7 (The cluster modular group). — Let i = (I, I0, ε, d) be
a seed. Recall that a groupoid is a small category whose morphisms are all
invertible.
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(1) A seed isomorphism is a permutation σ of I such that σ(i) = i

for all i ∈ I0 and εσ(i)σ(j) = εij for all i, j ∈ I. A seed cluster
transformation is a finite composition of mutations and seed iso-
morphisms. A seed cluster transformation is said to be trivial if the
induced cluster A- and X - transformations are both identity. Two
seeds are called equivalent if they are connected by a seed cluster
transformation. Let |i| denote the equivalence class containing the
seed i.

(2) Let G|i| be the groupoid whose objects are seeds in |i|, and mor-
phisms are seed cluster transformations, modulo trivial ones. The
automorphism group Γ = Γ|i| := AutG|i|(i) is called the cluster
modular group associated with the seed i. We call elements of the
cluster modular group mapping classes in analogy with the case in
which the seed is coming from an ideal triangulation of a surface
(see Section 3).

Examples 1.8. — We give some examples of cluster modular groups.

(1) (Type A2). Let i := ({0, 1}, ∅, ε) be the skew-symmetric seed defined
by ε :=

( 0 1
−1 0

)
, which is called type A2. Let φ := (0 1) ◦ µ0 ∈ ΓA2 .

It is the generator of the cluster modular group. The associated
cluster transformations are described as follows:

φ∗(A0, A1) =
(
A1,

1 +A1

A0

)
,

φ∗(X0, X1) = (X1(1 +X0), X−1
0 ).

Then one can check that φ has order 5 by a direct calculation.
See [14, Section 2.5] for instance. In particular we have ΓA2

∼= Z/5.
(2) (Type Lk for k > 2). For an integer k > 2, let ik := ({0, 1}, ∅, εk)

be the skew-symmetric seed defined by εk :=
( 0 k
−k 0

)
. Let us refer

to this seed as the type Lk. The quiver associated with the seed ik
is shown in Figure 1.1. Let φ := (0 1)◦µ0 ∈ ΓLk . It is the generator
of the cluster modular group. In this case, the associated cluster
transformations are described as follows:

φ∗(A0, A1) =
(
A1,

1 +Ak1
A0

)
,

φ∗(X0, X1) = (X1(1 +X0)k, X−1
0 ).

It turns out that in this case the element φ has infinite order [18].
See Example 2.8.

TOME 69 (2019), FASCICULE 2



522 Tsukasa ISHIBASHI

0 1k //

Figure 1.1. Quiver Lk

Next we define the concept of a cluster ensemble, which is defined to be a
pair of functors related by a natural transformation. A cluster ensemble, in
particular, produces a pair of real-analytic manifolds, on which the cluster
modular group acts analytically.
Let us recall some basic concepts from algebraic geometry. For a split

algebraic torus H, let X1, . . . , Xn be its coordinates. A rational function
f on H is said to be positive if it can be represented as f = f1/f2, where
fi =

∑
α∈Nn aαX

α and aα ∈ Z>0. Here we write Xα := Xα1
1 . . . Xαn

n for a
multi-index α ∈ Nn. Note that the set of positive rational functions on a
split algebraic torus form a semifield under the usual operations. A rational
map between two split algebraic tori f : H1 → H2 is said to be positive if
the induced map f∗ preserves the semifields of positive rational functions.

Definition 1.9 (Positive spaces).
(1) Let Pos(k) be the category whose objects are split algebraic tori

over k and morphisms are positive rational maps. A functor ψ :
G → Pos(k) from a groupoid G is called a positive space.

(2) A morphism ψ1 → ψ2 between two positive spaces ψi : Gi → Pos(k)
(i=1,2) consists of the data (ι, p), where ι : G1 → G2 is a functor
and p : ψ1 ⇒ ψ2 ◦ ι is a natural transformation. A morphism of
positive spaces (ι, p) : ψ1 → ψ2 is said to be monomial if the map
between split algebraic tori pα : ψ1(α)→ ψ2(ι(α)) preserves the set
of monomials for each object α ∈ G1.

Definition 1.10 (Cluster ensembles).
(1) From Definition 1.6 we get a pair of positive spaces ψX , ψA : G|i| →

Pos(k), and we have a monomial morphism p = p|i| : ψA → ψX
(with ι = id), given by p∗iXi =

∏
k∈I A

εik
k on each seed A- and

X -tori. We call these data the cluster ensemble associated with the
seed i, and simply write as p : A → X . The groupoid G = G|i| is
called the coordinate groupoid of the cluster ensemble.

(2) Let U = p(A) be the positive space obtained by assigning the re-
striction ψX (µ) : pi(Ai)→ pi′(Ai′) for each mutation µ : i→ i′.

Definition 1.11 (The positive real part). — For a cluster ensemble
p : A → X and Z = A, U or X , define the positive real part to be the
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real-analytic manifold obtained by gluing seed tori by corresponding cluster
transformations, as follows:

Z(R>0) :=
⊔
i∈G

Zi(R>0)
/

(µzk) ,

where Zi(R>0) denotes the subset of Zi(R) defined by the condition that all
cluster coordinates are positive. Note that it is well-defined since positive
rational maps preserves positive real parts. Similarly we define Z(Q>0) and
Z(Z>0).

Note that we have a natural diffeomorphism Zi(R>0) → Z(R>0) for
each i ∈ G. The inverse map ψzi : Z(R>0) → Zi(R>0) gives a chart of the
manifold. The cluster modular group acts on positive real parts Z(R>0) as
follows:

(1.1)

Z(R>0)

φ

��

ψzi // Zi(R>0)

µzi1 ...µ
z
ik
σ∗

��
Z(R>0)

ψzi // Zi(R>0)

Here φ = σ ◦ µik . . . µi1 ∈ Γ is a mapping class, σ∗ is the permutation of
coordinates induced by the seed isomorphism σ. The fixed point property
of this action is the main subject of the present paper.

1.2. Cluster complexes

We define a simplicial complex called the cluster complex, on which the
cluster modular group acts simplicially. In terms of the action on the cluster
complex, we will define the Nielsen–Thurston types of mapping classes in
Section 2. We propose here an intermediate definition between that of [14]
and [18].
Let i = (I, I0, ε, d) be a seed. A decorated simplex is an (n−1)-dimensional

simplex S with a fixed bijection, called a decoration, between the set of
facets of S and I − I0. Let S be the simplicial complex obtained by gluing
(infinite number of) decorated (n−1)-dimensional simplices along mutable
facets using the decoration. Note that the dual graph S∨ is a tree, and there
is a natural covering from the set of vertices V (S∨) to the set of seeds. An
edge of S∨ is projected to a mutation under this covering. Assign mutable
A-variables to vertices of S in such a manner that:

TOME 69 (2019), FASCICULE 2
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(1) the reflection with respect to a mutable facet takes the A-variables
to the A-variables which are obtained by the corresponding muta-
tion.

(2) the labels of variables coincide with the decoration assigned to the
facet in the opposite side.

(3) the initial A-coordinates are assigned to the initial simplex.
Note that the assignment is well-defined since the dual graph S∨ is a tree.
Similarly we assign X -variables to co-oriented facets of S (see Figure 1.2).
Let ∆ be the subgroup of Aut(S) which consists of elements that preserve
all cluster variables.

A1

A2

A3 µ∗1A1
X3

µ∗1X3

X1
µ∗1X1

X2
µ∗1X2

Figure 1.2. assignment of variables

Definition 1.12 (The cluster complex). — The simplicial complex C =
C|i| := S/∆ is called the cluster complex. A set of vertices {α1, . . . , αn} ⊂
V (C) is called a cluster if it spans a maximal simplex.

Let C∨ denote the dual graph of the cluster complex. Note that the clus-
ters, equivalently, the vertices of C∨, are in one-to-one correspondence with
seeds together with tuples of mutable variables ((Ai), (Xi)). For a vertex
v ∈ V (C∨), let [v] denote the underlying seed. Then we get coordinate
systems of the positive real parts for each vertex v ∈ V (C∨), as follows:

ψxv : X (R>0)
ψx[v] // Xi(R>0)

(Xi) // Rn>0

ψav : A(R>0)
ψa[v] // Ai(R>0)

(Ai) // RN>0

The edges of C∨ correspond to seed mutations, and the associated coordi-
nate transformations are described by cluster transformations.
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NIELSEN–THURSTON THEORY FOR CLUSTER MODULAR GROUPS 525

Remark 1.13. — In [18], the cluster complex is defined to be a simplicial
complex whose ground set is the set of mutable A-coordinates, while the
definition in [14] uses all (mutable/frozen) coordinates. In our definition,
the frozen A-variables have no corresponding vertices. The existence of the
frozen variables does not change the structure of the cluster complex, see [5,
Theorem 4.8].

Proposition 1.14 ([14, Lemma 2.15]). — Let D be the subgroup of
Aut(S) which consists of elements which preserve the exchange matrix.
Namely, an automorphism γ belongs to D if it satisfies ε[γ(v)]

γ(i),γ(j) = ε
[v]
ij for

all v ∈ V (C∨) and i, j ∈ [v]. Then
(1) ∆ is a normal subgroup of D, and
(2) the quotient group D/∆ is naturally isomorphic to the cluster mod-

ular group Γ.
In particular, the cluster modular group acts on the cluster complex sim-
plicially.

Example 1.15. — The cluster complexes associated with seeds defined in
Example 1.8 are as follows:

(1) (Type A2). Let i be the seed of type A2. The cluster complex is a
pentagon. The generator φ = (0 1) ◦µ0 ∈ ΓA2 acts on the pentagon
by the cyclic shift.

(2) (Type Lk for k > 2). Let i be the seed of type Lk. The cluster com-
plex is 1-dimensional, and the generator φ = (0 1)◦µ0 ∈ ΓLk acts by
the shift of length 1. The fact that φ has infinite order implies that
the cluster complex is the line of infinite length. See Example 2.8.

1.3. Tropical compactifications of positive spaces

Next we define tropical compactifications of positive spaces, which are
described in [15, 24].

Definition 1.16 (The tropical limit). — For a positive rational map
f(X1, . . . , XN ) over R, we define the tropical limit Trop(f) of f by

Trop(f)(x1, . . . , xN ) := lim
ε→0

ε log f(ex1/ε, . . . , exN/ε),

which defines a piecewise-linear function on RN .

Definition 1.17 (The tropical space). — Let ψZ : G → Pos(R) be
a positive space. Then let Trop(ψZ) : G → PL be the functor given by

TOME 69 (2019), FASCICULE 2
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the tropical limits of positive rational maps given by ψZ , where PL de-
notes the category whose objects are euclidean spaces and morphisms are
piecewise-linear (PL) maps. Let Z(Rt) be the PL manifold obtained by
gluing coordinate euclidean spaces by PL maps given by Trop(ψZ), which
is called the tropical space.

Note that since PL maps given by tropical limits are homogeneous, R>0
naturally acts on Z(Rt). The quotient PZ(Rt) := (Z(Rt)\{0})/R>0 is PL
homeomorphic to a sphere. Let us denote the image of G ∈ Z(Rt)\{0}
under the natural projection by [G] ∈ PZ(Rt). The cluster modular group
acts on Z(Rt) and PZ(Rt) by PL homeomorphisms, similarly as (1.1).

Definition 1.18 (A divergent sequence). — For a positive space ψZ :
G → Pos(R), we say that a sequence (gm) in Z(R>0) is divergent if for
each compact set K ⊂ Z(R>0) there is a number M such that gm 6∈ K for
all m >M .

Definition 1.19 (The tropical compactification). — Let ψX : G →
Pos(R) be the X -space associated to a seed. For a vertex v ∈ V (C∨), let
i = [v] = (I, I0, ε, d) be the underlying seed, and ψxv and Trop(ψxv ) the
associated positive and tropical coordinates, respectively. Then we define
a homeomorphism Fv : X (R>0) → X (Rt) by the following commutative
diagram:

X (R>0)

Fv
��

ψxv // Rn>0

log
��

X (Rt)
Trop(ψxv ) // Rn.

Fixing a vertex v ∈ V (C∨), we define the tropical compactification by
X := X (R>0) t PX (Rt), and endow it with the topology of the spherical
compactification. Namely, a divergent sequence (gn) in X (R>0) converges
to [G] ∈ PX (Rt) in X if and only if [Fv(gn)] converges to [G] in PX (Rt).
Similarly we can consider the tropical compactifications of A and U-spaces,
respectively.

Theorem 1.20 (Le, [24, Section 7]). — Let p : A → X be a cluster
ensemble, and Z = A, U or X . If we have [Fv(gm)] → [G] in PZ(Rt)
for some v ∈ V (C∨), then we have [Fv′(gm)] → [G] in PZ(Rt) for all
v′ ∈ V (C∨). In particular the definition of the tropical compactification is
independent of the choice of the vertex v ∈ V (C∨).
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Corollary 1.21. — Let p : A → X be a cluster ensemble, and Z = A,
U or X . Then the action of the cluster modular group on the positive real
part Z(R>0) continuously extends to the tropical compactification Z.

Proof. — We need to show that φ∗(gm)→ φ∗([G]) in Z for each mapping
class φ ∈ Γ and a divergent sequence (gm) such that gm → [G] in Z. Here
the action in the left-hand side is given by a composition of a finite number
of cluster transformations and a permutation, while the action in the right-
hand side is given by its tropical limit. Then the assertion follows from
Theorem 1.20. �

Note that each tropical compactification is homeomorphic to a closed
disk of an appropriate dimension.

2. Nielsen–Thurston types on cluster modular groups

In this section we define three types of elements of cluster modular groups
in analogy with the classical Nielsen–Thurston types (see Section 3.3). Re-
call that the cluster modular group acts on the cluster complex simplicially.

Definition 2.1 (Nielsen–Thurston type). — Let i be a seed, C = C|i| be
the corresponding cluster complex and Γ = Γ|i| the corresponding cluster
modular group. An element φ ∈ Γ is called

(1) periodic if φ has finite order,
(2) cluster-reducible if φ has a fixed point in the geometric realization
|C| of the cluster complex, and

(3) cluster-pseudo-Anosov (cluster-pA) if no power of φ is cluster-
reducible.

Recall that the cluster modular group acts on the tropical compactifi-
cations A = A(R>0) t PA(Rt) and X = X (R>0) t PX (Rt), which are
closed disks of dimension N and n, respectively. Hence Brouwer’s fixed
point theorem says that each mapping class has at least one fixed point on
each of the tropical compactifications. The following is the main theorem of
the present paper, which is an analogue of the classical Nielsen–Thurston
classification theory.

Theorem 2.2. — Let i be a seed and φ ∈ Γ|i| a mapping class. Then
the followings hold.

(1) If the mapping class φ ∈ Γ is periodic, then it has fixed points in
A(R>0) and X (R>0).
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(2) If the mapping class φ ∈ Γ is cluster-reducible, then there exists a
point L ∈ X (Rt)+ such that φ[L] = [L].

If the seed i is of Teichmüller type (see Definition 2.17), the followings also
hold:

(1′) if φ has a fixed point in A(R>0) or X (R>0), then φ is periodic.
(2′) if there exists a point L ∈ X (Rt)+ such that φ[L] = [L], then φ is

cluster-reducible.

We prove the theorem in the following several subsections. The asymp-
totic behavior of orbits of certain type of cluster-pA classes on the tropical
compactification of the A-space will be discussed in Section 2.3.

2.1. Periodic classes

Let us start by studying the fixed point property of periodic classes. Let
Z = A or X .

Proposition 2.3. — Let i be a seed, and Γ = Γ|i| the associated cluster
modular group. For any φ ∈ Γ, consider the following conditions:

(i) φ fixes a cell C ∈ C of finite type,
(ii) φ is periodic, and
(iii) φ has fixed points in Z(R>0).

Then we have (i) ⇒ (ii) ⇒ (iii). Here a cell C in the cluster complex is of
finite type if the set of supercells of C is a finite set.

Remark 2.4. — The converse assertion (iii) ⇒ (ii) holds under the con-
dition (T1) on the seed. See Proposition 2.6.

Proof.
(i) ⇒ (ii). — Suppose we have φ(C) = C for some cell C ∈ C of finite

type. Then from the definition, the set of supercells of C is a finite set, and
φ preserves this set. Since this set contains a maximal dimensional cell and
the cluster complex C is connected, the action of φ on C is determined by
the action on this finite set. Hence φ has finite order.
(ii)⇒ (iii). — The proof is purely topological. Assume that φ has finite

order. By Brouwer’s fixed point theorem, φ has a fixed point on the disk
Z ≈ DN . We need to show that there exists a fixed point in the interior
Z(R>0). Suppose φ has no fixed points in the interior. Then φ induces a
homeomorphism φ̃ on the sphere SN = DN/∂DN obtained by collapsing
the boundary to a point, and φ̃ has no fixed points other than the point
corresponding to the image of ∂DN . Now we use the following theorem.
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Theorem 2.5 (Brown, [4, Theorem 5.1]). — Let X be a paracompact
space of finite cohomological dimension, s a homeomorphism of X, which
has finite order. If H∗(Fix(sk);Z) is finitely generated for each k, then the
Lefschetz number of s equals the Euler characteristic of the fixed point set:

Lef(s) :=
∑
i

Tr(s : Hi(X)→ Hi(X)) = χ(Fix(s)).

Applying Brown’s theorem forX = SN and s = φ̃ we get a contradiction,
since the Lefschetz number of φ̃ is an even number in this case, while the
Euler characteristic of a point is 1. Indeed, the homology is non-trivial
only for i = 0 or N , and the trace equals to ±1 on each of these homology
groups. Hence φ has a fixed point in the interior Z(R>0). �

To get the converse implication (iii) ⇒ (ii), we need a condition on
the seed, which can be thought of an algebraic formulation of the proper
discontinuity of the action of the cluster modular group on positive spaces.

Proposition 2.6 (Growth property (T1)). — Suppose that a seed i
satisfies the following condition.
(T1) For each vertex v0 ∈ V (C∨), g ∈ Z(R>0) and a number M > 0,

there exists a number B > 0 such that maxα∈v | logZα(g)| >M for
all vertices v ∈ V (C∨) such that [v] = [v0] and dC∨(v, v0) > B.

Then the conditions (ii) and (iii) in Proposition 2.3 are equivalent. Here
dC∨ denotes the graph metric on the 1-skeleton of C∨.

Roughly speaking, the condition (T1) says that the values of the cluster
coordinates evaluated at a point g diverge as we perform a sequence of
mutations which increase the distance dC∨ .

Proof. — Let φ ∈ Γ|i| be an element of infinite order. We need to show
that φ has no fixed points in Z(R>0). It suffices to show that each orbit
is divergent. Let g ∈ Z(R>0) and K ⊂ Z(R>0) a compact set. We claim
that there exists a number M such that φm(g) /∈ K for all m >M . Take a
number L > 0 so that L > maxi=1,...,N maxg∈K |logZi(g)|.

Note that since the 1-skeleton of C∨ has valency n at any vertex, the
graph metric dC∨ is proper. Namely, the number of vertices v such
that dC∨(v, v0) 6 B is finite for any B > 0. Hence for the number B > 0
given by the assumption (T1), there exists a number M such that
dC∨(φ−m(v0), v0) > B for all m > M , since φ has infinite order. Also
note that [φ−m(v0)] = [v0] by Proposition 1.14. Then we have

max
i=1,...,N

|logZi(φm(g)| = max
α∈φ−m(v0)

|logZα(g)| > L
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for allm >M , where (Z1, . . . , ZN ) is the coordinate system associated with
the vertex v0. Here we used the equivariance of the coordinates Zφ−1(α)(g) =
Zα(φ(g)). Hence we have φm(g) 6∈ K for all m >M . �

Proposition 2.7. — Assume that the cluster modular group Γ|i| acts
on Z|i|(R>0) proper discontinuously. Then the condition (T1) holds.

Proof. — Suppose that the condition (T1) does not hold. Then there
exists a vertex v0 ∈ V (C∨), a point g ∈ Z(R>0), a number M > 0, and
a sequence (vm) ⊂ V (C∨) such that [vm] = [v0], dC∨(vm, v0) > m and
maxα∈vm |logZα(g)| 6M . Take a mapping class ψm ∈ Γ so that ψm(vm) =
v0. It is possible since [vm] = [v0]. Then we have

max
i=1,...,N

|logZi(ψm(g)| = max
α∈ψ−1

m (vm)
|logZα(g)| 6M,

which implies that there exists a compact set K ⊂ Z(R>0) such that
ψm(g) ∈ K for all n. Note that the mapping classes (ψm) are distinct,
since the vertices (vm) are distinct. In particular we have ψ−1

m (K)∩K 6= ∅
for all m, consequently the action is not properly discontinuous. �

We will verify the condition (T1) for a seed associated with a triangulated
surface using Proposition 2.7 in Section 3.2, and for the simplest case Lk
(k > 2) of infinite type in Appendix A.

Examples 2.8.
(1) (Type A2). Let i be the seed of type A2 and φ = (0 1) ◦ µ0 ∈ ΓA2

the generator. See Example 1.8. Recall that the two actions on the
positive spaces A(R>0) and X (R>0) are described as follows:

φ∗(A0, A1) =
(
A1,

1 +A1

A0

)
,

φ∗(X0, X1) = (X1(1 +X0), X−1
0 ).

The fixed points are given by (A0, A1) = ((1 +
√

5)/2, (1 +
√

5)/2)
and (X0, X1) = ((1 +

√
5)/2, (−1 +

√
5)/2), respectively.

(2) (Type Lk for k > 2). Let i be the seed of type Lk and φ = (0 1)◦µ0 ∈
ΓLk the generator. See Example 1.8. Recall that the two actions on
the positive spaces A(R>0) and X (R>0) are described as follows:

φ∗(A0, A1) =
(
A1,

1 +Ak1
A0

)
,

φ∗(X0, X1) = (X1(1 +X0)k, X−1
0 ).

These equations have no positive solutions. Indeed, the X -equation
implies X2

0 = (1+X0)k, which has no positive solution since
(
k
2
)
> 1

ANNALES DE L’INSTITUT FOURIER



NIELSEN–THURSTON THEORY FOR CLUSTER MODULAR GROUPS 531

for k > 2. Similarly for A-variables. Hence we can conclude that φ
has infinite order by Proposition 2.3. In particular we have ΓLk ∼= Z.

2.2. Cluster-reducible classes

In this subsection, we study the fixed point property of a cluster-reducible
class. Before proceeding, let us mention the basic idea behind the construc-
tions. Consider the seed associated with an ideal triangulation of a marked
hyperbolic surface F . Here we assume F is a closed surface with exactly
one puncture or a compact surface without punctures (with marked points
on its boundary). Then the vertices of the cluster complex C are repre-
sented by ideal arcs on F . See Theorem 3.5. In particular each point in
the geometric realization |C| of the cluster complex is represented by the
projective class of a linear combination of ideal arcs. On the other hand,
the Fock–Goncharov boundary PX (Rt), which is identified with the space
of measured laminations on F , contains all such projective classes. Hence
the cluster complex is embedded into the Fock–Goncharov boundary of the
X -space in this case. In Section 2.2.1 we show that this picture is valid for
a general seed satisfying some conditions. See Lemma 2.11.

2.2.1. Fixed points in the tropical X -space

Definition 2.9 (The non-negative part). — Let i be a seed. For each
vertex v ∈ V (C∨), let Kv := {L ∈ X (Rt)|L > 0 in v} be a cone in the
tropical space, where L > 0 in v means that xα(L) > 0 for all α ∈ v. Then
the union X (Rt)+ :=

⋃
v∈V (C∨)Kv ⊆ X (Rt) is called the non-negative part

of X (Rt).

Let us define a Γ-equivariant map Ψ : C → PX (Rt)+ as follows. The
construction contains reformulations of some conjectures stated in [14, Sec-
tion 5], for later use. For each maximal simplex S of S, let [S] denote the
image of S under the projection S → C, and let v ∈ V (C∨) be the dual
vertex of [S]. By using the barycentric coordinate of the simplex S, we get
an identification S ∼= PRn>0. Then we have the following map:

ΨS : S ∼= PRn>0
ξ−1
v // PKv ⊆ PX (Rt)+,

where ξv := Trop(ψxv ) : X (Rt) → Rn is the tropical coordinate associated
with the vertex v, whose restriction gives a bijection Kv → Rn>0. Since the
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tropical X -transformation associated to a mutation µk : v → v′ preserves
the set {xk = 0} and the dual graph S∨ is a tree, these maps combine to
give a map

Ψ :=
⋃

v∈V (C∨)

Ψv : S→ PX (Rt)+,

which is clearly surjective. Assume we have S′ = γ(S) for some γ ∈ ∆.
Then from the definition of ∆, γ preserves all the tropical X -coordinates.
Hence we have Ψv′(γx) = Ψv(x) for all x ∈ S, and the map descends to

Ψ : C = S/∆→ PX (Rt)+.

Lemma 2.10. — The surjective map Ψ defined above is Γ-equivariant.

Proof. — It follows from the following commutative diagram for φ ∈ Γ:

S

φ

��

∼= // PRn>0

φ∗

��

ξ−1
v // Kv

φx

��
φ(S)

∼= // PRn>0

ξ−1
φ−1(v) // PKv

Here v is the dual vertex of [S] = [φ(S)], φ∗ is the permutation on
vertices induced by φ, and φx is the induced tropical X -transformation
on X (Rt). �

Next we introduce a sufficient condition for Ψ being injective. For a
point L ∈ X (Rt), a cluster C in C is called a non-negative cluster for L
if L ∈ Kv, where v ∈ V (C∨) is the dual vertex of C. The subset Z(L) :=
{α ∈ V (C) | ξv(L;α) = 0} ⊂ V (C) is called the zero subcluster of L. Here
ξv(−;α) denotes the component of the chart ξv corresponding to the vertex
α. Since the mutation directed to a vertex k ∈ Z(L) preserves the signs of
coordinates, the cluster µk(C) inherits the zero subcluster Z(L). Two non-
negative clusters C and C ′ are called Z(L)-equivalent if they are connected
by a finite sequence of mutations directed to the vertices in Z(L).

Lemma 2.11. — Assume that a seed i satisfies the following condition:
(T2) For each L ∈ X (Rt)+, any two non-negative clusters for L are Z(L)-

equivalent.
Then the map Ψ : C → PX (Rt)+ is a Γ-equivariant isomorphism.

Compare the condition (T2) with Conjecture 5.10 in [14].
Proof. — We need to prove the injectivity of Ψ. Note that Ψ is injective

on each simplex. Also note that, by the construction of the map Ψ, a point
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[L] = Ψ(x) (x ∈ C) satisfies Z(L) 6= ∅ if and only if x is contained in the
boundary of the simplex C.
Assume that C, C ′ are distinct clusters, x ∈ C, x′ ∈ C ′ and Ψ(x) =

Ψ(x′) =: [L] ∈ PX (Rt)+. If x lies in the interior of the cluster C, then
Z(L) = ∅. Then the condition (T2) implies that C = C ′, which is a con-
tradiction. Hence Z(L) 6= ∅. Then the condition (T2) implies that C ′ is
Z(L)-equivalent to C. On the other hand, the point x (resp. x′) must be
contained in the face of C (resp. C ′) spanned by the vertices in Z(L). Hence
x, x′ ∈ Z(L) ⊂ C ∩ C ′. In particular x and x′ are contained in the same
simplex, hence we have x = x′. Therefore Ψ is injective. �

Example 2.12. — Seeds of finite type satisfy the equivalence prop-
erty (T2), see [14, Theorem 5.8].

Proposition 2.13 (Fixed points in X -space). — Let i be a seed, and
φ ∈ Γ|i| a mapping class. Then the followings hold.

(1) If φ is cluster-reducible, then there is a point L ∈ X (Rt)+\{0} such
that φ[L] = [L].

(2) If i satisfies the condition (T2), then the converse of (1) is also true.

Proof. — The assertions follow from Lemma 2.10 and Lemma 2.11, re-
spectively. �

Definition 2.14 (Seeds of definite type). — A seed i is of definite type
if X|i|(Rt)+ = X|i|(Rt).

Proposition 2.15. — Assume that a seed i satisfies the equivalence
property (T2). Then i is of definite type if and only if it is of finite type.

Proof. — The fact that finite type seeds are definite is due to Fock–
Goncharov [14]. Let us prove the converse implication. Assume that X is
of definite type. Then by Lemma 2.11 we have a homeomorphism Ψ : C →
PX (Rt), and the latter is homeomorphic to a sphere. In particular C is a
compact simplicial complex, hence it can possess finitely many cells. �

Remark 2.16. — The conclusion part in Proposition 2.15 is Conjecture 5.7
in [14].

Definition 2.17 (Seeds of Teichmüller type). — A seed i is of Teich-
müller type if it satisfies the growth property (T1) and equivalence prop-
erty (T2), defined in Proposition 2.6 and Lemma 2.11, respectively.

Examples 2.18.
(1) Seeds of finite type are of Teichmüller type. See [14, Theorem 5.8].
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(2) Seeds associated with triangulated surfaces are of Teichmüller type.
See Section 3.2.

(3) The seed of type Lk (k > 1) is of Teichmüller type. See Appendix A.

Corollary 2.19. — Let i be a seed of Teichmüller type, and φ ∈ Γ a
cluster-pA class. Then there exists a point L ∈ X (Rt)\X (Rt)+ such that
φ[L] = [L].

Proof. — Since the tropical compactification X is a closed disk,
Brouwer’s fixed point theorem says that there exists a point x ∈ X such that
φ(x) = x. If x ∈ X (R>0), then by assumption φ has finite order, which is a
contradiction. If x ∈ PX (Rt)+, then by Proposition 2.13(2), φ is cluster-
reducible, which is a contradiction. Hence x ∈ P (X (Rt)\X (Rt)+). �

2.2.2. Cluster reduction and fixed points in the tropical A-space

Here we define an operation, called the cluster reduction, which produces
a new seed from a given seed and a certain set of vertices of the cluster
complex. At the end of Section 2.2.2 we study the fixed point property of
a cluster-reducible class on the tropical A-space.

Let {α1, . . . , αk} ⊂ V (C) be a subset of vertices, which is contained in a
cluster.

Lemma 2.20 (The cluster reduction of a seed). — Take a cluster con-
taining {α1, . . . , αk}. Let i = (I, I0, ε, d) be the underlying seed and ij :=
[αj ] ∈ I the corresponding vertex for j = 1, . . . , n − 2 under the projec-
tion [ ] : {clusters} → {seeds} (see Definition 1.12). Then we define a new
seed by i′ := (I, I0 t {i1, . . . , ik}, ε, d), namely, by “freezing” the vertices
{i1, . . . , ik}. Then the corresponding cluster complex C′ := C|i′| is natu-
rally identified with the link of {α1, . . . , αk} in C. In particular the equiv-
alence class |i′| does not depend on the choice of the cluster containing
{α1, . . . , αk}.

Proof. — Let C ⊂ C be a cluster containing {α1, . . . , αk}, i = (I, I0, ε, d)
the corresponding seed. For a mutation directed to a mutable vertex k ∈
I − (I0 t {i1, . . . , ik}), the cluster C ′ = µk(C) also contains {α1, . . . , αk}.
Conversely, any cluster C ′ containing {α1, . . . , αk} is obtained by such a
sequence of mutations. Hence each cluster in the cluster complex C′ has the
form C\{α1, . . . , αk}, for some cluster C ⊂ C containing {α1, . . . , αk}. �
We say that the corresponding object, such as the cluster ensemble p|i′| :

A|i′| → X|i′| or the cluster modular group Γ|i′|, is obtained by the cluster
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reduction with respect to the invariant set {α1, . . . , αk} from the original
one. Next we show that some power of a cluster-reducible class induces a
new mapping class by the cluster reduction.

Lemma 2.21. — Let i be a seed, φ ∈ Γ|i| a mapping class. Then φ is
cluster-reducible if and only if it has an invariant set of vertices
{α1, . . . , αk} ∈ V (C) contained in a cluster.

Proof. — Suppose φ is cluster-reducible. Then φ has a fixed point c ∈ |C|.
Since the action is simplicial, φ fixes the cluster C containing the point c.
Hence φ permute the vertices of C, which give an invariant set contained in
C. The converse is also true, since φ fixes the point given by the barycenter
of the vertices {α1, . . . , αk}. �

Definition 2.22 (Proper reducible classes). — A mapping class φ ∈
Γ|i| is called proper reducible if it has a fixed point in V (C).

Lemma 2.23. — Let φ ∈ Γ|i| be a mapping class.
(1) If φ is proper reducible, then φ is cluster reducible.
(2) If φ is cluster-reducible, then some power of φ is proper reducible.

Proof. — Clear from the previous lemma. �

Lemma 2.24 (The cluster reduction of a proper reducible class). — Let
φ ∈ Γ|i| be a proper reducible class, {α1, . . . , αk} a fixed point set of vertices
contained in a cluster. Then φ induces a new mapping class φ′ ∈ Γ|i′| in
the cluster modular group obtained by the cluster reduction with respect
to {α1, . . . , αk}.

Proof. — The identification of C′ with the link of the invariant set
{α1, . . . , αk} in C induces an group isomorphism

Γ|i′| ∼= {ψ ∈ Γ|i| | ψ(C′) = C′},

and the right-hand side contains φ. Let φ′ ∈ Γ|i′| be the corresponding
element. Note that φ fixes all frozen vertices in i′, since it is proper re-
ducible. �

We say that the mapping class φ′ is obtained by the cluster reduction
with respect to the fixed point set {α1, . . . , αk} from φ.

Lemma 2.25. — A proper reducible class of infinite order induces a
cluster-pA class in the cluster modular group corresponding to the seed
obtained by a finite number of the cluster reductions.

Proof. — Clear from the definition of the cluster-pA classes. �
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Figure 2.1. quiver X7

Example 2.26 (Type X7). — Let i = ({0, 1, 2, 3, 4, 5, 6}, ∅, ε) be the skew-
symmetric seed defined by the quiver described in Figure 2.1. We call
this seed type X7, following [8]. See also [11]. The mapping class φ1 :=
(1 2) ◦ µ1 ∈ ΓX7 is proper reducible and fixes the vertex Ai ∈ V (C)
(i = 0, 3, 4, 5, 6), which is the i-th coordinate in the initial cluster. The clus-
ter reduction with respect to the invariant set {A0, A3, A4, A5, A6} produces
a seed i′ = ({0, 1, 2, 3, 4, 5, 6}, {0, 3, 4, 5, 6}, ε) of type L2, except for some
non-trivial coefficients. The cluster complex C|i′| is identified with the link of
{A0, A3, A4, A5, A6}, which is the line of infinite length. The cluster reduc-
tion φ′ is cluster-pA, and acts on this line by the shift of length 1. Compare
with Example 1.15.
The mapping class ψ1 := (0 1 2)(3 4 5 6) ◦ µ2µ1µ0 ∈ ΓX7 is cluster-

reducible, since it has an invariant set {A3, A4, A5, A6} contained in the
initial cluster. Note that the power ψ2

1 is proper reducible, since it fixes the
vertex A0.

Lemma 2.27. — Let i be a seed, and i′ the seed obtained by a cluster
reduction. Let ψA : G|i| → Pos(R) and ψ′A : G|i′| → Pos(R) be the positive
A-spaces associated with the seeds i and i′, respectively. Then there is a nat-
ural morphism of the positive spaces (ι, q) : ψ′A → ψA which induces Γ|i′|-
equivariant homeomorphisms A′(R>0) ∼= A(R>0) and A′(Rt) ∼= A(Rt).

Proof. — Note that the only difference between the two positiveA-spaces
is the admissible directions of mutations. The functor ι : G|i′| → G|i| be-
tween the coordinate groupoids is defined by (I, I0 t {i1, . . . , ik}, ε, d) 7→
(I, I0, ε, d) and sending the morphisms naturally. The identity mapAi′(k) =
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Ai(k) for each A-torus combine to give a natural transformation q : ψ′A ⇒
ψA ◦ ι. The latter assertion is clear. �

Remark 2.28. — We have no natural embedding of the X -space in gen-
eral, since X -coordinates assigned to the vertices in {i1, . . . , ik} may be
changed by cluster X -transformations directed to the vertices in I − (I0 t
{i1, . . . , ik}).

Definition 2.29. — A tropical point G ∈ A(Rt) is said to be cluster-
filling if it satisfies aα(G) 6= 0 for all α ∈ V (C).

Note that the definition depends only on the projective class of G.

Proposition 2.30 (Fixed points in A-space). — Let i be a seed satis-
fying the condition (T1), and Γ = Γ|i| the corresponding cluster modular
group. For a proper reducible class φ ∈ Γ of infinite order, there exists a
non-cluster-filling point G ∈ A(Rt) such that φ[G] = [G].

Proof. — Let {α1, . . . , αk} be a fixed point set of φ contained in a cluster,
and φ′ ∈ Γ|i′| the corresponding cluster reduction. Since the tropical com-
pactification A′ is a closed disk, φ′ has a fixed point x′ ∈ A′ by Brouwer’s
fixed point theorem. By Proposition 2.6, xmust be a point on the boundary
PA′(Rt). Then φ fixes the image x of x′ ∈ A under the homeomorphism
given by Lemma 2.27. �

2.3. Cluster-pA classes of special type: cluster Dehn twists

Using the cluster reduction we define special type of cluster-pA mapping
classes, called cluster Dehn twists, and prove that they have an asymptotic
behavior of orbits on the tropical compactification of the A-space analogous
to that of Dehn twists in the mapping class group.

Definition 2.31 (Cluster Dehn twists). — Let i be a skew-symmetric
seed of mutable rank n. A cluster-reducible class φ ∈ Γ|i| is said to be
cluster-reducible to rank m if the following conditions hold.

(1) There exists a number l ∈ Z such that ψ = φl is proper reducible.
(2) The mapping class ψ induces a mapping class in the cluster modular

group associated with the seed of mutable rank m obtained by the
cluster reduction with respect to a fixed point set {α1, . . . , αn−m}
of ψ.
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A cluster-reducible class φ of infinite order is called a cluster Dehn twist
if it is cluster-reducible to rank 2. Namely, there exists a number l ∈ Z
and a subset {α1, . . . , αn−2} ⊂ V (C|i|) of vertices which is fixed by φl and
contained in a cluster, where n is the mutable rank of i.

A skew-symmetric seed is said to be connected if the corresponding
quiver is connected.

Lemma 2.32. — Let i be a skew-symmetric connected seed of mutable
rank n > 3. Suppose that a proper reducible class ψ ∈ Γ|i| has infinite order
and there exists a subset {α1, . . . , αn−2} ⊂ V (C|i|) of vertices which is fixed
by ψ and contained in a cluster. Then the action of the cluster reduction
ψ′ ∈ Γ|i′| with respect to the invariant set {α1, . . . , αn−2} on the A-space
is represented as follows:

(2.1) (ψ′)∗(A0, A1) =
(
A1,

C +A2
1

A0

)
.

Here (A0, A1) denotes the remaining cluster coordinates of the A-space
under the cluster reduction, C is a product of frozen variables.

Proof. — Take a cluster containing {α1, . . . , αn−2}. Let i = (I, I0, ε) be
the corresponding seed, and ij := [αj ] ∈ I the corresponding vertex for
j = 1, . . . , n − 2. Then the cluster reduction produces a new seed i′ :=
(I, I0 t {i1, . . . , in−2}, ε), whose mutable rank is 2. Label the vertices so
that I−I ′0 = {0, 1} and I ′0 = {2, . . . , N−1}, where I ′0 := I0t{i1, . . . , in−2}
and N is the rank of the seed i. Note that ψ = (0 1) ◦ µ0 ∈ Γ|i|. Suitably
relabeling if necessary, we can assume that k := ε01 > 0. We claim that
k = 2. Since i is connected, there exists a vertex i ∈ I ′0 such that a := εi0 6= 0
or b := ε1i 6= 0. Since ψ preserves the quiver, we compute that a = b and
b − ak = −a. Hence we conclude that k = 2. Then from the definition of
the cluster A-transformation we have

ψ∗(A0, A1) =
(
A1,

∏
i∈I′0

Aεi0i +A2
1

A0

)
and ψ∗(Ai) = Ai for all i ∈ I ′0, as desired. �

Theorem 2.33. — Let i be a skew-symmetric connected seed of muta-
ble rank n > 3 or the seed of type L2. Then for each cluster Dehn twist
φ ∈ Γ|i|, there exists a cluster-filling point [G] ∈ PA(Rt) such that we have

lim
n→∞

φ±n(g) = [G] in A

for all g ∈ A(R>0).
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Proof. — Assume that n > 3. There exists a number l such that ψ :=
φl satisfies the assumption of Lemma 2.32. Let as consider the following
recurrence relation:a

(n)
0 = −a(n−1)

1 ,

a
(n)
1 = −a(n−1)

0 + log(C + e2a(n−1)
1 ),

where C > 0 is a positive constant. It is the log-dynamics of (2.1). Then
one can directly compute that a(n)

0 , a(n)
1 goes to infinity and a(n)

0 /a
(n)
1 → 1

as n→∞ for arbitrary initial real values. Hence we conclude that ψn(g)→
[G] in A for all g in A(R>0), where G ∈ A(Rt) is the point whose coordi-
nates are a0 = a1 = 1, ai = 0 for all i ∈ I ′0. The proof for the negative
direction is similar. The generator of ΓL2 , which is cluster-pA, also satisfies
the desired property. �

Example 2.34 (Dehn twists in the mapping class group). — Let F = F sg
be a hyperbolic surface with s > 2. For an essential non-separating sim-
ple closed curve C, we denote the right hand Dehn twist along C by
tC ∈ MC(F ). Consider an annular neighborhood N (C) of C, and slide
two of punctures so that exactly one puncture lies on each boundary com-
ponent of N (C). Let ∆ be an ideal triangulation obtained by gluing the
ideal triangulation of N (C) shown in Figure 2.2 and an arbitrary ideal tri-
angulation of F \N (C). This kind of a triangulation is given in [22]. Then
the Dehn twist is represented as tC = (0 1) ◦ µ0, hence it is a cluster Dehn
twist with l = 1. Its action on the A-space is represented as

φ∗1(A0, A1, A2, A3) =
(
A1,

A2A3 +A2
1

A0
, A2, A3

)
.

2

C

0

1

3

Figure 2.2. ideal triangulation of N (C)
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Example 2.35 (Type X7). — Let us consider the seed of type X7. The
mapping class φ1 := (1 2) ◦ µ1 ∈ ΓX7 is a cluster Dehn twist, whose action
on the A-space is represented as

φ∗1(A0, A1, A2) =
(
A0, A2,

A0 +A2
2

A1

)
.

For a general cluster-pA class, we only know that it has at least one fixed
point on the tropical boundary P (X (Rt)\X (Rt)+ from Proposition 2.13.
It would be interesting to find an analogue of the pA-pair for a cluster-
pA class which satisfies an appropriate condition, as we find in the surface
theory (see Definition 3.9).

3. Basic examples: seeds associated with triangulated
surfaces

In this section we describe an important family of examples strongly
related to the Teichmüller theory, following [16]. A geometric description
of the positive real parts and the tropical spaces associated with these
seeds is presented in Appendix B, which is used in Sections 3.2 and 3.3.
In Section 3.2 we prove that these seeds are of Teichmüller type. In Sec-
tion 3.3, we compare the Nielsen–Thurston types defined in Section 2 with
the classification of mapping classes. In these cases, the characterization
of periodic classes described in Proposition 2.3 is complete. We show that
cluster-reducible classes are reducible.

3.1. Definition of the seed

A marked hyperbolic surface is a pair (F,M), where F = F pg,b is an
oriented surface of genus g with p punctures and b boundary components
satisfying 6g − 6 + 3b+ 3p+D > 0 and p+ b > 0, and M ⊂ ∂F is a finite
subset such that each boundary component has at least one point inM . The
punctures together with elements ofM are calledmarked points. We denote
a marked hyperbolic surface by F p

g,~δ
, where ~δ = (δ1, . . . , δb), δi := |M ∩ ∂i|

indicates the number of marked points on the i-th boundary component. A
connected component of ∂F\M is called a boundary segment. We denote
the set of boundary segments by B(F ), and fix a numbering on its elements.
Note that |B(F )| = D, where D :=

∑b
i=1 δi.
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Definition 3.1 (The seed associated with an ideal triangulation).
(1) An ideal arc on F is an isotopy class of an embedded arc con-

necting marked points, which is neither isotopic to a puncture, a
marked point, nor an arc connecting two consecutive marked points
on a common boundary component. An ideal triangulation of F is
a family ∆ = {αi}ni=1 of ideal arcs, such that each connected com-
ponent of F\

⋃
αi is a triangle whose vertices are marked points

of F . One can verify that such a triangulation exists and that
n = 6g − 6 + 3r + 3s + D by considering the Euler characteris-
tic.

(2) For an ideal triangulation ∆ of F , we define a skew-symmetric seed
i∆ = (∆∪B(F ), B(F ), ε = ε∆) as follows. For an arc α of ∆ which
is contained in a self-folded triangle in ∆ as in Figure 3.1, let π∆(α)
be the loop enclosing the triangle. Otherwise we set π∆(α) := α.
Then for a non-self-folded triangle τ in ∆, we define

ετij :=


1, if τ contains π∆(αi) and π∆(αj) on its boundary

in the clockwise order,
−1, if the same holds, with the anti-clockwise order,
0, otherwise.

Finally we define εij :=
∑
τ ε

τ
ij , where the sum runs over non-self-

folded triangles in ∆.

α

π∆(α)

r
r

Figure 3.1. Self-folded triangle

For an arc α of an ideal triangulation ∆ which is a diagonal of an im-
mersed quadrilateral in F (in this case the quadrilateral is unique), we get
another ideal triangulation ∆′ := (∆\{α}) ∪ {β} by replacing α by the
other diagonal β of the quadrilateral. We call this operation the flip along
the arc α. One can directly check that the flip along the arc αk corresponds
to the mutation of the corresponding seed directed to the vertex k.

Theorem 3.2 ([20, 21, 28]). — Any two ideal triangulations of F are
connected by a finite sequence of flips and relabellings.
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Hence the equivalence class of the seed i∆ is determined by the marked
hyperbolic surface F , independent of the choice of the ideal triangulation.
We denote the resulting cluster ensemble by p = pF : AF → XF , the
cluster modular group by ΓF := Γ|i∆|, etc. The rank and the mutable
rank of the seed i∆ are N = |∆ ∪ B(F )| = 6g − 6 + 3b + 3p + 2D and
n = |∆| = 6g − 6 + 3b+ 3p+D, respectively.

Though a flip induces a mutation, not every mutation is realized by a flip.
Indeed, the existence of an arc contained in a self-folded triangle prevents
us from performing the flip along such an arc. Therefore we generalize the
concept of ideal triangulations, following [16].

Definition 3.3 (Tagged triangulations).

(1) A tagged arc on F is an ideal arc together with a label
{plain, notched} assigned to each of its end, satisfying the following
conditions:
• the arc does not cut out a once-punctured monogon as in Fig-
ure 3.1,

• each end which is incident to a marked point on the boundary
is labeled plain, and

• both ends of a loop are labeled in the same way.
The labels are called tags.

(2) The tagged arc complex Arc./(F ) is the clique complex for an ap-
propriate compatibility relation on the set of tagged arcs on F .
Namely, the vertices are tagged arcs and the collection {α1, . . . , αk}
spans a k-simplex if and only if they are mutually compatible. See,
for the definition of the compatibility, [16]. The maximal simplices
are called tagged triangulations and the codimension 1 simplices
are called tagged flips.

Note that if the surface F has no punctures, then each tagged triangula-
tion has only plain tags. If F has at least two punctures or it has non-empty
boundary, then the tagged arc complex typically contains a cycle (which
we call a ♦-cycle) shown in the right of Figure 3.2. Here by convention,
the plain tags are omitted in the diagram while the notched tags are repre-
sented by the ./ symbol. Compare with the ordinary arc complex, shown in
the left of Figure 3.2. Compatibility relation implies that for a compatible
set of tagged arcs and each puncture a, either one of the followings hold.

(a) All tags at the puncture a are plain.
(b) All tags at the puncture a are notched.
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(c) The number of arcs incident to the puncture a is at most two, and
their tags at the puncture a is different.

�
�
��

∆◦1

∆◦2 = ∆◦4

Z
Z
ZZ

∆◦3

�
�
��

./

∆1

Z
Z
ZZ

α

β

∆4

Z
Z

ZZ ./

∆3

�
�

��

./

./
∆2

Figure 3.2. ♦-cycle

Definition 3.4 (The seed associated with a tagged triangulation). —
For a tagged triangulation ∆, let ∆◦ be an ideal triangulation obtained as
follows:

• replace all tags at a puncture a of type (b) by plain ones, and
• for each puncture a of type (c), replace the arc α notched at a (if
any) by a loop enclosing a and α.

A tagged triangulation ∆ whose tags are all plain is naturally identified
with the corresponding ideal triangulation ∆◦. For a tagged triangulation
∆ with a fixed numbering on the member arcs, we define a skew-symmetric
seed by i∆ = (∆ ∪B(F ), B(F ), ε := ε∆◦).

Then we get a complete description of the cluster complex associated
with the seed i∆ in terms of tagged triangulations:

Theorem 3.5 (Fomin–Shapiro–Thurston, [16, Proposition 7.10, Theo-
rem 7.11]). — For a marked hyperbolic surface F = F p

g,~δ
, the tagged arc

complex has exactly two connected components (all plain/all notched) if
F = F 1

g,0, and otherwise is connected. The cluster complex associated with
the seed i∆ is naturally identified with a connected component of the tagged
arc complex Arc./(F ) of the surface F . Namely,{

CF ∼= Arc(F ) if F = F 1
g,0,

CF ∼= Arc./(F ) otherwise.
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The coordinate groupoid of the seed i∆ is denoted byM./(F ), and called
tagged modular groupoid. The subgroupoidM(F ) whose objects are ideal
triangulations and morphisms are (ordinary) flips is called the modular
groupoid, which is described in [28]. Next we see that the cluster modular
group associated with the seed i∆ is identified with some extension of the
mapping class group.

Definition 3.6 (The tagged mapping class group). — The group {±1}p
acts on the tagged arc complex by alternating the tags at each puncture.
The mapping class group naturally acts on the tagged arc complex, as well
on the group {±1}p by (φ∗ε)(a) := ε(φ(a)). Then the induced semidirect
product MC./(F ) := MC(F ) n {±1}p is called the tagged mapping class
group. The tagged mapping class group naturally acts on the tagged arc
complex.

Proposition 3.7 (Bridgeland–Smith, [3, Proposition 8.5 and 8.6]). —
The cluster modular group associated with the seed i∆ is naturally iden-
tified with the subgroup of the tagged mapping class group MC./(F ) of
F which consists of the elements that preserve connected components of
Arc./(F ). Namely, {

ΓF ∼= MC(F ) if F = F 1
g,0,

ΓF ∼= MC./(F ) otherwise.
We give a sketch of the construction of the isomorphism here, for later

use.
Sketch of the construction. — Let us first consider the generic case F 6=

F 1
g . Fixing a tagged triangulation ∆, we can think of the cluster modular

group as ΓF = π1(M./(F ),∆). For a mapping class ψ = (φ, ε) ∈MC./(F ),
there exists a sequence of tagged flips µi1 , . . . , µik from ∆ to ε · φ−1(∆) by
Theorem 3.5. Since both φ and ε preserves the exchange matrix of the
tagged triangulation, there exists a seed isomorphism σ : ε · φ−1(∆) → ∆.
Then I(ψ) := σ ◦ µik · · ·µi1 defines an element of the cluster modular
group. Hence we get a map I : MC./(F ) → ΓF , which in turn gives an
isomorphism. Since each element of MC(F ) preserves the tags, the case of
F = F 1

g is clear. �

3.2. The seed associate with an ideal triangulation of a surface
is of Teichmüller type

Let ∆ be an ideal triangulation of a marked hyperbolic surface F and i∆
the associated seed.
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Theorem 3.8. — The seed i∆ is of Teichmüller type.

Proof.

Condition (T1). — We claim that the action of the cluster modular group
on each positive space is properly discontinuous. Then the assertion follows
from Proposition 2.7. First consider the action on the X -space. By Proposi-
tion B.9, the action of the subgroup MC(F ) ⊂ ΓF on the X -space X (R>0)
coincide with the geometric action. Hence this action ofMC(F ) is properly
discontinuous, as is well-known. See, for instance, [9]. From the definition
of the action of ΓF = MC./(F ) on the tagged arc complex and (1.1), one
can verify that an element (φ, ε) ∈ MC./(F ) acts on the positive X -space
as (φ, ε)g = φ(ι(ε)g), where ι(ε) :=

∏
ε(a)=−1 ιa is a composition of the

involutions defined in Definition B.7. Now suppose that there exists a com-
pact set K ⊂ X (R>0) and an infinite sequence ψm = (φm, εm) ∈ ΓF such
that ψm(K) ∩K 6= ∅. Since {±1}p is a finite group, (φm) ⊂ MC(F ) is an
infinite sequence and there exists an element ε ∈ {±1}p such that εm = ε

for infinitely many m. Hence we have

∅ 6= ψm(K) ∩K = φm(ι(ε)K) ∩K ⊂ φm(ι(ε)K ∪K) ∩ (ι(ε)K ∪K)

for infinitely many m, which is a contradiction to the proper discontinuity
of the action ofMC(F ). Hence the action of ΓF on the X -space is properly
discontinuous. The action on the A-space is similarly shown to be properly
discontinuous. Here the action of ε is described as ι′(ε) :=

∏
ε(a)=−1 ι

′
a,

where ι′a is the involution changing the horocycle assigned to the puncture
a to the conjugated one (see [17]).

Condition (T2). — Note that for a tagged triangulation ∆ = {γ1, . . . , γN}
without digons as in the left of Figure B.3 in Appendix B, the map Ψ∆|[S∆]
is given by Ψ([w1, . . . , wN ]) = (

⊔
wjγj ,±), where the sign at a puncture p

is defined to be +1 if the tags of arcs at p are plain, and −1 if the tags are
notched. Then on the image of these maps, the equivalence condition holds.
Let us consider the tagged triangulation ∆j in the ♦-cycle, see Figure 3.2.
From the definition of the tropical X -transformations, we have

{
x∆2(α) = −x∆1(α)
x∆2(β) = x∆1(β)

{
x∆3(α) = −x∆1(α)
x∆3(β) = −x∆1(β)

{
x∆4(α) = x∆1(α)
x∆4(β) = −x∆1(β).

Hence the equivalence condition on the image of the ♦-cycle holds. �

TOME 69 (2019), FASCICULE 2



546 Tsukasa ISHIBASHI

3.3. Comparison with the Nielsen–Thurston classification of
elements of the mapping class group

Let F be a hyperbolic surface of type F 1
g or Fg,~δ throughout this sub-

section. Recall that in this case we have ΓF ∼= MC(F ) and CF ∼= Arc(F ),
see Proposition 3.7 and Theorem 3.5. Let us recall the Nielsen–Thurston
classification.

Definition 3.9 (Nielsen–Thurston classification). — A mapping class
φ ∈MC(F ) is said to be

(1) reducible if it fixes an isotopy class of a finite union of mutually
disjoint simple closed curves on F , and

(2) pseudo-Anosov (pA) if there is a pair of mutually transverse filling
laminations G± ∈ ML+

0 (F ) and a scalar factor λ > 0 such that
φ(G±) = λ±1G±. The pair of projective laminations [G±] is called
the pA-pair of φ.

Here a lamination G ∈ M̃L(F ) is said to be filling if each component
of F\G is unpunctured or once-punctured polygon. It is known (see, for
instance, [10]) that each mapping class is at least one of periodic, reducible,
or A, and a A class is neither periodic nor reducible. Furthermore a mapping
class φ is reducible if and only if it fixes a non-filling projective lamination,
and is A if and only if it satisfies φ(G) = λG for some filling lamination
G ∈ ML+

0 (F ) and a scalar λ > 0, 6= 1. A A class φ has the following
asymptotic behavior of orbits in PML0(F ): for any projective lamination
[G] ∈ PML0(F ) we have limn→∞ φ±n[G] = [G±].

We shall start with periodic classes. In this case the characterization of
periodic classes described in Proposition 2.3 is complete:

Proposition 3.10. — For a mapping class φ ∈ ΓF , the following con-
ditions are equivalent.

(1) The mapping class φ fixes a cell C ∈ C of finite type.
(2) The mapping class φ is periodic.
(3) The mapping class φ has fixed points in AF (R>0) and XF (R>0).

Lemma 3.11. — The cells of finite type (see Proposition 2.3) in the
cluster complex are in one-to-one correspondence with ideal cell decompo-
sitions of F . Here an ideal cell decomposition is a family ∆ = {αi} of ideal
arcs such that each connected component of F\

⋃
αi is a polygon.

Proof. — Let C = (α1, . . . , αk) be a cell in the cluster complex, which is
represented by a family of ideal arcs. Suppose that {α1, . . . , αk} is an ideal
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cell decomposition. Then supercells of C are obtained by adding some ideal
arcs on the surface F\

⋃k
i=1 αi to {α1, . . . , αk}, which are finite since such

an ideal arc must be a diagonal of a polygon. Conversely suppose that
{α1, . . . , αk} is not an ideal cell decomposition. Then there exists a con-
nected component F0 of F\

⋃k
i=1 αi which has a half-twist or a Dehn twist

in its mapping class group. Hence F0 has infinitely many ideal triangula-
tions, consequently C has infinitely many supercells. �

Proof of Proposition 3.10. — It suffices to show that the condition (iii)
implies the condition (i). Let C∗ denote the union of all cells of finite type in
the cluster complex. In view of Lemma 3.11, Penner’s convex hull construc-
tion ([28, Chapter 4]) gives a mapping class group equivariant isomorphism

C∗ ∼= T̃ (F )/R>0,

from which the assertion follows. �

Next we focus on cluster-reducible classes and their relation with re-
ducible classes. Observe that by Theorem 3.8 a mapping class is cluster-
reducible if and only if it fixes an isotopy class of a finite union of mutually
disjoint ideal arcs on F .

Proposition 3.12. — The following holds.
(1) A mapping class φ is cluster-reducible if and only if it fixes an

unbounded lamination with real weights L = (
⊔
wjγj ,±), where

wj ∈ R. If φ is proper reducible, then it induces a mapping class on
the surface obtained by cutting F along the multiarc

⊔
γj .

(2) A cluster-reducible class is reducible.
(3) A filling lamination is cluster-filling.

Proof.
(1). — The assertion follows from Proposition 2.13(2). Note that an ele-

ment of PX (Rt)+ consists of elements of the form L = (
⊔
wjγj ,±), where

wj ∈ R>0.
(2). — Let φ ∈ MC(F ) be a cluster-reducible class, L = (

⊔
wjγj ,±)

a fixed lamination, and
⊔
γj the corresponding multiarc. One can pick

representatives of φ and γ so that φ(γ) = γ on F . Then by cutting F along⊔
γj , we obtain a surface F ′ with boundary. Since φ fixes

⊔
γj , it induces

a mapping class φ′ on F ′ which may permute the boundary components.
Let C ′ be the multicurve isotopic to the boundary of F ′. Since φ′ fixes C ′,
the preimage C of C ′ in F is fixed by φ. Therefore φ is reducible.

(3). — Let G be a non-cluster-filling lamination. Let γ be an ideal arc
such that aγ(G) = 0. Then G has no intersection with γ. Since G has
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compact support, there is a twice-punctured disk which surrounds γ and
disjoint from G, which implies that G is non-filling. �

Example 3.13 (A reducible class which is not cluster-reducible). — Let
C be a non-separating simple closed curve in F = F pg , and φ ∈ MC(F ) a
mapping class given by the Dehn twist along C on a tubular neighborhood
N (C) of C and a A class on F\N (C). Then φ is a reducible class which is
not cluster-reducible.

Proof. — The reducibility is clear from the definition. Let F ′ := F\N (C).
If φ fixes an ideal arc contained in F ′, then by Proposition 3.12 we see that
the restriction φ|F ′ ∈MC(F ′) is reducible, which is a contradiction. More-
over since φ is the Dehn twist along C near the curve C, it cannot fix ideal
arcs which traverse the curve C. Hence φ is cluster-irreducible. �

Example 3.14 (A cluster-filling lamination which is not filling). — Let C
be a simple closed curve in F = F pg , and {Pj} be a pants decomposition of
F which contains C as a decomposing curve: F =

⋃
j Pj . For a component

Pj which contains a puncture, let Gj ∈ ML+
0 (Pj) be a filling lamination

such that i(Gj , C) = 0. For a component Pj which does not contain any
punctures, choose an arbitrary lamination Gj ∈ ML+

0 (Pj). Then G :=⊔
j Gj t C ∈ ML

+
0 (F ) is a cluster-filling lamination which is not filling.

Indeed, each ideal arc α incident to a puncture. Let Pj be the component
which contains this puncture. Since Gj ∈ ML+

0 (Pj) is filling, it intersect
with the arc α: i(α,Gj) 6= 0. In particular i(α,G) 6= 0. Hence G is cluster-
filling. However, G is not necessarily filling since the complement F \G in
general contain a component Pj without punctures, which is not a polygon.

Just as the fact that a mapping class is reducible if and only if it fixes a
non-filling projective lamination, we expect that a mapping class is cluster-
reducible if and only if it fixes a non-cluster-filling projective lamination.

Appendix A. The seed of type Lk is of Teichmüller type

Here we show that the seed of type Lk is of Teichmüller type. Recall that
ΓLk ∼= Z from Example 2.8 and the generator φ is a cluster Dehn twist.

Theorem A.1. — The seed of type Lk is of Teichmüller type.

Proof. — Condition (T1). Since the cluster complex CLk is homeomor-
phic to the real line and the cluster modular group acts by the shift, it
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suffices to show that each orbit of the generator φ is divergent. In the case
of the X -space, let us consider the following recurrence relation:

X
(m)
0 = X

(m−1)
1 (1 +X

(m−1)
0 )k

X
(m)
1 = (X(m−1)

0 )−1.

We claim that logX(m)
0 and logX(m)

1 diverges as m → ∞. Setting xm :=
logX(m)

0 and deleting X(m)
1 , we have a 3-term recurrence relation

xm = −xm−2 + k log(1 + expxm−1).

Subtracting xm−1 from the both sides, we have

(A.1) ym = ym−1 + f(xm−1)

where we set ym := xm−xm−1 and f(x) := k log(1+expx)−2x. Since f(x)
is positive, if yN is non-negative for some N , then (yn)n>N is monotone
increasing and

xn = xN−1 +
n∑

k=N
yk > xN−1 + (n−N + 1)y1 → +∞

as n → ∞. Therefore, it is enough to show that yM is non-negative for
some M .
Suppose that ym < 0 for all m > 1. Note that if xm 6 0 for some m,

then xm+2 > 0 > xm+1, hence ym+2 > 0. Therefore it suffices to consider
the case xm > 0 for all m > 1. Then xm is a decreasing sequence of positive
numbers. In this case, from (A.1) we have

ym = y1 +
m−1∑
k=1

f(xk) > y1 + (m− 1) min
06x6x1

f(x)→∞

as m → ∞, which is a contradiction. Thus logX(m)
0 diverges to +∞ and

logX(m)
1 diverges to −∞. Hence the condition (T1) holds for the X -space.

We have proved the case of the A-space in Theorem 2.33.
Condition (T2). In the tropical X -coordinate (x0, x1) associated with the

seed ik, the action of φ on the tropical X -space is expressed as follows:

φ(x0, x1) = (x1 + kmax{0, x0},−x0).

To prove the condition (T2), we need to know the change of signs of tropical
coordinates induced by the action described above. The following lemma
follows from a direct calculation.
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Lemma A.2. — Consider the following recurrence relation:{
x

(m)
0 = x

(m−1)
1 + kx

(m−1)
0 ,

x
(m)
1 = −x(m−1)

0 .

Then we have that if x(0)
0 > 0 and x

(0)
0 + x

(0)
1 > 0, then x

(n)
0 > 0 and

x
(m)
0 + x

(m)
1 > 0 for all m > 0.

In particular, the tropical action of φ on the cone C+ :=
{(x0, x1)| x0 > 0, x0 + x1 > 0} is expressed by the linear transformation

(A.2) φ

(
x0
x1

)
=
(
k 1
−1 0

)(
x0
x1

)
.

Let L ∈ X (Rt)+\{0} be an arbitrary point, and i a non-negative seed
for L. Then L = (x0, x1) and x0, x1 > 0 in the coordinate associated with
i. In particular we have x0 + x1 > 0.
If x0 > 0, by Lemma A.2 we have x(m)

1 = −x(m−1)
0 < 0 for all m > 1,

which implies that no seed other than i is non-negative for L.
If x0 = 0, we have x1 > 0 and x(1)

0 > 0, which implies that µ0(i) is again
a non-negative seed for L, while any other seeds are not non-negative for
L from the argument in the previous paragraph. Hence the condition (T2)
holds. �

Next we study the asymptotic behavior of orbits of the generator φ of
ΓLk on the tropical X -space, which may be related with that of general
cluster Dehn twists.

Proposition A.3. — For k > 2, the generator φ of the cluster modular
group ΓLk has unique attracting/repelling fixed points [L±] ∈ PX (Rt) such
that for all L ∈ X (Rt) we have

lim
m→∞

φ±m([L]) = [L±] in PX (Rt).

Proof. — Note that φ−1(x0, x1) = (−x1, x0 + kmin{0, x1}). By a
similar argument as Lemma A.2, we have that the cone C− :=
{(x0, x1)| x1 < 0, x0 + x1 < 0} is stable under φ−1 and on this cone

(A.3) φ−1
(
x0
x1

)
=
(

0 −1
1 k

)(
x0
x1

)
.

Together with the fact that φ(−1, 0) = (0, 1) and φ(0, 1) = (1, 0), we see
that for all L ∈ X (Rt), φ±N (L) ∈ C± for a sufficiently large number N .
Then each orbit (φn(L))n>0 projectively converges to the unique attracting
fixed point [L+] of the linear action (A.2), which is represented by (k +√
k2 − 4,−2). Similarly (φn(L))n60 projectively converges to the unique
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repelling fixed point [L−] of the linear action (A.3), which is represented
by (k −

√
k2 − 4),−2). �

Appendix B. The positive real parts and the tropical
spaces associated with the seed i∆

Here we give a geometric description of the positive real parts and the
tropical spaces associated with the seed i∆ coming from an ideal triangu-
lation ∆ of a marked hyperbolic surface F = F p

g,~δ
. Most of the contents of

this section seems to be well-known to specialists, but they are scattered
in literature. Therefore we tried to gather the results and give a coherent
presentation of the data associated with i∆.

B.1. Positive spaces and the Teichmüller spaces

Here we describe the positive real parts of AF and XF geometrically.
Main references are [13, 17, 28]. For simplicity, we only deal with the case
of empty boundary, b = 0. The case of non-empty boundary is reduced to
the case of empty boundary by duplicating the surface and considering the
invariant subspace of the Teichmüller /lamination spaces under the natural
involution. See, for details, [28, Section 2].
Let F = F pg be a hyperbolic punctured surface. A non-trivial element

γ ∈ π1(F ) is said to be peripheral if it goes around a puncture, and essential
otherwise. Let T (F ) denote the Teichmüller space of all complete finite-area
hyperbolic structures on F . Namely,

T (F ) := Hom′(π1(F ), PSL2(R))/PSL2(R),

where Hom′(π1(F ), PSL2(R)) consists of faithful representations ρ :
π1(F )→ PSL2(R) such that

(1) the image of ρ is a discrete subgroup of PSL2(R), and
(2) it maps each peripheral loop to a parabolic element, essential one

to hyperbolic ones.
Note that each element ρ ∈ T (F ) determines a hyperbolic structure by
F ∼= H/ρ(π1(F )), where H := {z ∈ C | =z > 0} is the upper half-plane.

Definition B.1 (Decorated Teichmüller space). — The trivial bundle
T̃ (F ) := T (F ) × Rs>0 is called the decorated Teichmüller space. Let $ :
T̃ (F )→ T (F ) be the natural projection.
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Here the fiber parameter determines a tuple of horocycles centered at
each punctures. Specifically, let D := {w ∈ C | |w| < 1} be the Poincaré
disc model of the hyperbolic plane. A horocycle is a euclidean circle in
D tangent to the boundary ∂D. The tangent point is called the center of
the horocycle. For a point g̃ = (g, (ua)pa=1) ∈ T̃ (F ) and a puncture a, let
ã ∈ ∂D be a lift of a with respect to the hyperbolic structure g and h̃a(ua)
the horocycle centred at ã whose euclidean radius is given by 1/(1 + ua).
Then ha(ua) := $(h̃a(ua)) is a closed curve in F , which is independent of
the choice of a lift ã. We call it a horocycle in F .

Given a point ρ̃ = (ρ, (ua)pa=1) of T̃ (F ), we can associate a positive real
number with each ideal arc e as follows. Straighten e to a geodesic in F for
the hyperbolic structure given by ρ. Take a lift ẽ to the universal cover D.
Then there is a pair of horocycles given by the fiber parameters ua, centred
at each of the endpoints of ẽ. Let δ denote the signed hyperbolic distance of
the segment of ẽ between these two horocycles, taken with a positive sign
if and only if the horocycles are disjoint. Finally, define the A-coordinate
(which is called λ-length coordinate in [28]) of e for ρ̃ to be Ae(ρ̃) :=

√
eδ/2.

Then Ae defines a function on T̃ (F ). For an ideal triangulation ∆ of F , we
call the set A∆ = (Ae)e∈∆ of functions the Penner coordinate associated
with ∆.

Proposition B.2 (Penner, [28, Chapter 2, Theorem 2.5]). — For any
ideal triangulation ∆ of F , the Penner coordinate

A∆ : T̃ (F )→ R∆
>0

gives a real analytic diffeomorphism. Furthermore the Penner coordinates
give rise to a positive space ψA : M(F ) → Pos(R). More precisely, the
coordinate transformation with respect to the flip along an ideal arc e ∈ ∆
is given by the positive rational maps shown in Figure B.1.
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In [17], the authors generalized the definition of the A-coordinates to
tagged arcs:

Theorem B.3 (Fomin–Thurston, [17, Theorem 8.6]). — The above
functor extends to a positive space ψ./A : M./(F ) → Pos(R) so that the
positive real part is naturally identified with the decorated Teichmüller
space T̃ (F ), i.e., A(R>0) ∼= T̃ (F ).

The A-coordinate for a tagged arc is obtained by modifying the A-
coordinate for the underlying ideal arc using conjugate horocycles, see [17,
Section 7], for details. Here two horocycles h and h̄ on F are called conju-
gate if the product of their length is 1. Changing the tags at a puncture
a amounts to changing the horocycle centred at a by the conjugate one.
More precisely, let εa ∈ MC./(F ) be the element changing the tags at a
puncture a, see Proposition 3.7. It acts on T (F ) by changing the horocycle
centred at a by the conjugate one.

Definition B.4 (The enhanced Teichmüller space). — Let T (F )′
denote the Teichmüller space of all complete (not necessarily finite-area)
hyperbolic structures on F . Namely,

T (F )′ := Hom′′(π1(F ), PSL2(R))/PSL2(R),

where Hom′′(π1(F ), PSL2(R)) consists of faithful representations
ρ : π1(F )→ PSL2(R) such that

(1) the image of ρ is a discrete subgroup of PSL2(R), and
(2) it maps each peripheral loop to a parabolic or hyperbolic element,

essential one to a hyperbolic one.
The enhanced Teichmüller space T̂ (F ) is defined to be a 2p-fold branched
cover over T (F )′, whose fiber over a point ρ ∈ T (F )′ consists of data of an
orientation on each puncture such that the corresponding peripheral loop
is mapped to a hyperbolic element by ρ.

Note that a point ρ ∈ T (F ) maps each peripheral loop to a parabolic ele-
ment. Hence there is a natural embedding ι : T (F )→ T̂ (F ) (no orientations
are needed). For each ideal triangulation ∆ of F , we define a coordinate on
T̂ (F ) as follows. Take an element ρ ∈ T (F ) ⊂ T̂ (F ), for simplicity. Each
e ∈ ∆ is the diagonal of a unique quadrilateral in ∆. A lift of this quadrilat-
eral is an ideal quadrilateral in D, whose vertices are denoted by x, y, z and
w in the clockwise order. Let X∆(e; ρ) := (x−w)(y− z)/(z−w)(x− y) be
the cross ratio of these four points. The function X∆(e;−) can be extended
to the enhanced Teichmüller space T̂ (F ). We call the set X∆ = (X∆(e;−))
of functions the Fock–Goncharov coordinate associated with ∆.
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Proposition B.5 (Fock–Goncharov, [13, Section 4.1]). — For any ideal
triangulation ∆ of F , the Fock–Goncharov coordinate

X∆ : T̂ (F )→ R∆
>0

gives a real analytic diffeomorphism. Furthermore the Fock–Goncharov co-
ordinates give rise to a positive space ψX :M(F )→ Pos(R). More precisely,
the coordinate transformation with respect to the flip along an ideal arc
e ∈ ∆ is given by the positive rational maps shown in Figure B.2.
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Figure B.2

Proposition B.6. — The above functor extends to a positive space
ψ./X :M./(F )→ Pos(R) so that the positive real part is naturally identified
with the enhanced Teichmüller space T̂ (F ), i.e., X (R>0) ∼= T̂ (F ).

Although the above proposition seems to be well-known to specialists,
we could not find any proof in literature. Therefore we give a proof here
for completeness.

Definition B.7 (The coordinates associated with a tagged triangu-
lation). — We already have the Fock–Goncharov coordinates
X∆ : X (R>0) → R∆

>0 with respect to any ideal triangulation ∆. We de-
fine a coordinate system for any tagged triangulations by the following
conditions:

(1) Suppose two tagged triangulations ∆1, ∆2 coincide except for the
tags at a puncture a. Then we set

X∆1(g, α1) = X∆2(ιa(g), α2)

for all g ∈ X (R>0), where αi ∈ ∆i (i = 1, 2) are the corresponding
arcs, ιa is the involution on X (R>0) reversing the fiber parameter
of the cover assigned to the puncture a.
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(2) If the tags of a tagged triangulation ∆ are all plain, then we set
X∆(g, α) := X∆◦(g, α◦) for all g ∈ X (R>0) and α ∈ ∆. The right-
hand side is the Fock–Goncharov coordinate for the ideal triangu-
lation ∆◦.

(3) If a tagged triangulation ∆ have a punctured digon shown in the
left of Figure B.3, then we set X∆(g, γ) := X∆◦(g, γ◦) for γ 6= α,
and respecting the rule (1) we set

X∆(g, α) = X∆′(ιa(g), α′) = X∆◦(ιa(g), β◦).

α
β

./∆

β
α

./∆′

α◦

β◦
∆◦

Figure B.3

The following is the key lemma to ensure that the above definition is
well-defined, which is essentially a special case of Lemma 12.3 in [12]:

Lemma B.8 (Fock–Goncharov, [12]). — In the notation of Figure 3.2,
we have

X∆4(g, α)X∆4(ιa(g), β) = 1

for all g ∈ T̂ (F ).

Proof of Proposition B.6. — We need to show that each coordinate
transformation X∆i

◦ X−1
∆j

in the ♦-cycle coincides with the cluster X -
transformation with respect to the exchange matrices associated with the
tagged triangulations.

∆1
µβ←→ ∆4. Note that the coordinate transformations of Xγ (γ 6= α)

coincide with the cluster transformations by Proposition B.5. In particular
we have X∆1(g, β) = X∆4(g, β)−1. Hence by Lemma B.8 we have

X∆1(g, α) = X∆◦1 (ιa(g), β◦) = X∆◦4 (ιa(g), β◦)−1 = X∆◦4 (g, α◦)
= X∆4(g, α).
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∆1
µα←→ ∆2. Note that the coordinate transformations of Xγ (γ 6= β)

coincide with the corresponding cluster transformations, and we have

X∆2(g, β) = X∆4(ιa(g), α) = X∆1(ιa(g), α) = X∆◦1 (g, β◦) = X∆1(g, β).

The remaining cases follow from a symmetric argument. �

The monomial morphism between the positive spaces of the seed i∆
coincides with p = ι ◦$ : T̃ (F )→ T̂ (F ) (see, for instance, [28, Chapter 1,
Corollary 4.16(c)]). In particular, the U-space is naturally identified with
the Teichmüller space, i.e., U(R>0) ∼= T (F ).
The mapping class group naturally acts on the Teichmüller space T (F )

and T (F )′ via the Dehn–Nielsen embedding [9] MC(F ) → Out(π1(F )).
These two actions extend to T̃ (F ) and T̂ (F ) by permuting the fiber pa-
rameters according to the action on the punctures.

Proposition B.9 (Penner, [28, Chapter 2, Theorem 2.10]). — For any
ideal triangulation ∆ of F and a mapping class φ ∈MC(F ), the following
diagrams commute:

T̃ (F )

φ

��

A∆ // R∆
>0

I(φ)
��

T̃ (F )
A∆

// R∆
>0,

T̂ (F )

φ

��

X∆ // R∆
>0

I(φ)
��

T̂ (F )
X∆

// R∆
>0.

In particular, these natural actions coincide with the action as a subgroup of
the cluster modular group associated with the seed i∆. Compare with (1.1).

B.2. Tropical spaces and the lamination spaces

Next we describe the tropical spaces geometrically, following [13]. As
before, we focus on the case of empty boundary b = 0.

Definition B.10. — A decorated rational (bounded) lamination on F
is an isotopy class of a disjoint union of simple closed curves in F with
rational numbers (called weights) assigned to each curve so that the weight
is positive unless the corresponding curve is peripheral. Each curve is called
a leaf of the lamination.

We denote a decorated rational lamination by L =
⊔
wjγj , and de-

note the set of decorated rational laminations by L̃(F ;Q). Let L(F ;Q)
denote the set of decorated rational laminations with no peripheral leaves.

ANNALES DE L’INSTITUT FOURIER



NIELSEN–THURSTON THEORY FOR CLUSTER MODULAR GROUPS 557

There is a canonical projection $ : L̃(F ;Q) → L(F ;Q) forgetting the
peripheral leaves. Following [13], we associate a rational number with an
ideal arc e. For a decorated rational lamination L =

⊔
wjγj , isotope each

curve γj so that the intersection with e is minimal. Then define ae(L) :=∑
j wj#(γj ∩ e).

Proposition B.11 (Fock–Goncharov, [13, Section 3.2]). — For any
ideal triangulation ∆ of F , the map

a∆ : L̃(F ;Q)→ Q∆;L 7→ {ae(L)}e∈∆

gives a bijection.

For a flip along e ∈ ∆, the corresponding change of the above coor-
dinates coincide with the tropical cluster A-transformation. Thus we call
a∆ the tropical A-coordinate associated with ∆. Since the tropical clus-
ter A-transformation is continuous with respect to the standard topology
on QNwe can define the real decorated lamination space L̃(F ;R) as the
completion of L̃(F ;Q) with respect to the topology induced by the tropical
A-coordinates. Similarly define L(F ;R) as the completion of L(F ;Q). Then
we have a homeomorphism a∆ : L̃(F ;R) → R∆ for each ideal triangula-
tion ∆. For each tagged arc we can extend the definition of the tropical
A-coordinate using the conjugate peripheral curves, in analogy with the
conjugate horocycles. Here two weighted peripheral curves on F are called
conjugate if the sum of weights is 0. Again, changing the tags amounts to
changing the weighted peripheral curves by the conjugate one.

Proposition B.12 (Fomin–Thurston [17]). — The tropical space of the
positive space ψ./A : M./(F ) → Pos(R) given in Theorem B.3 is naturally
identified with the real decorated lamination space L̃(F ;R), i.e., A(Rt) ∼=
L̃(F ;R).

Although the geometric meaning of irrational points in L̃(F ;R) is not so
clear from the above definition, we have the following result.

Theorem B.13 (for instance, [29]). — There are natural PL homeo-
morphisms

L(F ;R) ∼=ML+
0 (F ) and L̃(F ;R) ∼= M̃L(F ),

whereML+
0 (F ) :=ML0(F ) ∪ {∅} is the space of measured geodesic lam-

inations with compact supports attached with the empty lamination, and
M̃L(F ) := ML+

0 (F ) × Rs is a trivial bundle. Moreover, the bundle pro-
jection M̃L(F ) →ML+

0 (F ) coincides with the projection $ : L̃(F ;R) →
L(F ;R).
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Definition B.14. — A rational unbounded lamination consists of the
following data:

(1) an isotopy class of a disjoint union of simple closed curves and ideal
arcs {γj}j in F with positive rational weights {wj} assigned to each
curve.

(2) a tuple of orientations on each puncture to which some curves inci-
dent.

We denote these data by L = (
⊔
wjγj ,±).

Denote the set of rational unbounded laminations by L̂(F ;Q). We have
a natural embedding ι : L(F ;Q) ↪→ L̂(F ;Q), where the orientation data is
unnecessary since the leaves of a bounded lamination are not incident to
any punctures.

Proposition B.15 (Fock–Goncharov, [13, Section 3.1]). — For any
ideal triangulation ∆ of F , there exists a natural bijection

x∆ : L̂(F ;Q)→ Q∆.

For a flip along e ∈ ∆, the corresponding change of the above coordinates
coincide with the tropical cluster X -transformation. By the continuity of
the tropical cluster X -transformations, we can define the real unbounded
lamination space L̂(F ;R) as the completion of L̂(F ;Q).

Proposition B.16 (Fomin–Thurston, [17, Theorem 13.6]). — The co-
ordinate functor defined above naturally extends to the tagged modu-
lar groupoid M./(F ), and the tropical space of the positive space ψX :
M(F ) → Pos(R) given in Proposition B.2 is naturally identified with the
real decorated lamination space L̂(F ;R), i.e., X (Rt) ∼= L̂(F ;R).

The extension is in the same manner as the one described in Proposi-
tion B.6.
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