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APPLICATIONS OF THE DUALITY BETWEEN THE
HOMOGENEOUS COMPLEX MONGE–AMPÈRE

EQUATION AND THE HELE-SHAW FLOW

by Julius ROSS & David Witt NYSTRÖM

Abstract. — We give two applications of the duality between the Homoge-
neous Complex Monge–Ampère Equation (HCMA) and the Hele-Shaw flow. First,
we prove existence of smooth boundary data for which the weak solution to the
Dirichlet problem for the HCMA over P1 × D is not twice differentiable at a given
collection of points, and also examples that are not twice differentiable along a set
of codimension one in P1 × ∂D. Second, we discuss how to obtain explicit families
of smooth geodesic rays in the space of Kähler metrics on P1 and on the unit disc
D that are constructed from an exhausting family of increasing smoothly varying
simply connected domains.
Résumé. — Nous donnons deux applications de la dualité entre l’équation de

Monge–Ampère complexe homogène (HCMA) et le flot de Hele-Shaw. D’abord
nous prouvons l’existence de données lisses au bord pour lesquelles la solution
faible au problème de Dirichlet pour l’équation HCMA sur P1 × D n’est pas deux
fois différentiable en certains points fixés a priori ainsi que des exemples qui ne
sont pas différentiables le long d’un ensemble de codimension 1 de P1 × D. Puis
nous expliquons comment obtenir explicitement des familles de rayons géodésiques
lisses dans l’espace des métriques Kähler sur P1 et sur le disque unité D. Ils sont
construits à partir d’une famille à la fois exhaustive et croissante de domaines
simplement connexes variant de manière lisse.

1. Introduction

The purpose of this paper is to give two applications of previous work of
the authors that describes a duality between a certain Dirichlet problem for
the Homogeneous Complex Monge–Ampère Equation (HCMA) and a free
boundary problem in the plane called the Hele-Shaw flow [19]. First, for
any finite set of points in P1 × ∂D, where D ⊂ C denotes the unit disc, we
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2 Julius ROSS & David Witt NYSTRÖM

give examples of smooth boundary data for which the weak solution to this
Dirichlet problem over P1 × D is not twice differentiable at these points.
We also produce such examples that are not twice differentiable along a
set of codimension one in P1 × ∂D. Second, we use this duality to produce
families of regular solutions to this Dirichlet problem over the punctured
disc D×, giving explicit families of smooth geodesic rays in the space of
Kähler metrics on P1 and on D.

1.1. Regularity of the Dirichlet problem for the HCMA over
the disc

The setup for the first application is as follows. Fix a chart 0 ∈ C ⊂ P1

with coordinate z and let ω denote the Fubini–Study form. Choose a Kähler
potential φ ∈ C∞(P1), by which we mean ω + ddcφ is a strictly positive
form (i.e. an area form) and let πP1 : P1 × D → P1 be the projection.
Consider the envelope

(1.1) Φ := sup
{
ψ : P1 × D→ R ∪ {−∞} : ψ is usc, π∗P1ω + ddcψ > 0

and ψ(z, τ) 6 φ(τz) for (z, τ) ∈ P1 × ∂D

}
,

which is the weak solution to the Dirichlet problem

Φ(z, τ) = φ(τz) for (z, τ) ∈ P1 × ∂D,
π∗P1ω + ddcΦ > 0,

(π∗P1ω + ddcΦ)2 = 0,

where the second equation is to be understood in the sense of currents and
the third is the Bedford–Taylor product.
The following is a preliminary version of what we shall prove:

Theorem 1.1. — Let S be a union of finitely many points and non-
intersecting smooth curve segments in P1 \ {0}. Then there exists a Kähler
potential φ such that the above weak solution Φ to the HCMA is not twice
differentiable at any point of the form (τ−1z, τ), z ∈ S, |τ | = 1.

The question of regularity of solutions to the HCMA has a long his-
tory, and has proved to be a difficult problem that depends subtly on the
boundary data (see, for example, Lempert [15], Bedford–Demailly [1] or
Błocki [3]). As is well known, if D is replaced by a closed annulus in C, and
P1 is replaced by any Kähler manifold X, the above Dirichlet problem with
S1-invariant boundary data corresponds to finding a geodesic segment in
the space of Kähler potentials on X (with respect to the Mabuchi metric).

ANNALES DE L’INSTITUT FOURIER



APPLICATIONS OF DUALITY OF HELE-SHAW FLOW 3

Similarly if D is replaced by the punctured disc D× it corresponds to finding
a geodesic ray. The regularity of these geodesics has been of intense interest
ever since this space was considered by Mabuchi [17], Semmes [25] and Don-
aldson [9]. However it is only since the relatively recent work of Lempert–
Vivas [16], Lempert–Darvas [7] and Darvas [6] that we have known that it
is not always possible to join two potentials by a geodesic segment that lies
in the class C2.
What we have here is similar in spirit to, but in a sense stronger than,

the result of Lempert–Vivas in that we are able to prescribe the location
of the singular locus (which need not consist of isolated points), as well as
see exactly how the regularity fails; we are not aware of any similar result
in the theory of the HCMA in which this precise information about the
weak solution is available, other than the toric case [23, 22]. We remark
also that in the work of [24] irregularity of some geodesics is proved, albeit
for a rather different initial value problem.

What permits us to have such a good understanding of the singularities of
Φ is the connection with the Hele-Shaw flow. To define this, suppose (X,ω)
is a one-dimensional Kähler manifold, which we will take to be either P1

with its Fubini–Study form ωFS , C with the Lebesgue form dA or the open
unit disc D ⊂ C with the Poincaré form ωP . In the first case we use the
convention that P1 has area one so

A :=
∫
X

ω ∈ {1,∞}.

The complex plane and unit disc both have the origin as a distinguished
point, and when X = P1 we fix a point that we denote by 0 ∈ P1.
Given any φ ∈ C∞(X) such that ω + ddcφ > εω for some ε > 0, the

Hele-Shaw flow consists of an increasing collection of sets

Ωt ⊂ X for t ∈ (0, A)

such that Ωt has area t with respect to ω + ddcφ. It is defined by setting

Ωt := {z ∈ X : ψt(z) < φ(z)}

where
ψt := sup{ψ : ψ is ω-psh and ψ 6 φ and ν0(ψ) > t}.

Recall that a function ψ : X → R∪ {−∞} is ω-psh if ψ+ u is plurisubhar-
monic whenever locally ddcu = ω, thus ω+ddcψ will be a positive current,
and

ν0(ψ) = sup{t : ψ 6 t ln |z|2 +O(1) near z = 0}
is the order of the logarithmic singularity (Lelong number) of ψ at 0 ∈ X.

TOME 69 (2019), FASCICULE 1



4 Julius ROSS & David Witt NYSTRÖM

What is proved in [19] is that when X = P1 this flow is intimately
connected to the weak solution Φ̃ to the Dirichlet problem for the complex
HCMA on P1×D× with boundary data the pullback of φ to X×∂D and a
certain prescribed singularity at (0, 0); in fact ψt is the Legendre transform
of Φ̃. Moreover there is a simple way to transform between Φ and Φ̃, and
thus each contain the same information as the Hele-Shaw flow (we shall
recall this in more detail in Section 4).
To state our first result more precisely we need to consider flows of sets

that develop singularities in a particularly simple way. Let S be the union of
finitely many points and non-intersecting smooth curve segments in P1\{0}.

Definition 1.2. — We say that the Hele-Shaw for ω + ddcφ develops
tangency along S if there exists a T ∈ (0, 1) such that

(1) Ωt is smoothly bounded, simply connected and varies smoothly for
t < T and

(2) ΩT is simply connected and ∂ΩT is the image of a smooth locally
embedded curve intersecting itself tangentially precisely along S

(see Figure 1.1).

Figure 1.1. Developing tangency along S

Theorem 1.3. — Let φ ∈ C∞(P1) be a Kähler potential and suppose
the Hele-Shaw flow for ω+ddcφ develops tangency along S. Then the weak
solution Φ from (1.1) to the Dirichlet problem for the HCMA on P1 × D
with boundary data (z, τ) 7→ φ(τz) is not twice differentiable at the points
(τ−1z, τ), z ∈ S, |τ | = 1.

We note that actually we know more, and from the discussion below it
will be apparent that there is an explicit open set in P1 × D on which Φ
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smooth. With more work it may be possible to describe precisely where
(and how) Φ fails to be twice differentiable, but we shall not consider that
further in this paper.

It remains to comment that to get Theorem 1.1 from Theorem 1.3 we
have to show that given such a set S it is possible to find a Kähler potential
whose Hele-Shaw flow develops tangency along S. To do this we first choose
ΩT as in Definition 1.2, and we aim to find a Kähler potential for which
we can understand the Hele-Shaw flow backwards for a small time, say
for t ∈ [T − ε, T ]. As is well known in the Hele-Shaw literature it is not
normally the case that the strong Hele-Shaw flow exists backwards in time
starting at some ΩT (for instance if ω is analytic then a necessary condition
is that ΩT has analytic boundary). However, using a previous result of the
authors [20], we shall see that this assumption is not necessary as long as
one allows a (smooth) modification of the area form near ΩT (said another
way, we make a smooth modification of the permeability that governs the
flow). We may then shrink ΩT−ε down to 0, and expand ΩT out to ∞, so
as to obtain a flow of sets {Ωt}t∈(0,1) with properties that ensure that it
is the Hele-Shaw flow for some Kähler potential that can be constructed
from the flow. Details can be found in Section 3.

Families of Geodesic Rays

The weak solution Φ̃ to the Dirichlet problem for the HCMA over the
punctured disc D× with S1-invariant boundary data is by definition a weak
geodesic ray in the space of positive potentials on X. When X = P1,
if this solution is regular (by which we mean it is smooth and strictly ω-
plurisubharmonic along the fibres over D×) then it gives a genuine geodesic
in this space, i.e. a smooth geodesic in the space of Kähler metrics. For this
reason regularity of the weak geodesic ray is of interest, and following [19]
we know that this regularity is intimately related to the topology of the
Hele-Shaw flow. By analogy, when X = D we call a regular weak geodesic
ray a smooth geodesic ray.
To state our theorems in the simplest way, let B(t) denote the geodesic

ball in P1 centred at 0 with area t taken with respect to the metric ωFS .

Definition 1.4. — Let a ∈ {0, 1}. We say that a collection of subsets
{Ωt}t∈(0,1) of P1 is standard as t tends to a if there exist ε > 0 such that

Ωt = B(t) for |t− a| < ε.

TOME 69 (2019), FASCICULE 1



6 Julius ROSS & David Witt NYSTRÖM

Theorem 1.5. — Let X = P1 or X = D and suppose the Hele-Shaw
flow {Ωt}t∈(0,A) for a Kähler form ω + ddcφ satisfies

(1) {Ωt}t∈(0,A) is smoothly bounded and varies smoothly with non-
vanishing normal velocity,

(2) Ωt is simply connected for all t ∈ (0, A),
(3) if X = P1 then {Ωt}t∈(0,1) is standard as t tends to 1.

Then the weak geodesic ray obtained as the Legendre transform of the
Hele-Shaw envelopes {ψt} is regular, and so defines a smooth geodesic ray
in the space of Kähler metrics on X.

Of course, for this theorem to have any content we must be able to pro-
vide examples of potentials φ for which the Hele-Shaw has these properties.
An interesting case of this is given by a result of Hedenmalm–Shimorin (see
also [12] for the same statement with weaker curvature assumptions).

Theorem 1.6. — (Hedenmalm–Shimorin [13]) Let (X,ω) = (D, ωP )
and suppose that φ is taken so that the Kähler form ωP + ddcφ is analytic,
hyperbolic (i.e. the Kähler metric has negative curvature) and complete
(e.g. if ωP + ddcφ > εωP ). Then the Hele-Shaw flow {Ωt} for ω + ddcφ

is smoothly bounded, smoothly varying, and simply connected for all t ∈
(0,∞).

Another class of examples can be constructed from an observation due
to Berndtsson (following a question of Zelditch) which says that any rea-
sonable smooth increasing family of simply connected domains is the Hele-
Shaw flow for some smooth Kähler potential, see Theorem 3.1.
Of course it is trivial to construct families of domains {Ωt} that satisfy

the hypotheses of Theorem 1.5, and thus we have an easy way to construct
explicit families of smooth geodesic rays in the space of Kähler metrics on
P1 (resp. on D). In particular we have that any hyperbolic analytic Kähler
metric with ωP +ddcφ > εωP on D is the starting point for some canonical
smooth geodesic ray.

Acknowledgements. We wish to thank the Simons Center for Geome-
try and Physics for inviting the authors to the “Large N Program” in the
Spring of 2015, in particular Steve Zelditch for his role in organising this
program as well as his interest in our previous work which led directly to
the material in this note. We also thank the other participants, in particular
Bo Berndtsson for his interest and assistance.
During this work JR was supported by an EPSRC Career Acceleration

Fellowship (EP/J002062/1). DWN has received funding from the People
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Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under REA grant agreement no 329070

2. The Hele Shaw Flow

2.1. Definition and Preliminaries

Suppose (X,ω) is a one-dimensional Kähler manifold, which we will take
to be either P1 with its Fubini–Study form ωFS , C with the Lebesgue form
dA or the open unit disc D ⊂ C with the Poincaré form ωP . Let

A :=
∫
X

ω ∈ (0,∞]

and fix an origin 0 ∈ X. We use the convention

dc = i

2π (∂ − ∂)

so ddc log |z|2 = δ0. On P1 we always having in mind a chart 0 ∈ C ⊂
P1 with coordinate z so the Fubini–Study metric ωFS has local potential
log(1 + |z|2) on C giving P1 area 1.

Let φ ∈ C∞(X) be such that

(2.1) ωφ := ω + ddcφ > εω for some ε > 0.

In particular (2.1) implies ωφ is strictly positive (and in the compact case
X = P1 condition (2.1) is equivalent to ωφ being strictly positive).

Definition 2.1. — For t ∈ (0, A) set

ψt := sup{ψ : X → R ∪ {−∞} : ψ is ω-psh and ψ 6 φ and ν0(ψ) > t}.

Here ν0 denotes the Lelong number at 0, so ν0(ψ) > t means that ψ(z) 6
t ln |z|2 + O(1) near 0. As the upper semi-continuous regularisation of ψt
is itself a candidate for the envelope defining ψt, we see that ψt is ω-psh.
Since the Lelong number is additive we get that for a fixed z the functon
t 7→ ψt(z) is concave in t.

Definition 2.2. — For t ∈ (0, A) set

(2.2) Ωt := {z ∈ X : ψt(z) < φ(z)}.

It is easy to see that if φ is replaced by φ+h for some harmonic function
h then ψt is replaced by ψt + h. Thus Ωt depends only on ωφ.

TOME 69 (2019), FASCICULE 1



8 Julius ROSS & David Witt NYSTRÖM

Definition 2.3 (Hele-Shaw flow). — We refer to collection of sets
{Ωt}t∈(0,A) as the Hele-Shaw flow associated to (X,ωφ) and the collection
{ψt}t∈(0,A) as the Hele-Shaw envelopes associated to (X,ω, φ).

Remark 2.4. — What we have called the Hele-Shaw flow is often called
the “weak Hele-Shaw flow”. If (a, b) ⊂ (0, A) we will also refer to the sub-
collection {Ωt}t∈(a,b) as the Hele-Shaw flow and similarly for the envelopes.

Proposition 2.5.
(1) Ωt is an open connected set containing the origin for all t ∈ (0, A).
(2) ∂Ωt has measure zero.
(3) ψt is C1,1 on X \ {0}.
(4) ωψt

= (1 − χΩt
)ωφ + tδ0 in the sense of currents. Here χS denotes

the characteristic function of a set S, and δ0 the Dirac delta.
(5) For t ∈ (0, A) we have ∫

Ωt

ωφ = t.

Proof. — This is standard material for the Hele-Shaw flow, and the de-
tails are given in [19, Proposition 1.1] (the cited reference is for X = P1,
but the same proof applies for D or C). �

Our next Lemma says that the Hele-Shaw flow is local, by which we
mean Ωt depends only one the restriction of ωφ to a neighbourhood of Ωt.

Lemma 2.6 (Locality of the Hele-Shaw Flow). — Let U ⊂ X be an open
subset containing 0 and φ and φ̃ two Kähler potentials such that ωφ = ωφ̃
on U . Let Ωt and Ω̃t denote their respective Hele-Shaw flows. Then for all
t such that Ωt is relatively compact in U we have that

Ωt = Ω̃t.

Proof. — If Ωt is relatively compact in U it follows that

ψt|U = sup{ψ 6 φ : ψ is ω-psh on U and ν0(ψ) > t}.

We also have that φ− φ̃ is harmonic on U , from which it follows that

(ψt − φ+ φ̃)|U = sup{ψ 6 φ̃ : ψ is ω-psh on U and ν0(ψ) > t}

and hence
(ψt − φ+ φ̃)|U > (ψ̃t)|U .

This in turn shows that
Ω̃t ⊇ Ωt.

ANNALES DE L’INSTITUT FOURIER
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But now
t =

∫
Ωt

ωφ =
∫

Ωt

ωφ̃ 6
∫

Ω̃t

ωφ̃ = t,

hence
Ωt = Ω̃t. �

2.2. The Strong Hele-Shaw flow

We shall also need the notion of a strong solution to the Hele-Shaw flow.
We shall only consider this in the plane, so suppose {Ωt}t∈(a,b) is a smooth
increasing family of domains of C. By this we mean each Ωt is smoothly
bounded and varies smoothly, so locally ∂Ωt is the graph of a smooth
function that varies smoothly with t. So if n denotes the outward unit
normal vector field on ∂Ωt0 for some t0, then for t close to t0 we can write
∂Ωt = {x+ f(x, t)nx : x ∈ ∂Ωt0} for some smooth function ft(x) = f(x, t)
on ∂Ωt0 that is positive for t > t0 and negative for t < t0. Then the normal
velocity of ∂Ωt0 is defined to be

Vt0 := dft
dt
∣∣
t=0n.

Now assume also each Ωt contains the origin. For each t let

pt(z) := −GΩt
(z, 0)

where GΩt
denotes the Green’s function for Ωt with logarithmic singularity

at the origin. Thus

pt = 0 on ∂Ωt and ∆pt = −δ0.

The statement that pt exists and is smooth on Ωt \ {0} is classical (this
follows immediately from regularity of the Dirichlet problem for the Lapla-
cian, e.g. [14, Proposition 1.3.11]), which can be found, for instance, in [10,
Chapter 6]). We also fix a smooth area form η on C which we write as

η = 1
κ

dA

where dA is the Lebesgue measure and κ is a strictly positive real-valued
smooth function on C.

Definition 2.7 (Strong Hele-Shaw flow). — We say that {Ωt}t∈(a,b) is
the strong Hele-Shaw flow if

(2.3) Vt = −κ∇pt on ∂Ωt for t ∈ (a, b)

TOME 69 (2019), FASCICULE 1



10 Julius ROSS & David Witt NYSTRÖM

where Vt is the normal velocity of ∂Ωt. When necessary to emphasise the
dependence on the area form we refer to this as the strong Hele-Shaw flow
with respect to η (or with respect to κ).

Remark 2.8. — The strong Hele-Shaw flow has an interpretation as the
flow of a fluid moving between two plates in a medium which has a per-
meability encoded by the function κ, under injection of fluid at the origin
(see [20] for a discussion, and also [11] for a comprehensive account of the
subject which for the most part considers the case where κ ≡ 1).

We shall now prove that a strong Hele-Shaw flow of simply connected
domains is also the Hele-Shaw flow defined using envelopes, as in Defini-
tion 2.3. To do this we start with the following (slight generalization) of a
classical statement due Richardson [18] saying that for the Hele-Shaw flow,
the complex moments

Mk(t) :=
∫

Ωt

zk
dA
κ

for k ∈ Z>1

remain constant in t.

Lemma 2.9. — Suppose that {Ωt}t∈(a,b) is a smooth family of strictly
increasing simply connected domains in C containing the origin that satis-
fies

(2.4) Vt = −κ∇pt on ∂Ωt.

Then for any integrable subharmonic function h defined on some neigh-
bourhood of Ωt, and t0 < t we have∫

Ωt\Ωt0

h
dA
κ
> (t− t0)h(0).

Proof. — By the Reynolds’ transport theorem and then integration by
parts, one computes

d
dt

∫
Ωt

h
1
κ

dA =
∫
∂Ωt

h
Vt
κ

ds = −
∫
∂Ωt

h
∂pt
∂n

ds

=
∫

Ωt

(pt∆(h)− h(∆pt)) dA−
∫
∂Ωt

pt
∂h

∂n
ds > h(0)

since ∆h > 0 and pt = 0 on ∂Ωt and ∆pt = −δ0, �

Corollary 2.10. — With the assumption of the above lemma, suppose
that a = 0 and Ωt tends to {0} as t→ 0, that is given any neighbourhood

ANNALES DE L’INSTITUT FOURIER
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U of the origin Ωt ⊂ U for t sufficiently small. Then for any integrable
subharmonic function h on Ωt, we have∫

Ωt

h
dA
κ
> th(0).

and moreover equality holds if h is holomorphic.

Proof. — Taking the limit as t0 → 0 in the above Lemma gives the first
statement. The second follows as if h is holomorphic then h and −h are
subharmonic. �

Remark 2.11. — In particular taking h(z) = zk we deduce that the com-
plex moments of a Hele-Shaw flow {Ωt} tending to {0} as t tends to zero
are

Mk(t) =
∫

Ωt

zk
dA
κ

= 0 for all t > 0.

We apply this in the next statement to prove that the strong Hele-Shaw
flow is also a weak one (with respect to a suitable potential).

Proposition 2.12 (Gustafsson). — Suppose that {Ωt}t∈(0,b) is a
smooth family of strictly increasing simply connected domains that is the
strong Hele-Shaw flow with respect to κ, and assume {Ωt}t∈(0,b) tends to
{0} as t→ 0. Set

φ(z) =
∫
C

log |z − ζ|2 dAζ
κ(ζ) − log(1 + |z|2) for z ∈ C.

Then {Ωt}t∈(0,b) is the Hele-Shaw flow with respect to ωφ := ddc(log(1 +
|z|2) + φ).

Proof. — For the proof we shall write Ωwt := {z ∈ X : ψt(z) < φ(z)} for
the Hele-Shaw flow with respect to ωφ, so the goal is to prove Ωwt = Ωt.
Define

ψ̃t(z) :=
∫

Ωc
t

log |z − ζ|2 dAζ
κ(ζ) − log(1 + |z|2) + t ln |z|2.

Then by construction ωψ̃t
> 0 and ν0(ψ̃t) = t. As h(ζ) := log |z − ζ|2 is

subharmonic and integrable, we get from the previous Corollary that for
all z ∈ C

(2.5) φ(z)− ψ̃t(z) =
∫

Ωt

log |z − ζ|2 dAζ
κ(ζ) − t ln |z|2 > 0.

Hence ψ̃t 6 φ making it a candidate for the envelope defining ψt, and hence
ψ̃t 6 ψt. In fact more is true, and if z /∈ Ωt then h is holomorphic on Ωt so

TOME 69 (2019), FASCICULE 1



12 Julius ROSS & David Witt NYSTRÖM

equality holds in (2.5), and hence

ψ̃t = ψt = φ on Ωct .

Now ψ̃t+log(1+|z|2) and ψt+log(1+|z|2) are both harmonic on Ωt\{0} (by
Proposition 2.5(4)) with Lelong number one at 0. Hence by the maximum
principle ψ̃t = ψt on Ωt \ {0} as well. Thus we conclude Ωwt = Ωt as
desired. �

Remark 2.13. — Although we will shall not really need it, we remark
that there is a converse to this, which says that if the Hele-Shaw domain
ΩT (with respect to ω + ddcφ) is a smoothly bounded Jordan domain for
some T ∈ (0, V ) then there is an ε > 0 such that {Ωt}t∈(T−ε,T+ε) is actually
the strong Hele-Shaw flow. Thus the hypothesis that {Ωt} varies smoothly
in Theorem 1.5 (as well as in Definition 1.2) is redundant. The proof of
this statement follows easily from the work in [20]; specifically from [20,
Remark 3.12] the Hele-Shaw domains Ωt all lift to holomorphic curves ΣT
in C× P1 with boundary contained in the submanifold given as the graph
of ∂φ∂z . The hypothesis on ΩT imply that ΣT is a holomorphic disc, at which
point we can run the proof of [20, Theorem 2.2].

Finally, we state two previous results of the authors that give existence
results for the strong Hele-Shaw flow. The first says this flow always exists
for small time.

Theorem 2.14 ([20, Theorem 2.1]). — The Hele-Shaw flow for any
Kähler form ω+ddcφ is the strong Hele-Shaw flow for short time t ∈ (0, ε),
ε > 0, and in this range is diffeomorphic to the standard flow B(t).

The second says that any simply connected bounded Jordan domain Ω
is part of a strong Hele-Shaw flow, both backwards and forwards in time,
as long as one allows a modification of the area form inside Ω.

Theorem 2.15 ([20, Theorem 2.2, Remark 7.1]). — Let Ω be a smoothly
bounded Jordan domain in C containing the origin and let η be a smooth
area form defined in a neighbourhood of ∂Ω. Then there exists a smooth
area form η′ on a neighbourhood U of ∂Ω such that η = η′ on U ∩ Ωc and
so that Ω = ΩT is part of a strong Hele-Shaw flow {Ωt}t∈(T−ε,T+ε) with
respect to η′.

3. Designer Potentials

In this section we show how to produce potentials with particular pre-
scribed properties (we do this only on P1 but a similar story holds for D).
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APPLICATIONS OF DUALITY OF HELE-SHAW FLOW 13

We first show that any (reasonable) strictly increasing family of smooth
domains in P1 is the Hele-Shaw flow for some smooth Kähler potential.
Recall B(t) denotes the geodesic ball centred at the origin of area t taken
with respect to ωFS .

Theorem 3.1. — Suppose {Ωt}t∈(0,1) is a family of subsets of P1 that is

(1) smoothly bounded, varies smoothly, and is simply connected for
all t,

(2) strictly increasing, i.e. Ωt b Ωt′ for t < t′, with non-vanishing
normal velocity of the boundary ∂Ωt, and

(3) standard as t tends to 0 and as t tends to 1.

Then there exists a smooth φ ∈ C∞(P1) such that {Ωt}t∈(0,1) is the Hele-
Shaw flow with respect to the Kähler form ωFS + ddcφ.

Proof. — The idea of the proof is to construct a smooth function κ on C
such that {Ωt} is the strong Hele-Shaw flow with respect to the permeability
κ. Since {Ωt}t∈(0,1) is assumed to be standard as t tends to 1 we have
Ωt ⊂ C for all t ∈ (0, 1) and so by Lemma 2.6 we may as well consider the
Hele-Shaw flow as taking place in C. Let pt satisfy

pt = 0 on ∂Ωt and ∆pt = −δ0.

As already mentioned, the fact that pt exists and is smooth on Ωt \ {0}
is classical. What is also true is that pt varies smoothly with t; this is
presumably also well-known in some circles, but since we were not able to
find a convenient reference we give a proof in the Appendix (Corollary A.2).
Assuming this smoothness for now, we use pt to define a function κ by

requiring that

(3.1) Vt = −κ∇pt on ∂Ωt for t ∈ (0, 1)

where Vt is the normal velocity of ∂Ωt. Since {Ωt}t∈(0,1) is increasing
smoothly and Vt was assumed to be non-vanishing we see that κ is a well-
defined strictly positive smooth function on C \ {0}.
Now we use the assumption that {Ωt}t∈(0,1) is standard as t tends to

zero to deduce that κ extends to a smooth function over 0. Assume t� 1.
By explicit calculation with the Fubini–Study metric we know that the disc
with area t has radius

Rt :=
(

t

1− t

)1/2
.
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14 Julius ROSS & David Witt NYSTRÖM

To see this, recall our convention with the Fubini–Study metric is that P1

has area 1, and the formula for Rt follows from the calculation∫
|z|<R

dxdy
2π(1 + |z|2)2 =

∫ R

0

rdr
(1 + r2)2 = 1− 1

1 +R2 .

Thus by symmetry, for sufficiently small t

Ωt = {z ∈ C : |z| < Rt}

and so
pt(z) = − 1

4π (log |z|2 − log(R2
t )).

Clearly κ is radially symmetric near 0, so it is sufficient to compute it at a
point zt := (Rt, 0) for small t. To do so observe that at zt we have

∇pt = − 1
2πRt

(
1
0

)
.

On the other hand the normal velocity of ∂Ωt at the point zt is dRt

dt ( 1
0 )

and so the defining equation (3.1) for κ becomes

1
2Rt

1
(1− t)2 = κ(zt)

2πRt
.

After some calculation this yields

(3.2) κ(z) = π(1 + |z|2)2 near z = 0

which clearly extends smoothly over z = 0.
Now define

(3.3) φ(z) =
∫
C

log |z − ζ|2 dAζ
κ(ζ) − log(1 + |z|2) for z ∈ C

which is a smooth function on C chosen so that

(3.4) ddc(log(1 + |z|2) + φ) = dA
κ

on C.

Using that {Ωt}t∈(0,1) is standard as t tends to infinity we have that (3.2)
also holds for |z| sufficiently large. We claim this implies φ extends to a
smooth function on P1 and ωφ is strictly positive on P1. To see this, start
with the identity

1
π

∫
C

log |z − ζ|2

(1 + |ζ|2)2 dAζ = log(1 + |z|2)

(this can be seen by noting that the difference is harmonic on C bounded
and equal to zero at z = 0). Now the same calculation as above means
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APPLICATIONS OF DUALITY OF HELE-SHAW FLOW 15

the assumption that {Ωt} is standard as t tends to 1 implies C > 0 such
that (3.2) holds on {|z| > C}. Therefore

φ(z) = 1
π

∫
|z|<C

log |z − ζ|2
(

π

κ(ζ) −
1

(1 + |ζ|2)2

)
dAζ

which one sees extends smoothly over z = ∞ in such a way that makes
ωφ strictly positive as claimed. (We remark that this can also be seen
abstractly, since the flow being standard near 0 and ∞ means that κ has
to agree with the permeability for the standard flow for (P1, ωFS).)
Now by construction {Ωt} is the strong Hele-Shaw flow with respect to κ,

and hence by Proposition 2.12, is the strong Hele-Shaw flow for ωFS+ddcφ

as desired. �

Remark 3.2. — We observe that the above proof actually shows slightly
more, namely that if {Ωt}t∈(0,T ] is a smooth family of strictly increasing
domains that is standard as t → 0 then setting X ′ := ΩT there exists a
φ ∈ C∞(X ′) such that {Ωt}t∈(0,T ) is the Hele-Shaw flow for (X ′, ωφ).

Remark 3.3. — The Hele-Shaw flow depends only on the form ω+ ddcφ.
From the proof of Theorem 3.1 one sees that {Ωt} determines κ uniquely,
and thus φ is unique up to addition of a harmonic function.

Now let S be a finite union of points and non-intersecting smooth em-
bedded curve segments in P1 \ {0}. Using similar ideas to above we now
show that there are Kähler potentials whose Hele-Shaw flow is smoothly
bounded and simply connected until it develops a tangency along S.

Proposition 3.4. — There exists a φ ∈ C∞(P1) such that ωφ is strictly
positive, and whose associated Hele-Shaw flow develops tangency along S.

Proof. — It is clear that one can find a simply connected domain Ω
containing 0 such that ∂Ω is the image of a smooth locally embedded curve
γ intersecting itself tangentially precisely along S and so Ωt\S is connected
as in Figure 1.1 (use induction on the number of components of S). Let

T :=
∫

Ω
ωFS .

We construct the Hele-Shaw flow backwards starting at ΩT := Ω.
Pick a point zi in each connected component of P1 \ ΩT , and let π be

the projection from the universal cover Σ of P1 with the points zi removed.
Then γ lifts to a smooth embedded curve in Σ and so π−1(ΩT ) is a disjoint
union of copies of ΩT . We pick one of them and call it Ω′ which is smoothly
bounded and simply connected. Then Theorem 2.15 implies that there
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16 Julius ROSS & David Witt NYSTRÖM

exists a smooth area form η′ on a neighbourhood of Σ \ Ω′, equal to η :=
π∗ωFS on Σ \Ω′, such that the strong Hele-Shaw flow exists starting from
Ω′ with respect to η′ for a short while backwards in time. We denote the
projection of this Hele-Shaw flow to P1 by {Ωt}t∈(T−ε,T ].

We then extend this to a family of domains Ωt, t ∈ (0, T ), in P1, with the
properties as in Theorem 3.1, so by this Theorem and Remark 3.2 we have
an area form ω′ on ΩT such that {Ωt}t∈(0,T ) is a strong Hele-Shaw flow
with respect to ω′. We also have that ω′ = ωFS on ΩT \ΩT−ε. We can thus
extend ω′ to a smooth Kähler form on P1 by letting it be equal to ωFS on
P1 \ΩT . Thus {Ωt}t∈(0,T ) is the strong Hele-Shaw flow with respect to the
area form ω′ on P1, and thus also the Hele-Shaw flow by Proposition 2.12.
On the other hand, by the continuity of the Hele-Shaw flow (applied on

Σ) it follows that ΩT is the Hele-Shaw domain of ω′ at time T . Thus if φ
is a smooth function so that ω′ = ωFS + ddcφ we get that the Hele-Shaw
flow with respect to φ develops a tangency along S at time T. �

Remark 3.5. — If we assume in addition that S is such that one can find
such an ΩT with real-analytic boundary, then instead of using Theorem 2.15
one can use the classical short-time existence result of the Hele-Shaw back-
wards for small time, starting with simply connected domain with real
analytic boundary. Such S do give explicit singularities of geodesic rays
at specific points (Theorem 1.3), but the assumption that ΩT need have
real analytic boundary strictly decreases the collection of S to which the
theorem applies.

4. Dirichlet Problem for the Homogeneous
Monge–Ampère Equation

In this section and the next we will mainly focus on the case (X,ω) =
(P1, ωFS). We will return to the case (D, ωP ) at the end of Section 5.

4.1. Preliminary definitions

We first consider two versions of the Dirichlet Problem for the Homoge-
neous complex Monge–Ampère Equation, first over the disc and second over
the punctured disc. Again we let φ ∈ C∞(P1) be such that ωFS+ddcφ > 0,
and πP1 : P1 × D→ P1 and πD : P1 × D→ D be the projections.
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APPLICATIONS OF DUALITY OF HELE-SHAW FLOW 17

Definition 4.1 (Weak Solution to the HCMA).
(1) Let

(4.1) Φ := sup
{
ψ : P1 × D→ R ∪ {−∞} : ψ is usc, π∗P1ω + ddcψ > 0

and ψ(z, τ) 6 φ(τz) for (z, τ) ∈ P1 × ∂D

}
.

(2) Let
(4.2)

Φ̃ := sup
{

ψ : P1 × D→ R ∪ {−∞} : ψ is usc, π∗P1ω + ddcψ > 0

and ψ(z, τ) 6 φ(z) for (z, τ) ∈ P1 × ∂D and ν(0,0)(ψ) > 1

}
.

So the difference between these two definitions is that in the second the
boundary data is S1-invariant but has an additional requirement of giving
a prescribed singularity at the point (0, 0). However these two quantities
carry the same information as given by:

Proposition 4.2. — We have that

Φ(z, τ) + ln |τ |2 + ln(1 + |z|2) = Φ̃(τz, τ) + ln(1 + |τz|2)

for (z, τ) ∈ P1 × D×.

Proof. — This is proved in [19, Proposition 2.3]. �

Definition 4.3 (Regular solution). — We say that Φ is regular on an
open subset S ⊂ P1 × D if it is smooth on S and the restriction of π∗P1ω +
ddcΦ to Sτ := π−1

D (τ) ∩ S is strictly positive for all τ ∈ D. Similarly we
say Φ̃ is regular on S if it is smooth on S \ {(0, 0)} and the restriction of
π∗P1ω + ddcΦ̃ to Sτ is strictly positive for all τ ∈ D×.

Finally we say that Φ (resp. Φ̃) is regular if it is regular on all of P1 ×D
(resp. X × D×).

By well-known arguments (see [2]), Φ̃ is usc, π∗P1ω+ddcΦ̃ > 0 and (π∗P1ω+
ddcΦ̃)2 = 0 away from (0, 0) and Φ̃(z, τ) = φ(z) for τ ∈ ∂D. Moreover it is
not hard to show that Φ̃ is locally bounded away from (0, 0) and ν(0,0)Φ̃ = 1.
Thus Φ̃ is the weak solution to Dirichlet problem to the Homogeneous
Monge–Ampère Equation with boundary data consisting of φ(z) on P1×∂D,
and this prescribed singularity at (0, 0). Thinking of s := − ln |τ |2 for τ ∈
D× as a time variable let φs( · ) = Φ̃( · , τ). Then the map

s 7→ φs for s ∈ [0,∞)

is a weak geodesic ray in the space of weak Kähler potentials that starts
with φ and has limit the singular potential ln |z|2 as s tends to infinity.
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18 Julius ROSS & David Witt NYSTRÖM

Moreover if Φ̃ is regular this is a smooth geodesic ray in the space of Kähler
metrics.
Similarly Φ is the weak solution to the same Dirichlet problem over P1×D

with prescribed boundary φ(τz) over P1 × ∂D.

4.2. The Duality Theorem

The duality between Φ̃ and the Hele-Shaw envelopes ψt is provided by
the following:

Theorem 4.4 (Ross–Witt Nyström [19, Theorem 2.7]). — Let ψt be the
Hele-Shaw envelopes associated to (P1, ωFS , φ) and Φ̃ be the weak solution
to the Homogeneous Monge–Ampère Equation as defined in (4.2). Then

(4.3) ψt(z) = inf
|τ |>0
{Φ̃(z, τ)− (1− t) ln |τ |2}

and

(4.4) Φ̃(z, τ) = sup
t
{ψt(z) + (1− t) ln |τ |2}.

5. Regularity of Geodesic Rays

We continue with the notation from the previous section, so Φ̃ is as
defined in (4.2). Since Φ̃(z, τ) is π∗P1ωFS-psh and independent of the argu-
ment of τ it follows that for a fixed z the map s 7→ Φ̃(z, e−s/2) is convex in
s := − ln |τ |2. Hence the right derivative

∂

∂s+Φ̃(z, e−s/2)

always exists.

Definition 5.1. — We define

H(z, τ) := ∂

∂s+ Φ̃(z, e−s/2) for (z, τ) ∈ X × D×

where s := − ln |τ |2.

Remark 5.2. — By a result of Chen [5], with complements by Błocki [4],
the function Φ̃ is in fact C1,1 and thus H is continuous (even Lipschitz but
we will not use this).

A key connection with the Hele-Shaw flow is given by:
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Proposition 5.3.

H(z, 1) + 1 = sup{t : ψt(z) = φ(z)} = sup{t : z /∈ Ωt}.

Proof. — This is [19, Proposition 2.8] and for convenience we repeat the
proof here. From (4.4) if ψt(z) = φ(z) then

Φ̃(z, e−s/2) > (t− 1)s+ φ(z)

and thus
H(z, 1) > sup{t : ψt(z) = φ(z)} − 1.

Suppose ψt(z) 6 φ(z) + a for some a < 0. For a fixed z the function
t′ 7→ ψt′(z) is concave and decreasing in t′ [19, Proposition 1.3], so for
t 6 t′ < A and s > 0 we have ψt′(z)+(t′−1)s 6 φ(z)+a. On the other hand
we always have ψt′ 6 φ so if 0 6 t′ 6 t then ψt′(z)+(t′−1)s 6 φ(z)+(t−1)s.
Putting this together with (4.4) gives

Φ̃(z, e−s/2) 6 φ(z) + max((t− 1)s, a)

and so H(z, 1) 6 t− 1, which proves the proposition. �

When the Hele-Shaw domains Ωt are simply connected one can say even
more.

Definition 5.4. — Let f : D → P1 be holomorphic. We say that the
graph of f is a harmonic disc for Φ if Φ is π∗Xω-harmonic along the graph
of f , i.e the restriction of π∗Xω + ddcΦ to {(f(τ), τ) : τ ∈ D} vanishes.

The main result in [19] is the following, which says that one can char-
acterize all harmonic discs of Φ in terms of simply connected Hele-Shaw
domains.

Theorem 5.5. — The graph of f : D → X is a harmonic disc for Φ iff
either

(1) f ≡ 0, or
(2) f(τ) = τ−1z where z ∈ Ωc1, or
(3) τ 7→ τf(τ) is a Riemann mapping to a simply connected Hele-Shaw

domain Ωt taking 0 ∈ D to 0 ∈ Ωt.
The function H is constant along the associated discs {(τf(τ), τ)}, in the
first case H = −1, in the second case H = 0 while in the third case
H = t− 1.

We are now ready to prove Theorem 1.5 in the case of (X,ω) = (P1, ωFS):
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Theorem 5.6. — Suppose the flow Hele-Shaw {Ωt}t∈[0,1] for a Kähler
form ωFS + ddcφ on P1 satisfies

(1) {Ωt}t∈(0,1) is smoothly bounded and varies smoothly with non-
vanishing normal velocity,

(2) Ωt is simply connected for all t ∈ (0, 1),
(3) {Ωt}t∈(0,1) is standard as t tends to 1.

Then the weak geodesic ray (4.4) obtained as the Legendre transform of
the Hele-Shaw envelopes {ψt} is regular, and so defines a smooth geodesic
ray in the space of Kähler metrics on X.

Proof. — Since by assumption Ωt is simply connected for all t ∈ (0, 1)
it follows from Theorem 5.5 that if τ 7→ τf(τ) is a Riemann mapping to
some Ωt, t ∈ (0, 1) such that 0 ∈ D maps to 0 ∈ Ωt, then the graph of
f is a harmonic discs of Φ. Note that for fixed eiθ ∈ S1, if τ 7→ τf(τ)
is such a Riemann mapping then so is τ 7→ eiθτf(eiθτ). Thus for each
t ∈ (0, 1) there is an S1-family of corresponding harmonic discs. We also
have from Theorem 5.5 that the graph of f ≡ 0 is a harmonic disc, and
since {Ωt}t∈(0,1) is standard as t tends to 1, also the graph of f ≡ ∞ is a
harmonic disc.
That these harmonic discs do not intersect for different values of t is

clear as they correspond to different values of H and it is also easy to see
that the union of all these discs cover P1 × D.

Now by Theorem 2.14 the foliation is diffeomorphic to the product fo-
liation in a neighbourhood of {0} × D, so in particular it is smooth. The
assumption that the Hele-Shaw flow is standard as t tends to 1 ensures the
foliation is also smooth near {∞} × D.

Since Ωt varies smoothly in t, we can find Riemann maps ft : D → Ωt
that satisfies ft(0) = 0 that vary smoothly with t (see Corollary A.4 in
the Appendix). Hence the harmonic discs give a smooth foliation in the
remaining part of P1 × D, since the normal velocity of {Ωt} is assumed to
be non-vanishing, so every z ∈ P1 \ {0} lies in the boundary of precisely
one Ωt.

Let D = {(f(τ), τ)} be one of the harmonic discs. Then Φ(f(τ), τ) is
harmonic along D, thus for any point τ , Φ(f(τ), τ) can be expressed as an
integral of Φ over ∂D, and the integral depends smoothly on τ . But Φ = φ

over ∂D (which is smooth) and the foliation varies smoothly, from which
we conclude that Φ must in fact be smooth.

For the regularity we argue as follows. For τ 6= 0 let Tτ : π−1
D (1) →

π−1
D (τ) be the flow along the leaves of the above foliation and set στ :=
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π∗P1ωFS + ddcΦ|π−1
D (τ). Then by what is now considered a classical cal-

culation (originally due to Semmes [25] and Donaldson [9], see also [21,
Proposition 3.4] and [24, Section 3]) we know T ∗τ στ = σ1. But σ1 = ωφ is
certainly strictly positive, and hence στ is strictly positive as well.
Thus we see that Φ is a regular solution to the HCMA, and so φs( · ) =

Φ̃( · , τ) is a regular geodesic ray. �

Remark 5.7. — The geodesic ray produced in Theorem 5.6 is the same
as an example given by Donaldson [8, p. 24]. The point of view taken there
is slightly different, and the initial data is to consider P1 = S2 = {(x, y, z) :
x2 + y2 + z2 = 1} and let h : P1 → R be smooth, such that h(x, y, z) = z

near the poles z = ±1, and so that h has no further critical points. Then
the sublevel sets Ωt := {f(z) 6 t} are all discs, and Donaldson uses the
associated Riemann maps to describe explicitly a smooth geodesic ray in
the space of Kähler potentials on P1.

Now we return to the case (X,ω) = (D, ωP ), with φ ∈ C∞(D) such that
ωP + ddcφ > εωP for some ε > 0.

Define a function Φ̃(z, τ) on D× D× by

(5.1) Φ̃(z, τ) = sup
t∈[0,∞)

{ψt(z)− t ln |τ |2}.

For a fixed z the function z 7→ Φ̃(z, e−r/2) is convex in r which allows us
to define the Hamiltonian function:

Definition 5.8. — Set

H(z, τ) := ∂

∂r+ Φ̃(z, e−r/2) for (z, τ) ∈ D× D×

where r := − ln |τ |2. We also let

H−(z, τ) := ∂

∂r−
Φ̃(z, e−r/2).

Theorem 1.5 in the case (X,ω) = (D, ωP ) can now be formulated in the
following way:

Theorem 5.9. — Suppose the flow Hele-Shaw {Ωt}t∈[0,∞) for ωP +
ddcφ > εωP (ε > 0) on D satisfies

(1) {Ωt}t∈(0,∞) is smoothly bounded and varies smoothly with non-
vanishing normal velocity,

(2) Ωt is simply connected for all t ∈ (0,∞).
Then the function Φ̃(z, τ) is a regular solution to the HCMA on D× D×.
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Proof. — Pick t, T such that 0 < t < T < ∞. It is clear that one can
find an increasing family of domains Ω′s in P1 such that

(1) {Ω′s}s∈(0,1) is smoothly bounded and varies smoothly with non-
vanishing normal velocity,

(2) Ω′s is simply connected for all s ∈ (0, 1),
(3) {Ω′s}s∈(0,1) is standard as s tends to 1,
(4) Ω′s = ΩTs for s ∈ (0, t/T ).
By Theorem 3.1 {Ω′s}s∈(0,1) will be the Hele-Shaw flow of some Kähler

form ωFS + ddcφ′ on P1 and by Theorem 5.6 the associated weak geodesic
ray Φ̃′ will be regular. Moreover by the construction of φ′ is clear that

ωP + ddcφ = T (ωFS + ddcφ′)

on Ωt.
Let uP be a smooth function on D such that ωP = ddcup and uFS a

smooth function on C such that ωFS = ddcuFS . Without loss of generality
we can assume that

uP + φ = T (uFS + φ′)
on Ωt. It now follows from the proof of Lemma 2.6 that for all s ∈ (0, t/T )
we have that

(5.2) uP + ψTs = T (uFS + ψ′s)

on Ωt.
From the definition (5.8) of Φ̃ as the Legendre transform of ψt it is easy

to see that
Φ̃(z, τ) = ψTs(z)− Ts ln |τ |2

iff
Ts ∈ [H(z, τ), H−(z, τ)].

Similarly letting

H ′(z, τ) = ∂

∂r+ Φ̃′(z, e−r/2) and H ′−(z, τ) = ∂

∂r−
Φ̃′(z, e−r/2)

where r := − ln |τ |2 we have

Φ̃′(z, τ) = ψ′s(z) + (1− s) ln |τ |2

iff
s− 1 ∈ [H ′(z, τ), H ′−(z, τ)].

Combined with (5.2) we get that

(5.3) uP (z) + Φ̃(z, τ) = TuFS(z) + T Φ̃′(z, τ)− T ln |τ |2
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on the set

Ut := (Ωt × D×) ∩ {(z, τ) : H(z, τ) < t and H ′(z, τ) < t/T − 1}.

We saw that Φ̃′ was a regular solution to the HCMA on P1 × D× so it
follows from (5.3) that Φ̃ is a regular solution to the HCMA on Ut.
Now Ωt×D× exhausts D×D× and clearly so do the sets {(z, τ) : H(z, τ) <

t}. From Theorem 5.5 we see that {(z, τ) : H ′(z, τ) < t/T − 1} is equal
to the union of the graphs over D× of Riemann mappings of Ωs, s < T ,
mapping zero to zero, and so {(z, τ) : H ′(z, τ) < t/T − 1} also exhausts
D×D×. It follows that Ut exhausts D×D×. Since Φ̃ is a regular solution to
the HCMA on Ut as t was chosen arbitrary we thus get that Φ̃ is a regular
solution to the HCMA on the whole D× D×. �

6. Explicit Singularities

We now give a proof of Theorem 1.3 and show that a potential whose
Hele-Shaw flow that develops a tangency along a set S gives a singularity
of the associated weak solution.

Example 6.1. — The reader may find the following simple example in-
structive. Suppose a Hele-Shaw flow {Ωt} develops tangency at a single
point S = {z0}. For simplicity assume there are smooth coordinates (x, y)
centered at z0 so that near z0 we have

Ωt = {y > x2 + (t0 − t)} ∪ {y 6 −x2 − (t0 − t)}

giving
∂Ωt = {y = x2 + (t0 − t)} ∪ {y = −x2 − (t0 − t)}.

Thus ∂Ωt consists of two disjoint parabola for t < t0 that meet at the point
x = y = 0 as t→ t0 from below. Now let

h(x, y) := H((x, y), 1)

where H is as defined in (5.1) so by Proposition 5.3

h(x, y) = sup{t : (x, y) /∈ Ωt} − 1.

Notice that if y > 0 and t 6 t0 then (0, y) ∈ Ωt if and only if y > (t0 − t).
Thus

h(0, y) = t0 − y − 1 for y > 0.
Similar considerations for y < 0 then give

h(0, y) =
{
t0 − y − 1 y > 0
t0 + y − 1 y < 0
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and so ∂h
∂y does not exist at the origin. Hence Φ̃ is not C2 at the point

(z0, 1), and by Proposition 4.2 the same must be true for Φ.

Theorem 6.2. — Let S be a finite union of points and curve segments
in P1 \ {0}. Let φ ∈ C∞(P1) be a Kähler potential and suppose the Hele-
Shaw for ω + ddcφ develops tangency along S. Then the weak solution Φ
from (1.1) to the Dirichlet problem for the HCMA on P1×D with boundary
data (z, τ) 7→ φ(τz) is not twice differentiable at the points (τ−1z, τ),
z ∈ S, |τ | = 1.

Proof of Theorem 1.1 and Theorem 1.3. — Suppose first that φ is as
produced by Proposition 3.4. That is, we have picked points zi in each
component of P1 \ ΩT and π : Σ → P1 \ {zi} is the universal cover, and
Ωt∈(T−ε,T ] is the pushforward of a strong Hele-Shaw flow on Σ. This implies
that the normal velocity of the boundary of Ωt as t tends to T from below
is nowhere vanishing.
Now let z ∈ S, so ΩT has boundary tangent to itself at z, and so ΩT

splits locally into two pieces, call them P1 and P2. Working on P1, the
combination of Proposition 5.3 (which says that ∂Ωt are the level sets of
H( · , 1)−1) and the fact that Ωt varies smoothly imply the partial derivative
of H( · , 1) in the normal direction to Ωt is strictly negative at z (compare
Example 6.1). The analagous statement is true for P2, which proves that
H is not differentiable at (z, 1). Thus Φ̃ is not twice differentiable at the
point (z, 1), and by Proposition 4.2 the same is true for Φ. Then by S1-
invariance we see that Φ cannot be twice differentiable at any point of the
form (τ−1z, τ) for z ∈ S, |τ | = 1.
Now if φ is any Kähler potential whose Hele-Shaw {Ωt} develops tan-

gency along S then it is not hard to see from the proof of Proposition 3.4
that {Ωt} is the pushforward of some Hele-Shaw flow on Σ call it {Ω′t}.
The hypothesis on ΩT ensure that Ω′T is smoothly bounded, and hence
by the argument in Remark 2.13 we conclude that the normal velocity is
non-vanishing as t tends to T from below (the reader who prefers not to
invoke this argument may prefer to make this non-vanishing as part of the
hypothesis of what it means to develop a tangency along S). The proof of
the Theorem then follows as before.
Finally Theorem 1.1 follows from Theorem 1.3 and Proposition 3.4. �

7. An extension

So far we have been working under the hypothesis that our Hele-Shaw
flow {Ωt}t∈(0,A) is standard as t tends to 0 (and also as t tends to 1 when
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X = P1). We did this to ensure regularity of the associated potential near
the point 0 (resp. ∞) which we achieved by direct computation. In this
section we explain how this hypothesis can be relaxed. For simplicity we
work only with (X,ω) = (P1, ωFS) but a similar story holds for the disc.

Definition 7.1. — Let Diff0(P1) be the group of C∞-diffeomorphisms
of P1 such that α(0) = 0.

Given α ∈ Diff0(P1) we define

(7.1) Ωt = α(B(t)) for t ∈ (0, 1)

where, we recall, B(t) denotes the geodesic ball centred at 0 with area t
with respect to ωFS . Clearly {Ωt}t∈(0,1) is a strictly increasing, smoothly
varying family of smoothly bounded simply connected domains in P1 that
tends to zero as t tends to 0. We claim that for {Ωt}t∈(0,1) constructed in
this way the conclusion of Theorem 1.5 and Theorem 3.1 still hold; that
is, there exists a Kähler potential φ such that {Ωt}t∈(0,1) is the Hele-Shaw
flow for ωφ, and that weak geodesic obtained as the Legendre transform of
the Hele-Shaw envelopes {ψt} is regular.
We sketch why this is the case. Observe that the only place in which

we used that {Ωt}t∈(0,1) is standard as t tends to 0 and 1 in the proof of
Theorem 1.5 was to ensure that ωφ was a smooth strictly positive form at
0 and at ∞. So assume instead that (7.1) holds. Let α0 = idP1 ∈ Diff0(P1),
whose associated flow is {B(t)}t∈(0,1) which is the Hele-Shaw flow associ-
ated to ωFS and, as we saw in (3.2), is the classical Hele-Shaw flow on
C with permeability κ0(z) := π(1 + |z|2)2. Without loss of generality say
α(z) = z + O(|z|2) near z = 0. Then α is C∞ close to α0 in a neighbour-
hood of z = 0 which implies that Ωt is C∞-close to B(t) for t sufficiently
small. In turn this implies the permeability κ as defined in (3.1) is C∞
close to κ0 in a punctured neighbourhood of 0, which is enough to imply it
extends across 0 to a smooth strictly positive function. The argument near
∞ is similar: again without loss of generality say α(∞) = ∞ locally given
by α(1/z) = 1/z + O(1/|z|2) near z = ∞. Given a small neighbourhood
U of ∞ we can construct an α1 that is equal to α on P1 \ U and is equal
to α0 near ∞. Thus α is C∞ close to α1 and the same argument then ap-
plies to deduce that φ extends smoothly across∞ and ωφ is Kähler. Hence
Theorem 1.5 still holds.
The argument for Theorem 3.1 is similar, as near {0} × D the foliation

by harmonic discs constructed in the proof of Theorem 5.6 for α is (in the
obvious sense) C∞-close to that provided by α0, and this is enough to prove
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that Φ̃ is smooth over {0} × D. Arguing similarly with α1 near {∞} × D
we conclude that Theorem 3.1 still holds as well.
Accepting this argument, we see that to any α ∈ Diff0(P1) we have an

associated smooth geodesic ray in the space of Kähler metrics on P1 that
starts at ωφ and has limit ω+ddc ln |z|2 at infinity (i.e. as τ tends to zero).
Of course different α can give rise to the same flow, but the ambiguity is
precisely coming from the subgroup of “angular diffeomorphisms” given by

Γ := {α ∈ Diff0(P1) : α(B(t)) = B(t) for all t}.

Moreover this process can be reversed, since any smooth geodesic joining
ωφ to ω+ ddc ln |z|2 comes from a regular solution to the complex Monge–
Ampère Equation, and thus gives rise to a foliation by harmonic discs.
By the harder direction of [19, Theorem 3.1] we know that such discs can
only be those described in the proof of Theorem 5.6. Finally it is clear
from the proof of Theorem 3.1 that different Hele-Shaw flows give rise to
different potentials φ and vice versa. Thus in all we have the following
explicit description of all smooth geodesics rays in the space of Kähler
metrics on P1 that have limit ωFS + ddc log |z|2 as time tends to infinity:

Theorem 7.2. — The duality that associates a weak geodesic ray to
the Hele-Shaw flow gives a bijection between Diff0(P1)/Γ and{

φ ∈ C∞(X) : ∃ a smooth geodesic ray starting at ωφ
with limit ωFS + ddc ln |z|2

}
.

Appendix A. Smoothness of Green’s Functions

We first collect some regularity results for elliptic operators, all of which
is essentially standard. Suppose I ⊂ R is an open interval and {Lt}t∈I is
a smoothly varying family of strictly elliptic operators on the unit disc D
with uniform ellipticity constant. That is, we suppose

(A.1) Ltu = aij(x, t)Diju+ bi(x, t)Diu+ c(x, t)u for t ∈ I

where aij , bi, c ∈ C∞(D × I) and u is a function defined on D, such that
there is a λ > 0 so that aij(x, t)ζiζj > λ|ζ|2 for all (x, t) ∈ D × I and
ζ ∈ RN . We assume also c(x, t) 6 0 for (x, t) ∈ D× I.
Suppose now ϕ ∈ C∞(∂D × I), and we write ϕt( · ) = ϕ( · , t). Then for

each t ∈ I standard elliptic theory says [10, Corollary 6.9, Theorem 6.19]
there exists a unique ut ∈ C∞(D) that solves

Ltut = 0 and ut|∂D = ϕt.
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We claim that ut is also smooth in the t-variable. It is sufficient to show it
is smooth at any given fixed point t0 ∈ I, and replacing t with t − t0 we
may assume t0 = 0. Then expanding aij , bi, c in t around 0 we can write

Ltu = L0u+ tM1u+ · · ·+ tNMNu+O(tN+1)u

for some operators Mi that are independent of t. Here and henceforth we
work in the C∞-topology so the O(tN+1) error terms means that for all
k ∈ N there exists a Ck such that this term is bounded by Ck|t|N+1 in the
Ck(D)-norm. We wish to find an expansion for ut in t, say

(A.2) ut = u0 + tv1 + · · ·+ tNvN +O(tN+1)

where vi ∈ C∞(D). To do so expand ϕ = ϕ0 + tσ1 + · · ·+ tNσN +O(tN+1)
where σi ∈ C∞(∂D). Then comparing coefficients of t forces the vi to satisfy

L0v1 +M1u0 = 0 and v1|∂D = σ1

L0v2 +M1v1 +M2u0 = 0 and v2|∂D = σ2

and so forth. So starting with u0 we may inductively define vi, and as
L0 is elliptic, the same elliptic regularity guarantees vi ∈ C∞(D). To see
that (A.2) does actually hold, observe that by construction the difference
wt := ut − u0 − tv1 − · · · vN tN satisfies

Ltwt = O(tN+1) and wt|∂D = O(tN+1).

Then, by elliptic theory again [10, Corollary 8.7, Theorem 8.13] this implies
wt = O(tN+1) in the C∞(D) topology (here we are using that the elliptic
constant for Lt is uniform over t ∈ I to apply [10, Corollary 8.7] uniformly
over I), which gives (A.2). As this holds for all N , the map t 7→ ut is
smooth in t, which implies u ∈ C∞(D× I) as claimed.

Theorem A.1. — Let I ⊂ R be an open interval, and assume that
{Ωt}t∈I is a smoothly varying family of smoothly bounded simply con-
nected domains in C. Let ζ be a function that is smooth on a neighbour-
hood of ⋃

I

∂Ωt,

and for each t ∈ I let vt be the solution to the Dirichlet problem

(A.3) ∆vt = 0 and vt|∂Ωt
= ζ|∂Ωt

Then vt varies smoothly with t.

Proof. — We have that Ωt = αt(D) where α : D× I → C is smooth and
each αt : D→ Ωt ⊂ C is a diffeomorphism. Set

Lt(ũ) := (∆(ũ ◦ α−1
t )) ◦ αt
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where ũ : D→ R and ∆ is the standard Laplacian on C. Thus if

ũ = ṽ ◦ αt

then
Lt(ũ)|x = ∆(ṽ)|αt(x).

Clearly {Lt}t∈I is a smoothly varying family of elliptic operators with
uniform ellipticity constant, as in (A.1). Define ϕ ∈ C∞(∂D× I) by

ϕ(z, t) := ζ(αt(z)).

Then by the above discussion we know there exists a u ∈ C∞(D× I) such
that

Ltut = 0 and ut|∂D = ϕ(·, t).
Hence

v(z, t) := u(α−1
t (z), t)

satisfies (A.3), and varies smoothly in t. �

Corollary A.2. — Assume in addition that each Ωt contains the ori-
gin. Then the pressure pt which satisfies

∆pt = −δ0 and pt|∂Ωt
= 0

varies smoothly in t.

Proof. — Apply Theorem A.1 to ζ(z) := log |z|2 and let pt = vt
− log |z|2. �

Remark A.3. — Hence the quantity ∇pt on ∂Ωt is a smooth vector field
on ∪t∈I∂Ωt which is precisely what we used in the proof of Theorem 3.1.

Corollary A.4. — Continue to assume that each Ωt contains the ori-
gin. Then there is a family of Riemann maps ft : D → Ωt that vary
smoothly with t.

Proof. — This is just the standard way of constructing Riemann maps
from solutions to the Dirichlet problem. In fact if ∆vt = 0 on Ωt and
vt = log |z| on ∂Ωt we let

gt(z) = zevt+iwt

where wt is a harmonic conjugate to vt (i.e. chosen so vt + iwt is holomor-
phic). Then gt : Ωt → D is a holomorphic map taking ∂Ωt to ∂D. One
shows that moreover gt : Ωt → D is a biholomorphism, and the Riemann
map ft := g−1

t varies smoothly with t as vt does. �
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