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L1 METRIC GEOMETRY OF BIG
COHOMOLOGY CLASSES

by Tamás DARVAS, Eleonora DI NEZZA & Chinh H. LU

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

Abstract. — Suppose (X,ω) is a compact Kähler manifold of dimension n,
and θ is closed (1, 1)-form representing a big cohomology class. We introduce a
metric d1 on the finite energy space E1(X, θ), making it a complete geodesic metric
space. This construction is potentially more rigid compared to its analog from the
Kähler case, as it only relies on pluripotential theory, with no reference to infinite
dimensional L1 Finsler geometry. Lastly, by adapting the results of Ross and Witt
Nyström to the big case, we show that one can construct geodesic rays in this space
in a flexible manner.
Résumé. — Soient X une variété Kählerienne compacte et θ une forme fermée

qui représente une classe de cohomologie grosse. On introduit une métrique d1
sur l’espace d’énergie finie E1(X, θ), ce qui en fait un espace métrique géodésique
complet. Cette construction s’appuie seulement sur la théorie du pluripotentiel et
ne se réfère pas à la géométrie finsleriénne L1, et donc a priori elle est plus rigide
par rapport à la construction analogue dans le cas Kählerien. Enfin, on adapte des
résultats de Ross et Witt Nyström au cas d’une classe grosse pour montrer que
l’on peut construire des rayons géodésiques dans cet espace de façon très flexible.

1. Introduction

Let (X,ω) be a Kähler manifold of complex dimension n. Going back to
Yau’s solution of the Calabi conjecture [45], the study of complex Monge–
Ampère equations on X has received a lot of attention. Several problems in
Kähler geometry, related to canonical metrics, boil down to solving an equa-
tion of complex Monge–Ampère type. When trying to find weak solutions
for such equations, one is naturally led to the space E1(X,ω), introduced
by Guedj and Zeriahi [35] building on previous constructions of Cegrell in

Keywords: Kähler manifolds, pluripotential theory, Monge-Ampère energy classes, geo-
desic rays.
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the local case [14]. Later, in the work of the first named author [19, 20] it
was discovered that E1(X,ω) has a natural metric geometry, arising as the
completion of a certain L1 Finsler metric on the space of smooth Kähler po-
tentials, an open subset of C∞(X), reminiscent of the L2 Riemannian met-
ric of Mabuchi–Semmes–Donaldson ([31, 39, 44]). The exploration of the
space E1(X,ω) and its metric structure led to numerous applications con-
cerning existence of Kähler–Einstein and constant scalar curvature metrics
(see [6, 7, 8, 9, 16, 21, 28, 30] as well as references in the recent survey [23]).
For the rest of the paper we consider θ, a closed (1, 1)-form representing

a big cohomology class. As pointed out in [13], one can still consider the
space E1(X, θ), in hopes of finding weak solutions to equations of complex
Monge–Ampère type in the big context. However we can not recover this
space using infinite dimensional L1 Finsler geometry, as there is no Fréchet
manifold readily available in this setting to replace the role of the space
of Kähler potentials. In our first main result we show that this difficulty
can be overcome, by defining the metric structure of E1(X, θ) directly,
using only pluripotential theory, bypassing the Finsler geometry (compare
with [21, 30] that deal with an intermediate particular case). The resulting
space still enjoys the same properties as its analog the Kähler case, and
we expect our construction to have applications in the study of complex
Monge–Ampère equations in the context of big cohomology classes.
Let us briefly introduce the main terminology and concepts, leaving

the details to the preliminaries section and thereafter. Roughly speaking,
E1(X, θ) ⊂ PSH(X, θ) is the set of potentials whose Monge–Ampère energy
I is finite. Given u, v ∈ E1(X, θ), it has been shown in [25, Theorem 2.10]
that P (u, v), the largest θ-psh function lying below min(u, v), belongs
to E1(X, θ). Consequently, we can define d1(u, v) as the following finite
quantity:

(1.1) d1(u, v) = I(u) + I(v)− 2I(P (u, v)).

Thus defined, d1 is symmetric, and non-degeneracy is a simple consequence
of the domination principle. The main difficulty is to show that the triangle
inequality also holds. We accomplish this, and we are also able to show that
the resulting metric space (E1(X, θ), d1) is complete, with metric geodesics
running between any two points. These geodesic segments will be con-
structed as a Perron envelope, generalizing an observation of Berndtsson
from the Kähler case [10, Section 2]. We record all of this in our first main
theorem:

Theorem 1.1. — (E1(X, θ), d1) is a complete geodesic metric space.

ANNALES DE L’INSTITUT FOURIER
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As alluded to above, in the Kähler case the d1 metric is introduced quite
differently. In that case, one puts an L1 Finlser metric on the Fréchet mani-
fold of smooth Kähler potentials and the completion of its path length met-
ric will coincide with (E1(X, θ), d1) [19]. In the Kähler case, formula (1.1)
is a result of a theorem ([19, Corollary 4.14]), but in the big case we take
it as our definition for d1!
Though there is no apparent connection with infinite dimensional L1

Finsler geometry in the big case. By the double estimate below, we will still
refer to d1 as the L1 metric of E1(X, θ). Indeed, by this double inequality,
it seems that one should think of d1 as a kind of L1 metric with “moving
measures”:

d1(u, v) 6
∫
X

|u−v|θnu+
∫
X

|u−v|θnv 6 3·2n(n+1)d1(u, v), u, v ∈ E1(X, θ).

As a consequence of this inequality, the expression in the middle satisfies
a quasi-triangle inequality. We note that this is true for even more general
such expressions, as recently proved using completely different methods
in [33].
To motivate our second main result, a short review of historical develop-

ments is in order. The study of the geometry of the space of Kähler metrics
was (and still is) closely connected with the uniqueness and existence of
canonical Kähler metrics. The compactness principle of E1(X, θ) from [6],
and the exploration of the d1-geometry of this space [19] led to many recent
advances in this direction [8, 9, 28]. Going back to earlier developments,
Donaldson conjectured that a constant scalar curvature metric exists in
a Kähler class if and only if the K-energy has certain growth along the
geodesic rays of this space [31]. This is closely related to the notion of
K-stability and is the focus of intense research to this day. Motivated by
this picture, there is special interest in regularity of geodesic segments and
rays, as well as their geometric significance (see [1, 15, 17, 18, 41, 43] to
name only very few works in a fast expanding literature). Following the
appearance of [19], it became apparent that a weak version of Donaldson’s
conjectural picture generalizes to the d1-metric completion. Using a mix-
ture of novel PDE techniques and the method of [26], this latter conjecture
was very recently fully addressed by Chen and Cheng [16]. We expect that
results in the above papers will eventually find generalizations to the big
setting.
Given their importance in the above mentioned applications, we are inter-

ested to see how one can construct weak geodesic rays inside (E1(X, θ), d1),

TOME 68 (2018), FASCICULE 7



3056 Tamás DARVAS, Eleonora DI NEZZA & Chinh H. LU

with the hopes of using them in later investigations involving big cohomol-
ogy classes. To this end, we point out below that the construction of Ross
and Witt Nyström [43] not only generalizes to the big case, but it can be
shown that their very flexible method gives all possible weak geodesic rays
(with minimal singularity) in a unique manner.
We skim over the main aspects of the construction. Suppose φ ∈

PSH(X, θ) has minimal singularity. Roughly speaking, we say that R 3
τ → ψτ ∈ PSH(X, θ) is a test curve, if it is τ -concave, ψτ = φ ∈ PSH(X, θ)
for all τ 6 −Cψ, and ψτ = −∞ for all τ > Cψ, for some constant Cψ > 0.
Additionally a test curve is maximal, if (using the notation of [24, Sec-
tion 1], see (2.8) below) it satisfies:

P [ψτ ](φ) = ψτ , τ ∈ R.

As opposed to weak geodesic rays, test curves can be easily constructed,
and they can also be conveniently maximized (Proposition 4.6). Roughly
speaking, our second main result points out a duality between rays and
maximal test curves, via the partial Legendre transform:

Theorem 1.2. — The correspondence ψ → ψ̌ gives a bijective map
between maximal τ -usc test curves τ → ψτ and weak geodesic rays with
minimal singularity type t→ ut. The inverse of this map is u→ û.

Here ψ̌ and û represent the partial (inverse) Legendre transforms of ψ
and u respectively, defined by:

ψ̌t := sup
τ∈R

(uτ + tτ), ûτ := inf
t>0

(ut − tτ).

As a corollary we recover the main analytic result of [43] in the big context:

Corollary 1.3. — Let τ → ψτ be a test curve such that ψ−∞ = φ.
Define

wt = sup
τ∈R

(P [ψτ ](φ) + tτ), t > 0.

Then the curve t → wt is a weak geodesic ray, with minimal singularity,
emanating from φ.

1.1. Organization

Our notation and terminology carry over from [25] and [24]. In Section 2
we review some background on the Monge–Ampère theory in big cohomol-
ogy classes. Section 3 is devoted to the proof of Theorem 1.1. In Section 4
we adapt the concepts of [43] to the big context and prove Theorem 1.2
and Corollary 1.3.

ANNALES DE L’INSTITUT FOURIER
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2. Preliminaries

We lay down our notation, and we review several basic results from the
Monge–Ampère theory and geodesics in big cohomology classes. Let X be
a compact Kähler manifold of dimension n and fix θ, a closed smooth real
(1, 1)-form on X.

A potential u∈L1(X,ωn) is quasi-plurisubharmonic (quasi-psh for short)
if near every point x ∈ X there exists a coordinate patch V ⊂ X, identifying
x ∈ X with 0 ∈ Cn, such that u|V is the difference of a plurisubharmonic
(psh) and a smooth function. Additionally, u is called θ-plurisubharmonic
(θ-psh for short) if θu := θ+i∂∂̄u > 0 in the sense of currents. The set of all
θ-psh functions is denoted by PSH(X, θ). In our convention, the potential
equal to −∞ everywhere on X is an element of PSH(X, θ).

We say that {θ} is pseudoeffective if PSH(X, θ) is non-empty. Along
these lines, {θ} is big if PSH(X, θ − εω) is non-empty for some ε > 0.
In case {θ} is big, the ample locus Amp({θ}) ⊂ X is the open dense

set of points x ∈ X such that there exists u ∈ PSH(X,ω), smooth in a
neigborhood of x, and satisfying θ+ i∂∂̄u > εω in the same neighborhood,
for some ε(x) > 0.
Let u ∈ PSH(X, θ). Given that locally u can be written as a sum of a

psh function and a smooth function we obtain that

u(x) = lim
r→0

1
dµ(B(x, r))

∫
B(x,r)

u(y) dµ(y), x ∈ X,

where B(x, r) is a coordinate ball of radius r > 0 centered at x ∈ X, and
dµ is the Lebesque measure (see [11, Theorem 1.2.3(iv)]). As a consequence
of this we immediately obtain the following:

Lemma 2.1. — Let u, v ∈ PSH(X, θ) such that u 6 v a.e. on X. Then
u 6 v everywhere on X.

Given u1, . . . , up ∈ PSH(X, θ), we recall the definition of the current
θu1∧· · ·∧θup from [13, Section 1]. This generalizes a construction of Bedford
and Taylor [2, 3] applicable for bounded potentials. Indeed, in a small
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enough coordinate patch V ⊂ X we can write that θ := i∂∂̄φ for some
φ ∈ C∞(X). Then in this neighborhood we introduce:

θu1 ∧ · · · ∧ θup |V := lim
k→∞

1V ∩{φ+u1>−k}∩···∩{φ+up>−k}θmax(φ+u1,−k)(2.1)

∧ · · · ∧ θmax(φ+up,−k),

In [13, Section 1] it is argued that this limit of currents is well-defined,
invariant under change of coordinates and it is a closed positive (p, p)-
current which does not charge pluripolar sets. For a θ-psh function u, the
non-pluripolar complex Monge–Ampère measure of u is simply θnu := θu ∧
· · · ∧ θu.

Many properties of θu1 ∧ · · · ∧ θup carry over from Bedford–Taylor the-
ory [2, 3] directly. Here we only highlight the ones that will come up
the most in this work, for example locality of (2.1) with respect to the
plurfine topology. This latter topology is the coarsest topology making lo-
cal plurisubharmonic functions continuous on X, and it is easy to see that
it refines the usual Euclidean topology. Moreover, from [13, Proposition 1.4]
it follows that the construction (2.1) is local in the plurifine topology:

Lemma 2.2. — If uj , vj ∈ PSH(X, θ) such that and uj = vj on a plu-
rifine open set O ⊂ X. Then

1Oθu1 ∧ · · · ∧ θup = 1Oθv1 ∧ · · · ∧ θvp .

Moreover, as pointed out by Guedj–Zeriahi [34, Corollary 2.8], every
element u ∈ PSH(X, θ) is quasi-continuous in the sense that for any ε > 0
it is possible to find a Euclidean open set O ⊂ X such that u|O is continuous
and Capθ(X \ O) 6 ε. By Capθ( · ) we mean the Monge–Ampère capacity
defined in [13, Section 4.1]. We note that by [25, Theorem 2.8] all notions
of Monge–Ampère capacity are (essentially) independent of the choice of
form θ.

Related to the above, we say that a sequence of functions {fj}j converges
in capacity to a function f on X if limε→0 Capθ{|fj − f | > ε} = 0. When
fj , f are θ-psh then convergence in capacity has important ramifications
related to convergence of non-pluripolar measures (see [24, Theorem 2.3]).
For an extensive treatment of non-pluripolar products in the setting of

big cohomology classes we refer to [13, Section 1 and 2] and [24, Section 2
and 3].

If u, v ∈ PSH(X, θ), then u is said to be less singular than v if v 6 u+C

for some C ∈ R, while they are said to have the same singularity type if
u − C 6 v 6 u + C, for some C ∈ R. A θ-psh function u is said to have
minimal singularity type if it is less singular than any other θ-psh function.

ANNALES DE L’INSTITUT FOURIER
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An example of a θ-psh function with minimal singularity is

Vθ(x) := sup{u(x) | u ∈ PSH(X, θ), u 6 0}.

For simplicity, in the whole paper we make the following normalization:

Vol({θ}) :=
∫
X

θnVθ = 1.

By multiplying θ with a constant this can always be attained.

Lemma 2.3. — We have θnVθ 6 1{Vθ=0}θ
n.

Note here that the form θ may fail to be semi-positive at some points but
it is semipositive on the set {Vθ = 0}. This lemma is a result of Berman [4]
(for a detailed argument in the big case we refer to [25, Theorem 2.6, arXiv
version]).
If u has minimal singularity type then

∫
X
θnu , the total mass of θnu , is

equal to
∫
X
θnVθ which was normalized to be 1. With this convention, for a

general u ∈ PSH(X, θ),
∫
X
θnu may take any value in [0, 1]. Lastly, according

to [40, Theorem 1.2] if u is less singular than v then
∫
X
θnv 6

∫
X
θnu .

2.1. The energy functionals

If u ∈ PSH(X, θ) has minimal singularity type then its Monge–Ampère
energy is defined as

I(u) := 1
n+ 1

n∑
k=0

∫
X

(u− Vθ)θku ∧ θn−kVθ
.

We collect basic properties of the Monge–Ampère energy:

Theorem 2.4. — Suppose u, v ∈ PSH(X, θ) have minimal singularity
type. The following hold:

(1) I(u)− I(v) = 1
n+1

∑n
k=0

∫
X

(u− v)θku ∧ θn−kv .

(2) I is non-decreasing and concave along affine curves. Additionally,
the following estimates hold:

∫
X

(u − v)θnu 6 I(u) − I(v) 6∫
X

(u− v)θnv .
(3) If v 6 u then, 1

n+1
∫
X

(u − v)θnv 6 I(u) − I(v) 6
∫
X

(u − v)θnv . In
particular, I(v) 6 I(u)

In the Kähler case, the above formulas and inequalities can be established
using integration by parts. When dealing with potentials having minimal

TOME 68 (2018), FASCICULE 7
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singularity, integration by parts works in the big case as well [13, Theo-
rem 1.14], hence the proof from the Kähler case works with only superficial
changes (see [13, Section 2.2]).
Using the monotonicity property of I = from above we can introduce the

Monge–Ampère energy for arbitrary u ∈ PSH(X, θ) as

I(u) := inf{I(v) | v ∈ PSH(X, θ), v has minimal singularity type, u 6 v}.

We let E1(X, θ) denote the set of all u ∈ PSH(X, θ) such that I(u) > −∞.
Since θ will be fixed throughout the paper we will often denote this space
simply as E1. As shown in [13, Proposition 2.10] the functional I, thus de-
fined on PSH(X, θ) (and may take value −∞) is non-decreasing, concave,
upper semicontinuous on PSH(X, θ), and continuous along decreasing se-
quences.
It follows from [13, Proposition 2.11] that

∫
X

(Vθ−u)θnu < +∞ whenever
u ∈ E1. For C > 0, by Lemma 2.2 we have 1{u>Vθ−C}θ

n
max(u,Vθ−C) =

1{u>Vθ−C}θ
n
u . Since

∫
X
θnu =

∫
X
θnmax(u,Vθ−C) = 1 we can write

(2.2) lim
C→+∞

C

∫
{u6Vθ−C}

θnmax(u,Vθ−C)

= lim
C→+∞

C

∫
{u6Vθ−C}

θnu

6 lim
C→+∞

∫
{u6Vθ−C}

(Vθ − u)θnu = 0.

Proposition 2.5. — The conclusions of Theorem 2.4 still hold for
u, v ∈ E1.

Proof. — We can assume that u, v 6 0. We set uC := max(u, Vθ−C) for
C > 0. We want to prove that, for k ∈ {0, . . . , n},

(2.3) lim
C→+∞

∫
X

(uC − vC)θkuC ∧ θ
n−k
vC

=
∫
X

(u− v)θku ∧ θn−kv .

Clearly, it suffices to check that

(2.4) lim
C→+∞

∫
X

(uC − Vθ)θkuC ∧ θ
n−k
vC

=
∫
X

(u− Vθ)θku ∧ θn−kv .

By decomposing the integral into two parts
∫
{min(u,v)>Vθ−C} and∫

{min(u,v)6Vθ−C}, using Lemma 2.2 and noting that {min(u, v) 6 Vθ−C} ⊆
{u 6 Vθ−C}∪{v 6 Vθ−C}, we see that proving (2.4) boils down to showing

ANNALES DE L’INSTITUT FOURIER
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that

(2.5) lim
C→+∞

C

∫
{u6Vθ−C}

θkuC ∧ θ
n−k
vC

= 0,

and lim
C→+∞

C

∫
{v6Vθ−C}

θkuC ∧ θ
n−k
vC

= 0, ∀ k.

We will prove the first equality and the same arguments apply to prove
the second one. Observing that Vθ − C 6 vC 6 Vθ we have the inclusion

{u 6 Vθ − C} ⊂
{
uC 6

vC + Vθ − C
2

}
⊂ {u 6 Vθ − C/2}.

Using the partial comparison principle [13, Proposition 2.2] and that

θn−k
vC
6 2n−kθn−k

vC+Vθ−C
2

we get

C

∫
{u6Vθ−C}

θkuC ∧ θ
n−k
vC
6 C

∫
{uC6

vC+Vθ−C
2 }

θkuC ∧ θ
n−k
vC

6 2n−kC
∫
{uC6

vC+Vθ−C
2 }

θnuC

6 2n−kC
∫
{u6Vθ−C/2}

θnuC

6 2n−kC
∫
{u6Vθ−C/2}

θnu ,

where in the last inequality we used Lemma 2.2 and 1 =
∫
X
θnu =

∫
X
θnuC .

From this and (2.2) we obtain (2.5), hence (2.4), completing the proof. �

Lemma 2.6. — If u 6 v 6 0 are in E1 then, for every C > 0,

θnv (v 6 Vθ − C) 6 2nθnu(u 6 Vθ − C/2).

Proof. — Fix C > 0 and set w := v+Vθ−C
2 . Using the inclusion of sets

{v 6 Vθ − C} ⊂ {u 6 w} ⊂ {u 6 Vθ − C/2}

and the comparison principle [13, Corollary 2.3] we obtain

θnv (v 6 Vθ − C) 6 θnv (u 6 w) 6 2nθnw(u 6 w)
6 2nθnu(u 6 w) 6 2nθnu(u 6 Vθ − C/2). �

In the study of the metric space (E1, d1) we will also make use of the
I1-functional introduced in [19] (inspired by the I2 functional of [32]):

I1(u, v) =
∫
X

|u− v|(θnu + θnv ), u, v ∈ E1(X, θ).

TOME 68 (2018), FASCICULE 7
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It follows directly from Lemma 2.2 that

(2.6) I1(u, v) = I1(max(u, v), u) + I1(max(u, v), v), ∀ u, v ∈ E1.

Proposition 2.7. — Let {uj}j ⊂ E1 be a sequence converging de-
creasingly (or increasingly a.e.) towards u ∈ E1. Then I1(uj , u) → 0 and
I(uj)→ I(u).

Proof. — Observe first that in the case the functions uj , u have mini-
mal singularity type the result was known (see e.g. [13, Proposition 2.10,
Theorem 2.17], [5, Proposition 4.3], or [24, Lemma 4.1]).
We first prove the convergence of I. If the sequence is decreasing this was

known by [13, Proposition 2.10]. Assume now that uj ↗ u 6 0. Again we
denote uC := max(u, Vθ − C) and observe that uC and uCj have minimal
singularity type. Since I(uCj )→ I(uC) as j → +∞ for any C > 0 fixed and
I(uC)→ I(u) as C → +∞, it suffices to show that

lim
C→+∞

(I(uCj )− I(uj)) = 0

uniformly in j. By concavity (Proposition 2.5) we have that

0 6 I(uCj )− I(uj) 6
∫
X

(uCj − uj)θnuj 6
∫
{uj6Vθ−C}

(Vθ − C − uj)θnuj

=
∫ +∞

C

θnuj (uj 6 Vθ − t) dt.

But it follows from Lemma 2.6 that∫
{uj6Vθ−t}

θnuj 6 2n
∫
{u16Vθ−t/2}

θnu1
.

Hence we can continue the above estimate and write

0 6 I(uCj )− I(uj) 6
∫ +∞

C

θnuj (uj 6 Vθ − t) dt

6 2n+1
∫ +∞

C/2
θnu1

(u1 6 Vθ − t) dt

= 2n+1
∫
{u16Vθ−C/2}

(Vθ − u1 − C/2)θnu1
.

Since u1 ∈ E1 the last term above converges to 0 as C → +∞ (in view
of (2.2)), finishing the proof of the convergence of I.
We now prove the convergence of I1. It follows from Proposition 2.5

that I(uj)− I(u) is the sum of (n+ 1) terms having the same sign (which
is positive if the sequence is decreasing and negative if the sequence is
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increasing). Hence the convergence of I implies that each term converges
to 0. In particular,

lim
j→+∞

∫
X

|uj − u|(θnu + θnuj ) = lim
j→+∞

∫
X

(uj − u)(θnu + θnuj ) = 0. �

Next we record a particular case of the domination principle (see [12,
Proposition 5.9] and [25, Proposition 2.4]) that will be useful for us:

Proposition 2.8. — Let u, v ∈ E1 such that u 6 v a.e. with respect to
θnv . Then u 6 v.

The next result is a consequence of [7, Lemma 5.8] and its proof:

Proposition 2.9. — Suppose C > 0 and φ, ψ, u, v ∈ E1 satisfies

I1(φ, Vθ), I1(ψ, Vθ), I1(u, Vθ), I1(v, Vθ) 6 C.

Then there exists a continuous increasing function fC : R+ → R+ (only
dependent on C) with fC(0) = 0 such that

(2.7)
∣∣∣ ∫
X

(u− v)(θnφ − θnψ)
∣∣∣ 6 fC(I1(u, v)).

Following the terminology and results of [13, 19] we say that a sequence
{uj}j ⊂ E1 converges in energy towards u ∈ E1 if I1(uj , u)→ 0 as j → +∞.

2.2. Quasi-psh envelopes

Given a measurable function f on X we define

P (f) := Pθ(f) := usc(sup{u ∈ PSH(X, θ) | u 6 f}),

as the largest θ-psh function lying below f . If f = min(u, v) for u, v quasi-
psh then there is no need to take the upper semicontinuous regularization
in the definition of P (u, v) := Pθ(min(u, v)). The latter is the largest θ-psh
function lying below both u and v, and was called the rooftop envelope of
u and v in [27].
Given φ, ψ ∈ PSH(X, θ) the envelope of φ with respect to the singularity

type of ψ, introduced by Ross and Witt-Nyström [43], is defined as

(2.8) P [ψ](φ) := usc
(

lim
C→+∞

P (ψ + C, φ)
)
.

When φ = Vθ, we will simply write P [ψ] := P [ψ](Vθ). This potential is the
maximal element of the set of u ∈ PSH(X, θ), u 6 0 and

∫
X
θnu =

∫
X
θnψ as

shown in [24].
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Lemma 2.10. — Suppose u, v ∈ PSH(X, θ)and v is less singular than u.
Then ∫

X

θnP [u](v) =
∫
X

θnu .

The proof is essentially given in [24] but we recall it here for the reader’s
convenience.

Proof. — Let C > 0 be such that v > u − C. For each j > 0 set uj :=
P (u + j, v). Then uj has the same singularity type as u since u − C 6
uj 6 u + j. It follows from [40, Theorem 1.2] that

∫
X
θnuj =

∫
X
θnu . By

definition uj ↗ P [u](v) a.e. on X. It thus follows from [24, Theorem 2.3
and Remark 2.5] that∫

X

θnu = lim
j→+∞

∫
X

θnuj =
∫
X

θnP [u](v). �

We refer to [25] and [24] for a detailed account on the properties of such
envelopes that goes beyond the scope of our present investigations.

Finally, we recall that the Monge–Ampère measure of such envelopes
is concentrated on the contact set. Indeed, thanks to [24, Lemma 3.7] we
know that if ψ, φ ∈ PSH(X, θ) and P (ψ, φ) 6= −∞ then

(2.9) θnP (ψ,φ) 6 1{P (ψ,φ)=ψ}θ
n
ψ + 1{P (ψ,φ)=φ}θ

n
φ .

In the Kähler case this was proved in [20, Proposition 3.3]. Moreover, [24,
Theorem 3.8] ensures that

θnP [ψ] 6 1{P [ψ]=0}θ
n.

In the following we are going to make use of the above inequalities in a
crucial way.

2.3. Weak geodesic segments and rays

In this subsection, following Berndtsson [10] we adapt the definition of
(sub)geodesics to the context of big cohomology classes (see also [25]).

Fix 0 < ` 6 ∞. For a curve (0, `) 3 t 7→ ut ∈ PSH(X, θ) we define its
complexification as a function in X ×D`,

X ×D` 3 (x, z) 7→ U(x, z) := ulog |z|(x),

where D` := {z ∈ C | 1 < |z| < e`}, and π is the projection on X.

Definition 2.11. — We say that t → ut is a subgeodesic segment
(resp. ray) if U(x, z) ∈ PSH(X × D`, π

∗θ) with ` < ∞ (resp. U(x, z) ∈
PSH(X ×D∞, π∗θ)).
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Before proceeding, let us recall the Kiselman minimum principle adapted
to our context [37, Theorem 2.2]:

Theorem 2.12. — Let (0, `) 3 t → ut ∈ PSH(X, θ) be a subgeodesic
segment or ray. Given x ∈ X define v(x) := inft∈(0,`) ut(x). Then v ∈
PSH(X, θ), with v possible equal to −∞ everywhere.

Proof. — This is indeed a straightforward consequence of the (local)
Kiselman principle, applicable for domains of Cm. A simple proof of the
local result can be found in [29, Theorem I.7.5]. The general result follows
after an analysis of U ∈ PSH(X ×Dl, π

∗θ) in coordinate patches of X. �

Definition 2.13. — For ϕ,ψ ∈ PSH(X, θ), we let S(0,`)(ϕ,ψ) denote
the set of all subgeodesic segments (0, `) 3 t 7→ ut ∈ PSH(X, θ) that satisfy
lim supt→0 ut 6 ϕ and lim supt→` ut 6 ψ.

Now, for ϕ,ψ ∈ PSH(X, θ), the weak (Mabuchi) geodesic segment con-
necting ϕ and ψ is defined as the upper envelope of all subgeodesic segments
in S(0,`)(ϕ,ψ), i.e.

(2.10) ϕt := sup
S(0,`)(ϕ,ψ)

ut.

For general ϕ,ψ ∈ PSH(X, θ) it is possible that ϕt is identically equal
to −∞ for any t ∈ (0, `). But in the case when ϕ,ψ ∈ E1(X, θ), it was
shown in [25, Theorem 2.10] that P (ϕ,ψ) ∈ E1(X, θ). Since P (ϕ,ψ) 6 ϕt,
we obtain that ϕt ∈ E1(X, θ) for any t ∈ [0, `] [13, Proposition 2.14]. By
R-invariance each subgeodesic segment is in particular t-convex, hence we
get that

(2.11) ϕt 6

(
1− t

`

)
ϕ+ t

`
ψ, ∀ t ∈ [0, `].

Consequently the upper semicontinuous regularization (with respect to
both variables x, z) of t→ ϕt is again in S(0,`)(ϕ,ψ), hence so is t→ ϕt.
In particular, if ϕ and ψ have minimal singularity type, the function

h := |ϕ−ψ| is bounded and t→ ut := max
(
ϕ−‖h‖L∞ t

` , ψ−‖h‖L∞
`−t
`

)
is a

subgeodesic. Therefore ϕt > ut for any t ∈ (0, `) and hence ϕt ∈ PSH(X, θ)
has minimal singularity type for any t ∈ (0, `). Moreover, by this last fact
and (2.11) it follows that limt→1 ϕt = ϕ and limt→` ϕt = ψ. Consequently,
in the particular case when ϕ,ψ have minimal singularity type, it is natural
to extend the curves (0, `) 3 t → ϕt ∈ PSH(X, θ) at the endpoints by
ϕ0 := ϕ and ϕ1 := ψ. As we will see, a similar pattern will arise when
ϕ,ψ ∈ E1(X,ω).
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Collecting and expanding some of the above thoughts, we recall the fol-
lowing lemma [25, Lemma 3.1]:

Lemma 2.14. — Let t → ϕt be the weak Mabuchi geodesic joining
ϕ0, ϕ` ∈ PSH(X, θ) with minimal singularity type, constructed as above.
Then for C := supX |ϕ` − ϕ0|/` > 0 we have that

|ϕt − ϕt′ | 6 C|t− t′|, t, t′ ∈ [0, `].

Additionally, for the complexification Φ(x, z) := ϕlog |z|(x) we have

(π∗θ + i∂∂̄Φ)n+1 = 0 in Amp({θ})×D`,

where equality is understood in the weak sense of measures.

Before proceeding we note that due to our “Perron type” definition of
weak geodesic segments (2.10) we automatically get the following compar-
ison principle:

Proposition 2.15 (Comparison principle). — Let u0, u1, v0, v1 ∈
PSH(X,ω) such that v0 6 u0 and v1 6 u1. If (0, 1) 3 t → ut ∈ PSH(X, θ)
is the weak geodesic connecting u0, u1 and (0, 1) 3 t → vt ∈ PSH(X, θ) is
a weak subgeodesic connecting v0, v1 then vt 6 ut for any t ∈ [0, 1].

Due to Proposition 2.15, if (0, `) 3 t→ ϕt ∈ PSH(X, θ) is a weak geodesic
segment with minimal singularity type and a, b, c, d ∈ (0, `), then exactly
the same arguments as in [20, Theorem 3.4] give that

(2.12)
mϕ := inf

Amp({θ})

ϕa − ϕb
a− b

= inf
Amp({θ})

ϕc − ϕd
c− d

,

Mϕ := sup
Amp({θ})

ϕa − ϕb
a− b

= sup
Amp({θ})

ϕc − ϕd
c− d

.

A curve [0,+∞) 3 t → ϕt ∈ PSH(X, θ) is a weak geodesic ray, with
minimal singularity type, if for any fixed ` > 0 [0, `] 3 t→ ϕt ∈ PSH(X, θ)
is a weak geodesic segment joining ϕ0 and ϕ`, potentials with minimal
singularity.

3. The metric space (E1, d1)

Let u, v ∈ E1. It follows from [25, Theorem 2.10] that P (u, v) belongs
to E1. In this section we will introduce and study the properties of a com-
plete metric structure on E1. The metric will be defined by the following
expression

(3.1) d1(u, v) := I(u) + I(v)− 2I(P (u, v)).
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Before we prove that this expression does indeed give a metric, we provide
some motivation. When θ is Kähler, it is possible to introduce an L1 Finsler
structure on the space of smooth Kähler potentials, (see [19, Section 1.1]).
As shown in [19, Corollary 4.14] the path length metric associated to this
Finsler structure is given by (3.1). We will show below that it is possible
to start with (3.1) and avoid inifinite dimensional Finsler geometry all
together. This line of thought is especially fruitful in the case of big classes,
where the space of smooth Kähler potentials has no analog to begin with.

3.1. d1 is a metric

The goal of this section is to prove that d1 defines a metric on E1(X, θ).
The following properties follow directly from the definition.

Lemma 3.1. — Let u, v ∈ E1(X, θ). Then the following hold:
(1) If u 6 v then d1(u, v) = I(v)− I(u).
(2) If u 6 v 6 w then d1(u, v) + d1(v, w) = d1(u,w).
(3) (Pythagorean formula) d1(u, v) = d1(u, P (u, v)) + d1(v, P (u, v)).

Proof. — The first statement is straightforward from the definition since
P (u, v) = u if u 6 v. The second statement easily follows from (1). The
last statement follows from the definition of d1. �

The following formula whose proof builds on ideas from [38] will be cru-
cial in the sequel.

Proposition 3.2. — Let u, v be θ-psh functions with minimal singu-
larity type. For t ∈ [0, 1] define ϕt := P ((1− t)u+ tv, v). Then

d
dt I(ϕt) =

∫
X

(v −min(u, v))θnϕt , ∀ t ∈ [0, 1].

Proof. — We will only prove the formula for the right derivative as the
same argument can be applied to treat the left derivative. Fix t ∈ [0, 1]
and s ∈ R small such that s + t ∈ [0, 1]. For convenience we set ft(x) :=
min((1− t)u(x) + tv(x), v(x)), x ∈ X, t ∈ [0, 1]. It follows from (2.9) that
θnϕt is supported on the set {ϕt = ft}. By concavity of the Monge–Ampère
energy I (Theorem 2.4(2)) we have that

(3.2)
I(ϕt+s)− I(ϕt) 6

∫
X

(ϕt+s − ϕt)θnϕt =
∫
X

(ϕt+s − ft)θnϕt

6
∫
X

(ft+s − ft)θnϕt = s

∫
X

(v −min(u, v))θnϕt ,
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where in the last inequality we used that ft+s − ft = s(v −min(u, v)). We
use the same argument to prove the following inequality:

(3.3)
I(ϕt+s)− I(ϕt) >

∫
X

(ϕt+s − ϕt)θnϕt+s =
∫
X

(ft+s − ϕt)θnϕt+s

>
∫
X

(ft+s − ft)θnϕt+s = s

∫
X

(v −min(u, v))θnϕt+s .

To continue, we notice that there exists C > 0 such that Vθ − C 6 ϕt 6
Vθ+C, t ∈ [0, 1], in particular all these potentials have minimal singularity
type. In addition to this, ϕt+s → ϕt uniformly, as s→ 0.
Moreover, since v−min(u, v) is a bounded quasi continuous function on

X, the last statement of [24, Theorem 2.3] is applicable to (3.2) and (3.3)
as s→ 0, to conclude that

lim
s→0

I(ϕt+s)− I(ϕt)
s

=
∫
X

(v −min(u, v))θnϕt .

This completes the proof. �

Corollary 3.3. — Let u, v, ϕt as in Proposition 3.2. Then

I(v)− I(P (u, v)) =
∫ 1

0

∫
X

(v −min(u, v))θnϕt dt.

As a consequence we obtain the following result, which is an original
result in the particular case of Kähler structures as well.

Proposition 3.4. — If u, v ∈ E1(X, θ) then

d1(max(u, v), u) > d1(v, P (u, v)).

Proof. — Set ϕ = max(u, v), ψ = P (u, v). Observe that since v > ψ and
ϕ > u, it suffices to show that I(v)− I(ψ) 6 I(ϕ)− I(u).

Recall that for any χ ∈ PSH(X, θ) the sequence of potentials with min-
imal singularity type χk := max(χ, Vθ − k) decreases to χ. Consequently,
using approximation (Proposition 2.7), we can assume that both u and v
(hence also ϕ and ψ) have minimal singularity type. Using the formula for
the derivative of t 7→ I((1 − t)u + tϕ) [7, (2.2)] (or Corollary 3.3 with the
choice v := ϕ = max(u, v) in which case P (u, v) = min(u, v) = u) we can
write

I(ϕ)− I(u) =
∫ 1

0

∫
X

(ϕ− u)θn(1−t)u+tϕ dt.

Set wt := (1 − t)u + tv, for t ∈ [0, 1]. Using the trivial identity ϕ − u =
1{v>u}(v − u) and Lemma 2.2 we can write

I(ϕ)− I(u) =
∫ 1

0

∫
{v>u}

(v − u)θnwt dt.
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On the other hand, it follows from (2.9) that

θnP (wt,v) 6 1{wt6v}θ
n
wt + 1{wt>v}θ

n
v .

Using this, Corollary 3.3 and the fact that {wt < v} = {u < v}, for
t ∈ (0, 1), we get

I(v)− I(ψ) =
∫ 1

0

∫
X

(v −min(u, v))θnP (wt,v) dt 6
∫ 1

0

∫
{u<v}

(v − u)θnwt dt,

hence the conclusion. �

Corollary 3.5. — If u, v, ϕ ∈ E1(X, θ) then

d1(u, v) > d1(P (u, ϕ), P (v, ϕ)).

Proof. — We first assume that v 6 u. It follows that

v 6 max(v, P (u, ϕ)) 6 u,

hence by Lemma 3.1(3) and Proposition 3.4 we have

d1(v, u) > d1(v,max(v, P (u, ϕ)))
> d1(P (u, ϕ), P (P (u, ϕ), v)) = d1(P (u, ϕ), P (v, ϕ)).

Observe that the last identity follows from the fact and P (P (u, ϕ), v) =
P (u, ϕ, v) and P (u, ϕ, v) = P (ϕ, v) since v 6 u. Now, we remove the as-
sumption u > v. Since min(u, v) > P (u, v) we can use the first step to
write

d1(u, P (u, v)) > d1(P (u, ϕ), P (u, v, ϕ)),
d1(v, P (u, v)) > d1(P (v, ϕ), P (u, v, ϕ)).

To finish the proof, it suffices to use Lemma 3.1(3) and to note that
P (P (u, ϕ), P (v, ϕ)) = P (u, v, ϕ). �

Theorem 3.6. — d1 is a distance on E1(X, θ).

Proof. — The quantity d1 is non-negative, symmetric and finite by def-
inition. Next we show that d1 is non degenerate. Suppose d1(u, v) = 0.
Lemma 3.1(3) implies that d1(u, P (u, v)) = d1(v, P (u, v)) = 0. Moreover,
Theorem 2.4(3) gives that P (u, v) > u a.e. with respect to θnP (u,v). By the
domination principle (Proposition 2.8) we obtain that P (u, v) > u, hence
trivially u = P (u, v). By symmetry v = P (u, v), implying that u = v.
It remains to check that d1 satisfies the triangle inequality: for u, v, ϕ ∈

E1(X, θ) we want to prove that

d1(u, v) 6 d1(u, ϕ) + d1(v, ϕ).
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Using the definition of d1 (see (3.1)) this amounts to showing that

I(P (ϕ, u))− I(P (u, v)) 6 I(ϕ)− I(P (ϕ, v)).

But this follows from Corollary 3.5, as we have the following sequence of
inequalities:

I(ϕ)− I(P (ϕ, v)) = d1(ϕ, P (ϕ, v))
> d1(P (ϕ, u), P (P (ϕ, v), u)) = I(P (ϕ, u))− I(P (ϕ, v, u))
> I(P (ϕ, u))− I(P (u, v)),

where in the last line we have used the montonicity of I (Theorem 2.4). �

3.2. Completeness of (E1, d1)

We first establish the following key comparison between I1 and d1, extend-
ing [19, Theorem 3] from the Kähler case. This result allows to interpret
d1-convergence using analytic means.

Theorem 3.7. — Given u, v ∈ E1 the following estimates hold:
1

3 · 2n+2(n+ 1)I1(u, v) 6 d1(u, v) 6 I1(u, v).

Proof. — It follows from Lemma 3.1 that d1(u, v) = d1(u, P (u, v)) +
d1(v, P (u, v)). Since the Monge–Ampère energy is concave along affine
curve (Theorem 2.4(3)),

d1(u, P (u, v)) = I(u)− I(P (u, v)) 6
∫
X

(u− P (u, v))θnP (u,v)

6
∫
{v=P (u,v)}

(u− v)θnv 6
∫
X

|u− v|θnv .

Similarly we get d1(v, P (u, v)) 6
∫
X
|u−v|θnu . Putting these two inequalities

together we get d1(u, v) 6 I1(u, v).
Next we establish the lower bound for d1. By the next lemma and the

Pythagorean formula we can start writing

3(n+ 1)
2 d1(u, v) > d1

(
u,
u+ v

2

)
> d1

(
u, P

(
u,
u+ v

2

))
>
∫
X

(
u− P

(
u,
u+ v

2

))
θnu .
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By a similar reasoning as above, and the fact that 2nθn(u+v)/2 > θ
n
u we can

write:
3(n+ 1)

2 d1(u, v) > d1

(
u,
u+ v

2

)
> d1

(u+ v

2 , P
(
u,
u+ v

2

))
>
∫
X

(u+ v

2 − P
(
u,
u+ v

2

))
θn(u+v)/2

>
1
2n

∫
X

(u+ v

2 − P
(
u,
u+ v

2

))
θnu .

Adding the last two estimates we obtain

3 · 2n(n+ 1)d1(u, v)

>
∫
X

((
u− P

(
u,
u+ v

2

))
+
(u+ v

2 − P
(
u,
u+ v

2

)))
θnu

>
1
2

∫
X

|u− v|θnu .

By symmetry we also have 3·2n+1(n+1)d1(u, v) >
∫
X
|u−v|θnv , and adding

these last two estimates together the lower bound for d1 is established. �
According to this last result, I1 satisfies the quasi-triangle inequality. For

a proof of this fact using only the pluripotential comparison principle we
refer to [33].

Lemma 3.8. — Suppose u, v ∈ E1. Then the following holds:

d1

(
u,
u+ v

2

)
6

3(n+ 1)
2 d1(u, v).

Proof. — Using Lemma 3.1 and Theorem 2.4 multiple times we deduce
the following estimates:

d1

(
u,
u+ v

2

)
= d1

(
u, P

(
u,
u+ v

2

))
+ d1

(u+ v

2 , P
(
u,
u+ v

2

))
6 d1(u, P (u, v)) + d1

(u+ v

2 , P (u, v)
)

6
∫
X

(u− P (u, v))θnP (u,v) +
∫
X

(u+ v

2 − P (u, v)
)
θnP (u,v)

6
3
2

∫
X

(u− P (u, v))θnP (u,v) + 1
2

∫
X

(v − P (u, v))θnP (u,v)

6
3(n+ 1)

2 d1(u, P (u, v)) + n+ 1
2 d1(v, P (u, v))

6
3(n+ 1)

2 d1(u, v),
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where in the second line we have additionally used that

P (u, v) 6 P (u, (u+ v)/2). �

Lemma 3.9. — There exists A,B > 1 such that for any ϕ ∈ E1(X, θ)

−d1(Vθ, ϕ) 6 sup
X
ϕ 6 Ad1(Vθ, ϕ) +B.

Proof. — If supX ϕ 6 0, then the right-hand side inequality is trivial,
while

−d1(Vθ, ϕ) = I(ϕ) 6 sup
X

(ϕ− Vθ) = sup
X
ϕ.

We therefore assume that supX ϕ > 0. In this case the left-hand inequality
is trivial. It follows from Lemma 2.3 that θnVθ 6 CdV , for a uniform constant
C > 0. Let b > 0 be a constant so that θ 6 bω. Then all θ-psh functions are
bω-psh. By compactness property of the set of normalized bω-psh functions
(see [34, Proposition 2.7]) we have∫

X

|ϕ− sup
X
ϕ− Vθ|θnVθ 6 C

′,

where C ′ > 0 is a uniform constant. Using Theorem 3.7 the result then
follows in the following manner:

d1(Vθ, ϕ) > DI1(Vθ, ϕ) > D
∫
X

|ϕ− Vθ|θnVθ

> D sup
X
ϕ−D

∫
X

|ϕ− sup
X
ϕ− Vθ|θnVθ > D sup

X
ϕ−DC ′. �

With the comparison between d1 and I1 (Theorem 3.7) and Lemma 3.9
in our hands, we follow the ideas from the proof of [20, Theorem 9.2] and
the convergence results in [13] to prove the next completeness theorem.

Theorem 3.10. — The space
(
E1(X, θ), d1

)
is complete.

Proof. — Given {ϕj}j ⊂ E1 a Cauchy sequence for d1 we want to extract
a convergent subsequence. We can assume that

d1(ϕj , ϕj+1) 6 2−j , j > 1.

As in the proof of [20, Theorem 9.2] we introduce the following sequences

ψj,k := P (ϕj , ϕj+1, . . . , ϕk), j ∈ N, k > j.

Observe that, for k > j+ 1, ψj,k = P (ϕj , ψj+1,k) and hence it follows from
Lemma 3.1(3) that

d1(ϕj , ψj,k) 6 d1(ϕj , ψj+1,k) 6 d1(ϕj , ϕj+1) + d1(ϕj+1, ψj+1,k)

6
1
2j + d1(ϕj+1, ψj+1,k).
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Repeating this argument several times we arrive at

(3.4) d1(ϕj , ψj,k) 6 2−j+1, ∀ k > j + 1.

Using the triangle inequality for d1 and the above we see that

d1(Vθ, ψj,k) 6 d1(Vθ, ϕj) + d1(ϕj , ψj,k) 6 d1(Vθ, ϕ1) + 2 + 2−j+1

is uniformly bounded. It follows from Theorem 3.7 that I1(Vθ, ψj,k) is uni-
formly bounded hence ψj := limk ψj,k belongs to E1(X, θ) ([13, Proposi-
tion 2.19]). Moreover Proposition 2.7 gives that d1(ψj,k, ψj)→ 0. From (3.4)
we obtain that d1(ϕj , ψj) 6 2−j+1, hence we only need to show that the
d1-limit of the increasing sequence {ψj}j ⊂ E1 is in E1.

Lemma 3.9 gives that supX ψj is uniformly bounded, hence ψ :=
limj ψj ∈ PSH(X, θ).Now ψj increases a.e. towards ψ, hence by [13, Propo-
sition 2.14] ψ ∈ E1(X, θ). By Proposition 2.7 we also have that I1(ψj , ψ)→
0. It follows therefore from Theorem 3.7 that d1(ψj , ψ)→ 0. �

At the end of this section we show that d1-convergence in fact implies L1

convergence of the potentials with respect to any fixed measure θnψ, ψ ∈ E1,
this being the analog of [19, Theorem 5(ii)]:

Theorem 3.11. — For any C > 0 there exists a continuous increasing
function gC : R+ → R+ with gC(0) = 0 such that

(3.5)
∫
X

|u− v|θnψ 6 gC(d1(u, v)),

for u, v, ψ ∈ E1 satisfying d1(Vθ, u), d1(Vθ, v), d1(Vθ, ψ) 6 C.

Proof. — By the triangle inequality for d1 it follows that d1(u, v) 6 2C,
hence I1(u, v) 6 C1 := 3 · 2n+3(n + 1)C, by Theorem 3.7. It then follows
from (2.6) that I1(max(u, v), u) 6 C1, hence again Theorem 3.7 yields
d1(max(u, v), u) 6 C1. The triangle inequality for d1 and Theorem 3.7
then give I1(max(u, v), Vθ) 6 C2, where C2 depends on n,C1. Therefore,
I1(Vθ, u), I1(Vθ, v), I1(Vθ, ψ), I1(max(u, v), Vθ) are uniformly bounded by a
constant A > 0 depending on C. Consequently (2.7) and (2.6) give that

(3.6)

∫
X

(max(u, v)− v)θnψ 6 fA(I1(max(u, v), v)) +
∫
X

|u− v|θnu

6 fA(I1(u, v)) + I1(u, v).
Similarly,

(3.7)
∫
X

(max(u, v)− u)θnψ 6 fA(I1(u, v)) + I1(u, v).

Since |u− v| = (max(u, v)− v) + (max(u, v)− u), from Theorem 3.7, (3.6)
and (3.7) we obtain (3.5). �
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3.3. Geodesic segments in (E1, d1)

In this subsection we show that the weak geodesics introduced in Sec-
tion 2.3 give rise to metric geodesics with respect to the d1 metric geometry.
We first establish the following elementary result.

Lemma 3.12. — Assume that ϕ,ψ ∈ E1. Let ϕj , ψj be sequences of
θ-psh functions with minimal singularity type decreasing to ϕ and ψ re-
spectively. For each j, let t 7→ ϕjt be the Mabuchi geodesic segment con-
necting ϕj and ψj . Then ϕjt decreases to ϕt, t ∈ [0, 1], the Mabuchi geodesic
segment connecting ϕ and ψ.

Proof. — Any candidate defining the geodesic ϕt is also a candidate
defining ϕjt since ϕ 6 ϕj and ψ 6 ψj . Hence by the definition of weak
geodesics in Section 2.3 it follows that ϕt 6 ϕjt , t ∈ [0, 1] for all j. Moreover
the decreasing limit of the t → ϕjt , as j → +∞, is a candidate in the
definition of t→ ϕt, hence the conclusion. �

As remarked in the preliminaries, if ϕ,ψ ∈ E1 then P (ϕ,ψ) ∈ E1 as
proved in [25, Theorem 2.10] (in the Kähler case this was addressed in [20,
Corollary 3.5]). Since the constant geodesic t → P (ϕ,ψ) is a candidate
for t → ϕt, the weak geodesic connecting ϕ,ψ, it follows that P (ϕ,ψ) 6
ϕt ∈ E1 [13, Proposition 2.14], hence we may call t→ ϕt the finite energy
geodesic connecting ϕ,ψ. Next we show that not only does t → ϕt stay
inside E1, but it also has special geometric properties inside this space.

Proposition 3.13. — Let [0, 1] 3 t 7→ ϕt ∈ E1 be the finite energy
geodesic connecting ϕ0, ϕ1 in E1. Then t → ϕt is a geodesic in the metric
space (E1(X, θ), d1), i.e., for any t, s ∈ [0, 1] we have

d1(ϕt, ϕs) = |t− s|d1(ϕ0, ϕ1), ∀ t, s ∈ [0, 1].

Proof. — Let ϕj0, ϕ
j
1 be sequences of θ-psh functions with minimal sin-

gularity type decreasing to ϕ0, ϕ1, respectively. Combining Lemma 3.12,
Theorem 3.7 and Proposition 2.7 we obtain that d1(ϕjt , ϕjs) → d1(ϕt, ϕs)
as j goes to +∞. Consequently, we can then assume that ϕ0, ϕ1 have min-
imal singularity type and that t → ϕt is a weak geodesic segment with
minimal singularity type.
Since for each t ∈ (0, 1] the curve [0, t] 3 ` 7→ ϕ` is a weak geodesic

segment connecting ϕ0 and ϕt, it suffices to treat the case when s = 0, t ∈
(0, 1]. It follows from [25, Theorem 3.12] that I is linear along ϕt, i.e. I(ϕt) =
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tI(ϕ1) + (1− t)I(ϕ0). Hence by definition of d1 we have

(3.8) 1
2(d1(ϕt, ϕ0)− td1(ϕ0, ϕ1))

= tI(P (ϕ0, ϕ1)) + (1− t)I(ϕ0)− I(P (ϕt, ϕ0)).

Let [0, 1] 3 t 7→ ψt be the weak geodesic segment connecting ϕ0 and
P (ϕ0, ϕ1). By the comparison principle (Proposition 2.15) we have that
ψt 6 ϕt and ψt 6 ϕ0 for any t ∈ [0, 1], hence ψt 6 P (ϕt, ϕ0), t ∈ [0, 1]. The
fact that t 7→ I(ψt) is affine together with the monotonicity of I give

(3.9) tI(P (ϕ0, ϕ1)) + (1− t)I(ϕ0)− I(P (ϕt, ϕ0))
6 tI(P (ϕ0, ϕ1)) + (1− t)I(ϕ0)− I(ψt) = 0.

Combining (3.8) and (3.9) we get d1(ϕt, ϕ0) 6 td1(ϕ1, ϕ0). By symmetry it
follows that d1(ϕt, ϕ1) 6 (1−t)d1(ϕ0, ϕ1). These two inequalities combined
with the triangle inequality imply

td1(ϕ1, ϕ0) > d1(ϕt, ϕ0) > d1(ϕ0, ϕ1)− d1(ϕt, ϕ1) > td1(ϕ0, ϕ1),

hence d1(ϕt, ϕ0) = td1(ϕ1, ϕ0). �

4. Construction of weak geodesic rays

In the Kähler case Ross and Witt Nyström described a very general
method to construct weak geodesic rays with bounded potentials [43]. In
this section we show that their construction generalizes to the big case to
construct weak geodesic rays with potentials of minimal singularity type.
We fix from now on a potential φ ∈ PSH(X, θ) with minimal singularity
type.

4.1. From test curves to subgeodesic rays and back

We first start with a few definitions.

Definition 4.1. — We say that a (weak) subgeodesic ray t 7→ ht with
minimal singularity type is t-Lipschitz if there exists L > 0 such that

ht(x) 6 hs(x) + L|t− s|, ∀ t, s ∈ R+, ∀ x ∈ X.
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Examples of t-Lipschitz subgeodesics are t → max(ψ, φ − t), where ψ ∈
PSH(X, θ) with minimal singularity type. Also, note that weak geodesic
rays with minimal singularity type t → ψt are automatically t-Lipschitz
with L = max{|mψt |, |Mψt |} (see (2.12)).
Following the terminology of Ross and Witt Nyström [43] we introduce

test curves:

Definition 4.2. — A map R 3 τ → ψτ ∈ PSH(X, θ) is a test curve if
(1) τ → ψτ (x) is concave for any x ∈ X,
(2) there exists Cψ > 0 such that ψτ is equal to some potential with

minimal singularity type φ ∈ PSH(X, θ) for τ < −Cψ, and ψτ ≡
−∞ if τ > Cψ.

In the case when θ is Kähler, treated in [43], the additional assumption
that each ψτ ∈ PSH(X, θ) has small unbounded locus was also included
in the above definition. Ross and Witt Nyström later observed that this
assumption is not necessary (see the proof of [22, Theorem 2.9]) and we
work with this more general definition here as well.
We recall the Legendre transform, adjusted to our special case of interest.

Given a convex function [0,+∞) 3 t → f(t) ∈ R, its Legendre transform
is defined as

f̂(τ) := inf
t>0

(f(t)− tτ), τ ∈ R.

The (inverse) Legendre transform of a decreasing concave function R 3
τ → g(τ) ∈ R ∪ {−∞} is

ǧ(t) := sup
τ∈R

(g(τ) + tτ), t > 0.

We point out that there is a sign difference in our choice of Legendre
transform compared to the literature, however this particular choice will
be more suited in the context of our investigations.
As it is well known, for every τ ∈ R we have that ˆ̌g(τ) > g(τ) with

equality if and only if g is additionally upper semicontinuous at τ . Similarly,
ˇ̂
f(t) 6 f(t) for all t > 0 with equality if and only if f is lower semicontinuous
at t. We will refer to these identities as the involution property of the
Legendre transform. For a detailed treatment of Legendre transforms we
refer to [42, Chapter 26].
Starting with a test curve τ → ψτ , our goal will be to construct a

geodesic/subgeodesic ray by taking the τ inverse Legendre transform of
τ → ψτ . As shown below, the resulting curve t→ ψ̌t is a subgeodesic, and
under additional conditions it will be a weak geodesic.
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Before we detail our constructions, let us first address one annoying tech-
nical issue. Let τ → ψτ be a test curve, and x ∈ X. By Definition 4.2, the
concave function τ → ψτ (x) may not be τ -usc (usc in the τ direction),
hence the involution property may not hold for it, i.e., ˆ̌

ψτ 6= ψτ . We ad-
dress this with the next simple lemma, that points out that by changing
at most one Kähler potential along the curve τ → ψτ , we get a new τ -usc
test curve, whose (inverse) Legendre transform coincides with the one of
τ → ψτ . Consequently, there is no loss of generality in considering τ -usc
test curves in our constructions below.
To start, for a test curve τ → ψτ we introduce the following two con-

stants:

τ+
ψ := inf{τ ∈ R | ψ ≡ −∞},

τ−ψ := sup{τ ∈ R | ψ ≡ φ}.

Lemma 4.3. — Let τ → ψτ be a test curve and x ∈ X. Then (−∞, τ+
ψ ) 3

τ → ψτ (x) is τ -usc. Additionally, the test curve τ → ψτ defined below is
τ -usc, and ψ̌t = ψ̌t for all t > 0.

ψτ =


ψτ if τ < τ+

ψ ,

lims↗τ+
ψ
ψs if τ = τ+

ψ ,

−∞ if τ > τ+
ψ .

Proof. — Suppose s ∈ (−∞, τ+
ψ ). By concavity and the fact that ψτ =

φ for τ 6 −Cψ it follows that τ → ψτ (x) is decreasing. Let us be the
decreasing limit of ψτ , τ < s, which is θ-psh. To show that τ → ψτ (x) is
upper semicontinuous at s, it suffices to prove that us = ψs everywhere on
X. Fix t ∈ (s, τ+

ψ ) and x0 ∈ X such that ψt(x0) > −∞. It follows that
(−∞, t) 3 τ → ψτ (x0) is continuous, hence us(x0) = ψs(x0). Thus ψs = us
almost everywhere in X. Since us and ψs are both quasi-plurisubharmonic,
this implies that ψs = us everywhere (see Lemma 2.1).

By the above, we obtain that τ → ψτ (x0) is τ -usc on R for any x0 ∈ X.
Additionally, comparing with Definition 4.2, τ → ψτ is also test curve and
by the definition of the (inverse) Legendre transform we get that ψ̌t = ψ̌t
for all t > 0. �

We are ready to establishing the duality between test curves and sub-
geodesic rays:

Proposition 4.4. — The map ψ → ψ̌ gives a bijection between τ -usc
test curves τ → ψτ and t-Lipschitz subgeodesic rays t → ht, with inverse
h→ ĥ.
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Proof. — Assume that τ → ψτ is a test curve such that ψ−∞ = φ. We
want to prove that its inverse Legendre transform

ht := sup
τ∈R

(ψτ + tτ)

is a t-Lipschitz subgeodesic ray. By concavity of τ 7→ ψτ we have that
ψτ 6 φ, ∀ τ , thus h0 = φ. Moreover, Proposition 4.5 below shows that
(t, x) 7→ h(t, x) is (t, x)-upper semicontinuous. For each τ ∈ R the curve
t 7→ ψτ +tτ is a subgeodesic ray. Hence, as a supremum of subgeodesic rays
that is upper semicontinuous, the curve t 7→ ht is also a subgeodesic ray. It
remains to prove that ht is uniformly Lipschitz in t which is equivalent to
showing that |ht− φ| 6 Ct, ∀ t > 0, for some positive constant C > 0. But
the latter follows since τ → ψτ is a test curve:

φ− Cψt 6 sup
τ∈R

(ψτ + tτ) = sup
τ∈(−∞,Cψ]

(ψτ + tτ) 6 φ+ Cψt.

Since τ → ψτ is assumed to be τ -usc, by the involution property we have
that ˇ̂

ψ = ψ.
To finish the proof, we only have to argue that ĥ is a τ -usc test curve

for all t-Lipschitz subgeodesics t → ht. Since t → ht is t-convex and t-
continuous, it is clear that τ → ĥτ is τ -concave and τ -usc. On the other
hand, Kiselman’s minimum principle (Theorem 2.12) implies that ĥτ ∈
PSH(X, θ). Since t → ht is t-Lipschitz (with Lipschitz constant equal to
L), it follows that property (ii) of test curves also holds for τ → ĥτ with
Cĥ = L. Indeed, if τ > L we have

inf
t>0

(ht − tτ) 6 inf
t>0

(φ+ t(L− τ)) = −∞,

while for τ < −L we have

inf
t>0

(ht − tτ) > inf
t>0

(φ− t(L+ τ)) = φ. �

Proposition 4.5. — Let τ → ψτ be a test curve. Then the function

[0,+∞)×X 3 (t, x) 7→ sup
τ∈R

(ψτ + tτ)

is (t, x)-upper semicontinuous.

Proof. — Set ht := supτ∈R(ψτ + tτ). Since ψ is a test curve the supre-
mum can be taken for τ ∈ I, where I is a compact interval of R (however
the supremum may not be attained as τ → ψτ (x) may fail to be upper
semicontinuous for some x ∈ X). It follows that ht is uniformly Lipschitz
in t, i.e. |ht(x)− hs(x)| 6 C|t− s|, for all t, s ∈ R+, x ∈ X. Now the upper
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semicontinuity of h(t, x) reduces to upper semicontinuity of x 7→ ht(x) for
each t > 0 fixed. Assume that X 3 xj → x ∈ X, and pick τj ∈ I such that

ht(xj)−
1
j
6 ψτj (xj) + τjt 6 ht(xj).

If τ is any cluster point of τj then, after possibly extracting a subsequence,
we may assume that τj converges to τ . Fix `1 6 −Cψ, `1 < `2 < τ and
αj := τj−`2

τj−`1
. For j big enough αj ∈ (0, 1). Note that (1−αj)τj +αj`1 = `2.

Hence from the concavity of τ → ψτ we get that

(4.1) ψτj (xj) 6
1

1− αj
ψ`2(xj)−

αj
1− αj

ψ`1(xj).

If φ(xj)→ −∞ then ht(xj)→ −∞. In this case it is trivial that

lim sup
j→+∞

ht(xj) 6 ht(x).

Consequently, after possibly extracting another subsequence, we can as-
sume that there exists C > 0 such that φ(xj) > −C. Since `1 6 −Cψ, this
means that ψ`1(xj) > −C. Using (4.1) we obtain that

ψτj (xj) + tτj 6
1

1− αj
(ψ`2(xj) + t`2) + t

(
τj −

1
1− αj

`2

)
+ C

αj
1− αj

.

Using the upper semicontinuity of ψ`2 in x, we can continue to write:

lim sup
j→+∞

ht(xj) 6
1

1− α (ψ`2(x) + t`2) + t

(
τ − 1

1− α`2

)
+ C

α

1− α

6
1

1− αht(x) + t

(
τ − 1

1− α`2

)
+ C

α

1− α,

where α = τ−`2
τ−`1

. Letting `2 → τ we get the conclusion. �

4.2. From maximal test curves to geodesic rays and back

In this subsection we generalize and slightly extend the construction of
weak geodesic rays from [43] to the setting of big cohomology classes.

Partially following the terminology of Ross and Witt Nyström [43], a test
curve τ → ψτ is said to be maximal if

P [ψτ ](φ) = ψτ ∀ τ ∈ R,

where φ = ψ−∞, and we use notation and terminology from [24, Section 1],
as elaborated in (2.8).
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In the next result we describe a method to attach a maximal τ -usc test
curve to an arbitrary test curve τ → ψτ . As we will see, taking the (inverse)
Legendre transform of the former curve will give a weak geodesic ray.

Proposition 4.6. — Suppose τ → ψτ is a test curve. Then τ → ψMτ :=
P [ψτ ](φ) is a maximal τ -usc test curve.

Proof. — We first prove that τ → χτ := P [ψτ ](φ) is a test curve. Fix
t < s < r ∈ R. Let λ ∈ (0, 1) be such that s = λt + (1 − λ)r. We want to
prove that χs > λχt + (1− λ)χr. Fix C > 0. By τ -concavity of τ 7→ ψτ we
have

ψs + C > λ(ψt + C) + (1− λ)(ψr + C).

Using this estimate we see that the function λP (ψt+C, φ)+(1−λ)P (ψr +
C, φ) is θ-psh and it is not greater than min(ψs + C, φ). Therefore,

P (ψr + C, φ) > λP (ψt + C, φ) + (1− λ)P (ψr + C, φ).

Letting C → +∞ we obtain χs > λχt+(1−λ)χr a.e. onX. Lemma 2.1 then
gives the desired concavity property. We clearly have χτ = φ for τ < τ−ψ
and χτ = −∞ for τ > τ+

ψ . Hence χτ is a test curve.
By the definition of τ → ψMτ we have that this curve is τ -usc and that

ψMτ =


P [ψτ ](φ) if τ < τ+

ψ ,

lims↗τ+
ψ
P [ψs](φ) if τ = τ+

ψ ,

−∞ if τ > τ+
ψ .

To show that τ → ψMτ is maximal we need to show that P [ψMτ ](φ) = ψMτ
for each τ ∈ R. For τ > τ+

ψ this is trivial.
Now we address the case τ < τ+

ψ . Pick s ∈ (τ, τ+
ψ ). By concavity in the τ -

variable, we have that P [ψτ ](φ) > αφ+(1−α)P [ψs](φ) for some α ∈ (0, 1).
By the monotonicity of Monge–Ampère mass (see [40, Theorem 1.2]) we
then have∫

X

θnP [ψτ ](φ) >
∫
X

(
θ + i∂∂̄(αφ+ (1− α)P [ψs](φ))

)n
> αn

∫
X

θnφ = αn,

where the last equality follows from the fact that φ has minimal singularity.
By Lemma 2.10 we then have

∫
X
θnψτ > 0. Consequently, it follows from

Lemma 4.7 below that P [ψMτ ](φ) = ψMτ .

Lastly, we address the case τ := τ+
ψ . If s < τ = τ+

ψ , then by the above
we can write

P [ψMτ ](φ) 6 P [ψMs ](φ) = ψMs .
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Letting s↗ τ+
ψ , by the definition of τ → ψMτ , we obtain that P [ψMτ ](φ) 6

ψMτ . Since the reverse inequality is trivial, we obtain P [ψMτ ](φ) = ψMτ ,
hence the result follows. �

Lemma 4.7. — Suppose that φ ∈ PSH(X, θ) has minimal singularity,
and χ ∈ PSH(X, θ) satisfies

∫
X
θnχ > 0. Then P [χ](φ) = P [P [χ](φ)](φ).

Proof. — Since φ has minimal singularity type, from [24, Theorem 3.12]
it follows that the singularity type of P [χ](φ) and P [P [χ](φ)](φ) is the same
(because P [χ](Vθ) = P [P [χ](Vθ)](Vθ)).
Trivially P [χ](φ)6P [P [χ](φ)](φ), however [24, Theorem 3.8] implies that

θnP [χ](φ) 6 1{P [χ](φ)=φ}θ
n
φ .

In particular, since {P [P [χ](φ)](φ) = φ} ⊂ {P [χ](φ) = φ}, we have that
P [χ](φ) > P [P [χ](φ)](φ) a.e. with respect to θnP [χ](φ). The domination prin-
ciple [24, Proposition 3.11] implies that P [χ](φ) > P [P [χ](φ)](φ), hence in
fact P [χ](φ) = P [P [χ](φ)](φ). �

Theorem 4.8. — The map ψ → ψ̌ gives a bijection between τ -usc max-
imal test curves τ → ψτ , and weak geodesic rays with minimal singularity
type t→ ut, with inverse map u→ û.

Proof. — Let τ → ψτ be a τ -usc maximal test curve. Denote by t→ ht
the inverse Legendre transform of ψτ , i.e. ht := supτ (ψτ + tτ), t > 0.
By Proposition 4.4, t → ht is a t-Lipschitz subgeodesic ray with minimal
singularity type emanating from φ. In particular φ− Cψt 6 ht 6 φ+ Cψt,
t > 0.
For each D > 0, let t → wDt be the upper envelope of all subgeodesic

rays lying below min(φ+Cψt, ht+D). Then t 7→ wDt is a weak subgeodesic
ray emanating from φ which is uniformly Lipschitz in t. It follows from
Proposition 4.4 that the Legendre transform τ → ŵDτ is a τ -usc test curve.

As wDt 6 min(φ+Cψt, ht+D), by the involution property of the Legendre
transform we obtain that ŵDτ = inft>0(wDt − tτ) 6 min(φ, ψτ +D). By the
Kiselman minimum principle (Theorem 2.12), ŵDτ ∈ PSH(X, θ), hence we
conclude that

ŵDτ 6 P (φ, ψτ +D), τ ∈ R.
We apply the inverse Legendre transform to this inequality, and use the
involution property to conclude that

wDt 6 sup
τ∈R

(P (φ, ψτ +D) + tτ) , t > 0.

As we now argue, this inequality is in fact an equality. Indeed, by con-
struction τ 7→ P (φ, ψτ + D) is a test curve, and by Proposition 4.4 and
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Lemma 4.3 the curve

t→ sup
τ∈R

(P (φ, ψτ +D) + tτ) = sup
τ6Cψ

(P (φ, ψτ +D) + tτ)

is a subgeodesic ray which is a candidate in the definition of t→ wDt . Thus

(4.2) wDt = sup
τ∈R

(P (φ, ψτ +D) + tτ) , t > 0.

Now, observe that D → wDt is an increasing sequence and define wt :=
usc
(
limD→+∞ wDt

)
. From Lemma 4.9 below it follows that wt is a weak

geodesic ray emanating from φ. By maximality of τ → ψτ , P (φ, ψτ +D) 6
P [ψτ ](φ) = ψτ , hence letting D →∞ in (4.2) we get that

(4.3) wt 6 sup
τ∈R

(P [ψτ ](φ) + tτ) = sup
τ∈R

(ψτ + tτ) .

By construction wt > wDt and for each τ ∈ R we have

wDt > P (φ, ψτ +D) + tτ.

Letting D → +∞ we arrive at

wt > P [ψτ ](φ) + tτ = ψτ + tτ, ∀ τ ∈ R.

Taking the supremum over all τ ∈ R we have the reverse inequality of (4.3).
It then follows that t → supτ (ψτ + tτ) is a weak geodesic ray, because so
is t→ wt.
By the involution property, it follows that ˆ̌

ψτ = ψτ for any τ -usc max-
imal test curve and ˇ̂ut = ut for any weak geodesic t → ut with minimal
singularity type.
From (2.12) it follows that a weak geodesic ray t → ut with minimal

singularity is automatically t-Lipschitz, hence (via Proposition 4.4) τ → ûτ
is a τ -usc test curve. Lastly, [25, Lemma 3.17] implies that τ → ûτ is
maximal. �

Lemma 4.9. — Assume that [0,+∞) 3 t 7→ ut, vt ∈ PSH(X, θ) is a
geodesic and a subgeodesic ray respectively, both having potentials with
minimal singularity type, both emanating from φ. For each C > 0 let
t → wCt be the upper envelope of all subgeodesic rays lying below t →
min(ut, vt + C). If t 7→ vt is t-Lipschitz then

[0,+∞) 3 t 7→ wt := usc
(

lim
C→+∞

wCt

)
∈ PSH(X, θ)

is a weak geodesic ray with minimal singularity type emanating from φ.
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Proof. — We first observe that the set of subgeodesic rays lying below
min(ut, vt) is non empty. Indeed, since ut has minimal singularity type, it
follows from (2.12) that ut > φ−Dt for some positive constant D. Hence
the curve t 7→ vt − Dt is a subgeodesic ray lying below min(ut, vt). We
deduce, in particular, that t → wt is a subgeodesic ray emanating from φ

and wt has minimal singularity for all t > 0.
Fix s > 0. We prove that the curve [0, s] 3 t 7→ wCt is actually a geodesic

segment when C is large enough. Indeed, let [0, s] 3 t 7→ ϕt ∈ PSH(X, θ)
be the geodesic segment connecting wC0 and wCs and extend ϕt to [0,+∞),
by setting ϕt = wCt , for t > s. By Proposition 2.15 we have that ϕt > wCt
for all t > 0. It follows from basic properties of plurisubharmonic functions
(see [36, Proposition 1.30]) that t → ϕt thus constructed is a subgeodesic
ray.
For C > 0 big enough we have ut 6 vt + C for all t ∈ [0, s], since these

functions have minimal singularity type. In particular wCs 6 us. Recall
that [0, s] 3 t 7→ ut is the geodesic segment connecting φ to us. Thus, for
such C, the comparison principle (Proposition 2.15) gives ϕt 6 ut, for all
t ∈ [0, s]. Since ut 6 min(ut, vt + C), for t ∈ [0, s] it then follows that
ϕt 6 min(ut, vt + C), for all t > 0. Therefore ϕt is a candidate defining
t 7→ wCt . This implies that ϕt 6 wCt for all t > 0, hence ϕt = wCt , for
all t > 0 (in the previous paragraph we proved the reverse inequality). In
particular wCt is a geodesic segment in [0, s].
Letting C → +∞, by convergence of I along increasing sequences (see

Proposition 2.7) one sees that, [0, s] 3 t → I(wt) is affine ([25, Theo-
rem 3.12]). Now, let [0, s] 3 t → φt ∈ E1 be the geodesic segment joining
w0 and ws. Then φt > wt and I(wt) = I(φt) for any t ∈ [0, s]. In particular,
we have that

∫
X

(φt−wt)θnwt = 0. Hence, the domination principle (Propo-
sition 2.8) reveals that wt = φt for all t ∈ [0, s], i.e., t → wt is a geodesic
ray. �

Finally let us state and prove the big version of the main analytic result
of [43]:

Corollary 4.10. — Let τ → ψτ be a test curve such that ψ−∞ = φ.
Define

wt = sup
τ∈R

(P [ψτ ](φ) + tτ), t > 0.

Then the curve t → wt is a weak geodesic ray, with minimal singularity
type, emanating from φ.

Proof. — To start, from the first step in the proof of Proposition 4.6
we know that τ → χτ := P [ψτ ](φ) is a test curve, and from Lemma 4.3 it
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follows that χ̌t = ψ̌Mt , for every t > 0. Moreover Proposition 4.6 insures that
τ → ψMτ is a maximal τ -usc test curve. By Theorem 4.8 above, t→ ψ̌Mt is
a weak geodesic ray with minimal singularity type. Hence, so is t→ χ̌t. �
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