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SMOOTH AND ROUGH POSITIVE CURRENTS

by Simion FILIP & Valentino TOSATTI

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

Abstract. — We study the different notions of semipositivity for (1, 1) coho-
mology classes on K3 surfaces. We first show that every big and nef class (and every
nef and rational class) is semiample, and in particular it contains a smooth semi-
positive representative. By contrast, we show that there exist irrational nef classes
with no closed positive current representative which is smooth outside a proper
analytic subset. We use this to answer negatively two questions of the second-
named author. Using a result of Cantat & Dupont, we also construct examples of
projective K3 surfaces with a nef R-divisor which is not semipositive.
Résumé. — Nous étudions les différentes notions de sémipositivité pour les

classes de cohomologie (1, 1) sur les surfaces K3. Nous montrons d’abord que chaque
classe big et nef (et chaque classe nef et rationnelle) est semi-ample, et en parti-
culier elle contient un représentant lisse semi-positif. En revanche, nous montrons
qu’il existe des classes nef irrationnelles qui ne contiennent pas de courants positifs
fermés lisses en dehors d’un sous-ensemble analytique, et nous répondons négati-
vement à deux questions du deuxième auteur. En utilisant des résultats de Cantat
et Dupont, nous construisons également des exemples de surfaces K3 projectives
avec un R-diviseur nef mais non semi-positif.

1. Introduction

The Kodaira Embedding Theorem shows that a holomorphic line bundle
on a compact complex manifold is positive (i.e. admits a smooth Hermitian
metric with strictly positive curvature form) if and only if it is ample (the
algebro-geometric notion of strict positivity for line bundles). In contrast
to this, there are several natural notions of semipositivity for line bundles,
which in general are not equivalent.

To be precise, let X be an n-dimensional compact complex manifold,
equipped with a Hermitian metric ω, and L a holomorphic line bundle on
X. The most common notions of semipositivity for L are:

Keywords: K3 surfaces, (1,1) cohomology classes, smooth semipositive representatives.
2010 Mathematics Subject Classification: 14J28, 32Q25, 37F10, 14J50, 32J15.
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(1) L is semiample if there is m > 1 such that L⊗m is globally gener-
ated.

(2) L is Hermitian semipositive if there is a smooth Hermitian metric
h on L with curvature form Rh which is semipositive definite on X.

(3) L is nef if for all ε > 0 there is a smooth Hermitian metric hε on L
with curvature Rhε

> −εω on X.
(4) L is pseudoeffective if there is a singular Hermitian metric h on L

with curvature current Rh > 0 on X in the weak sense.
If X is Kähler then nefness is equivalent to c1(L) being in the closure of the
Kähler cone, and if X is furthermore projective then it is also equivalent
to (L · C) > 0 for all curves C ⊂ X (see e.g. [16]).

It is well-known [16] that (1)⇒ (2)⇒ (3)⇒ (4), and there are examples
that show that all these implications are strict. For (4) 6⇒ (3) one can
take X to be the blowup of P2 at a point and L = O(E) where E is
the exceptional divisor. The first example where (3) 6⇒ (2) was discovered
by Demailly–Peternell–Schneider [18], answering negatively a conjecture of
Fujita [27]. As for (2) 6⇒ (1), note first of all that being semiample is not
a numerical condition, so a “trivial” example is a non-torsion line bundle
L ∈ Pic0(X) (with X e.g. a torus). But there are also examples of L
Hermitian semipositive which is not numerically equivalent to a semiample
line bundle: one can take the famous example of Zariski [37, 2.3.A], which
was recently shown to be Hermitian semipositive by Koike [35].
However, if X happens to be Calabi–Yau (i.e. compact Kähler with tor-

sion canonical bundle) and projective then Kawamata–Shokurov’s base-
point-free theorem [34] shows that if L is nef and big (which for nef line
bundles means (Ln ·X) > 0) then L is in fact semiample. In fact, this even
holds for a nef and big R-divisor D, where D being semiample now means
that there is a morphism f : X → Y onto a normal projective variety such
that D is R-linearly equivalent to the pullback of an ample R-divisor on Y ,
and is proved in [6, Theorem 3.9.1].
Dropping the assumption of bigness, one obtains the following well-

known open problem:

Conjecture 1.1. — LetX be a projective manifold with torsion canon-
ical bundle, and L a nef line bundle on X. Then L is numerically equivalent
to a semiample line bundle.

This conjecture is in fact a consequence of the log abundance conjecture,
provided one can show that L is numerically equivalent to a Q-effective line
bundle (a “nonvanishing” type conjecture), and is open even in dimension 3
(see e.g. [38, 52] and references therein). Of course, Conjecture 1.1 would
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imply the same statement for nef Q-divisors, but now unlike the nef and big
case, one cannot expect this to be true for nef R-divisors: if the class c1(D)
of a nef R-divisor D cannot be written as a positive real linear combination
of classes of nef Q-divisors, then D cannot be numerically equivalent to a
semiample R-divisor. Explicit examples are given in Section 3.
Going back to the general setting of a compact complex n-manifold X,

if α is a closed real (1, 1) form on X, then one can consider its class [α] in
the Bott–Chern cohomology H1,1(X,R) of closed real (1, 1) forms modulo
i∂∂-exact ones; in other words, the representatives of the (1, 1) class [α] are
of the form α+ i∂∂ϕ, ϕ ∈ C∞(X,R). If [α] = c1(L) for some holomorphic
line bundle L, then these representatives can be identified with curvature
forms of smooth Hermitian metrics on L. In particular, one can extend the
semipositivity notions above to (1, 1) classes:

(1) [α] is semiample if there is a holomorphic surjective map f : X → Y

onto a normal compact Kähler analytic space such that [α] = [f∗β]
for some Kähler metric β on Y .

(2) [α] is semipositive if it contains a smooth semipositive representa-
tive α+ i∂∂ϕ > 0.

(3) [α] is nef if for every ε > 0 there is a representative which satisfies
α+ i∂∂ϕε > −εω.

(4) [α] is pseudoeffective if it contains a closed positive current α +
i∂∂ϕ > 0 in the weak sense, where ϕ is quasi-psh.

Of course we still have that (1) ⇒ (2) ⇒ (3) ⇒ (4), and again we will
say that a nef (1, 1) class [α] is also big if

∫
X
αn > 0.

The transcendental version of Kawamata–Shokurov’s base-point-free the-
orem is the following (see also [44, Conjecture 6.1] for the case of Calabi–
Yau manifolds as well as [47, Conjectures 4.13 and 4.17] for weaker ver-
sions):

Conjecture 1.2. — Let X be a compact Kähler manifold and [α] a
nef (1, 1) class on X such that λ[α]− c1(KX) is nef and big for some λ > 0.
Then [α] is semiample.

In this paper we will focus on compact complex surfaces. First, we observe
that in this case Conjecture 1.2 holds:

Theorem 1.3. — Conjecture 1.2 holds when dimX = 2.

The proof of this result uses some ideas from [12]. Despite recent advances
in the Minimal Model Program for Kähler 3-folds (see [33]), Conjecture 1.2
remains open in dimensions 3 or higher. However, the work of [33] can
be used to prove Conjecture 1.2 for 3-folds in many cases, such as when
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2984 Simion FILIP & Valentino TOSATTI

λ[α]−c1(KX) is Kähler and the extremal face in the cone of classes of closed
positive (2, 2) currents which intersect [α] trivially is in fact an extremal ray
(cf. the discussion in [51] after Conjecture 1.2). Also, in dimension 3 if X
is assumed to have torsion canonical bundle, then Conjecture 1.2 holds, as
was communicated to us by Andreas Höring [32]: a finite étale cover of X is
then either a torus, a projective Calabi–Yau manifold with no holomorphic
2-forms, or the product of an elliptic curve and a K3 surface. The first case
is easy, in the second case Kawamata–Shokurov’s base-point-free theorem
applies, and the third case can be dealt with. Furthermore, Höring shows
in [32] that Conjecture 1.2 holds in dimension 3 if λ[α]− c1(KX) is Kähler.

One may now wonder what happens to nef (1, 1) classes which are not big.
As mentioned in Conjecture 1.1 above, on projective Calabi–Yau manifolds,
nef line bundles are expected to be semiample, after possibly twisting by
a numerically trivial line bundle. Of course this would imply the same
statement for nef Q-divisors. We record here the well-known fact that this
holds in the case of K3 surfaces:

Proposition 1.4. — Let X be a K3 surface and [α] a nef (1, 1) class
on X with [α] ∈ H2(X,Q). Then [α] is semiample.

In light of Theorem 1.3 and Proposition 1.4, the following result may
therefore come as a surprise:

Theorem 1.5. — We have that
(1) There is a non-projective K3 surface with a nef (1, 1) class [α]

(which is necessarily not big and not rational) which is not semi-
positive.

(2) There is a projective K3 surface with a nef R-divisor D which is
not Hermitian semipositive. In particular, D cannot be numerically
equivalent to a semiample R-divisor.

Part (1) gives a counterexample to a question of the second-named author
in [46], and can also be used to provide a counterexample to a related
question in [45, 46], see Questions 3.7 and 3.8 below, as well as Theorem 3.9.

Part (2) should be compared with Conjecture 1.1. Furthermore, the nef
class c1(D) in Theorem 1.5(2) is extremal in the nef cone, and its line
is not defined over Q (these properties follow from [10, Remark 1.1 and
Lemma 1.3]), which implies that it cannot be written as a positive real
linear combination of classes of nef Q-divisors.

The proof of Theorem 1.5 uses holomorphic dynamics. For part (1), we
will take X to be one of the non-projective K3 surfaces constructed by
McMullen [41] which have an automorphism with a Siegel disc. Using work
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of Cantat [10], we will show that at least one of the two “eigenclasses” asso-
ciated to this automorphism cannot have a smooth semipositive represen-
tative, otherwise the Siegel disc would necessarily have Lebesgue measure
zero.
Since McMullen’s examples with a Siegel disc are necessarily non-proj-

ective, part (2) requires more sophisticated tools from dynamics, and specif-
ically a crucial result of Cantat–Dupont [11]; an alternative proof of their
result, based on Ricci-flat metrics, appears in [24]. In the situation at hand
we prove a more precise result. The surface X is a generic hypersurface in
P1 × P1 × P1 of degree (2, 2, 2), and the class [α] is an eigenvector for the
action on H1,1(X,R) induced by a chaotic automorphism of X, following
Cantat [10]. He proved that this class, as well as the corresponding class
for the inverse automorphism, contain a unique closed positive current, and
we show that both of these currents are not smooth at any point in the
support of the measure with maximal entropy, see Theorem 3.3 below.

Acknowledgments. The authors are grateful to J.-P. Demailly for his
seminal work and his mathematical vision, which are an inspiration for
much of our work. We also thank A. Höring for useful communications
in [32] about Conjecture 1.2, C. Xu and T. Collins for discussions, M. Ver-
bitsky for pointing out his related ongoing work with N. Sibony extend-
ing the uniqueness in Theorem 3.3(1) to more irrational nef (1, 1) classes
with volume zero on K3 surfaces, S. Takayama and T. Koike for discus-
sions about Problem 2.2, N. Sibony for providing references on rigidity,
and the referee for useful comments including Remark 3.5. This research
was partially conducted during the period the first-named author served
as a Clay Research Fellow. The second-named author was partially sup-
ported by NSF grant DMS-1610278, and this work was finalized during his
visit to the Center for Mathematical Sciences and Applications at Harvard
University, which he would like to thank for the hospitality.

2. Smooth positive currents

In this section we give the proof of Theorem 1.3 and Proposition 1.4.
Proof of Theorem 1.3. — Up to renaming the class [α], we may assume

that λ = 1. First assume that the canonical bundle KX of X is not pseu-
doeffective. This implies that H2,0(X) = H0(X,KX) = 0, which in turn
implies that X is projective by a well-known result of Kodaira, and it also
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implies that [α] = c1(D) for some nef R-divisor D on X. We can thus
conclude by the base-point-free theorem for R-divisors [6, Theorem 3.9.1].
We can therefore assume that KX is pseudoeffective. Then the nef class

[α] = [α] − c1(KX) + c1(KX) is a sum of big and pseudoeffective, hence
big. Thanks to a result of Lamari [36] (which was generalized by Demailly–
Păun [17] to all dimensions), the class [α] contains a Kähler current T =
α+ i∂∂ψ, i.e. a closed positive current which satisfies T > εω in the weak
sense, for some ε > 0, where ω is a Kähler form on X. If we consider all
such Kähler currents and take the intersection of the subsets of X where
these currents are not smooth, we obtain a closed proper analytic subset
EnK(α) ⊂ X, the non-Kähler locus of [α] (see [7]). We may assume that
EnK(α) is nonempty, otherwise [α] is Kähler [7] and the theorem is trivial.
Using Demailly’s regularization [15] and an observation of Boucksom [7,
Theorem 3.17(ii)], we can find one Kähler current T = α + i∂∂ψ such
that ψ is singular precisely along EnK(α). By the main result of [12], we
have that EnK(α) = Null(α), where the null locus Null(α) is defined to be
the union of all irreducible curves C ⊂ X such that

∫
C
α = 0 (in fact in

dimension 2 the proof simplifies greatly, see [48, Section 5]). In particular
Null(α) is itself a proper analytic subvariety of X, of pure dimension 1,
with irreducible components given by curves Ci, i = 1, . . . N, with the in-
tersection matrix (Ci ·Cj) negative definite. Indeed for any real numbers λi
we have

∫
X
α2 > 0 and

∫∑
i
λiCi

α = 0, so by the Hodge index theorem [2,
Corollary IV.2.16] either

∑
i λiCi = 0 or (

∑
i λiCi)2 < 0. This means that

the intersection form is negative definite on the linear span of the curves
Ci, which proves our assertion. Grauert’s criterion [2, Theorem III.2.1], [28,
p. 367], shows that each connected component of Null(α) can be contracted,
so we get a holomorphic map π : X → Y where Y is an irreducible normal
compact complex surface, and π is an isomorphism away from Null(α),
and it contracts each connected component of Null(α) to a point in Y . Let
S = ∪kj=1{pj} be the image π(Null(α)), so Y is smooth away from S.
In general the problem of deciding whether a normal surface Y is pro-

jective or Kähler is nontrivial, and has a long history (see e.g. [1, 26, 28,
42, 54]). In our case, we use the key fact that [α]− c1(KX) is nef (and big)
to obtain that for all i,

0 6
∫
Ci

([α]− c1(KX)) = −KX · Ci.

Combining this with (C2
i ) < 0 and with the adjunction formula

pa(Ci) = 1 + (KX · Ci) + (C2
i )

2 6
1
2 ,

ANNALES DE L’INSTITUT FOURIER



SMOOTH AND ROUGH POSITIVE CURRENTS 2987

to conclude that pa(Ci) = 0 and so each Ci is a smooth rational curve. This
in turn shows that either KX · Ci = 0, in which case (C2

i ) = −2 and Ci is
therefore a (−2)-curve, or else KX ·Ci = −1, in which case (C2

i ) = −1 and
Ci is a (−1)-curve.

We now claim that all singular points of Y are rational singularities.
To see this we use Artin’s criterion [2, Theorem III.3.2], and so it suffices
to check that for each connected component

⋃
i∈I Ci of Null(α) (where

I ⊂ {1, . . . , N}) and for every integers ri > 0, i ∈ I (not all zero), the
divisor Z =

∑
i∈I riCi satisfies pa(Z) 6 0. But this follows from

pa(Z) = 1 +
(Z2) +

∑
i∈I ri(KX · Ci)

2 < 1 + 1
2
∑
i∈I

ri(KX · Ci) 6 1,

using that (Z2) < 0 since
∫
Z
α = 0.

By [33, Lemma 3.3], there is a smooth closed real (1, 1) form β on Y ,
which is locally ∂∂-exact, such that [π∗β] = [α]. The pushforward π∗T is
then a closed positive (1, 1) current on Y , thanks to [14, p. 17], and π∗T
is a smooth Kähler metric on Y \S. Since the pullback of smooth forms
on Y give smooth forms on X, we can easily check that π∗T is a Kähler
current on Y . By [33, Lemma 3.4], π∗T is locally ∂∂-exact, and it lies in the
class [β] in H1,1(Y,R), so we can write π∗T = β+ i∂∂ψ̃ for some quasi-psh
function ψ̃ on Y which is smooth away from S. Near each singular point of
Y , we choose an embedding of a neighborhood of the singular point as the
unit ball in CN and let

ψ̂(z) = m̃ax(ψ̃(z), A|z|2 − C),

where m̃ax is a regularized maximum (see e.g. [13, I.5.18]) and we first
choose A large so that β + Ai∂∂|z|2 is a Kähler metric on this ball, and
then we choose C large so that ψ̂ = ψ̃ in a neighborhood of the boundary
of this ball. We can then define ψ̂ = ψ̃ also outside of this ball, and after
repeating this procedure at all singular points of Y , we obtain that β+i∂∂ψ̂
is now a Kähler metric on Y in the class [β], and so [α] is semiample. This
last part of the argument is essentially the same as [33, Remark 3.5], [51,
Proof of Theorem 2.7]. �

In the proof above we used crucially the assumption that λ[α]− c1(KX)
is nef and big to deduce that the singularities of the normal surface Y were
rational. It is instructive to see what happens if X is a compact Kähler
surface with an arbitrary nef and big (1, 1) class [α]. Then the first half
of the proof of Theorem 1.3 still applies, and we obtain a Kähler current
T = α+i∂∂ψ onX which is singular precisely along EnK(α) = Null(α), and
a holomorphic map π : X → Y onto a normal compact complex surface
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Y , so that π is an isomorphism away from Null(α), and contracts each
connected component of Null(α) to a point (the union of these points is
denoted by S ⊂ Y ). In general now the irreducible components of Null(α)
need not be rational curves.
The pushforward π∗T is still a Kähler current on Y , smooth away from

S, but in general it need not be locally ∂∂-exact (unlike the case discussed
above in Theorem 1.3). Indeed we have the following:

Proposition 2.1. — In this setting, if π∗T is locally ∂∂-exact near all
points of S, then Y is a Kähler analytic space and [α] is semiample.

Proof. — Indeed, if T was locally ∂∂-exact near S then it would be
locally ∂∂-exact on all of Y , so there is a finite open cover Y = ∪αUα with
plurisubharmonic functions uα on Uα such that π∗T = i∂∂uα on Uα. On
each nonempty intersection Uα ∩ Uβ we have that ∂∂(uα − uβ) = 0. This
implies that uα − uβ is smooth, by regularity of the Laplacian in a local
embedding. Let ρα be a partition of unity subordinate to this cover, and let
u =

∑
α ραuα. Then γ := π∗T − i∂∂u is closed and smooth on Y , because

on Uα it equals i∂∂(
∑
β ρβ(uα − uβ)), which is smooth.

Now i∂∂u = π∗T − γ is smooth on Y \S, and so by regularity of the
Laplacian we conclude that u is smooth on Y \S. Recall that γ+ i∂∂u > εω
for some ε > 0, where ω is a Hermitian metric on Y . Then the same
regularized maximum construction as in the proof of Theorem 1.3 shows
that there exists a smooth function v on Y , which equals u on Y minus a
small neighborhood of S, and such that γ + i∂∂v > ε′ω holds on Y , for
some ε′ > 0. Therefore ωY := γ + i∂∂v is a Kähler metric on Y , and π∗ωY
is a smooth semipositive (1, 1) form on X.
We conclude the argument as in [49, Proposition 3.6]. Consider

η = T − π∗ωY + i∂∂((v − u) ◦ π),

which is a closed real (1, 1) current on X, supported on Null(α) = ∪iCi,
and which is expressed as the difference of two positive currents (since
ωY + i∂∂(u − v) > εω). This last condition implies that its coefficients
are measures, and so η is a flat current (in the terminology of [23]), and
Federer’s support theorem [23, 4.1.15] implies that η =

∑
i λi[Ci] for some

real numbers λi. But integrating η over Ci we see that

λi(C2
i ) =

∫
Ci

η =
∫
Ci

T =
∫
Ci

α = 0,

and so η = 0. Therefore

π∗ωY = α+ i∂∂(ψ + (v − u) ◦ π),

ANNALES DE L’INSTITUT FOURIER
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and again by regularity of the Laplacian, we conclude that the function
ϕ = ψ + (v − u) ◦ π is smooth on X and α + i∂∂ϕ = π∗ωY , which shows
that [α] is semiample. �

There are in fact explicit examples where Y is not a Kähler analytic
space (and therefore π∗T is not locally ∂∂-exact). Indeed, we can take an
example constructed by Grauert [28, 8(d), p. 365-366] of a projective ruled
surface X over a smooth curve of genus at least 2, which contains a copy
C ⊂ X of this curve with (C2) < 0, and with a nef and big line bundle L
with Null(L) = C (we can take for example L = A − (A·C)

(C2) C where A is
any ample line bundle on X), such that the contraction π : X → Y of C
is not a Kähler space, thanks to [42]. It also follows that in this case L is
not semiample (if it was, Y would be projective). The following problem is
therefore very interesting:

Problem 2.2. — Prove that in Grauert’s example the line bundle L is
not Hermitian semipositive.

This would be the first example of a nef and big line bundle (or (1, 1)
class) on a projective surface (or compact Kähler surface) which is not
Hermitian semipositive. Note that the example in [18] is not big, and it
can be modified [8, Example 5.4] to produce nef and big examples but only
in dimensions 3 or higher.
We can now give the proof of Proposition 1.4, which is a well-known

classical result:

Proof of Proposition 1.4. — The fact that [α] is rational means that
[kα] = c1(L) for some k > 1 and some holomorphic nef line bundle L on
X. We will show that L is semiample.
If
∫
X
c1(L)2 > 0 then L is nef and big, so X is projective, and L is

semiample by Kawamata–Shokurov’s base-point-free theorem. So we may
assume that

∫
X
c1(L)2 = 0.

If c1(L) = 0 then the exponential sequence gives that L is trivial (since
X is simply connected), and in this case the conclusion clearly holds.

So we may assume that
∫
X
c1(L)2 = 0 and that L is not trivial. By

Riemann–Roch we have

h0(X,L) + h0(X,−L) > 2,

so exactly one among L and −L is effective (since L is nontrivial), and
since L is nef we must have h0(X,L) > 2. The same argument as in [43,
Theorem 3.8(b)] shows that L is globally generated. �

TOME 68 (2018), FASCICULE 7
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3. Rough positive currents
In this section we give the proof of Theorem 1.5, and its refinement in

Theorem 3.3. First, we introduce some notation and concepts from holo-
morphic dynamics.
Definition 3.1. — A holomorphic automorphism of a K3 surface X is

called hyperbolic if its action on H1,1(X,R) has some eigenvalue of norm
strictly larger than 1.

By the Gromov–Yomdin theorem [29, 53], this is equivalent to the auto-
morphism having positive topological entropy.

We fix a nowhere-vanishing holomorphic 2-form Ω on X, and let dVol =
Ω ∧ Ω be the Lebesgue measure on X, which we may assume satisfies∫
X

dVol = 1. Because of the uniqueness of Ω (up to scale) it follows that
dVol is invariant under every automorphism of X, and that every Ricci-flat
Kähler metric ωX on X has volume form equal to ω2

X =
(∫
X
ω2
X

)
dVol.

Properties of hyperbolic automorphisms

Because the signature of cup-product on H1,1(X,R) is (1, 19) the eigen-
values of a hyperbolic automorphism have norm λ, λ−1 and the other ones
are on the unit circle. The two corresponding eigenclasses (which we nor-
malize up to scaling so that [η+] · [η−] = 1) contain positive currents η+, η−
with locally Hölder potentials (continuity is proved in [10, Theorem 3.1]
and Hölder continuity in [21, Proposition 2.4], see also [19, §1]), and their
cup-product µ := η+ ∧ η− is a well-defined probability measure (see [4],
[10, §3.3]), which does not charge any pluripolar subset of X by [4, Corol-
lary 2.5] and [5]. The measure µ is also called in this context the measure
of maximal entropy, as it realizes the topological entropy of the automor-
phism and any other measure has strictly smaller entropy. Moreover, µ is
ergodic.

Siegel discs

If T : X → X is a hyperbolic automorphism of a K3 surface, follow-
ing [41] we say that T has a Siegel disc if there is a nonempty open subset
U ⊂ X which is biholomorphic to a polydisc in C2, T preserves U and
T |U is holomorphically conjugate to an irrational rotation (i.e. of the form
(z1, z2) 7→ (λ1z1, λ2z2) with |λ1| = |λ2| = 1 and so that this map has dense
orbits on S1 × S1). The main result of [41] is that such automorphisms
exist, and the K3 surfaces X which support them are never projective.
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Kummer examples

Definition 3.2 (cf. [11, Classification Theorem]). — An automorphism
T of a K3 surface X is a Kummer example if there exists a complex torus
A with an automorphism L, with a map X → A/ ± 1 which intertwines
the actions of T and L.

Note that for a projective Kummer example, we have that the rank of the
Picard group is at least 17 (the 16 exceptional curves, plus a polarization).

By direct calculation (cf. [9, p. 30-32]), if (X,T ) is a Kummer example
on a K3 surface X, then both currents η± (and therefore also the measure
µ) are smooth on X.
We can now prove the following result:

Theorem 3.3. — Let X be a K3 surface, and let T : X → X be an au-
tomorphism which acts hyperbolically in H1,1(X,R). Then the eigenclasses
[η+], [η−] ∈ H1,1(X,R)\{0} such that T ∗[η±] = λ±1[η±] have the following
properties:

(1) There are unique closed positive currents η± in the corresponding
classes. These currents satisfy T ∗η± = λ±1η±.

(2) Suppose that T has a Siegel disc. Then at least one of the currents
η± cannot be smooth away from a proper closed analytic subset
of X.

(3) Suppose instead that X is projective and not Kummer. Then the
currents η± are not smooth at any point of the support of the
measure of maximal entropy µ = η+ ∧ η−.

Part (3) uses as input the main result of Cantat–Dupont [11] (reproved
in [24, Theorem 1.1.1] by a different method).

Proof of Theorem 3.3(1), Uniqueness. — In the present context this
result is due to Cantat [10, Theorem 2.4], but the main ideas of the proof
trace back to the work of Fornæss–Sibony [25] on Hénon maps in C2, see
also the work of Dinh–Sibony [21, 22] for much stronger and general results.
We reproduce the short proof for completeness.
To construct η± fix any Kähler metric ω and consider the sequence

ηN := 1
N

N∑
i=1

(T ∗)i

λi
ω so that (T ∗ − λ)ηN = 1

N

(
(T ∗)N+1

λN
− T ∗

)
ω(3.1)

Pick some weak limit of ηN , denoted η+; then we have η+ > 0 and T ∗η+ =
λη+. The same construction applied to T−1 gives η−. If necessary, we then
scale η± so that [η+] · [η−] = 1.
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For uniqueness, it is easier to show it for the class [η−]; for η+ the argu-
ment is the same but applied with T−1. Fix a smooth representative γ of
[η−], and let α > 0 be a closed positive current in the same cohomology class
[η−]. Then we can write α = γ+ddcu1 and η− = γ+ddcu2, for some quasi-
psh functions u1, u2 which we may normalize with

∫
X
uj dVol = 0, j = 1, 2.

It is well-known that u1 and u2 are in L1, and in fact for any quasi-psh
function v with γ + ddcv > 0 and

∫
X
v dVol = 0 we have the estimate

‖v‖L1 :=
∫
X

|v|dVol 6 C0,

where the constant C0 depends only on (X, g) (the geometry of the back-
ground Kähler metric) and γ, but is independent of v. See for example [20,
Proposition 2.1] (there γ is assumed to be positive definite, but this is
not used in the proof; also they use the normalization supX v = 0, but
these give uniformly equivalent constants). Therefore we see that every
quasi-psh function v with η− + ddcv > 0 and

∫
X
v dVol = 0 satisfies∫

X
|v|dVol 6 2C0. Then if we let u = u1 − u2 we have α = η− + ddcu,

together with
∫
X
udVol = 0 and

∫
X
|u|dVol 6 2C0.

We also have

0 6 λT ∗α = λT ∗η− + ddc(λT ∗u) = η− + ddc(λT ∗u),

and since T preserves dVol, we still have
∫
X

(λT ∗u) dVol = 0, and so

2C0 > λ‖T ∗u‖L1 = λ‖u‖L1 .

Iterating the map T indefinitely and applying the same argument, we
obtain ‖u‖L1 = 0 and hence u = 0.

Lastly, note that uniqueness immediately implies that T ∗η± =
λ±1η±. �

Proof of Theorem 3.3(2), Non-smoothness with Siegel disc. — If both
η± are smooth away from proper closed analytic subsets of X, it follows
that there is a proper closed analytic subset E ⊂ X such that the restriction
of µ = η+ ∧ η− to X\E can be written as µ|X\E = f dVol |X\E for some
smooth nonnegative function f on X\E. Moreover f is not identically zero
since µ does not charge pluripolar sets.
Since µ is ergodic and dVol is T -invariant, it follows that f is constant

µ-a.e. on X\E (i.e. on the set where f is positive). Since f is also smooth on
X\E, it follows that it is constant and in fact f ≡ 1 since both µ and dVol
are probability measures on X which do not charge E. This shows that
µ = dVol as measures on X. However, as observed in [41, Theorem 11.2],
on the Siegel disc U ⊂ X we must have η±|U = 0, and therefore µ|U = 0
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too, which is a contradiction to the fact that U has positive Lebesgue
measure. �

In particular, the fact that µ|U = 0 implies that X\U is not pluripolar,
since µ is a probability measure which does not charge pluripolar sets.
It is however not clear to us whether X\U must have positive Lebesgue
measure.
Before continuing with the proof of Theorem 3.3(3) we recall some pre-

liminaries from dynamics.

Dimension, Entropy, Lyapunov exponents

The main reference for the following results is the work of Ledrappier–
Young [40], which was preceded by many earlier results, including those
of Ruelle, Margulis, Mañé. The results are stated for a holomorphic auto-
morphism T of a K3 surface, so the Lyapunov exponents are always of the
form λ,−λ and each occurs with multiplicity 2. For any ergodic T -invariant
measure µ we have

h(µ) = λ(µ) · dim+(µ)(3.2)

where h(µ) is the entropy, λ(µ) is the (positive) Lyapunov exponent and
dim+(µ) is the dimension of µ along the unstable foliation.
To define dimension precisely, note that for µ-a.e. x there will be a (lo-

cal) unstable manifold W+(x) and a family of measures µ+(x) defined on
W+(x); the µ+(x) are disintegrations of µ along the unstable directions.
Denoting by B(x, r) the ball of radius r in W+(x) (in the induced metric
from X), the limit

dim+(µ) := lim
r→0

logµ+(x)(B(x, r))
log r ,

will exist µ-a.e. and will be called the dimension of µ along unstables.
Finally, the main result of Ledrappier–Young [39] in this case implies

that dim+(µ) = 2 if and only if µ is absolutely continuous with respect to
Lebesgue measure.
Proof of Theorem 3.3(3), Non-smoothness for non-Kummer. — Sup-

pose now that η+ is a stable current of a hyperbolic automorphism of
a projective K3 surface, which is not a Kummer example. Let µ be the
measure of maximal entropy and dVol = Ω ∧ Ω be the natural invariant
Lebesgue measure coming from the holomorphic 2-form Ω. The main re-
sult of Cantat–Dupont [11] implies that µ is not absolutely continuous with
respect to dVol. Thus dim+(µ) < 2, by the remarks above.
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Next, the discussion in [10, p. 42-43] (see particularly “Conclusion” at the
bottom of p. 43) implies that the unstable measures µ+(x) can be described
as follows, in a neighborhood of x in the unstable manifold W+(x). The
unstable manifold W+(x) is an immersed holomorphic curve in the K3
surface X, mapped as i : W+(x) → X (see e.g. [3, §2.6]). Restrict the
immersion i to a small neighborhood of x ∈ W+(x) and pull back the
current η+ to obtain i∗η+ =: µ+(x), which is denoted W+(x) ∧ η+ in [10].
Note that the roles of η+ and η− are exchanged in [10], since there he uses
the convention T∗η± = λ±1η± instead of the one that we use (T ∗η± =
λ±1η±), following [11, 41].
Because the dimension of µ+(x) is strictly less than 2, it follows that η+

cannot be even continuous in a neighborhood of x, for µ-a.e. x. �

Remark 3.4. — Thanks to the result in Theorem 3.3(1), the classes [η±]
have the remarkable rigidity property that they contain a unique closed
positive current (such classes are called rigid in [22]). Other examples of
pseudoeffective classes with this property are all those classes which are
equal to their negative part in Boucksom’s divisorial Zariski decomposi-
tion [7, Proposition 3.13], as well as the nef (1, 1) class constructed in [18]
which is not semipositive. However, in all these other examples the unique
closed positive current has positive Lelong numbers (in fact, it is the current
of integration along an effective R-divisor), while in the setting of Theo-
rem 3.3 the Lelong numbers vanish, since as mentioned earlier the current
even has Hölder continuous local potentials.

Remark 3.5. — The referee kindly points out that there are other known
examples of a rigid nef class which even contains a smooth semipositive
representative. For this, it suffices to find a surface X with a nonsingular
holomorphic foliation which admits a unique invariant transverse probabil-
ity measure which is further smooth. In this case if θ is the smooth laminar
current of the foliation then

∫
X
θ2 = 0 and so if T ∈ [θ] is any closed posi-

tive current then T ∧ θ = 0. Hence T is also laminar for the foliation, and
by uniqueness of the invariant transverse measure we must have T = θ. An
explicit example was constructed by Mumford [37, Example 1.5.1], with X
a ruled surface over a curve of genus 2 and [θ] = c1(L) for L nef with trivial
section ring.

Remark 3.6. — In fact, as the proofs above show, in the statements of
both Theorem 3.3(2) and (3) we can in fact replace the word “smooth”
with “continuous”.
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Recall the following questions which were raised by the second-named
author:
Question 3.7 (Question 5.5 in [46]). — Let Xn be a compact Calabi–

Yau manifold and [α0] a nef (1, 1) class on X. Then there is a smooth closed
semipositive real (1, 1) form ω0 on X in the class [α0].

The answer to this question is affirmative when X is projective, [α0] is
nef and big and belongs to the real Néron–Severi group, by the real version
of the base-point-free Theorem (see e.g. [44, Theorem 2.3]).
Question 3.8 (Question 4.3 in [45], and Question 5.3 in [46]). — Let

(Xn, ωX) be a compact Ricci-flat Calabi–Yau manifold, [α0] a nef (1, 1)
class with

∫
X
αn0 = 0, and for t > 0 let ωt be the unique Ricci-flat Kähler

metric on X cohomologous to [α0] + t[ωX ]. Then there is a proper closed
analytic subvariety V ⊂ X and a smooth closed semipositive real (1, 1)
form ω0 on X\V with ωn0 = 0 such that ωt → ω0 in C∞loc(X\V ) as t→ 0.
This question has an affirmative answer when [α0] is semiample (so it is

the pullback of a Kähler class under a map f : X → Y ) and the generic
fiber of f is a torus, by the results in [30, 31]. If [α0] is semiample (but the
generic fiber of f is not necessarily a torus), then this question is answered
affirmatively in [50], except that the convergence ωt → ω0 is only known
to happen in C0

loc(X\V ).
However, despite these positive results, in general we have the following:
Theorem 3.9. — Questions 3.7 and 3.8 have a negative answer.
Proof. — Let us take X to be a non-projective K3 surface with an au-

tomorphism T : X → X with positive entropy and with a Siegel disc,
constructed by McMullen [41]. Then from Theorem 3.3(2) we immediately
see that at least one among the two nef classes [η±] (say [η+]) has no
smooth semipositive representative (indeed the only closed positive cur-
rent in that class is η+ which is not even smooth on a Zariski open subset),
thus answering Question 3.7 negatively.
For Question 3.8, take [α0] = [η+], so that for every t > 0 the classes

[α0] + t[ωX ] are Kähler, and they each contain a unique Ricci-flat Kähler
metric ωt. By weak compactness of currents, given any sequence ti → 0, up
to passing to a subsequence, the metrics ωti converges weakly as currents
to a closed positive current in the class [η+] which by Theorem 3.3(1) must
equal η+. In particular, ωt → η+ as currents as t→ 0. If there was a proper
closed analytic subvariety V ⊂ X such that we had smooth convergence
on compact subsets of X\V , this would imply that η+ is smooth on X\V ,
contradicting Theorem 3.3(2). �
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Remark 3.10. — In these examples with a Siegel disc U ⊂ X, let ωX be
a fixed Ricci-flat Kähler metric on X and for i > 0 consider the Ricci-flat
Kähler metrics

ωi = (T ∗)iωX
λi

.

Since their cohomology classes [ωi] converge to [η+] as i → ∞, it follows
as above from Theorem 3.3(1) that the metrics ωi converge to η+ weakly
as currents on X. By the argument we just did, the metrics ωi cannot
converge smoothly on any Zariski open subset of X. On the other hand, it
is observed in [41, Theorem 11.2] that ωi|U converge smoothly to the zero
form.

To conclude, we give the proof of Theorem 1.5:
Proof of Theorem 1.5. — Part (1) follows immediately from Theo-

rem 3.3(2), together with McMullen’s examples [41] of hyperbolic K3 au-
tomorphisms with a Siegel disc.
For part (2), let X be a generic hypersurface in P1 × P1 × P1 of degree

(2, 2, 2) with T the composition of the three involutions of X obtained
by expressing X as a ramified double cover of P1 × P1 in three different
ways and interchanging the 2 sheets of each cover. It is proved in [10, 41]
that T has positive entropy. This K3 surface is not Kummer because the
rank of the Picard group of a generic (2, 2, 2) surface will be 3, generated
by the pullbacks of the hyperplane bundles on P1 × P1 under the three
double covering maps (see e.g. [9, p. 37]), whereas for projective Kummer
K3 surfaces the rank of Picard has to be at least 17.

On X the set of (1, 1) classes [α] in the real Néron–Severi group which
satisfy

∫
X
α2 = 1 (equipped with the intersection pairing) is isometric

to the Poincaré disc, with [η+] and [η−] lying on its ideal boundary, see
e.g. [10, p. 9], [9, p. 36-37]. In particular, there are nef R-divisors D± such
that c1(D±) = [η±]. By Theorem 3.3(3) none of these two R-divisor can
be Hermitian semipositive. �
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