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SPECIALNESS AND ISOTRIVIALITY FOR REGULAR
ALGEBRAIC FOLIATIONS

by Ekaterina AMERIK & Frédéric CAMPANA (*)

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

Abstract. — We show that an everywhere regular foliation F on a quasi-
projective manifold, such that all of its leaves are compact with semi-ample canon-
ical bundle, has isotrivial family of leaves when the orbifold base of this family is
special. The specialness condition means that for any p > 0, the p-th exterior power
of the logarithmic extension of its conormal bundle does not contain any rank-one
subsheaf of maximal possible Kodaira dimension p. This condition is satisfied, for
example, in the very particular case when the Kodaira dimension of the deter-
minant of the logarithmic extension of the conormal bundle vanishes. Motivating
examples are given by the “algebraically coisotropic” submanifolds of irreducible
hyperkähler projective manifolds.
Résumé. — Nous montrons l’isotrivialité des feuilles d’un feuilletage F partout

régulier et à feuilles compactes sur une variété quasi-projective lorsque la base or-
bifolde de la famille des feuilles est spéciale. Cette dernière condition signifie que,
pour tout p > 0, la puissance extérieure p-ième de l’extension logarithmique du
fibré conormal de F ne contient aucun sous-faisceau de rang un de dimension de
Kodaira maximale p. Cette condition est satisfaite, par exemple, dans le cas très
particulier où la dimension de Kodaira du déterrminant de l’extension logarith-
mique du fibré conormal est nulle. Des exemples de cette situation sont fournis
par les sous-variétés « algébriquement coisotropes » des variétés hyperkählériennes
irréductibles projectives.

1. Introduction

Smooth algebraic families of canonically polarized manifolds, or, more
generally, polarized manifolds with semi-ample canonical bundle over a
smooth quasiprojective base have been intensively studied in recent years,

Keywords: algebraic foliations, isotriviality, orbifold divisors, special quasi-projective
manifolds.
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2924 Ekaterina AMERIK & Frédéric CAMPANA

starting from the work by Viehweg and Zuo [18]. Their main result ([18,
Theorem 1.4]) states that if f : X → B is such a family and B a smooth
compactification such that the complement S of B in B is a normal crossing
divisor, then some symmetric power of the log-cotangent bundle of B has
an invertible subsheaf whose Kodaira dimension is at least the number of
moduli Var(f) of the family(1) . Viehweg conjectured that the base of a
family of canonically polarized manifolds of maximal variation (Var(f) =
dim(B)) must be of log-general type. This conjecture is established in [5]
(but see [6] for a simpler argument).
A more general conjecture was stated in [4], asserting that such a family

is isotrivial (that is, Var(f) = 0) if B is special, which roughly means that
B does not admit a map onto a positive-dimensional “orbifold” of general
type. We do not recall the precise definition of a special quasi-projective
manifold in this introduction, and just mention that (B,S) is special if its
log-Kodaira dimension is zero. This isotriviality conjecture implies that the
moduli map factors through the “core map” (see [4]), and so the variation
can be maximal only if the core map is the identity map on B, which is
then of log-general type.
The isotriviality conjecture has been proved by Jabbusch and Kebekus

in dimensions two and three ([12], [11]). B. Taji ([16]) proved it in general,
using [5]. A simplified version of Taji’s proof, based on [6], can be found
in [7].

We consider here, more generally, the case when the family f : X → B

is not smooth but only quasi-smooth, that is, has only multiple fibers with
smooth reduction as singularities; B may then acquire quotient singulari-
ties.
Such is the case when there is a smooth foliation F on X such that its

leaves are fibers of f . The base B then carries a natural orbifold structure
coming from the multiple fibers and one can ask whether the specialness of
the orbifold base again implies the isotriviality of the family. The definition
of the specialness of the orbifold base in this (mildly) singular context is
part of the problem.
In this paper we give two equivalent definitions of the specialness of the

orbifold base: first as a property of the relative cotangent of the foliation
in Section 4, and then via multiple fibres of fibrations (in the spirit of [4])
in Section 9. Using Viehweg–Zuo sheaves and [6], we prove that if X is a
connected quasi-projective complex manifold with an everywhere regular

(1) In the semi-ample case [18] has an additional requirement that Var(f) is maximal,
but the general case reduces to this by the argument of [12, Theorem 3.4].
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foliation F with compact leaves which have semi-ample canonical bundle,
then the family of its leaves is isotrivial provided that its orbifold base is
special. The first step of the proof, in Section 8, is a “tautological” base
change which produces a family with non-multiple smooth fibres.

This isotriviality statement should hold for more general fibres, probably
when their canonical bundle is pseudo-effective, as the work of Popa and
Schnell [15] seems to indicate.

It would also be interesting to extend our main result to the case when X
is a complement to a proper subvariety in a compact Kähler manifold. Such
manifolds are sometimes called quasi-Kähler by a slight abuse of terminol-
ogy (indeed, quasi-Kähler manifolds are Kähler). Much of our preliminary
discussion is made in the quasi-Kähler case since this seems to be a natural
setting.
It is a great pleasure for us to dedicate this paper to Jean-Pierre Demailly.

The methods he has developed are important for explicit construction of
the Viehweg–Zuo sheaves (see [2]), and his theorem [8] provides a potential
source of examples or counterexamples.

2. Regular Algebraic Foliations. Compactification

Let X be a connected complex manifold of complex dimension n, and F
an everywhere regular holomorphic foliation on X. Recall that this means
that F ⊂ TX is an involutive subbundle, say of rank r, 0 < r < n. The
foliation F is called compact, or algebraically integrable, or algebraic for
short if all of its leaves are compact(2) . It is well-known that if X is Kähler,
the holonomy group of each leaf of a compact foliation F is finite (see [9],
or [14], Corollary, in the case of a non-compact X).

In this paper X is always assumed quasi-Kähler, that is, a complement
to a proper subvariety in a compact Kähler manifold X, and F is assumed
“algebraic” in the preceding sense. In fact nearly all our results are valid
only for a quasiprojective X, but the natural setting seems to be complex
analytic. In the C∞ category, Reeb stability theorem asserts that locally
around a compact fiber F with finite holonomy group G and a local trans-
verse T , X is the quotient of F̃ × T , where F̃ is the G-covering of F , by
the diagonal action of G, and so the leaves of the foliation are the fibers of
a map f which is just the projection to T/G. In the holomorphic situation,

(2) the term “algebraic” refers to the Zariski topology as opposed to the metric one. When
X is quasi-projective, the associated fibration f defined in this section is projective.

TOME 68 (2018), FASCICULE 7



2926 Ekaterina AMERIK & Frédéric CAMPANA

the complex structure on the neighbouring fibers varies, so that X locally
around a compact fiber with finite holonomy is a “quotient of a submer-
sion” rather than quotient of a product. There is still a local transverse T
with the action of the holonomy group G and the projection f of a satu-
rated neighbourhood of a fiber in X to T/G, with the leaves of F as fibers
(see [10, Theorem 2.4]).
When X is quasi-Kähler, the holonomy group of each leaf of F is finite,

and the existence and compactness of the components of the Chow–Barlet
space of the compactification of X implies the existence of a proper and
connected holomorphic fibration f : X → B onto an irreducible normal
complex space B of dimension n − r whose reduced fibres Fb, b ∈ B, are
exactly the leaves of f (see for example [1]; the local fibrations around
leaves with trivial holonomy glue together to give a map to a component
of the Barlet space which by compactness is extended to the whole of X).
Conversely, any such fibration f : X → B defines an algebraic (everywhere
regular) foliation F which is the saturation of the kernel of df in the tangent
bundle TX .
We define the multiplicity of a fibre Fb in the cycle-theoretic sense, that

is, as the number of intersection points of a local transverse T to Fb with
a general neighbouring fibre. Clearly this is the same as the order of the
holonomy group of Fb.

Our fibration is “orbi-smooth” in the sense that all of its fibres have
smooth reduced support, and B has quotient singularities (see [1] for de-
tails). Over the complement to a codimension-two subset in B, the map
f locally at the point x ∈ Fb can be written as (z1, z2, . . . zn−r, . . . , zn) 7→
(zm1 , z2, . . . zn−r) where m = mb is the multiplicity of Fb, and this multi-
plicity is also that of the fiber seen as an analytic space (or a scheme in the
quasiprojective setting).
We next choose a smooth compactification (X,D) such that D = X−X

is a simple normal crossing divisor. The compactness of the components of
the Chow–Barlet space of analytic cycles on X implies that the fibration
f extends to a holomorphic fibration f : X → B with B normal, and such
that D = f

−1(E), where E = B −B is a divisor on B.
Our aim is to give criteria under which an algebraic foliation is isotrivial,

that is, all of its generic leaves are isomorphic. Our main result is Theo-
rem 5.1 below. We assume that X is quasiprojective, so that the leaves of
F are naturally polarized, and that the leaves of F have semi-ample canon-
ical bundle. The criterion we give is expressed in terms of specialness (see

ANNALES DE L’INSTITUT FOURIER



ISOTRIVIALITY AND SPECIALNESS 2927

Section 4) of the log-conormal sheaf of F , which we define in the next sec-
tion. This property will be shown to be equivalent in Section 9 to another,
more geometric property: the specialness of the orbifold base (B,DB) of
the fibration f , defined in Section 9.

3. The log-conormal sheaf of F

Let F be an everywhere regular foliation on the connected quasi-Kähler
manifold X. Let X,B,B, f, f be as above.

Define the rank r subbundle Ω1
X/F ⊂ Ω1

X as the kernel of the quotient
map Ω1

X → F∗ := Ω1
F . Equivalently, Ω1

X/F = f∗(Ω1
Breg)sat, the saturation

taking place in Ω1
X . This bundle is called the conormal bundle of F . It is

also the saturation inside Ω1
X of f∗(Ω1

Breg) (where Breg denotes the smooth
part of B).
On the compactification X, we define the extension Ω1

X/F as
(f∗(Ω1

B
reg))sat. Here the saturation is taken in the logarithmic cotangent

bundle Ω1
X

(Log(D)). In general,we extend sheaves to the compactification
by systematically considering their saturations in a suitable larger locally
free sheaf. The reason is that a saturated subsheaf of a locally free (or, more
generally, reflexive) sheaf is normal (see for example [13, Lemma 1.1.16]),
so that Hartogs’ theorem applies to prove the birational invariance of ap-
propriate spaces of sections.
So for any m > 0, we define (⊗mΩ1

X/F )sat as the saturation of ⊗mΩ1
X/F

inside ⊗m(Ω1
X

(Log(D))), and similarly for Symm(Ω1
X/F )sat.

To avoid heavy notation, we define Ωp
X/F

as being already saturated:
Ωp
X/F

:= (∧p(Ω1
X/F ))sat,∀ p > 0, where the saturation takes place in the

locally free sheaf of logarithmic p-forms. By Hartogs’ theorem, the space of
sections of Ωp

X/F
does not depend on the choice of the compactification.

Definition 3.1. — For a non-singular algebraic foliation F on a quasi-
Kähler X together with a suitable Kähler compactification f : X → B,
Ω1
X/F is called the Log-conormal sheaf of F .

The properties of the conormal sheaf we are interested in will be likewise
independent on the chosen compactifications.

Let now g : B 99K Y be a dominant rational map, extended to a rational
map g : B 99K Y on compactifications. We assume throughout the paper
that Y and Y are smooth (without loss of generality since g is only a

TOME 68 (2018), FASCICULE 7



2928 Ekaterina AMERIK & Frédéric CAMPANA

rational map; note that B usually has some singularities). Let h = g◦f, h =
g ◦ f : X → Y . Set dim(Y ) = p, 0 6 p 6 dim(B) = n− r.

The map h induces a natural inclusion h∗O(KY ) ⊂ ΩpX/F := ∧pΩ1
X/F ,

as well as extensions h∗ : ⊗mΩ1
Y
⊂ ⊗mΩ1

X/F ,∀ m > 0.

We consider the saturated inverse images by h∗ of pluridifferentials on
Y : (h∗(⊗mΩ1

Y
))sat ⊂ (⊗mΩ1

X/F )sat, and analogously for the sheaf of sym-
metric differentials and Ωp

Y
.

The Hartogs’ lemma gives the following:

Lemma 3.2. — For any g : B 99K Y , and any m > 0, h0(X,
(h∗(⊗mΩ1

Y
))sat) does not depend on the choices ofX,D,B. The same prop-

erty holds for h0(X, (h∗(Symm Ω1
Y

))sat) and h0(X, (h∗Ωp
Y

)sat),∀ p > 0.

Definition 3.3. — Let X,D be as above, and L ⊂ ⊗mΩ1
X

(Log(D)) be
a rank-one coherent subsheaf.
Define: κsat(X,L) := lim supk→+∞

Log(h0(X,L⊗k,sat))
Log k , the saturation

L⊗k,sat of L⊗k being taken in ⊗mkΩ1
X

(Log(D)).

By the same principle as in 3.2, we see that κsat(X,L) is independent
from the birational model (X,D) chosen; more precisely, κsat(X,L) is equal
to the κsat of the direct or inverse image of L on a modification of (X,D).
It therefore makes sense to consider the restriction of L to X and talk of

κsat(X,L).
Finally, as usual, κsat of a divisor means κsat of the associated line bundle.
We shall also need the following elementary lemma.

Lemma 3.4. — Let h : X 99K Y be a meromorphic, dominant, and
connected fibration with p = dim(Y ) > 0. Then h

∗(O(KY )) ⊂ Ωp
X/F

(as
subsheaves of Ωp(LogD)) if and only if h factors through f (i.e. if there
exists g : B 99K Y such that h = g ◦ f).

Proof. — In restriction to the open part of X where h is defined and
submersive this is classical, and the statement over the compactification
follows from the fact that Ωp

X/F
is saturated, so that the inclusion over the

open part implies the inclusion. �

4. Specialness

Definition 4.1. — We say that the orbifold base of f is special if,
for every connected dominant rational map g : B 99K Y with Y smooth,

ANNALES DE L’INSTITUT FOURIER



ISOTRIVIALITY AND SPECIALNESS 2929

and dim(Y ) = p > 0, we have: κsat(X,h∗(KY )) < p (by Lemma 3.4, the
saturation can be taken inside Ωp

X/F
). This is independent from the choice

of X,D, by Lemma 3.2.

The term “orbifold base of f” will be justified in Section 9, accordingly
to the terminology of [4]. Since some additional technicalities are needed,
we prefer to introduce some of our results in this and the following section
and postpone the proofs until later.
The specialness property will be shown in Theorem 9.18 to be equivalent

to other, apparently stronger properties:

Theorem 4.2. — The specialness of the orbifold base of f is equivalent
to each of the following properties:

(1) for any p > 0, and any coherent rank-one subsheaf L ⊂ Ωp
X/F

, one
has κsat(X,L) < p;

(2) for any g : B 99K Y , connected dominant rational map g : B 99K Y
with Y smooth, and dim(Y ) = p > 0, we have: κsat(X,L) < p for
any line bundle L ⊂ ⊗mh∗(Ω1

Y
), where h : B 99K Y is an extension

of h to a smooth compactification Y of Y .

An important, although very particular example, of specialness holds, is
given by the following.

Theorem 4.3. — Assume that κ(X, det(Ω1
X/F )) = 0, the orbifold base

of f is then special.

The proof follows from Theorem 9.19.

5. Isotriviality criterion

We can now formulate our main result.

Theorem 5.1. — Let f : X → B be the fibration associated to an al-
gebraic and everywhere regular foliation F on a connected quasi-projective
manifold X. Assume that the fibres of f have semi-ample canonical bundle,
and that the orbifold base of f is special. Then f is isotrivial.

This answers positively a question raised in [1] for X quasi-projective
(instead of quasi-Kähler there). It is likely that the quasi-Kähler case can
be handled by similar arguments, once one constructs Viehweg–Zuo sheaves

TOME 68 (2018), FASCICULE 7
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in that setting(3) . The case when X is quasi-projective and f is submersive
was established in [16].
For the proof of this theorem, we actually work with another definition

of specialness, in terms of the orbifold pairs as in [4]: indeed the base B
is equipped with a natural orbifold structure. In this context, Theorem 5.1
becomes Corollary 9.21. The equivalence between various characterisations
of specialness is given in Theorem 9.18 and Corollary 9.20, and the con-
nection to the conormal bundle of the foliation is through the Lemma 3.4.

Corollary 5.2. — Let f : X → B be the fibration associated to
an algebraic and everywhere regular foliation F on the connected quasi-
projective manifold X. Assume that the fibres of f have semi-ample canon-
ical bundle, and that κ(X, det(Ω1

X/F )) = 0. Then f is isotrivial.

6. Viehweg–Zuo sheaves

Let again f : X → B be the fibration associated to an everywhere regular
and algebraic foliation F on a connected quasi-projective manifold X. We
assume here that its fibres have semi-ample canonical bundle and Hilbert–
Samuel polynomial P with respect to the polarization coming from X. Let
ModP be the quasi-projective scheme constructed in [17], parametrising
the manifolds which are polarised with Hilbert–Samuel polynomial P . If
B∗ ⊂ B is the (non-empty) Zariski open subset of points over which f is
submersive, there is a natural holomorphic map µ∗ : B∗ → ModP sending
b to the isomorphism class of Fb.

Its image M is an algebraic variety of dimension Var(f) ∈ {0, 1, . . . , (n−
r) = dim(B)}, where Var(f) is the generic rank of the Kodaira–Spencer
map KS : TB∗ → R1f∗(TX/B).

When f is submersive, B∗ = B,µ∗ = µ, and B is smooth. We can then
choose compactifications such that B is smooth, and S := B − B is of
simple normal crossings.
We have the following result of Viehweg and Zuo ([18, Theorem 1.4(iii),

also (i)]).

Theorem 6.1. — Assume that f : X → B is submersive and Var(f) =
dim(B). There exists a line bundle L ⊂ Symm(Ω1

B
(Log(S))) such that

κ(B,L) = Var(f) = dim(M) = dim(B).

(3)The case when X is compact Kähler and F is of rank 1 was treated in the first version
of [1], but was removed in the final version after a simplification of the proof of its main
result.

ANNALES DE L’INSTITUT FOURIER
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A refinement of Theorem 6.1 by Jabbusch and Kebekus ([12, Theo-
rem 1.4] states that this L actually comes from the moduli space: L ⊂
Symm(µ∗(Ω1

M ))sat (by abuse of notation, we write µ∗ for the image of dµ;
cf. Section 3). We call such an L a Viehweg–Zuo sheaf. Combining the argu-
ment of 6.1 and [12, Theorem 3.4], one may remove the maximal variation
condition. Indeed in [12, Theorem 3.4], the general case is deduced from
the maximal variation case for families of canonically polarized manifolds,
but the only property used in the proof is the finiteness of the polarized au-
tomorphism group of the fibres, that is, the subgroup of the automorphism
group which preserve an ample line bundle (the canonical bundle in the
context of [12]). This finiteness property also holds for polarized manifolds
with semi-ample canonical bundle, and our fibres can be globally polarized,
since X is quasi-projective.
In our setting of a fibration defined by a foliation, f is not necessarily

submersive. However, by assumption, the singular fibers of f are multiple
fibres with smooth reduction. Equivalently, the non-smoothness of the fi-
bration is encoded in the finite, but nontrivial holonomy groups around the
leaves of F . In the next two sections, we deal with this problem, recalling
the Reeb stability theorem and providing a simple base-change to eliminate
the multiple fibres (those with non-trivial holonomy group). The new base
then carries a Viehweg–Zuo sheaf. In Section 9 we descend this sheaf to
the orbifold base of the original fibration and derive a contradiction with
specialness in the non-isotrivial case.

7. Reeb Stability Theorem

Let again F be a regular algebraic foliation on a Kähler manifold X.
We know that all its holonomy groups are finite. In the C∞ category,
Reeb stability theorem asserts that locally around a fiber F with holonomy
group G and a local transverse T , X is the quotient of F̃ × T , where F̃
is the G-covering of F , by the diagonal action of G, and the map f is the
projection to T/G. In the holomorphic situation, the complex structure on
the neighbouring fibers varies; however there is the following adaptation of
Reeb stability (see [10, Theorem 2.4]). let Gb be the (finite) holonomy group
of F along a fibre Fb = f−1(b), b ∈ B. There exist an open neighborhood
b ∈ U ⊂ B and a finite Galois covering β : U ′ → U = U ′/Gb, such that
the normalisation XU ′ of the fibered product XU ×U U ′, where XU stands
for f−1(U), is a Gb-étale covering of XU and submersive over U ′. The map
β : U ′ → U is obtained by taking a smooth holomorphic local transverse

TOME 68 (2018), FASCICULE 7



2932 Ekaterina AMERIK & Frédéric CAMPANA

to (reduced) Fb; over a sufficiently small U ⊂ B containing b it is finite
surjective.
Since the second projection f ′ : XU ′ → U ′ is submersive, it is C∞-

equivalent to a product, so in the C∞ context one finds back the usual
Reeb stability theorem. In particular, all fibres of f are, up to finite étale
equivalence, isomorphic as C∞-manifolds.

8. Elimination of multiple fibres by base-change

Our generalisation is based on a simple trick (already introduced in [1]
for fibrations in curves, but the general case is similar) which eliminates
multiple fibres.

Let (X,F) be as above, F algebraic and everywhere regular. Let f :
X → B be the associated fibration and f̃ : X ×B X → X the projection
of the fibered product to the second factor. Let fX : XX → X be the
fibration deduced from f : X → B by the base-change β(= f) : X → B

and subsequent normalisation. We thus have: fX = f̃ ◦ ν, where ν : XX →
X ×B X is the normalisation map.

Lemma 8.1. — In the above situation, the fibration fX : XX → X is
submersive.

Proof. — The proof is exactly the same as that of the Lemma 2.11 of [1]
(in the setting of [1], the foliation is of rank one, but the argument goes
through in general).

The fibration F : X ×B X → X has a natural section given by the
diagonal of X, and the inverse image of this section on the normalisation
XX of X×BX has a unique component lying over X which gives a section
of the map fX : XX → X. From Reeb stability one sees that fX still
comes from a foliation on a smooth XX , but now all holonomy groups are
trivial, since the section is a local transverse at every point. The details
are checked by a local argument, which runs as follows: for any x ∈ X,
there is a neighbourhood of x ∈ X isomorphic to U ′ × F , where F is
a neighbourhood of x in its leaf and U ′ is a local transverse. By Reeb
stability, a small neighbourhood U of b = f(x) in B is U ′/G where G is the
holonomy group, and the normalization XU ′ of X ×U U ′ is smooth over U ′
and étale over f−1(U). Hence XX , which locally in a neighbourhood of x is
isomorphic to the normalization of X×U (U ′×F ), that is, XU ′ ×F , is also
smooth over X: the projection to X, locally around x, is a composition of
the projection to XU ′ with the étale map from XU ′ to f−1(U). �

ANNALES DE L’INSTITUT FOURIER
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Lemma 8.2. — In the above situation, the map µ : X → Mod defined
in Section 6 factors through B.

Proof. — Let b ∈ B be any point. Let b ∈ U ⊂ B be any sufficiently small
neighborhood, and let β : U ′ → U be the finite Galois cover of group G

defined by a germ of manifold U ′ transverse to the reduction of the fiber Fb
as in Section 7. Base-changing by β and normalising, we obtain γ : X ′ → X

and f ′ : X ′ → U ′, γ being G-Galois and étale, and f ′ submersive. The map
µ′ : U ′ → Mod is well-defined and coincides with µ∗ ◦ β : U ′ → Mod, if
µ∗ : B∗ ∩U = U∗ → Mod is defined as in Section 7. Since B is normal and
β : U ′ → U finite and proper, the map µ∗ : B∗ → Mod extends to B as a
holomorphic map µ : B → Mod. �

9. Orbifold geometry

We shall actually prove a more detailed version of Theorem 4.2, namely
Theorem 9.18 below. Before this, some notions concerning the geometry of
orbifold bases need to be recalled.

9.1. Orbifold bases

We recall the set-up from [3] and [4]. An orbifold pair is a connected
normal compact complex-analytic variety Z together with a Weil Q-divisor
D =

∑
j cjDj where Dj are the irreducible components and the rational

coefficients cj ∈ ]0, 1]. The union dDe = ∪jDj is called the support, or
“round-up” of D. The extreme cases are when D = 0, or when D = dDe,
so cj = 1 ∀ j.
If F ⊂ Z is an irreducible Weil divisor not contained in dDe, we define

its coefficient cD(F ) in D to be 0, and we set cD(Dj) = cj . Thus D =∑
F cD(F ).F , the sum running over all irreducible Weil divisors F of Z.
We say that the orbifold pair (Z,D) is smooth if Z is smooth and the

support of D has only simple normal crossings. If moreover D = dDe, we
say that we have a smooth logarithmic pair.
The purpose of introducing these objects here is to encode (and eliminate

in codimension one) the multiple fibres of fibrations by means of “virtual
base changes”. The orbifold pair (X,D), D =

∑
j cjDj , may indeed be

seen as a virtual ramified cover of X ramifying to (rational) order mj =
(1 − cj)−1 ∈ ]1,+∞] over Dj , at least in codimension 1. The (rational or
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+∞) numbers mj = mD(Dj) will be called the multiplicities of D along
the D′js. We set mD(F ) = 1 if F is not a component of D, so that we still
have mD(F ) = (1− cD(F ))−1 in this case.
Conversely, cj = (1 − 1

mj
), and D =

∑
F (1 − 1

mD(F ) )F , F running over
all irreducible Weil divisors of X.
Alternatively, a pair (X,D) interpolates between the projective case

when D = 0, and the quasi-projective case when D = dDe.
The main example of orbifold pairs (with integral or infinite multiplici-

ties) comes from orbifold bases of fibrations:

Definition 9.1. — Let f : Z → Y be a surjective holomorphic proper
map with connected fibres (that is, a fibration) between normal connected
complex spaces with Q-factorial singularities. Fix an orbifold pair structure
(Z,D) on Z.

For each irreducible Weil divisor E ⊂ Y , write f∗(E) =
∑
k tkFk + R,

where Fk runs through the irreducible Weil divisors of Z mapped onto E
by f , while R consists of the f -exceptional Weil divisors of Z mapped into,
but not onto, E.

Define the multiplicity mf,D(E) relative to D of the generic fibre of f
over E by the formula mf,D(E) = infk{tkmD(Fk)}.
The orbifold base (Y,Df,D) of f is an orbifold pair where the divisor is

defined by the following formula

Df,D =
∑
E

(
1− 1

mf,D(E)

)
E

where E ranges through the irreducible Weil divisors of Y .

This sum is finite since mf,D(E) = 1 unless either tk > 1, or mD(Fk) 6= 1
for all k. If D = 0, the multiplicity mf (E) = infk{tk} is the multiplicity of
the fiber over a general point of E as considered in [3].
Sometimes, when the data (f,D) is clear from the context, we shall write

simply DY rather than Df,D.

9.2. Orbifold morphisms

Definition 9.2 ([4]). — Let f : X → Z be a fibration between con-
nected complex manifolds equipped with smooth orbifold structures (X,D)
and (Z,DZ). We say that f is an orbifold morphism if, for any irreducible
divisors F ⊂ Z and E ⊂ X such that f(E) ⊂ F , with f∗(F ) = tE + R

where the support of R does not contain E, one has tmD(E) > mDZ
(F ),
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where mD(E) (resp. mDZ
(F )) is the multiplicity of E in D (resp. of F in

DZ).
We shall say that f is an orbifold birational equivalence if moreover f is

birational and f∗(D) = DZ . Here f∗ is the cycle-theoretic direct image; for
a birational map f∗(

∑
cj .Dj) :=

∑
cj .f∗(Dj), where f∗(Dj) = f(Dj) ⊂ Z

if f(Dj) is a divisor, and f∗(Dj) = 0 otherwise.

The following two simple situations provide examples. We leave the easy
check to the reader.

Example 9.3. — Let u : (Z ′, D′) → (Z,D) be a proper bimeromorphic
holomorphic map between connected complex manifolds Z ′, Z, equipped
with orbifold divisors D′, D such that both orbifolds (Z ′, D′) and (Z,D)
are smooth, and moreover u∗(D′) = D. Assume that all u-exceptional
divisors of Z ′ are equipped with the multiplicity +∞. Then f is an orbifold
birational equivalence. If Z = Z ′, then u is a birational orbifold equivalence
if and only if D′ = D.

Example 9.4. — Let f : (X,D)→ (Z,DZ) be as in Definition 9.2 above.
Assume that (Z,DZ) is the orbifold base of f . This does not imply in
general that f is an orbifold morphism. This will, however, be the case as
soon as the multiplicities in D of the f -exceptional divisors E ⊂ X are
sufficiently large; in particular when all these multiplicities are equal to
+∞.

We shall need good bimeromorphic models of fibrations as in the propo-
sition below. These are obtained using Raynaud’s flattening theorem and
Hironaka’s desingularisation.

Proposition 9.5 ([4, Proposition 4.10]). — Let (X1, D1) be a smooth
orbifold pair, with X1 projective(4) connected. Let h1 : X1 → Z1 be a
fibration (or, more generally, a dominant meromorphic map with connected
fibers). There exists a commutative diagram:

(X,D) u //

h

��

(X1, D1)

h1

��
(Z,DZ) v // Z1

where u, v are birational, and moreover the following holds:
(1) u : (X,D)→ (X1, D1) is a birational orbifold morphism.

(4)Compact Kähler would be sufficient.
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(2) (X,D), (Z,DZ) are smooth.
(3) (Z,DZ) is the orbifold base of h : (X,D)→ Z

(4) h : (X,D)→ (Z,DZ) is an orbifold morphism.
(5) Every h-exceptional divisor of X is also u-exceptional.

9.3. Smooth orbifold bases of equidimensional fibrations

The notions of morphisms and birational equivalence for orbifold pairs
are defined in the preceding subsections only for smooth orbifold pairs.
The appropriate definitions are in general not (presently) available in the
singular case, and the notion of a resolution of a (normal, quasi-projective,
say) orbifold pair is not available either.

The problem is that one could introduce the notion of a smooth model
of an orbifold as soon as the underlying manifold is Q-factorial (and so
it makes sense to talk about the pullback of a Weil divisor), but it is not
clear whether any two such models are necessarily birational in the orbifold
sense (see [4, p. 832–833]).
However in the equidimensional case described below, we can construct

smooth orbifold pairs (B,DB) which are resolutions of compactifications
of the quasi-projective pairs (B,DB). The important property is that, for
a given (B,DB), all of these (B,DB) are birationally equivalent in the
orbifold sense (Corollary 9.11). Roughly speaking, the reason is that we
do not need to introduce new exceptional divisors by base change in this
particular case. We now give the details.
We consider a smooth quasi-projective complex manifoldX together with

a projective fibration f : X → B onto a normal quasi-projective variety B.
We assume that f is equidimensional, so that its (connected) fibres Xb are
all of the same dimension r. In particular, this is the case if f is the family
of leaves of an everywhere regular foliation F on X.
Put the trivial orbifold structure (i.e. the zero divisor) on X and let

(B,DB) be the orbifold base of f : X → B. Take projective compactifi-
cations B1, X1 with the following properties: f extends to f1 : X1 → B1;
X1 is smooth; D1 := X1 −X is a simple normal crossing divisor. We call
f1 : X1 → B1 a compactification of f .
Next, choose smooth modifications X,B of X1, B1, in such a way that f1

lifts to f : X → B, and moreover such that D′ := X−X ′ and DB := B−B′
are simple normal crossing divisors, where X ′ ⊂ X and B′ ⊂ B denote the
inverse images of X and B in X and B respectively (for typesetting reasons
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B′ is not shown on the diagram below):

X

  ��

X ′?
_oo

  
B

��

X1

��

X? _oo

��
B1 B? _oo

By further blow-ups of X,B, we may assume that the following two
conditions hold.

(a) Let EB be the closure of the exceptional divisor EB of β : B′ → B

and DB be the closure of the strict transform D′B of DB in B, so
that EB∪DB is the closure of the inverse image of the “old boundary
divisor” DB ⊂ B in B. Then the union of DB and EB ∪DB is still
a simple normal crossing divisor.

(b) The union of D′ and of the closure E of the exceptional divisor E′
of χ : X ′ → X is a simple normal crossings divisor.

The simple normal crossing divisors from (a) and (b) are the supports
of the orbifold structures we are introducing on X and B. To do this we
need to put multiplicities on their components.
The orbifold structure (X,D) is obtained as follows: we assign the mul-

tiplicity +∞ (or equivalently: coefficient 1) to all components of the union
in (b), so that D is exactly this union.

We equip B with the following orbifold divisor DB : its support is the
union described in (a), the multiplicities of the exceptional components
EB and of the border components DB are +∞, while each component of
the closure of the strict transform of DB is assigned its multiplicity in the
orbifold base of f : X → B.
Roughly speaking, the “old” components come with their “old” multi-

plicities (and so “old” coefficients), whereas the “new” ones acquire infinite
multiplicities (and so coefficient one).

The following diagram displays the divisors with finite multiplicities
whereas the “logarithmic” part (infinite multiplicities) is implicit:

X ⊃ X ′
χ //

f̄
��

X

f

��
B ⊃ (B′, DB′)

β // (B,DB)
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The finite multiplicities are those of DB and DB′ , arising from the mul-
tiplicities of the fibres of f (in other words, from their finite holonomy
groups). All others are infinite: these are the ones on all exceptional divi-
sors E′ and EB for χ, β, as well as on the boundary divisors X −X := D′,
and B −B′ := DB .

Definition 9.6. — Let f : X → (B,DB) be an equidimensional pro-
jective fibration with orbifold base (B,DB). We suppose that X is smooth
and B is normal. Let f1 : X1 → B1 be some compactification of f . A
compactified resolution of f is f : (X,D) → (B,DB) where f : X → B is
a modification of f1 satisfying the properties (a) and (b), and the orbifold
structures D and DB are as we have just described.

Lemma 9.7. — f : (X,D) → (B,DB) is an orbifold morphism to its
orbifold base (smooth by construction).

Proof. — By the fact that the components of the boundaries D,DB of
both X,B are all equipped with infinite multiplicities, it is sufficient to
consider only divisors of X,B which intersect the inverse images of X,B
respectively. Because f : X → B is equidimensional, the inverse image in X
of any irreducible divisor F ⊂ B which is β-exceptional, where β : B′ → B

is the natural birational map, is χ-exceptional, where χ : X ′ → X is
the similar modification. Since all of these exceptional divisors are also
equipped with the infinite multiplicity, the inequalities required for f to
be an orbifold morphism are satisfied for these divisors. The remaining
divisors for which these inequalities need to be checked are now the strict
transforms in B of the components of DB . But the multiplicities assigned
to them being the same ones as in DB itself, the verification is trivial. �

Remark 9.8. — Since the closure in X of any component C of the excep-
tional divisor of X ′ → X is, by definition, equipped with the multiplicity
+∞, and f : X → B has equidimensional fibres, the following properties
for a divisor E in X which is not contained in X −X ′ are equivalent:

(1) C is f ◦ χ-exceptional.
(2) C is equipped with the multiplicity +∞ in D.

Definition 9.9. — Let f : (X,D) → (Z,DZ) and f ′ : (X ′, D′) →
(Z ′, DZ′) be fibrations between connected projective manifoldsX,Z,X ′, Z ′,
equipped with orbifold divisors D,DZ , D

′, DZ′ respectively. We say that
f ′ dominates f if there exists birational morphisms u : X ′ → X, and
v : Z ′ → Z such that v ◦ f ′ = f ◦ u and u∗(D′) = D, v∗(DZ′) = DZ .
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The next lemma is needed to show that all our compactified resolutions
are orbifold birationally equivalent.

Lemma 9.10. — Let f : X → B be an equidimensional fibration with
X and B quasi-projective, X smooth and B normal. Let f : (X,D) →
(B,DB) be a compactified resolution of f : X → (B,DB). If f ′ : (X ′, D′)→
(B′, DB′) is another compactified resolution, then:

(1) There exists a third compactified resolution f ′′ : (X ′′, D′′) →
(B′′, DB′′) dominating the first two ones.

(2) The domination maps u : (X ′′, D′′)→ (X,D) and v : (B′′, DB′′)→
(B,DB) such that v ◦ f ′′ = f ◦u are both orbifold birational equiv-
alences, and the same for u′, v′.

Proof. — Let f be obtained by a modification of a compactification f1 :
X1 → B1 and f ′ by a modification of a compactification f ′1 : X ′1 → B′1. The
existence of f ′′ : (X ′′, D′′)→ (B′′, DB′′) dominating both f, f ′ is obtained
by modifying a fibration f ′′1 : X ′′1 → B′′1 which compactifies f : X → B and
dominates both initial compactifications f1 : X1 → B1 and f ′1 : X ′1 → B′1.
The fact that u, v, u′, v′ are orbifold morphisms and thus orbifold birational
equivalences now follows from Remark 9.8. �

Corollary 9.11. — For a given f : X → B, the smooth pairs (B,DB)
are all birationally equivalent in the orbifold sense, and may be seen as
orbifold resolutions of compactifications of (B,DB).

9.4. Integral parts of orbifold tensors

We recall the construction of orbifold differentials from [4]. Consider a
smooth orbifold pair (Z,D) and local analytic coordinates (z) = (z1, . . . , zn)
near a given point a ∈ Z, centered at a and “adapted” to D, that is such
that the support of D is contained in the union of the coordinate hyper-
planes in the domain of this chart. Thus D has near a an equation with
fractional exponents: 0 = Πj=n

j=1 z
cj

j . This symbolic notation just means that,
in the local coordinates (z), D =

∑j=n
j=1 cj .Hj , where Hj , j = 1, . . . , n is the

coordinate hyperplane of equation zj = 0.
Let m > 0 be an integer. We then define [Tm]Ω1(Z,D), also

written [⊗m]Ω1(Z,D), as the locally free subsheaf of OZ-modules of
⊗mΩ1

Z(log(dDe)) generated by the elements: z−[cJ ].dzj1 ⊗ · · · ⊗ dzjm . Here
J runs over all multi-indices (j1, . . . , jm) ∈ {1, . . . , n}m, and z−[cJ ] =
z
−[k1(J)c1]
1 . . . z

−[kn(J)cn]
n , where, for j = 1, . . . , n, kj(J) is the number of
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occurrences of j in J , that is, the number of k ∈ {1, . . . ,m} such that
jk = j.
So for instance dz⊗m

1

z
[mc1]
1

is among the generators; if m1 is the multiplicity

of the corresponding componend of D this is rewritten as zdm/m1e
1 (dz1

z1
)⊗m.

When the multiplicities are infinite, we obtain the usual logarithmic differ-
entials.
One can easily check that this sheaf is independent from the chosen

adapted coordinates, and so well-defined globally. Although we do not
use this fact here, let us mention that it is also equal to the G-invariant
part [π∗(⊗mπ∗Ω1(Z,D))]G of π∗(⊗mπ∗Ω1(Z,D)), where π : ZD → Z is
any G-Galois Kawamata cover adapted to (Z,D) in the sense of [6]. Here
π∗Ω1(Z,D) is the orbifold differential sheaf of [6] ; some sources use a
different notation, for instance Ω(π,D) in [7].

The sheaves [Sm](Ω1(Z,D)) of symmetric orbifold differentials are de-
fined as the (locally free, saturated) subsheaves of [Tm](Ω1(Z,D)) defined
similarly by the obvious symmetrisation conditions. See [4] for an explicit
description.
These tensors satisfy, just as in the case D = 0, a bimeromorphic invari-

ance property:

Proposition 9.12 ([4, Theorem 3.5]). — Let u : (Z ′, D′) → (Z,D) be
a bimeromorphic orbifold morphism.
Then u∗ : H0(Z, [Tm](Ω1(Z,D)) → H0(Z ′, [Tm](Ω1(Z ′, D′)) is an iso-

morphism, for each m > 0.

Although the proof (which is a simple application of Hartogs theorem)
is given there for rank one subsheaves of the orbifold differential sheaves,
it immediately implies the version given here.

Definition 9.13 ([4]). — Let (X,D) be a smooth orbifold pair with
X connected complex projective, of dimension n. Let m > 0, and L ⊂
[⊗m]Ω1(X,D) be a rank-one coherent subsheaf. For each integer k > 0, let
L⊗k,sat ⊂ [⊗mk]Ω1(X,D) be the saturation of L⊗k. We then define:

κsat
D (X,L) := lim sup

k→+∞

{
Log(h0(X,L⊗k,sat))

Log(k)

}
∈ {−∞, 1, . . . , n}.

As actually stated in [4, Theorem 3.5], we have the following birational
invariance property for rank-one subsheaves:
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Proposition 9.14. — Let u : (X ′, D′)→ (X,D) be a morphism which
is an orbifold birational equivalence between two smooth projective orb-
ifolds. Let L ⊂ [⊗m]Ω1(X,D) and L′ ⊂ [⊗m]Ω1(X ′, D′) be rank-one co-
herent subsheaves. Assume that either L′ := u∗(L), or that L = u∗(L′).
Then:

κsat
D (X,L) = κsat

D′ (X ′,L′).

9.5. Lifting and descent of integral parts of orbifold tensors

The following theorem will be proved in the Appendix.

Theorem 9.15. — Let h : (X,D) → (Z,DZ) be a fibration between
smooth orbifolds such that: h is an orbifold morphism, and (Z,DZ) is its
orbifold base. Let m > 0 be a fixed integer. To shorten the notations,
write EmX := [Tm](Ω1(X,D)), and EmZ := [Tm](Ω1((Z,DZ)). Then, for any
m > 0:

(1) h∗(EmZ ) ⊂ EmX .
(2) Let h∗(EmZ )sat stand for the saturation of h∗(EmZ ) in EmX . Then

h∗(h∗(EmZ ))sat) = EmZ .

Corollary 9.16. — In the situation of Theorem 9.15, for some m > 0,
let LU ⊂ ⊗mΩ1

U be a rank-one subsheaf, where U ⊂ Z is a dense Zariski-
open subset. Let L ⊂ [⊗m](Ω1(X,D)) be such that L|h−1(U) = h∗(LU )sat.
If κsat

D (X,L) > 0, there exists a saturated rank-one subsheaf LZ ⊂
[⊗m](Ω1(Z,DZ)) such that h∗(LZ) ⊂ Lsat, and κsat

DZ
(Z,LZ) = κsat

D (X,L).
In particular, if κsat

D (X,L) = p = dim(Z), then κ(Z,LZ) = p, with
LZ ⊂ [⊗m](Ω1(Z,DZ)).

Proof. — Indeed, one sets LZ = h∗(L)sat. �

In order to prove our isotriviality results, we need this corollary only in
the special case when the multiplicities of D are integral or infinite: indeed
our orbifold structure arising from a foliation assigns integral multiplicities
to the components parameterizing the multiple fibers, and infinite multi-
plicities to the compactifying components. By construction it is clear that
passing to a smooth model we remain in the same special case. This partic-
ular case of Theorem 9.15 and its corollary is proved in [11, Theorem 5.8],
and our method here is similar; we postpone the proof to the Appendix
and refer to [11] for the time being. The main new ingredient of the proof
is Lemma A.1 permitting to deal with rational multiplicities.
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9.6. Special smooth orbifolds, proof of the isotriviality criteria.

Definition 9.17 ([4, Definition 8.1, Théorème 9.9]). — Let (X,D) be a
smooth connected projective(5) orbifold. We say that (X,D) is “special” if,
for any p > 0, and any rank-one subsheaf L ⊂ ΩpX , one has: κsat

D (X,L) < p.

Let now (X,D) be as in the preceding definition, and let g : X 99K Z be
a rational dominant fibration onto a variety of dimension p > 0 (which one
may suppose smooth and projective). We shall always implicitely replace
g : (X,D) 99K Z by a birational smooth model g′ : (X ′, D′) → (Z ′, DZ′)
enjoying the properties 1-5 listed in Proposition 9.5. In order to simplify
notations, we shall also denote g : (X,D) → (Z,DZ) this new “neat”
birational model.

Theorem 9.18. — Let (X,D) be smooth projective and connected. The
following properties are equivalent, if f : X 99K Z is a rational fibration
onto some projective smooth manifold Z of dimension p > 0:

(1) (X,D) is special.
(2) For any p > 0 and any g : X 99K Z, κ(Z,KZ +DZ) < p.

(3) For any p > 0 and any g : X 99K Z, κsat
D (X, g∗(KZ)) < p.

(4) For any p > 0, for any m > 0, for any g : X 99K Z, and for any
coherent rank-one LZ ⊂ ⊗mΩ1

Z , one has κsat
D (X, g∗(LZ)) < p.

(5) For any p > 0, for any m > 0, for any g : X 99K Z as above, and for
any rank-one coherent L ⊂ [⊗m]Ω1(X,D) such that L|g−1(U) =
g∗(LU ) for some Zariski open subset U ⊂ Z and some LU ⊂
g∗(⊗mΩ1

U ), one has κsat
D (X, g∗(LZ)) < p for LZ defined as in Corol-

lary 9.16.

Proof. — The equivalence between properties (1), (2), (3) is established
in [4, Théorèmes 9.9 and 5.3]. The implication 4 ⇒ 3 is immediate. The
reverse implication follows from [6, Theorem 7.11] by a contradiction argu-
ment applied to (Z,DZ), together with Corollary 9.16, last assertion. The
equivalence between properties (4) and (5) follows from Corollary 9.16. �
An important example of special smooth orbifold is given by the follow-

ing:

Theorem 9.19 ([4, Théorème 7.7]). — Let (X,D) be a smooth pro-
jective connected orbifold such that κ(X,KX + D) = 0. Then (X,D) is
special.

(5)The definition makes sense in the compact Kähler, or even class C case.
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Corollary 9.20. — Let f : X → B be a projective fibration between
two connected quasi-projective varieties, X smooth, B normal. Assume
that f has equidimensional connected fibres. Let f : (X,D)→ (B,DB) be
any resolution of f : X → (B,DB) (see Definition 9.6 above). We shall say
that (B,DB) is special if so is (B,DB). This does not depend on the choice
of f : (X,D)→ (B,DB).
We then have, for (B,DB), the equivalence between the 5 properties

listed in Theorem 9.18.
Assume in particular that (B,DB) is special. Let g : B 99K Z be a

fibration with dim(Z) = p, and assume the existence of L ⊂ [⊗m]Ω1(X,D)
with κsat

D
(X,L) = p. If there is a LU ⊂ ⊗mΩ1

U for some Zariski dense open
subset U ⊂ Z such that L|(g◦f)−1(U) = (g ◦ f)∗(LU )sat, then p = 0.

Notice that Lemma 3.4 implies that the specialness of (B,DB) in the
sense of the last corollary is the same as the specialness of the orbifold base
defined in Section 4.
Corollary 9.21. — Let f : X → B be the fibration associated to

an everywhere regular and algebraic foliation F on a connected quasi-
projective manifold X. Assume that the fibres of f have semiample canon-
ical bundle. If the orbifold base (B,DB) of f is special, then f is isotrivial.
In particular if κ(X, det(Ω1

X/F )) = 0, then f is isotrivial.

Proof. — Indeed, consider the smooth base-changed family over X as in
Section 8. There is a Viehweg–Zuo sheaf L ⊂ [Symm]Ω1

X
(Log(D)) associ-

ated to this smooth family. By [12, Theorem 1.8], this sheaf possesses the
property of being generically lifted from a subsheaf of Symm(Ω1

Z), where
Z is the (eventually compactified and modified) image of the moduli map
µ : X → Mod described in Section 6.1, and its Kodaira dimension is equal
to the dimension of Z. But by Lemma 8.2, the map µ factors through B,
and so generically on B there is another subsheaf LU of the symmetric dif-
ferentials which lifts to L over an open subset. Now apply Corollary 9.16 to
extend it to the sheaf LB of saturated Kodaira dimension equal to dim(Z).
The speciality of B implies dim(Z) = 0. This establishes the first claim.
The second one then follows from Theorem 9.19. �

10. Two examples

10.1. Coisotropic submanifolds

Let X ⊂ Y be a compact complex submanifold of a compact connected
Kähler manifold Y of dimension n = 2m carrying a holomorphic symplectic
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2-form s. We say that X is coisotropic (relatively to s) if, for any x ∈ X,
the complex tangent space TxX to X at x contains its s-orthogonal. This
defines an everywhere regular rank r foliation F on X, where r is the
codimension of X in Y . This foliation is often called characteristic foliation.
Every smooth divisor X ⊂ Y is coisotropic, with r = 1, so that it carries

the characteristic foliation of rank one. This was the case studied in [1].
If X is coisotropic, we have: 2m− 2r > 0, and dim(X) = 2m− r > r =

codimY (X). If r = m, X is said to be Lagrangian. A somehow “dual” case
is when X is isotropic (that is, when s vanishes on TxX ∀ x ∈ X). Thus
Lagrangian means both isotropic and coisotropic.
Let X ⊂ Y and s be as above, with X coisotropic. We say that X

is “algebraically coisotropic” if the characteristic foliation F is algebraic.
Such subvarieties appear in the study of “subvarieties of constant cycles” on
holomorphically symplectic varieties, but one has to drop the smoothness
assumption (see [17]).
One of our main motivations for this paper was to generalize the results

of [1], where we have proved that the fibration associated to the characteris-
tic foliation on an algebraically coisotropic smooth divisor is always isotriv-
ial in the projective case, and deduced from this that on an irreducible holo-
morphically symplectic projective manifold Y , there are no non-uniruled
smooth algebraically coisotropic divisors X except in the trivial case when
Y is a K3 surface and X is a curve.
The natural question for higher codimension is as follows: let Y be

an irreducible holomorphically symplectic manifold and X ⊂ Y a non-
uniruled algebraically coisotropic submanifold. Can one conclude that X is
lagrangian?
Our study provides some evidence for the affirmative answer, however

the results are still extremely partial. For instance, one has the following.

Corollary 10.1. — Let X be a projective manifold of dimension d

with an everywhere regular algebraic foliation F of rank r whose leaves
are canonically polarised (or have trivial canonical bundle). If F = Ker(s),
where s is a section s of Ωd−rX ⊗ L, with L ∈ Pic(X) and c1(L) = 0, then
F is isotrivial. Moreover, κ(X) = r in the canonically polarized case and 0
in the trivial canonical bundle case.

Proof. — Indeed, det(Ω1
X/F ) = det(Ω1

X/F ) is then numerically trivial,
since generated by s, and Theorem 4.3 applies. �

A more specific example is the following (the case r = 1 has been estab-
lished in [1]). However in this situation one can show, in the same way as

ANNALES DE L’INSTITUT FOURIER



ISOTRIVIALITY AND SPECIALNESS 2945

in [1], that the fibration associated to F does not have multiple fibers in
codimension one, so that a simpler proof of isotriviality can be given.

Example 10.2. — Let X ⊂ Y be a connected projective coisotropic sub-
manifold of codimension r in a smooth projective manifold Y equipped
with a holomorphic symplectic 2-form s. Let F be the characteristic foli-
ation on X defined as Ker(sr). Assume that the leaves of F are compact
and canonically polarised. Then F is isotrivial and κ(X) = r.
To answer the question raised above, one would need, e.g. in the case

when Y is irreducible hyperkähler, a lower bound for Kodaira dimension of
X: for instance κ(X) > m would be sufficient to derive thatX is lagrangian.
This is the approach from [1], but we do not know whether it might work
for higher-codimensional coisotropic subvarieties.

At this point we can obtain the answer only in some very particular
cases.

Example 10.3. — In the situation of Example 10.2, assume that X is
of general type and KX is ample in restriction to the leaves of F (this is
the case for instance when the normal bundle NX/Y is ample). Then X is
Lagrangian. Indeed: κ(X) = dim(X) > m.

Example 10.4. — In the above situation of Example 10.2, assume that
Y is a simple torus (rather than irreducible hyperkähler). Then X is La-
grangian. Indeed: κ(X) = dim(X) since Y is simple.

10.2. Boundary of codimension at least 2

We consider the following situation: Let X+ be an irreducible (not nec-
essarily normal) complex projective variety of dimension n, let X be the
smooth locus ofX+. Assume that there exists onX an everywhere non-zero
d-closed holomorphic form w of degree m := (n−r) defining an everywhere
regular foliation F := Ker(u) with canonically polarised compact leaves of
dimension r on X, or with compact leaves with trivial canonical bundle.
The m-form w thus descends to a nowhere vanishing m-form v on the
smooth locus of B. Thus v is a nowhere vanishing section of a suitable
power N of KB , if f : X → B is the fibration associated to F , so that B
has only quotient singularities, and its canonical bundle is Q-Cartier. Thus:
w = (f∗(v))⊗N is a generator of (det(Ω1

X/F ))⊗N .
We shall assume also that X+ ⊂ M , where M is a complex space such

thatM reg∩X+ = X, and that w is the restriction toX of a holomorphicm-
form ŵ onM reg, which extends holomorphically on some (or any) resolution
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of the singularities of M . It follows that if δ : X → X+ is an arbitrary
desingularisation, then w extends to a holomorphic m-form w on X (by
taking first an embedded resolution of the singularities of X+, lifting ŵ,
and then observing that the existence of w is independent of the resolution
of X+. It is actually sufficient for the existence of w that w be induced in
local embeddings of X+, instead of a global one X+ ⊂M).

Proposition 10.5. — Assume that X+, X,M,w are as in the above
situation, and that X = X+,reg has complement in X+ of codimension 2
or more. If the leaves of F on X are compact and canonically polarised (or
have trivial canonical bundle), then the family of leaves is isotrivial.

Proof. — Let f : X → B be the proper connected fibration associated
to F on X. This fibration extends naturally to a fibration f : X → B

where B is the normalisation of the (projective) closure in the Chow–
Barlet space of X+ of f(X). Theorem 5.1 shows that we only need to
show that κ := κ(X, det(Ω1

X/F )) = 0 to prove the claim. But the re-
striction to X of det(Ω1

X/F ) is det(Ω1
X/F ), which is generated by w, and

hence trivial. Because w extends to w, we have κ > 0. Let now s be a
section of det(Ω1

X/F )⊗m, for some m > 0. Let s be its restriction to X.
The quotient ϕ := s

wm thus defines a holomorphic function on X. Be-
cause codimX+(X+−X) > 2, ϕ extends as a holomorphic function on the
normalisation of X+, and is thus constant by compactness of X+. Thus
s = ϕ.wm, and κ = 0, as claimed. �

Example 10.6. — Let X+ be a divisor in a connected complex projective
variety M of dimension 2d = n+ 1 equipped with a symplectic two-form s

on some of its resolutions. The form u := sd−1 satisfies the non-vanishing
condition and defines an everywhere regular rank-one foliation F on X. We
can also, more generally, consider X+ of codimension r and coisotropic in
the previous pair (M, s), taking then u = sd−r. The coisotropy condition
means that s has rank r on X.

Corollary 10.7. — Let X+ ⊂ M be complex projective, irreducible,
with M2d equipped with a holomorphic symplectic form s as in Exam-
ple 10.6 above. Let w := sd−r. If X = X+,reg is coisotropic of codimension
r, if codimX+(X+ − X+,reg) > 2, and if the foliation F = Ker(w) has
compact canonically polarised leaves on X (or compact leaves with trivial
canonical bundle), then f is isotrivial.

Example 10.8. — Let S be a K3-surface, C ⊂ S a smooth connected
projective curve of genus g > 1, and k > 2 an integer. Let q : Sk → M :=
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Sk/Sk, where Sk is the permutation group acting on the factors be the
quotient map. Let Q := q ◦ j : C × Sk−1 →M be the natural composition
map, where j : C×Sk is the injection. Let X+ := Q(C×Sk−1) ⊂M be its
image. Let ρ : S[k] → M be the Fogarty resolution by the Hilbert scheme.
The preceding result applies to X+, X,w = sk−1, if s is a symplectic form
on S[k]. Here the isotriviality is obvious by construction, but this shows
that examples which satisfy our quite restrictive conditions do exist.

Appendix A. Proof of Theorem 9.15

Proof. — The first claim of Theorem 9.15 is proved in [4, Proposi-
tion 2.11]. We thus check now the second claim. Notice first that we need
to check this claim only over the complement of a codimension 2 subset S
of Z, because EmZ is locally free. In particular, we can assume that h has
equidimensional fibres over this complement. Finally, the h-horizontal part
of D (that is, the components of D dominating Z) does not play any rôle
here, since f∗(EmZ ) is saturated in EmX over the locus Z−S, S := Supp(DZ).
Indeed, up to a Zariski-closed subset of codimension at least 2 in Z − S,
if D+ = Supp(D) ⊂ X, the fibration h : (X,D+) → Z is smooth over
Z − S in the logarithmic sense, leading to an exact sequence (over Z − S):
0 → h∗(Ω1

Z) → Ω1(X,LogD+) → Ω1
X/Z(D+) → 0 with torsionfree coker-

nel, implying the same property at the level of tensor powers, and a fortiori
for [Tm]Ω1(X,D) ⊂ [Tm]Ω1(X,D+) = ⊗m(Ω1

X(LogD+)).
We may thus choose local coordinates (z1, z

′), z′ := (z2, . . . , zp) on Z,
adapted to DZ , and such that, locally on Z, DZ is supported on Z1, the
divisor of Z of equation z1 = 0, with DZ-coefficient c′ = (1 − 1

m.t ), and
such that for suitable local coordinates x = (x1, x

′ = (x2, . . . , xn)) adapted
to D on a generic point of a component D1 of D such that h∗(Z1) =
t1.D1 + . . . in the local chart of X considered, we have: h(x) = (z1 =
xt11 , z2 = x2, . . . , zp = xp). By the definition of the orbifold base of h, we
also have:

(1) For some component D′ of h−1(Z1), if c = (1− 1
m ) is the coefficient

of D′ in D, and if h∗(Z1) = t.D′ + . . . , we have: the coefficient c′
of Z1 in DZ is c′ := (1− 1

m.t ), introduced above. Moreover:
(2) m′′.t′′ > m.t for any other component D′′ of h−1(Z1), if m′′, t′′ are

defined as for D′. This inequality holds in particular for D1,m1, t1,
with m1, t1 being the above invariants m′′, t′′ when D′′ := D1.

Let now w := dz⊗K
1

z
[k.c′]
1

⊗ (dz′)⊗(m−K) be any one of the generators of
[Tm](Z,DZ), for some 0 6 k 6 m. Here K ⊂ {1, . . . ,m} is a subset
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of cardinality 0 6 k 6 m, m − K its complement there, and dz⊗K1 ⊗
(dz′)⊗(m−K) means the tensor product dzj1 ⊗ · · · ⊗ dzjm

, where jh = 1 if
and only if h ∈ K, while jh ∈ {2, . . . , n} otherwise.

Computing, we get (up to a nonzero constant):

h∗(w) = x
t1.(d k

m.t e)
1 .(dx1

x1
)⊗k.(dx′)⊗(m−k).

But [Tm](X,D) contains the OX -module WX generated by:

wX := dx⊗k1

x
[k.c1)]
1

.(dx′)⊗(m−k) = x
d k

m1
e

1 .

(
dx1

x1

)⊗k
.(dx′)⊗(m−k).

The argument now mainly relies on the following elementary lemma,
where dxe, x ∈ R, denotes the “round-up” of x, that is the smallest integer
greater or equal to x. One also has: dxe = −[−x], where [x] is the usual
integral part:

Lemma A.1. — Let t > 0 be an integer, and x ∈ R. Then:
(1) t.dxt e − dxe ∈ {0, 1, . . . , (t− 1)}.

Let t, t′,m,m′, x be positive real numbers, with t, t′ integers. Then:
(2) N := t′.d x

m.te − d
x
m′ e > 0 if m′.t′ > m.t, and:

(2′) N ∈ {0, . . . , (t′ − 1)} if m.t = m′.t′.

Proof.
(1). — dxt e = x

t + ϑ, ϑ ∈ [0, 1[, thus t.dxt e = x + t.ϑ. Also: dxe = x +
ϑ′, ϑ′ ∈ [0, 1[. Thus: t.dxt e− dxe = t.ϑ−ϑ′ ∈]t,−1[ being an integer, we get
the first claim.
(2). — t′.d x

m.te = t′. xm.t + ϑ = m′.t′

m.t .
x
m′ + ϑ, ϑ ∈ [0, 1[. Moreover: d xm′ e =

x
m′ +ϑ′, ϑ′ ∈ [0, 1[. Since N := t′.d x

m.te−d
x
m′ e = (m

′.t′

m.t −1). xm′ + t′.ϑ−ϑ′ >
t′.ϑ− ϑ′ > −1 is an integer, it is non-negative, as asserted.
(2′) follows from (1), applied to t′, x′ := x

m′ , in place of t, x, since: x
m.t =

x
m′.t′ = x′

t′ . �

From Lemma A.1, and since m1.t1 > m.t, we get that h∗(w) ∈WX , and
that h∗(w) = xτ1 .wX , with τ ∈ {0, . . . , (t1 − 1)} if m1.t1 = m.t.
The support of h∗(h∗(EmZ )sat)/EmZ must then have support of codimen-

sion one contained in DZ . Assume that Z1 for example is contained in
this support. Then h∗(h∗(EmZ )sat)|Z1 ⊂ EmZ (k.Z1) for some minimal inte-
ger k > 0. We will show that k = 0, implying the claim. Assume k > 1,
then h∗(EmZ ) vanishes at order τ > t1 on the component D′ of h−1(Z1)
introduced above, contradicting the inequality τ 6 (t1 − 1) established in
the previous lines. �
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