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REMARKS ON DEGENERATIONS OF
HYPER-KÄHLER MANIFOLDS

by János KOLLÁR, Radu LAZA,
Giulia SACCÀ & Claire VOISIN

Abstract. — Using the Minimal model program, any degeneration of K-
trivial varieties can be arranged to be in a Kulikov type form, i.e. with trivial
relative canonical divisor and mild singularities. In the hyper-Kähler setting, we
can then deduce a finiteness statement for the monodromy acting on H2, once one
knows that one component of the central fiber is not uniruled. Independently of
this, using deep results from the theory of hyper-Kähler manifolds, we prove that a
finite monodromy projective degeneration of hyper-Kähler manifolds has a smooth
filling (after base change and birational modifications). As a consequence of these
two results, we prove a generalization of Huybrechts’ theorem about birational
versus deformation equivalence, allowing singular central fibers. As an application,
we give simple proofs for the deformation type of certain explicit models of pro-
jective hyper-Kähler manifolds. In a slightly different direction, we establish some
basic properties (dimension and rational homology type) for the dual complex of
a Kulikov type degeneration of hyper-Kähler manifolds.
Résumé. — Comme conséquence du Programme du modèle minimal, toute

dégénérescence de variétés projectives à fibré canonique trivial admet une forme
de Kulikov, c’est-à-dire que les singularités de la fibre centrale sont modérées et
le fibré canonique relatif est trivial. Dans le cas hyper-kählérien, on en déduit un
résultat de finitude pour l’action de monodromie sur H2, dès qu’on sait qu’une
composante de la fibre centrale n’est pas uniréglée. Nous montrons par ailleurs,
en utilisant des résultats puissants de la théorie des variétés hyper-kählériennes,
qu’une dégénérescence de variétés hyper-kählériennes à monodromie finie sur H2

admet un remplissage lisse, c’est-à-dire, après changement de base, un modèle
birationnel à fibre centrale lisse. Combinant ces deux résultats, nous obtenons
une version du théorème de Huybrechts sur l’équivalence birationnelle et le type
de déformations, valable pour les familles à fibre centrale singulière. Ce résultat
nous permet de retrouver de façon simple le type de déformations de la plupart
des modèles projectifs connus de variétés hyper-kählériennes. Dans une direction
différente, nous établissons des résultats basiques (dimension et type d’homotopie
rationnelle) concernant le complexe dual de la dégénérescence de Kulikov d’une
variété hyper-kählérienne.

Keywords: Hyper-Kähler manifold, degeneration, deformations, Torelli theorem.
2010 Mathematics Subject Classification: 14B05, 14D05, 14J32, 14E99.
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1. Introduction

The starting point of this note was the study of deformation types of
hyper-Kähler manifolds. By hyper-Kähler manifold we will mean a hyper-
Kähler manifold which is also compact and irreducible. Recall the following
fundamental result due to Huybrechts:

Theorem 1.1 (Huybrechts [32]). — Let X and X ′ be two birationally
equivalent projective hyper-Kähler manifolds. Then X and X ′ are defor-
mation equivalent. (More precisely, X and X ′ have arbitrarily small defor-
mations that are isomorphic to each other.)

Equivalently, if X → ∆ is a family of smooth hyper-Kähler manifolds
with central fiber X0 bimeromorphic to a hyper-Kähler manifold X ′0, then
the fibers Xt are deformation equivalent to X ′0. One of the results of our
paper is a version of the last statement allowing a singular fiber X0, at
least if the fibers are projective. Specifically, the following holds:

Theorem 1.2. — Let X → ∆ be a projective morphism withXt smooth
hyper-Kähler for t 6= 0. Assume that at least one irreducible reduced (that
is, multiplicity 1) component of the central fiber is birational to a smooth
hyper-Kähler manifold X ′0. Then the smooth fibers Xt are deformation
equivalent to X ′0.

Theorem 1.2 is very useful in practice, as there are many examples of
degenerating families of hyper-Kähler manifolds with the central fiber bira-
tional to a hyper-Kähler manifold. In fact, as explained below, this theorem
significantly simplifies arguments given in [14, 50], and other papers (see
Section 6) about the deformation type of certain explicit projective models
of hyper-Kähler manifolds.

Theorem 1.2 is a generalization of Huybrechts’ theorem but the latter
is in fact very much used in the proof. Namely, the proof of Theorem 1.2
follows from Huybrechts’ theorem using the following new result.

Theorem 1.3. — Let X → ∆ be a projective morphism with general
fiber Xt a smooth hyper-Kähler manifold. Assume that at least one irre-
ducible component of the central fiber X0 is not uniruled. Then after a
finite base change S → ∆, the family XS := X ×∆S → S is bimeromorphic
over S to a family π′ : X ′ → S that is smooth and proper over S with
projective hyper-Kähler fibers.

Remark 1.4. — The assumption on the central fiber is satisfied if the
desingularization of one irreducible component V of X0 has a generically
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nondegenerate holomorphic 2-form and this is the main situation where we
will apply the theorem. Note that with this stronger assumption, Theo-
rem 1.3 was previously announced by Todorov [75].

Remark 1.5. — In the assumptions of Theorem 1.3, we did not ask that
the considered irreducible component V be reduced. This is because after
base change and normalization, we can remove multiplicities, still having a
component satisfying the main assumption, but now reduced. In this pro-
cess, the considered component V , when it has multiplicity > 1, is replaced
by a generically finite cover of V , hence it is not in general birational to V .
This is why we need the multiplicity 1 assumption in Theorem 1.2, whose
statement actually involves the birational model of X0.

A first important step in the proof of Theorem 1.3 is the following result:

Theorem 1.6. — Let X → ∆ be a projective morphism with general
fiber Xt a smooth hyper-Kähler manifold. Assume that at least one ir-
reducible component of the central fiber X0 is not uniruled. Then, the
monodromy action on the degree 2 cohomology of the smooth fiber Xt is
finite.

Once one has finiteness of the monodromy acting on H2, Theorem 1.3
is a consequence of the following variant of Theorem 1.3 whose proof uses
the surjectivity of the period map proved by Huybrechts and Verbitsky’s
Torelli theorem (see [78], and also [33]).

Theorem 1.7. — Let X → ∆ be a projective morphism with general
fiber Xt a smooth hyper-Kähler manifold. Assume the monodromy acting
on H2(Xt,Q) is finite. Then after a finite base change S → ∆, the family
XS := X ×∆S → S is bimeromorphic over S to a family π′ : X ′ → S which
is smooth proper over S with projective hyper-Kähler fibers.

Remark 1.8. — Let us emphasize that this is a result specific to hyper-
Kähler manifolds. There are examples of families of Calabi–Yau varieties
for which the monodromy is finite, but not admitting a smooth filling after
base change. The first example is due to Friedman [18] who noticed that a
generic degeneration to a quintic threefold with an A2 singularity has finite
order monodromy. Wang [81, §4] then checked that there is no smooth
projective filling. Another example, this time for Calabi–Yau fourfolds, is
that of a Lefschetz 1-nodal degeneration of a sextic hypersurface in P5 which
is treated in [79]. For this example, Morgan [56] shows that the monodromy
is finite in the group of isotopy classes of diffeomorphisms of the smooth
fibers Xt, so that after finite base change, the family admits a C∞ filling.
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It is proved in [79] that the base-changed family does not admit a filling
with a smooth Moishezon fiber for any base change.

Theorem 1.7 tells us that under the same assumptions on X → ∆, there
is, after base change, a family X ′ → ∆ birationally equivalent to X over
∆, with smooth central fiber. The monodromy action on the whole co-
homology of the fiber X ′t is thus finite. With a little more work, we will
prove in Section 4 that the monodromy action on the whole cohomology
of the original fiber Xt is also finite (see Corollary 4.2). (Note that Xt

and X ′t are isomorphic in codimension 1, but they typically differ in higher
codimensions.)
Theorem 1.6 rests on the application of the minimal model program

(MMP) (see Section 2) to understanding the degenerations of K-trivial
varieties (such as Calabi–Yau or hyper-Kähler manifolds). For a long time
it was understood that the MMP plays a central role in this enterprise.
Namely, the model result here is the Kulikov–Persson–Pinkham (KPP)
Theorem which says that a 1-parameter degeneration of K3 surfaces can
be arranged to be a semistable family satisfying the additional condition
that the relative canonical class is trivial. As an application of this result,
one obtains control of the monodromy for the degenerations of K3 surfaces
in terms of the central fiber and then a properness result for the period
map. In higher dimensions, the analogue of the KPP theorem is that any
1-parameter degeneration of K-trivial varieties can be modified such that
all the fibers have mild singularities and that the relative canonical class
is trivial (this is nothing but a relative minimal model). More precisely, a
higher dimensional analogue of the KPP theorem is given by Fujino [21]
and Lai [48] (building on [7]). We state a refinement of Fujino’s result in
Theorem 2.1, which provides some additional control on the behavior of
the central fiber under the semistable reduction (needed to achieve mild
singularities), followed by the minimal model program (needed to achieve
K-triviality).

To complete the proof of Theorem 1.6, we use the fact that the singular-
ities occurring in the MMP are mild from a cohomological point of view.
This follows by combining the results of Kollár–Kovács [38] and Steen-
brink [73], which give a vast generalization and deeper understanding of
the results of Shah [70, 71] on degenerations of K3 surfaces. These ar-
guments apply to degenerations of any K-trivial varieties, but since the
cohomologically mild condition refers only to the holomorphic part of the
cohomology (i.e. the Hk,0 pieces of the Hodge Structure), controlling the
monodromy in terms of the central fiber is possible only for H1 and H2
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(see Theorems 3.6 and 1.6 for the case of hyper-Kähler fibers). Since the
degree 2 cohomology controls the geometry of hyper-Kähler manifolds, we
obtain in Section 4 the much stronger result (that can not follow from
general MMP) that certain degenerations of hyper-Kähler manifolds have
smooth fillings.
As explained above, the smooth filling of finite monodromy degenera-

tions (Theorem 1.7) is a result specific to hyper-Kähler manifolds. The
proof given in Section 4 depends on deep properties (Torelli and surjectiv-
ity) of the period map. In Section 5, we give a completely different proof of
Theorems 1.3 and 1.7, which again depends on specific results in the geom-
etry of hyper-Kähler manifolds. Specifically, starting with a degeneration
of hyper-Kähler manifolds X/∆ with a component of the central fiber not
uniruled, by applying the MMP results of Section 2 and ideas similar to
those in Section 3, we conclude that the central fiber X0 can be assumed to
have symplectic singularities in the sense of Beauville [5]. The rigidity re-
sults of Namikawa [62, 63] then allow us to conclude that the degeneration
can be modified to give a smooth family.
Theorem 1.2, and even its weaker version Theorem 1.7 are very useful in

practice and we will devote Section 6 to describing a number of geometric
examples. The most important one, which was the original motivation for
this paper, is the case of the intermediate Jacobian fibration associated to
a cubic fourfold. Specifically, we recall that in [50] we have given, starting
with a cubic fourfold W , a construction of a 10-dimensional hyper-Kähler
manifold X compactifying the intermediate Jacobian fibration associated
to the family of smooth hyperplane sections ofW . We then proved, via deli-
cate geometric arguments ([50, §6]), that when the cubic fourfold is Pfaffian,
the so-constructed hyper-Kähler manifold specializes well and is birational
to an O’Grady’s 10-dimensional exceptional hyper-Kähler manifold (whose
deformation class is referred to as OG10 in this paper). By Huybrechts’
theorem [32, Thm. 4.6] (Theorem 1.1 above), we concluded that our com-
pactified intermediate Jacobian fibrations are deformation equivalent to
OG10. While our arguments in [50] establish the desired result, they are
somewhat convoluted and obscure, as Pfaffian geometry is beautiful but so-
phisticated. As observed by O’Grady and Rapagnetta ([65]) even before we
started working on [50], another degeneration linking in a more direct way
the intermediate Jacobian fibration to OG10 varieties consists in special-
izing the intermediate Jacobian fibration in the case where W degenerates
to the secant variety of the Veronese surface in P5 (see Section 6.3). There
is however a serious obstruction to realize this program: starting with a
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well-understood or mild degeneration of cubic fourfolds W/∆, the corre-
sponding degeneration of the associated family of hyper-Kähler manifolds
X/∆ can be quite singular, and a priori hard to control. This is a common
occurrence that can be already observed on the family of Fano varieties of
lines of cubic fourfolds when the cubic acquires a node: mild degenerations
of the cubic fourfold lead to families of associated hyper-Kähler manifolds
X/∆ where both the central fiber X0 and the family X are quite singular.
So even if X0 is birational to a known hyper-Kähler manifold, due to the
singularities, it is a priori difficult to conclude that the general fiber Xt

is deformation equivalent to the given type. In [50], we avoided this issue
following Beauville and Donagi [6] by specializing to general Pfaffian cubics
(for which our construction has smooth specialization), while in [14], where
another similar example was studied, an explicit resolution of the associ-
ated degeneration of hyper-Kählers X/∆ was found. Theorem 1.2 gives a
uniform and simplified treatment of all these examples.

Remark 1.9. — For the geometric applications we consider in this paper,
checking finiteness of monodromy (see Theorem 1.7) is quite easy and can
be done directly, as we will explain case by case for completeness. This is
due to the fact that we are considering (a family of) badly degenerating
hyper-Kähler manifolds associated to (a family of) mildly degenerating
Fano hypersurfaces, for which the finiteness of monodromy is clear.

In the final section, we make some remarks on the degenerations of hyper-
Kähler manifolds with infinite monodromy. Let us start by recalling the
notion of Type for a degeneration.

Definition 1.10. — Let X ∗/∆∗ be a projective degeneration of hyper-
Kähler manifolds (including the K3 case). Let ν ∈ {1, 2, 3} be the nilpo-
tency index for the associated monodromy operator N on H2(Xt) (i.e.
N = log Tu, where Tu is the unipotent part of the monodromy T = TsTu).
We say that the degeneration is of Type I, II, or III respectively if ν = 1, 2, 3
respectively.

For degenerations ofK3 surfaces, a well known result (Theorem 7.1) gives
a precise classification of the central fiber of the degeneration depending
on Type. Theorem 1.7 gives a strong generalization of the Type I case of
this classification (i.e. finite monodromy implies the existence of smooth
fillings). For the remaining Type II and III cases, we have weaker results,
but which we believe to be of independent interest. Specifically, our focus
is on the topology of the dual complex, a natural combinatorial gadget
associated to semistable degenerations (or more generally dlt degenerations,
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by which we understand (X , Xt) is dlt for every t ∈ ∆, where dlt (divisorial
log terminal) is as in [39, Def. 2.7]; see also the appendix for a brief review).

Theorem 1.11. — Let X/∆ be a minimal dlt degeneration of 2n-dimen-
sional hyper-Kähler manifolds. Let Σ denote the dual complex of the central
fiber (and |Σ| its topological realization). Then

(1) dim |Σ| is 0, n, or 2n iff the Type of the degeneration is I, II, or
III respectively (i.e. dim |Σ| = (ν − 1)n, where ν ∈ {1, 2, 3} is the
nilpotency index of the log monodromy N).

(2) If the degeneration is of Type III, then |Σ| is a simply connected
closed pseudo-manifold, which is a rational homology CPn.

A few comments are in order here. First, this is clearly a (weak) general-
ization of Kulikov’s theorem which states that for K3 surfaces, |Σ| is either
a point, an interval, or S2 depending on the Type of the degeneration. Sec-
ondly, we note that under the assumption of minimal dlt degeneration, the
dual complex is a well defined topological space (cf. [17, 59, 64]). There is a
significant interest in the study of the dual complex |Σ| in connection with
the SYZ conjecture in mirror symmetry, especially in the context of the
work of Kontsevich–Soibelman [43, 44]. In the strict Calabi–Yau case, it is
expected that for maximal unipotent (MUM) degenerations |Σ| is home-
omorphic to the sphere Sn (in any case, it is always a simply connected
rational homology Sn). The case n = 2 follows from Kulikov’s Theorem,
and the cases n = 3 and (assuming simple normal crossings) n = 4 were
confirmed recently by Kollár–Xu [42]. Theorem 1.11 follows by arguments
similar to the Calabi–Yau case (esp. [42, 64]) and a result of Verbitsky [77],
which identifies the cohomology subalgebra generated by H2 for a hyper-
Kähler manifold. We also note that the occurrence of CPn in Theorem 1.11
(see Theorem 7.13 for a more general statement) is in line with the predic-
tions of mirror symmetry. Namely, in the case of hyper-Kähler manifolds,
the base of the Lagrangian fibration occurring in SYZ can be (conjecturally)
identified with the base of an algebraic Lagrangian fibration, and thus ex-
pected to be CPn (see pages 2869–2870 for a discussion).

We close by noting that in passing (in our study of dual complexes for
hyper-Kähler degenerations) we partially confirm a Conjecture of Nagai [60]
on the monodromy action on higher cohomology groups of hyper-Kähler
manifolds (see Theorem 7.5 for a precise statement). Nagai has previously
verified the conjecture for degenerations coming from Hilbert schemes of
K3 surfaces or generalized Kummer varieties.
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2. Relative minimal models for degenerations of K-trivial
varieties (aka Kulikov models)

The Kulikov–Persson–Pinkham Theorem ([46, 67]) states that any de-
generation ofK3 surfaces can be modified (after base change and birational
transformations) to be semistable with trivial canonical bundle. In higher
dimensions, the Minimal Model Program (MMP) guarantees for degenera-
tions of K-trivial varieties the existence of a minimal dlt model X/∆ (i.e.
KX ≡ 0, and (X , Xt) is dlt for any t ∈ ∆; see Definition A.1 for dlt). The
statement needed in this paper is due to Fujino [21, Thm. I]. The following
is a version of Fujino’s theorem with a focus on the relationship between
the central fiber of the original degeneration and the central fiber in the
resulting minimal dlt model (in particular we note that any non-uniruled
component will survive in the resulting minimal dlt model):

Theorem 2.1. — Let f : X → C be a projective morphism to a smooth,
projective curve C. Assume that

(i) the generic fiber Xg is irreducible and birational to a K-trivial
variety with canonical singularities and

(ii) every fiber Xc has at least one irreducible component X∗c that is
not uniruled.

Then there is a finite, possibly ramified, cover π : B → C and a projective
morphism f ′ : Y → B with the following properties:

(0) Y is birational to B ×C X (and the birational map commutes with
the projections to B),
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(1) the generic fiber Yg is aK-trivial variety with terminal singularities,
(2) every fiber Yb is a K-trivial variety with canonical singularities, and
(3) if X∗c has multiplicity 1 in Xc then Yb is birational to X∗c for b ∈

π−1(c).

Remark 2.2. — As a simple consequence of this theorem, we see that
there can be at most one non-uniruled component for the central fiber of
a degeneration of K-trivial manifolds.

Proof of Theorem 2.1. — By the semistable reduction theorem, there is
a finite ramified cover π : B → C such that fB : B×C X → B is birational
to a projective morphism q : Z → B whose fibers are either smooth or
reduced simple normal crossing divisors. Moreover, for b ∈ π−1(c) the fiber
Zb has at least one irreducible component Z∗b that admits a generically
finite, dominant morphism ρb : Z∗b → X∗c . The degree of ρb divides the
multiplicity of X∗c in Xc. Thus if the multiplicity is 1 then ρb is birational.
By assumption the generic fiber is birational to a variety with canonical

singularities and semiample canonical class. (This is called a good minimal
model; in our case some multiple of the canonical class is actually trivial.)
Thus by [48, Thm.4.4] (see also [21]) the minimal model program for q :
Z → B terminates with a model f ′ : Y → B such that Y has terminal
singularities and KY is f ′-nef.

A general fiber of f ′ has terminal singularities and nef canonical class
and it is also birational to a K-trivial variety. Thus general fibers of f ′
are K-trivial varieties by [35] (see Corollary 2.6 for a precise statement).
Therefore the canonical class KY/B is numerically equivalent to a linear
combination of irreducible components of fibers. A linear combination of
irreducible components of fibers is nef iff it is numerically trivial (hence a
linear combination of fibers). Thus KY/B is numerically f ′-trivial.

The key point is to show that the fibers of f ′ : Y → B are irreducible
with canonical singularities. In order to do this, pick b ∈ B. By assumption
(Z,Zb) is a simple normal crossing (hence dlt) pair and Zb is numerically
q-trivial. Thus every step of the KZ-minimal model program for q : Z → B

is also a step of the (KZ+Zb)-minimal model program for q : Z → B. Thus
(Y, Yb) is dlt (cf. [37, 1.23]), in particular, every irreducible component of Yb
is normal (cf. [20, §3.9] or [37, 4.16]). The exceptional divisors contracted
by a minimal model program are uniruled by [36, 5-1-8]. Thus Z∗b is not
contracted and so it is birational to an irreducible component Y ∗b ⊂ Yb
which is therefore not uniruled. Write Yb = Y ∗b +Y ◦b The adjunction formula
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(cf. [37, §4.1]) now gives that

KY ∗
b
∼
(
KY/B + Y ∗b

)
|Y ∗

b
∼
(
KY/B − Y ◦b

)
|Y ∗

b
∼ −Y ◦b |Y ∗b .

(Note that in general we could have an extra term coming from singularities
of Y along a divisor of Y ∗b but since (Y, Yb) is dlt and Yb is Cartier, this does
not happen, cf. [37, 4.5.5].) If Y ◦b 6= 0 then −KY ∗

b
is effective and nonzero,

hence Y ∗b is uniruled by [55]; a contradiction. Thus Yb = Y ∗b is irreducible.
By the easy direction of the adjuction theorem (cf. [37, 4.8]) it has only klt
singularities and numerically trivial canonical class.
Let τb : Y cb → Yb be the canonical modification of Yb (cf. [37, 1.31]).

If τb contracts at least 1 divisor then KY c
b
∼ τ∗bKYb

− E where E is a
positive linear combination of the τb-exceptional divisors. As before, we
get that −KY c

b
is effective and nonzero, hence Y cb is uniruled by [55]; a

contradiction.
Thus τb is an isomorphism in codimension 1 and so KY c

b
∼ τ∗bKYb

. Since
KY c

b
is τb-ample, this implies that τb is an isomorphism. Hence Yb has

canonical singularities, as claimed. �

Remark 2.3. — In general, the above construction gives a model Y →
B whose general fibers are only birational to the corresponding fibers of
X → C. We can modify the construction in order to leave the general
fibers unchanged. Assume first that general fibers of f are smooth K-trivial
manifolds over an open subset C0 ⊂ C. (This is the only case that we use
in this note.) We can then choose B×C X → Z to be an isomorphism over
π−1(C0) and the minimal model program is then also an isomorphism over
π−1(C0). Thus we get f ′ : Y → B that is isomorphic to fB : B ×C X → B

over π−1(C0).
In general, assume that the generic fiber of f is a K-trivial variety with

Q-factorial terminal singularities. Let C0 ⊂ C be an open subset such that
f−1(C0) has Q-factorial terminal singularities. Let DP := X \ f−1(C0),
with reduced structure. First construct a dlt modification (cf. [37, 1.34]) of
(X,DP ) to get (X ′, D′P )→ C and then pick any π : B → C such that, for
every c ∈ P , the multiplicities of all irreducible components of X ′c divide
the ramification index of π over c. After base-change and normalization we
get a model q : Z → B such that (Z,Zb) is locally a quotient of a dlt pair
for every b ∈ B. (See [17, §5] for the precise definition of such qdlt pairs
and their relevant properties.) The rest of the proof now works as before
to yield f ′ : Y → B that is isomorphic to fB : B×C X → B over π−1(C0).

Remark 2.4. — In the above proof it is essential that C be an alge-
braic curve. However, one can use [41] to extend the theorem to the cases
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when C is either a smooth Riemann surface or a Noetherian, excellent,
1-dimensional, regular scheme over a field of characteristic 0. However,
even when C is a smooth Riemann surface, we still need to assume that
f : X → C is at least locally projective, though this is unlikely to be
necessary.

The following results are contained in [35], but not explicitly stated there.
For completeness, we state what has been used in the proof of the Theo-
rem 2.1 above.

Lemma 2.5. — Let Xi (for i = 1, 2) be projective varieties with canon-
ical singularities and nef canonical classes. Let pi : Y → Xi be bira-
tional morphisms. Then p∗1KX1 ∼Q p∗2KX2 . (That is, the birational map
X1 99K X2 is crepant in the terminology of [37, 2.23]).

Proof. — We may assume that Y is normal and projective. Thus KY ∼
p∗iKXi

+Ei where Ei is pi-exceptional and effective since Xi has canonical
singularities. Thus E1 −E2 ∼Q p

∗
2KX2 − p∗1KX1 is p1-nef and −(p1)∗(E1 −

E2) = (p1)∗(E2) is effective. Thus −(E1 − E2) is effective by [40, 3.39].
Reversing the roles of p1, p2 gives that −(E2 − E1) is effective, hence
E1 = E2. �

Corollary 2.6. — Let Xi be birationally equivalent projective vari-
eties with canonical singularities. Assume that KX1 ∼Q 0 and KX2 is nef.
Then KX2 ∼Q 0. �

3. Cohomologically mild degenerations and Proof of
Theorem 1.6

We first give an elementary proof of Theorem 1.6.
Proof of Theorem 1.6. — Let X → ∆ be as in Theorem 1.6, with hyper-

Kähler fibers of dimension 2n. According to Theorem 2.1, completed by
Remarks 2.3 and 2.4, we can find (after a finite base change) a model
π′ : X ′ → ∆ isomorphic to X → ∆ over ∆∗ and such that the fiber X ′0 has
canonical singularities. The morphism π′ is projective and we can choose a
relative embedding X ′ ⊂ ∆×PN . Let H ⊂ PN be a general linear subspace
of codimension 2n − 2. Then S0 := H ∩ X ′0 is a surface with canonical
singularities and for t 6= 0, St := H ∩ Xt is smooth (after shrinking ∆ if
necessary). The family S/∆ := X ′ ∩ (∆ ×H) is thus a family of surfaces
with smooth general fiber and central fiber with canonical singularities,
hence the monodromy acting on H2(St,Z), t 6= 0 is finite. Indeed, a family
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of surfaces over the disk with central fiber having canonical (or du Val)
singularies, can be simultaneously resolved after a finite base change. On
the other hand, for t 6= 0, the restriction map

H2(Xt,Z)→ H2(St,Z)

is injective by hard Lefschetz, and commutes with the monodromy action.
It follows that the monodromy acting on H2(Xt,Z), t 6= 0, is also finite. �

Remark 3.1. — The same argument shows that in a projective degen-
eration X → ∆ with smooth general fiber and special fiber X0 satisfying
codim(SingX0) > k, the monodromy acting on H l(Xt,Z) is trivial for
l < k. For k = 2, we can also observe that we only use the assumption that
the central fiber is smooth in codimension one and du Val in codimension 2.

We are now going to discuss the result above from the viewpoint of
Hodge theory and differential forms (similar arguments will be used again
in Sections 5 and 7 below). The standard tool for studying 1-parameter
degenerations X/∆ of Kähler manifolds is the Clemens–Schmid exact se-
quence ([11]). Specifically, this establishes a tight connection between the
mixed Hodge structure (MHS) of the central fiber and the limit mixed
Hodge Structure (LMHS), which depends only on the smooth family (and
not on the central fiber filling). As an application of this, under certain as-
sumptions, one can determine the index of nilpotency for the monodromy
N = log T for a degeneration purely in terms of the central fiber X0 (e.g.
as an application of Kulikov–Persson–Pinkham Theorem and Clemens–
Schmid exact sequence, one obtains the properness of the period map for
K3 surfaces). The big disadvantage of the Clemens–Schmid sequence is that
it assumes that X/∆ is a semistable family, which is difficult to achieve in
practice. For surfaces, Mumford and Shah [70] proved that one can allowX0
to have mild singularities (called “insignificant limit singularities”, which
in modern terms is the same as Gorenstein semi-log-canonical (slc) singu-
larities in dimension 2) and still get a tight connection between the MHS
on X0 and the LMHS. Shah’s method was based on constructing explicit
semistable models for this type of singularities and reducing to Clemens–
Schmid. Steenbrink noticed however that the true reason behind the close
relationship between the MHS on the central fiber and the LMHS is the fact
that Shah’s insignificant singularities are du Bois. Specifically, we recall:
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Definition 3.2 (Steenbrink [73]). — We say X0 has cohomologically
insignificant singularities, if for any 1-parameter smoothing X/∆, the nat-
ural specialization map

spk : Hk(X0)→ Hk
lim

is an isomorphism on Ip,q-pieces (where Ip,q denotes the Deligne’s compo-
nents of the MHS) with p · q = 0.

Theorem 3.3 (Steenbrink [73]). — If X0 has du Bois singularities, then
X0 has cohomologically insignificant singularities.

In other words, the original Shah [70] theorem said that if X0 has in-
significant limit singularities (equivalently Gorenstein slc in dimension 2)
then X0 has cohomologically insignificant singularities. While Steenbrink
noticed that the correct chain of implications is actually:

insignificant limitsingularities⇒ du Bois singularities
⇒ cohomologically insignificantsingularities.

Three decades later, coming from a different motivation, Kollár–Kovács [38]
(building on previous work by Kovács [45] and others) have given a vast
generalization of Shah’s result:

Theorem 3.4 (Kollár–Kovács [37, 6.32], [38]). — Let X0 be a variety
with slc singularities. Then X0 has du Bois singularities.

We immediately get the following consequence which will be improved
later on:

Corollary 3.5. — Let f : X → ∆ be a projective morphism. Assume
that the generic fiber Xt is a smooth hyper-Kähler manifold and that the
special fiber X0 has canonical singularities and H2,0(X0) 6= 0. Then the
monodromy acting on H2(Xt), t 6= 0, is finite.

Proof. — By Theorem 3.4, the central fiber X0, having canonical sin-
gularities (in fact, log canonical suffices), is du Bois. By Theorem 3.3, it
follows that any degeneration is cohomologically insignificant, i.e. the nat-
ural specialization map H2(X0) → H2

lim is an isomorphism on the Ip,q
pieces with p.q = 0. The assumption is that I2,0(H2(X0)) 6= 0. Since
dim I2,0

lim + dim I1,0
lim + dim I0,0

lim = h2,0(Xt) = 1, the only possibility is that
H2(X0) and H2

lim are both pure and agree on the (2, 0) and (0, 2) parts.
In other words, H2,0

lim and its complex conjugate are contained in the mon-
odromy invariant part H2

inv of H2
lim. The Hodge structure on H2

inv is pure
with h2,0 = 1 and the restriction to H2

inv of the monodromy invariant
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pairing determined by the class l of a relatively ample line bundle is non-
degenerate. By the Hodge index theorem, MZ = (H2

inv)⊥ ∩H2
lim,Z ⊂ H2

lim,Q
is a negative definite lattice. In particular, O(MZ) is a finite group and, as
the monodromy action on H2

lim factors up to a finite group through O(MZ),
it is finite. �

To strengthen the previous corollary, we consider the situation coming
from the KSBA theory of compactifications of moduli. Namely, we are in-
terested in degenerations (flat and proper) X/∆ which have the property
that KX is Q-Gorenstein and the central fiber (is reduced and) has slc
singularities. We call such X/∆ a KSBA degeneration. If we assume addi-
tionally that KX is relatively nef, we call it a minimal KSBA degeneration.
The total space of such a degeneration will have canonical singularities,
and if needed, one can apply a terminalization, and obtain the so called
minimal dlt model.

Theorem 3.6. — Let X/∆ be a projective degeneration of hyper-
Kähler manifolds. Assume that X/∆ is a minimal KSBA degeneration (i.e.
KX ≡ 0 and X0 is slc). Then the following are equivalent:

(1) The monodromy action on H2(Xt) is finite.
(2) The special fiber X0 has klt singularities (or equivalently, since

Gorenstein degeneration, canonical singularities).
(3) The special fiber X0 is irreducible and not uniruled (which in turn

is equivalent to X0 having a component that is not uniruled).

Remark 3.7. — The assumptions of K-triviality and minimality are
clearly essential: a degeneration of curves to compact type has finite mon-
odromy, but slc central fiber. Similarly, the blow-up of a family of elliptic
curves gives a counterexample if we remove the minimality assumption.

In the proof of Theorem 3.6, as well as in Sections 5 and 7, we will use
the following result of Verbitsky.

Theorem 3.8 (Verbitsky [9], [77, Thm. 1.5]). — Let X be a hyper-
Kähler manifold of dimension 2n. For every k = 1, . . . , n, the natural mor-
phism

SymkH2(X)→ H2k(X)

is injective.

Proof of Theorem 3.6. — The equivalence between (2) and (3) is due
to Fujino [21, Thm. II] (depending heavily on [55]); see also the proof of
Theorem 2.1.
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The implication (2) =⇒ (1) is similar to Corollary 3.5. Namely, a vari-
ety X0 with klt singularities has a pure Hodge structure on H1(X0) and
H2(X0). This follows from the extension of holomorphic forms on such va-
rieties (see [22]), and it is worked out in Schwald [69]. Since, klt varieties
are du Bois, it follows that the limit MHS in degree 2 is pure. As before,
this is equivalent to the monodromy being finite.
To conclude the proof, it remains to see that if the monodromy is finite,

the central fiber X0 has to be klt. This follows from arguments given in
Kollár–Xu [42, §4] and Halle–Nicaise [30, §3.3, esp. Thm. 3.3.3]. For com-
pleteness, we sketch the proof. Assume thus that X0 is not klt. After possi-
bly changing to a minimal dlt model, we see that X0 has several irreducible
components (since X0 is not klt), and that each of the components of X0
are log Calabi–Yau varieties (V,D) with D 6≡ 0. Since D is an effective anti-
canonical divisor, we conclude that V is uniruled. On the other hand, by
adjunction, we see that D is a K-trivial variety. We have two possibilities:
either D has canonical singularities, or D is strictly log canonical. (For ex-
ample, for a degenerations of K3 surfaces, the connected components of D
are either elliptic curves or cycles of rational curves. Furthermore, in the lat-
ter case, each irreducible component is rational with 2 marked points, and
thus log Calabi–Yau.) Consider first the case that D has canonical singu-
larities. For simplicity, we will further assume that D is connected and thus
irreducible. (In general, D has at most two disconnected components [42,
§32, §16], and the situation can be handled by similar arguments.) Under
these assumptions, there are two things to notice. First, V has canonical
singularities and it is uniruled, and thus there is no top holomorphic form on
it, giving I2n,0(H2n(V )) = 0. On the other hand, D has canonical singulari-
ties, and it isK-trivial. Thus, I2n−1,0(H2n−1(D)) 6= 0. Now the cohomology
of X0 is computed by a Mayer–Vietoris spectral sequence from the coho-
mology of the components V and of the intersection strata D (under our
assumptions, there are only codimension 1 strata). In is immediate to see
that I2n,0(H2n(X0)) = 0 and I2n−1,0(H2n(X0)) 6= 0 (as in Corollary 3.5,
it holds

∑
dim Ip,0(H2n(X0)) = 1). Using again slc =⇒ du Bois =⇒ coho-

mologically insignificant, we conclude I2n,0(H2n
lim) = I2n,0(H2n(X0)) = 0.

Using Verbitsky’s Theorem 3.8, it follows that the Hodge structure on H2
lim

is not pure (if H2
lim were pure, then I2,0H2

lim 6= 0, which in turn would give
I2n,0H2n

lim 6= 0, a contradiction). This means that the monodromy action on
H2(Xt) is not finite, concluding the proof (under our assumptions on D).
The argument above carries through in the general case. The key point is

that only the top dimensional components V of (the natural
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stratification of) X can contribute to I2n,0(H2n(X0)). In fact, inductively,
we can define X [0]

0 to be the disjoint union of the components V , X [1]
0 to be

the disjoint union of the components of the double locus (or equivalently
the log canonical center) D, and so on (cf. Appendix). Then, one can see
that I2n−k,0(H2n(X0)) 6= 0 precisely for the deepest codimension k stratum
X

[k]
0 6= ∅. Namely, as before, X [k]

0 is K-trivial with canonical singularities,
while the higher dimensional strata X [l]

0 (l < k) are uniruled. Then, the
claim follows via a spectral sequence analysis as is [42, Claim 32.1] and [42,
(32.2)]. (Since we are interested only in the holomorphic part of the co-
homology, one can work as if X0 is simple normal crossings. The precise
statements in the dlt situation are discussed in Appendix A, see esp. Corol-
lary A.6.) �

We conclude this section with another proof of Theorem 1.6.
Second proof of Theorem 1.6. — By Theorem 2.1, after finite base

change and birational transformations, we arrive at a minimal dlt model
such that the central fiber consists of a unique non-uniruled component
with canonical singularities. By Theorem 3.6, the monodromy acting on
H2(Xt) is finite. �

4. Proof of Theorems 1.2, 1.3 and 1.7

Proof of Theorems 1.3 and 1.7. — Let X → ∆ be a projective mor-
phism with smooth hyper-Kähler fibers over ∆∗, satisfying the hypothesis
of Theorem 1.3. By assumption, one component of the central fiber is not
uniruled. By Theorem 1.6, after performing a finite base change, we can
assume that the monodromy acting on H2(Xt), t 6= 0, is trivial. We are
now reduced to the situation of Theorem 1.7. Using a relatively ample line
bundle on X → ∆, the fibers Xt are projective with a given polarization
l := c1(L|Xt

). Let q be the Beauville–Bogomolov form on H2(Xt0 ,Q) for
some given t0 ∈ ∆∗ and let

Dl = {η ∈ P(H2(Xt0 ,C)), q(η) = 0, q(η, η) > 0, q(η, l) = 0}

be the polarized period domain for deformations of (Xt0 , l). The mon-
odromy being trivial, the period map P∗ : ∆∗ → Dl is well defined and
by [24], it extends to a holomorphic map P : ∆ → Dl. (Note that this
is one place where we seriously use the projectivity assumption. Griffiths’
extension theorem only holds for polarized period maps.)
By [32], the unpolarized period map is surjective from any connected

component of the marked deformation space of Xt to Dl. Thus there is
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a hyper-Kähler manifold X ′0 which is deformation equivalent to Xt, with
period point P(0) ∈ Dl. Finally, as q(l) > 0, X ′0 is projective by [32].
The local period map Bl → Dl is a local holomorphic diffeomorphism,
where Bl is a ball in the universal deformation space of the pair (X ′0, l)
consisting of a hyper-Kähler manifold and a degree 2 Hodge class on it, and
thus the holomorphic disk P : ∆ → Dl can be seen (after shrinking) as a
holomorphic disk ∆→ Bl. Shrinking Bl and ∆ if necessary and restricting
to ∆ the universal family Xuniv → Bl (which exists over Bl), there is a
family X ′ → ∆ of marked hyper-Kähler manifolds in the same deformation
class as Xt. Furthermore, by construction, the associated period map P ′
can be identified with P.
We now apply Verbitsky’s Torelli theorem [78], which allows us to con-

clude that for any t ∈ ∆∗, X ′t and Xt are birational. Furthermore, as the
family π′ : X ′ → ∆ is smooth proper with Kähler fibers, there exists a
C∞ (1, 1)-form on X whose restrictions to the fibers Xt are Kähler, hence
provides a C∞ family (ωt)t∈∆t

of Kähler classes in the fibers of π′. More-
over, we also know that the morphism π : X → ∆ is projective. It follows
(see [8]) that the relative Douady space over ∆ (analytic version of the rela-
tive Hilbert scheme) of subschemes in fibers of X ′t×Xt is a countable union
of analytic varieties which are proper over ∆. Furthermore, note that for
each component S of this relative Douady space with corresponding fam-
ily ΓS → S → ∆, ΓS ⊂ XS ×S X ′S , with XS = X ×∆ S, X ′S = X ′ ×∆ S,
the property that ΓS,t is the graph of a birational map between Xs and
X ′s is Zariski open in S. Finally, graphs of birational maps between two
hyper-Kähler manifolds are rigid, so each such component S containing
at least one graph of a birational map between smooth fibers Xs and X ′s
has dimension either 0 or 1. Of course, the union of components of dimen-
sion 0 provide only countably many points in ∆∗. Thus, we conclude that
∆∗ minus countably many points is the union of the images of the maps
S0 → ∆∗, over the countably many 1-dimensional components S admitting
a dense Zariski open subset S0 over ∆∗ such that the cycles ΓS,s parame-
terized by s ∈ S0 are graphs of birational maps between the fibers of both
families. Hence there exists such an S which dominates ∆. We may assume
that S is smooth and, by properness, that the map S → ∆ is finite and
surjective. The universal subvariety ΓS ⊂ XS ×S X ′S provides the desired
fibered birational isomorphism. �

Remark 4.1. — The arguments given here are very similar to those used
in [10] and even simpler since we have Verbitsky’s theorem, while Burns
and Rapoport use them to prove Torelli’s theorem for K3 surfaces.
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Let us note the following consequence of Theorem 1.3.

Corollary 4.2. — Assumptions as in Theorem 1.3. The monodromy
action on Hk(Xt) is finite for any k.

Remark 4.3. — Note that this corollary is not a trivial consequence of
Theorem 1.3 because Theorem 1.3 does not say that the original family,
after pullback, can be filled-in with a smooth central fiber. It just says that
this can be done after pullback and replacing the family by another one
with bimeromorphic and hyper-Kähler fibers.

Proof of Corollary 4.2. — Huybrechts’ theorem 1.1 tells us that Xt and
X ′t are deformation equivalent. It also says a little more: for any t ∈ ∆∗,
there exists a cycle Γt in Xt×X ′t which is a limit of graphs of isomorphisms
between deformations of Xt and X ′t and thus induces an isomorphism of
cohomology rings

(4.1) H∗(Xt,Z) ∼= H∗(X ′t,Z).

As the two families are Kähler over ∆, we can use properness of the relative
Douady spaces to conclude that possibly after base change, there exists a
cycle Γ ∈ X ×∆X ′ whose restriction Γt induces the isomorphism (4.1). The
monodromy action on Hk(Xt) thus becomes trivial after base change for
any k. �

Proof of Theorem 1.2. — The proof is now an application of Huybrechts’
theorem [32, Thm. 4.6]. Under the assumptions of Theorem 1.2, Theo-
rem 1.3 gives us a birational map φ : X ′S 99K XS over a finite cover S of
∆, where X ′S is smooth over S with hyper-Kähler fibers. Let us blow-up
XS until it becomes smooth, say X̃S , and then let us blow-up X ′S succes-
sively along smooth centers until the rational map φ induces a morphism
φ̃ : X̃ ′S → X̃S over S. By assumption, the central fiber X0 of our original
family has a multiplicity 1 component V which is birational to the smooth
hyper-Kähler manifold Z ′0 (which is projective, as it is Moishezon and Käh-
ler). The proper transform Ṽ of V is thus birational to V and also appears
as a multiplicity 1 component of the central fiber of X̃S → S. (It is at this
point that we use the fact that V is a multiplicity 1 component of X0;
otherwise the desingularization process needed to produce X ′S can involve
a normalization which replaces V by a generically finite cover of it.) As
φ̃ is proper and birational, exactly one component V ′ of the central fiber
of X̃ ′S → S maps onto Ṽ and the morphism V ′ → Ṽ is birational. Hence
V ′ is birational to Z ′0. On the other hand, as X ′S is smooth, all the excep-
tional divisors of X̃ ′S → X ′S are uniruled, and thus the only component of
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the central fiber which can be birational to a hyper-Kähler manifold is the
proper transform of X ′0 (via X̃ ′S → X ′S). It follows that V ′ is birational to
X ′0. Thus we proved that X ′0 and Z ′0 are birational. By Huybrechts’ theo-
rem [32] (Theorem 1.1), it follows that the two hyper-Kähler manifolds X ′0
and Z ′0 are deformation equivalent. On the other hand, X ′0 is by definition
deformation equivalent to X ′t which is birational to Xt for t 6= 0, hence is
deformation equivalent to Xt by Huybrechts’ theorem again, since Xt and
X ′t are smooth. We conclude that Xt is deformation equivalent to Z ′0 as
claimed. �

5. Symplectic singularities; Alternative proof to
Theorems 1.3 and 1.7

As previously discussed, the filling Theorems 1.3 and 1.7 are results
specific to hyper-Kähler manifolds (see also Remark 1.8). In the previ-
ous section, we proved these theorems by using the deep results (Torelli
and surjectivity) for the period map for hyper-Kähler manifolds due to
Verbitsky [78] and Huybrechts [32]. The MMP results are only tangentially
used. In this section, we give an alternative proof to Theorems 1.3 and 1.7
relying on the MMP results of Section 2 as well as on results already used
in Section 3. The key point of this alternative proof is to notice that in the
case of a minimal dlt degeneration X/∆ of hyper-Kähler manifolds with
finite monodromy, the central fiber X0 has symplectic singularities in the
sense of Beauville [5]. The filling theorems now follow from the results of
Namikawa [62, 63], which roughly say that the symplectic singularities are
rigid (and thus, if X0 is not smooth, there is no smoothing).

Definition 5.1. — A a variety Y with canonical singularities is called
a symplectic variety in the sense of Beauville [5] if the smooth locus of Y
carries a holomorphic symplectic form with the property that it extends
to a holomorphic form on any resolution of Y . A resolution f : Ỹ → Y is
called symplectic if the symplectic form on the smooth locus of Y extends
to a global holomorphic symplectic form on Ỹ . (Note that a symplectic
resolution is, in particular, crepant.)

Another proof of Theorems 1.3 and 1.7. — We start as in the proof of
Theorem 1.6. By Remark 2.4 we can apply Theorem 2.1 to the projective
morphism f : X → ∆. This gives, possibly after a base change π : ∆→ ∆,
a projective morphism Y → ∆ and a birational map h : Y 99K X ×∆ ∆
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which induces a birational map from the central fiber Y0, which is a K-
trivial variety with canonical singularities, to X∗0 . By Remark 2.3, we can
also ensure that h induces an isomorphism between the fibers Yt and Xπ(t),
for t 6= 0.
We claim that Y0 is a symplectic variety in the sense of Beauville. As

already noted Y0 has canonical singularities. To check that the smooth locus
of Y0 carries a holomorphic 2-form that is symplectic and that it extends to
resolutions, we use arguments similar to those of Section 3, but some extra
care is needed to be able to interpret H2,0(Y0) as holomorphic forms (note
that Y0 is singular). To start, since Y0 has canonical singularities then Y0
has rational singularities ([37, 2.77 and 2.88]) and then du Bois singularities
([45]; this also follows from [38], see Theorem 3.4). By [73, Thms. 1 and 2]
this implies that Rif∗OY′ is locally free (of rank one if i is even, zero
otherwise) and satisfies base change, that the Hodge filtration on Hi(Y0)
satisfies Gr0

FH
i(Y0) = Hi(Y0,OY0), and that the degeneration Y → ∆

is cohomologically insignificant (cf. Section 3), i.e. that the specialization
map Hi(Y0) sp−→ Hi

lim induces an isomorphism on the (p, q)–pieces with
p · q = 0. Since Y0 has rational singularities, π∗ : H2(Y0) → H2(Ỹ0) is
injective ([39, (12.1.3.2)]) and hence by [16, Cor. 8.2.5] the MHS on H2(Y0)
is pure of weight two. In particular, Gr0

FH
2(Y0) = H0,2(Y0) and hence

h2,0(Y0) = h0,2(Y0) = 1. Let σ0 ∈ H2(Y0) be a generator of H2,0(Y0) =
F 2H2(Y0). We need to show that σ0 defines a holomorphic symplectic form
on the smooth locus of Y0, which extends to a holomorphic 2–form on any
resolution π : Ỹ0 → Y0. We remarked that the pullback is injective on
degree two cohomology, so π∗(σ0) defines a non–zero holomorphic 2–form
σ̃0 on Ỹ0. To show that it is generically symplectic, it is sufficient to show
that σ̃n0 6= 0. The cup–product is compatible with the specialization map
and also with Deligne’s MHS ([16, Cor. 8.2.11]), so sp(σn0 ) = sp(σ0)n lies
in F 2nH2n

lim ∩W2n = H2n,0
lim . Since Hi

lim is the i–th cohomology of a smooth
hyper-Kähler manifold, by the result of Verbitsky on the cohomology of
hyper-Kähler manifolds (Theorem 3.8) we know that SymiH2

lim → H2i
lim is

injective for i 6 n. Hence sp(σn0 ) generates H2n,0
lim and, in particular, σn0 is

non–zero. We are left with showing that the pullback σ̃n0 = π∗(σn0 ) 6= 0.
But this follows from the fact that the pullback morphism π∗ : Hi(Y0) →
Hi(Ỹ0) is injective on the weight i part of the MHS ([16, Cor. 8.2.5]).
Since Y0 is K-trivial with canonical singularities, the vanishing locus of
the holomorphic section σ̃n0 of the canonical bundle of Ỹ0 is an effective
divisor, supported on the exceptional locus of π : Ỹ0 → Y0. Hence, σ̃0 is a
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holomorphic two form on Ỹ0, which is nondegenerate (i.e. symplectic) at
least on an open set containing the locus where π is an isomorphism.
Let π : M → Y0 be a Q–factorial terminalization, i.e., M is Q–factorial

and terminal, and π is a crepant morphism. This always exists by [7,
Cor. 1.4.3]. We use Namikawa’s result ([63, Cor. 2]) to show that M is
in fact smooth. For the readers sake, we recall Namikawa’s argument: The
Main Theorem in [63] shows that Q–factorial symplectic varieties with ter-
minal singularities are locally rigid. Hence, to prove that M is smooth, it
is enough to show that a smoothing of Y0 determines a smoothing of M .
Indeed, since R1π∗OM = 0, any deformation of M induces a deformation
of Y0 ([80, Thm. 1.4], [39, 11.4]). More specifically, let MDef → Def(M)
and YDef → Def(Y0) be versal deformation spaces for M and Y0, respec-
tively. By [63, Thm. 1] there is a finite surjective morphism π∗ : Def(M)→
Def(Y0) which lifts to a morphism Π∗ :MDef → YDef inducing an isomor-
phism between the general deformation of M and the general deformation
of Y0. Hence M is smooth and moreover, by [62, Thm. 2.2], any smooth-
ing of Y0 is obtained as a flat deformation of M . Up to a base change, we
can thus lift the morphism ∆ → Def(Y0) associated to the family Y → ∆
and get a morphism ∆ → Def(M), which we use to pull back the univer-
sal family. We thus have two one-parameter deformations M → ∆ and
Y → ∆, of M and of Y0, respectively, together with a morphism M→ Y
over ∆, which induces an isomorphism away from the central fiber and the
symplectic resolution M → Y0 over the origin. �

Corollary 5.2. — Let X → ∆ be a projective degeneration with gen-
eral fiber Xt a smooth hyper-Kähler manifold. Assume that one irreducible
component V of the central fiber X0 is not uniruled and appears with mul-
tiplicity one. Then any minimal model of V has a symplectic resolution
(which is a smooth hyper-Kähler deformation equivalent to Xt) and the
monodromy action on the cohomology of a smooth fiber of f is finite. Con-
versely, if the monodromy of X → ∆ is finite, then there exists a smooth
family Y → ∆ of hyper-Kähler manifolds that is isomorphic over ∆∗ to (a
finite base change) of X ∗ → ∆∗.

Proof. — The first part of the statement follows directly from the above
proof. The second statement follows by using Remark 2.3, the equiva-
lence (1) ⇐⇒ (3) of Theorem 3.6, and then again the arguments of this
section. �

Remark 5.3. — Notice that the second statement gives a slightly stronger
version of Theorem 1.7 (in that it leaves the general fibers unchanged).
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Notice that in the course of the proof above we have shown a special case
of the following observation of Greb–Lehn–Rollenske [23, Prop. 6.4] (whose
proof also relies on [63]).

Remark 5.4. — If X0 is a symplectic variety which is birational to a
smooth hyper-Kähler manifold, then X0 admits a symplectic resolution.

6. Application: Deformation type of hyper-Kähler
manifolds via degeneration methods

The main tool available for constructing hyper-Kähler manifolds is
Mukai’s method, namely starting with a K3 or an abelian surface and con-
sidering moduli spaces of sheaves on them. This leads to K3[n] type and
also after a delicate desingularization process, to the exceptional OG10 ex-
amples (and, similarly, to the generalized Kummer varieties and the excep-
tional OG6 manifolds when starting from an abelian surface). It turns out
that there are other geometric constructions leading to hyper-Kähler man-
ifolds, most notably starting with a cubic fourfold ([6, 50, 52]). In all these
cases, a series of ad hoc geometric arguments were used to establish the
deformation equivalence of these new constructions to the Beauville–Mukai
examples. As an application of our results on degenerations of hyper-Kähler
manifolds, we give in this section a somewhat unified and simplified method
to obtain their belonging to a given deformation class. Namely, as investi-
gated by Hassett [31], various codimension 1 loci (denoted Cd) in the moduli
of cubic fourfolds are Hodge theoretically (and sometimes geometrically)
related to K3 surfaces. Specializing to these loci often gives a clear link
between the hyper-Kähler manifolds constructed from cubics and the ones
constructed from K3 surfaces by Beauville–Mukai or O’Grady construc-
tions. In fact the easiest specializations of a cubic fourfold linking cubic
fourfolds to K3 surfaces are specializations to nodal cubic fourfolds (the
divisor C6 in Hassett’s notation) or degenerations to the cubic secant to the
Veronese surface in P5 (which give the divisor C2; see [49]). In these cases,
the associated K3 surface is obvious, and after specialization, a birational
model of the associated hyper-Kähler manifold is easy to understand. The
problem is that even when the degeneration of the cubic is as mild as pos-
sible, the associated hyper-Kähler manifolds (e.g. the Fano variety of lines)
specialize to quite singular objects. Our main result Theorem 1.2 tells us
that as long as the holomorphic 2-form survives in the degeneration, we
can ignore the singularities of the central fiber in order to compute the
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deformation type. In this section, we are thus going to revisit [1, 6, 14, 50]
in the light of Theorem 1.2.

6.1. Fano variety of lines of a cubic fourfold

Let X be a smooth cubic fourfold. The variety of lines F (X) is a smooth
projective hyper-Kähler fourfold by [6]. It is deformation equivalent to S[2],
where S is K3 surface. More precisely, Beauville and Donagi prove the
following:

Theorem 6.1. — Let X be a smooth Pfaffian cubic fourfold and S be
the associated K3 surface. Then F (X) is isomorphic to S[2].

Here a Pfaffian cubic fourfold is defined as the intersection of the Pfaffian
cubic in P14 = P(

∧2
V6) with a P5 = P(W6) ⊂ P14. The associated K3

surface S is defined in the Grassmannian G(2, V ∗6 ) by the space W6, seen
as a set of Plücker linear forms on G(2, V ∗6 ).

Note that Theorem 6.1 is used in [6] in order to prove that F (X) is a
smooth projective hyper-Kähler fourfold for general X. However, this last
fact can be seen directly by saying that

(1) F (X) is smooth as all varieties of lines of smooth cubics are;
(2) F (X) has trivial canonical bundle as it is the zero set of a transverse

section of S3E on G(2, 6), where E is the dual of tautological rank
2 vector subbundle on G(2, 6), and

(3) F (X) has a holomorphic 2-form defined as I∗αX , where I ⊂ F (X)×
X is the incidence correspondence, and it can easily be proved to
be generically nondegenerate.

Instead of considering the specialization to the Pfaffian case, let us con-
sider the specialization to the nodal case, where X specializes to X0 with
one ordinary double point at 0 ∈ X0. Let πX : X → ∆ be such a Lefschetz
degeneration, and let πF : F → ∆ be the associated family of Fano vari-
eties of lines. It is well-known (see [12]) that F (X0) is birational to Σ[2],
where Σ is the surface of lines in X0 passing through 0. Σ is the smooth
intersection of a quadric and a cubic in P4, hence a K3 surface, and the
birational map Σ[2] 99K F (X0) associates to a pair of lines l, l′ through
0 the residual line of the intersection Pl,l′ ∩ X0 where Pl,l′ is the plane
generated by l and l′. Note also that the variety of lines of X0 is smooth
away from the surface Σ, hence F (X0) is a multiplicity 1 component of the
central fiber of the family F → ∆. Theorem 1.2 thus applies showing that
F (Xt) is deformation equivalent to Σ[2].
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Remark 6.2. — Note that in this example, we can check directly that
the monodromy acting on H2(F (Xt)) is finite (thus avoiding the use of
Theorems 2.1 and 1.6). Indeed, the monodromy action on H4(Xt) is finite,
being given by a Picard–Lefschetz reflection, and as the relative incidence
correspondence I ⊂ F ×∆ X induces an isomorphism I∗ : R4πX∗ Q →
R2πF∗ Q of local systems over ∆∗, the monodromy acting on H2(F (Xt)) is
also finite. The same remark applies in fact to all the cases described in
Section 6.

6.2. Debarre–Voisin hyper-Kähler fourfolds

The hyper-Kähler fourfolds constructed in [14] are defined as zero-sets
Yσ of general sections σ ∈

∧3
V ∗10 of the rank 20 vector bundle

∧3 E on
the Grassmannian G(6, V10), where E is the dual of the rank 6 tautologi-
cal vector subbundle on G(6, 10). It is proved in [14] that these varieties
are deformation equivalent to K3[2]. Let us now explain how the use of
Theorem 1.2 greatly simplifies the proof of this statement. The choice of
σ ∈

∧3
V ∗10 also determines a hypersurface (a Plücker hyperplane section)

Xσ ⊂ G(3, V10). For general σ, Xσ is smooth of dimension 20 and there is
an isomorphism

(6.1) G∗σ : H20(Xσ,Q)prim → H2(Yσ,Q)prim
induced by the incidence correspondence Gσ ⊂ Yσ × Xσ, where the fiber
of Gσ over a point [W6] ∈ Yσ is the Grassmannian G(3,W6) which is by
definition contained in Xσ (see [14]). In the paper [14], the generic nodal
degeneration πX : X → ∆ of Xσ is considered, with the associated family
πY : Y → ∆ and relative incidence correspondence G ⊂ Y ×∆ X . We have
the following result (see [14, Thm. 3.3]):

Theorem 6.3. — The variety Yσ0 is reduced and birationally equivalent
to S[2], where S is a K3 surface.

We are thus in position to apply Theorem 1.2 and this shows that the
smooth fibers Yσt are deformation equivalent to K3[2]. In the paper [14],
the proof of this fact used a delicate analysis of the pull-back to S[2] of
the Plücker line bundle, so as to apply a Proj argument in the spirit of
Huybrechts. For the sake of completeness, let us recall how the K3 surface
S is constructed in this case. Let Xσ be singular at [W ] ∈ G(3, V10). Then
σ|W = 0 in

∧3
W ∗ and furthermore σ vanishes in

∧2
W ∗ ⊗ (V10/W )∗.

Thus σ defines an element σ2 of W ∗⊗
∧2(V10/W )∗. Let V7 := V10/W . The
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surface S is defined as the set of 3-dimensional subspaces of V7 whose inverse
image in V10 belongs to Yσ. This is a K3 surface: Indeed, σ2 gives three
sections of the bundle

∧2 E3 on the Grassmannian G(3, V7), where as usual
E3 denotes the dual of the tautological subbundle on the Grassmannian
G(3, 7). On the vanishing locus of these three sections (that we can also
see via the projection V10 → V7 as embedded in G(6, V10)), the section σ
gives a section of

∧3 E3. Hence S is defined in G(3, V7) by three sections of∧2 E3 and one section of
∧3 E3. Thus it has trivial canonical bundle and is

in fact the general member of the complete family of K3 surfaces of genus
12 described by Mukai [58].

6.3. O’Grady 10-dimensional examples and intermediate
jacobian fibrations

This section is devoted to the hyper-Kähler manifolds J constructed
in [50] as aK-trivial compactification of the intermediate Jacobian fibration
JU → U associated to the universal family YU → U of smooth hyperplane
sections of a general cubic fourfold X ⊂ P5. Here U ⊂ (P5)∗ is the Zariski
open set parameterizing smooth hyperplane sections of X. Our aim is to
give a new proof of [50, Cor. 6.2]:

Theorem 6.4. — The varieties J are deformations of O’Grady’s 10-
dimensional hyper-Kähler manifolds.

The original proof was obtained by specializing X to a general Pfaf-
fian cubic fourfold XPf . The proof that JXPf exists and is smooth does
not necessitate much extra work but the proof that it is birational to
the O’Grady moduli space M4,2,0(S) (where S is the associated K3 sur-
face of degree 14 as in Section 6.1) is rather involved and uses work of
Markushevich–Tikhomirov [54] and Kuznetsov [47] on Pfaffian geometry
in the threefold case. We are going to use here a different degeneration
which was introduced by Hassett [31], and plays an important role in [49],
[53]. Let X0 be the chordal cubic fourfold which is defined as the secant
variety of the Veronese surface V ⊂ P5. Blowing up the parameter point
[X0] in the space of all cubics, the general point of the exceptional divisor
determines a cubic X∞, (or rather its restriction to X0). The restriction of
X∞ to V gives a sextic curve C ⊂ P2 ∼= V , hence a K3 surface obtained as
the double cover r : S → P2 of P2 ramified along C. It is proved in [49, 53]
that the period map defined on the regular part of the pencil 〈X0, X∞〉 ex-
tends over 0 (in particular the monodromy on degree 4 cohomology of the
smooth fibers Xt is finite) and the limit Hodge structure is that of H2(S).
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A hyperplane section Y0 = H∩X0 of X0 determines by restriction to V a
conic C = H ∩ V in P2 whose inverse image C ′ = r−1(C) is a hyperelliptic
curve of genus five. The degeneration of a smooth cubic threefold Yt = H ∩
Xt to a pair (Y0, Y∞), consisting of the Segre cubic threefold (secant variety
of a normal quartic curve P1 ∼= C0 ⊂ P4) and a cubic hypersurface section
Y∞ = X∞∩Y0 of it, is studied first in [13], see also [2]. It is proved there that
the intermediate Jacobian J(Yt) specializes to the Jacobian J(C ′), where
C ′ is the hyperelliptic curve defined as the double cover of C0 ramified at
the 12 points of C0 ∩ Y∞.

Remark 6.5. — Note that under a general one-parameter degeneration
of a cubic threefold to the Segre cubic threefold, the hyperelliptic Jaco-
bian over 0 is a smooth (in particular reduced) fiber of the associated
one-parameter family of intermediate Jacobians. This is clear since we are
actually working with abelian varieties and not torsors (there is a 0-section).

Coming back to the associated K3 surface r : S → P2, ramified along
a sextic curve, the Veronese surface V = v(P2) is contained in P5 and the
projective space (P5)∗ parameterizes the universal family C → (P5)∗ of
conics in P2 and the universal family C′ → (P5)∗ of hyperelliptic curves
r−1(Ct) on S. It follows from this discussion that if X → B is a general
one-parameter family of cubic fourfolds with central fiber X0 and fist order
deformation determined by a generic X∞, then the corresponding family
JX (which is well defined over a Zariski open set of B and is a family
of projective hyper-Kähler varieties) has a component of its central fiber
which is birational to the Jacobian fibration JC′ .

The following fact already appears in [65]:

Proposition 6.6. — Let r : S → P2 be a K3 surface as above. Assume
PicS = Z. Then the Jacobian fibration JC′ → (P5)∗ of the universal family
of curves C′ → (P5)∗ is birational to the O’Grady moduli space M4,2,0(S)
of rank 2 vector bundles on S, with trivial determinant and c2 = 4.

Proof. — Denoting H = r∗O(1) ∈ PicS, the curves C ′ belong to the
linear system |2H| on S. Let E be a general stable rank 2 vector bundle
on S with c2 = 4 and c1 = 0. One has χ(S,E(H)) = 2 and H1(S,E(H)) =
0 = H2(S,E(H)) as shows specialization to the case of the torsion free
sheaf Iz ⊕ Iz′ where z and z′ are two general subschemes of length 2 on S.
Thus E has two sections and is generically generated by them, again by
the same specialization argument. So we have an injective evaluation map
W ⊗ OS → E(H), and its determinant vanishes along a curve C ′ ∈ |2H|.
The cokernel of the evaluation map is then a line bundle L of degree 2
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on C ′, as it has H0(C,L′) = 0, H1(C,L′) ∼= W . Conversely, start with
a general curve C ′ ∈ |2H| and a general line bundle L′ of degree 2 on
C ′. Then H0(C ′,KC′ − L′) has dimension 2, and the Lazarsfeld–Mukai
bundle associated to the pair (C ′, L′) provides a rank 2 bundle with the
desired Chern classes on S. Thus we constructed a birational map between
M4,2,0(S) and the relative Picard variety JC′,2 of line bundles of degree 2
on the family C of curves C ′, which is in fact birational to JC′ since the
curves C ′ are hyperelliptic. Indeed, the hyperelliptic divisor gives a section
of JC′,2 which provides the isomorphism above by translation. �

Theorem 6.4 now follows from Proposition 6.6 and Theorem 1.2. The only
thing to check is the fact that under a general one-parameter degeneration
of a cubic fourfold to the secant variety X0 to the Veronese surface in
P5, the hyperelliptic Jacobian fibration JC′ introduced above appears as
a multiplicity 1 component in the central fiber of the associated family
of intermediate Jacobian fibrations. As these varieties are fibered over a
Zariski open set of (P5)∗, the fact that this component has multiplicity 1
follows from Remark 6.5. The proof is thus complete.

6.4. LLSvS eightfolds

The LLSvS eightfolds were constructed in [52], and were proved in [1]
(see also [51]) to be deformation equivalent to S[4]. These hyper-Kähler
manifolds are constructed as follows: Start from a general cubic fourfold X
and consider the Hilbert scheme H3 of degree 3 rational curves in X. Then
H3 is a P2-bundle over a manifold birational to a hyper-Kähler manifold
Z(X). The following is proved in [1]:

Theorem 6.7. — If X ⊂ P(
∧2

V6) is Pfaffian, then Z(X) is birational
to S[4], where S ⊂ G(2, V6) is the associated K3 surface as in Section 6.1.

This result, combined with Huybrechts’ Theorem 1.1, implies:

Corollary 6.8. — The varieties Z(X) are deformation equivalent to
S[4].

Let us now give another proof of this last result, based on Theorem 1.2
and the degeneration to the chordal cubic. In [50], it is noticed that the
varieties J (X) and Z(X) are related as follows:

Lemma 6.9. — The relative Theta divisor of the intermediate Jacobian
fibration JU of X (which is canonically defined) is birationally a P1-bundle
over Z(X).
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Proof. — Indeed, we know by Clemens–Griffiths [12] that the Theta di-
visor in the intermediate Jacobian of a cubic threefold Y is parameterized
via the Abel–Jacobi map of Y by degree 3 rational curves on Y , the fiber
passing through a general element [C] ∈ H3(Y ) being the P2 of deforma-
tions of C in the unique cubic surface 〈C〉∩X containing C. It follows from
this result that the relative Theta divisor Θ ⊂ JU parameterizes the data
of such a P2

C ⊂ H3(X) and of a hyperplane section Y of X containing the
cubic surface 〈C〉. This is clearly birationally a P1-bundle over Z(X). �

We now specializeX to the chordal cubicX0, or more precisely to a point
of the exceptional divisor of the blow-up of this point in the space of all
cubics, which determines as in the previous section a degree 2 K3 surface
r : S → P2 = V . We use the fact already exploited in the previous section
that the intermediate Jacobian fibration JU then specializes birationally
to the Jacobian fibration JC′ associated to the family C′ of hyperelliptic
curves C ′ = r−1(C), C being a conic in P2. The Theta divisor Θ ⊂ JU
specializes to the Theta divisor ΘC′ which is indeed contained in JC′ since
the curves C ′ have a natural degree 4 divisor (the canonical Theta divisor
is naturally contained in Pic4(C ′) for a genus 5 curve C ′, so by translation
using H|C′ , we get it contained in Pic0(C ′)). We now have:

Proposition 6.10. — The divisor ΘC′ ⊂ JC′ is birational to a P1-
bundle over S[4].

Proof. — Let us identify JC′ to J 4
C′ via translation by the section [C ′] 7→

H|C′ of J 4
C′ . Then ΘC′ ⊂ J 4

C′ is the family of effective divisors of degree 4 in
curves C ′ ⊂ S. Such an effective divisor determines a subscheme of length 4
in S. This gives a rational map φ : ΘC′ 99K S[4]. Given a generic subscheme
z ⊂ S of length four, z is contained in a pencil of curves C ′ ⊂ S and
determines an effective divisor of degree 4 in each of them, showing that
the general fiber of φ is a P1. This shows that, via φ, ΘC′ is birationally a
P1-bundle over S[4]. �

As a consequence of Lemma 6.9 and Proposition 6.10, we conclude that
in the given degeneration, the central fiber of the family Z of LLSvS eight-
folds has a component which is birational to S[4], so that (leaving to the
reader to check the multiplicity 1 statement for the considered component
of the central fiber), we can apply Theorem 1.2 and conclude that Zs is
deformation equivalent to S[4].
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7. The dual complexes for degenerations of hyper-Kähler
manifolds

While most of the paper is concerned with the case of finite monodromy
degenerations, we close here by making some remarks on the infinite mon-
odromy case. We start by recalling the case of K3 surfaces. Namely, the
Kulikov–Persson–Pinkham Theorem ([46, 67]) states that any projective
1-parameter degeneration X/∆ of K3 surfaces can be arranged to be
semistable with trivial canonical bundle; such a degeneration is called a
Kulikov degeneration of K3s. For a Kulikov degeneration, one can give a
rather precise description of the possible central fibers X0 of the degener-
ation (depending on the Type as defined in 1.10).

Theorem 7.1 (Kulikov [46, Thm. II], Persson [66], Roan [68]). — Let
X/∆ be a Kulikov degeneration of K3 surfaces. Then, depending on the
Type of the degeneration (or equivalently, the nilpotency index of N) the
central fiber X0 of the degeneration is as follows:

(i) Type I: X0 is a smooth K3 surface.
(ii) Type II:X0 is a chain of surfaces, glued along smooth elliptic curves.

The end surfaces are rational surfaces, and the corresponding dou-
ble curves are smooth anticanonical divisors. The intermediary sur-
faces (possibly none) are (birationally) elliptically ruled; the double
curves for such surfaces are two distinct sections which sum up to
an anticanonical divisor.

(iii) Type III: X0 is a normal crossing union of rational surfaces such
that the associated dual complex is a triangulation of S2. On each
irreducible component V of X0, the double curves form a cycle of
rational curves giving an anticanonical divisor of V .

Remark 7.2. — As usual, we let Σ be the dual complex associated to
the normal crossing variety X0, the central fiber of the Kulikov degener-
ation. Then, the topological realization |Σ| is either a point, an interval,
or S2 according to the Type (I, II, III) of the degeneration. In particular,
dim |Σ| = ν − 1, where ν is the nilpotency index of N .

The purpose of this section is to give partial generalizations of Kulikov
classification of the central fiber in a degeneration of hyper-Kähler man-
ifolds (and make some remarks on the general K-trivial case). To start,
as already noted, Theorem 1.7 is nothing but a strong generalization of
Kulikov’s Theorems in the Type I case (see Definition 1.10). Informally, a
finite monodromy degeneration of hyper-Kähler manifolds admits a smooth
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filling. The focus in this section is on the Type II and III cases. Namely, we
will discuss some generalization of Remark 7.2 to the higher dimensional
case and a partial resolution of a conjecture of Nagai [60] concerning the
monodromy action on higher cohomology groups.

In contrast to the case of K3 surfaces, for higher dimensional hyper-
Kähler manifolds, the cohomology in higher degree (than 2) is non-trivial,
and thus a natural first question is to what extent the nilpotency index for
the monodromy on this higher cohomology is determined by the Type (or
equivalently the nilpotency index on H2). This question was investigated
by Nagai [60] who obtained specific results in the case of degenerations of
Hilbert schemes of K3s and Kummer case, and made the following natural
conjecture:

Conjecture 7.3 (Nagai [60, Conj. 5.1]). — For a degeneration of
hyper-Kähler

nilp(N2k) = k(nilp(N2)− 1) + 1.
(i.e. the nilpotency order on H2k is determined by that on H2).

Remark 7.4. — There is difference of 1 between our nilpotency index,
and that used by Nagai: for us N has index ν if ν is minimal such that
Nν = 0, while in [60], N has index ν if Nν+1 = 0 (and Nν 6= 0).

The main result of Nagai ([60, Thms. 2.7 and 3.6]) is that the conjecture
is true for degenerations arising from Hilbert schemes of K3s or generalized
Kummers associated to families of abelian surfaces. Below, we check the
conjecture in the Type I and III cases (see Corollary 7.17). Furthermore,
we get some results on the topological type of the dual complex of the
degeneration (see Theorems 1.11 and 7.13).

Theorem 7.5. — Nagai’s Conjecture holds in Type I and III cases. For
Type II, it holds nilp(N2k) ∈ {k + 1, . . . , 2k − 1} for k ∈ {2, . . . , n− 1}.

Remark 7.6. — The case of Type I is Corollary 4.2, a consequence of
Theorem 1.7.

7.1. Essential skeleton of a K-trivial degeneration

Let X/∆ be a semistable degeneration of algebraic varieties. An impor-
tant gadget associated to the degeneration is the dual complex Σ of the
normal crossing variety X0 (the central fiber of the degeneration). The dual
complex encodes the combinatorial part of the degeneration and can be
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used to compute the 0-weight piece (which reflects the combinatorial part)
of the MHS on X0 and of the LMHS. Specifically, an easy consequence of
the Clemens–Schmid exact sequence (see [3, 57]) gives:

(7.1) Hk(|Σ|) ∼= W0H
k(X0) ∼= W0H

k
lim.

The first identification is almost tautological; it follows from the Mayer–
Vietoris spectral sequence computing the cohomology of X0. While the sec-
ond follows from a weight analysis of the Clemens–Schmid sequence, which
(in particular) shows that the natural specialization map Hk(X0)→ Hk

lim
has to be an isomorphism for weight 0. We note that there is a much more
general version of the second identity. Namely, as explained in Section 3, as
a consequence of [38] and [73], as long as X0 is semi log canonical (e.g. nor-
mal crossing), the specialization map Hk(X0) → Hk

lim is an isomorphism
on the Ip,q pieces with p · q = 0. In particular, we get an isomorphism for
the weight 0 pieces (corresponding to p = q = 0) of the MHS on X0 and
the limit MHS.
The semistable models are not unique, and thus the topological space |Σ|

depends on the model (e.g. |Σ| might be a point, but after a blow-up might
become an interval). In order to obtain a more canonical topological space
one needs to require some “minimality” for the semistable model. While
many ideas towards an intrinsic definition for |Σ| occur in the literature
(e.g. Kulikov’s results can be regarded as the starting point), the right def-
initions were only recently identified by de Fernex–Kollár–Xu [17]. Namely,
the minimality corresponds to a relative minimal model in the sense of
MMP. This, however leads to singularities for X/∆ and the central fiber
X0. It turns out that the right class of singularities that still allow the
definition of a meaningful dual complex is dlt. In other words, the correct
context for defining an intrinsic dual complex associated to a degeneration
is that of minimal dlt degeneration (see Appendix A). The minimal dlt
model X/∆ is not unique, but changing the model has no effect on |Σ|
(the associated topological spaces will be related by a PL homeomorphism,
see [17, Prop. 11]). On the other hand, if X ′/∆ is a semistable resolution of
X/∆, then the topological realization |Σ| associated to the canonical dual
complex is a deformation retract of the topological realization of the dual
complex associated to the semistable resolution X ′/∆, and thus the two
topological spaces are homotopy equivalent.

Remark 7.7. — Let us note that the semi-log-canonical (slc) singularities
are too degenerate to lead to a good notion of dual complex. For instance,
it is easy to produce KSBA degenerations of K3 surfaces of Type III such
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that the central fiber X0 is a normal surface with a single cusp singularity
(e.g. such examples occur in the GIT analysis for quartic surfaces, see [72]).
The (naive) dual complex in this situation would be just a point, while from
KPP Theorem, the intrinsic dual complex is in fact S2.

In the case of K-trivial degenerations, there is an alternative approach
(yet producing the same outcome) coming from mirror symmetry in the
Kontsevich–Soibelman interpretation. This is carefully worked out in
Mustata–Nicaise [59] (via Berkovich analytification). Relevant for us is the
fact that associated to a K-trivial degeneration X/∆ there is an intrinsic
(depending only on X ∗/∆∗) topological space, that we call (following [59])
the essential skeleton, Sk(X ) associated to the degeneration. For a min-
imal dlt degeneration of K-trivial varieties, the essential skeleton Sk(X )
can be identified with the topological realization |Σ| of the dual com-
plex (cf. Nicaise–Xu [64, Thm. 3.3.3]). (As discussed in Section 2 and [21,
Thm. 1.1], a minimal dlt model always exists. Two such models are bi-
rationally crepant, leading to Sk(X ) being well defined.) Finally, Nicaise–
Xu [64, Thm. 3.3.3] show that Sk(X ) is a pseudo-manifold with boundary.
The purpose of this section is to make some remarks on the structure of

the essential skeleton Sk(X ) for a degeneration of hyper-Kähler manifolds
(depending on the Type of the degeneration). We note that there is an ex-
tensive literature on the related case of Calabi–Yau varieties (esp. relevant
here is Kollár–Xu [42]), and that several papers (esp. [42, 59, 64]) treat
the general K-trivial case. However, to our knowledge, none of the existing
literature discusses the skeleton Sk(X ) in terms of the Type (I, II, III) of
the hyper-Kähler degeneration.

Remark 7.8. — Recently, Gulbrandsen–Halle–Hulek [28] (see also [29,
61]) have studied explicit models for certain types of degenerations of
Hilbert schemes of surfaces. In particular, starting with a Type II degen-
eration of K3 surfaces S/∆, it is constructed in [29] an explicit minimal
dlt degeneration for the associated Type II family of Hilbert schemes X/∆
of n-points on K3 surfaces (with Xt = (St)[n]). From our perspective here,
most relevant is the fact that the Sk(X ) is the n-simplex. For comparison,
our results (see Theorem 1.11) will only say dim Sk(X ) = n and that Sk(X )
has trivial rational cohomology.

7.2. Type III is equivalent to the MUM case

Considering as above a one-parameter degeneration f : X → ∆, we
assume additionally that f is projective. It is then well-known that the
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monodromy γk acting on Hk(Xt,Q), t ∈ ∆∗ is quasi-unipotent, that is
(γNk − Id)m = 0 for some integers N, m. Furthermore one can take m 6
k + 1.

Definition 7.9. — We will say that the monodromy on Hk is maxi-
mally unipotent if the minimal orderm is k+1. Let X/∆ be a degeneration
of K-trivial varieties of dimension n. We say that the degeneration is max-
imally unipotent (or MUM) if the nilpotency index for the monodromy
action on Hn(Xt,Q) is n+ 1 (the maximal possible index).

It is immediate to see that in a MUM degeneration, the skeleton has
dimension at least n. For K-trivial varieties, a strong converse also holds:

Theorem 7.10 (Nicaise–Xu [64]). — Let X/∆ be a degeneration of
K-trivial varieties of dimension n.

(1) If the degeneration is MUM, then Sk(X ) is a pseudo-manifold of
dimension n.

(2) Conversely, if Sk(X ) is of dimension n, the degeneration is MUM.

Remark 7.11. — We note here that both the minimality and K-triviality
are essential conditions (see also Remark 3.7). Dropping the K-triviality,
we can consider a family of genus g > 2 curves degenerating to a com-
pact type curve. Then the monodromy is finite, but the dual graph of the
central fiber is an interval. Similarly, one can start with a family of ellip-
tic curves and blow-up a point. This will give a non-minimal family, with
trivial monodromy, and dual graph of the central fiber an interval.

We note that one additional topological constraint on the skeleton Sk(X )
is that it is simply connected.

Proposition 7.12. — Let X/∆ be a degeneration such that π1(Xt) =
1. Then π1(Sk(X )) = 1.

Proof. — [42, §34 on p. 541]. �

Mirror symmetry makes some predictions on the structure of essential
skeleton Sk(X ) for MUM degenerations. Briefly, the situation is as follows:

The SYZ conjecture ([74]) predicts the existence of a special Lagrangian
fibration X/B for K-trivial varieties near the large complex limit point
(the cusp of the moduli corresponding to the MUM degeneration). Fur-
thermore, SYZ predicts that the mirror variety is obtained by dualizing
this Lagrangian fibration.
Kontsevich–Soibelman [43, 44] predict that the base B of the Lagrangian

fibration is homeomorphic to the essential skeleton Sk(X ). In fact, B is pre-
dicted to be the Gromov–Hausdorff limit associated to (Xt, gt) where gt is
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an appropriately scaled Ricci-flat Yau metric on the (polarized) smooth
fibers Xt. This gives a much richer structure to B (Monge–Ampere man-
ifold, see [44, Def. 6]). The underlying topological space is expected to be
Sk(X ) (e.g. [44, §6.6]). As already mentioned, the Kontsevich–Soibelman
predictions led to the Mustata–Nicaise [59] definition of Sk(X ).

The case of K3 surfaces is quite well understood (see [27, 44]). In higher
dimensions, there is a vast literature on the case of (strict) Calabi–Yau’s,
most notably the Gross–Siebert program (e.g. [26]). From our perspective,
we note that the Sk(X ) for a MUM degeneration of Calabi–Yau n-folds
is predicted to be the sphere Sn. This is true in dimension 2 by Kulikov’s
Theorem, and in dimensions 3 (unconditional) and 4 (assuming additionally
that the degeneration is normal crossings) by Kollár–Xu [42].
The SYZ conjecture and the Kontsevich–Soibelman picture for hyper-

Kählers are similar to the K3 case (see especially Gross–Wilson [27]). Con-
jecturally, the special Lagrangian fibration X/B near the large complex
limit point can be constructed via a hyper-Kähler rotation. Briefly, let
[Ω] ∈ H2(X,C) and [ω] ∈ H2(X,R) be the classes of the holomorphic form
and of the polarization (a Kähler class) on X. The MUM condition implies
the existence of a vanishing cycle γ ∈ H2(X,Q) with q(γ) = 0 (where q
is the Beauville–Bogomolov form on H2). The problem is that γ is not
an algebraic class. Recall that, given a hyper-Kähler manifold with a fixed
Kähler class on it, the space of complex structures on the hyper-Kähler
manifold contains a distinguished S2 (so called twistor family). Using this,
one can modify the complex structure on X (call the resulting complex
manifold X ′) such that γ is an algebraic class with q(γ) = 0 (essentially,
after an appropriate C∗-scaling of Ω, we can arrange Ω′ = Im(Ω) + iω and
ω′ = Re(Ω) to be the holomorphic and respectively Kähler classes on X ′,
and γ to be orthogonal to Ω′). The so-called hyper-Kähler SYZ conjecture
(which is known in various cases) then predicts that (a multiple of) γ is
the class of a (holomorphic) Lagrangian fibration X ′/B. Of course, in the
C∞ category, X ′/B is the same as the desired special Lagrangian X/B.
(From a slightly different perspective, mirror symmetry for hyper-Kähler
manifolds was studied by Verbitsky [76].)
Finally, the basis of an (algebraic) Lagrangian fibrationX ′/B is expected

to be CPn (for 2n-dimensional hyper-Kähler manifolds). For instance, if B
is smooth, then B ∼= CPn by a theorem of Hwang [34].

To conclude, mirror symmetry (via SYZ conjecture and Kontsevich–
Soibelman) predicts that the essential skeleton Sk(X ) for a MUM de-
generation is Sn and respectively CPn for Calabi–Yau’s and respectively
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hyper-Kähler’s. The following result is a weaker version of this statement,
saying that it holds in a cohomological sense.
If X is a simply connected compact Kähler manifold with trivial canon-

ical bundle, the Beauville–Bogomolov decomposition theorem [4] says that
X ∼=

∏
iXi where the Xi are either Calabi–Yau of dimension ki (that is

with SU(ki) holonomy group), or irreducible hyper-Kähler of dimension 2lj
(that is with Sp(2lj) holonomy group). The type of the decomposition will
be the collection of the dimensions ki, 2lj (with their multiplicities).

Theorem 7.13. — Let X/∆ be a minimal dlt degeneration of K-trivial
varieties. Assume that the general fiber Xt is a simply connected K-trivial
variety and that the degeneration is maximally unipotent. Then

(1) H∗(Sk(X ),Q) ∼=
∏
iH
∗(Ski ,Q) ×

∏
j H
∗(CPlj ,Q)), where ki rep-

resent the dimensions of the Calabi–Yau factors and 2lj the di-
mensions of the hyper-Kähler factors in the Beauville–Bogomolov
decomposition of the general fiber Xt.

(2) Conversely, the cohomology algebra of the skeleton Sk(X ) deter-
mines the type of the Beauville–Bogomolov decomposition of Xt.

Proof of Theorem 7.13. — Let X/∆ be a minimal dlt degeneration. By
the du Bois arguments of Section 3, the weight 0 pieces of the limit mixed
Hodge structure onH∗lim are identified with the weight 0 pieces of the mixed
Hodge structure on H∗(X0). Next, a Mayer–Vietoris argument identifies
W0H

k(X0) with Hk(Sk(X )) (recall Sk(X ) is nothing but the topological
realization of the dual complex in this situation). In other words, we see
that (7.1) holds in the situation of minimal dlt degenerations. Summing
over all degrees k gives an algebra structure, and then an identification of
the algebra associated to the weight 0 piece of the LMHS with the cohomol-
ogy algebra of Sk(X ). Here it is important to note that this identification
is not only as vector spaces, but rather as algebras (i.e. compatible with
the cup product). This is discussed in Lemma 7.15 below.
It remains to understand the algebra structure for the weight 0 piece

of the LMHS (under the MUM assumption). It is immediate to see that
on Hk

lim the weight 0 piece is non-zero if and only if the monodromy ac-
tion on Hk(Xt) is maximally unipotent. When this is satisfied, we have
Nk : GrW2kHk

lim
∼= W0H

k
lim, and then GrW2kHk

lim ⊂ F kHk
lim
∼= Hk,0(Xt) (as

vector spaces). Thus, the weight 0 piece can be identified with a subspace in
the space of degree k holomorphic forms on Xt. The following proposition
tells us that under the MUM assumption on the top degree cohomology,
the weight 0 piece can be identified with the whole space of degree k holo-
morphic forms on Xt.
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Proposition 7.14. — Let X/∆ be a projective degeneration of K-
trivial varieties.

(1) Assume the fibers Xt are simply connected Calabi–Yau manifolds
(so hi(Xt,OXt

) = 0 for 0 < i < n = dimXt). Then the only degree
in which the monodromy can be maximally unipotent is n.

(2) Assume the fibers Xt are hyper-Kähler manifolds (so hi(Xt,OXt) =
0 for i odd and C for i = 2j, 0 < i < 2n = dimXt). Then the only
degrees where the monodromy can be maximally unipotent are the
even degrees 2i and the monodromy is maximally unipotent in some
degree k = 2i if and only if it is maximally unipotent in all degrees
2i 6 2n. In particular, MUM degeneration is equivalent to Type III
degeneration (for hyper-Kähler manifolds).

Proof.
(1). — As we have Hi,0(Xt) = 0 for 0 < i < n, the Hodge structure on

Hi(Xt,Q) has coniveau > 1. The variation of Hodge structure on Rif∗Q
is thus the Tate twist of an effective polarized variation of Hodge structure
of weight i− 2. Hence its quasi-unipotency index is 6 i− 1.
(2). — The same argument applies to show that monodromy is not max-

imally unipotent on cohomology of odd degree if Xt is hyper-Kähler, since
H2i+1,0(Xt) = 0. We know by Verbitsky (Theorem 3.8) that in degree 2i 6
2n, we have an injective map given by cup-product

µi,t : SymiH2(Xt,Q) ↪→ H2i(Xt,Q),

which more generally induces an injection of local systems on ∆∗

µi : Symi(R2f∗Q) ↪→ R2if∗Q.

Note that µi is an morphism of variations of Hodge structures. Next, us-
ing a relatively ample line bundle on f , we have a Lefschetz orthogonal
decomposition

R2if∗Q = Imµi ⊕B2i

where the local system B2i carries a polarized variation of Hodge structures
of weight 2i with trivial (2i, 0)-part, as the map µi,t induces a surjection
on (2i, 0)-forms. Applying the same argument as before, we conclude that
the monodromy action on B2i is of quasiunipotency index 6 2(i−1) + 1(<
2i + 1), so the monodromy acting on H2i is maximally unipotent if and
only if it is maximally unipotent on SymiH2(Xt,Q). It is then easy to see
that this is the case if and only if it is maximally unipotent on H2(Xt,Q)
(e.g. [60, Lem. 2.4]). �
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By this proposition, the assumptionW0H
n
lim 6= 0 implies in factW0H

k
lim
∼=

Hk,0(Xt) for all k (since there is a 1-dimensional contribution for each
factor of Beauville–Bogomolov decomposition and it has to be maximally
unipotent; it is here where we use in an essential way the assumption that
Xt is simply connected, so that we can exclude the abelian variety factors
in the Beauville–Bogomolov decomposition).

These identifications are compatible with the cup product by the follow-
ing lemma:

Lemma 7.15. — Let Z → ∆ be a proper holomorphic map, smooth
over ∆∗, with a central fiber Z0 which is a (global) normal crossing divisor.
We assume for simplicity that if Zi, i ∈ I are the components of Z0, for
each J ⊂ I, ZJ := ∩j∈JZj is either empty or connected. Let Σ be the dual
graph of Z0. It has vertices I and one simplex J ⊂ I for each non-empty
ZJ . The two natural maps

a : H∗(|Σ|,Z)→ H∗(Z0,Z),
b : H∗(Z0,Z)→ H∗(Zt,Z)

are compatible with the cup-product.

Proof. — The map b is the specialization map already appearing in Def-
inition 3.2, and called sp∗ there. It is obtained by observing that Z0 is a
deformation retract of Z, hence has the same homotopy type as Z. The
map b is then the restriction map H∗(Z,Z) → H∗(Zt,Z) composed with
the inverse of the restriction isomorphism H∗(Z,Z)→ H∗(Z0,Z). Thus it
is clearly compatible with cup-product.
The map a (which can be defined using Corollary A.6 as the composite

map Hp(|Σ|,Z) = Ep,02 = Ep,0∞ → Hq(D,Z)) can also be constructed as
follows: The realization |Σ| of Σ is the union over all the faces J of Σ of the
simplices ∆J , with identifications given by faces: for J ′ ⊂ J the simplex
∆J′ is naturally a face of ∆J . Next we have a simplicial topological space
Z•0 associated to Z0, given by the ZJ and the natural inclusions ZJ′ ⊂ ZJ
for each J ⊂ J ′. Let r(Z•0 ) be the topological space constructed as the
union over all J ∈ Σ of the ZJ × ∆J with gluings given by the natural
maps ZJ × ∆J′ → ZJ′ × ∆J for each inclusion J ′ ⊂ J . There are two
obvious continuous maps

g : r(Z•0 )→ Z0,

f : r(Z•0 )→ r(Σ).

The first map is just the projection to ZJ on each ZJ ×∆J , followed by the
inclusion in Z0. This map is clearly a homotopy equivalence. The second
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map is the projection to ∆J on each ZJ ×∆J . The map b can be defined
as the composition of f∗ : H∗(r(Σ),Z)→ H∗(r(Z•0 ),Z) composed with the
inverse of the isomorphism g∗ : H∗(Z0,Z) ∼= H∗(r(Z•0 ),Z). It follows that
b is also compatible with cup-product. �

Together with the previous analysis, we now conclude that in the MUM
case, the cohomology algebra H∗(|Σ|,C) is isomorphic to the algebra of
holomorphic forms ⊕iH0(Z0,ΩiZ0

) and also to the algebra of holomorphic
forms ⊕iH0(Zt,ΩiZt

). We next have the following lemma.

Lemma 7.16. — Let X be a simply connected compact Kähler manifold
with trivial canonical bundle. Then the type of the Beauville–Bogomolov
decomposition of X is determined by the algebra ⊕iH0(X,ΩiX).

Proof. — For a Calabi–Yau manifold of dimension ki, there is exactly
one holomorphic form ωi of degree ki and it satisfies ω2

i = 0, while for
a hyper-Kähler factor Xj , the algebra H0(Xj ,Ω·Xj

) is generated in de-
gree 2 with one generator σj satisfying the equation σ

lj+1
j = 0. The al-

gebra A·X := H0(X,Ω·X) is the tensor product of algebras of these types.
Consider for any integer k the set (A2

X)k =: {u ∈ A2
X , u

k+1 = 0}. Let
k0 be the smallest k such that (A2

X)k 6= 0. Then it is immediate that the
hyper-Kähler summands are all of dimension > 2k0 and that there are ex-
actly ak := dim(A2

X)k summands of dimension 2k0. The quotient of A·X
by the ideal generated by (A2

X)k is the algebra A·X′ of holomorphic forms
on the variety X ′ which is the product of all Calabi–Yau factors of X and
hyper-Kähler factors which are of dimension > 2k0. Continuing with X ′,
we see that the multiplicities of the dimensions of the hyper-Kähler factors
are determined by A·X , and that A·X determines the algebra A·X′′ of holo-
morphic forms on the variety X ′′ which is the product of all Calabi–Yau
summands of X of dimension > 2. It is clear that the latter determines
the dimensions (with multiplicities) of the Calabi–Yau summands of X, as
they correspond to the degrees (with multiplicities) of generators of the
algebra A·X′′ . �

The proof of Theorem 7.13 is now complete. �

Corollary 7.17. — Nagai’s Conjecture 7.3 holds for Type III degen-
erations of hyper-Kähler manifolds.
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7.3. The Type II case

We now focus on the intermediary Type II case. The aim of the subsection
is to prove the following result (which together with the results in the Type I
and III cases completes the proof of Theorems 1.11 and 7.5).

Theorem 7.18. — Let X/∆ be a projective degeneration of hyper-
Kähler manifolds, with Xt smooth of dimension 2n. Assume that the de-
generation has Type II (i.e. N2 = 0 and N 6= 0 on H2(Xt)). Then the
following hold:

(1) dim Sk(X ) = n;
(2) For k ∈ {2, n}, the index of nilpotency for the monodromy action

on H2k is at least k + 1 and at most 2k − 1.

Proof. — Similarly to the Type III case discussed previously, using [60,
Cor. 2.4] and Theorem 3.8, we conclude that the nilpotency index on
SymkH2 is k + 1, and thus the nilpotency index on H2k is at least k + 1.
Conversely, since H2k/ SymkH2 is a Hodge structure of level 2k − 2, it
follows that the nilpotency index is at most 2k − 1.
To conclude, we note that the arguments of [42, Claim 32.1] show that

the dimension of Sk(X ) is precisely n. This is equivalent to saying that the
codimension of the deepest stratum in a dlt Type II degeneration is n. For
a minimal dlt degeneration, we know X0 has trivial canonical bundle. This
means that its components are log Calabi–Yau (V,D) with KV + D = 0.
Inductively, each component of the strata is log Calabi–Yau (e.g. in the
K3 situation the codimension 1 components are either elliptic curves or
P1 with 2 marked points) and is K-trivial if and only if it is contained in
every component of X0 that intersects it. Hence, a stratum W ⊂ X

[p]
0 is

minimal with respect to inclusion if and only if it has a top holomorphic
form (and is thus a K-trivial variety with at worst canonical singularities).
Moreover, all minimal strata are birational [37, 4.29]. It follows that to
show that the dual complex has dimension n, we only need to produce a
top holomorphic form on an n–dimensional stratum. To show this look at
the spectral sequence (A.3). We first notice that there is a non zero class in
H1(O

X
[1]
0

) which generates H2(OX0). To see this we only need to show that
there is no contribution from H2(O

X
[0]
0

) and from H0(O
X

[2]
0

). By weights
considerations, both statements are clearly true for the spectral sequence
of a snc filling. However, since the strata of a dlt filling have rational singu-
larities (Proposition A.3) the statement for a snc filling implies that for a
dlt filling. Hence, the only possibility is that a generator for η̄ ∈ H2(OX0)
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has to come from a class η ∈ H1(O
X

[1]
0

). By Lemma A.8, we may consider
the product ηn ∈ Hn(O

X
[n]
0

) which is non zero since η̄n has to be non zero
and we may conclude that the deepest stratum has dimension n. �

Remark 7.19. — J. Nicaise pointed out that dim Sk(X ) = n follows also
from Halle–Nicaise [30, Theorem 3.3.3 and esp. (3.3.4)].

Appendix A. Reduced dlt pairs

The purpose of this section is to show that for many aspects reduced dlt
pairs behave like snc. Most of the results are well known to the experts
(cf. [17]).

Definition A.1. — A log canonical (lc) pair (X,D) is called dlt if for
every divisor E over (X,D) with discrepancy −1, the pair (X,D) is snc at
the generic point of centerX(E).

Given a reduced dlt pair (X,D) (i.e. the divisors appearing in D =∑
I Di have coefficient 1) a stratum of (X,D) is an irreducible component

of DJ := ∩JDi, for some J ⊂ I. By [20], [37, 4.16] the strata of (X,D) have
the expected codimension (i.e. the strata of codimension k in X are the
irreducible components of the intersection of k components of D) and are
precisely the log–canonical centers of (X,D). In particular, (X,D) is snc
at the generic point of every stratum and every stratum of codimension
k is contained in exactly k + 1 strata of codimension k − 1. As noticed
in [17, (8)], this observation is enough to specify the glueing maps needed
to define a dual complex. In other words, the dual complex of a dlt pair
can be defined just as in the snc case and it satisfies

Σ((X,D)) = Σ((X,D)snc),

where (X,D)snc is the largest open subset of X where the pair (X,D)
is snc. In Proposition A.5 we show another instance of the fact that “dlt
is almost snc”, namely that given a reduced dlt pair (X,D) we can use
the Mayer–Vietoris sequence [25] to compute the cohomology of D. This
was applied in Section 7.3 to a minimal dlt degeneration X/D of K-trivial
varieties, since the pair (X , X0) is dlt.

Definition A.2 ([37, (2.78)]). — Let X be a normal variety, let D ⊂ X
be a reduced divisor, and let f : Y → X be a resolution such that (Y,DY :=
f−1
∗ (D)) is a snc pair. Then f : (Y,DY )→ (X,D) is called rational if

(1) f∗OY (−DY ) = OX(−D);
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(2) Rif∗OY (−DY ) = 0 for i > 0;
(3) Rif∗ωY (DY ) = 0 for i > 0.

Proposition A.3. — Let (X,D) be a reduced dlt pair withD =
∑
I Di

and let f : (Y,DY ) → (X,D) be a rational resolution. For every reduced
divisor D′ 6 D, setting D′Y := f−1

∗ D′ we have

(A.1) f∗OY (−D′Y ) = OX(−D′) and Rif∗OY (−D′Y ) = 0, for i > 0.

and for every J ⊂ I

(A.2) f∗O(DY )J
= ODJ

and Rif∗O(DY )J
= 0 for i > 0.

In particular, the induced resolution f|(DY )J
: (DY )J → DJ has con-

nected fibers and every connected component of DJ is irreducible, normal,
and has rational singularities.

Proof. — Item (A.1) follows from [37, (2.87), (2.88)]. Then (A.2) follows
by induction on |J |. �

Remark A.4. — From this corollary it follows that in the definition of
dual complex of a reduced dlt pair we could consider the connected compo-
nents of the intersections, rather than the irreducible components (cf. [17,
(8)]).

Let (X,D) be a reduced dlt pair (X,D), with D =
∑
I Di, and fix an

ordering of I. Denote by D[k] the disjoint union of the strata that have
codimension k in D. For a sheaf F on D, the Mayer–Vietoris complex of
F is

FD• : FD[0] → FD[1] → · · · → FD[d] ,

where d = dim |Σ(D)|, where FD[k] denotes the pullback of F to D[k] via
the natural morphism ik : D[k] → D, and where the differential of the
complex is induced by the natural restriction maps FDJ

→ FDJ∪j
, with a

plus or a minus sign according to the parity of the position of j in J ∪ j.

Proposition A.5. — Let (X,D) be a reduced dlt pair with D =
∑
Di.

If F = OD (or is locally free) or F = Q (or is a constant sheaf), then FD•
is a resolution of F .

Proof. — We start with F = OD. Since (Y,DY ) is a snc pair, OD•
Y

is a resolution of ODY
(see for example [19]). From Corollary A.3 it fol-

lows both that the complex f∗OD•
Y
is exact and that f∗OD•

Y
= OD• . Now

the case F = Q. Let U ⊂ X be any open set such that on U ∩ Xsnc

the divisor D is given by the vanishing of a product of local coordinates.
The complex Γ(i−1

• (U ∩Xsnc),QD[•]) is exact except in degree zero, where
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it has cohomology equal to Γ(U ∩ Xsnc ∩ D,Q) (e.g. [57]). As a conse-
quence, the complex is exact on the snc locus. By the dlt assumption,
every connected (hence irreducible) component of D[k] intersects the snc
locus of (X,D) so Γ(i−1

k (U),QD[k]) = Γ(i−1
k (U ∩Xsnc),QD[k]). Hence, for

any x ∈ D there is a sufficiently small open neighborhood U such that the
complex Γ(i−1

• (U),QD[•]) ∼= Γ(i−1
• (U ∩Xsnc),QD[•]) is exact except in de-

gree zero where it has cohomology equal to Γ(U∩D,Q) and the proposition
follows. �

Corollary A.6. — For (X,D) and F as above there is a spectral
sequence with E1 term

(A.3) Ep,q1 = Hq(FD[p])

abutting to H∗(F).

Proof. — Resolving every term of the complex with its Čech complex we
get a double complex which yields a spectral sequence with E1 term equal
to (A.3). �

Remark A.7. — We notice that Corollary A.6 for F = C implies (A.3)
for F = OD. Indeed, since the connected components of D[q] are rational,
by [45] they are Du Bois and hence there is a surjection Hp(D[q],Q) →
Gr0

FH
p(D[q],Q) = Hp(D[q],OD[q]). By [15, Thm. 2.3.5] GrkF is an exact

functor and hence Gr0
FH

p(D[q]) abuts to Gr0
FH

p+q(D,C) = Hp+q(D,OD).

We end with the following lemma.

Lemma A.8. — The spectral sequence of Corollary A.6, for OX0 , is
endowed with an algebra structure that is compatible with the cup product
on H∗(OX0).

Proof. — By Proposition A.5, it is enough to produce a morphism of
complexes

(A.4) ϕ : OX•0 ⊗OX•0 → OX•0
which induces the regular cup product on OX0 . For α = {αJ} a section
of O

X
[s]
0

and β = {βK} a section of O
X

[t]
0

we set ϕ(α ⊗ β)j0j1···js+t+1 =
αj0j1···is |X0j0j1···js+t+1

· βjsjs+1···is+t+1 |X0j0j1···js+t+1
. The verification that ϕ

is a morphism of complexes is formally the same as that for the cup product
in Cech cohomology. We can lift ϕ to a morphism of the Cech resolutions of
each of the two complexes, getting a product structure on the correspond-
ing spectral sequence and hence a product Hq(O

X
[p]
0

) ⊗ Hq′(O
X

[p′]
0

) →

Hq+q′(O
X

[p+p′]
0

) which is compatible with the cup product onH∗(OX0). �
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