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ON THE LOCAL PSEUDOCONVEXITY OF CERTAIN
ANALYTIC FAMILIES OF C

by Takeo OHSAWA

Dedicated to Jean-Pierre Demailly on his sixtieth birthday

Abstract. — For a class of weakly 1-complete C bundles over compact Rie-
mann surfaces, for which canonical plurisubharmonic exhaustion functions on the
total spaces are known, some cases are described where such functions can be ex-
tended to a plurisubharmonic exhaustion function on analytic families of the C
bundles. The nonextendable cases are also discussed.
Résumé. — Nous donnons des conditions pour que certaines fonctions ana-

lytiques plurisousharmoniques exhaustives sur des variétés faiblement 1-complètes
qui sont des fibrés en droites affines au dessus de surfaces de Riemann soient ex-
tensibles à des familles analytiques de fonctions plurisousharmoniques exhaustives.
Un exemple de famille non-extensible est également présenté.

1. Introduction

It is well known from the works of Oka [23, 24] that every domain of
holomorphy over Cn is holomorphically convex (cf. [4]). This basic result
is contained in an assertion, which is the main result of [24], that every
locally pseudoconvex domain over Cn is holomorphically convex. The lat-
ter has been generalized in various situations on complex manifolds and
on complex spaces with singularities (cf. [2, 11, 12, 26, 27, 28, 31]). In
the present article, we shall say that a reduced complex space X with a
holomorphic map π to a complex space T is locally pseudoconvex over T ,
with a slight abuse of language, if every point of T admits a neighborhood
U such that π−1(U) admits a C∞ plurisubharmonic exhaustion function.
Following Nakano [17] we shall say that X is weakly 1-complete if it ad-
mits a C∞ plurisubharmonic exhaustion function. This terminology comes
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from Grauert’s characterization of Stein manifolds as manifolds admitting
strictly plurisubharmonic exhaustion functions (cf. [12]), which are said to
be 1-complete in [1]. It is known that a weakly 1-complete manifold with
a positive line bundle is holomorphically embeddable into CPn (n � 1)
(cf. [26]) and that weakly 1-complete manifolds with negative canonical
bundles are holomorphically convex (cf. [27]).
We recall that a complex manifold is called q-complete if it carries a C∞

exhaustion function whose Levi form admits everywhere less than q non-
positive eigenvalues. The notion of q-completeness is generalized to com-
plex spaces without difficulty. It is known that every noncompact (and
paracompact) complex space of dimension n without compact irreducible
components is n-complete (cf. [15] and [20]). It depends on the choices of
X, T , π and q whether or not a given locally pseudoconvex space X over
T is q-complete. Actually, in contrast to the case of Oka, where π is a
local homeomorphism, the local pseudoconvexity of π : X → T does not
necessarily imply that X is weakly 1-complete even if T = Cn. Such a
phenomenon has been observed in many situations with illustrative coun-
terexamples (cf. [5, 9, 10, 25, 29]). On the other hand, results have been
obtained concerning the weak 1-completeness of locally pseudoconvex sub-
domains in complex manifolds both in the positive and negative directions,
motivated by remarks of Grauert (cf. [6, 8, 13, 14, 18, 19, 22]). In particular,
Diederich and Fornaess showed in [6] that there exist locally pseudocon-
vex and smoothly bounded domains of dimension n in compact manifolds
which are not weakly 1-complete if n > 3. The purpose of the present arti-
cle is to prove several affirmative results in this context as a continuation
of [8] and [22], focusing on the notions of local pseudoconvexity and weak
1-completeness. The aim is to strengthen a basic fact that (the total space
of) a holomorphic affine line bundle over a compact Riemann surface is
weakly 1-complete if and only if its Chern class is nonpositive, which was
first observed by Ueda [30] to the knowledge of the author. We shall prove
its relative variant as a result of preliminary nature.

Theorem 1.1. — Let T be a complex manifold, let p : S → T be
a proper holomorphic map with smooth fibers of dimension one, and let
q : L→ S be a holomorphic affine line bundle. Then p◦q : L→ T is locally
pseudoconvex if one of the following conditions is satisfied.

(1) Fibers Lt(t ∈ T ) of p ◦ q are of negative degrees over the fibers St
of p.

(2) Lt are topologically trivial over St and not equivalent to holomor-
phic line bundles.
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LOCAL PSEUDOCONVEXITY OF FAMILIES 2813

(3) L→ S is U(1)-flat.

We shall also show that there exists a holomorphic affine line bundle over
the trivial family of an elliptic curve (C\{0})/Z over C which is not locally
pseudoconvex over C (see Section 3).

The main case (2) of Theorem 1.1 has already been discussed in [22]
when L is flat. For this case, we had to employ Ueda’s method in [30]
taking the parameter dependence of harmonic sections of Lt into account.
The result was applied to prove the weak 1-completeness of holomorphic
disc bundles over S when T is Stein. Here we shall be contented with local
pseudoconvexity, since the situation becomes more delicate as the above
mentioned counterexample shows.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is a slight modification of an argument em-
ployed in [22] for the proof of the weak 1-completeness of the disc bun-
dles over analytic families of compact Riemann surfaces over Stein man-
ifolds. Hence the materials below are mostly contained in [22]. However
the rest is somewhat delicate, so that it is not only for the convenience
of the reader that they are recalled here. First we recall basic facts on
analytic affine line bundles over complex manifolds. By definition, a holo-
morphic affine line bundle over a complex manifold M is a holomorphic
fiber bundle q : X → M whose fibers are equivalent to C. Note that
AutC = {az + b; a, b ∈ C, a 6= 0}, where z denotes the coordinate of
C. So, affine line bundles are simply the complex plane with holomor-
phic parameters. For the pseudoconvexity property of X, it is easy to see
that X is Stein if M is Stein. Note that the converse is not true. Indeed,
for a holomorphic line bundle of degree less than 1 over the Riemann
sphere, say π : L → Ĉ(:= C ∪ {∞}), any affine line bundle over Ĉ as-
sociated to a nonzero element of H0,1(Ĉ, L) is Stein, where Hp,q(M,E)
generally denotes the Dolbeault cohomology groups of type (p, q) for a
holomorphic vector bundle E over M . Namely, let L be given by patching
C × C = {(z, ζ); z, ζ ∈ C} and C × C = {(w, ξ);w, ξ ∈ C} by the map
w = 1

z , ξ = zmζ for m > 2 and let X → Ĉ be the bundle defined by
(z, ζ) 7→ ( 1

z , z
mζ + zm−1), whose associated line bundle is L.

Then the functions zmζ + zm−1 and zm−1ζ + zm−2 are holomorphically
extendable to X, from which it is easy to see that X is Stein. More remark-
able fact is that, for any compact Riemann surface R and a holomorphic
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line bundle F → R with degF 6 0, any affine line bundle associated to
a nonzero element of H0,1(R,F ) is Stein. We shall recall the construction
of a plurisubharmonic function in [8] for the case degF = 0, because this
method has to be employed with an additional care later.

Theorem 2.1. — Topologically trivial holomorphic affine line bundles
over compact Kähler manifolds are weakly 1-complete.

Proof. — Let M be a compact Kähler manifold, let π : L → M be
a topologically trivial holomorphic affine line bundle, and let L0 be the
holomorphic line bundle associated to L. Then, since M is Kähler, one
can find an open covering {Uα}α∈A of M and local trivializations ϕα :
π−1(Uα) ∼= Uα × C = {(z, ζα); z ∈ Uα, ζα ∈ C} in such a way that
ϕα ◦ϕ−1

β (z, ζβ) = (z, eiθαβζβ +aαβ(z)) holds on ϕβ(π−1(Uα∩Uβ)) for some
θαβ ∈ R and aαβ ∈ O(Uα ∩ Uβ), for all α and β in A, where O(Uα ∩ Uβ)
denotes the set of holomorphic functions on Uα∩Uβ . This is a basic fact in
Kähler geometry relying on the ∂∂̄-lemma. Note that {eiθαβ} is a system
of transition functions for L0 and {aαβ} is a representative of an element
of H0,1(M,L0) as an L0-valued 1-cocycle. Then, applying the Kähler con-
dition again, by replacing {Uα} by its refinement if necessary, one can find
aα, bα ∈ O(Uα) such that aαβ = aα+bαeiθαβ (aβ+bβ) holds on Uα∩Uβ . Re-
call that this is also a consequence of the ∂∂̄ − lemma (cf. [7, Lemma 2]).
For simplicity we put hα = aα + bα. The system hα is narutally identi-
fied with a plurisubharmonic section of the bundle L → M . Then it is
straightforward that the function Φ = |ζα−hα|2 is a well-defined plurisub-
harmonic exhaustion function on L. Indeed, the well-definedness and the
exhaustiveness are obvious, and the plurisubharmonicity is immediate from
∂∂̄Φ = dζαdζα − dζα∂̄hα − dζα∂hα + ∂hα∂̄hα + ∂hα∂̄hα > ∂hα∂̄hα, where
∂∂̄Φ is identified with the complex Hessian of Φ. �

Proof of Theorem 1.1. — Let the notation be as in the statement. Since
the assertion is local in T , we may assume that T is a polydisc, say T =
{t = (t1, . . . , tm) ∈ Cm; |t| := max |tj | < 1}. We put Tr = {t ∈ T ; |t| <
r}. Let us denote (0, . . . , 0) ∈ Cm simply by 0, let St = p−1(t), and let
Lt = q−1(St). Let us first assume that the degree of the bundle L0 →
S0 is zero. Then we choose an open covering U = {Uα}α∈A of S and a
system of local trivializations of L associated to U so that the transition
functions of L0 → S0 with respect to {Uα ∩ S0} are of the form ζα =
eiθαβζβ +aαβ(θαβ ∈ R, aαβ ∈ O(Uα∩Uβ)). As in the proof of Theorem 2.1,
U can be chosen so that one can find harmonic functions hα on Uα ∩ S
satisfying aαβ = hα − eiθαβhβ on Uα ∩ Uβ ∩ S0. Then, by virtue of the
implicit function theorem, there exists r > 0 such that, by replacing U by
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LOCAL PSEUDOCONVEXITY OF FAMILIES 2815

its refinement if necessary, one can find C∞ extensions θ̃αβ and h̃α of θαβ
and hα to Uα ∩ Uβ ∩ p−1(Tr) and Uα ∩ p−1(Tr), respectively, in such a
way that θ̃αβ are real valued, h̃α are harmonic on St ∩ Uα, and that the
transition functions of (p ◦ q)−1(Tr) are of the form ζα = eiθ̃αβζβ + ãαβ ,

where ãαβ |Uα∩Uβ∩St ∈ O(St ∩ Uα ∩ Uβ) and ãαβ = h̃αe
iθ̃αβ h̃β hold on

Uα ∩ Uβ ∩ p−1(Tr). Let us put Φ = |ζα − h̃α|2. Then, as in the proof of
Theorem 2.1, the restriction of Φ to Lt is a plurisubharmonic exhaustion
function for all t ∈ Tr. Suppose now that the condition (2) is satisfied. Then
it is easy to see that Φ|Lt is strictly plurisubharmonic on a dense subset of
Lt. More explicitly, Φ|Lt∩Uα is strictly plurisubharmonic on the complement
of {(z, ζα) ∈ (Uα ∩ Lt) × C; ∂̄hα(z) = 0}. Therefore, by shrinking Tr if
necessary, one can find a bounded C∞ function Ψ on (p ◦ q)−1(Tr) such
that (Φ + Ψ)|Lt is strictly plurisubharmonic for all t ∈ Tr. Then it is easy
to verify that there exist ε > 0 and C > 0 such that Φ + Ψ + CΦ‖t‖2 is
strictly plurisubharmonic on (p ◦ q)−1(Tε). Here we put ‖t‖2 =

∑m
j=1 |tj |2.

It is now obvious that (p ◦ q)−1(Tε) is 1-completefor sufficiently small ε.
If (1) is satisfied, the conclusion is obvious because the section at infinity
of L0 → S0 is a divisor with positive normal bundle and hence the section
at infinity of L|p−1(Tε)(0 < ε� 1) has positive normal bundle, too. If (3) is
satisfied, then the square of the euclidean distance along the fibers of L is
a well defined plurisubharmonic function which is exhaustive on each Lt.
Hence (p◦ q)−1(V ) is weakly 1-complete for any Stein open set V ⊂ T . �

3. A counterexample

Let A be a complex torus of dimension one, say A = (C \ {0})/Z, where
the action of Z on C\{0} is given by z 7→ emz for m ∈ Z. Over the product
space A × C as an analytic family of compact Riemann surfaces over C,
we define an affine line bundle F → A × C as the quotient of the trivial
bundle ((C \ {0})× C)× C→ (C \ {0})× C by the action of Z defined by
(z, t, ζ) 7→ (emz, t, ζ +mt). Had F been locally pseudoconvex over C, with
respect to the map π : F → C induced from the projection to the second
factor, π−1(V ) would be holomorphically convex for some neighborhood
V 3 0. Indeed, since the fibers of π are all holomorphically convex and the
canonical bundle of F is trivial, holomorphic functions on π−1(t) would
be holomorphically extendable to π−1(V ) by an L2 extension theorem if
π−1(V ) were weakly 1-complete (cf. [21]). This contradicts an obvious fact
that π−1(0) cannot be blown down to C in F .

TOME 68 (2018), FASCICULE 7
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Remark 3.1. — Our example is similar in spirit to Demaillys example
of non-Stein C2-bundle over C \ {0} in [5]. We recall that this bundle is
defined as the quotient of C×C2 by the infinite cyclic group generated by
(ζ, z, w) 7→ (ζ + 2πi, zk −w, z), k > 2. However, a big difference is that our
family is Stein over C \ {0} because it is equivalent to (C \ {0})3 by the
map induced from (z, ζ, t) 7→ (ze−

ζ
t , e

2πiζ
t , t).

Remark 3.2. — In contrast to our example, it was shown by Miebach [16]
that the quotients of bounded homogeneous domains in Cn by Z are all
Stein.

4. A note on families of D

As was mentioned in the introduction, we have shown the following
in [22].

Theorem 4.1. — Let p : S → T be as in Theorem 1.1 and let π : D → S

be a holomorphic D-bundle, where D = {z ∈ C; |z| < 1}. Then D is weakly
1-complete if T is Stein.

An open question is whether this remains true if S is replaced by an
analytic family of compact Kähler manifolds. We observe here that Theo-
rem 1.1 is related to a very partial answer to this conjecture. To state it,
let p : Y → T be a proper and smooth holomorphic map and let q : X → Y

be a holomorphic disc bundle. Let χ : Ỹ → Y be the universal covering.
Then X is biholomorphically equivalent to the quotient of Ỹ × D by the
π1(Y )-action of the form γ(y, ζ) = (D(γ)y, ρ(γ)ζ)(γ ∈ π1(Y )). Here D de-
notes the canonical isomorphism between π1(Y ) and the group of covering
transformations of Ỹ → Y and ρ is a homomorphism from π1(Y ) to AutD.
Let Γ denote the image of ρ. In this situation, X becomes holomorphi-
cally convex if Γ is discrete and not cocompact, in virtue of a theorem of
Behnke and Stein (cf. [3]). On the other hand,similarly as in the proof of
the case (3) of Theorem 1.1, it is easy to see the following.

Theorem 4.2. — X is weakly 1-complete if T is Stein and Γ is com-
mutative.

Corollary 4.3. — Let L → T be an analytic family of complex tori
over a Stein manifold T and let X → Y be a holomorphic disc bundle.
Then X is weakly 1-complete.
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