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ON BIFURCATION AND LOCAL RIGIDITY
OF TRIPLY PERIODIC MINIMAL SURFACES IN R3

by Miyuki KOISO, Paolo PICCIONE & Toshihiro SHODA (*)

Abstract. — We study the space of triply periodic minimal surfaces in R3,
giving a result on the local rigidity and a result on the existence of bifurcation.
We prove that, near a triply periodic minimal surface with nullity three, the space
of triply periodic minimal surfaces consists of a smooth five-parameter family of
pairwise non-homothetic surfaces. On the other hand, if there is a smooth one-
parameter family of triply periodic minimal surfaces {Xt}t containing X0 where
the Morse index jumps by an odd integer, it will be proved the existence of a
bifurcating branch issuing from X0. We also apply these results to several known
examples.
Résumé. — Nous étudions l’espace des surfaces minimales triplement périodi-

ques dans R3, obtenant un résultat sur la rigidité locale ainsi que sur l’existence de
bifurcation. Nous démontrons que, près d’une surface minimale triplement pério-
dique de nullité 3, l’espace des surfaces minimales triplement périodiques est une
famille lisse à cinq paramètres de surfaces deux à deux non homothétiques. D’autre
part, s’il y a une famille lisse à un paramètre de surfaces minimales triplement pé-
riodiques {Xt}t contenant X0, dont l’indice de Morse saute d’un entier impair,
ceci démontrera l’existence d’une branche bifurquant depuis X0. Nous appliquons
aussi ces résultats à plusieurs exemples connus.

1. Introduction

Construction of examples and classification of triply periodic minimal
surfaces (TPMS) in R3 constitute a very active field of research in Dif-
ferential Geometry. Such surfaces correspond, via universal covering, to

Keywords: triply periodic minimal surfaces, H-family, rPD-family, tP-family, tD-family,
tCLP-family, bifurcation theory.
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minimal embeddings of closed orientable surfaces into a flat torus T3. As
originally conjectured by Meeks, see [20], it is known that every closed sur-
face of genus greater than or equal to 3 admits a minimal embedding in
any flat torus T3, see [30]. The purpose of this paper is to give one of the
first steps of the study of the structure of the space of TPMS’s. We will
prove that, near a TPMS with nullity three, the space of all TPMS’s in
R3 consists of a smooth five-parameter family of pairwise non-homothetic
surfaces (Proposition 3.3). Note that the dimension of this space is related
to the dimension of the space of (non-isometric) unit volume flat metrics
on a 3-torus T3. Moreover, using bifurcation techniques, we discuss the ex-
istence of singularities near a TPMS whose nullity is greater than three.
Roughly speaking, if there is a smooth one-parameter family of TPMS’s
{Xt}t containing a given TPMS X0 where the Morse index has an odd
jump, then the space of TPMS’s contains an infinite set that lies outside
of the five-parameter family, and that accumulates on X0 (Theorem 5.4).
Interestingly enough, the question of stability is a central issue in the

theory of minimal surfaces, since the pioneering work of Plateau on ex-
perimental and theoretical research on the equilibrium shapes of a liquid
mass without gravity. Bifurcation phenomena, defined in terms of sponta-
neous transformation of families of constant mean curvature surfaces, are
described in the historical paper [24]. TPMS’s appear naturally in several
applied sciences, including physics, chemistry, and crystallography, see for
instance [2, 8, 9, 28]. G. E. Schröder-Turk, A. Fogden, and S. T. Hyde [10]
studied one-parameter families of triply periodic minimal surfaces in R3.
These families which are called H-family, rPD-family, tP-family, tD-family,
tCLP-family, rG-family, and tG-family contain many classical examples
(Schwarz P-surface, Schwarz D-surface, Schwarz H-surface, Schwarz CLP-
surface, and Alan Schoen’s gyroid). All TPMS’s in these families are of
genus three. On the other hand, the genus of any orientable stable TPMS
in R3 is three, since the Morse index of any orientable stable TPMS is 1
(see §5 for the definition of the Morse index) and since closed orientable
minimal surfaces with Morse index 1 immersed in an orientable 3-manifold
with nonnegative Ricci curvature have genus 6 3 (Ros [25]). Moreover, the
lowest genus of orientable TPMS’s is three (Meeks [20, Corollay 3.1, The-
orem 3.1]). In view of these facts, it is interesting to study the space of
all TPMS’s with genus three. It is proved that some of the families of the
above mentioned examples intersect (N. Ejiri and T. Shoda [7]. See §6).
We will discuss the structure of the space of TPMS’s near these families
(Conjecture B, Corollary C and Theorem D. See also §8).
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Since the pioneering work of Plateau, many of the subsequent works
on bifurcation for minimal or CMC surfaces have relied mostly on exper-
imental techniques. Recently, theoretical results have been obtained using
perturbation techniques, and in particular variational bifurcation theory;
the aim of this paper is to apply these techniques to the theory of TPMS.
Bifurcation theory has been successfully employed to determine multiplic-
ity of solutions for geometric variational problem, see for instance [3] and
the references therein for applications to the Yamabe problem. Thus, em-
ploying bifurcation theoretical techniques in the context of TPMS’s seems
extremely promising, and in the present paper we take the first steps to-
wards this goal. In order to apply our results to concrete examples (§7), we
will try to use some recent results of N. Ejiri and T. Shoda, see [7, 6], who
prove a finite dimensional reduction to compute the nullity and the Morse
index for the above families of minimal embeddings. Let us describe more
precisely the results discussed in this paper.

1.1. Bifurcation

Given a one-parameter family ]a0 − ε, a0 + ε[ 3 a 7→ ga of (unit volume)
flat metrics in T3, and a one-parameter family a 7→ xa of ga-minimal em-
beddings xa : Σ → T3, then a bifurcating branch of minimal embeddings
converging to xa0 for the family (xa)a consists of:

• a sequence an tending to a0 as n→∞;
• a sequence xn : Σ→ T3 of embeddings, where xn is gan -minimal for

all n,
such that

(1) limn→∞ xn = xa0 in some suitable Ck-topology, with k > 2;
(2) xn is not congruent to xan

for all n.
Let us also recall that two embeddings y1, y2 : Σ→ T3 are congruent if one
is obtained from the other by a change of parameterization of Σ and by a
translation of T3, i.e., if there exists a diffeomorphism ψ of Σ and t ∈ T3

such that y1 = y2 ◦ ψ + t.
In the situation above, we say that a0 is a bifurcation instant for the fam-

ily (xa)a. An important related notion is that of local rigidity for a family
of minimal embeddings, based on the notion of equivariant nondegener-
acy, see Section 1.2 below. If (xa)a is a continuous family of equivariantly
nondegenerate ga-minimal embeddings, then the Morse index of xa (as a
critical point of the area functional) is constant.

TOME 68 (2018), FASCICULE 6
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The abstract result proved in the paper gives a sufficient condition for
the local rigidity and for the existence of a bifurcation instant for a one-
parameter family of minimal embeddings into flat tori.

Theorem A. — Let Σ be a closed orientable surface of genus greater
than 1, let (ga)a∈]a0−ε,a0+ε[ be a continuous 1-parameter family of unit
volume flat metrics on T3, and let xa : Σ→ R3, be a continuous family of
embeddings such that xa is ga-minimal for all a.

(1) Assume the following:
• xa is equivariantly nondegenerate for all a 6= a0;
• given a′ ∈ ]a0 − ε, a0[ and a′′ ∈ ]a0, a0 + ε[, the difference
between the Morse indices of xa′ and of xa′′ is an odd integer.

Then, a0 is a bifurcation instant for the family (xa)a.
(2) If xa is equivariantly nondegenerate for all a ∈ ]a0 − ε, a0 + ε[,

then the family (xa)a is locally rigid. This implies that near x0,
all triply periodic minimal surfaces in R3 consist of six-parameter
family of surfaces. If we restrict ourselves to the unit volume lattice,
then, near x0, all triply periodic minimal surfaces consist of a five-
parameter family of pairwise non-homothetic surfaces.

The two statements of Theorem A will be proved under slightly more
general assumptions, see Proposition 3.3 for the local rigidity statement,
and Theorem 5.4 for the bifurcation statement.

We will recall in Section 6 the definitions of the H-family, the rPD-family,
the tP-family, the tD-family and the tCLP-family of triply periodic minimal
embeddings. Applications of part (1) of Theorem A to the above families
yields the following conjecture which is very plausible (see §7):

Conjecture B. — There is one bifurcation instant for the H-family
and two bifurcation instants for the rPD-family, the tP-family, and the
tD-family.

In order to apply Theorem A to these families of TPMS’s, we will employ
some recent results obtained in [7, 6] for the computation of Morse index
and nullity of minimal embeddings in the above families. Let us recall that
the main result in [7, 6] is a finite dimensional reduction for the computa-
tion of the nullity and the Morse index of triply periodic minimal surfaces.
This reduction, which is proved on a theoretical ground, allows to compute
nullity and index in terms of finite dimensional (9 × 9, 18 × 18) hermit-
ian/symmetric matrices. Once this theoretical result has been established,
some numerical methods have been used in [7] to obtain approximations
for the bifurcation instants for each of the families above. As to the jump
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of Morse index, the numerical algorithms employed in [7] to determine
the sign of eigenvalues of symmetric matrices offer quite a solid basis for
Conjecture B.
Theorem A and Conjecture B can be interpreted in terms of the moduli

space M(Σ,T3) of minimal embeddings of a given compact surface Σ into
a flat 3-torus. Let Σ be a closed orientable surface M(Σ) of genus equal
to 3, and define M(Σ,T3) as the space of minimal embeddings of Σ into
some flat 3-torus, modulo congruence and homotheties. The notion of equi-
variant nondegeneracy can be extended in an obvious way to the points of
M(Σ,T3); this is clearly an open condition. The families tP , tD, and rPD
contain only at most a countable set of equivariantly degenerate surfaces.
This follows easily from the fact that these families are real-analytic, and
so are the eigenvalues of their Jacobi operators. Note that tP and rPD

families contain Schwarz P-surface, tD and rPD families contain Schwarz
D-surface, and P and D surfaces have nullity three (see [26]).
Observe that equivariant degeneracy is equivalent to the (simultaneous)

vanishing of at least 4 eigenvalues, counted with muliplicity, of the Jacobi
operator. Since each one of these families contains at least one equivariantly
nondegenerate surface, and the zeros of nonzero real-analytic functions are
isolated, the set of equivariantly degenerate surfaces belonging to one of
the families above is at most countable. Also every minimal surface in the
tCLP-family has nullity equal to 3 (see Remark 1.2). Thus, Theorem A
says that M(Σ,T3) contains a large open subset which has the structure
of a 5-dimensional real analytic manifold, but Conjecture B suggests that
M(Σ,T3) also admits points where nontrivial singularities occur.

1.2. Equivariant nondegeneracy and local rigidity

The first important issue is the question of degeneracy of the minimal
embeddings in the above families, caused by the symmetries of the ambi-
ent space T3. Every minimal embedding admits a three dimensional space
of (nontrivial) Jacobi fields, coming from the Killing fields of the ambi-
ent, which implies that each one of the embeddings is a degenerate critical
point of the area functional. Recall that standard variational bifurcation
assumptions require nondegeneracy at the endpoints of the path, which
fails to hold in this situation. The central technical part of the paper con-
sists in the construction of an alternative functional framework, suitable
to handle such degenerate situation. To this aim, we use an idea origi-
nally introduced by Kapouleas to prove an implicit function theorem for

TOME 68 (2018), FASCICULE 6
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constant mean curvature embeddings, which consists in considering a “per-
turbed” mean curvature function H̃ of an embedding, see Section 2.2 for
details. Such a function vanishes identically exactly at minimal embeddings
(Proposition 2.1), nevertheless maintains its differential surjective at pos-
sibly degenerate minimal embeddings, provided that the degeneracy arises
exclusively from the ambient symmetries (Proposition 4.1). We call equiv-
ariantly nondegenerate a minimal embedding along which every Jacobi
field arises from a Killing field of the ambient space, see Definition 3.2. A
proof of statement (2) in Theorem A is obtained as a direct application
of an equivariant implicit function theorem to the equation H̃ = 0, see
Proposition 3.3. This yields the following (§7):

Corollary C. — In the H-family, the tP-family, the tD-family, the
rPD-family, and the tCLP-family, every surface whose nullity is equal to 3
belongs to a (unique up to homotheties) smooth locally rigid 5-parameter
family of pairwise non-homothetic triply periodic minimal surfaces.

In other words, the minimal surfaces in the statement of Corollary C
belong to the regular part of the moduli spaceM(Σ,T3).

Remark 1.1. — It is interesting to observe that W. Meeks proved in [20,
Theorem 7.1] that every triply periodic minimal surface of genus 3 for
which the ramified values of the Gauss map consist of 4 antipodal pairs
in the 2-sphere, belongs to a real 5-dimensional family of triply periodic
minimal surfaces of genus 3. Every surface in the tCLP-family, the tP-
family, the tD-family, and the rPD family belongs to the class of surfaces
to which [20, Theorem 7.1] applies. Thus, for each surface x0 : Σ → T3

with nullity three in these families, the 5-parameter family of triply peri-
odic minimal surfaces that contains x0 given in Corollary C coincides with
Meeks’ family. For these examples, the new information provided by our
results (Theorem A(2)), besides a different approach to the proof, is the
local rigidity property of these families around surfaces with nullity equal
to 3, and the lack of local rigidity around surfaces with nullity larger than
3 corresponding to even jumps of the Morse index.

Remark 1.2. — Every minimal surface in the tCLP-family has nullity
equal 3 and index equal to 3, see [21, Corollary 15]. An alternative proof
by numerical methods is given in [7].

Remark 1.3. — The existence of a 5-parameter family of triply periodic
minimal surfaces containing a given one is obtained in Proposition 3.3, more
generally, near each embedded triply periodic minimal surface with genus
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greater than one and with nullity equal to three. The classical example
of Schoen’s gyroid does not satisfy the assumptions of [20, Theorem 7.1]
(see [20, Remark 7.2]). However, since it belongs to the associate family of
P and D-surfaces (Example 6.5), it has nullity equal to 3 (see [26]), and
Proposition 3.3 applies in this situation (§7).

Theorem D. — Schoen’s gyroid belongs to a unique (up to homoth-
eties) locally rigid 5-parameter smooth family of pairwise non-homothetic
triply periodic minimal surfaces.

We remark that the existence of a family of deformations for the triply
periodic minimal surfaces considered in Corollary C and Theorem D above
can also be deduced from Ejiri’s results in [5]. Actually, while we obtain
the results via an equivariant implicit function theorem, [5] uses a different
approach, and it gives a more explicit description of the deformation space.

1.3. Some technical aspects

As an undesired drawback in our bifurcation setup, we need to observe
that the PDE:

H̃ = 0,
defined in the space of “unparameterized embeddings” of Σ into T3, is not
variational, i.e., it is not the Euler–Lagrange equation of some variational
problem (recall that the standard mean curvature function is the gradient
of the area functional). This entails that, in order to carry out our project,
we have to resort to more general bifurcation theory for Fredholm oper-
ators (see Appendix A.2), which provides results somewhat weaker than
variational bifurcation theorems. More specifically, rather than the classi-
cal “jump of Morse index” assumption, in the nonvariational case one has
to postulate the less general (and intuitive) “odd crossing number” con-
dition for the eigenvalues of the linearized problem. In particular, we can
only infer the existence of bifurcating branches at those instants at which
the jump of the Morse index is an odd integer. We should remark that,
for the H-family, it is conjectured that there exists a degeneracy instant
(a1 ≈ 0.71479) where the jump of Morse index is equal to 2, see Section 7.
In Section 8, we will present an analysis of the type of bifurcation oc-

curring at the bifurcation instants stated in Conjecture B, mostly based
on numerical computations. We will give numerical evidences to show that
for the H-family, the degeneracy instant corresponds to a transcritical bi-
furcation, which does not produce essentially new triply periodic minimal
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surfaces. This is due to the fact that, around the degenerate instant where
bifurcation occurs, the homothety class of the flat metric on the torus does
not depend bijectively on the parameter of the family, see Remark 5.2. The
same situation occurs at one of the two bifurcation instants of the families
rPD, tP and tD. On the other hand, the second bifurcation instant of each
of these three families is genuine, in the sense that the bifurcation branch
that issues from these instants consists of triply periodic minimal surfaces
that are not homothetic to any other member of the family.

1.4. Future developments

As we mentioned above, in order to obtain Conjecture B (§7) and to
study geometry of triply periodic minimal surfaces in the bifurcation
branches (§8), we use some numerical computations. It is a future sub-
ject to estimate the error terms to ensure that those phenomena are true.
Numerical verification methods which are based on the use of interval arith-
metic (cf. [27]) may be useful to this purpose.

As a final remark, we would like to observe that a full-fledged bifurcation
theory for triply periodic minimal surfaces in R3 will require a further de-
velopment of the results exposed here. In first place, it would be interesting
to extend the existence result to degeneracy instants corresponding to even
jumps of the Morse index, which is very likely a matter of applying finer
bifurcation results. The second point would be to study the topology of the
bifurcating branches, like connectedness, cardinality, regularity, etc., which
ultimately depends on the behavior of the eigenvalues of the Jacobi oper-
ator near zero (derivative, transversal crossing). An important question to
assess is establishing the pitchfork picture of the bifurcation set, and the
stability/instability of minimal surfaces in the bifurcating branches. Note
that a triply periodic minimal surface that divides T3 into two parts is
said to be stable if the second variation of the area is nonnegative for all
volume-preserving variations as a compact surface in T3 with the corre-
sponding metric. Here, by volume it is meant the volume of each part of
T3 divided by the surface. For instance, the Schwarz P and D surfaces and
Schoen’s gyroid are stable (Ross [26]).
Finally, it would be very interesting to study the geometry of the new

triply periodic minimal surfaces in the bifurcating branches issuing from
the genuine bifurcation instants along the rPD, the tP and the tD family
whose existence is suggested in Conjecture B. These topics constitute the
subject of an ongoing research project by the authors.

ANNALES DE L’INSTITUT FOURIER



BIFURCATION OF TRIPLY PERIODIC MINIMAL SURFACES 2751

Acknowledgement. Most of the pictures of surfaces in this paper were
originally drawn by Prof. Shoichi Fujimori (Okayama University, Japan).
The authors express their gratitude to him. The authors also thank the
referee for valuable comments.

2. The functional setup

2.1. Notations and terminology

We will denote by Λ a generic lattice in R3. The quotient R3/Λ is diffeo-
morphic to the 3-torus T3, the quotient map R3 → R3/Λ will be denoted
by πΛ and the induced flat metric will be denoted by gΛ. The identity con-
nected component of the isometry group of (R3/Λ, gΛ) consists of transla-
tions t 7→ t + t0, t, t0 ∈ R3/Λ.
The symbol T (T3) will denote(1) the set of flat metrics on T3 modulo

isometries, or, equivalently, the set of isometry classes of lattices of R3. The
isometry class of a flat metric g will be denoted by [g], and the isometry
class of a lattice Λ will be denoted by [Λ]. The volume of a lattice Λ is the
volume of the metric gΛ; by T1(T3) we will denote the isometry classes of
unit volume lattices of R3.
Let Σ be a closed surface; in our main applications, Σ will be a closed

orientable surface of genus 3. For k ∈ N
⋃
{0} and α ∈ ]0, 1[, the symbol

Ck,α(Σ) will denote the Banach space of Ck,α real functions on Σ.
Let Λ0 be a fixed lattice of R3, g0 = gΛ0 be the corresponding flat

metric on T3, and let us assume that x0 : Σ → T3 is a fixed g0-minimal
embedding, which is transversally oriented. Given [Λ] sufficiently close to
[Λ0] and ϕ ∈ C2,α near 0, let us denote by xϕ,Λ : Σ→ T3 the embedding:

xϕ,Λ(p) = expgΛ
x0(p)

(
ϕ(p) · ~ngΛ

x0(p)
)
, p ∈ Σ,

where expgΛ is the exponential map of the metric gΛ, and ~ngΛ
x0

is the pos-
itively oriented gΛ-unit normal vector along x0. It is well known that, for
Λ fixed, the map ϕ 7→ xϕ,Λ gives a bijection between a neighborhood of
0 in C2,α(Σ) and a neighborhood of x0 in the space of unparameterized

(1)We have a surjective map from GL(3) = GL(3,R) to the set of lattices of R3: given
A ∈ GL(3), one associates the lattice ΛA = spanZ{Ae1, Ae2, Ae3}, where e1, e2, e3 is the
canonical basis of R3. Given A,A′ ∈ GL(3), then the lattices ΛA and ΛA′ are isometric if
and only if there exists U ∈ O(3) such that A′ = UA. Thus, T (T3) is identified with the
quotient space O(3)\GL(3). This is a 6-dimensional manifold; the set T1(T3) of isometry
classes of lattices having volume 1 has dimension equal to 5.
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embeddings (i.e., embeddings modulo reparameterizations) of Σ into T3.
Details of this construction can be found, for instance, in reference [1].
Finally, for fixed Λ and i = 1, 2, 3, set KΛ

i = (πΛ)∗(ei), where {e1, e2, e3}
is the canonical basis of R3. The KΛ

i , i = 1, 2, 3, form a basis of Killing vec-
tor fields of (T3, gΛ). For ϕ ∈ C2,α near 0 and i = 1, 2, 3, define fϕ,Λi : Σ→ R
by:

fϕ,Λi = gΛ
(
KΛ
i , ~n

gΛ
xϕ,Λ

)
.

Here, ~ngΛ
xϕ,Λ

denotes the gΛ-unit normal field along the embedding xϕ,Λ. We
will also denote by Kϕ,Λ

i the vector fields on Σ obtained by gΛ-orthogonal
projection to xϕ,Λ of KΛ

i :

(2.1) Kϕ,Λ
i = KΛ

i − f
ϕ,Λ
i · ~ngΛ

xϕ,Λ
.

2.2. The functional framework

For a lattice Λ ⊂ R3 and an embedding x : Σ → T3, let us denote by
HΛ(x) : Σ→ R the mean curvature function of the embedding x relative to
the metric gΛ. Let us now fix a lattice Λ0 and let us consider the function:

H̃ : U0 × R3 ×V0 −→ C0,α(Σ),

where U0 is a neighborhood of 0 in the Banach space C2,α(Σ) and V0 is a
neighborhood of Λ0 in the set(2) of lattices of R3, defined by:

(2.2) H̃
(
ϕ, a1, a2, a3,Λ

)
= 2HΛ(xϕ,Λ) +

3∑
i=1

aif
ϕ,Λ
i .

For a lattice Λ ⊂ R3, we will also use the notation:

H̃Λ : U0 × R3 −→ C0,α(Σ)

for the map:

(2.3) H̃Λ(ϕ, a1, a2, a3) = H̃
(
ϕ, a1, a2, a3,Λ

)
.

The following result is based on an idea of N. Kapouleas [11, 12], which was
then also employed by R. Mazzeo, F. Pacard and D. Pollack [19], R. Mazzeo
and F. Pacard [18], B. White [31, §3], J. Pérez and A. Ros [23, Thm 6.7],
and, finally in [4]. Let 0 denote the zero function on Σ.

(2)The set of lattices of R3 can be identified with GL(3,R).
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Proposition 2.1. — Assume that the functions f0,Λ0
i , i = 1, 2, 3, are

linearly independent(3) . Then, for sufficiently small neighborhoods U0 and
V0:

(2.4) H̃−1(0) = {(ϕ, 0, 0, 0,Λ) : xϕ,Λ is gΛ-minimal }.

Proof. — First, we choose U0 and V0 small enough so that the functions
fϕ,Λi , i = 1, 2, 3, are linearly independent for all (ϕ,Λ) ∈ U0×V0. Now, let
(ϕ, a1, a2, a3,Λ) be such that:

HΛ(xϕ,Λ) +
3∑
i=1

aif
ϕ,Λ
i = 0.

In order to prove (2.4), we need to show that from the above equality it
follows a1 = a2 = a3 = 0. Multiplying both sides of the above equality by∑3
i=1 aif

ϕ,Λ
i we get:

(2.5) HΛ(xϕ,Λ)
3∑
i=1

aif
ϕ,Λ
i +

( 3∑
i=1

aif
ϕ,Λ
i

)2

= 0.

We claim that for all i = 1, 2, 3 we have:

(2.6)
∫

Σ
HΛ(xϕ,Λ)fϕ,Λi dΣϕ,Λ = 0,

where dΣϕ,Λ is the volume element of the pull-back by xϕ,Λ of gΛ. This
follows from Stokes’ Theorem, observing that:

(2.7) HΛ(xϕ,Λ)fϕ,Λi = div(Kϕ,Λ
i ),

where the Kϕ,Λ
i ’s are defined in (2.1), see Lemma A.1. Using (2.5) and (2.6)

we get: ∫
Σ

( 3∑
i=1

aif
ϕ,Λ
i

)2

dΣϕ,Λ = 0,

which gives
∑3
i=1 aif

ϕ,Λ
i = 0. Since the fϕ,Λi ’s are linearly independent, we

obtain a1 = a2 = a3 = 0, which proves our result. �

3. Local rigidity

Fix [Λ] ∈ T (T3); two embeddings x1, x2 : Σ → R3/Λ will be called Λ-
congruent if there exists a diffeomorphism ψ : Σ→ Σ and an element t0 ∈

(3)The linear independence assumption is always satisfied when the genus of Σ is greater
than 1, see Remark 5.5.
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R3/Λ such that x2 = t0+(x1◦ψ). Observe that if x1 and x2 are Λ-congruent,
and x1 is gΛ-minimal, then also x2 is gΛ-minimal.
Let V be a neighborhood of [Λ0] in T (T3), and let V 3 [Λ] 7→ ϕΛ ∈ U0

be a continuous map such that xϕΛ,Λ is gΛ-minimal for all [Λ] ∈ V.

Definition 3.1. — The family of minimal embeddings (xϕΛ,Λ)[Λ]∈V is
said to be locally rigid at Λ0 if for every [Λ] ∈ V and every gΛ-minimal
embedding y : Σ→ T3 sufficiently close to x0, y is Λ-congruent to xϕΛ,Λ.

In order to formulate a rigidity criterion, let us introduce a suitable
notion of nondegeneracy for minimal embeddings in (T3, gΛ).

Definition 3.2. — Assume that xϕ,Λ is a gΛ-minimal embedding, and
let Jϕ,Λ : C2,α(Σ) → C0,α(Σ) denote its Jacobi(4) operator. We say that
xϕ,Λ is equivariantly nondegenerate if Ker(Jϕ,Λ)=span

{
fϕ,Λ1 , fϕ,Λ2 , fϕ,Λ3

}
.

The span of
{
fϕ,Λ1 , fϕ,Λ2 , fϕ,Λ3

}
is the space of the so-called Killing–Jacobi

fields along xϕ,Λ. Thus, an equivalent way of characterizing equivariant
nondegeneracy is the fact that every Jacobi field along xϕ,Λ is a Killing–
Jacobi field.
A direct application of the equivariant implicit function theorem proved

in [4] gives the following:

Proposition 3.3. — Assume that the functions f0,Λ0
i , i = 1, 2, 3, are

linearly independent(5) , and that x0 is equivariantly nondegenerate. Then,
there exists a smooth functionV 3 Λ 7→ ϕΛ ∈ U0 defined in a neighborhood
V of [Λ0] in T (T3), such that:

(1) ϕΛ0 = 0;
(2) xϕΛ,Λ is a minimal gΛ embedding for all [Λ] ∈ V;
(3) the family (xϕΛ,Λ)[Λ]∈V is locally rigid at Λ0.

Therefore, near x0, all triply periodic minimal surfaces in R3 consist of
six-parameter family of surfaces. If we restrict ourselves to the unit volume
lattice, then, near x0, all triply periodic minimal surfaces consist of a five-
parameter family of pairwise non-homothetic surfaces.

(4)Denote by ∆ϕ,Λ the Laplacian of the pull-back of the metric gΛ by xϕ,Λ, that is, for
the euclidean metric ds2 =

∑
i,j
δijdu

iduj , ∆f = fu1u1 + fu2u2 . Jϕ,Λ is the elliptic
operator on Σ given by ∆ϕ,Λ + ‖Sϕ,Λ‖2, where Sϕ,Λ is the second fundamental form of
xϕ,Λ, and ‖ · ‖ is the Hilbert–Schmidt norm.
(5)A statement similar to that of Theorem 3.3 holds without the linear independence
assumption, with suitable modifications of the function H̃ in (2.2). However, we observe
that such assumption is always satisfied when the genus of Σ is greater than 1, see
Remark 5.5.

ANNALES DE L’INSTITUT FOURIER



BIFURCATION OF TRIPLY PERIODIC MINIMAL SURFACES 2755

Proof. — (1)–(3) follow from [4, Theorem 5.2]. Then, we know the di-
mension of the space of triply periodic minimal surfaces near x0 from the
dimension of the isometry class in the flat 3-torus. �

Proposition 3.3 proves statement (2) in Theorem A.

4. Linearization

In order to study the lack of local rigidity for a family of minimal gΛ-
embeddings, we study the linearization of the map H̃Λ, given in (2.3), at
one of its zeros, described in Proposition 2.1. Let (ϕ,Λ) ∈ U0×V0 be such
that H̃Λ(ϕ, 0, 0, 0) = 0. Let us denote by:

(4.1) Tϕ,Λ : C2,α(Σ)× R3 −→ C0,α(Σ)

the bounded linear operator:

Tϕ,Λ = dH̃Λ(ϕ, 0, 0, 0).

Proposition 4.1. — The operator Tϕ,Λ is given by:

(4.2) Tϕ,Λ(ψ, b1, b2, b3) = Jϕ,Λ(ψ) +
3∑
i=1

bif
ϕ,Λ
i ,

for all (ψ, b1, b2, b3) ∈ C2,α(Σ) × R3, where Jϕ,Λ is the Jacobi operator
of the gΛ-minimal embedding xϕ,Λ. This is a Fredholm operator of index
equal to 3. If the fϕ,Λi ’s are linearly independent, then Tϕ,Λ is surjective if
and only if xϕ,Λ is an equivariantly nondegenerate gΛ-minimal embedding.

Proof. — It is well known that the differential of the mean curvature
map ϕ 7→ H(xϕ,Λ) at a minimal embedding is given by the Jacobi operator
Jϕ,Λ. Equality (4.2) follows easily, observing that:

• the map R3 3 (a1, a2, a3) 7−→
∑3
i=1 aif

ϕ,Λ
i ∈ C0,α(Σ) is linear;

• the differential of the map ϕ 7→ fϕ,Λi is not involved in formula (4.2),
since dH̃Λ is computed at a1 = a2 = a3 = 0.

As to the Fredholmness, it is well known that Jϕ,Λ : C2,α(Σ) → C0,α(Σ)
is Fredholm, and it has index 0 (it is an elliptic differential operator), and
so the operator C2,α(Σ) × R3 3 (ψ, b1, b2, b3) 7→ Jϕ,Λ(ψ) ∈ C0,α(Σ) is
Fredholm of index 3. Clearly, Tϕ,Λ is a finite rank perturbation of such
operator, and therefore it is also a Fredholm operator of index 3.
As to the last statement, note that Jϕ,Λ is symmetric with respect to

the L2-pairing (using the volume element of gΛ), and that its image is the
L2-orthogonal of its (finite dimensional) kernel. Such kernel contains the
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span of the fϕ,Λi ’s, and it is equal to this span when xϕ,Λ is equivariantly
nondegenerate. Clearly:

Range(Tϕ,Λ) = Range(Jϕ,Λ) + span
{
fϕ,Λ1 , fϕ,Λ2 , fϕ,Λ3

}
,

and the conclusion follows easily. �

5. Bifurcation

Let us now assume that [−ε, ε] 3 s 7→
(
ϕs,Λ(s)

)
∈ U0×V0 is a continuous

map such that:
(1) xϕs,Λ(s) is a gΛ(s)-minimal embedding for all s;
(2) ϕ0 = 0 and Λ(0) = Λ0.

Definition 5.1. — We say that s = 0 is a bifurcation instant for the
path s 7→ xϕs,Λ(s) if there exists a sequence (sn)n∈N ⊂ ]−ε, ε[ and a sequence
xn : Σ→ T3 of embeddings such that:

• limn→∞ sn = 0 and limn→∞ xn = x0 (in the C2,α-topology);
• xn is gΛ(sn) -minimal for all n;
• xn is not Λ(sn)-congruent to xϕsn ,Λ(sn) for all n.

In particular, if s = 0 is a bifurcation instant, then no family (xϕΛ,Λ)[Λ]∈V
that contains the path s 7→

(
ϕs,Λ(s)

)
is locally rigid at Λ0. Thus, by

Proposition 3.3, bifurcation can occur at s = 0 only if x0 is a Λ0-minimal
equivariantly degenerate embedding. In the situation above, the sequence
xn possibly belongs to a continuous set of minimal embeddings, which is
usually called the bifurcating branch issuing from xϕ0,Λ(0) , while the family
s 7→ xϕs,Λ(s) is called the trivial branch.

Remark 5.2. — Let us observe that in the definition of bifurcation given
above, it is not required that, near s = 0, the metrics gΛ(s) should be pair-
wise non-homothetic. Under this additional hypothesis, a stronger conclu-
sion about the bifurcation branch can be drawn. Namely, if the flat metrics
gΛ(s) are pairwise non-homothetic near s = 0, then every embedding xn in
the bifurcating branch is not homothetic to any of the minimal surfaces in
the trivial branch.

The notion of Morse index is central in Bifurcation Theory. Let xϕ,Λ be
a gΛ-minimal embedding.

Definition 5.3. — The Morse index iMorse(ϕ,Λ) of xϕ,Λ is the number
of negative eigenvalues of the Jacobi operator Jϕ,Λ, counted with multiplic-
ity. The nullity of xϕ,Λ is the dimension of Ker(Jϕ,Λ).
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The number iMorse(ϕ,Λ) is in fact the Morse index of xϕ,Λ as a critical
point of the gΛ-area functional defined in the space of embeddings of Σ
into T3. A sufficient condition for variational bifurcation is given in terms
of jumps of the Morse index. Here we cannot employ directly variational
techniques, in that our equation H̃ = 0 is not variational, and we have to
resort to a weaker bifurcation result for general Fredholm operators. This
requires a certain parity change in the negative spectrum of the path of
operators, which corresponds to an odd jump of the Morse index.

Theorem 5.4. — Let [−ε, ε] 3 s 7→
(
ϕs,Λ(s)

)
∈ U0 ×V0 be a continu-

ous map satisfying (1) and (2) above. Assume the following:
(1) xϕs,Λ(s) is equivariantly nondegenerate for all s 6= 0;
(2) the functions f0,Λ0

i , i = 1, 2, 3, are linearly independent;
(3) iMorse(ϕ−ε,Λ(−ε))− iMorse(ϕε,Λ(ε)) is an odd integer.

Then, s = 0 is a bifurcation instant for the path s 7→
(
ϕs,Λ(s)

)
.

Proof. — A precise statement of the bifurcation theorem employed in
this proof is given in Appendix A, Section A.2. For the reader’s convenience,
we will refer to the assumptions of this result throughout the proof.

By (1), the integer valued function s 7→ iMorse(ϕs,Λ−s) is constant on
[−ε, 0[ and on ]0, ε]. Thus, we can choose arbitrarily small values of ε and
reduce the size of U0 and V0 when needed, maintaining the validity of
assumption (3).
First, by continuity, we can assume that the functions fϕ,Λi , i = 1, 2, 3,

are linearly independent for all fixed
(
ϕ, [Λ]

)
∈ U0×V0. Second, we choose a

codimension 3 closed subspace X0 of C2,α(Σ) which is transversal to Y0 : =
span

{
f0,Λ0

1 , f0,Λ0
2 , f0,Λ0

3
}
; for instance, we can choose X0 to be the L2-

orthogonal of Y0 relatively to the volume element of gΛ0 . By continuity, we
can also assume thatX0 is transversal(6) to Yϕ,Λ := span

{
fϕ,Λ1 , fϕ,Λ2 , fϕ,Λ3

}
,

for all
(
ϕ, [Λ]

)
∈ U0 ×V0 with ϕ smooth.

For all Λ, the group GΛ = R3/Λ acts isometrically on (T3, gΛ(s)) by
translation, and this defines a smooth action on the set of embeddings of Σ
into T3. Passing to the quotient by the action of the diffeomorphism group
of Σ, we have a continuous action on the set of unparameterized embed-
dings, and therefore a local action(7) on the open set U0. The GΛ-orbit of

(6)Note that transversality, i.e., X0 + Yϕ,Λ = C2,α(Σ) for ϕ smooth, also implies X0 ∩
Yϕ,Λ = {0}, by a dimension argument.
(7)More precisely, the definition of the local action ofGΛ on U0 is as follows. For t ∈ R3/Λ
close to 0, and ϕ ∈ U0, consider the embedding y = t + xϕ,Λ. There exists a unique
ϕ′ ∈ U0 such that xϕ′,Λ is a reparameterization of y. Then, t · ϕ = ϕ′.
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every smooth embedding, and in particular, of any minimal embedding, is
a smooth submanifold of U0; details of the proof of this fact can be found
in [1]. Note that the GΛ-orbit of an (unparameterized) embedding x is pre-
cisely the set of (unparameterized) embeddings that are Λ-congruent to x.
Using the fact that transversality is an open condition in the C1-topology,
by taking U0 and V0 small enough, we can assume that for all [Λ] ∈ V0
and any smooth function ϕ ∈ U0, there is a unique intersection point ϕΛ

between the orbit GΛ · ϕ and X0 ∩ U0. Again by transversality, the path
s 7→ ϕ

Λ(s)
s is continuous, and up to replacing ϕs with ϕΛ(s)

s , we can there-
fore assume that ϕs ∈ X0 ∩ U0 for all s. This settles assumption (B) in
Section A.2.
Finally, there is a correspondence between zeros of the function H̃ in

U0×R3×V0, defined in (2.2), and its restriction to (X0∩U0)×R3×V0: if(
ϕ, [Λ]

)
∈ U0 ×V0 is such that H̃(ϕ, 0, 0, 0,Λ) = 0, i.e., xϕ,Λ is a (smooth)

gΛ-minimal embedding, then also H̃(ϕΛ, 0, 0, 0,Λ) = 0.
In conclusion, the argument above shows that Λ-congruence classes of

gΛ-minimal embeddings of Σ into T3 are into 1-1 correspondence with ze-
ros of the function H̃ in (X0 ∩U0)×R3×V0. The aimed bifurcation result
will then be proved in this context, and it will be obtained as a direct ap-
plication of a classical bifurcation theorem for Fredholm operators, see [15,
Theorem II.4.4, p. 212]. A precise statement of this theorem is recalled in
Appendix A.
If s ∈ [−ε, ε] is such that H̃Λ(s)(ϕs, 0, 0, 0) = 0, consider the restric-

tion of Ts = dH̃Λ(s)(ϕs, 0, 0, 0) to X0 × R3, which will be denoted by T s.
Recalling (4.2), an explicit formula for T s is given by:

(5.1) T s(ψ, b1, b2, b3) = Jsψ +
3∑
i=1

bif
s
i , ψ ∈ X0, bi ∈ R,

where

Js := Jϕs,Λ(s) , and fsi := f
ϕs,Λ(s)
i , i = 1, 2, 3.

Then, T s is a Fredholm operator of index 0, which settles assumption (C1)
in Section A.2. This follows easily from Proposition 4.1, sinceX0 is transver-
sal to Ys : = Yϕs,Λ(s) , which is a 3-dimensional subspace of Ker(Ts). By the
same argument, Proposition 4.1 says that xϕs,Λ(s) is an equivariantly non-
degenerate gΛ(s)-minimal embedding if and only if T s is an isomorphism.
Thus, assumption (1) implies that, for s 6= 0, T s is nonsingular, which
settles assumption (BT1) in Section A.2.
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Let us consider the injective continuous linear map

(5.2) X0 ⊕ R3 3 (ψ, b1, b2, b3) 7−→ ψ +
3∑
i=1

bif
0
i ∈ C2,α(Σ)

to identify X0 ⊕ R3 with a subspace(8) of C2,α(Σ), as in assumption (A)
in Section A.2. Since T 0 is Fredholm, then 0 is an isolated eigenvalue of
T 0 (assumption (D) in Section A.2), and it has finite multiplicity, given by
m = dim

(
Ker(T0)

)
− 3 > 0. Notice that T 0 is diagonalizable: it coincides

with the Jacobi operator J0 on X0, which is J0-invariant, and it is the
identity on R3. In particular, the generalized 0-eigenspace of T0, i.e., E0 : =⋃
k>1 Ker(T k0), coincides with the kernel of T 0, given by Ker(J0) ∩X0.
Using the identification (5.2), the operators T s can be seen as unbounded

linear operators on C0,α(Σ), with domain C2,α(Σ). As such, they are closed
operators, i.e., they have closed graphs. This follows easily observing that
they are finite rank perturbations(9) of the self-adjoint elliptic operators of
second order Js, which are closed (see for instance [15, Section III.1]). This
settles assumption (C2) in Section A.2.
Let us now show that the path of Fredholm operators T s has an odd

crossing number at s = 0 using assumption (3).
To this aim, let us consider the continuous path of Fredholm operators

T
′
s = Js + Ps, where Ps : C2,α(Σ) ∼= Xs ⊕ Ys → Ys is the projection, and

Xs is the L2-orthogonal complement of Ys relatively to the metric gΛ(s) .
Observe that:

(i) T ′0 = T 0;
(ii) T ′s is invertible for all s 6= 0;
(iii) T ′s is diagonalizable with real eigenvalues, and for s 6= 0, its spec-

trum spec(T ′s) coincides with
(
spec(Js) \ {0}

)⋃
{1};

(iv) T ′s has an odd crossing number at s = 0, by assumption (3).
Statement (iv) follows easily from (iii). In order to conclude that also the
family T s has an odd crossing number at s = 0, it suffices to show that for
r arbitrarily small there exists s = s(r) such that the isomorphisms T s and
T
′
s are endpoints of a continuous path of invertible operators that remain

inside the ball B(T 0, r) of radius r centered at T 0, see Remark A.2.
Using (5.1), the difference T ′s − T s is equal to:
• Ps on X0;

(8)Using the identification (5.2), the operator T 0 : C2,α(Σ) → C0,α(Σ) is given by
J0,Λ0 + P0, where P0 : X0 ⊕ Y0 → Y0 is the projection.
(9)The sum of a closed and a bounded operator is closed.

TOME 68 (2018), FASCICULE 6



2760 Miyuki KOISO, Paolo PICCIONE & Toshihiro SHODA

• Js + (Ps − Is) = (Js − J0) + (Ps − Is) on Y0,
where Is : Y0 → Ys is the isomorphism defined by Is

(
f0
i

)
= fsi , i = 1, 2, 3.

For the second formula above, observe that T s
∣∣
Y0

= Is, as it follows easily
from (5.1); keep also in mind that J0 vanishes on Y0.
Since lims→0 Ps = P0 and lims→0 Js = J0 in the operator norm,

lim
s→0
‖Ps|X0‖ = 0, and lim

s→0
‖[(Js − J0) + (Ps − Is)]|Y0‖ = 0.

Observe that Ps is an operator of rank 3, and Y0 has dimension 3. In other
words, T ′s is the sum T s + Rs, with Rs a finite rank operator such that
lims→0 ‖Rs‖ = 0. This implies easily that, given any r > 0, there exists
s = s(r) such that both T s and T ′s belong to the ball B(T 0, r), and that
there exists a continuous path of invertible operators in B(T 0, r) joining
T s and T ′s. This shows that the family T s has an odd crossing number at
s = 0 (assumption (BT2) in Section A.2), and concludes the proof. �

Remark 5.5. — Assumption (2) in Theorem 5.4 is always satisfied when
the genus of Σ is greater than 1. There is a number of ways to prove this fact,
here we propose the most elementary one. Recalling the definition of the
Jacobi field f0,Λ0

i in Section 2.1, observe that they are linearly dependent
if and only if some nonzero constant (i.e., translation invariant) vector field
of R3/Λ0 is everywhere tangent to S = x0(Σ).

Lemma 5.6. — Let S be an embedded submanifold of T3 which is dif-
feomorphic to a closed orientable surface of genus gen(S) > 1. Then, no
nontrivial constant vector field of T3 is everywhere tangent to S.

Proof. — Nontrivial constant vector fields are never vanishing. But the
Euler characteristic of S is 2−2 gen(S) < 0, so there are no never vanishing
vector fields on S by the Poincaré–Hopf theorem. �

Theorem 5.4 proves statement (1) in Theorem A. More on the geometry
of minimal submanifolds in flat tori can be found in reference [22].

6. Examples of triply periodic minimal surfaces

In this section we give definitions of several known examples of triply
periodic minimal surfaces. The Morse index of each surface in these families
are given in [7] (see the remark at the beginning of §7). Figure 6.1 shows
seven one-parameter families of triply periodic minimal surfaces: tCLP, tD,
tP, rPD, H, rG, and tG-family. The existence of crossing points in Black
lines are proved rigorously in [7], while the crossings with green lines are
conjectural (proved by numerical methods).
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Figure 6.1. Each point represents a triply periodic minimal surface.
The numbers indicate the Morse indices of the surfaces. Dotted curves
indicate expected bifurcation branches, where each surface is not ho-
mothetic to any surface in the black line near the bifurcation point. P,
D, G represents the Schwarz P-surface, Schwarz D-surface, and Alan
Schoen’s gyroid, respectively. S1 is the “limit” of the tCLP family and
the tP family, and it is the singly periodic Scherk surface (Scherk’s
second surface) ([10, p. 513]). S2 is the “limit” of the tCLP family and
the tD family, and it is the doubly periodic Scherk surface (Scherk’s
first surface) ([10, p. 513]).

Example 6.1 (H-family – Figure 6.5). — For a ∈ ]0, 1[, let Ma be a hy-
perelliptic Riemann surface of genus 3 defined by w2 = z(z3−a3)

(
z3 − 1

a3

)
and f a conformal minimal immersion given by

f(p) = <
∫ p

p0

i
(
1− z2, i(1 + z2), 2z

)t dz
w
.

f(Ma) is called H-family.

Example 6.2 (rPD family, Karcher’s TT surface, see ref. [13] – Figure 6.2).
For a ∈ ]0,∞[, letMa be a hyperelliptic Riemann surface of genus 3 defined
by w2 = z(z3 − a3)

(
z3 + 1

a3

)
and f a conformal minimal immersion given

by

f(p) = <
∫ p

p0

(
1− z2, i(1 + z2), 2z

)t dz
w
.
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Figure 6.2. Surfaces Ma of the rPD-family, with a = 0.1 (Morse in-
dex 2), and a = 0.5 (Morse index 1).

f(Ma) is called rPD family or Karcher’s TT surface. M√2 gives the so-
called Schwarz Primitive surface (Schwarz P surface), and M1/

√
2 gives the

so-called Schwarz Diamond surface (Schwarz D surface).

Example 6.3 (tP-family – Figure 6.3, tD-family – Figure 6.4). — For
a ∈ ]2,+∞[, let Ma be a hyperelliptic Riemann surface of genus 3 defined
by w2 = z8 + az4 + 1. Let f be a conformal minimal immersion given by

f(p) = <
∫ p

p0

(
1− z2, i(1 + z2), 2z

)t dz
w

and f ′

f ′(p) = <
∫ p

p0

i
(
1− z2, i(1 + z2), 2z

)t dz
w
.

f(Ma) is called tP-family and f ′(Ma) is called tD-family. f(M14) gives the
Schwarz P surface, and f ′(M14) gives the Schwarz D surface.

Example 6.4 (tCLP-family – Figure 6.6). — For a ∈ ]−2, 2[, let Ma be a
hyperelliptic Riemann surface of genus 3 defined by w2 = z8 + az4 + 1. Let
f be a conformal minimal immersion given by

f(p) = <
∫ p

p0

(
1− z2, i(1 + z2), 2z

)t dz
w
.
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Figure 6.3. Surfaces Ma of the tP-family, with a = 0.285 (Morse in-
dex 2), and a = 14 (Morse index 1). The surface M14 of the tP-family
is also called Schwarz Primitive surface, or P-surface.

f(Ma) is called tCLP family. [7, Numerical Result 4] suggests by using
numerical computation that for all a, the minimal surface Ma has constant
nullity equal to 3 and Morse index equal to 3.

Example 6.5 (associate family of Schwarz P-surface). — Let M be a
hyperelliptic Riemann surface of genus 3 defined by w2 = z8 + 14z4 + 1.
Then the Schwarz P surface is given by

p 7−→ <
∫ p

p0

(1− z2, i(1 + z2), 2z)t dz
w
,
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Figure 6.4. Surfaces Ma of the tD-family, with a = 2.85 (Morse in-
dex 2), and a = 14 (Morse index 1).

Figure 6.5. SurfacesMa of the H-family, with a = 0.1 (Morse index 2),
a = 0.5 (Morse index 1), and a = 0.9 (Morse index 3).

and the Schwarz D surface is given by

p 7−→ <
∫ p

p0

i(1− z2, i(1 + z2), 2z)t dz
w
.
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Figure 6.6. Surfaces Ma of the tCLP-family, with a = 0 (also called
the Schwarz CLP-surface) and with a = 1.96. Numerical computations
suggest that all the surfaces of this family have Morse index equal to
3 and nullity equal to 3.

The general associate surface of the P surface is given by

(6.1) p 7−→ <
∫ p

p0

eiθ(1− z2, i(1 + z2), 2z)t dz
w
, θ ∈ R.

It is known that there exists θ ∈ ]0, π/2[ such that (6.1) gives a triply
periodic minimal surface in R3. Actually, θ ≈ 0.907313(= 51.9852◦) gives
this surface, which is called the Schoen’s gyroid ([29]). Since these three
surfaces have the same Riemann metric:

ds2 = (1 + |z|2)2

|w|2
|dz|2,

and thus the same Jacobi operator:

(6.2) J = ∆− 2K = 4|w|2

(1 + |z|2)4

(
(1 + |z|2)2 ∂2

∂z∂z
+ 2
)
,

they also have the same nullity and the same Morse index. Since Schwarz P
and D surfaces have nullity 3 and Morse index 1 because they are volume-
preserving stable (Ross [26]), the Schoen’s gyroid also has nullity 3 and
Morse index 1.
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7. Remarks about Conjecture B. Proofs of Corollary C
and Theorem D

We will explain how to apply Theorem 5.4 and Proposition 3.3 to Conjec-
ture B, Corollary C, and Theorem D. Let us recall that in references [7, 6] it
is proved the existence of a finite dimensional reduction to compute the nul-
lity and the Morse index of triply periodic minimal surfaces. More precisely,
the nullity is shown to be equal to the multiplicity of the 0 eigenvector of a
9×9 complex Hermitian matrix, and the Morse index is shown to be equal
to the number of negative eigenvalues of an 18× 18 real symmetric matrix
plus 1. Both matrices have entries defined by elliptic integrals, that have a
real analytic dependence on the parameter a of the family. In particular,
singularities of these matrices, that correspond to equivariantly degenerate
embeddings of the family, are isolated. In [6, 7], this method is applied
to several families of concrete examples to obtain the Morse indices with
help of numerical computation by Mathematica. In Figure 6.1 the expected
Morse indices are indicated. The validity of this result depends on an es-
timate the error term of the numerical approximation, which is the object
of a future research project.
Observation about Conjecture B. — For the H-family (Ma)a∈]0,1[, see

Example 6.1, a numerical result given in [7, Numerical Result 1] sug-
gests the existence of exactly two instants a0 and a1 corresponding to
equivariantly degenerate surfaces. A numerical approximation shows that
a0 ≈ 0.49701 and a1 ≈ 0.71479. The Morse index of Ma is computed nu-
merically to be equal to 2 for a ∈ ]0, a0[, it is equal to 1 for a ∈ ]a0, a1[, and
it is equal to 3 for a ∈ ]a1, 1[. Thus, it is plausible that there is an odd jump
at a0, which must be a bifurcation instant. We cannot infer the existence
of bifurcation at a1, where the Morse index seems to have an even jump.
As to the rPD-family (Ma)a∈]0,∞[, see Example 6.2 and [7, Numerical

Result 2], it is plausible that there are two odd jumps of the Morse index
at instants a1 and a2. Numerical computations give the approximations
a1 ≈ 0.494722, a2 = (a1)−1 ≈ 2.02133. The nullity at every other instant
seems to be equal to 3.
For the tP-family and the tD-family, see Example 6.3 and [7, Numerical

Result 3], it is computed numerically that there are two odd jumps of
the Morse index: a1, a2 ∈ ]2,+∞[. Numerical approximations provide the
estimates a1 ≈ 7.40284 and a2 ≈ 28.7783. The nullity at every other instant
seems to be equal to 3.
Observe that assumption (2) of Theorem 5.4 is satisfied in all cases,

because all the minimal surfaces have genus equal to 3, see Remark 5.5. �
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As to the local rigidity, we can apply Proposition 3.3 to the above fam-
ilies. We have seen that there seem to be exactly two surfaces that are
not equivariantly nondegenerate in each of the rPD-family, the H-family,
the tP-family and the tD-family. There is a fifth family of triply periodic
minimal surfaces, called the tCLP-family (see Example 6.4).

Proof of Corollary C. — As we have observed in Remark 5.5, the lin-
ear independence assumption of Proposition 3.3 is always satisfied in the
case of all minimal surfaces of the given families. This implies that equiv-
ariantly nondegenerate surfaces correspond precisely to minimal surfaces
with nullity equal to 3. Each such surface belongs to a unique smooth fam-
ily of triply periodic minimal surfaces, parameterized by isometry classes
of flat metrics in T3 (a 6-dimensional space), by Proposition 3.3. If we
consider isometry classes of flat metrics with fixed volume, which are thus
pairwise non-homothetic, we get a smooth 5-parameter family of pairwise
non-homothetic triply periodic minimal surfaces. �

Remark 7.1. — By the proof of Theorem A, Examples 6.2 and 6.3, and
Conjecture B, we can make the following observation. Since Schwarz P-
surface is stable ([26]), it has nullity equal to 3, and it is contained both in
the rPD-family and in the tP-family, which are two one-parameter families
of triply periodic minimal surfaces. Near the P-surface, these two families
consist of surfaces that are pairwise non-homothetic. On the other hand,
by Corollary C, the P-surface belongs to a (unique up to homotheties)
smooth locally rigid 5-parameter family of pairwise non-homothetic triply
periodic minimal surfaces. By the local rigidity, such 5-parameter family
must contain (a portion of) the rPD-family and the tP-family. By the proof
of our rigidity theorem, each family corresponds to a variation of the lattice
from the cube which is the lattice corresponding to the P surface. This
means that each minimal surface in the family loses symmetries according
to the loss of symmetries of the lattice: symmetry with respect to the
planes {x = 1/2}, {y = 1/2}, {z = 1/2}, {x = y}, {y = z}, {z = x},
π/2-rotational symmetry with respect to the vertical line, etc., here we
assume that the original cube is spanned by (1, 0, 0), (0, 1, 0), and (0, 0, 1).
An analogous situation occurs for the Schwarz D-surface. Since it is stable
([26]), it has nullity equal to 3, and it is contained both in the rPD-family
and in the tD-family.

Proof of Theorem D. — The local rigidity statement given in Theorem D
follows readily from Proposition 3.3, since for Schoen’s gyroid has nullity
equal to 3 (Example 6.5). �
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8. Remarks on the geometry of triply periodic minimal
surfaces in the bifurcation branches

In general, Theorem 5.4 does not imply(10) the existence of essentially
new triply periodic minimal surfaces, because there we do not assume that
the flat metrics gΛ(s) are pairwise non-homothetic near s = 0, see Re-
mark 5.2.
Based on some numerical computations, in this section we will discuss

this question at each bifurcation instant suggested in Conjecture B, and
we will give a conjecture that determines at which bifurcations instants
one obtains the existence of new examples of triply periodic minimal sur-
faces. Again, an estimate of the error term to ensure the observations in
this section is the subject of a future investigation. Every bifurcation in-
stant suggested in Conjecture B corresponds to an equivariantly degenerate
minimal embedding whose Jacobi operator has kernel spanned by the three
Killing–Jacobi fields (Definition 3.2), and one additional Jacobi field which
is not Killing. Such a Jacobi field gives a first order approximation of the
bifurcating branch, and it will be used in our discussion. The exact equa-
tions of these Jacobi fields and how to derive them will be discussed in a
forthcoming paper, and will be omitted here.

8.1. rPD-family

First, let us look at the bifurcation instants along the rPD-family Ma,
a ∈ ]0,+∞[ (Example 6.2). Set

A : = A(a) : = 1√
3a

∫ 1

0

1 + a2t2√
t(1− t3)(a3t3 + 1

a3 )
dt,

C : = C(a) : = 4
∫ 1

0

t√
t(1− t3)(a3 + t3

a3 )
dt.

Then, the lattice is

Λ =

 3A 3A 4A√
3A −

√
3A 0

0 0 C

 .

(10)An instructive example of bifurcation by Morse index jump in geometric variational
problems that does not produce new solutions is discussed in [16, Section 2.6], in the
context of constant mean curvature surfaces.
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C is the height of the lattice, and A is a certain fixed constant times the
length of the edge of the triangle (see Figure 6.2). Hence, the ratio A/C
determines the lattice (up to homothety). Figure 8.1 represents the ratio
A/C as a function of a, and a = a1 ≈ 0.494722 gives the minimum. It shows
that there exist positive constants ε1 and ε2, a strictly monotone-increasing
function δ : [0, ε1[→ [0, ε2[ with δ(0) = 0 and such that the lattice Λ(a1−ε)
is a homothety of the lattice Λ(a1+δ(ε)).
Denote by X(c) the surface f(Ma1+c). Since A(a) and C(a) are increas-

ing functions of a near the bifurcation instant a = a1 ≈ 0.494722 (see
Figure 8.2), the surfaces X(c) are like the pictures in the upper row in
Figure 8.3.
Now, for ε ∈ ]0, ε1[, reduce the surface X(δ(ε)) to C(a1−ε)

C(a1+δ(ε)) , and denote
the new surface by Y (−ε). Then the lattice of Y (−ε) is the same as the
lattice of X(−ε), but the surfaces X(−ε) and Y (−ε) are not congruent to
each other (see Figure 8.3).
Similarly, for ε ∈ ]0, ε1[, expand the surface X(−ε) to C(a1+δ(ε))

C(a1−ε) , and
denote the new surface by Y (δ(ε)). Then the lattice of Y (δ(ε)) is the same
as the lattice of X(δ(ε)), but the surfaces X(δ(ε)) and Y (δ(ε)) are not
congruent to each other (see Figure 8.3).
One can show the nodal lines of the zero-eigenfunction at a = a1 are

exactly the boundary triangles in Figure 8.3, and since the “essential” di-
mension of the zero eigenspace is one, it seems that the surfaces Y (c) give
the bifurcation branch from the instant a = a1. However, they are homo-
theties of the original surfaces in the rPD family.
For ε ∈ ]0, ε1[, X(−ε) has index 2 and nullity 3, X(δ(ε)) has index 1 and

nullity 3, Y (−ε) has index 1 and nullity 3, Y (δ(ε)) has index 2 and nullity
3. Hence, this bifurcation is a transcritical bifurcation.

On the other hand, at a = a2 = (a1)−1 ≈ 2.02133, the ratio A/C is
strictly monotone (Figure 8.1). This implies that the bifurcation branch
contains triply periodic minimal surfaces that are not homothetic to any
other surface in the five families given in §7 (Examples 6.1–6.4). Moreover,
we can show that the nodal lines of the zero eigenfunctions at a = a2 are
planar geodesics that connect each vertex of each triangle with the middle
point of a side of a triangle (Figure 8.4, the left picture in Figure 8.5).
Remarkably, the sides of the triangles are not nodal lines, which suggests
that near a = a2, our new triply periodic minimal surfaces are like the right
picture in Figure 8.5. It would be interesting to determine the symmetries
of the new surfaces.
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1 2 3 4 5
0

1

2

3

4

5

Figure 8.1. The horizontal axis represents a, while the vertical axis
indicates the ratio A/C for the rPD family. The minimum of A/C is
attained at a = a1 ≈ 0.494722.

M の canonical homology basis {Aj , Bj}3
j=1 に沿った周期行列は

A =
1√
3a

∫ 1

0

1 + a2t2√
t(1 − t3)(a3t3 + 1

a3 )
dt, B =

1√
3a

∫ ∞

1

1 + a2t2√
t(t3 − 1)(a3t3 + 1

a3 )
dt,

C = 4

∫ ∞

1

t√
t(t3 − 1)(a3t3 + 1

a3 )
dt, D = 4

∫ 1

0

t√
t(1 − t3)(a3t3 + 1

a3 )
dt,

に対して，




2iB −2(A+ iB) −(A+ iB) 2A 3(A− iB) 2(A− iB)

−2
√

3A 0
√

3(A+ iB) −2
√

3iB
√

3(A− iB) 0

iD C − iD −C + iD −C 0 −(C + iD)




である．なお，周期行列とは
(∫

A1

G

∫

A2

G

∫

A3

G

∫

B1

G

∫

B2

G

∫

B3

G

)

で定まる (3, 6)型複素行列であり，canonical homology basisのイメージ図

は以下である．

A1 A2

A3

B1
B2

B3

rPD族の格子 Λは，周期行列の実部をとって，

Λ =




3A 3A 4A√
3A −

√
3A 0

0 0 C




となる．

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.01 ≤ a ≤ 1における Aの振る舞い 0.01 ≤ a ≤ 1における C の振る舞い

rPD族に対するMorse指数や nullityは以下である．

2

Figure 8.2. The horizontal axis represents a, while the vertical axis
indicates A (left) and C (right) for the rPD family.

8.2. H-family

By a similar fashion, we find the lattice of the H-family. Set

B :=
√

3
∫ 1

0

1− t2√
t(t3 + a3)(t3 + 1

a3 )
dt

+ 4
∫ 1

1
2

x√
(a3 + 1

a3 + 6x− 8x3)(1− x2)
dx,

D := 8
∫ 1

0

t√
t(t3 + a3)(t3 + 1

a3 )
dt.
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(a) X(�⇥)

a = 0.2 a = 0.2

a = 0.5 a = 0.5

a = 0.8 a = 0.8

(b) X(0)

a = 0.2 a = 0.2

a = 0.5 a = 0.5

a = 0.8 a = 0.8

(c) X(�(⇥))

a = 0.2 a = 0.2

a = 0.5 a = 0.5

a = 0.8 a = 0.8

(d) Y (�⇥)

a = 0.2 a = 0.2

a = 0.5 a = 0.5

a = 0.8 a = 0.8

(e) Y (�(⇥))

a = 0.2 a = 0.2

a = 0.5 a = 0.5

a = 0.8 a = 0.8

Figure 8.3. Bifurcation at a = a1 of the rPD family. Each picture
shows a half period of the corresponding triply periodic minimal sur-
face. The surfaces in the upper row belong to the rPD family. The
surfaces in the lower row belong to the bifurcation branch, and they
are homothetic to surfaces in the rPD family.

Figure 8.4. One period of a surface in the rPD-family with the planar
geodesics.

Then, the lattice is

Λ =


√

3
2 B 0 0
B
2 B 0
0 0 D

 .
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Figure 8.5. Left: one period of a surface in the rPD-family with the
planar geodesics, Right: variation from a surface (a = a2) in the rPD
family with the zero eigenfunction as variation vector filed.

Figure 8.6. One period of a surface in the H-family.

The ratio B/D determines the lattice (up to homothety). Figure 8.7 rep-
resents the ratio B/D as a function of a, and a = a0 ≈ 0.49701 gives the
minimum of B/D. Moreover, we can show that the nodal lines of the zero
eigenfunctions at a = a0 are exactly the triangles indicated in Figure 8.6.
And so, arguing as the case of the rPD-family, we conjecture that the bi-
furcation we obtained in Conjecture B at a = a0 for the H-family gives
only homotheties of the surfaces in the original H-family.
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0.4 0.6 0.8

1.2

1.4

1.6

1.8

2.0

2.2

Figure 8.7. The horizontal axis represents a, while the vertical axis
indicates the ratio B/D for the H-family. The minimum of B/D is
attained at a = a0 ≈ 0.49701.

8.3. tP-family and tD-family

By a similar way, we find the lattice of the tP-family. Set

E = 2
∫ 1

0

1− t2√
t8 + at4 + 1

dt+ 4
∫ 1

0

dt√
16t4 − 16t2 + 2 + a

,

F = 8
∫ 1

0

t√
t8 + at4 + 1

dt.

Then, the lattice is

Λ =

E 0 0
0 E 0
0 0 F

 .

The ratio E/F determines the lattice (up to homothety). Figure 8.8 rep-
resents E/F as a function of a. By the same reason as the case of the
rPD-family, we conjecture that the bifurcation we obtained in Conjecture B
at a = a2 ≈ 28.7783 for the tP-family gives only homotheties of the sur-
faces in the original tP-family. However, we conclude that the bifurcation
at a = a1 ≈ 7.40284 for the tP-family give triply periodic minimal surfaces
that are not homothetic to any other surface in the five families given in §7
(Examples 6.1–6.4). As for the tD-family, the situation is totally analogous.
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1.04
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0.984

0.985

0.986

Figure 8.8. The horizontal axis represents a, while the vertical axis
indicates the ratio E/F for the tP-family. The minimum of E/F is
attained at a = a2 ≈ 28.7783.

Appendix A. Auxiliary results

A.1. A divergence formula

Let us recall here a standard formula of Riemannian geometry used
in (2.7) for the proof of Proposition 2.1.

Lemma A.1. — Let (M,g) be a Riemannian manifold, let M ⊂ M be
a compact submanifold (without boundary), with mean curvature vector
field ~H, and let K ∈ X(M) be a Killing field in M . Denote by KM ∈
X(M) the vector field onM obtained by orthogonal projection of K. Then,
divM (KM ) = g(K, ~H).

Proof. — See for instance [17, Section 3]. �

A.2. On bifurcation for families of Fredholm operators

Let us recall briefly the precise statement of a well known bifurcation
result for solutions of an equation of the form F (x, µ) = 0, with µ ∈ [µ0 −
δ, µ0 + δ], δ > 0, a real parameter and F (·, µ) : X → Z is a continuous
family of smooth maps from the (open subset of a) Banach space X to a
Banach space Z. Our basic references are the books [14] and [15].
Assume that:
(A) X is continuously embedded into Z, i.e., there exists a continuous

injective linear map i : X ↪→ Z (we will implicitely consider X ⊂ Z);
(B) [µ0 − δ, µ0 + δ] 3 µ 7→ xµ ∈ X is a continuous map such that

F (xµ, µ) = 0 for all µ;
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(C) setting Aµ = DxF (xµ, µ) : X→ Z, then for all µ:
(C1) Aµ is a Fredholm operator of index 0;
(C2) Aµ : Z → Z is closed as an unbounded linear operator with

domain X;
(D) 0 is an isolated eigenvalue of Aµ0 .

Assumption (C1) implies that Ker(Aµ0) is finite dimensional, while assump-
tion (D) implies that the generalized eigenspace Eµ0 =

⋃
k>1 Ker(Akµ0

) is
also finite dimensional, see [14, Section IV.5.4]. For the spectral theory, one
considers a complexification of the space X.
Deep results from perturbation theory, see [14, Sections II.5.1 and III.6.4],

imply that there exists δ′ ∈ ]0, δ] and a continuous map of finite dimensional
subspaces [µ0 − δ′, µ0 + δ′] 3 µ 7→ Eµ ⊂ X such that for all µ:

• dim(Eµ) = dim(Eµ0);
• Eµ is invariant by Aµ.

Denote by Aµ the restriction of Aµ to Eµ, and εµ denote the sign of the
determinant of Aµ:

(A.1) εµ =


+1, if det(Aµ) > 0;

0, if det(Aµ) = 0;
−1, if det(Aµ) < 0.

Note that εµ = 0 only if Aµ is singular, because Ker(Aµ) = Ker(Aµ)∩Eµ.

Bifurcation Theorem for Fredholm Operators. — In the above
situation, assume:
(BT1) for µ ∈ [µ0−δ, µ0[

⋃
]µ0, µ0 +δ], the operator Aµ is nonsingular(11) ;

(BT2) εµ0−δ 6= εµ0+δ.
Then, (xµ0 , µ0) is a bifurcation point for the equation F (x, µ) = 0, i.e., the
closure of the set

{
(x, µ) : x 6= xµ, F (x, µ) = 0

}
contains (xµ0 , µ0).

Proof. — See [15, Theorem II.4.4]. �

Condition (BT2) in the above theorem is usually referred to by saying
that Aµ has an odd crossing number at µ = µ0.

The bifurcation result for minimal embeddings proved in Theorem 5.4
employs the above bifurcation criterion for Fredholm operators. Usually,
the odd crossing number assumption (BT2) is hard to verify, in that one
has no explicit description of the perturbed eigenspaces Eµ. However, in
some cases the following elementary observation simplifies the task.

(11) i.e., Aµ : X→ Z is an isomorphism
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Remark A.2. — Assume that [µ0−δ, µ0+δ] 3 µ 7→ Aµ, A
′
µ are continuous

paths of Fredholm operators of index 0 from X to Z, with Aµ0 = A′µ0
,

and assume that for all µ ∈ [µ0 − δ, µ0[
⋃

]µ0, µ0 + δ], both Aµ and A′µ
are nonsingular. Assume that for all r > 0 there exists δ′ > 0 and two
continuous paths of invertible operators in the ball(12) B(Aµ0 , r) centered
at Aµ0 and of radius r joining Aµ0−δ′ with A′µ0−δ′ and Aµ0+δ′ with A′µ0+δ′

respectively. Then Aµ has an odd crossing number at µ0 if and only if A′µ
has an odd crossing number at µ0. This follows easily from the fact that
the sign function ε, which is defined in a sufficiently small neighborhood
of Aµ0 , is constant along continuous paths of invertible operators. This is
because the sign of the determinant does not change along continous paths
of invertible linear maps.
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