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PAPPUS THEOREM, SCHWARTZ REPRESENTATIONS
AND ANOSOV REPRESENTATIONS

by Thierry BARBOT,
Gye-Seon LEE & Viviane Pardini VALÉRIO (*)

Abstract. — In the paper Pappus’s theorem and the modular group,
R. Schwartz constructed a 2-dimensional family of faithful representations ρΘ of
the modular group PSL(2,Z) into the group G of projective symmetries of the
projective plane via Pappus Theorem. The image of the unique index 2 subgroup
PSL(2,Z)o of PSL(2,Z) under each representation ρΘ is in the subgroup PGL(3,R)
of G and preserves a topological circle in the flag variety, but ρΘ is not Anosov. In
her PhD Thesis [18, 19], V. P. Valério elucidated the Anosov-like feature of Schwartz
representations: for every ρΘ, there exists a 1-dimensional family of Anosov rep-
resentations ρεΘ of PSL(2,Z)o into PGL(3,R) whose limit is the restriction of ρΘ
to PSL(2,Z)o. In this paper, we improve her work: for each ρΘ, we build a 2-
dimensional family of Anosov representations of PSL(2,Z)o into PGL(3,R) con-
taining ρεΘ and a 1-dimensional subfamily of which can extend to representations
of PSL(2,Z) into G . Schwartz representations are therefore, in a sense, the limits
of Anosov representations of PSL(2,Z) into G .
Résumé. — Dans l’article Pappus’s theorem and the modular group

R. Schwartz a montré que le Théorème de Pappus fournissait une famille à deux pa-
ramètres de représentations ρΘ du groupe modulaire PSL(2,Z) dans le groupe G de
symétries projectives du plan projectif. L’image de l’unique sous-groupe PSL(2,Z)o
d’indice 2 de PSL(2,Z) par chaque ρΘ de PSL(2,Z)o est contenue dans le sous-
groupe PGL(3,R) de G formé des transformations projectives, et préserve un cercle
topologique dans la variété des drapeaux. Cependant, elles ne sont pas Anosov.
Dans sa thèse [18, 19], V. P. Valério a élucidé ce comportement de type Anosov des
représentations de Schwartz. Pour chaque représentation ρΘ, il existe une famille
à un paramètre (ρεΘ)ε∈R de représentations Anosov de PSL(2,Z)o dans PGL(3,R)
telles que ρ0

Θ soit la restriction de ρΘ à PSL(2,Z)o et de sorte que ρεΘ soit Anosov
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Hilbert metric.
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pour ε < 0. Dans le présent article, nous améliorons son travail. Pour chaque repré-
sentation ρΘ, nous construisons une famille à deux paramètres de représentations
Anosov (ρλΘ)λ∈R2 de PSL(2,Z)o vers PGL(3,R) contenant les ρεΘ, ainsi qu’une
sous-famille à un paramètre de représentations qui s’étendent en des représenta-
tions de PSL(2,Z) vers G . Ceci montre qu’en un certain sens, les représentations de
Schwartz sont dans le bord de l’ensemble des représentations Anosov dans l’espace
de toutes les représentations de PSL(2,Z) vers G .

1. Introduction

The initial goal of this work is to understand the similarity between
Schwartz representations ρΘ of the modular group PSL(2,Z) into the group
G of projective symmetries, presented in Schwartz [17, Theorem 2.4], and
Anosov representations of Gromov-hyperbolic groups, which were studied
by Labourie [12] and Guichard–Wienhard [9].
The starting point is a classical theorem due to Pappus of Alexandria

(290 AD - 350 AD) known as Pappus’s (hexagon) theorem (see Figure 1.1).
As said by Schwartz, a slight twist makes this old theorem new again. This
twist is to iterate, and thereby Pappus Theorem becomes a dynamical
system. An important insight of Schwartz was to describe this dynamic
through objects named by him marked boxes. A marked box [Θ] is simply
a collection of points and lines in the projective plane P(V ) obeying certain
rules (see Section 3.2). When the Pappus theorem is applied to a marked
box, more points and lines are produced, and so on.

Figure 1.1. Pappus Theorem: If the points a1, a2, a3 are collinear and
the points b1, b2, b3 are collinear, then the points c1, c2, c3 are also
collinear.

The dynamics on the set MB of marked boxes come from the actions
of two special groups G and G. The group G of projective symmetries is
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the group of transformations of the flag variety F , i.e. the group G is
generated by projective transformations and dualities. The action of G on
MB is essentially given by the fact that a marked box is characterized by
a collection of flags in F . The group G of elementary transformations of
marked boxes is generated by a natural involution i, and transformations τ1,
τ2 induced by Pappus Theorem (see Section 4.4). The groupG is isomorphic
to the modular group PSL(2,Z).
Another Schwartz insight was that for each convex marked box [Θ], there

exists another action of the modular group on theG-orbit of [Θ], commuting
with the action of G. This action can be described in the following way. On
the one hand, the isometric action of the modular group PSL(2,Z) on the
hyperbolic plane H2 preserves the set Lo of Farey geodesics. On the other
hand, there exists a natural labeling on Lo by the elements of the G-orbit
of [Θ]. Hence the action of PSL(2,Z) on labels induces an action on the
G-orbit of [Θ]. Moreover, this labeling allows us to better understand how
the elements of the G-orbit of [Θ] are nested when viewed in the projective
plane P(V ) (or when viewed in the dual projective plane P(V ∗)).
Through these two actions onMB, Schwartz showed that for each convex

marked box [Θ], there exists a faithful representation ρΘ : PSL(2,Z)→ G

such that for every γ in PSL(2,Z) and every Farey geodesic e ∈ Lo, the
label of γ(e) is the image of the label of e under ρΘ(γ) (see Theorem 5.4).

As observed in Barbot [2, Remark 5.13], the Schwartz representations
ρΘ, in their dynamical behavior, look like Anosov representations, intro-
duced by Labourie [12] in order to study the Hitchin component of the
space of representations of closed surface groups. Later, Guichard and
Wienhard [9] enlarged this concept to the framework of Gromov-hyperbolic
groups, which allows us to define the notion of Anosov representations of
PSL(2,Z). Anosov representations currently play an important role in the
development of higher Teichmüller theory (see e.g. Bridgeman–Canary–
Labourie–Sambarino [6]).

In this paper, we show that Schwartz representations are not Anosov,
but limits of Anosov representations. More precisely:

Theorem 1.1. — LetR be a region of R2 given by (7.1) (see Figure 7.2)
with interior R◦ and let PSL(2,Z)o denote the unique subgroup of index
2 in PSL(2,Z). Then for any convex marked box [Θ], there exists a two-
dimensional family of representations

ρλΘ : PSL(2,Z)o → PGL(3,R),

with λ = (ε, δ) ∈ R2 such that:

TOME 68 (2018), FASCICULE 6
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(1) If λ = (0, 0), then ρλΘ coincides with the restriction of the Schwartz
representation ρΘ to PSL(2,Z)o.

(2) If λ ∈ R, then ρλΘ is discrete and faithful.
(3) If λ ∈ R◦, then ρλΘ is Anosov.

Finally, by understanding the extension of the representations ρλΘ to
PSL(2,Z), we can prove the following:

Theorem 1.2. — Let [Θ] be a convex marked box and let

ρλΘ : PSL(2,Z)o → PGL(3,R)

be the representations as in Theorem 1.1. Then there exist a real number
ε0 < 0 and a function δh : ]ε0, 0]→ R such that for λ = (ε, δh(ε)),

(1) If ε ∈ ]ε0, 0], then ρλΘ extends naturally to a representation ρ̄λΘ of
PSL(2,Z) into G .

(2) If ε = 0, then ρ̄λΘ = ρΘ.
(3) If ε ∈ ]ε0, 0[, then ρλΘ is Anosov.

The remainder of this paper is organized as follows.
In Section 2, we recall some basic facts on the Farey triangulation that,

as observed by Schwartz, is very useful for the description of the combi-
natorics of Pappus iterations. In Section 3, we describe the dynamics on
marked boxes generated by Pappus Theorem. In Section 4, we introduce
the group G of projective symmetries and the group G of elementary trans-
formations of marked boxes. In Section 5, we present Schwartz representa-
tions, which involves a labeling on Farey geodesics by the orbit of a marked
box under G. In Section 6, we define Anosov representations. After that, we
start the original content of this paper. In Section 7, we construct our new
elementary transformations on marked boxes and our new representations
of PSL(2,Z)o in PGL(3,R). In Section 8, we explain how to define special
norms on the projective plane (or its dual plane) for each convex marked
box, and using them, in Section 9, we prove that our new representations
are Anosov, which establish Theorem 1.1. In Section 10, we understand
how to extend new representations to PSL(2,Z) for the proof of Theo-
rem 1.2. Finally, in Section 11, we show that the PGL(3,R)-orbit of our
new representations in the algebraic variety Hom(PSL(2,Z)o,PGL(3,R))
has a non-empty interior.
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2. A short review on the Farey triangulation

We start by giving a short overview of the Farey graph (see e.g. Katok–
Ugarcovici [11] or Morier-Genoud–Ovsienko–Tabachnikov [15]).

Let ∆0 be the ideal geodesic triangle in the upper half plane H2 whose
vertices are 0, 1,∞ in ∂H2. For any two distinct points x, y ∈ ∂H2, we
denote by [x, y] the unique oriented geodesic joining x and y. The initial
point x of an oriented geodesic e = [x, y] is called the tail of e and the final
point y is called the head of e. The modular group PSL(2,Z), which is a
subgroup of PSL(2,R), has the group presentation:

(2.1) 〈 I,R | I2 = 1, R3 = 1 〉

where I =
( 0 1
−1 0

)
and R =

(−1 1
−1 0

)
. The isometry R of H2 is the rotation of

order 3 whose center is the “center” of the triangle ∆0 and that permutes
1, 0,∞ in this (clockwise) cyclic order. The isometry I of H2 is the rotation
of order 2 whose center is the orthogonal projection of the “center” of ∆0
on the geodesic [∞, 0] (see Figure 2.1).

Remark 2.1. — It will be essential for us to deal with the subgroup
PSL(2,Z)o of PSL(2,Z) generated by R and IRI. It consists of the ele-
ments of PSL(2,Z) that can be written as a word made up of the letters
I and R with an even number of I, and it is in fact the unique index 2
subgroup of PSL(2,Z) since every homomorphism of PSL(2,Z) into Z/2Z
must vanish on R. Finally, we can also characterize PSL(2,Z)o as the set
of elements of PSL(2,Z) whose trace is an odd integer.

The Farey graph is a directed graph whose set of vertices is Q ∪ {∞}.
Taking the convention ∞ = 1/0, two vertices p/q and p′/q′ (in reduced
form) are connected by an edge if and only if pq′− p′q = ±1. Two adjacent

TOME 68 (2018), FASCICULE 6
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vertices are connected by exactly two oriented edges e and ē, where ē is the
same as e except the orientation.
It is well-known that if we realize every oriented edge (p/q, p′/q′) by the

oriented geodesic [p/q, p′/q′] in H2 joining p/q and p′/q′ in ∂H2, then we
obtain a triangulation of H2 (see Figure 2.1), called the Farey triangulation.
Each oriented geodesic in H2 that realizes an edge of the Farey graph is
called a Farey geodesic and we denote the set of Farey geodesics by Lo.

0 1

∞

R·�
I ·�

∆0

Figure 2.1. The Farey triangulation in the Poincaré disk model of H2

We can regard the Farey triangulation as a tiling. The Farey geodesics
without orientation are edges of ideal geodesic triangles, called Farey trian-
gles. For example, the triangle ∆0 is a Farey triangle. The modular group
PSL(2,Z) acting on H2 preserves the Farey triangulation, and acts tran-
sitively on the set of Farey triangles. Moreover, the stabilizer of ∆0 in
PSL(2,Z) is the subgroup 〈R〉 of order 3 generated by R.

Remark 2.2. — The index 2 subgroup PSL(2,Z)o does not act transi-
tively on the set of Farey geodesics, but acts simply transitively on the set
of non-oriented Farey geodesics. On the other hand, once chosen a Farey
geodesic e0 (we will always take e0 = [∞, 0]), then PSL(2,Z)o acts sim-
ply transitively on the orbit of e0 under PSL(2,Z)o, which is called the
PSL(2,Z)o-orientation.

It is useful to consider the following other presentation of PSL(2,Z):

(2.2) 〈 I, T1, T2 | I2 = 1, T1IT2 = I, T2IT1 = I, T1IT1 = T2, T2IT2 = T1 〉

where T1 := IR and T2 := IR2.

Remark 2.3. — An element of PSL(2,Z) belongs to the index 2 subgroup
PSL(2,Z)o if and only if it is a product of an even number of generators I,
T1, T2.

ANNALES DE L’INSTITUT FOURIER
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Now consider another action of PSL(2,Z) on the set Lo of Farey geodesics,
denoted by ∗, such that for every Farey geodesic e ∈ Lo, we have (see Fig-
ure 2.2):

• I ∗ e is the Farey geodesic ē, which is the same as e except the
orientation;

• T1 ∗ e is the Farey geodesic obtained by rotating e counterclockwise
one “click” about its tail point;

• T2 ∗ e is the Farey geodesic obtained by rotating e clockwise one
“click” about its head point.

e
T1 ∗ e

T2 ∗ e

I ∗ e

Figure 2.2. The ∗-action of PSL(2,Z) on Lo.

These two actions of PSL(2,Z) on Lo are both simply transitive and
commute each other.
Remark 2.4. — The ∗-action of PSL(2,Z) on Lo does not induce an

action on the Farey graph since it does not respect the incidence relation
of the graph. For example, even though T2 ∗ e is incident to T−1

2 ∗ e, the
Farey geodesic T1 ∗ (T2 ∗ e) is not incident to T1 ∗ (T−1

2 ∗ e).
Remark 2.5. — For the ∗-action, the orbit of a Farey geodesic under 〈R〉

is the union of the three edges of a Farey triangle because R = IT1 and
R2 = IT2. Moreover, for the specific Farey geodesic e0 = [∞, 0], we have:

I(e0) = I ∗ e0, R(e0) = R ∗ e0, R2(e0) = R2 ∗ e0

3. A dynamic of Pappus Theorem via marked boxes

As in Schwartz [17], we consider the Pappus Theorem as a dynamical
system defined on objects called marked boxes. A marked box is essentially
a collection of points and lines in the projective plane satisfying the rules
that we present below.

TOME 68 (2018), FASCICULE 6
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3.1. Pappus Theorem

Let V be a 3-dimensional real vector space and let P(V ) be the projective
space associated to V , i.e. the space of 1-dimensional subspaces of V . If a
and b are two distinct points of P(V ), then ab denotes the line through a
and b. In a similar way, if A and B are two distinct lines of P(V ), then AB
denotes the intersection point of A and B.

Theorem 3.1 (Pappus Theorem). — If the points a1, a2, a3 are collinear
and the points b1, b2, b3 are collinear in P(V ), then the points c1 =
(a2b3)(a3b2), c2 = (a3b1)(a1b3), c3 = (a1b2)(a2b1) are also collinear in
P(V ).

We say that the Pappus Theorem is on generic conditions if a1, a2, a3
are distinct points of a line La, as well as b1, b2, b3 are distinct points of a
line Lb, and ai /∈ Lb, bi /∈ La for all i = 1, 2, 3. When the Pappus Theorem
is on generic conditions, we have a Pappus configuration formed by the
points a1, a2, a3, b1, b2, b3. An important fact is that the Pappus Theorem
on generic conditions can be iterated infinitely many times (see Figure 3.1),
i.e. a Pappus configuration is stable, and therefore it gives us a dynamical
system (for a proof of the stability of generic conditions under Pappus
iteration, see Valério [19]).

Figure 3.1. An iteration of the Pappus Theorem

ANNALES DE L’INSTITUT FOURIER
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3.2. Marked boxes

Let V ∗ be the dual vector space of V and let P(V ∗) be the projective
space associated to V ∗, i.e. the space of lines of P(V ). An overmarked box
Θ of P(V ) is a pair of distinct 6 tuples having the incidence relations shown
in Figure 3.2:

Θ = ((p, q, r, s; t, b), (P,Q,R, S;T,B))
p, q, r, s, t, b ∈ P(V ) and P,Q,R, S, T,B ∈ P(V ∗)
P = ts,Q = tr, R = bq, S = bp, T = pq,B = rs and TB /∈ {p, q, r, s, t, b}

Figure 3.2. An overmarked box in P(V )

The overmarked box Θ is completely determined by the 6 tuple (p, q, r, s;
t, b), but it is wise to keep in mind that we should treat equally the dual
counterpart (P,Q,R, S;T,B). The dual of Θ, denoted by Θ∗, is

((P,Q,R, S;T,B), (p, q, r, s; t, b)).

The top (flag) of Θ is the pair (t, T ) and the bottom (flag) of Θ is the pair
(b, B).

We denote the set of overmarked boxes by OB. Let j : OB → OB be
the involution given by:

(3.1) ((p, q, r, s; t, b), (P,Q,R, S;T,B))
7→ ((q, p, s, r; t, b), (Q,P, S,R;T,B))

A marked box is an equivalence class of overmarked boxes under this invo-
lution j. We denote the set of marked boxes by MB. An overmarked box
Θ = ((p, q, r, s; t, b), (P,Q,R, S;T,B)) (or a marked box [Θ]) is convex if
the following two conditions hold:

TOME 68 (2018), FASCICULE 6
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• The points p and q separate t and TB on the line T .
• The points r and s separate b and TB on the line B.

Given a marked box [Θ], we can define the segments [pq] (resp. [rs])
as the closure of the complement in T (resp. B) of {p, q} (resp. {r, s})
containing t (resp. b). There are three ways to choose the segments [qr],
[sp] simultaneously so that they do not intersect. If the marked box [Θ] is
convex, then one of these three choices leads to a quadrilateral (p, q, r, s)
(in this cyclic order) the boundary of which is not freely homotopic to a
line of P(V ). We then define the convex interior, denoted by [Θ]◦, of the
convex marked box [Θ] as the interior of the convex quadrilateral (p, q, r, s)
in P(V ) (see Figure 3.3).

Figure 3.3. A convex interior [Θ]◦ of [Θ] in P(V ) is drawn in blue.

Finally, a marked box [Θ] is convex if and only if the dual [Θ∗] of [Θ] is
convex, and in this case, we denote by [Θ∗]◦ the convex interior of [Θ∗] in
P(V ∗). Be careful that [Θ∗]◦ is not the convex domain dual to [Θ]◦.

4. Two groups acting on marked boxes

Following Schwartz [17], we will explain how the group of projective
symmetries acts on marked boxes, and introduce the group of elementary
transformations of marked boxes.

4.1. The group G of projective symmetries

Recall that V is a three-dimensional real vector space and V ∗ is its
dual vector space. We denote by 〈v∗|v〉 the evaluation of an element v∗

ANNALES DE L’INSTITUT FOURIER
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of V ∗ on an element v of V . If W is a vector space and f : V → W is
a linear isomorphism between V and W , then the dual map of f is the
linear isomorphism f∗ : W ∗ → V ∗ such that 〈f∗(w∗)|v〉 = 〈w∗|f(v)〉 for all
w∗ ∈W ∗ and v ∈ V .
We denote the projectivization of f : V →W by P(f) : P(V )→ P(W ).

A projective transformation T of P(V ) is a transformation of P(V ) in-
duced by an automorphism g of V , i.e. T = P(g), and the dual map T ∗

of T is the transformation P(g∗)−1 of P(V ∗). A projective duality D is
a homeomorphism between P(V ) and P(V ∗) induced by an isomorphism
h between V and V ∗, i.e. D = P(h), and the dual map D∗ of D is the
homeomorphism (P(h∗) ◦ P(I))−1 : P(V ∗) → P(V ), where I : V → V ∗∗

is the canonical linear isomorphism between V and V ∗∗. We denote by [v]
the 1-dimensional subspace spanned by a non-zero v of V . The flag variety
F is the subset of P(V ) × P(V ∗) formed by all pairs ([v], [v∗]) satisfying
〈v∗|v〉 = 0.
If T is a projective transformation of P(V ), then there is an automor-

phism T : F → F , also called projective transformation, defined by:

(4.1) T (x,X) = (T (x), T ∗(X)) for every (x,X) ∈ F

Similarly, if D : P(V ) → P(V ∗) is a duality, then there is an automor-
phism D : F → F , also called duality, defined by:

(4.2) D(x,X) = (D∗(X), D(x)) for every (x,X) ∈ F

Let H be the set of projective transformations of F as in (4.1), and let
G be the set formed by H and dualities of F as in (4.2). This set G is the
group of projective symmetries with the obvious composition operation.
The subgroup H of G has index 2.

Remark 4.1. — If we equip V with a basis B and V ∗ with the dual
basis B∗, then the projective space P(V ) and its dual space P(V ∗) can be
identified with P(R3). A duality D : P(V ) → P(V ∗) is given by a unique
element A ∈ PGL(3,R), and the flag transformation D is expressed by the
map

(x,X) 7→ (tA−1X,Ax)

from {(x,X) ∈ P(R3) × P(R3) | x · X = 0} into itself, where tA denotes
the transpose of A and x ·X is the dot product of x and X. It follows that
involutions in G \H correspond to dualities D for which A is symmetric.
They are precisely polarities, i.e. isomorphims h between V and V ∗ for
which (u, v) 7→ 〈h(u)|v〉 is a non-degenerate symmetric bilinear form.

TOME 68 (2018), FASCICULE 6
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4.2. The action of G on marked boxes

If T is a projective transformation of P(V ) that induces T ∈ H ⊂ G ,
then we define a map T : OB→ OB by:

T (Θ) = ((p̂, q̂, r̂, ŝ; t̂, b̂), (P̂ , Q̂, R̂, Ŝ; T̂ , B̂)) for every Θ ∈ OB

where x̂ = T (x) for x ∈ P(V ) and X̂ = T ∗(X) for X ∈ P(V ∗).
If D is a duality that induces D ∈ G \H , then we define a map D :

OB→ OB by:

(4.3) D(Θ) = ((P ∗, Q∗, S∗, R∗;T ∗, B∗), (q∗, p∗, r∗, s∗; t∗, b∗))

for every Θ ∈ OB, where X∗ = D∗(X) for X ∈ P(V ∗) and x∗ = D(x) for
x ∈ P(V ).
It is clear that both transformations T and D commute with the in-

volution j (see (3.1)), and so it induces an action of G on MB, which
furthermore preserves the convexity of marked boxes. We will see in Sec-
tion 4.4 that this action commutes with elementary transformations of
marked boxes.

Remark 4.2. — If we consider the map Υ : OB→ F 6 defined by:

Υ((p, q, r, s; t, b), (P,Q,R, S;T,B))
= ((t, T ), (t, P ), (t, Q), (b, B), (b, R), (b, S))

then it is a bijection onto some subset of F 6 (which is not useful to de-
scribe further). It induces a map from OB into the quotient of F 6 by the
involution permuting the second and the third factor, and the fifth and
the sixth factor. Therefore, it gives us a natural action of the group G of
projective symmetries on MB. In particular, (4.3) would be:

(4.4) D(Θ) = ((P ∗, Q∗, R∗, S∗;T ∗, B∗), (p∗, q∗, r∗, s∗; t∗, b∗))

for every Θ ∈ OB. However, as Schwartz observed, (4.4) is not the one
we should consider because with this choice the Schwartz Representation
Theorem (Theorem 5.4) would fail.

Remark 4.3. — Given two dualities D1,D2 ∈ G \H , we have:

D2(D1(Θ)) = j((D2D1)(Θ))

where j : OB → OB is the involution defining marked boxes (see (3.1)).
Hence, the action of G on MB defined by Schwartz does not lift to an
action of G on OB.
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4.3. The space of marked boxes modulo G

Let Θ = ((p, q, r, s; t, b), (P,Q,R, S;T,B)) be an overmarked box.

Definition 4.4. — A Θ-basis is a basis of V for which the points
p, q, r, s of Θ have the projective coordinates:

p = [−1 : 1 : 0], q = [1 : 1 : 0], r = [1 : 0 : 1], s = [−1 : 0 : 1]

If ζt and ζb denote the real numbers, different from ±1, such that:

t = [ζt : 1 : 0] and b = [ζb : 0 : 1]

then we call Θ a (ζt, ζb)-overmarked box. It is said to be special when
(ζt, ζb) = (0, 0).

Observe that for each Θ, there exists a unique Θ-basis up to scaling, and
hence that ζt, ζb are well-defined. Two overmarked boxes lie in the same
H -orbit if and only if they have the same coordinates ζt and ζb. In other
words, we can identify the space of overmarked boxes modulo H with:

Ω = {(ζt, ζb) ∈ R2 | (ζ2
t − 1)(ζ2

b − 1) 6= 0}

Moreover, the overmarked box Θ is convex if and only if ζt and ζb are in
]−1, 1[.

Remark 4.5. — If we equip V with a Θ-basis of V and V ∗ with its dual
basis, then the lines P,Q,R, S, T,B of Θ have the following projective co-
ordinates:

P = [1 : −ζt : 1], Q = [−1 : ζt : 1], R = [−1 : 1 : ζb], S = [1 : 1 : −ζb]
T = [0 : 0 : 1] and B = [0 : 1 : 0]

Proposition 4.6. — Let γ be a rotation of R2 through the angle π
2

about the origin. Then the space of marked boxes modulo G is isomorphic
to a 2-dimensional orbifold O = Ω/〈γ〉. In particular, the singular locus
of O consists of a cone point of order 4, which corresponds to the special
marked boxes.

Proof. — The involution j maps a (ζt, ζb)-overmarked box to a (−ζt,
−ζb)-overmarked box, and hence the space of marked boxes modulo H is
isomorphic to:

Ω/〈− Id〉 = Ω/〈γ2〉
Now, for each i = 1, 2, let

Θi = ((pi, qi, ri, si; ti, bi), (Pi, Qi, Ri, Si;Ti, Bi))
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be a (ζt,i, ζb,i)-overmarked box. We claim that D(Θ1) = Θ2 for some duality
D, induced by D : P(V )→ P(V ∗), if and only if:(

0 −1
1 0

)(
ζt,1
ζb,1

)
=
(
ζt,2
ζb,2

)
Suppose that D(Θ1) = Θ2. Without loss of generality, we may assume that:

p1 = p2, q1 = q2, r1 = r2, s1 = s2

that is, the Θ1-basis of V is the same as the Θ2-basis of V . Equip V with
the Θi-basis of V and V ∗ with its dual basis. The matrix A of the duality
D relative to these bases must be:

A =

−1 ζb,2 −ζt,2
ζt,2 −ζt,2ζb,2 1
ζb,2 −1 ζt,2ζb,2

 ∈ GL(3,R)

(up to scaling) because D : P(V )→P(V ∗) satisfies the following (see (4.3)):

q∗1 = D(q1) = P2, p
∗
1 = D(p1) = Q2, r

∗
1 = D(r1) = R2, s

∗
1 = D(s1) = S2

Moreover, since t∗1 = D(t1) = T2 and b∗1 = D(b1) = B2, we have:

ζb,2 = ζt,1 and ζt,2 = −ζb,1

as claimed. Similarly, there exists a duality D such that D(Θ1) = j(Θ2) if
and only if: (

0 1
−1 0

)(
ζt,1
ζb,1

)
=
(
ζt,2
ζb,2

)
Therefore the space of marked boxes modulo G is isomorphic to:(

Ω/〈γ2〉
)
/〈γ〉 = Ω/〈γ〉

which completes the proof. �

Corollary 4.7. — In the setting of Proposition 4.6, the space of con-
vex marked boxes modulo G is isomorphic to a 2-dimensional orbifold
]−1, 1[2/〈γ〉.

Remark 4.8. — The fact that only special marked boxes admit a non-
trivial G -stabilizer is also proved in Barrera–Cano–Navarrete [4, Lem-
ma 3.1], in a nice, geometric way, involving Desargues’ Theorem. In [4],
special boxes are called good boxes.
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4.4. The group G of elementary transformations
of marked boxes

Let Θ = ((p, q, r, s; t, b), (P,Q,R, S;T,B)) be an element of OB. The
Pappus Theorem gives us two new elements of OB that are images of Θ
under two special permutations τ1 and τ2 on OB (see Figure 4.1). These
permutations are defined by:

τ1(Θ) = ((p, q,QR, PS; t, (pr)(qs)), (P,Q, qs, pr;T, (QR)(PS)))
τ2(Θ) = ((QR,PS, s, r; (pr)(qs), b), (pr, qs, S,R; (QR)(PS), B))

Figure 4.1. Two permutations τ1 and τ2; the convex interiors of τ1(Θ)
and τ2(Θ) are drawn in blue when Θ is convex.

There is also a natural involution, denoted by i, on OB (see Figure 4.2)
given by:

i(Θ) = ((s, r, p, q; b, t), (R,S,Q, P ;B, T ))
The transformations i, τ1 and τ2 are permutations on OB commuting

with j, hence they also act on MB. We denote by S(MB) the group of
permutations on MB.

Remark 4.9. — If [Θ] is convex, then the new boxes [i(Θ)], [τ1(Θ)] and
[τ2(Θ)] are also convex. The convex interiors of these marked boxes are
highlighted in Figures 4.1 and 4.2. Since:

[τ1(Θ)]◦ ( [Θ]◦, [τ2(Θ)]◦ ( [Θ]◦ and [τ1(Θ)]◦ ∩ [τ2(Θ)]◦ = ∅

the semigroup of S(MB) generated by τ1 and τ2 is free. Note that also
[i(Θ)]◦ ∩ [Θ]◦ = ∅.

Remark 4.10. — In the dual projective plane P(V ∗), the inclusions are
reversed:

[τ1(Θ)∗]◦ ) [Θ∗]◦ and [τ2(Θ)∗]◦ ) [Θ∗]◦

However, we still have [i(Θ)∗]◦ ∩ [Θ∗]◦ = ∅.

TOME 68 (2018), FASCICULE 6



2712 Thierry BARBOT, Gye-Seon LEE & Viviane Pardini VALÉRIO

Figure 4.2. The permutation i; the convex interior of i(Θ) is drawn in
blue when Θ is convex.

The permutations i, τ1 and τ2 on MB are called elementary transforma-
tions of marked boxes. These transformations can be applied iteratively on
the elements of MB, so i, τ1 and τ2 generate a semigroup G of S(MB).

Lemma 4.11. — The following relations hold:

(4.5) i2 = 1, τ1iτ2 = i, τ2iτ1 = i, τ1iτ1 = τ2, τ2iτ2 = τ1

Proof. — See the proof in Schwartz [17, Lemma 2.3]. �

Thus, by Lemma 4.11, the inverses of i, τ1 and τ2 in S(MB) are:

i−1 = i, τ−1
1 = iτ2i, τ−1

2 = iτ1i

Therefore, the semigroup G is in fact a group, and this group G is called
the group of elementary transformations of marked boxes.

Remark 4.12. — The actions of G and G on MB commute each other.

Lemma 4.13. — The group G has the following presentation:

〈 i, τ1, τ2 | i2 = 1, τ1iτ2 = i, τ2iτ1 = i, τ1iτ1 = τ2, τ2iτ2 = τ1 〉

Proof. — By Lemma 4.11, it only remains to see that (4.5) is a complete
set of relations for the group G on the generators i, τ1 and τ2. Assume
that a word W in the symbols i, τ1 and τ2 is a relator, i.e. it defines the
identity element in G, and that W is not derivable from (4.5). Using the
relations in (4.5), the word W may be reduced to the form iawib, where
a, b ∈ {0, 1} and w is an element of the semigroup generated by τ1 and τ2.
Since W is a relator, we have that iawib[Θ] = [Θ] for every convex marked
box [Θ]. Since i[Θ]◦ ∩ [Θ]◦ = ∅, the element w is not trivial. By replacing
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[Θ] by i[Θ], we can further assume that a = 0. Then we have two cases:
either b = 0 or b = 1. If b = 0, then w[Θ] = [Θ], which is impossible since
w[Θ]◦ ( [Θ]◦ by Remark 4.9. If b = 1, then wi[Θ]◦ is contained in i[Θ]◦,
therefore disjoint from [Θ]◦, which is a contradiction. �

Corollary 4.14. — Let %1 = iτ1. Then G admits the following group
presentation:

G = 〈 i, %1 | i2 = 1, %3
1 = 1 〉

In particular, it is isomorphic to the modular group PSL(2,Z) ∼= Z/2Z ∗
Z/3Z.

Proof. — It follows from Lemma 4.13 and (2.2). �

Definition 4.15. — We denote by Ξ : PSL(2,Z)→ G the isomorphism
given by:

Ξ(I) = i, Ξ(T1) = τ1 and Ξ(T2) = τ2

(see (2.2)). Notice that:
Ξ(R) = %1

5. Schwartz representations

5.1. Farey geodesics labeled by the G-orbit of a marked box

Given a convex marked box [Θ0] ∈MB, we can label each Farey geodesic
e by an element [Θ](e) of the G-orbit of [Θ0] as follows: first assign the label
[Θ](e0) = [Θ0] for the geodesic e0 = [∞, 0], and then for every geodesic
e = γ ∗ e0 with γ ∈ PSL(2,Z), define [Θ](e) = Ξ(γ)[Θ0]. More generally,
for any Farey geodesic e ∈ Lo and any γ ∈ PSL(2,Z):

[Θ](γ ∗ e) = Ξ(γ)[Θ](e).

Remark 5.1. — Using this labeling, we can easily see the nesting property
of the marked boxes in the G-orbit of [Θ] viewed in P(V ). Assume that
the label [Θ](e0) of e0 is convex. For each oriented geodesic e, we denote by
He the half space of H2 on the left of e. Let e, e′ be two Farey geodesics.
Then the following property is true: He′ ⊂ He if and only if the convex
interior of [Θ](e′) is contained in the convex interior of [Θ](e). In other
words, He′ ⊂ He if and only if e′ is obtained from e by applying a sequence
of elementary transformations τ1 and τ2. Moreover, e and e′ have the same
tail point (resp. head point) if and only if the marked boxes [Θ](e) and
[Θ](e′) have the same top (resp. bottom).

TOME 68 (2018), FASCICULE 6



2714 Thierry BARBOT, Gye-Seon LEE & Viviane Pardini VALÉRIO

5.2. Construction of Schwartz representations

Now we explain how to build Schwartz representations.

Lemma 5.2. — Let Θ be a convex overmarked box. Then
(1) there exists a unique projective transformation A0

Θ ∈H such that:

Θ A0
Θ−−→ j%1Θ A0

Θ−−→ %2
1Θ A0

Θ−−→ jΘ

(2) there exists a unique duality D0
Θ ∈ G \H such that:

Θ D0
Θ−−→ jiΘ D0

Θ−−→ Θ

Moreover, the duality D0
Θ happens to be a polarity associated to a positive

definite quadratic form (see Remark 4.1).

Proof. — The proof is in Schwartz [17, Theorem 2.4] (see also Valério [19,
Lemma 3.1] for more details). The uniqueness follows from the fact that
for two overmarked boxes Θ1 and Θ2, there exists at most one projective
transformation and one polarity respectively mapping Θ1 to Θ2. Let us
establish the existence. Equip V as usual with the Θ-basis of V and V ∗

with its dual basis. Then a straightforward computation shows that the
matrix:

(5.1) AΘ =

ζtζb − 1 ζt(1− ζtζb) ζb − ζt
ζb − ζt 1− ζtζb ζtζb − 1

0 1− ζ2
t 0


provides a projective transformation A0

Θ as required, whereas the symmet-
ric matrix:

(5.2) DΘ =

 1 −ζt −ζb
−ζt 1 ζtζb
−ζb ζtζb 1


provides the polarity D0

Θ, and it is positive definite since ζt, ζb ∈
]−1, 1[2. �

Remark 5.3. — At the level of marked boxes, we have:

[Θ] A
0
Θ−−→ %1[Θ] A

0
Θ−−→ %2

1[Θ] A
0
Θ−−→ [Θ]

[Θ] D
0
Θ−−→ i[Θ] D

0
Θ−−→ [Θ]
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Since the involution j commutes with projective transformations and
polarities, we have:

jΘ A0
Θ−−→ j%1jΘ

A0
jΘ−−−→ %2

1jΘ
A0

Θ−−→ Θ

jΘ D0
Θ−−→ jijΘ D0

Θ−−→ jΘ

It follows that A0
Θ and D0

Θ only depend on the marked box [Θ].

Theorem 5.4 (Schwartz representation Theorem). — Let [Θ] be a con-
vex marked box, and label the Farey geodesics in Lo as in Section 5.1 so that
[Θ](e0) = [Θ]. Then there exists a faithful representation ρΘ : PSL(2,Z)→
G such that for every Farey geodesic e ∈ Lo and every γ ∈ PSL(2,Z), the
following ρΘ-equivariant property holds:

[Θ](γe) = ρΘ(γ)([Θ](e))

Proof. — Recall (see (2.1)) that:

PSL(2,Z) = 〈 I,R | I2 = 1, R3 = 1 〉

Therefore there exists a representation ρΘ : PSL(2,Z)→ G such that:

ρΘ(R) = A0
Θ ∈H and ρΘ(I) = D0

Θ ∈ G \H

where A0
Θ and D0

Θ are defined in Lemma 5.2. Once observed the identities
Re0 = R∗e0 and Ie0 = I∗e0 (see Remark 2.5), the ρΘ-equivariant property
is obviously satisfied for e = e0 and γ = R or I. Let now e be any other
Farey geodesic. Then:

[Θ](Re)
= [Θ](R(γ ∗ e0)) for some γ in PSL(2,Z)
= [Θ](γ ∗ (Re0)) (the two actions of PSL(2,Z) on Lo commute)
= Ξ(γ)[Θ](Re0) (by the construction of the labeling on Lo)

= Ξ(γ)A0
Θ([Θ](e0)) (the ρΘ-equiv. property holds for γ = R, e = e0)

= A0
Θ(Ξ(γ)[Θ](e0)) (the actions of H and G on MB commute)

= A0
Θ([Θ](γ ∗ e0)) (by the construction of the labeling on Lo)

= ρΘ(R)([Θ](e)) (by the definition of ρΘ)

Hence, the ρΘ-equivariant property holds for γ = R and for every e ∈
Lo. Similarly, we can check this property for γ = I, applying the fact
that the actions of G and G on MB commute for the third-to-last step
(whereas for γ = R, we only need the fact that G commutes with projective
transformations).
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Now, the general case follows from the fact that R and I generate
PSL(2,Z): if γ is an element of PSL(2,Z) for which [Θ](γe) = ρΘ(γ)([Θ](e))
for every e ∈ Lo, then:

[Θ](γIe) = ρΘ(γ)([Θ](Ie))
= ρΘ(γ)ρΘ(I)([Θ](e))
= ρΘ(γI)([Θ](e))

and similarly [Θ](γRe) = ρΘ(γR)([Θ](e)), completing the proof by induc-
tion on the word length of γ in the letters R and I. �

We call ρΘ : PSL(2,Z)→ G the Schwartz representation of PSL(2,Z).

5.3. The Schwartz map

Recall that in Section 5.1, for each convex marked box [Θ], we attach
the labels, which are the elements of the orbit of [Θ] under G, to the Farey
geodesics. As we mentioned in Remark 5.1, two Farey geodesics have the
same tail point in ∂H2 if and only if the labels of these geodesics are marked
boxes with the same top flag. Therefore, it gives us two ρΘ-equivariant maps
ϕ : Q ∪ {∞} → P(V ) and ϕ∗ : Q ∪ {∞} → P(V ∗), and moreover the map
ϕ (resp. ϕ∗) can be extended to an injective ρΘ-equivariant continuous
map ϕo : ∂H2 → P(V ) (resp. ϕ∗o : ∂H2 → P(V ∗)) (see Schwartz [17,
Theorem 3.2]). The maps ϕo and ϕ∗o combine to a ρΘ-equivariant map,
which we call the Schwartz map:

Φ := (ϕo, ϕ∗o) : ∂H2 → F ⊂ P(V )×P(V ∗)

5.4. The case of special marked boxes

We closely look at the Schwartz representation ρΘ and the Schwartz map
Φ in the case when [Θ] is a special marked box. In the Θ-basis of V , the
projective transformation A0

Θ corresponds to:

A =

 1 0 0
0 −1 1
0 −1 0


whereas the polarity D0

Θ is expressed by the identity matrix. Hence, the
image of IRI under ρΘ corresponds to the inverse of the transpose of A: 1 0 0

0 0 1
0 −1 −1
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Since the elements R and IRI of PSL(2,Z)o are the equivalence classes of
the matrices: (

−1 1
−1 0

)
and

(
0 1
−1 −1

)
respectively (see (2.1)), we see that the restriction of ρΘ to PSL(2,Z)o is a
linear action of PSL(2,Z)o on the affine plane {[x : y : z] ∈ P(V ) | x 6= 0}.
It holds true only for PSL(2,Z)o, not for PSL(2,Z): The image of I under
ρΘ is the polarity associated to an inner product on V for which a Θ-basis
of V is orthonormal.
In the case when [Θ] is special, the map ϕo defined in Section 5.3 is the

canonical identification between ∂H2 and the line L := {x = 0} in P(V ),
and the image of the Schwartz map Φ is the set of flags ([v], [v∗]) such that
[v] ∈ L and [v∗] is the line though the points [v] and [1 : 0 : 0].

5.5. Opening the cusps

In the previous subsections, the role of the Farey geodesics is purely com-
binatorial, except for the definition of the Schwartz map. We can replace
the Farey lamination Lo, which is the set of Farey geodesics, by any other
geodesic lamination L obtained by “opening the cusps” in a 3-fold symmet-
ric way (see Figure 5.1). The ideal triangles become hyperideal triangles,
which means that these triangles are bounded by three geodesics in H2,
but now these geodesics have no common point in ∂H2. The lamination L
is still preserved by a discrete subgroup Γ of Isom(H2), which is isomorphic
to PSL(2,Z) but which is now convex cocompact.

One way to operate this modification is to pick up a hyperideal triangle
∆ containing ∆0 such that ∆ still admits the side e0 = [∞, 0] but the
other two sides are pushed away on the right. The discrete group Γ is then
generated by I and the unique (clockwise) rotation R∗ of order 3 preserving
∆. Here, we just have to adjust ∆ so that the projection of the “center” of
the rotation R∗ on e0 = [∞, 0] is the fixed point of I.
All the discussions in the previous subsections remain true if we interpret

the notion of “rotating around the head or tail point” in the appropriate
(and obvious) way. In particular, in the quotient orbifold Γ\H2, the leaves
of L project to a wandering geodesic connecting the cone point of order 2
to the hyperbolic end, and for two leaves e, e′ of L, the labels [Θ](e) and
[Θ](e′) have the same bottom if and only if e and e′ have tails in the same
connected component of ∂H2 \ ΛΓ, where ΛΓ is the limit set of Γ. As a
consequence, we still have:
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0

∞

∆0

0

∞

R∗·�
I ·�

∆

Figure 5.1. The Farey lamination Lo and the new lamination L ob-
tained by opening the cusps.

Theorem 5.5 (Modified Schwartz representation Theorem). — Let [Θ]
be a convex marked box. Label the oriented leaves of L, in a way similar to
the labeling of Lo defined in Section 5.1, so that [Θ](e0) = [Θ]. Then there
exists a faithful representation ρΘ : Γ → G such that for every leaf e ∈ L
and every γ ∈ Γ we have:

[Θ](γe) = ρΘ(γ)([Θ](e))

This modified representation is the one obtained by the original Schwartz
representation composed with the obvious isomorphism between Γ and
PSL(2,Z), and therefore the original and the modified representations are
essentially the same. The main difference is that now the ρΘ-equivariant
map, called the modified Schwartz map,

Φ := (ϕo, ϕ∗o) : ΛΓ → F ⊂ P(V )×P(V ∗)

obtained by composing the original Schwartz map with the collapsing map
ΛΓ → ∂H2 is not injective: it has the same value on the two extremities of
each connected component of ∂H2 \ ΛΓ.

6. Anosov representations

The theory of Anosov representations was introduced by Labourie [12]
in order to study representations of closed surface groups, and later it
was studied by Guichard and Wienhard [9] for finitely generated Gromov-
hyperbolic groups. The definition of Anosov representation involves a pair
of equivariant maps from the Gromov boundary of the group into certain
compact homogeneous spaces (cf. Barbot [2]).

The short presentation provided here might appear sophisticated to the
uninitiated reader, and the recent alternative definition developed in Bochi–
Potrie–Sambarino [5] is more intuitive. However, the definition we select
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here is more adapted to our proof of Theorem 1.1. We try to simplify
the definition as much as possible. For example, the “opening the cusp”
procedure in Section 5.5 is not really necessary, but has the advantage
to realize PSL(2,Z) as a convex cocompact Fuchsian group, so that its
Gromov boundary may be identified with the limit set, and to simplify
somewhat the definition of Anosov representation. Moreover, we supply the
reader’s intuition by stating that the Anosov property of a representation
ρ : Γ→ PGL(3,R) means in particular that for every element γ of infinite
order in Γ, the image ρ(γ) is a loxodromic element, i.e. an element of
PGL(3,R) with three real eigenvalues |λ1| < |λ2| < |λ3|, and the “bigger”
is γ in Γ, the bigger are the ratios |λ3|/|λ2| and |λ2|/|λ1|.

6.1. Definition and properties of Anosov representations

Recall that V is the 3-dimensional real vector space, and P(V ) is the
real projective plane. Given x ∈ P(V ), let Qx(V ) be the space of norms on
the tangent space TxP(V ) at x. Similarly, given X ∈ P(V ∗), let QX(V ∗)
be the space of norms on the tangent space TXP(V ∗) at X. Here, a norm
is Finsler not necessarily Riemannian. We denote by Q(V ) the bundle of
base P(V ) with fiber Qx(V ) over x ∈ P(V ), and by Q(V ∗) the bundle of
base P(V ∗) with fiber QX(V ∗) over X ∈ P(V ∗).
For each convex cocompact subgroup Γ of PSL(2,R), we denote by ΛΓ

the limit set of Γ and by Ω(φt) the nonwandering set of the geodesic flow
φt on the unit tangent bundle T 1(Γ\H2) of Γ\H2: it is the projection of
the union in T 1(H2) of the orbits of the geodesic flow corresponding to
geodesics with tail and head in ΛΓ.

Definition 6.1. — Let Γ be a convex cocompact subgroup of
PSL(2,R). A homomorphism ρ : Γ → PGL(V ) is a (PGL(V ),P(V ))-
Anosov representation if there are

(1) a Γ-equivariant map Φ = (ϕ,ϕ∗) : ΛΓ → F ⊂ P(V )×P(V ∗), and
(2) two maps ν+ : Ω(φt) ⊂ T 1(Γ\H2) → Q(V ) and ν− : Ω(φt) ⊂

T 1(Γ\H2) → Q(V ∗) such that for every Γ-nonwandering oriented
geodesic c : R → H2 joining two points c−, c+ ∈ ΛΓ, the following
exponential increasing/decreasing property holds:
• for every v ∈ Tϕ(c+)P(V ), the size of v for the norm
ν+(c(t), c′(t)) increases exponentially with t,

• for every v ∈ Tϕ∗(c−)P(V ∗), the size of v for the norm
ν−(c(t), c′(t)) decreases exponentially with t.
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Remark 6.2. — Technically, the norms ν± in the item (2) do not need
to depend continuously on (x, v) ∈ Ω(φt). The continuity, in fact, follows
from the exponential increasing/decreasing property. It might be difficult
to directly check this property, but there is a simpler criterion: it suffices
to prove that there exists a time T > 0 such that at every time t:

ν+(c(t+ T ), c′(t+ T )) > 2 ν+(c(t), c′(t))

ν−(c(t+ T ), c′(t+ T )) < 1
2 ν−(c(t), c′(t))

For a proof of this folklore, see e.g. Barbot–Mérigot [3, Proposition 5.5].

Since the group Γ of this definition is a Gromov-hyperbolic group re-
alized as a convex cocompact subgroup of PSL(2,R), its Gromov bound-
ary ∂Γ is Γ-equivariantly homeomorphic to its limit set ΛΓ. The reader
can find more information about Gromov-hyperbolic groups in Ghys–de la
Harpe [7], Gromov [8] and Kapovich–Benakli [10].
We denote by Hom(Γ,PGL(V )) the space of representations of Γ into

PGL(V ), and by HomA(Γ,PGL(V )) the space of Anosov representations in
Hom(Γ,PGL(V )). Here are some basic properties of Anosov representations
(see e.g. Barbot [2], Guichard–Wienhard [9] or Labourie [12]).

(1) HomA(Γ,PGL(V )) is an open set in Hom(Γ,PGL(V )).
(2) Every Anosov representation is discrete and faithful.
(3) The maps ϕ and ϕ∗ are injective.
(4) For every element of infinite order in Γ, the image ρ(γ) is diagonal-

izable over R with eigenvalues that have pairwise distinct moduli.
(5) If an Anosov representation is irreducible (i.e. it does not preserve

a non-trivial linear subspace of V ), then ϕ (resp. ϕ∗) is the unique
Γ-equivariant map from ∂Γ into P(V ) (resp. P(V ∗)).

6.2. Schwartz representations are not Anosov

Let ρΘ : Γ→ G be the (modified) Schwartz representation associated to
a convex marked box [Θ]. Equip V with the Θ-basis of V and V ∗ with its
dual basis. The projective transformation

ρΘ(T 2
1 ) = D0

ΘA0
ΘD0

ΘA0
Θ

corresponds to the matrix:

PΘ := D−1
Θ

t(AΘ)−1DΘAΘ
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where AΘ and DΘ are computed in Lemma 5.2. Then:

QΘPΘQ
−1
Θ =

−1 1 0
0 −1 0
0 0 1

 with QΘ =

−ζb 0 1
0 2 0
1 0 −ζb


As a consequence, the representation ρΘ is not Anosov because it admits
non-loxodromic elements and therefore violates the item (4) in Section 6.1.

Remark 6.3. — There is another fact making clear that ρΘ is not
Anosov: if [Θ] is not special, then ρΘ is irreducible and the Γ-equivariant
map from ∂Γ into F must be the map Φ. However, this map is not injec-
tive, whereas according to the item (5) in Section 6.1, it should be if ρΘ is
Anosov.

Remark 6.4. — One of the referees pointed out that Schwartz repre-
sentations might be an example of “relatively” Anosov representations as
currently developed by M. Kapovich (possibly in collaboration with oth-
ers).

7. A new family of representations of PSL(2,Z)o

In order to show that Schwartz representations are limits of Anosov rep-
resentations, we build paths (families) of Anosov representations that end
in Schwartz representations. With this goal in mind, we first introduce a
new group of transformations of marked boxes and consequently we obtain
an analog of Theorem 5.5 (Schwartz representation Theorem).

7.1. A new group of transformations of marked boxes

For each pair (ε, δ) of real numbers, we set:

Σ(ε,δ) =

 1 0 0
0 e−δ cosh(ε) − sinh(ε)
0 − sinh(ε) eδ cosh(ε)


Given an overmarked box

Θ = ((p, q, r, s; t, b), (P,Q,R, S;T,B)),

choose a Θ-basis of V and define σ(ε,δ)(Θ) as the image of Θ under the
projective transformation given in this basis by Σ(ε,δ). It gives us a new
transformation of overmarked boxes σ(ε,δ) : OB→ OB (see Figure 7.1).
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[−1 : 1 : 0] = p q = [1 : 1 : 0]

r = [1 : 0 : 1][−1 : 0 : 1] = s

t = [ζt : 1 : 0]

b = [ζb : 0 : 1]

Σ(ε,δ)(p) Σ(ε,δ)(q)

Σ(ε,δ)(r)Σ(ε,δ)(s)

Σ(ε,δ)(t)

Σ(ε,δ)(b)

Θ

σ(ε,δ)(Θ)

Figure 7.1. New permutation σ(ε,δ) and a convex interior of σ(ε,δ)(Θ)
in P(V ) is drawn in green when Θ is convex.

Lemma 7.1. — The transformation σ(ε,δ) commutes with j and there-
fore it acts on MB.

Proof. — The projective transformation J given by the matrix−1 0 0
0 1 0
0 0 1


for each Θ-basis of V sends the points p, q, r, s onto q, p, s, r (in this order).
Thus it induces j. It is obvious that J is an involution and JΣ(ε,δ)J

−1 =
Σ(ε,δ), and therefore

(j ◦ σ(ε,δ) ◦ j)(Θ) = (j ◦ σ(ε,δ) ◦ j)((p, q, r, s; t, b), (P,Q,R, S;T,B))
= (j ◦ σ(ε,δ))((q, p, s, r; t, b), (Q,P, S,R;T,B))

= j((q̌, p̌, š, ř; ť, b̌), (Q̌, P̌ , Š, Ř; Ť , B̌))

= ((p̌, q̌, ř, š; ť, b̌), (P̌ , Q̌, Ř, Š; Ť , B̌))
= σ(ε,δ)(Θ),

where x̌ = (JΣ(ε,δ)J
−1)(x) for x ∈ P(V ) and X̌ = (JΣ(ε,δ)J

−1)∗(X) for
X ∈ P(V ∗). �

Remark 7.2. — Every element T of H (a projective transformation)
commutes with σ(ε,δ) because the image under T of a Θ-basis is a T (Θ)-
basis. However, σ(ε,δ) does not commute with elements of G \H (dualities)
acting on MB.

Recall that the transformation i is the involution on MB defined in
Section 4.4.
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Lemma 7.3. — The following relations hold:

σ(−ε,−δ) = σ−1
(ε,δ) and iσ(ε,δ) = σ(−ε,−δ)i

Proof. — The first relation easily follows from the fact that Σ(−ε,−δ) =
Σ−1

(ε,δ). A proof of the second relation is similar to the proof of Lemma 7.1:
the projective transformation K given by the matrix−1 0 0

0 0 1
0 −1 0


for each Θ-basis of V sends the points p, q, r, s onto s, r, p, q, respectively.
An easy computation shows that KΣ(ε,δ)K

−1 = Σ(−ε,−δ), and therefore

(j ◦ i ◦ σ(ε,δ) ◦ i)(Θ) = (j ◦ i ◦ σ(ε,δ) ◦ i)((p, q, r, s; t, b), (P,Q,R, S;T,B))
= (j ◦ i ◦ σ(ε,δ))((s, r, p, q; b, t), (R,S,Q, P ;B, T ))

= (j ◦ i)((š, ř, p̌, q̌; b̌, ť), (Ř, Š, Q̌, P̌ ; B̌, Ť ))

= j((q̌, p̌, š, ř; ť, b̌), (Q̌, P̌ , Š, Ř; Ť , B̌))

= ((p̌, q̌, ř, š; ť, b̌), (P̌ , Q̌, Ř, Š; Ť , B̌))
= σ(−ε,−δ)(Θ)

where x̌ = (KΣ(ε,δ)K
−1)(x) for x ∈ P(V ) and X̌ = (KΣ(ε,δ)K

−1)∗(X) for
X ∈ P(V ∗). �

Now, define the function f(ε, δ) = e−δ cosh(ε)−sinh(ε)−1 and the region

(7.1) R = {(ε, δ) ∈ R2 | f(ε, δ) > 0 and f(ε,−δ) > 0}

of R2 (See Figure 7.2).

Proposition 7.4. — For each (ε, δ) ∈ R2, the convex interior of σε,δ(Θ)
is contained in the convex interior of Θ if and only if (ε, δ) ∈ R.

Proof. — A simple observation is that with respect to the Θ-basis of V ,
the point [x : y : z] ∈ P(V ) is in the closure of the convex interior of Θ if
and only if

(7.2) y + z 6= 0,
∣∣∣∣ x

y + z

∣∣∣∣ 6 1 and
∣∣∣∣y − zy + z

∣∣∣∣ 6 1.

Therefore, the convex interior of σε,δ(Θ) is contained in the convex inte-
rior of Θ if and only if the points Σ(ε,δ)(p) (or Σ(ε,δ)(q)) and Σ(ε,δ)(r) (or
Σ(ε,δ)(s)) satisfy (7.2). The proposition then follows. �

TOME 68 (2018), FASCICULE 6



2724 Thierry BARBOT, Gye-Seon LEE & Viviane Pardini VALÉRIO

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

R

f(ε, δ) = 0

f(ε,−δ) = 0

Figure 7.2. The region R is drawn in grey.

From now on, for the simplicity of the notation, let λ = (ε, δ). For ex-
ample, σλ = σ(ε,δ). Let us introduce three more new transformations on
MB as follows:

iλ := σλi, τλ1 := σλτ1, τλ2 := σλτ2.

Lemma 7.5. — The following relations hold:

(iλ)2 = 1, τλ1 i
λτλ2 = iλ, τλ2 i

λτλ1 = iλ,

τλ1 i
λτλ1 = τλ2 , τλ2 i

λτλ2 = τλ1 , (iλτλ1 )3 = 1.

Proof. — The proof follows directly from Lemma 4.11 and the relation
iσλ = σ−1

λ i. �

Thus, by Lemma 7.5, the inverses of iλ, τλ1 and τλ2 are

(iλ)−1 = iλ, (τλ1 )−1 = iλτλ2 i
λ, (τλ2 )−1 = iλτλ1 i

λ.

As a result, the semigroup Gλ of S(MB) generated by iλ, τλ1 and τλ2 is in
fact a group. The key point is that if λ ∈ R, then for every convex marked
box [Θ], we still have [τλ1 (Θ)]◦ ( [Θ]◦, [τλ2 (Θ)]◦ ( [Θ]◦ and [iλ(Θ)]◦∩[Θ]◦ =
∅ and furthermore if λ ∈ R◦, the interior of R, then we have the same
properties but now for the closures of the interiors of the marked boxes.
The Anosov character of new representations we build is a consequence of
this stronger property.
Anyway, by the same arguments as in the case when λ = (0, 0), we can

easily deduce:
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Lemma 7.6. — The group Gλ has the following presentation:

〈 iλ, τλ1 , τλ2 | (iλ)2 = 1, τλ1 i
λτλ2 = iλ,

τλ2 i
λτλ1 = iλ, τλ1 i

λτλ1 = τλ2 , τλ2 i
λτλ2 = τλ1 〉

Hence if λ ∈ R, then we have the group presentation:

Gλ = 〈 iλ, τλ1 | (iλ)2 = 1, (iλτλ1 )3 = 1 〉

and thus Gλ is isomorphic to the modular group. An important corollary
of Lemma 7.3 is:

(7.3) iλτλ1 = σλiσλτ1 = iτ1

and so we may rewrite the presentation in the following form:

Gλ = 〈 iλ, %1 | (iλ)2 = 1, %3
1 = 1 〉

where %1 = iτ1 is a Schwartz transformation of marked boxes defined in
Corollary 4.14. In other words, Gλ is simply obtained from G by replacing
i by iλ, and keeping %1 the same. As pointed out by a referee, the mean-
ing of (7.3) is that the order 3 projective transformation having the cycle
i(Θ)→ τ1(Θ)→ τ2(Θ) does not change when all three boxes are modified
in an equivariant way by σλ.

Remark 7.7. — If λ 6∈ R, then the situation is completely different. In
this case, it is not clear that Gλ is isomorphic to Z/2Z ∗ Z/3Z. However,
it is not important, and in the sequel, when λ 6∈ R, by Gλ we mean the
group Z/2Z ∗Z/3Z but acting on the set of marked boxes. Anyway, we are
mostly interested in the case when λ ∈ R◦ because it corresponds to an
Anosov representation.

7.2. New representations

Given a convex marked box [Θ] and λ = (ε, δ) ∈ R2, let us look at
the convex cocompact subgroup Γ of PSL(2,R) and the lamination L of
H2 introduced in Section 5.5, and the new group Gλ of transformations
of MB.
We cannot directly prove an analog of Theorem 5.4 since it is not true

anymore that new transformations of marked boxes commute with duali-
ties. In order to avoid this inconvenience, we have to restrict the domain
of new representations to the subgroup Γo of Γ:

Γo = 〈R∗, IR∗I | R3
∗ = 1, (IR∗I)3 = 1 〉.
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This subgroup Γo is isomorphic to Z/3Z ∗Z/3Z, it has index 2 in Γ, and it
is the image of PSL(2,Z)o under the isomorphism between PSL(2,Z) and
Γ. It preserves L but its action on oriented leaves of L is not transitive.
However, the action of Γo on non-oriented leaves of L is simply transitive.
It is also true that the ∗-action of Γo on the set of non-oriented leaves of
L, which is the restriction of the ∗-action of Γ, is simply transitive.
In order to define our new representation of Γo (not Γ), we only need:

Lemma 7.8. — Let Θ be a convex overmarked box. Then
(1) there exists a unique projective transformation AλΘ ∈H such that:

Θ AλΘ−−→ jiλτλ1 Θ AλΘ−−→ (iλτλ1 )2Θ AλΘ−−→ jΘ

(2) there exists a unique projective transformation BλΘ ∈H such that:

Θ BλΘ−−→ jτλ1 i
λΘ BλΘ−−→ (τλ1 iλ)2Θ BλΘ−−→ jΘ

Proof. — The first item is exactly the first item of Lemma 5.2 since
iλτλ1 = iτ1 = %1, hence AλΘ is precisely A0

Θ.
The second item is a corollary of the first item: apply the first item to

iλΘ, and use the fact that iλ commutes with AλΘ. However, we give an
alternative proof, which is useful for the later discussion. If we recall that
Σλ is the projective transformation of P(V ) defined in Section 7.1 and
B0

Θ is the image of IR∗I under ρΘ in Theorem 5.5, then the projective
transformation BλΘ is actually Σ−1

λ B0
ΘΣλ.

Let %′1 = τ1i and look at the following diagram, which arises from the
fact that Σ−1

λ commutes with every elementary transformation of marked
boxes:

Θ
B0

Θ //

Σ−1
λ

��

j%′1Θ

��

B0
Θ //

Σ−1
λ

��

(%′1)2Θ
B0

Θ //

Σ−1
λ

��

jΘ

Σ−1
λ

��
σ−1
λ Θ j%′1σ

−1
λ Θ (%′1)2σ−1

λ Θ jσ−1
λ Θ

Therefore:

σ−1
λ Θ

Σ−1
λ
B0

ΘΣλ // j%′1σ
−1
λ Θ

Σ−1
λ
B0

ΘΣλ // (%′1)2σ−1
λ Θ

Σ−1
λ
B0

ΘΣλ // jσ−1
λ Θ

Since σλ and the projective transformation Σ−1
λ B0

ΘΣλ commute each other:

Θ
Σ−1
λ
B0

ΘΣλ // jσλ%′1σ
−1
λ Θ

Σ−1
λ
B0

ΘΣλ // σλ(%′1)2σ−1
λ Θ

Σ−1
λ
B0

ΘΣλ // jΘ
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Our claim then follows because:

σλ%
′
1σ
−1
λ = σλτ1iσ

−1
λ

= τλ1 (σλi)

= τλ1 i
λ �

The next Theorem is similar to Theorem 5.4 (better to say, Theorem 5.5),
but now the leaves of L must be understood as non-oriented geodesics.

Theorem 7.9. — Let [Θ] be a convex marked box and let λ ∈ R2.
Then there exists a representation ρλΘ : Γo → H ⊂ G such that for every
(non-oriented) leaf e of L and every γ ∈ Γ we have:

[Θ](γe) = ρλΘ(γ)([Θ](e))

Moreover, if λ ∈ R, then ρλΘ is faithful.

Proof. — Define ρλΘ : Γo →H ⊂ G by requiring:

ρλΘ(R∗) = AλΘ ∈H and ρλΘ(IR∗I) = BλΘ ∈H

where AλΘ and BλΘ are the projective transformations defined in Lemma 7.8.
Here we can apply the arguments in the proof of Theorem 5.4 since no
dualities are involved - in that proof, we emphasized that the commutativity
between the actions of G and dualities was used only for defining the image
of the involution I. �

8. A special norm associated to marked boxes

In this section, we will show that given a convex marked box [Θ], we can
define a special norm associated to [Θ]. For this purpose, we use the Hilbert
metric on properly convex domains. The reader can find more information
about the Hilbert metric in Marquis [14] or Orenstein [16].
Let D be a properly convex domain in P(V ), i.e. there exists an affine

chart A of P(V ) such that the closure D of D is contained in A and D is
convex in A in the usual sense. For distinct points x, y ∈ D, let p and q be
the intersection points of the line xy with the boundary ∂D in such a way
that a and y separate x and b on the line xy (see Figure 8.1). The Hilbert
metric dhD : D ×D → [0,+∞) is defined by:

dhD(x, y) = 1
2 log ([a : x : y : b]) for every x 6= y ∈ D and dhD(x, x) = 0

TOME 68 (2018), FASCICULE 6



2728 Thierry BARBOT, Gye-Seon LEE & Viviane Pardini VALÉRIO

where [a : x : y : b] is the cross-ratio of the four points a, x, y, b ∈ P(V ).
More precisely, [a : x : y : b] := |a−y|

|a−x| ·
|b−x|
|b−y| for any Euclidean norm | · | on

any affine chart A containing D.
The Hilbert metric can be also defined by a Finsler norm on the tangent

space TxD at each point x ∈ D. Let x ∈ D, v ∈ TxD and let p+ (resp. p−)
be the intersection point of ∂D with the half-line determined by x and v
(resp. −v) (see Figure 8.1).

Figure 8.1. The Hilbert metric

The Hilbert norm of v, denoted by ‖v‖hD, is the Finsler norm defined by:

‖v‖hD := |v|2

(
1

|x− p−|
+ 1
|x− p+|

)
= d

dt

∣∣∣∣
t=0

dhD(x, x+ tv)

The following lemma demonstrates the expansion property of the Hilbert
metric by inclusion:

Lemma 8.1. — Let D1 and D2 be properly convex domains in P(V ).
Assume that D2 ⊂ D1. Then there exists a constant C > 1 such that

(1) dhD2
(x, y) > C dhD1

(x, y) for every x, y ∈ D2,
(2) ‖v‖hD2

> C ‖v‖hD1
for every x ∈ D2 and for every v ∈ TxD2 = TxD1.

Proof. — See the proof in Orenstein [16, Teorema 7]. �

Definition 8.2. — The distortion from D1 to D2, denoted by
C(D2, D1), is the upper bound of the set of C’s for which (1) and (2)
in Lemma 8.1 hold.

The following lemma is obvious since projective transformations preserve
the cross-ratio.
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Lemma 8.3. — Let D1 and D2 be two properly convex domains in P(V )
such that D2 ⊂ D1, and let g be a projective transformation of P(V ). Then
C(gD2, gD1) = C(D2, D1).

Moreover:

Lemma 8.4. — Let D1, D2, D3 be properly convex domains in P(V )
such thatD2 ⊂ D1 andD3 ⊂ D2. Then C(D3, D1) > C(D3, D2)C(D2, D1).

Remark 8.5. — For each convex marked box [Θ], the convex interior of
[Θ] (resp. [Θ∗]◦) is a properly convex domain in P(V ) (resp. P(V ∗)). Hence
we can define the Hilbert metric (norm) on [Θ]◦ (resp. [Θ∗]◦).

9. A family of Anosov representations

In this section, we give the proof of Theorem 1.1. Recall that we can
identify H with PGL(V ) and in Theorem 7.9 we define the representations
ρλΘ : Γo →H . Since the groups PSL(2,Z)o and Γo are isomorphic, we just
have to show that the representations ρλΘ are Anosov when λ ∈ R◦.
From now on, assume that λ ∈ R◦. We only need to verify that there

exist
(1) a Γo-equivariant map Φλ = (ϕλ, ϕ∗λ) : ΛΓo → F ⊂ P(V )×P(V ∗),

and
(2) two maps ν+ : Ω(φt) ⊂ T 1(Γo\H2) → Q(V ) and ν− : Ω(φt) ⊂

T 1(Γo\H2) → Q(V ∗) that “carry” the Anosov property of expan-
sion and contraction.

9.1. Combinatorics of the geodesic flow with respect to L

Let α ∈ ΛΓo and let c be the Γo-nonwandering oriented geodesic whose
head is α. Since c is nonwandering, it meets infinitely many leaves of L. We
orient each of these leaves so that c crosses each of them from the right to
the left, and denote them by `m with m ∈ Z (see Figure 9.1).

Recall the objects e0 and ∆ in Section 5.5. We can assume without loss
of generality that the leaf `0 is the image of e0 under some element γ0 of
Γo. Now, we forget all the other leaves with odd index.

Lemma 9.1. — For every integer n, the oriented leaf `2n is in the Γo-
orbit of `0. Furthermore, if γn is the unique element of Γo for which `2n =
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`−1

`0
`1

Figure 9.1. A sequence (`m) of oriented leaves of L crossed by c

γne0, then we have γn+1 = γnw, where w is one of the elements of the
following subset of Γo:

W = {R∗IR∗I, R∗IR
2
∗I, R2

∗IR
2
∗I, R2

∗IR∗I}

Proof. — The image of c under γ−1
n crosses e0 from the right to the left,

hence enters in ∆. Then it exits ∆ from one of the two other sides R∗e0 or
R2
∗e0 (see Figure 9.2). Observe that these crossings are both from the left

to the right, hence `2n+1 is the image under γn of R∗e0 or R−1
∗ e0 with the

reversed orientation, and therefore `2n+1 is not in the orbit of e0 under Γo.
In the first case, the case when the geodesic crosses R∗e0, it enters in

the triangle R∗IR2
∗∆, and then exit, from the right to the left, through

either R∗IR∗Ie0 or R∗IR2
∗Ie0. Thus, we obtain that γn+1 = γnR∗IR∗I or

γn+1 = γnR∗IR
2
∗I.

In the second case, we just have to replace R∗ by R2
∗, and we then have

γn+1 = γnR
2
∗IR

2
∗I or γn+1 = γnR

2
∗IR∗I. The result follows. �

Definition 9.2. — The minimal distortion after crossing two leaves of
L is (recall Definition 8.2):

C := min{C([Θ](we0)◦, [Θ](e0)◦) | w ∈W}

9.2. The equivariant map of new representations

In this section we prove:

Proposition 9.3. — There exists a Γo-equivariant continuous map:

Φλ = (ϕλ, ϕ∗λ) : ΛΓo → F ⊂ P(V )×P(V ∗)
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e0

0

∞

R2
∗IR∗Ie0R2

∗IR
2
∗Ie0

R∗IR2
∗Ie0

R∗IR∗Ie0

R∗e0

R2
∗IR

2
∗Ie0

R2
∗e0

∆

Figure 9.2. The four leaves on the left of e0 at the 2nd step

We will construct ϕλ : ΛΓo → P(V ) and ϕ∗λ : ΛΓo → P(V ∗) separately.
First label the oriented leaves of L by elements of the orbit of [Θ] under
Gλ as in Section 5.1. Again, let α ∈ ΛΓo and let c be a Γo-nonwandering
oriented geodesic whose head is α. Consider as in Section 9.1 the sequence
(`m)m∈Z of oriented leaves of L succesively crossed by c.

According to Remark 5.1, the labels [Θ](`m) of these oriented leaves `m
of L give us a sequence of convex marked boxes [Θm] := [Θ](`m) satisfying
the following nesting property in P(V ):

(9.1) · · · ⊃ [Θ−1]◦ ⊃ [Θ0]◦ ⊃ [Θ1]◦ ⊃ · · · ⊃ [Θm]◦ ⊃ · · ·

Lemma 9.4. — The intersection
⋂
m∈Z [Θm]◦ =

⋂
n∈Z [Θ2n]◦ is reduced

to a single point in P(V ). Moreover, this intersection is the same for all
geodesics c with head α.

Proof. — It follows from Lemmas 8.3 and 9.1 that for every n ∈ Z, we
have:

C([Θ2n+2]◦, [Θ2n]◦) > C
where C is the constant defined in Definition 9.2. If we look at all the
closures of the convex domains [Θ2n]◦, then it is a decreasing sequence of
compact sets as n goes to infinity, and hence their intersection is not empty.
Assume that the intersection contains two different elements a, b. Let x,

y be two distinct elements in the segment ]a, b[. For every integer n, let
dhn(x, y) be the Hilbert metric between x and y with respect to the domain
[Θ2n]◦. According to Lemma 8.4, we have:

dhn(x, y) > Cndh0 (x, y)
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On the other hand, for every n, we have

dhn(x, y) 6 1
2 log([a : x : y : b])

which is a contradiction. Therefore, the intersection⋂
m∈Z

[Θm]◦ =
⋂
n∈Z

[Θ2n]◦

is reduced to a single point in P(V ).
Moreover, since any other nonwandering oriented geodesic c′ with head

α ultimately intersects the same leaves of L, the intersection of the labels of
leaves of L crossed by c′ is the same as for c. The lemma then follows. �
The previous Lemma provides:

Definition 9.5. — For any Γo-nonwandering oriented geodesic c, we
denote by ψλ(c) the unique intersection point of the convex interiors of
the labels of leaves of L crossed by c. Define a map ϕλ : ΛΓo → P(V ) by
assigning to α ∈ ΛΓo the point ψλ(c) where c is any geodesic with head α.

Lemma 9.6. — The map ϕλ : ΛΓo → P(V ) is continuous.

Proof. — Let U be any open neighborhood of ϕλ(α) in P(V ). Then there
exists a marked box [Θ2n] such that ϕλ(α) ∈ [Θ2n]◦ ⊂ U since

⋂
n∈Z [Θ2n]◦

is a singleton. Hence, if β ∈ ΛΓo is sufficiently close to α, then every geodesic
with head β will intersect `2n, and thus ϕλ(β) is contained in the interior
of [Θ2n]. �

In a similar way, we define the map ϕ∗λ : ΛΓo → P(V ∗). By Remark 4.10,
the inclusions of the sequence (9.1) along the oriented nonwandering geo-
desic c are reversed when viewed in P(V ∗):

· · · ⊂ [Θ∗−1]◦ ⊂ [Θ∗0]◦ ⊂ [Θ∗1]◦ ⊂ · · · ⊂ [Θ∗m]◦ ⊂ · · ·

We can show that this nested sequence of convex domains is again uni-
form with respect to the Hilbert metrics; in particular, the intersection⋂
m∈Z [Θ∗m]◦ is reduced to a single point in P(V ∗), and two nonwandering

geodesics c and c′ sharing the same tail α leads to the same point. Thus,
it provide:

Definition 9.7. — For any Γo-nonwandering oriented geodesic c, we
denote by ψ∗λ(c) the unique intersection point of the convex interiors of the
dual marked boxes of the labels of leaves of L crossed by c. Define a map
ϕ∗λ : ΛΓo → P(V ∗) by assigning to α ∈ ΛΓo the point ψ∗λ(c) where c is any
geodesic with tail α.
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The maps ϕλ and ϕ∗λ are obviously Γo-equivariant, but it is not clear
from our construction that they combine to a map in the flag variety, i.e.
that ϕλ(α) is a point in the line ϕ∗λ(α) of P(V ). However, a simple trick,
which we describe now, makes it obvious.
We work in the setting of the proof of Proposition 9.4. Let ¯̀

n be the leaf
`n with the reversed orientation, i.e. ¯̀

n = I ∗ `n (see Figure 9.3). Then the
dual labels

([Θ](¯̀
n))∗ = ([Θ](I ∗ `n))∗ = (Ξ(I)[Θ](`n))∗ = [i(Θn)∗]

form a nested sequence:

· · · ⊃ [i(Θ−1)∗]◦ ⊃ [i(Θ0)∗]◦ ⊃ [i(Θ1)∗]◦ ⊃ · · · ⊃ [i(Θm)∗]◦ ⊃ · · ·

The common intersection point
⋂
m∈Z [i(Θm)∗]◦ is clearly ψ∗λ(c̄), where c̄ is

the geodesic c with the reversed orientation. In particular, if α is the head
of c, then this intersection point is ϕ∗λ(α).
Now the key point is that the top point t∗m of each [i(Θm)∗] is the bottom

line of [Θm]. The bottom points bm of [Θm] converge to ψλ(c) whereas t∗m
converge to ψ∗λ(c̄). Since every t∗m contains bm, the line ϕ∗λ(α) of P(V ) also
contains ϕλ(α). Hence, the maps ϕλ and ϕ∗λ combine to a Γo-equivariant
map:

Φλ = (ϕλ, ϕ∗λ) : ΛΓo → F ⊂ P(V )×P(V ∗)

which complete the proof of Proposition 9.3. �

¯̀0
¯̀1

¯̀−1

Figure 9.3. A sequence (¯̀
m) of leaves of L with reversed orientation.
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9.3. The Anosov property of new representations

In this subsection, we construct the maps:

ν+ : Ω(φt) ⊂ T 1(Γo\H2)→ Q(V )

ν− : Ω(φt) ⊂ T 1(Γo\H2)→ Q(V ∗)

The definition is as follows: let (x, v) ∈ Ω(φt) and let c be the Γo-
nonwandering oriented geodesic such that c(0) = x and c′(0) = v. We
denote by c− (resp. c+) the tail (resp. head) of c.
If x lies on a leaf ` of L, which is oriented so that it is crossed by c from

the right to the left, then ϕλ(c+) (resp. ϕ∗λ(c−)) lies in the convex interior
of the label [Θ] of ` (resp. in [Θ∗]◦). Define

• ν+(x, v) as the Hilbert norm on Tϕλ(c+)P(V ) associated to [Θ]◦ in
P(V ), and

• ν−(x, v) as the Hilbert norm on Tϕ∗
λ

(c−)P(V ∗) associated to [Θ∗]◦

in P(V ∗).
Now if x = c(0) does not lie on a leaf of L, then let c(−t−) (resp. c(t+))

be the first intersection point between c and L in the past (resp. future).
Observe that there exist uniform lower and upper bounds ε− and ε+ of
the time period, for which a nonwandering geodesic crosses a connected
component of H2 \ L, i.e. ε− 6 t+ + t− 6 ε+. Define then ν±(x, v) as the
barycentric combination:

t−
t+ + t−

ν±(c(t+)) + t+
t+ + t−

ν±(c(−t−))

Recall that C > 1 is the uniform lower bound on the expansion of the
Hilbert metrics when two leaves of L are crossed (see Definition 9.2). Let
N be the smallest integer such that CN > 2. It follows that the norm
ν+(c(t), c′(t)) is at least doubled and ν−(c(t), c′(t)) divided by 2 when c

crosses at least 2N leaves of L. Moreover, this surely happens when one
travels along c for a time period T = 2Nε+, and therefore the item (2) of
Definition 6.1 is satisfied (see also Remark 6.2).
The proof of our main Theorem 1.1 is now complete.

10. Extension of new representations to PSL(2,Z)

In this section, we will give the proof of Theorem 1.2. In Sections 7 and 9,
we built a representation ρλΘ : Γo →H for every marked box [Θ] and every
λ = (ε, δ) ∈ R2, and prove that if λ ∈ R◦, then ρλΘ is Anosov. In other
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words, we exhibit a subspace of Hom(Γo,H ) which is made of Anosov
representations and the boundary of which contains the restrictions to Γo
of the Schwartz representations. We now ask the following natural question:

When does the representation ρλΘ : Γo →H

extend to a representation ρ̄λΘ : Γ→ G ?
A main ingredient required for this extension is to find the image of the
involution I. This image should be a polarity (see Remark 4.1), and since
we know the images of R∗ and IR∗I under ρλΘ, the problem of finding the
image of I reduces to:

Find a polarity P such that BλΘ = PAλΘP.
As usual, equip V with a Θ-basis of V and V ∗ with its dual basis. Recall

the proof of Lemma 7.8. The projective transformation AλΘ does not depend
on λ and it corresponds to the matrix AΘ in the proof of Lemma 5.2. The
projective transformation BλΘ is exactly Σ−1

λ B0
ΘΣλ and B0

Θ = D0
ΘA0

ΘD0
Θ,

where D0
Θ corresponds to the matrix DΘ in the proof of Lemma 5.2. Since

B0
Θ corresponds to the matrix:

B0
Θ := D−1

Θ
t(AΘ)−1DΘ

the transformation BλΘ is represented by the matrix:

BλΘ := Σ−1
λ D−1

Θ
t(AΘ)−1DΘΣλ

Now, the problem is to find an invertible symmetric matrix S such that:

S−1 t(AΘ)−1S = BλΘ

When Θ is special, the solution is easy. In this case, since DΘ is the identity
matrix, we simply let S = Σλ.
From now on, assume that Θ is not special. In the appendix, we show

through a computation that the existence of a non-zero symmetric matrix
S satisfying the equation

t(AΘ)−1S = SBλΘ

is equivalent to:

(10.1) det(Id−AΘB
λ
Θ) = 0

and by another computation, Equation (10.1) holds if and only if:

0 = h(ε, δ) := (ζ2
t +ζ2

b−2ζ2
t ζ

2
b )cεsδ(2cεcδ−sε)−ζtζb(ζ2

t −ζ2
b )sε(cεcδ−sε−1)

where cx = cosh(x) and sy = sinh(y).
Let C = {(ε, δ) ∈ R2 | h(ε, δ) = 0} (see Figure 10.1). Since the invertibil-

ity of the matrix S is an open condition, there exists an open neighborhood
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-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

R

h(ε, δ) = 0

f(ε, δ) = 0

f(ε,−δ) = 0

Figure 10.1. The equation h(ε, δ) = 0 is drawn in green.

U of (0, 0) in R2 such that for every λ ∈ C ∩ U , the representations ρλΘ ex-
tends to a representation ρ̄λΘ : Γ→ G . Moreover, the following computation

∂f

∂δ
(0, 0) = −1 and ∂h

∂δ
(0, 0) = 2(ζ2

t + ζ2
b − 2ζ2

t ζ
2
b ) 6= 0

and the implicit function theorem tell us that there exist an neighborhood
Vε × Vδ of (0, 0) and two functions δf : Vε → R and δh : Vε → R such that:

{(ε, δf (ε)) | ε ∈ Vε} = {(ε, δ) ∈ Vε × Vδ | f(ε, δ) = 0}
{(ε, δh(ε)) | ε ∈ Vε} = {(ε, δ) ∈ Vε × Vδ | h(ε, δ) = 0}

Also, another simple computation

dδf
dε (0) = −1 and dδh

dε (0) = 0

shows that there exists an interval V := ]ε0, 0] ⊂ Vε such that:

(ε, δh(ε)) ∈ R for all ε ∈ V and (ε, δh(ε)) ∈ R◦ for all ε ∈ V◦

Therefore, if we let λ = (ε, δh(ε)) for every ε ∈ V, then the representation
ρλΘ extends naturally to a representation ρ̄λΘ : Γ → G when ε ∈ V, it is
Anosov when ε ∈ V◦, and it is the restriction of the Schwartz representation
when ε = 0. It finishes the proof of the main Theorem 1.2.
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11. New representations in the representation variety

In this section, we use the same notation as in Section 10 and show
that the H -orbit of new representations in Hom(Γo,H ) has a non-empty
interior.
We denote by π : GL(3,R) → SL(3,R) the composition of the projec-

tion GL(3,R) → PGL(3,R) with the natural isomorphism PGL(3,R) '
SL(3,R), and identify H with SL(3,R).

Lemma 11.1. — Let A ∈ SL(3,R). If A 6= Id, then:

A3 = Id if and only if tr(A) = tr(A−1) = 0

Proof. — It follows from Cayley–Hamilton theorem (see e.g. Acosta [1,
Lemma 4.2]). �

We denote by M(3,R) the set of 3× 3 real matrices. Define a map

Ψ : M(3,R)×M(3,R)→ R6

by assigning to any pair of matrices (A := (Aij), B := (Bij)) the 6-tuple of
polynomials (Ψi(A,B))i=1,...,6, where:

Ψ1 = det(A)− 1,
Ψ2 = tr(A),
Ψ3 = A11A22 +A22A33 +A33A11 −A12A21 −A23A32 −A31A13,

Ψ4 = det(B)− 1,
Ψ5 = tr(B),
Ψ6 = B11B22 +B22B33 +B33B11 −B12B21 −B23B32 −B31B13.

Observe that Ψ3 = tr(A−1) and Ψ6 = tr(B−1) for every A,B ∈ SL(3,R).
By Lemma 11.1, the real algebraic variety Ψ−1(0) is isomorphic to a union
of components of Hom(Γo,H ) (cf. Lawton [13]).

Lemma 11.2. — For every λ ∈ R and every convex marked box [Θ], the
representation ρλΘ is a smooth point of Hom(Γo,H ).

Proof. — We claim that Ψ−1(0) is smooth at (A,B) = (π(AΘ), π(BλΘ))
for every λ ∈ R and every convex marked box [Θ]. Indeed, consider a map

Ψ̃ : M(3,R)×M(3,R)→ R6 × R6 × R6
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given by Ψ̃(A,B) = (Ψ(A,B), (Aij)i 6=j , (Bij)i 6=j). A computation shows
that if λ = (ε, δ) ∈ R then ε 6 0, and that:∣∣∣det

(
DΨ̃|(A,B)=(π(AΘ),π(BλΘ))

)∣∣∣
= 9(1+ζtζb)(1−ζtζb)2(2 cosh(2ε)(1+ζtζb)−sinh(2ε)(e−δ(2+ζtζb−ζ2

t )+eδ(2+ζtζb−ζ2
b )))

2(1−ζ2
t )2(1−ζ2

b
)2

which is non-zero because −1 < ζt, ζb < 1 and ε 6 0. As a consequence,
the points (π(AΘ), π(BλΘ)) on Ψ−1(0) are non-singular, which completes
the proof. �

Theorem 11.3. — Let [Θ0] be a non-special convex marked box. Then
there exists an open neighborhood U of the Schwartz representation ρΘ0 in
Hom(Γo,H ) such that every representation in U is conjugate to a repre-
sentation ρλΘ for some convex marked box [Θ] and some λ ∈ R2.

Proof. — It is enough to show that a map

Φ : ]−1, 1[2 × R2 × SL(3,R)→ Ψ−1(0) ⊂ M(3,R)×M(3,R)

given by ((ζt, ζb), λ, g) 7→ (g π(AΘ) g−1, g π(BλΘ) g−1) is a local diffeomor-
phism at any point p of V := ]−1, 1[2\{(0, 0)}×(0, 0)×Id. Consider another
map Φ̃ : ]−1, 1[2 × R2 ×GL(3,R)→ R6 × R6 × R given by:

((ζt, ζb) , λ, g) 7→
(((

g π(AΘ) g−1)
ij

)
i 6=j

,
((
g π(BλΘ) g−1)

ij

)
i 6=j

, det(g)
)

A computation shows that:

∣∣det
(
DΦ̃|((ζt,ζb), λ, g)=((ζt,ζb), (0,0), Id)

)∣∣
=

288(1− ζ2
t ζ

2
b )2(2− ζ2

t − ζ2
b )
(
ζ2
t (1− ζ2

b ) + ζ2
b (1− ζ2

t )
)

(1− ζ2
t )5(1− ζ2

b )5

which is not zero because −1 < ζt, ζb < 1 and (ζt, ζb) 6= (0, 0). As a
consequence, the map Φ̃ is a local diffeomorphism at any point p of V.
Since the map Ψ̃ in the proof of Lemma 11.2 is a local diffeomorphism
at (π(AΘ), π(BλΘ)) (and therefore at (gπ(AΘ)g−1, gπ(BλΘ)g−1)) for every
λ ∈ R and every convex marked box [Θ], the map Φ is also a local diffeo-
morphism at p. �
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Appendix

A matrix A in GL(3,R) is a rotation of angle θ if there exists a matrix
Q in GL(3,R) such that Q−1AQ = µRθ, where µ 6= 0 and

Rθ =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

Lemma A.4. — Let A be a rotation of angle θ. Assume that 0 < θ < π

and B = G−1tA−1G for some G ∈ GL(3,R). Then det(Id−AB) = 0 if and
only if there exists a symmetric matrix S 6= 0 such that SB = tA−1S.

Proof. — By the assumption, there exists a matrix Q in GL(3,R) such
that Q−1AQ = µRθ, and so tQtA−1tQ−1 = µ−1Rθ. This implies that:

SB = tA−1S ⇔ SG−1tA−1G = tA−1S

⇔ (tQSQ)(tQGQ)−1Rθ(tQGQ) = Rθ(tQSQ)

As a consequence, there exists a non-zero symmetric matrix S satisfying
SB = tA−1S if and only if there exists a symmetric matrix P 6= 0 such
that:

P (tQGQ)−1Rθ = RθP (tQGQ)−1

It follows that Rθ commutes with P (tQGQ)−1, and therefore

P =

α 0 0
0 β −γ
0 γ β

 (tQGQ) for some α, β, γ ∈ R.

If U = (Uij)i,j=1,2,3 denotes tQGQ, then we can write the equation P−tP =
0 as follows:

(A.1)

−U12 U21 −U31
−U13 U31 U21

0 U32 − U23 U22 + U33

α

β

γ

 =

 0
0
0


Let M be the left 3× 3 matrix of Equation (A.1). Then by a simple com-
putation, we have:

2 sin(θ)(1− cos(θ)) · det(M) = det(U) · det(Id−RθU−1RθU)

= det(U) · det(Id−AG−1tA−1G)

In the last step, we use the fact that:

AG−1tA−1G = QRθU
−1RθUQ

−1

Finally, det(M) = 0 if and only if det(Id−AB) = 0. The result follows. �
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Remark A.5. — One implication in Lemma A.4 is easier to prove without
computation. If B = S−1tA−1S with S an invertible symmetric matrix,
then:

Id−AB = Id−AS−1tA−1S

= AS−1(SA−1 − tA−1S)

= AS−1(SA−1 − t(SA−1)) (S is symmetric)

Notice that SA−1−t(SA−1) is an anti-symmetric 3×3 matrix, which implies
that:

det(Id−AB) = 0
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