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GLOBAL CONFORMAL INVARIANTS OF
SUBMANIFOLDS

by Andrea MONDINO & Huy T. NGUYEN (*)

Abstract. — The goal of the present paper is to investigate the algebraic
structure of global conformal invariants of submanifolds. These are defined to be
conformally invariant integrals of geometric scalars of the tangent and normal bun-
dle. A famous example of a global conformal invariant is the Willmore energy of a
surface. In codimension one we classify such invariants, showing that under a struc-
tural hypothesis (more precisely we assume the integrand depends separately on the
intrinsic and extrinsic curvatures, and not on their derivatives) the integrand can
only consist of an intrinsic scalar conformal invariant, an extrinsic scalar conformal
invariant and the Chern–Gauss–Bonnet integrand. In particular, for codimension
one surfaces, we show that the Willmore energy is the unique global conformal
invariant, up to the addition of a topological term (the Gauss curvature, giving the
Euler Characteristic by the Gauss Bonnet Theorem). A similar statement holds also
for codimension two surfaces, once taking into account an additional topological
term given by the Chern–Gauss–Bonnet integrand of the normal bundle. We also
discuss existence and properties of natural higher dimensional (and codimensional)
generalizations of the Willmore energy.
Résumé. — Le but de cet article est d’étudier la structure algébrique des in-

variants conformes globaux des sous-variétés. Ceux-ci sont définis comme étant
des intégrales conformément invariantes des scalaires géométriques du fibré tan-
gent et normal. Un exemple célèbre d’un invariant conforme global est l’énergie
de Willmore d’une surface. En codimension un, nous classons ces invariants, mon-
trant que sous une hypothèse structurelle (plus précisément nous supposons que
l’intégrande dépend séparément des courbures intrinsèque et extrinsèque , et non
de leurs dérivées) l’intégrande ne peut être constitué que d’un invariant conforme
scalaire intrinsèque, d’un invariant conforme scalaire extrinsèque ou de l’intégrande
de Chern–Gauss–Bonnet. En particulier, pour les surfaces de codimenson 1, nous
montrons que l’énergie de Willmore est l’unique invariant conforme global, jusqu’à
l’addition d’un terme topologique (la courbure de Gauss, donnant la caractéris-
tique d’Euler par le théorème de Gauss Bonnet). Un résultat similaire est éga-
lement valable pour les surfaces de codimension deux, en prenant en compte un
terme topologique supplémentaire donné par l’intégrande de Chern–Gauss–Bonnet
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2664 Andrea MONDINO & Huy T. NGUYEN

du faisceau normal. Nous discutons également de l’existence et des propriétés des
généralisations naturelles en dimensions (et codimensions) supérieures de l’énergie
de Willmore.

1. Introduction

Let us consider an m-dimensional Riemannian manifold (Mm, gm) iso-
metrically immersed in a Riemannian manifold (M̄n, ḡn). The fundamen-
tal objects describing the intrinsic geometry of (Mm, gm) are the metric
gm, the curvature tensor Rijkl, and the Levi-Civita connection. On the
other hand, the fundamental quantities describing the extrinsic geometry
of (Mm, gm) as submanifold of (M̄n, ḡn) are the second fundamental form
hαij , the normal connection ∇⊥, and the normal curvature R̄⊥ijαβ , where
Roman indices indicate tangential directions and Greek indices indicate
normal ambient directions. It is well known (see Section 2 for more de-
tails) that these geometric quantities are not mutually independent but
must satisfy some compatibility conditions, the so called Gauss–Codazzi–
Mainardi–Ricci equations. A natural way to define geometric scalars out
of this list of tensors is by taking tensor products and then contracting
using the metric ḡ. More precisely, we first take a finite number of tensor
products, say

Ri1j1k1l1 ⊗ · · · ⊗R⊥ir,jr,αr,βr ⊗ · · · ⊗ hisjs ,

thus obtaining a tensor of rank 4 + · · · + 4 + · · · + 2 + · · · + 2. Then, we
repeatedly pick out pairs of indices in the above expression and contract
them against each other using the metric ḡαβ (of course, in case of contrac-
tions not including the normal curvature R⊥ it is enough to contract using
gij). This can be viewed in the more abstract perspective of Definition 2.1
by saying that we consider a geometric complete contraction

C(ḡ, R,R⊥, h) = contr(ḡα1β1⊗· · ·⊗Ri1j1k1l1⊗· · ·⊗R⊥ir,jr,αr,βr⊗· · ·⊗hisjs) .

Let us stress that a complete contraction is determined by the pattern ac-
cording to which different indices contract against each other; for example,
the complete contraction Rijkl⊗Rijkl is different from Riikl⊗Rksls . By tak-
ing linear combinations of geometric complete contractions (for the rigorous
meaning see Definition 2.2), we construct geometric scalar quantities

P (ḡ, R,R⊥, h) :=
∑
l∈L

alC
l(ḡ, R,R⊥, h) .

The goal of the present paper is to classify those geometric scalar quantities
which, once integrated over arbitrary submanifolds (Mm, gm) of arbitrary
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GLOBAL CONFORMAL INVARIANTS OF SUBMANIFOLDS 2665

manifolds (M̄n, ḡn), give rise to global conformal invariants. More precisely,
we say that the geometric scalar quantity P (ḡ, R,R⊥, h) is a global con-
formal invariant for m-submanifolds in n-manifolds if the following holds:
for any ambient Riemannian manifold M̄n, any compact orientable m-
dimensional immersed submanifold Mm of M̄n and any φ ∈ C∞(M̄), if
one considers the conformal deformation ˆ̄g := e2φ(x)ḡ and calls R̂, R̂⊥, ĥ
the tensors computed with respect to the conformal metric ˆ̄g, then∫

Mm

P (ˆ̄g, R̂, R̂⊥, ĥ) dµĝ =
∫
Mm

P (ḡ, R,R⊥, h) dµg .

Let us mention that the corresponding classification for intrinsic global
conformal invariants of Riemannian manifolds was a classical problem in
conformal geometry motivated also by theoretical physics (the goal being to
understand the so called conformal anomalies): indeed it is the celebrated
Deser–Schwimmer conjecture [11] which has recently been solved in a se-
ries of works by Alexakis [1, 2, 3, 4, 5, 6]. Inspired by the aforementioned
papers, we address the problem of an analogous classification for global con-
formal invariants, but this time, for submanifolds. Of course, as explained
above, if one considers global conformal invariants for submanifolds many
other extrinsic terms appear, namely the second fundamental form, the
curvature of the normal bundle, and the normal connection; therefore the
zoology of global conformal invariants is more rich and the classification
more complicated.
Let us note that the full class of local geometric scalars is known (for a

general discussion of such invariants see [13]), and is substantially broader
than the one considered here; they include not only contractions in the
curvatures and second fundamental forms, but also covariant derivatives of
these natural tensors. Such local Riemannian invariants arise naturally in
the asymptotics of the heat kernel over Riemannian manifolds; integrals of
local invariants appear in this connection also.

Therefore, the problem addressed in this paper can be seen as a special
case of a broader problem of understanding the global conformal invari-
ants of submanifolds in general. One expects the broader problem to be
even harder (in general) than the problem of understanding the global in-
variants of closed Riemannian manifolds, thus the present work proposes a
natural pursuit: to understand the global invariants that depend (locally)
only on the ambient curvature and the second fundamental form of the
submanifold, and not on their covariant derivatives.

A well-known example of a global conformal invariant for two-dimens-
ional submanifolds (called from now on surfaces) is the Willmore energy.

TOME 68 (2018), FASCICULE 6



2666 Andrea MONDINO & Huy T. NGUYEN

For an immersed surface f :M2 → (M̄n, ḡn) this is defined by

(1.1) W(f) =
∫
M
|H|2 dµg +

∫
M
K̄M̄(Tf(M)) dµg ,

where H = 1
2g
ijhij is the mean curvature vector and K̄M̄(Tf(M)) is

the sectional curvature of the ambient manifold computed on the tangent
space of f(M). Clearly, in case M̄n = Rn, (1.1) reduces to the familiar
Euclidean Willmore energy as K̄Rn = 0. It is well known that the Willmore
energy in Euclidean space is invariant under conformal transformations of
the ambient manifolds, that is Möbius transformations where the inver-
sion is centered off the submanifold. In fact, more generally the conformal
Willmore energy is invariant under conformal deformations of the ambient
background metric. This can be seen by the following decomposition,

‖h◦‖2 = ‖h‖2 − 2|H|2, KM = 1
2(4|H|2 − ‖h‖2) + K̄M̄,

where h◦ij := hij −Hgij is the traceless second fundamental form, KM is
the Gauss curvature of (M, g), and in the second identity we just recalled
the classical Gauss equation. It follows that the conformal Willmore energy
can be written as

|H|2 + K̄M̄ = 1
2‖h

◦‖2 +KM.

Since ‖h◦‖2dµg is a pointwise conformal invariant and
∫
MKMdµg =

2πχ(M) is a topological (hence, a fortiori, global conformal) invariant by
the Gauss–Bonnet theorem, clearly any linear combination of the two is
a global conformal invariant. A natural question is whether the Willmore
functional is the unique energy having such an invariance property, up to
topological terms. Let us briefly mention that the Willmore energy has re-
cently received much attention [8, 9, 10, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24],
and in particular the Willmore conjecture in codimension one has been
solved [18].
We will show that, for codimension one surfaces, any global conformal

invariant of a surface must be a linear combination of the norm squared of
the traceless second fundamental form and the intrinsic Gauss curvature,
that is the Willmore energy is the unique global conformal invariant up
to the Gauss–Bonnet integrand which is a topological quantity (see Theo-
rem 3.1).

A similar statement holds also for codimension two surfaces (see Theo-
rem 3.3), once taking into account an additional topological term given by
the Chern–Gauss–Bonnet integrand of the normal bundle.
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For general submanifolds of codimension one, we show that if the global
conformal invariant is a polynomial in the second fundamental form only,
then it must be a contraction of the traceless second fundamental form,
that is it must be the integral of a pointwise conformal invariant (see The-
orem 4.1). Combining this with a theorem of Alexakis [2, Theorem 1], we
show that if m is even and the global conformal invariant has no mixed
contractions between the intrinsic and the extrinsic curvatures then the
integrand must be a linear combination of contractions of the (intrinsic)
Weyl curvature, contractions of the traceless second fundamental form and
the integrand of the Chern–Gauss–Bonnet formula, see Theorem 4.2.
As an application of these ideas, in the last Section 5, we introduce

a higher dimensional analogue of the Willmore energy for hypersurfaces
in Euclidean spaces. Such new energies are conformally invariant and at-
tain the strictly positive lower bound only at round spheres, with rigidity,
regardless of the topology of the hypersurface (see Theorem 5.5 and The-
orem 5.6).

2. Background Material

2.1. Complete contractions: abstract definition

Following [2], in this short section we define the notion of complete con-
tractions.

Definition 2.1 (Complete Contractions). — Any complete contraction

C = contr((A1)i1...is ⊗ (At)j1...jq )

will be seen as a formal expression. Each factor (Al)i1...is is an ordered set
of slots. Given the factors A1

i1...is
, Alj1...jq

a complete contraction is then a
set of pairs of slots (a1, b1), . . . , (aw, bw) with the following properties: if
k 6= l, {al, bl} ∩ {ak, bk} = ∅, ak 6= bk and

⋃w
i=1{ai, bi} = {i1, . . . , jq}. Each

pair corresponds to a particular contraction.
Two complete contractions

contr((A1)i1...is ⊗ · · · ⊗ (At)j1...jw)

and
contr((B1)f1...fq ⊗ · · · ⊗ (Bt

′
)v1...vz )

will be identical if t = t′, Al = Bl and if the µ-th index in Al contracts
against the ν-th index in Ar then the µ-th index in Bl contracts against
the ν-th in Br.
For a complete contraction, the length refers to the number of factors.

TOME 68 (2018), FASCICULE 6



2668 Andrea MONDINO & Huy T. NGUYEN

Definition 2.2 (Linear combinations of complete contractions). —
Linear combinations of complete contractions are defined as expressions
of the form ∑

l∈L

alC
l
1,

∑
r∈R

brC
r
2 ,

where each Cli is a complete contraction. Two linear combinations are iden-
tical if R = L, al = bl and Cl1 = Cl2. A linear combination of complete
contractions is identically zero if for all l ∈ L we have al = 0. For any
complete contraction, we will say that a factor (A)r1...rsl

has an internal
contraction if two indices in

Ar1...rsl

are contracting amongst themselves.

2.2. Riemannian and Submanifold Geometry

Consider an n-dimensional Riemannian manifold (M̄n, ḡn). Given x0 ∈
M̄n, let (x1, . . . , xn) be a local coordinate system with associated coordi-
nate vector fields denoted by Xα, that is Xα = ∂

∂xα . Called ∇̄ the Levi-
Civita connection associated to (M̄n, ḡn), the covariant derivative ∇̄ ∂

∂xα

will be shortly denoted by ∇̄α.
The curvature tensor R̄αβγη of ḡnαβ is given by the commutator of the

covariant derivatives, that is

[∇̄α∇̄β − ∇̄β∇̄α]Xγ = R̄αβγηX
η ,(2.1)

which in terms of coordinate systems may be expressed by Christoffel sym-
bols,

R̄ηαβγ = ∂βΓηαγ − ∂γΓηαβ +
∑
µ

(ΓµαγΓηµβ − ΓµαβΓηµγ).

The two Bianchi identities are then

R̄αβγη + R̄γαβη + R̄βγαη = 0

∇̄αR̄βγηµ + ∇̄γR̄αβηµ + ∇̄βR̄γαηµ = 0.

Recall that, under a conformal change of metric ˆ̄gn = e2φ(x)ḡn(x), the
curvature transforms as follows (see for instance [12]):

R̄ĝ
n

αβγη = e2φ(x)[R̄ḡnαβγη+∇̄αηφḡnβγ +∇̄βγφḡnαη−∇̄αγφḡnβη−∇̄βηφḡnαγ(2.2)

+ ∇̄αφ∇̄γφḡnβη+∇̄βφ∇̄ηφḡnαγ−∇̄αφ∇̄ηφḡnβγ
− ∇̄βφ∇̄γφḡnαη+ |∇̄φ|2ḡnαη ḡnβγ−|∇̄φ|2ḡnαγgηβ

]
.
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Now let briefly introduce some basic notions of submanifold geometry.
Given anm-dimensional manifoldMm, 2 6 m < n, we consider f :Mm ↪→
M̄n, a smooth immersion. Recall that for every fixed x̄ ∈Mm one can find
local coordinates (x1, . . . , xn) of M̄n on a neighborhood V M̄f(x̄) of f(x̄) such
that

(
(x1 ◦ f), . . . , (xm ◦ f)

)
are local coordinates on a neighborhood UMx̄

of x̄ inMm and such that

f
(
UMx̄

)
=
{

(x1, . . . , xn) ∈ V M̄f(x̄) : xm+1 = · · · = xn = 0
}
.

Such local coordinates on M̄ are said to be adapted to f(M). We use the
convention that latin index letters vary from 1 to m and refer to geometric
quantities onMm, while greek index letters vary from 1 to n (or sometimes
from m+1 to n if otherwise specified) and denote quantities in the ambient
manifold M̄n (or in the orthogonal space to f(M) respectively). In adapted
coordinates, it is clear that X1, . . . , Xm are a bases for the tangent space
of f(Mm) and that the restriction of the ambient metric ḡn defines an
induced metric onMm, given locally by

gmij := ḡn(Xi, Xj) .

Using standard notation, (gm)ij denotes the inverse of the matrix (gm)ij ,
that is (gm)ik(gm)kj = δij . For every x̄ ∈M, the ambient metric ḡn induces
the orthogonal splitting

Tf(x̄)M̄ = Tf(x̄)f(M)⊕ [Tf(x̄)f(M)]⊥ ,

where, of course, [Tf(x̄)f(M)]⊥ is the orthogonal complement of the m-
dimensional subspace Tf(x̄)f(M) ⊂ Tf(x̄)M̄. We call πT : Tf(x̄)M̄ →
Tf(x̄)f(M) and πN = Id−πT : Tf(x̄)M̄ → [Tf(x̄)f(M)]⊥ the tangential
and the normal projections respectively, one can define the tangential and
the normal connections (which correspond to the Levi-Civita connections
on (M, g) and on the normal bundle respectively) by

∇XiXj := πT (∇̄XiXj), i, j = 1, . . . ,m,(2.3)

∇⊥XiXα := πN (∇̄XiXα), i = 1, . . . ,m, α = m+ 1, . . . , n.(2.4)

Associated to the tangential and normal connections we have the tangential
and normal Riemann curvature tensors (which correspond to the curva-
ture of (M, g) and of the normal bundle respectively) defined analogously
to (2.1):

[∇i∇j −∇j∇i]Xk = RijklX
l , i, j, k, l = 1, . . . ,m(2.5) [

∇⊥i ∇⊥j −∇⊥j ∇⊥i
]
Xα = R⊥ijαβX

β , i, j = 1, . . . ,m,(2.6)
α, β = m+ 1, . . . , n.

TOME 68 (2018), FASCICULE 6



2670 Andrea MONDINO & Huy T. NGUYEN

The transformation of Rijkl and R⊥ijαβ under a conformal change of metric
is analogous to (2.2), just replacing ∇̄ with ∇ or with ∇⊥ respectively. The
second fundamental form h of f is defined by

(2.7) h(Xi, Xj) := πN (∇̄XiXj) = ∇̄XiXj −∇XiXj .

It can be decomposed orthogonally into its trace part, the mean curvature

(2.8) H := 1
m

(gm)ijhij ,

and its trace free part, the traceless second fundamental form

(2.9) h◦ij := hij −Hgmij ,

indeed it is clear from the definitions that

(2.10) hij = h◦ij +Hgmij

and 〈h◦, Hgm〉 = (gm)ik(gm)jl h◦ij Hgkl = H Trgm(h◦) = 0 .

Under a conformal change of the ambient metric ˆ̄gn = e2φ(x)ḡn(x), the
above quantities change as follow:

(2.11) hĝij = eφ
[
hij − gmij πN (∇̄φ)

]
, H ĝ = e−φ

[
H − πN (∇̄φ)

]
and (hĝ)◦ij = eφ h◦ij .

Observe that, in particular, the endomorphism of Tf(M) associated to h◦
is invariant under conformal deformation of the ambient metric, that is

(2.12) [(hĝ)◦]ij = [h◦]ij .

Finally let us recall the fundamental equations of Gauss and Ricci which
link the ambient curvature R̄ computed on Tf(M) (respectively on
Tf(M)⊥) with the second fundamental form and the intrinsic curvature
R (respectively with the second fundamental form and the normal curva-
ture R⊥):

R̄ijkl = Rijkl + (hil)α (hjk)α − (hik)α (hjl)α ,(2.13)

R̄ijαβ = R⊥ijαβ + (hik)α (hkj )β − (hik)β (hkj )α ,(2.14)

where, of course, (hil)α denotes the α-component of the vector hil ∈
Tf(M)⊥ ⊂ TM̄ and where we adopted Einstein’s convention on sum-
mation of repeated indices.

ANNALES DE L’INSTITUT FOURIER
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2.3. Geometric complete contractions and global conformal
Invariants of Submanifolds

Given an immersed submanifold f : Mm ↪→ M̄n, of course the above
defined Riemannian curvature R, the curvature of the normal bundle R⊥,
and the extrinsic curvatures h, h◦, H are geometric objects, that is they are
invariant under change of coordinates and under isometries of the ambient
manifold. So they give a list of geometric tensors. A natural way to define
geometric scalars out of this list of tensors is by taking tensor products and
then contracting using the metric ḡ. More precisely, we first take a finite
number of tensor products, say,

(2.15) Ri1j1k1l1 ⊗ · · · ⊗R⊥ir,jr,αr,βr ⊗ · · · ⊗ h
◦
isjs ⊗ · · · ⊗Hgitjt ,

thus obtaining a tensor of rank 4 + · · · + 4 + · · · + 2 + · · · + 2. Then, we
repeatedly pick out pairs of indices in the above expression and contract
them against each other using the metric ḡαβ (of course, in case of contrac-
tions not including the normal curvature R⊥ it is enough to contract using
gij). This can be viewed in the more abstract perspective of Definition 2.1
by saying that we consider a geometric complete contraction

(2.16) C(ḡ, R,R⊥, h) = contr(ḡα1β1 ⊗ · · · ⊗Ri1j1k1l1 ⊗ · · · ⊗R⊥ir,jr,αr,βr
⊗ · · · ⊗ h◦isjs ⊗ · · · ⊗Hgitjt).

Let us stress that a complete contraction is determined by the pattern ac-
cording to which different indices contract against each other; for example,
the complete contraction Rijkl⊗Rijkl is different from Riikl⊗Rksls . By tak-
ing linear combinations of geometric complete contractions (for the rigorous
meaning see Definition 2.2), we construct geometric scalar quantities

(2.17) P (ḡ, R,R⊥, h) :=
∑
l∈L

alC
l(ḡ, R,R⊥, h) .

Remark 2.3. — As already mentioned in the introduction, let us note
that the full class of geometric scalar quantities is known (for a general
discussion of such invariants see [13]), and is larger than the one consid-
ered here: they include not only contractions in the curvatures and second
fundamental forms, but also covariant derivatives of these natural tensors.

Remark 2.4. — Notice that thanks to the Gauss (2.13) and Ricci (2.14)
equations, one can express the ambient curvature R̄ restricted on the tan-
gent space of M or restricted to the normal bundle (that is R̄ijkl and
R̄ijαβ) as a quadratic combination of R,R⊥ and h. This is the reason why
we can assume it is not present in the complete contractions (2.16) without

TOME 68 (2018), FASCICULE 6



2672 Andrea MONDINO & Huy T. NGUYEN

losing generality. Analogously, thanks to (2.9), we can assume that h is not
present in the complete contractions but just h◦ and Hg.

Definition 2.5 (Weight of a geometric scalar quantity). — Let P (ḡ, R,
R⊥, h) be a geometric scalar quantity as in (2.17) and consider the homo-
thetic rescaling ḡ 7→ t2ḡ of the ambient metric ḡ, for t ∈ R+. By denoting
Rt2ḡ, R

⊥
t2ḡ, ht2ḡ the tensors computed with respect to the rescaled metric

t2ḡ, if

P (t2ḡ, Rt2ḡ, R⊥t2ḡ, ht2ḡ) = tKP (ḡ, Rḡ, R⊥ḡ , hḡ), for some K ∈ Z ,

we then say that P (ḡ, R,R⊥, h) is a geometric scalar quantity of weight K.

Recall that, under a general conformal deformation ˆ̄g = e2φ(x)ḡ of the
ambient metric ḡ on M̄n, the volume form of the immersed m-dimensional
submanifold f(M) rescales by the formula dµĝ = emφ(x)dµg, where of
course ĝ = e2φ(x)g is the induced conformal deformation on f(M). In
particular, for every constant t ∈ R+, we have dµt2g = tmdµg. Thus,
for any scalar geometric quantity P (ḡ, R,R⊥, h) of weight −m, the in-
tegral

∫
Mm P (ḡ, R,R⊥, h) dµg is scale invariant for all compact orientable

m-dimensional immersed submanifolds in any n-dimensional ambient Rie-
mannian manifold. We are actually interested in those scalar geometric
quantity P (ḡ, R,R⊥, h) of weight −m which give rise to integrals which
are invariant not only under constant rescalings, but under general confor-
mal rescalings. Let us give a precise definition.

Definition 2.6 (Global conformal invariants of submanifolds). — Let
P (ḡ, R,R⊥, h) be a geometric scalar quantity as in (2.17) of weight −m
and consider the conformal rescaling ˆ̄g := e2φ(x)ḡ of the ambient metric ḡ,
for φ ∈ C∞(M̄). By denoting R̂, R̂⊥, ĥ the tensors computed with respect
to the conformal metric ˆ̄g, if

(2.18)
∫
Mm

P (ˆ̄g, R̂, R̂⊥, ĥ) dµĝ =
∫
Mm

P (ḡ, R,R⊥, h) dµg

for any ambient Riemannian manifold M̄n, any compact orientable m-
dimensional immersed submanifold f(Mm) ⊂ M̄n and any φ ∈ C∞(M̄),
we then say that

∫
Mm P (ḡ, R,R⊥, h) dµg is a global conformal invariant

for m-submanifolds in n-manifolds.

In this paper we address the question of classifying (at least in some
cases) such global conformal invariants of submanifolds.
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2.4. The Operator Iḡ,R,R⊥,h(φ) and its Polarisations

Inspired by the work of Alexakis [1, 2, 3, 4, 5, 6] on the classification
of global conformal invariants of Riemannian manifolds, we introduce the
useful operator Iḡ,R,R⊥,h(φ), which “measures how far the scalar geometric
invariant P (ḡ, R,R⊥, h) is from being a global conformal invariant”.

Definition 2.7. — Let P (ḡ, R,R⊥, h) be a linear combination

P (ḡ, R,R⊥, h) :=
∑
l∈L

alC
l(ḡ, R,R⊥, h) ,

where each Cl(ḡ, R,R⊥, h) is in the form (2.16) and has weight −m, and
assume that P (ḡ, R,R⊥, h) gives rise to a global conformal invariant for m-
submanifolds, that is it satisfies (2.18). We define the differential operator
Iḡ,R,R⊥,h(φ), which depends both on the geometric tensors ḡ, R,R⊥, h and
on the auxiliary function φ ∈ C∞(M̄n) as

(2.19) Iḡ,R,R⊥,h(φ)(x) := emφ(x)P (ˆ̄g, R̂, R̂⊥, ĥ)(x)− P (ḡ, R,R⊥, h)(x) ,

where we use the notation of Definition 2.6.

Notice that, thanks to (2.18), it holds

(2.20)
∫
Mm

Iḡ,R,R⊥,h(φ) dµg = 0 ,

for every Riemannian n-manifold M̄n, every compact orientable m-sub-
manifold f(Mm) ⊂ M̄n, and every function φ ∈ C∞(M̄). By using the
transformation laws for R,R⊥, h under conformal rescalings recalled in Sec-
tion 2.2, it is clear that Iḡ,R,R⊥,h(φ) is a differential operator acting on the
function φ. In particular we can polarize, that is we can pick any A > 0
functions ψ1( · ), . . . , ψA( · ), and choose

φ(x) :=
A∑
l=1

ψl(x) .

Thus, we have a differential operator Iḡ,R,R⊥,h(ψ1, . . . , ψA)( · ) so that,
by (2.20), it holds ∫

Mm

Iḡ,R,R⊥,h(ψ1, . . . , ψA) dµg = 0 ,

for every Riemannian n-manifold M̄n, every compact orientable m-sub-
manifold f(Mm) ⊂ M̄n, and any functions ψ1, . . . , ψA ∈ C∞(M̄).

Now, for any given functions ψ1( · ), . . . , ψA( · ), we can consider the
rescalings

λ1ψ1( · ), . . . , λAψA( · ),
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and, as above, we have the equation

(2.21)
∫
Mm

Iḡ,R,R⊥,h(λ1ψ1, . . . , λAψA) dµg = 0 .

The trick here is to see
∫
Mm Iḡ,R,R⊥,h(λ1ψ1, . . . , λAψA) dµg as a polyno-

mial Π(λ1, . . . , λA) in the independent variables λ1, . . . , λA. But then, equa-
tion (2.21) implies that such a polynomial Π(λ1, . . . , λA) is identically zero.
Hence, each coefficient of each monomial in the variables λ1, . . . , λA must
vanish.
We will see later in the proofs of the results how to exploit this crucial

trick.

3. Global Conformal Invariants of Surfaces

It is well known that in the Euclidean space Rn, the Willmore energy
W(f) :=

∫
|H|2dµg of a surface is invariant under conformal maps, that

is under Möbius transformations with inversion centred off the surface. It
can be shown that this is a consequence of the fact that the conformal
Willmore energy of a surface immersed in a general Riemannian manifold
f :M2 ↪→ M̄n

Wconf (f) =
∫
M
|H|2 dµg +

∫
M
K̄ dµg

where K is the sectional curvature of the ambient space restricted to the
surface, is invariant under conformal deformations of the ambient metric.
Recall that by the Gauss equation one can write the intrinsic Gauss curva-
ture K of (M2, g) as K = (|H|2− 1

2 |h
◦|2)+K, where |h◦|2 = gikgjlh◦ijh

◦
kl is

the squared norm of the traceless second fundamental form, we can rewrite
Wconf as

Wconf (f) = 1
2

∫
M
|h◦|2 dµg +

∫
M
K dµg .

Notice that both
∫
M |h

◦|2dµg and
∫
MKdµg are natural conformal invari-

ants: the first integral is conformally invariant as |h◦|2dµg is a pointwise
conformally invariant thanks to formula (2.11), and the second integral is
conformally invariant by the Gauss–Bonnet theorem (more generally it is
a topological invariant). It trivially follows that any linear combination of
the two integrands gives rise to a global conformal invariant. Our next re-
sult is that actually in codimension one there are no other global conformal
invariants and in codimension two the situation is analogous once also the
normal curvature is taken into account.
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3.1. Global Conformal Invariants of Codimension One Surfaces

As announced before, as first result we show that, for codimension one
surfaces, any global conformal invariant must be a linear combination of the
squared norm of the traceless second fundamental form and the intrinsic
Gauss curvature.

Theorem 3.1. — Let P (ḡ, R,R⊥, h) =
∑
l∈L alC

l(ḡ, R,R⊥, h) be a
geometric scalar quantity for two-dimensional submanifolds of codimension
one made by linear combinations of complete contractions in the general
form

(3.1) Cl(ḡ, R,R⊥, h) = contr(ḡα1β1 ⊗ · · · ⊗Ri1j1k1l1 ⊗ · · · ⊗R⊥ir,jr,αr,βr
· · · ⊗ h◦isjs ⊗ · · · ⊗Hgitjt),

and assume that
∫
M P (ḡ, R,R⊥, h)dµg is a global conformal invariant, in

the sense of Definition 2.6.
Then there exist a, b ∈ R such that P has the following decomposition

P (ḡ, R,R⊥, h) = aK + b|h◦|2 .

Proof. — First of all notice that since by assumption here we are work-
ing in codimension one, the normal curvature R⊥ vanishes identically so
it can be suppressed without losing generality. Moreover, by definition,
P (ḡ, R, h) is a linear combination of complete contractions Cl(ḡ, R, h) each
of weight −2. Observing that any contraction of g−1 ⊗ g−1 ⊗R is already
of weight −2 and that any contraction of g−1⊗ h is of weight −1, the only
possibility for P (ḡ, R, h) to be of weight −2 is that it decomposes as

(3.2) P (ḡ, R, h) = a contr(gi1j1 ⊗ gi2j2 ⊗Ri3j3i4j4)

+ b contr(gi1j1 ⊗ gi2j2 ⊗Hgi3j3 ⊗ · · · ⊗Hgir+2jr+2

⊗ h◦ir+3jr+3
⊗ · · · ⊗ h◦ir+4jr+4

),

where in the above formula we intend that r = 0, 1, 2 is the number of H
factors, and 2− r is the number of h◦ factors. Clearly, since by assumption
M is a 2-d manifold, the term contr(gi1j1⊗gi2j2Ri3j3i4j4) is a (possibly null)
multiple of the Gauss curvature. To get the thesis it is therefore sufficient
to prove that r = 0, that is the second summand in (3.2) is completely
expressed in terms of the traceless second fundamental form. Indeed any
complete contraction of g−1⊗g−1⊗h◦ is a (possibly null) multiple of |h◦|2.
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To this aim observe that, since by the Gauss–Bonnet Theorem
∫
MKdµg

is a global conformal invariant, called

(3.3) P1(g, h) := P (ḡ, R, h)− aK

= b contr(gi1j1 ⊗ gi2j2 ⊗Hgi3j3 ⊗ · · · ⊗Hgir+2jr+2

⊗ h◦ir+3jr+3
⊗ · · · ⊗ h◦ir+4jr+4

),

we have that
∫
M P1(g, h)dµg is a global conformal invariant for compact

surfaces immersed in 3-manifolds, as difference of such objects.
Consider then an arbitrary compact surface f(M2) immersed into an

arbitrary Riemannian 3-manifold (M̄3, ḡ3), and an arbitrary conformal
rescaling ˆ̄g3 = e2φ(x)ḡ3 of the ambient metric by a smooth function φ ∈
C∞(M̄). All the hatted geometric tensors ĝ, ĥ, ĥ◦, Ĥ denote the corre-
sponding tensors computed with respect to the rescaled metric ˆ̄g. In Sec-
tion 2.4 we defined the operator

I1
(g,h)(φ) := e2φP1(ĝ, ĥ)− P1(g, h) ,

and we observed that the conformal invariance of the integrated quantities
implies (see (2.20))

(3.4)
∫
M
I1
(g,h)(φ) dµg = 0 .

From the formulas (2.11) of the change of h◦ and H under a conformal
deformation of metric, it is clear that I1

(g,h)(φ) does not depend directly on
φ but just on πN (∇̄φ) = (∂Nφ)N , the normal derivative of φ. More precisely
I1
(g,h)(φ) is a polynomial in ∂Nφ exactly of the same degree 0 6 r 6 2 as
P1(g, h◦, H) seen as a polynomial in H.

By considering tφ for t ∈ R, we therefore get that

I1
g,h(tφ) =

r∑
k=1

akC
k(g, h◦, H) tk (∂Nφ)k .

Recalling now (3.4), we obtain that
∫
M I1

(g,h)(tφ) dµg vanishes identically
as a polynomial in t, so

(3.5) 0 = dk

dtk

∣∣∣∣
t=0

∫
M
I1
(g,h)(tφ) dµg = k!

∫
M
akC

k(g, h◦, H) (∂Nφ)k dµg,

for all k = 0, . . . , r. Pick an arbitrary point x ∈ M; by choosing local
coordinates in M̄3 adapted to f(M) at f(x), it is easy to see that for any
given function ψ ∈ C∞c (M) supported in such a coordinate neighborhood
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of x, there exists φ ∈ C∞(M̄) such that

ψ = ∂φ

∂x3 ◦ f = ∂Nφ ◦ f .

By plugging such an arbitrary C∞c (M) function ψ in place of ∂Nφ in (3.5),
we obtain that not only the integrals but the integrands themselves must
vanish, that is akCk(g, h◦, H) ≡ 0 onM. It follows that I1

g,h(φ) ≡ 0 or, in
other words, the degree of I1

g,h(tφ) as a polynomial in t is 0. By the above
discussion we have then that r = 0, which was our thesis. �

3.2. Global Conformal Invariants of Codimension Two Surfaces

Let (M̄4, ḡαβ) be a four dimensional Riemannian manifold and f :M ↪→
M̄ an immersion of an oriented compact surfaceM2. In local coordinates, if
{e1, e2, e3, e4} is an adapted orthonormal frame, so that {e1, e2} is a frame
on Tf(M) and {e3, e4} is a frame on [Tf(M)]⊥ we define

K⊥ = R⊥(e1, e2, e3, e4) ,

where R⊥ is the curvature tensor of the normal connection defined in (2.6).
Note that K⊥ is well defined up to a sign depending on orientation, indeed
by the symmetries of the normal curvature tensor, for a codimension two
surface R⊥ has only one non-zero component, namely ±K⊥. We also de-
note by

K̄⊥ = R̄(e1, e2, e3, e4)
the ambient curvature evaluated on the normal bundle.
We note here that the normal curvature is not a complete contraction of

the form described above. The anti-symmetry of the curvature means that
the normal curvature does not appear as a complete contraction. In fact, the
normal curvature is an odd invariant (as opposed to an even invariant like
the Gauss curvature). The normal curvature however is an even invariant
if we include the volume form. To that end, we consider odd invariants as
defined below.

Definition 3.2 ((Odd) Complete Contractions [7]). — Denote with ε

the volume form of R4. Any complete contraction

C = contr(ε⊗ (A1)i1...is ⊗ (At)j1...jq )

will be seen as a formal expression. Each factor (Al)i1...is is an ordered set
of slots. Given the factors A1

i1...is
, Alj1...jq

, a complete contraction is then
a set of pairs of slots (a1, b1), . . . , (aw, bw) with the following properties: if
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k 6= l, {al, bl} ∩ {ak, bk} = ∅, ak 6= bk and
⋃w
i=1{ai, bi} = {i1, . . . , jq}. Each

pair corresponds to a particular contraction.
Two complete contractions

contr((A1)i1...is ⊗ · · · ⊗ (At)j1...jw)

and
contr((B1)f1...fq ⊗ · · · ⊗ (Bt

′
)v1...vz )

will be identical if t = t′, Al = Bl and if the µ-th index in Al contracts
against the ν-th index in Ar then the µ-th index in Bl contracts against
the ν-th in Br.
For a complete contraction, the length refers to the number of factors.

The definitions for an odd complete contraction are exactly the same as
for contractions as defined above with the obvious changes.

For a codimension two surface, we note that we have two topological
invariants: the integral of the Gauss curvature K giving the Euler Char-
acteristic of M via the Gauss–Bonnet Theorem, and the integral of the
normal curvature K⊥ which gives the Euler characteristic of the normal
bundle,

(3.6)
∫
M
K dµg = 2πχ(M),

∫
M
K⊥ dµg = 2πχ⊥(f(M)).

As already observed, |h◦|2dµg is a pointwise conformal invariant. Hence any
linear combination of these three integrands is a global conformal invariant
and in the next theorem we show that there are no others.

Theorem 3.3. — Let P (ḡ, R,R⊥, h) =
∑
l∈L alC

l(ḡ, R,R⊥, h) be a
geometric scalar quantity for two-dimensional submanifolds of codimension
two made by linear combinations of (possibly odd) complete contractions
in the general form

(3.7) Cl(ḡ, R,R⊥, h) = contr(ε⊗ ḡα1β1 ⊗ · · · ⊗Ri1j1k1l1 ⊗ · · ·

⊗R⊥ir,jr,αr,βr ⊗ · · · ⊗ h
◦
isjs ⊗ · · · ⊗Hgitjt) ,

where ε is the volume form of R4 and assume that
∫
M P (ḡ, R,R⊥, h)dµg is

a global conformal invariant, in the sense of Definition 2.6.
Then there exist a, b, c ∈ R such that P has the following decomposition

P (ḡ, R,R⊥, h) = aK + bK⊥ + c|h◦|2 .

Proof. — Exactly as in the proof of Theorem 3.1, if P (ḡ, R,R⊥, h) gives
rise to a global conformal invariant it must necessarily be a linear combina-
tion of complete contractions Cl(ḡ, R,R⊥, h) each of weight −2. Observing
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that any contraction of g−1⊗ g−1⊗R and of ε⊗ ḡ−1⊗ ḡ−1⊗R⊥ is already
of weight −2, and that any contraction of g−1⊗h is of weight −1, the only
possibility for P (ḡ, R,R⊥, h) to be of weight −2 is that it decomposes as

P (ḡ, R,R⊥, h) = a contr(gi1j1 ⊗ gi2j2 ⊗Ri3j3i4j4)

+ b contr(ḡα1β1 ⊗ gα2β2 ⊗R⊥α3β3α4β4
)

+ c contr(ε⊗ gi1j1 ⊗ gi2j2 ⊗Hgi3j3 ⊗ · · · ⊗Hgir+2jr+2

⊗ h◦ir+3jr+3
⊗ · · · ⊗ h◦ir+4jr+4

),

where in the above formula we intend that r = 0, 1, 2 is the number of H
factors, and 2− r is the number of h◦ factors. Clearly, since by assumption
M is a 2-d manifold, the term contr(gi1j1 ⊗ gi2j2Ri3j3i4j4) is a (possibly
null) multiple of the Gauss curvature. Analogously, since f(M) ⊂ M̄ is a
codimension two submanifold, the term contr(ε⊗ ḡα1β1⊗gα2β2⊗R⊥α3β3α4β4

)
is a (possibly null) multiple of the normal curvature K⊥. But, by (3.6), we
already know that

∫
MKdµg and

∫
MK⊥dµg are global conformal invari-

ants so, called

P1(g, h) := P (ḡ, R,R⊥, h)− aK − bK⊥

= b contr(gi1j1 ⊗ gi2j2 ⊗Hgi3j3 ⊗ · · · ⊗Hgir+2jr+2

⊗ h◦ir+3jr+3
⊗ · · · ⊗ h◦ir+4jr+4

),

and so
∫
M P1(g, h)dµg is a global conformal invariant for compact surfaces

immersed in 3-manifolds, as the difference of such objects. The thesis can
be now achieved by repeating verbatim the second part of the proof of
Theorem 3.1. �

3.2.1. Two examples: the complex projective plane and the complex
hyperbolic plane

Two particular cases of interest (apart from the spaces forms) are CP2

and CH2 the complex projective plane and the complex hyperbolic plane
respectively. These are Kähler manifolds with their standard Kähler form
Ω of constant holomorphic sectional curvature and unlike their real coun-
terparts, S4 and H4, they are not locally conformal to C2.
Let us consider an immersion φ :M ↪→ M̄ of an oriented surface, where

M̄ = CP2,CH2. The Kähler function C onM is defined by φ∗Ω = Cdµg.
Only the sign of C depends on the orientation, hence C2 and |C| are well
defined for non-orientable surfaces. The Kähler function satisfies

−1 6 C 6 1 .
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By direct computation, we find that the Willmore functional is equal to

WCP2(φ) =
∫
M

(
|H|2 +K

)
dµg =

∫
M

(
|H|2 + 1 + 3C2) dµg ,

and

WCH2(φ) =
∫
M

(
|H|2 +K

)
dµg =

∫
M

(
|H|2 − 1− 3C2) dµg .

By the Ricci equation (2.14), we also have

K
⊥ = R1234 = K⊥ −

(
(̊h1p)3(̊h2p)4 − (̊h2p)3(̊h1p)4

)
which, applying the symmetries of the curvature tensor, can be written
as a complete contraction. Therefore, the following energies are all global
conformal invariant:

W+
CP2(φ) =

∫
M
|H|2 +K −K⊥ =

∫
M

(|H|2 + 6C2) dµg(3.8)

W−CP2(φ) =
∫
M
|H|2 +K +K

⊥ =
∫
M

(|H|2 + 2) dµg ,(3.9)

and

W+
CH2(φ) =

∫
M
|H|2 +K −K⊥ =

∫
M

(|H|2 − 6C2) dµg(3.10)

W−CH2(φ) =
∫
M
|H|2 +K +K

⊥ =
∫
M

(|H|2 − 2) dµg .(3.11)

Let us remark that the energies (3.8), (3.9) have already been object of
investigation in [21], where it was shown thatW−CP2(φ) > 4πµ−2

∫
Σ |C|dµg

where µ is the maximum multiplicity of the immersion (i.e. the maximal
number of pre-images via the immersion map). Moreover in the same paper
it was shown that equality holds if and only if µ = 1 and M is either a
complex projective line or a totally geodesic real projective plane, or µ = 2
andM is a Lagrangian Whitney sphere.

Remark 3.4. — Since the goal of the present paper is to investigate the
structure of global conformal invariants, we recalled the definition of W±CP2

given in [21] and we defined the new functionals W±CH2 in order to give in-
teresting examples of Willmore-type energies in codimension 2. In a forth-
coming work we will address the question wether W±CH2 satisfy analogous
properties as W±CP2 .
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4. Global Conformal Invariants of Submanifolds

Let us consider a geometric scalar quantity P (gm, hm) of the form∑
l∈L

alC
l(gm, hm) ,(4.1)

where each Cl is a complete contraction

contr(gi1j1 ⊗ · · · ⊗ gisjs ⊗ his+1js+1 ⊗ · · · ⊗ hi2sj2s) ;(4.2)

that is we consider complete contractions as defined in (2.16) but depending
just on the second fundamental form hm and the induced metric gm for
immersed m-submanifolds f(Mm) in Riemannian n-manifolds (M̄n, ḡn).

Our first goal in this section is to understand the structure of geometric
scalar quantities (4.1) giving rise to global conformal invariants for sub-
manifolds, in the sense of Definition 2.6. This is exactly the content of the
next result.

Theorem 4.1. — Let P (gm, hm) be as in (4.1) with each Cl of the
form (4.2), and assume that

∫
M P (gm, hm)dµgm is a global conformal in-

variant, in the sense of Definition 2.6. Then there exists a pointwise con-
formal invariant W (gm, h̊m) of weight −m depending only on the traceless
second fundamental form h̊ contracted with the induced metric gm so that

P (gm, hm) = W (gm, h̊m) .

In other words, for every l ∈ L one has that Cl in (4.1) is a complete
contraction of weight −m of the form

contr(gi1j1 ⊗ · · · ⊗ gimjm ⊗ h̊im+1jm+1 ⊗ · · · ⊗ h̊i2mj2m) .(4.3)

Proof. — First of all recall that, by definition, P (gm, hm) is a linear
combination of complete contractions Cl(gm, hm) each of weight −m. Ob-
serving that any contraction of g−1 ⊗ h is of weight −1, this implies that
in (4.3) we have s = m, that is Cl(gm, hm) is a complete contraction of the
form

contr(gi1j1 ⊗ · · · ⊗ gimjm ⊗ him+1jm+1 ⊗ · · · ⊗ hi2mj2m) .(4.4)

Recalling (2.10), that is the orthogonal splitting hij = Hgij + h◦ij , we can
rewrite such a complete contraction as

(4.5) contr(gi1j1 ⊗ · · · ⊗ gimjm ⊗Hgim+1jm+1 ⊗ · · · ⊗Hgim+rjm+r

⊗ h◦im+r+1jm+r+1
⊗ · · · ⊗ h◦i2mj2m

) .

Our goal is to prove that r = 0, that is there are no H factors, so
P (gm, hm) = P (gm, h̊m) is expressed purely as complete contractions of
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traceless fundamental forms, which are pointwise conformal invariants once
multiplied by dµg thanks to (2.11).
To that aim consider an arbitrary compactm-dimensional immersed sub-

manifold f(Mm) of an arbitrary Riemannian n-manifold (M̄n, ḡn), and an
arbitrary conformal rescaling ˆ̄gn = e2φ(x)ḡn of the ambient metric by a
smooth function φ ∈ C∞(M̄). All the hatted geometric tensors ĝ, ĥ, ĥ◦, Ĥ
denote the corresponding tensors computed with respect to the deformed
metric ˆ̄g. In Section 2.4 we defined the operator

I(g,h)(φ) := emφP (ĝ, ĥ)− P (g, h) ,

and we observed that the conformal invariance of the integrated quantities
implies (see (2.20))

(4.6)
∫
M
I(g,h)(φ) dµg = 0 .

From the formulas (2.11) of the change of h◦ and H under a conformal
deformation of metric, it is clear that I(g,h)(φ) does not depend directly
on φ but just on πN (∇̄φ), the projection of ∇̄φ onto the normal space of
f(M). More precisely I(g,h)(φ) is polynomial in the components of πN (∇̄φ)
exactly of the same degree 0 6 r 6 m as P (g, h◦, H) seen as a polynomial
in H.

By considering tφ for t ∈ R, we get that

Ig,h(tφ) =
r∑

k=1
akC

k(g, h◦, H, πN (∇̄φ)) tk ,

where Ck(g, h◦, H, πN (∇̄φ)) is an homogeneous polynomial of degree k

in the components of πN (∇̄φ). Recalling now (4.6), we obtain that∫
M I(g,h)(tφ) dµg vanishes identically as a polynomial in t, so

(4.7) 0 = dk

dtk

∣∣∣∣
t=0

∫
M
I(g,h)(tφ) dµg = k!

∫
M
akC

k(g, h◦, H, πN (∇̄φ)) dµg,

for all k = 0, . . . , r. Pick an arbitrary point x ∈ M; by choosing local
coordinates in M̄n adapted to f(M) at f(x), it is easy to see that for any
given functions ψi, . . . , ψn−m ∈ C∞c (M) supported in such a coordinate
neighborhood of x, there exists φ ∈ C∞(M̄) such that

ψi = (∇̄φ)m+i ◦ f ,

where of course thanks to this choice of coordinates we have

πN (∇̄φ) =
(

(∇̄φ)m+1, . . . , (∇̄φ)n
)
.
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By plugging such arbitrary C∞c (M) functions ψi, . . . , ψn−m in place of
πN (∇̄φ) in (4.7), we obtain that not only the integrals but the integrands
themselves must vanish, that is akCk(g, h◦, H, πN (∇̄φ)) ≡ 0 onM. It fol-
lows that Ig,h(φ) ≡ 0 or, in other words, the degree of Ig,h(tφ) as a poly-
nomial in t is 0. By the above discussion we have that r = 0, which was
our thesis. �

We pass now to consider the more general geometric scalar quantity
P (gm, Rm, hm), for m ∈ N even, of the form

(4.8) P (gm, Rm, hm) = P1(gm, hm) + P2(gm, Rm) ,

where

(4.9) P1(gm, hm) =
∑
l∈L

alC
l(gm, hm)

and P2(gm, Rm) =
∑
s∈S

bsC
s(gm, Rm) ,

where each Cl(gm, hm) is a complete contraction

contr(gi1j1 ⊗ · · · ⊗ gisjs ⊗ his+1js+1 ⊗ · · · ⊗ hi2sj2s)(4.10)

and each Cs(gm, Rm) is a complete contraction

contr(gi1j1 ⊗ · · · ⊗ gi2rj2r ⊗Ri2r+1j2r+1k2r+1l2r+1 ⊗ · · · ⊗Ri3rj3rk3rl3r ) .
(4.11)

In other words we consider complete contractions as defined in (2.16) which
split in two parts: one depending just on the second fundamental form hm

and the other one just on the intrinsic curvature Rm, for immersed m-
submanifolds (f(Mm), gm) in Riemannian n-manifolds (M̄n, ḡn). As usual,
the goal is to understand the structure of geometric scalar quantities (4.8)
giving rise to global conformal invariants for submanifolds, in the sense of
Definition 2.6. This is exactly the content of the next result.

Theorem 4.2. — Let m ∈ N be even and let P (gm, Rm, hm) =
P1(gm, hm) + P2(gm, Rm) be a geometric scalar quantity as above. As-
sume that

∫
M P (gm, Rm, hm) dµgm is a global conformal invariant, in the

sense of Definition 2.6.
Then both

∫
M P1(gm, hm) dµgm and

∫
M P2(gm, Rm) dµgm are global con-

formal invariants. It follows that
(1) There exists a pointwise conformal invariant W1(gm, h̊m) of weight
−m depending only on the traceless second fundamental form h̊

contracted with the induced metric gm so that

P1(gm, hm) = W1(gm, h̊m) ;
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or, in other words, for every l ∈ L one has that Cl in (4.10) is a
complete contraction of weight −m of the form

contr(gi1j1 ⊗ · · · ⊗ gimjm ⊗ h̊im+1jm+1 ⊗ · · · ⊗ h̊i2mj2m) .(4.12)

(2) Called Pfaff(Rm) the Pfaffian of the intrinsic Riemann tensor Rm
and Wm the Weyl tensor of gm, P2(gm, Rm) is of the form

P2(gm, Rm) = P̃2(gm,Wm) + cPfaff(Rm) , for some c ∈ R ,

where P̃2(gm,Wm) is a pointwise conformal invariant of weight −m
expressed as a linear combination of complete contractions of the
form

contr(gi1j1 ⊗ · · · ⊗ gimjm ⊗Wim+1jm+1km+1lm+1 ⊗ · · · ⊗Wi 3m
2
j 3m

2
k 3m

2
l 3m

2
) .

Remark 4.3. — It is well known that
• The Weyl tensorWijkl(gm) is a pointwise scalar conformal invariant
of weight 2, that is it satisfiesWijkl(e2φ(x)gm(x)) = e2φ(x)W (gm)(x)
for every φ ∈ C∞(M) and every x ∈ Mm. It follows that any
complete contraction of the tensor g−1 ⊗ g−1 ⊗W is a pointwise
scalar conformal invariant of weight −2.

• The Pfaffian Pfaff(Rijkl) of the intrinsic curvature Rijkl = Rm

integrated over the manifold gives rise to a topological invariant:∫
Mm

Pfaff(Rijkl) dµg =
2mπm/2(m2 − 1)!

2(m− 1)! χ(Mm) ,

where χ(Mm) is the Euler Characteristic ofMm.
Therefore, recalling the conformal invariance of the traceless second funda-
mental form (2.11), any linear combination of complete contractions

P (gm, hm, Rm) = W1(gm, h̊m) + P̃2(gm,Wm) + cPfaff(Rm)

as in the thesis of Theorem 4.2 gives rise to a “trivial” global conformal
invariant. Thereom 4.2 states that, under the assumption that P splits into
the sum of an intrinsic part and of an extrinsic part depending just on the
second fundamental form, this is actually the only possibility.

Proof. — Since by assumption P (gm, Rm, hm) = P1(gm, hm) +
P2(gm, Rm) gives rise to a global conformal invariant, if we show that∫
M P1(gm, hm) dµg is a global conformal invariant, the same will be true for∫
M P2(gm, Rm) dµg. In order to prove that, consider an arbitrary compact
m-dimensional immersed submanifold f(Mm) of an arbitrary Riemannian
n-manifold (M̄n, ḡn), and an arbitrary conformal rescaling ˆ̄gn = e2φ(x)ḡn

of the ambient metric by a smooth function φ ∈ C∞(M̄). All the hatted
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geometric tensors ĝ, ĥ, ĥ◦, Ĥ, R̂ denote the corresponding tensors computed
with respect to the rescaled metric ˆ̄g. Analogously to Section 2.4, define
the operators

I1
g,h(φ) := emφP1(ĝ, ĥ)− P1(g, h) ,(4.13)

I2
g,R(φ) := emφP2(ĝ, R̂)− P2(g,R) ,(4.14)

Ig,R,h(φ) := I1
g,h(φ) + I2

g,R(φ) .(4.15)

As already observed in the proof of Theorem 4.1, I1
g,h(φ) does not depend

directly on φ but only on πN (∇̄φ), the projection of ∇̄φ onto the normal
space of f(M). More precisely I1

g,h(φ) is polynomial in the components of
πN (∇̄φ) exactly of the same degree 0 6 r 6 m as P1(g, h◦, H) seen as a
polynomial in H.

On the other hand, recalling the formulas (2.2) of the change of the
intrinsic curvature Rijkl of (Mm, gm) under conformal deformation of the
metric, it is clear that I2

g,R does not depend directly on φ but only on
∇Mφ, the projection of ∇̄φ onto the tangent space of f(M), and on ∇2

Mφ,
the covariant Hessian of φ|M. More precisely I2

g,R(φ) is polynomial in the
components of ∇Mφ,∇2

Mφ.
By considering tφ for t ∈ R, we get that

I1
g,h(tφ) =

r∑
k=1

akC
k(g, h◦, H, πN (∇̄φ)) tk

I2
g,R(tφ) =

s∑
l=1

blC
l(g,R,∇Mφ,∇2

Mφ) tk

where Ck(g, h◦, H, πN (∇̄φ)) (respectively Cl(g,R,∇Mφ,∇2
Mφ)) is an ho-

mogeneous polynomial of degree k in the components of πN (∇̄φ) (respec-
tively of∇Mφ,∇2

Mφ). Recalling now (4.6), we obtain that
∫
M I(g,h)(tφ) dµg

vanishes identically as a polynomial in t, so

(4.16)
0 = dk

dtk

∣∣∣∣
t=0

∫
M
I(g,h)(tφ) dµg

= k!
∫
M
akC

k(g, h◦, H, πN (∇̄φ)) + bkC
k(g,R,∇Mφ,∇2

Mφ) dµg,

for all k ∈ N. Pick an arbitrary point x ∈ M; by choosing local coor-
dinates in M̄n adapted to f(M) at f(x), it is easy to see that for any
given functions ψi, . . . , ψn−m ∈ C∞c (M) supported in such a coordinate
neighborhood of x, there exists φ ∈ C∞(M̄) such that

ψi = (∇̄φ)m+i ◦ f and ∇M(φ ◦ f) = 0 ,
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where of course thanks to the this choice of coordinates we have

πN (∇̄φ) =
(

(∇̄φ)m+1, . . . , (∇̄φ)n
)
.

With this choice of φ, the second summand in the integral of (4.16)
disappears, and thanks to the arbitrariness of the C∞c (M) functions
ψi, . . . , ψn−m in place of πN (∇̄φ) in (4.16), we obtain that not only the
integrals but the integrands themselves must vanish, that is akCk(g, h◦, H,
πN (∇̄φ)) ≡ 0 onM, so I1

g,h(φ) ≡ 0. In particular
∫
M P1(gm, hm) dµg is a

global conformal invariant for m-dimensional submanifolds which implies
that also

∫
M P2(gm, Rm) dµg is a global conformal invariant, since by as-

sumption
∫
M[P1(gm, hm) + P2(gm, Rm)] dµg is that as well.

Claim (1) follows then directly from Theorem 4.1. To get claim (2) ob-
serve that by construction P2(gm, Rm) depends just on the intrinsic Rie-
mannian structure (M, g) and not on the immersion f into an ambient
manifold M̄. Therefore we proved that

∫
M P2(gm, Rm) dµg is an intrinsic

Riemannian conformally invariant quantity, which enters into the frame-
work of the papers of Alexakis [2, 1]. More precisely, by applying [2, The-
orem 1], we obtain claim (2) and the proof is complete. �

5. Generalized Willmore Energies in Higher Dimensions

In this final section, we will introduce a higher dimensional analogue of
the Willmore energy (actually we will construct a two-parameters family
of such functionals). This new energy is conformally invariant and only
attains its strictly positive lower bound at a round sphere. Let us start
with some preliminaries about the Willmore functional.

Given an immersion f : M2 ↪→ R3 of a closed surface M2 into the
Euclidean space R3, the Willmore functional W(f) is defined by

W(f) :=
∫
M
|H|2 dµg .

A natural way to introduce such a functional is via conformal invariance:
by the Gauss–Bonnet Theorem,

∫
MKdµg is a topological hence a fortiori

conformal invariant quantity; moreover, by the formula (2.11), |h◦|2 dµg is
a pointwise conformal invariant. It follows that any functional

Wα(f) :=
∫
M

(K + α|h◦|2) dµg is a global conformally invariant quantity

in the sense of Definition 2.6. For immersions into R3 we have that K +
1
2 |h
◦|2 = |H|2, so

W(f) = W1/2(f) is invariant under conformal trasformations of R3,
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that is under Moebius transformations centred out of f(M). Observing
that K = detg(h) and that 1

2 |h
◦|2 = −detg(h◦), we can also write

(5.1) W(f) =
∫
M

(detg(h)− detg(h◦)) dµg .

Of course the functionalW is non-negative and vanishes exactly on minimal
surfaces, which are therefore points of strict global minimum; the critical
points ofW can therefore be seen in a natural way as “generalized conformal
minimal surfaces”; this was indeed the starting point in the 1920’s of the
theory of Willmore surfaces by Blaschke [9], who was looking for a natural
conformally invariant class of immersions which included minimal surfaces.
Let us mention that such a functional was later rediscovered in the 1960’s
by Willmore [24] who proved that round 2-spheres are the points of strict
global minimum for W.

Motivated by this celebrated two dimensional theory, our goal is to inves-
tigate the case of 4-d hypersurfaces in R5, that is f : (M4, g) ↪→ (R5, δµν)
isometric immersion.
We address the following natural questions:
(1) Is it possible to “perturb” the Pfaffian of the Riemann tensor of

the induced metric g onM4 in order to get a conformally invariant
functional vanishing on minimal surfaces?

(2) Is that functional positive definite? If not, how can we preserve the
conformal invariance and make it positive definite?

(3) Are round spheres of R5 strict global minimum of this conformally
invariant functional?

As in the 2-d case, the starting point is the Gauss–Bonnet Theorem.
For 4-d smooth closed (that is compact without boundary) immersed hy-
persurfaces f : (M4, g) ↪→ (R5, δµν), the Gauss–Bonnet Theorem states
that

(5.2)
∫
M4

detg(h) dµg = 4π2

3 χ(M) = 8π2

3 deg(γ) ,

where detg(h) := det(g−1h), χ(M) is the Euler Characteristic of M and
γ : M4 → S4 ⊂ R5 is the Gauss map associated to the immersion f . By
applying the classical Newton’s identities for symmetric polynomials to the
symmetric polynomials of the principal curvatures of the immersion f , it
is an easy exercise to write det(g−1h) as

(5.3) detg(h) = 32
3 H

4 − 4H2|h|2 + 4
3H Trg(h3) + 1

8 |h|
4 − 1

4 Trg(h4) ,
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where Trg(hp) := Tr[(g−1h)p]. By using the orthogonal decomposition h =
h̊+Hg, see (2.10), iteratively we get that

|h|2 = Trg(h2) = |h◦|2 + 4H2

Trg(h3) = Trg (̊h3) + 3H |̊h|2 + 4H3

Trg(h4) = Trg (̊h4) + 4H Trg (̊h3) + 6H2 |̊h|2 + 4H4 ,

which, plugged into (5.3), give

(5.4) detg(h) = H4 − 1
2H

2 |̊h|2 + 1
3H Trg (̊h3) + 1

8 |̊h|
4 − 1

4 Trg (̊h4) .

Inspired by the 2-d case, in particular by formula (5.1), we wish to make
appear a term detg(̊h), this is possible thanks to the following lemma.

Lemma 5.1. — For any 4-d hypersurface immersed into R5, we have
that

(5.5) Trg (̊h4)− 1
2 |̊h|

4 = −4 detg(̊h) .

Proof. — Since h̊ is bilinear symmetric with respect to g it can be diag-
onalized and its eigenvalues {λi}i=1,...,4 ⊂ R satisfy λ4 = −λ1 − λ2 − λ3,
since Trg (̊h) = 0. We then have that

(5.6)

Trg (̊h4) = λ4
1 + λ4

2 + λ4
3 + (λ1 + λ2 + λ3)4

= 2
3∑
i=1

λ4
i + 4

∑
16i 6=j63

λ3
iλj + 6

∑
16i 6=j63

λ2
iλ

2
j

+ 12
∑

16i 6=j 6=k63
λ2
iλjλk.

On the other hand,

(5.7)

|̊h|4 =
[
λ2

1 + λ2
2 + λ2

3 + (λ1 + λ2 + λ3)2]2
= 4

3∑
i=1

λ4
i + 8

∑
16i6=j63

λ3
iλj + 12

∑
16i 6=j63

λ2
iλ

2
j

+ 16
∑

16i 6=j 6=k63
λ2
iλjλk.

Combining (5.6) and (5.7) and recalling that λ4 = −λ1 − λ2 − λ3 we can
conclude:

Trg (̊h4)− 1
2 |̊h|

4 = 4
∑

16i6=j 6=k63
λ2
iλjλk

= 4λ1λ2λ3(λ1 + λ2 + λ3) = −4 detg(̊h) . �
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Thanks to the identity (5.5), we can rewrite (5.4) as

(5.8) detg(h)− detg(̊h) = H4 − 1
2H

2 |̊h|2 + 1
3H Trg (̊h3) .

Since for even dimensional hypersurfaces in the Euclidean space it is
well known that the Pfaffian of the intrinsic Riemann tensor is a multiple
of detg(h), we have just answered question (1):

Proposition 5.2. — Given an isometric immersion f : (M4, g) ↪→
(R5, δµν) of a closed 4-manifold (M4, g), define

P(f) :=
∫
M

[
detg(h)− detg(̊h)

]
dµg .

Then, the functional P is invariant under conformal transformations of R5

centered off of f(M4).
Moreover P vanishes identically on minimal hypersurfaces, and the min-

imal hypersurfaces of R5 satisfying Trg (̊h3) ≡ 0 are critical points for P.

Proof. — By using (5.8), we have that detg(h)−detg(̊h) clearly vanishes
if H ≡ 0. Observe that the right hand side of (5.8) has a linear term in
H, so a priori a minimal hypersurface is not a critical point for P, but if
we assume also that Trg (̊h3) vanishes, of course we obtain criticality. Since[

1
4 Trg (̊h4)− 1

8 |̊h|
4
]

dµg is a pointwise conformal invariant and detg(h) is
a topological invariant by (5.2), the functional P is then invariant under
conformal transformation of R5 preserving the topology of f(M), that is
under conformal transformations of R5 centered off of f(M4). �

Remark 5.3. — Notice that, formally, the integrand of the 4-d functional
P is exactly the same as the 2-d Willmore functionalW, written as in (5.1).

Since in 2-d the quantity detg(h) − detg(h) = H2 is non-negative, it is
natural to ask if the same is true in the 4-d case, that is if detg(g)−detg(̊h) is
non negative. Surprisingly this is not the case, for instance it is not difficult
to compute that if the principal curvatures are 1, 1, 6, 6, one has detg(h)−
detg(̊h) = − 49

16 < 0. A natural question is then if we can manipulate P it
in order to obtain a new functional which is still conformally invariant but
this time is nonnegative definite; this is exactly question (2) above. To this
aim observe that, by Young’s inequality, we have that

−1
2H

2 |̊h|2 > −α4H
4 − 1

4α |̊h|
4 for every α > 0

and 1
3H Trg (̊h3) > − β

12H
4 − 1

4β1/3 [Trg (̊h3)]4/3 for every β > 0 .
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The last two lower bounds combined with (5.4) give

(5.9) P(α,β)(g, h)

:= detg(h) + 1
4 Trg (̊h4) +

(
1

4α −
1
8

)
|̊h|4 + 1

4β1/3 [Trg (̊h3)]4/3

>

(
1− 3α+ β

12

)
H4.

We have therefore answered question (2) above:

Proposition 5.4. — Given an isometric immersion f : (M4, g) ↪→
(R5, δµν) of a closed 4-manifold (M4, g), let P(α,β) be the following ex-
pression

(5.10) P(α,β)(g, h)

:= detg(h) + 1
4 Trg (̊h4) +

(
1

4α −
1
8

)
|̊h|4 + 1

4β1/3 [Trg (̊h3)]4/3 .

Then, the functional

P(α,β)(f) :=
∫
M
P(α,β)(g, h) dµg

is invariant under conformal transformations of R5 centered off of f(M4).
Moreover, if 3α + β 6 12, then P(α,β)(g, h) > 0 for every immersed

hypersurface f(M4) ⊂ R5 and P(α,β)(g, h) ≡ 0 on E ⊂ f(M4) if and only
if H ≡ 0 on E.

We now answer the last question (3) by proving that round spheres are
the points of strict global minimum for the functional P(α,β), for α, β > 0
with α 6 2 and 3α+ β 6 12. This result may be seen as the 4-d analogue
of the celebrated 2-d theorem of Willmore [24] asserting that the Willmore
functional is strictly minimized by embedded round 2-d spheres of R3.

Theorem 5.5. — For any smooth isometric immersion f : (M4, g) ↪→
(R5, δµν) of a closed connected 4-manifold (M4, g), let

F (g, h) := detg(h) + Z (̊h),

where Z (̊h) is a non negative real function of the eigenvalues of h̊, homo-
geneous of degree 4 (that is Z(t̊h) = t4Z (̊h), for every t ∈ R), such that

(1) F (g, h) is always non-negative and if F (g, h) = 0 then H =
1
4 Trg(h) = 0,

(2) if Z (̊h) = 0 then h̊ = 0.
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Then the functional

F(f) :=
∫
M

[
detg(h) + Z (̊h)

]
dµg

is invariant under conformal transformations of R5 centered off of f(M4)
and

F(f) > 8π2

3 ,(5.11)

with equality if and only if f(M) is embedded in R5 as a round sphere.
In particular, this holds for the functional P(α,β) above provided α, β > 0,

α 6 2 and 3α+ β 6 12.

Proof. — Since by assumption both of the functions F (g, h) and Z (̊h)
are non-negative, denoting

M+ := {x ∈M : detg(h) > 0} ⊂ M ,

we have

(5.12) F(f) =
∫
M
F (g, h) dµg

>
∫
M+

F (g, h) dµg =
∫
M+

[
detg(h) + Z (̊h)

]
dµg

>
∫
M+

detg(h) dµg,

with equality in the first estimate if and only if H ≡ 0 on M \M+ and
equality in the second estimate if and only if h̊ ≡ 0 onM+. We claim this
is possible only if f(M) is embedded as a round sphere.
We first show thatM\M+ = ∅. Indeed, sinceM\M+ ⊂ M is open,

if it was not empty it would be a piece of a minimal hypersurface. On the
other hand, the connected components of f(M+) are embedded as subsets
of either round spheres or affine hyperplanes. Thus, by the continuity of H
and the connectedness ofM, only the latter case can occur. It follows that
f(M) is a closed minimal hypersurface immersed in R5; but this is a con-
tradiction since in Rn there are no closed minimal immersed hypersurfaces
(one can argue either by maximum principle or via monotonicity formula,
the argument is very classical so we don’t repeat it here). We have just
proved that M = M+. Therefore f(M) ⊂ R5 is embedded either as an
affine hyperplane or as a round sphere, and by the same argument above
only the latter case can occur.
We now prove the validity of the lower bound (5.11). Observing that
|detg(h)| = |detg(Dγ)| = |J(γ)|, where γ : M4 → S4 is the Gauss map of
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the immersion f and J(γ) is its Jacobian, we get

(5.13)
∫
M+

detg(h) dµg =
∫
M+
|J(γ)|dµg > V olS4(γ(M+)) ,

where V olS4(γ(M+)) is the volume of γ(M+) ⊂ S4 with respect to the
volume form of S4. But now it is well known that γ(M+) = S4, since
f(M4) is a closed hypersurface (the standard argument is to consider,
for every ν ∈ S4, an affine hyperplane of R5 orthogonal to ν and very
far from f(M4); then one translates such an affine hyperplane towards
f(M), keeping the orthogonality with ν, up to the first tangency point
f(x). There, one has γ(x) = ν and moreover, since by the construction
above f(x) is the first tangency point, f(M4) must lie on just one side
of its affine tangent space at f(x), namely such a translated hyperplane.
Therefore all the eigenvalues of g−1h at x have the same sign and thus, in
particular, detg(h)|x > 0. This proves that ν ∈ γ(M+)).
Combining this last fact with (5.12) and (5.13), we get that

F(f) > |S4| = 8π2

3 .

Equality in the last formula of course implies equality in (5.12) and (5.13)
but, as already observed above, equality in (5.12) implies that f(M4) is
embedded as a round sphere in R5.

To see that P(α,β) satisfies the assumptions, observe first that (1) is
ensured by Proposition 5.4. Regarding (2) note that if α, β > 0 and α 6 2,
then

P(α,β)(g, h) := detg(h) + 1
4 Trg (̊h4) +

(
1

4α −
1
8

)
|̊h|4 + 1

4β1/3 [Trg (̊h3)]4/3

> detg(h) ,

with equality if and only if Trg (̊h4) = |̊h2|2 ≡ 0; but that happens if and
only if h̊ ≡ 0. �

By a similar proof one can show the following higher dimensional gen-
eralization, however obtaining a comparably explicit formula for F (g, h) is
less clear.

Theorem 5.6. — For any smooth isometric immersion f : (M2n, g) ↪→
(R2n+1, δµν) of a closed connected 2n-manifold (M2n, g), let

F (g, h) := detg(h) + Z (̊h) ,

where Z (̊h) is a non negative real function of the eigenvalues of h̊, ho-
mogenous of degree 2n (that is Z(t̊h) = t2nZ (̊h), for every t ∈ R), such
that
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(1) F (g, h) is always non-negative and if F (g, h) = 0 then H =
1

2n Trg(h) = 0,
(2) if Z (̊h) = 0 then h̊ = 0.

Then the functional

F(f) :=
∫
M

[
detg(h) + Z (̊h)

]
dµg

is invariant under conformal transformations of R2n+1 centered off of
f(M2n) and

F(f) > ω2n ,

where ω2n is the hypersurface area of a unit sphere S2n ⊂ R2n+1 with
equality if and only if f(M) is embedded in R2n+1 as a round sphere.
There exists C = C(n) > 0 such that, setting Z (̊h) = C‖̊h‖2n, the

function
F (g, h) = detg(h) + C‖̊h‖2n

satisfies the assumptions (1) and (2) above.

Proof. — The argument for the first part of the claim is analogous to
the proof of Theorem 5.5, so we will just show the last statement.

Using the orthogonal decomposition for the second fundamental form
h = h̊+Hg, clearly one has

detg(h) = detg

(̊
h+Hg

)
.

Now, expanding the determinant, we have that

detg

(̊
h+Hg

)
= detg(̊h) +

2n−2∑
k=1

HkPk (̊h) +H2n ,

where Pk (̊h) is a complete contraction of order 2n− k. Note that the term
corresponding to k = 2n − 1 does not appear as trg (̊h) = 0. We can now
apply Young’s inequality to conclude

2n−2∑
k=1

HkPk (̊h) > −εH2n − Cε‖̊h‖2n.

Furthermore, as detg(̊h) > −Cn‖̊h‖2n, we find

detg(h) > (1− ε)H2n − Cn,ε‖̊h‖2n.

Choosing ε = 1/2 we then get that there exists C = C(n) such that
detg(h) + C‖̊h‖2n > H2n

2 , as desired. �
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