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GRAPHS OF CURVES ON INFINITE-TYPE SURFACES
WITH MAPPING CLASS GROUP ACTIONS

by Matthew Gentry DURHAM,
Federica FANONI & Nicholas G. VLAMIS

Abstract. — We study when the mapping class group of an infinite-type
surface S admits an action with unbounded orbits on a connected graph whose
vertices are simple closed curves on S. We introduce a topological invariant for
infinite-type surfaces that determines in many cases whether there is such an action.
This allows us to conclude that, as non-locally compact topological groups, many
big mapping class groups have nontrivial coarse geometry in the sense of Rosendal.
Résumé. — Nous étudions le cas où le groupe modulaire d’une surface de

type infini admet une action avec orbites non bornées sur un graphe connexe dont
les sommets sont des courbes fermées simples de S. Nous définissons un invariant
topologique pour surfaces de type infini qui détecte dans de nombreux cas s’il y a
une telle action. Nous en déduissons que beaucoup de gros groupes modulaires, en
tant que groupes topologiques non localement compacts, ont géométrie grossière
non banale au sens de Rosendal.

1. Introduction

This article is concerned with the existence of robust generalizations
of the standard curve graph to the context of infinite-type surfaces, i.e.
surfaces with infinitely-generated fundamental groups. The main interest
is to build geometrically meaningful actions of mapping class groups on
metric spaces constructed from topological data of surfaces. All surfaces
considered are connected, orientable, and without boundary.

In the finite-type setting, the curve graph is known to be connected, infi-
nite diameter, and Gromov hyperbolic with pseudo-Anosov mapping classes
acting with positive translation length [29]. However, the curve graph of an

Keywords: mapping class groups, surface homeomorphisms, curve graphs, infinite-type
surfaces .
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infinite-type surface always has diameter two and as such it is trivial from
the perspective of coarse geometry.
Many authors have recently investigated numerous analogues of curve,

arc, and pants graphs for specific classes of infinite-type surfaces [2, 3, 4, 17]
(see §1.1). The cases where the above constructions yield geometrically in-
teresting actions of the mapping class group require the underlying surface
to have a finite positive number of isolated planar ends or positive finite
genus, respectively. The condition on the ends is required to study properly
embedded arcs in the surface. In order to work with infinite-type surfaces
in general, removing these restrictions on the topology, we focus on curves
in the surface, which leads us to ask:

Motivating Question. — When does the mapping class group
MCG(S) of an infinite-type surface act with unbounded orbits on a con-
nected graph consisting of curves?

By a graph consisting of curves, we mean a graph whose vertices cor-
respond to isotopy classes of essential simple closed curves. In order to
answer this question (for but a few classes of surfaces), we introduce the
finite-invariance index, denoted f(S), which associates to a surface S an
element of N ∪ {0,∞} (see Definition 1.6). Our results can be summarized
as follows:

Main Theorem. — If f(S) > 4, then MCG(S) admits an unbounded
action on a graph consisting of curves. If f(S) = 0, then MCG(S) admits
no such unbounded action.

When f(S) > 4, we construct an explicit graph on which MCG(S) acts
with unbounded orbits. In addition, we provide a sufficient condition for
these graphs to be (uniformly) Gromov hyperbolic (see Theorem 1.8).
When f(S) ∈ {2, 3}, we prove that f(S) is too coarse an invariant to deter-
mine whether such an unbounded action exists; we give specific examples
in §9. In the case of f(S) = 1, we conjecture that MCG(S) admits no
unbounded action on a graph consisting of curves.

Remark 1.1. — The requirement of an infinite-diameter mapping class
group orbit rules out examples of graphs with little topological significance.
For instance, if S is a surface with countably many orbits of curves {Oi}i∈Z,
we can consider the following graph: the vertices are all curves and there is
an edge between a ∈ Oi and b ∈ Oj if and only if |i− j| 6 1. This graph is
quasi-isometric to Z, so it has infinite-diameter (and it is Gromov hyper-
bolic), but each orbit of the mapping class group action has diameter two.
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Remark 1.2. — A stronger version of the Main Theorem holds for the
pure mapping class PMCG(S), the subgroup of MCG(S) which fixes Ends(S);
see Corollary 1.9 below.

1.1. Motivation and context

The mapping class group of an oriented surface S, denoted MCG(S), is
the group of orientation preserving homeomorphisms of S modulo homo-
topy. The algebraic and geometric structure of MCG(S) for finite-type sur-
faces is largely well understood; but, to date, big mapping class groups, i.e.
mapping class groups of infinite-type surfaces, remain mysterious. There
has been recent interest in better understanding the structure of these
groups as one is led to them quite naturally; for instance, from studying
group actions on finite-type surfaces (see [12, 13]), constructing foliations of
3-manifolds (see [15]), and from the Artinization of automorphism groups
of trees and stable properties of mapping class groups (see [18, 19, 20, 21]).
For a discussion of these connections, see [14].
This article is largely motivated by the recent work of Bavard [4], where

she constructed an action of MCG(R2 \C) on an infinite-diameter Gromov
hyperbolic graph, where C ⊂ R2 is a Cantor set. Furthermore, she used
this action to prove that the bounded second cohomology of MCG(R2 \C)
is infinite dimensional. These results answered a series of questions posed
by Calegari [13].
By isolating the key properties behind the graph constructed in Bavard’s

work, Aramayona–Fossas–Parlier [2] extended Bavard’s construction to a
larger family of surfaces while preserving the geometric properties. This was
followed by Aramayona–Valdez [3] in which the authors gave necessary and
sufficient conditions for this construction to hold.

This recent work on big mapping class groups has been focused on con-
structing actions on Gromov hyperbolic spaces; the hope is to mimic the
theory for finite-type surfaces. The curve graph of a surface S is the graph,
denoted C(S), whose vertices correspond to isotopy classes of essential sim-
ple closed curves where adjacency denotes the existence of disjoint represen-
tatives. In the finite-type setting, the curve graph proved extremely useful
in studying mapping class groups, for instance in understanding their coarse
geometry (e.g. to show that the mapping class group has finite geometric
rank [6] and finite asymptotic dimension [7] and to prove quasi-isometric
rigidity [5, 10]) or to study their cohomological properties [23, 24].

TOME 68 (2018), FASCICULE 6
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A striking difference between the finite- and infinite-type setting is that
the mapping class group is finitely generated in the former case but not
in the latter, since big mapping class groups are uncountable. This seems
discouraging from the viewpoint of geometric group theory; however, there
has been recent progress (see [36]) in studying the coarse geometry of topo-
logical groups that are neither finitely generated nor locally compact. A
particularly beautiful application of this theory in [27] is the study of the
large-scale geometry of homeomorphism groups of compact manifolds and
its relation to the topology of and dynamics on the manifold.

By equipping Homeo+(S) with the compact-open topology, the mapping
class group is

MCG(S) = π0(Homeo+(S)).

Giving MCG(S) the associated quotient topology, it becomes a topological
group. With this topology, it is an easy exercise to see that if MCG(S)
acts on a graph consisting of curves, then it does so continuously. The
actions with unbounded orbits constructed in the Main Theorem, when
f(S) > 4, yield a left-invariant continuous infinite-diameter pseudo-metric
on MCG(S): Indeed, let Γ be the graph guaranteed from the Main Theorem
and fix a vertex x ∈ Γ. The function d : MCG(S)×MCG(S)→ R defined by

d(f, g) = dΓ(f(x), g(x))

where f, g ∈ MCG(S) and dΓ is the graph metric on Γ is the desired
pseudo-metric. By the Main Theorem, (MCG(S), d) has infinite-diameter.
In the language of [36], as an immediate consequence, we have the following
corollary, which informally says that MCG(S) is not coarsely a point; hence,
MCG(S) is potentially amenable to investigation via these coarse geometric
tools:

Corollary 1.3. — If f(S) > 4, then MCG(S) does not have prop-
erty (OB).

Remark 1.4. — There are no well-understood generating sets for
MCG(S), so the existence of such a pseudo-metric is unclear a priori.

Remark 1.5. — As a consequence of Corollary 1.9 below, this statement
holds for the pure mapping class group of any surface S with at least four
ends.

ANNALES DE L’INSTITUT FOURIER
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1.2. Discussion of results

Let S be any infinite-type surface, Ends(S) its space of ends, and
MCG(S) its mapping class group. We first define f from the Main The-
orem:

Definition 1.6. — We say that a collection P of disjoint subsets of
the space of ends is MCG(S)-invariant if for every P ∈ P and for every
ϕ ∈ MCG(S) there exists Q ∈ P such that ϕ(P ) = Q. The finite-invariance
index of S, denoted f(S), is defined as follows:

• f(S) > n if there is a MCG(S)-invariant collection P of disjoint
closed proper subsets of Ends(S) satisfying n 6 |P| <∞;

• f(S) =∞ if genus(S) is finite and positive;
• f(S) = 0 otherwise.

We say that f(S) = n if f(S) > n but f(S) � n+ 1.

We first look at f(S) = 0:

Theorem 1.7. — If f(S) = 0, then every action of MCG(S) on a graph
consisting of curves has finite-diameter orbits.

As shown in the appendix (see Proposition A.2), if f(S) = 0, then S is
either

(1) the Cantor tree surface (i.e. the sphere minus a Cantor set),
(2) the blooming Cantor tree surface (i.e. the infinite-genus surface with

no planar ends in which Ends(S) is a Cantor set), or
(3) the Loch Ness monster surface (i.e. the infinite-genus surface with

a single end).
Let us turn to f(S) > 4, where we give an explicit construction of the

graph in the Main Theorem. Let P be a finite collection of pairwise disjoint
closed subsets of Ends(S). Define Sep2(S,P) to be the graph consisting of
curves in which a curve c is a vertex if it is separating and:

(i) the set of ends of each component of S \ c contains at least two
elements of P and

(ii) every element of P is contained in the set of ends of a component
of S \ c.

Loosely speaking, c is a vertex if it partitions the elements of P into sets
of cardinality at least two and does not split the elements of P. Adjacency
denotes disjoint (except if |P| = 4, when adjacency denotes intersection
number at most 2). Notice that Sep2(S,P) is an induced subgraph of the
curve graph of S (if |P| 6= 4).

TOME 68 (2018), FASCICULE 6
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Theorem 1.8. — If |P| > 4, Sep2(S,P) is connected and infinite diam-
eter. Furthermore, there exist infinitely many elements in MCG(S) acting
on Sep2(S,P) with positive translation length. Moreover, if each element
of P is a singleton, then Sep2(S,P) is δ-hyperbolic, where δ can be chosen
independent of S and P .

Note that a bound for δ can be computed from the proof, but the esti-
mates are presumably far from optimal. Theorem 1.8 also holds for finite-
type surfaces (see Theorem 5.9). The pure mapping class group, denoted
PMCG(S), is the subgroup of MCG(S) acting trivially on Ends(S). Observe
that restricting to PMCG(S), we have the following immediate corollary:

Corollary 1.9. — Suppose |Ends(S)| > 4. Let P be a finite col-
lection of singletons of Ends(S) with |P| > 4, then Sep2(S,P) is con-
nected, δ-hyperbolic, and infinite diameter. Furthermore, PMCG(S) acts
on Sep2(S,P) and infinitely-many elements of PMCG(S) act with positive
translation length.

Finally, the case where f(S) =∞ and the surface has finite positive genus
is handled by looking at the graph NonSep(S) of nonseparating curves
(i.e. the induced subgraph of the curve graph on the set of nonseparating
curves). This graph is studied by Aramayona–Valdez [3], where they prove:

Theorem 1.10 ([3, Theorem 1.4]). — If genus(S) is finite and nonzero,
then NonSep(S) is connected and has infinite diameter; further, there exist
infinitely many elements of MCG(S) acting with positive translation length.

Recently Rasmussen [34] proved that NonSep(Sg,p) is δ-hyperbolic for
δ > 0 independent of g and p, provided g > 1. Combining this with a result
of Aramayona–Valdez [3], it follows that NonSep(S) is Gromov hyperbolic
if genus(S) is at least one and finite.

1.3. Outline

In §2, we give the basic definitions we will need and in §3, we include the
necessary background on the classification of infinite-type surfaces and the
structure of the space of ends. We prove Theorem 1.7 in §4. The idea behind
the proof is that there are mapping classes sending any simple closed curve
arbitrarily far out into an end of the surface.

In §5, we prove Theorem 1.8 for finite-type surfaces. The proof goes
through studying a subgraph of the arc graph. Using the tools of [25], we

ANNALES DE L’INSTITUT FOURIER
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are able to “guess geodesics” in our subgraph that form uniformly slim
triangles. A lemma from [8] then yields the uniform hyperbolicity of these
subgraphs. We will see that these subgraphs are uniformly quasi-isometric
to the graphs of interest allowing us to import the uniform hyperbolicity.
In §6, we abstract the argument in [2] to the setting of an arbitrary

geodesic metric space. We use this framework to promote the proof of The-
orem 1.8 for finite-type surfaces to the infinite-type setting in §7. Building
off the philosophy in [2, 4], we will see that the finiteness of the collection P
forces our curves to interact with a compact region of our surface yielding
the infinite-diameter property. In the case P consists of singletons, we use
the fact that any finite collection of curves can only fill a compact surface;
we will then apply Theorem 1.8 to this compact surface to see that triangles
are uniformly slim.
In §8, we give a quick proof of Theorem 1.10. In §9, we explore some

of the oddities of the low-index cases by constructing examples both of
surfaces that do admit a graph with an interesting action of the mapping
class group and of surfaces that do not.

Finally, in the appendix we give a more detailed description of the space
of ends. Even though most of this material does not show up in our proofs,
it was fundamental to motivate the constructions. We include it in hopes
that it will aid other researchers thinking about these surfaces.

Acknowledgements. The second author is grateful to Brian Bowditch
for many useful discussions and to Bram Petri for suggesting part of the
proof of Lemma 9.4. The third author thanks Javier Aramayona for helpful
conversations. The authors would also like to thank Javier Aramayona
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2. Conventions and standard definitions

All surfaces appearing in our results have negative Euler characteristic
and are orientable, connected, separable, and without boundary. A surface

TOME 68 (2018), FASCICULE 6
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is of finite (topological) type if its fundamental group is finitely gener-
ated. Otherwise, it is of infinite (topological) type. The mapping class
group of a surface S, denoted MCG(S), is the group of orientation pre-
serving homeomorphisms modulo homotopy, or, as mentioned earlier, if
we equip Homeo+(S) with the compact-open topology, then MCG(S) =
π0(Homeo+(S)). The subgroup of MCG(S) acting trivially on Ends(S)
(defined in Section 3) is the pure mapping class group, denoted PMCG(S).

A simple closed curve on a surface is peripheral if it is isotopic to an end of
S; it is essential if it is neither peripheral nor bounds a disk; it is separating
if its complement is disconnected and nonseparating otherwise. A simple
arc on a surface is proper if the endpoints are contained in Ends(S); it is
essential if it is not isotopic to an end of S. Two essential curves a and b
fill a subsurface Σ if every essential curve in Σ intersects at least one of a
or b. In addition we require each boundary component of Σ to be essential
in S, so then Σ is unique up to isotopy. With this definition, Σ may not be
compact, but will always be finite-type.
The curve graph of a surface S, denoted C(S), is the graph whose ver-

tices correspond to isotopy classes of essential simple closed curves and two
vertices are adjacent if they have disjoint representatives. Similarly, the arc
graph of a surface S, denoted A(S), is the graph whose vertices correspond
to isotopy classes of essential simple proper arcs and two vertices are ad-
jacent if they have disjoint representatives. We will view graphs as metric
spaces in which the metric is defined by setting each edge to have length 1.
We will regularly abuse notation and conflate a vertex in C(S) or A(S)

with a representative on the surface. When discussing representatives of
collections of vertices, we will always assume they are pairwise in minimal
position (this can be done for instance by taking geodesic representatives
in a complete hyperbolic metric).
In our proofs, we will need to consider compact surfaces with nonempty

boundary and their associated curve and arc graphs. Given such a surface,
note that C(S) = C(int(S)) and A(S) = A(int(S)), where int(S) denotes
the interior of S.

3. Background on infinite-type surfaces

Infinite-type surfaces are classified by their genus and their space of
ends. This classification was originally due to Kerékjártó; however, Richards
in [35] simplified and filled some gaps in the original proof.

ANNALES DE L’INSTITUT FOURIER
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We will now define an end and describe how to topologize the set of
ends. We say that a subset A of a surface S is bounded if its closure in S
is compact.

Definition 3.1. — We call a descending chain U1 ⊃ U2 ⊃ · · · of con-
nected unbounded open sets in S admissible if it satisfies

(1) the boundary of Un in S is compact for all n and
(2) for any compact set K of S, Un ∩K = ∅ for sufficiently large n.

We say two admissible descending chains U1 ⊃ U2 ⊃ · · · and V1 ⊃ V2 ⊃
· · · are equivalent if for any n there exists an N such that UN ⊂ Vn and
vice versa.

Definition 3.2. — An end of S is an equivalence class of admissible
descending chains.

As a set, the space of ends of S, denoted Ends(S), consists of the ends
of S. Ends(S) is topologized as follows: given an open set U of S with
compact boundary, let U∗ ⊂ Ends(S) be the set of points of the form
p = [V1 ⊃ V2 ⊃ · · · ] with Vn ⊂ U for n sufficiently large. We take all such
U∗ as a basis for the topology on Ends(S). Proposition 3.3 below describes
the topology of Ends(S); a proof can be found in [1, Chapter 1, §36 and 37].
The structure of Ends(S) is expounded on in more detail in the appendix.

Proposition 3.3. — The space of ends of a surface is totally discon-
nected, second countable, and compact.

Definition 3.4. — An end [U1 ⊃ U2 ⊃ · · · ] of S is

• planar, or a puncture, if Un is planar (i.e. can be embedded in the
plane) for n sufficiently large;

• isolated if the singleton {[U1 ⊃ U2 ⊃ · · · ]} is open in Ends(S);
• accumulated by genus if Un has infinite genus for all n.

Let A G (S) ⊂ Ends(S) denote the set of ends accumulated by genus. We
can then associate to an orientable surface S the triple (genus(S),Ends(S),
A G (S)). It is a theorem of Kerékjártó (see [35, Theorem 1]) that this triple
uniquely determines S up to homeomorphism.

For the sake of discussing the homeomorphism type of a simple closed
curve, we note: If S has finitely many boundary components, then a similar
classification holds by also recording the number of boundary components.
This is also covered by [35, Theorem 1].

TOME 68 (2018), FASCICULE 6
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4. Graphs with finite-diameter mapping class group orbits

In this section we show that the mapping class group of a surface with
f = 0 does not admit interesting geometric actions on graphs consisting of
curves. To prove this result, we will use the following general criterion:

Proposition 4.1. — Let S be an oriented surface and Γ = Γ(S) be
a connected graph consisting of curves on which the mapping class group
acts. Let V ⊂ Γ× Γ satisfying:

(1) there exists a vertex c ∈ Γ such that, up to the action of MCG(S),
there is a finite number of pairs (a, b) ∈ V with a, b ∈ MCG(S) · c,
and

(2) for every a, b ∈ MCG(S) · c with (a, b) /∈ V, there exists d ∈
MCG(S) · c such that (a, d) and (b, d) belong to V.

Then every MCG(S)-orbit in Γ has finite diameter.

Proof. — We first show that the mapping class group orbit of c, denoted
Oc, has finite diameter. By condition (1) and the mapping class group
invariance of Γ(S),

A := sup{d(a, b) : a, b ∈ Oc and (a, b) ∈ V} <∞.

Consider any pair a, b ∈ Oc. If (a, b) ∈ V, d(a, b) 6 A. Otherwise, by
condition (2) there is a curve d ∈ Oc such that (a, d) and (b, d) belong to
V. So

d(a, b) 6 d(a, d) + d(d, b) 6 2A,
which means that diam(Oc) 6 2A
Consider now another orbit O. Fix a curve a ∈ O and set B := d(a, c).

Then for any other curve b ∈ O there exists a mapping class sending a to
b and c to some d ∈ Oc. Again, by the mapping class group invariance,
d(b, d) = d(a, c) = B, which means that the distance of any b ∈ O to Oc is
at most B. As the diameter of Oc is at most 2A, any two curves in O are
at distance at most 2B + 2A. �

Applying Proposition 4.1, we obtain the following result, which we will
use to prove Theorem 1.7. At the same time, Proposition 4.2 also shows
that there are general restrictions for a graph to be connected and have
infinite-diameter mapping class group orbits.

Proposition 4.2. — Suppose that Γ = Γ(S) is a connected graph con-
sisting of curves with an action of MCG(S) and:

(1) S has infinitely many isolated punctures and Γ contains a vertex
bounding a finite-type genus-0 surface, or

ANNALES DE L’INSTITUT FOURIER
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(2) genus(S) =∞, S has either no punctures or infinitely many isolated
punctures, and Γ contains a curve bounding a finite-type surface,
or

(3) genus(S) =∞ and Γ contains a nonseparating curve,
then MCG(S) acts on Γ(S) with finite-diameter orbits.

Proof. — We want to check that in all cases the hypotheses of Proposi-
tion 4.1 are satified.

For Cases (1) and (2), we set V = {(a, b) : i(a, b) = 0}.
Case (1). — Let c be a vertex bounding a disk with n punctures. So the

mapping class group orbit of c is given by all curves bounding n punctures.
There is a unique orbit of pairs of disjoint curves in MCG(S) · c as the
complementary regions of any two are two n-punctured disks and a surface
homeomorphic to S. Moreover, if two curves a and b in the orbit of c
intersect, there is a complementary component which contains an infinite
number of isolated punctures. So we can choose a curve in that component
bounding exactly n punctures and it will be disjoint from both a and b.

Case (2). — This is analogous to Case (1), with the genus together with
the isolated punctures playing the role of the isolated punctures in (1).
Case (3). — Let c be any nonseparating curve and set

V = {(a, b) : i(a, b) = 0 and a ∪ b does not separate}.

Note that in particular any curve in a pair belonging to V must be nonsep-
arating and that there is a unique MCG(S)-orbit of nonseparating pairs
of (nonseparating) curves. Furthermore, if a pair (a, b) of nonseparating
is not an element of V, then there is an infinite-genus component of the
complement of a ∪ b. In this component there is a nonseparating curve d
such that (a, d) ∈ V and (b, d) ∈ V. �

We are now ready to prove Theorem 1.7.
Proof of Theorem 1.7. — Let Γ = Γ(S) be a connected graph consisting

of curves on which MCG(S) acts.
If S is the Cantor tree surface, we apply Proposition 4.1, with V =

{(a, b) : i(a, b) = 0}. All curves are in the same mapping class group
orbit and there is a unique orbit of pairs of disjoint curves. Indeed, the
complement of a pair of disjoint curves is the union of two disks and an
annulus each with a Cantor set removed. Moreover, if two curves intersect,
each complementary component of their union contains a Cantor set. So
we can choose any essential curve in the complement to verify the second
condition of Proposition 4.1.

TOME 68 (2018), FASCICULE 6
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Suppose S is the blooming Cantor tree surface. If Γ contains a non-
separating curve or a curve bounding a finite-type surface, then it has
finite-diameter orbits by Proposition 4.2. Otherwise, Γ must contain a sep-
arating curve c with infinite-type complementary components. In this case,
we apply Proposition 4.1 with

V = {(a, b) : a and b do not cobound a finite-type subsurface}.

There is a unique mapping class group orbit of pairs (a, b) ∈ V with
a, b ∈ MCG(S) · c: indeed, the complement of any such pair is given by
three bordered blooming Cantor tree surfaces, two with a single boundary
component and one with two boundary components. Moreover, it is easy
to verify that the second condition of Proposition 4.1 holds.
Finally, if S is the Loch Ness monster surface, each curve is either nonsep-

arating or it bounds a finite-type surface, so by Proposition 4.2 the graph
Γ has finite-diameter orbits. �

5. Theorem 1.8 for finite-type surfaces

In this section, we will prove Theorem 1.8 for finite-type surfaces. The
subsequent two sections are then dedicated to extending to the infinite-type
case. For standard background on the coarse geometry in this section we
refer the reader to [11, §I.8, §II.6, and §III.H.1].

Definition 5.1. — Let P is a collection of pairwise disjoint subsets of
Ends(S); we define Sep2(S,P) to be the subgraph of C(S) spanned by the
following vertices: a curve c is a vertex in Sep2(S,P) if it is separating
and if

(1) for each P ∈ P there is a component S′ of S \ c such that P ⊂
Ends(S′), and

(2) for each component S′ of S \ c there exist two distinct elements
P,Q ∈ P such that P,Q ⊂ Ends(S′).

When P is a collection of singletons, we will let P denote the union of
the singletons and write Sep2(S, P ) for Sep2(S,P).
If |P| = 4, instead of deeming two curves adjacent if they are disjoint, we

say that they are adjacent if they intersect at most twice. For simplicity,
we will assume throughout this section and §7 that |P| > 5, but the proofs
can be readily adapted for the case |P| = 4.

We first focus on the case where P is a collection of singletons. The
proof of Theorem 1.8 in this setting will go through proving the analogous
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result for a subgraph of the arc graph. We will show that this subgraph
is uniformly quasi-isometric to Sep2(S,P), which will yield the result. We
will end the section with removing the singleton assumption and giving an
argument for connectedness using Putman’s technique [33, Lemma 2.1].

5.1. Arcs

Let F be a noncompact finite-type surface. The reader might find it
helpful to think of punctures as marked points. For a collection of punctures
Q of S, let A2(F,Q) be the induced subgraph of A(F ) on the arcs with
distinct endpoints in Q. We will prove:

Theorem 5.2. — If |Q| > 3, then A2(F,Q) is connected and δ-hyper-
bolic, where δ is independent of F and Q. Furthermore, there exist infinitely
many elements of MCG(F ) that act on A2(F,Q) with positive translation
length.

For the proof will rely on the “guessing geodesics lemma” [8, Proposi-
tion 3.1] (similar results appeared earlier in [22] and [30]) and the unicorn
paths conctruction of [25].

Lemma 5.3 (Guessing geodesics lemma). — Suppose Γ is a graph where
all edges have length one. Then Γ is Gromov hyperbolic if and only if there
is a constant M > 0 and for any two vertices x and y in Γ there is a
connected subgraph A(x, y) ⊂ Γ containing x and y, with the following
properties:

• (Local) If dΓ(x, y) 6 1, then A(x, y) has diameter at most M .
• (Slim triangles) For any three vertices x, y, z in Γ the subgraph
A(x, y) is contained in the M -neighborhood of A(x, z) ∪A(z, y).

Further, the hyperbolicity constant only depends on M .

The following two definitions were introduced in [25].

Definition 5.4 (Unicorn arcs). — Let a and b be arcs in F in minimal
position representing vertices of A(F ). Let α and β be endpoints of a and
b, respectively, and let π ∈ a ∩ b. Let a′ and b′ be subarcs of a and b,
respectively, such that ∂a′ = {α, π} and ∂b = {π, β}, then a′∪b′ represents
a vertex of A(F ). The arc a′ ∪ b′ is a unicorn arc obtained from aα, bβ .

Observe that a′ ∪ b′ is determined by π, so the unicorn arcs obtained
from aα, bβ are in bijection with the elements of a ∩ b. Order the unicorns
arcs by a′ ∪ b′ 6 a′′ ∪ b′′ if a′′ ⊂ a′ and let {c1, . . . , cn} be the ordered set
of unicorn arcs obtained from aα, bβ .
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Definition 5.5 (Unicorn paths). — The path

U(aα, bβ) = (c0 = a, c1, . . . , cn, cn+1 = b)

is the unicorn path between aα, bβ .

Let aα and bβ be arcs with endpoints such that a, b ∈ A2(F,Q). If α 6= β,
then U(aα, bβ) is a path in A2(F,Q); in particular, A2(F,Q) is connected.
For a, b ∈ A2(F,Q), define

A′(a, b) =
⋃

α∈∂a, β∈∂b
α6=β

U(aα, bβ).

If a and b are adjacent, let A(a, b) be the edge between them, otherwise let
A(a, b) = A′(a, b)∪A′(b, a). It is easy to see that the graphs A(a, b) satisfy
the local condition of Lemma 5.3 for any M > 1. It is left to verify the
second condition.

Lemma 5.6 ([25, Lemma 3.3]). — Let a, b, d be arcs mutually in minimal
position. For every c ∈ U(aα, bβ) there is c∗ ∈ U(aα, dδ) ∪ U(dδ, bβ) such
that c and c∗ are adjacent in A(F ).

Lemma 5.7 (Slim triangles). — For all a, b, d ∈ A2(F,Q), the subgraph
A(a, b) is contained in the 2-neighborhood of A(a, d) ∪A(d, b).

Proof. — Unless ∂a = ∂b = ∂d, the result follows directly from Lem-
ma 5.6. So, assume that ∂a = ∂b = ∂d = {α, β}. Let c ∈ U(aα, bβ) ⊂
A(a, b). Pick d′ ∈ A2(F,Q) such that d′ is adjacent to d and ∂d′ 6= ∂d.
We can now pick δ ∈ ∂d′ \ {α, β} and apply Lemma 5.6 to aα, bβ , d′δ to
get c′ ∈ U(aα, d′δ)∪U(d′δ, bβ) such that c and c′ are disjoint. Assume that
c′ ∈ U(aα, d′δ). Apply Lemma 5.6 to aα, d′δ, dβ to get c∗ ∈ A(a, d) such
that d(c, c∗) 6 2. �

Proof of Theorem 5.2. — The existence of unicorn paths provides the
connectedness. Lemma 5.7 tells us the conditions of Lemma 5.3 are met
with M = 2 implying uniform hyperbolicity. Finally, as A2(F,Q) is a sub-
graph ofA(F ), any pseudo-Anosov element of the pure mapping class group
acts with positive translations length [29, Proposition 4.6]. �

5.2. Curves

Moving to Sep2(F,Q), consider the natural map φ : A2(F,Q) →
Sep2(F,Q) given by setting φ(a) to be the boundary of a regular neigh-
borhood of a.
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Lemma 5.8. — If |Q| > 5, then φ is a (2, 2)-quasi-isometry.

Proof. — Let dA and d denote distance in A2(F,Q) and Sep2(F,Q),
respectively. Consider any c ∈ Sep2(F,Q). If a is any arc in a component
of F \ c connecting two points of Q, then either φ(a) = c or φ(a) is disjoint
from c. So, the image of φ is 1-dense in Sep2(F,Q).
Observe that if dA(a, b) = 1 with ∂a ∩ ∂b = ∅, then d(φ(a), φ(b)) = 1.

Further, if dA(a, b) = 1 with ∂a ∩ ∂b 6= ∅, then there is an arc c with
endpoints in Q \ (∂a ∪ ∂b) disjoint from both a and b. It follows that
d(φ(a), φ(b)) = 2. We have shown that

d(φ(a), φ(b)) 6 2dA(a, b).

We now focus on giving an inequality in the other direction. Given
x ∈ Sep2(F,Q), define Φ(x) = {a ∈ A2(F,Q) : a is disjoint from x}. We
proceed by a sequence of claims:

Claim 1. — If φ(a) is disjoint from x ∈ Sep2(F,Q), then dA(a, b) 6 2 for
all b ∈ Φ(x).

If φ(a) is disjoint from x, then so is a. Therefore, if b ∈ Φ(x) with
dA(a, b) > 1, then a, b are contained in the same component of F \ x.
The other component must contain an element of A2(F,Q) implying
dA(a, b) = 2.

Claim 2. — If x, y ∈ Sep2(F,Q) are disjoint and a ∈ Φ(x), then there
exists b ∈ Φ(y) with dA(a, b) = 1.

As F \ (x∪y) has three components, there must be a component disjoint
from a and containing at least two points of Q. Let b ∈ A2(F,Q) be any
arc in this component, then b ∈ Φ(y) and dA(a, b) = 1.

Claim 3. — If d(φ(a), φ(b)) 6 1, then dA(a, b) 6 1.

Observe that φ(a) = φ(b) if and only if a = b. Now assume that d(φ(a),
φ(b)) = 1. This can only happen if a, b are disjoint and have distinct end-
points. In particular, dA(a, b) = 1.
We are now in a place to give the inequality. Let m = d(φ(a), φ(b)), then,

by Claim 3, we can assume that m > 2. Let φ(a) = x0, x1, . . . , xm = φ(b)
be a path between φ(a) and φ(b). Define c0 = a and choose ci ∈ Φ(xi) so
that dA(ci−1, ci) = 1 as guaranteed by Claim 2. By Claim 1, dA(cm, b) 6 2.
This tells us that dA(a, b) 6 m+ 2. We have shown

dA(a, b)− 2 6 d(φ(a), φ(b)) 6 2dA(a, b)

which yields the desired result. �
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Figure 5.1. Dehn twists about the curves shown generate the pure
mapping class group PMCG(F ). The crosses denote punctures.

Theorem 5.9. — Let F be a finite-type surface and Q a subset of
Ends(F ). If |Q| > 5, then Sep2(F,Q) is connected, infinite-diameter, and
δ-hyperbolic, where δ can be chosen independent of S and Q. Furthermore,
there exist infinitely many elements of MCG(F ) acting on Sep2(F,Q) with
positive translation length.

Proof. — The result follows immediately from Theorem 5.2 and Lem-
ma 5.8. �

5.3. Non-singletons

Let us return to the case where Q is a collection of pairwise disjoint
closed subsets of Ends(F ). As F is finite-type, each element Q ∈ Q is a
finite collection of punctures.

Proposition 5.10. — If |Q| > 5, then Sep2(F,Q) is connected and
infinite-diameter. Furthermore, there exist infinitely many elements of
MCG(F ) acting on Sep2(F,Q) with positive translation length.

In the proof we will use the following connectivity criterion of Put-
man [33, Lemma 2.1].

Lemma 5.11 (Connectivity criterion). — Let G be a group acting on a
simplicial complex X and let S be a generating set of G. Suppose there is
a vertex v of X such that

(1) for any vertex w, G ·v intersects the connected component contain-
ing w, and

(2) v is connected to s · v for every s ∈ S±1.
Then X is connected.
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Proof of Proposition 5.10. — LetQ= {Q1, . . . , Qn}. Let C = {c1, . . . , cn}
be a collection of pairwise disjoint separating curves such that one compo-
nent of F \ ci, denoted Di, is a disk containing Qi. Let a ∈ Sep2(F,Q) be
a curve that bounds a pair of pants with c1 and c2.

Note that the assumption |Q| > 5 is necessary: if the genus of F is 0
and |Q| = 4, then no two homotopically distinct curves a and b contained
in F \

⋃n
i=1Di are disjoint, so we need to modify the adjacency relation

(as suggested in the beginning of the section) to get a connected graph. If
|Q| 6 3, the graph is empty.
If F has positive genus, the Dehn twists about the simple closed curves

shown in Figure 5.1 generate the pure mapping class group PMCG(F ) [16,
Corollary 4.16]. If F has genus-zero and p punctures, we can obtain F

by deleting the vertices of a convex p-gon in R2 ∪ {∞}. The pure map-
ping class group is then generated by Dehn twists about the simple closed
curves obtained as boundaries of regular neighborhoods of the sides and
the diagonals of the polygon [28, Theorem 4.10]. A standard classification
of surfaces argument guarantees we can choose generators of PMCG(F )
such that each Dehn twist in the generating set fixes all but at most one of
the curves in C. If t is a Dehn twist in our generating set, then there exists
b ∈ Sep2(F,Q) disjoint from a and fixed by t, so a and t(a) have distance
at most two.
Next, we claim that for every element b ∈ Sep2(F,Q) there exists g ∈

PMCG(S) such that there exists a path between b and g(a) in Sep2(F,Q).
The PMCG(F )-orbit of b is determined by the genus of a component of F \b
and the partition b gives of Ends(F ). Therefore, there exists h ∈ PMCG(F )
such that h(b) is contained in Σ = F \

⋃
Di. By Theorem 5.9, Sep2(Σ, C)

is connected. As Sep2(Σ, C) is a subgraph of Sep2(F,Q), there is a path
connecting a and h(b). By taking g = h−1, we’ve proved the claim, which
guarantees Sep2(F,Q) is connected by Lemma 5.11.
As in the proof of Theorem 5.2, we see that any pseudo-Anosov element

of PMCG(F ) acts on Sep2(F,Q) with positive translation length. �

Given the statement of Theorem 5.9, it natural to ask:

Question 5.12. — Is Sep2(F,Q) Gromov hyperbolic?

6. Quasi-retracts

In [2], the authors prove a particular induced subgraph of the arc graph
of a surface with punctures is hyperbolic, which generalizes a result of
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Bavard [4]. Their proof is an elegant use of the fact that arc graphs of
finite-type surfaces are uniformly hyperbolic [25]. The goal of this section
is to abstract their argument for general use.

6.1. Quasi-retracts

Given a set X, let P(X) be the power set of X. For a geodesic metric
space (X, dX) and a path-connected subspace Y ⊂ X, let dY be the induced
path metric on Y (that is, the distance between two points in Y is the
infimum of the dX -lengths of paths in Y between the two points).

Definition 6.1. — Let (X, d) be a geodesic metric space and let Y ⊂ X
be path-connected. A function r : X → P(Y ) \ {∅} is an (A,B)-quasi-
retract for A,B > 0 if:

• diam(r(x)) 6 A for all x ∈ X,
• dY (r(x), r(x′)) 6 B whenever dX(x, x′) 6 1, and
• r(y) = {y} for all y ∈ Y .

If Y is a (A,B)-quasi-retract for some A,B, then we say Y is a quasi-retract
of X.

Similar notions (in particular that of a coarsely Lipschitz retract) appear
in the literature (see for instance [32]); however, the above definition is
better suited to our setting.

It follows easily from the definition that:

Lemma 6.2. — If Y is an (A,B)-quasi-retract of X, then the inclusion
Y ↪→ X is a (2A+B, 0)-quasi-isometry.

As a consequence, we get the following.

Corollary 6.3. — Let Y be a quasi-retract of X. If Y has infinite
diameter, then so does X.

We now want to describe a criterion for a space to be Gromov hyperbolic.
We will need the following definition.

Definition 6.4. — Let (X, dX) be a geodesic metric space. A cover Y
of X is δ-hyperbolic if

(1) each Y ∈ Y is path-connected subspace of X,
(2) there exists δ > 0 such that each element Y ∈ Y is δ-hyperbolic

(with respect to the induced path metric), and
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(3) for any geodesic triangle T contained in X, there exists Y ∈ Y
containing T .

With this definition at hand, we are ready to state a criterion for hyper-
bolicity.

Lemma 6.5. — If a geodesic metric space admits a δ-hyperbolic cover,
then it is δ-hyperbolic.

Proof. — Let X be a geodesic metric space with δ-hyperbolic cover Y.
Let T be a geodesic triangle in X and let Y ∈ Y such that T ⊂ Y . It
follows that T is geodesic in Y implying it is δ-slim. As the inclusion Y ↪→
X is distance non-increasing, T is δ-slim in X. It follows that X is δ-
hyperbolic. �

Motivated by the results in [3], we point out the following observation:

Lemma 6.6. — Let (X, dX) be a geodesic metric space. Suppose there
exists a cover Y of X by quasi-retracts of X satisfying:

(1) the elements of Y are uniformly quasi-retracts of X, i.e. there exists
constants A,B > 0 such that each Y ∈ Y is an (A,B)-quasi-retract
of X,

(2) for any geodesic triangle T contained in X, there exists Y ∈ Y
containing T .

Then X is δ-hyperbolic if and only if each element of Y is δ-hyperbolic.

Proof. — If X is hyperbolic, then each Y ∈ Y is quasi-isometrically em-
bedded with the quasi-isometry constants being independent of Y . There-
fore, the elements of Y ∈ Y are uniformly hyperbolic. On the other hand,
if the elements of Y are δ-hyperbolic, then Y is a δ-hyperbolic cover of X.
It follows from Lemma 6.5 that X is δ-hyperbolic. �

6.2. Witnesses

An important notion for studying the geometry of subgraphs of the curve
graph (introduced in [30]) is that of a witness(1) . In order to define wit-
nesses, we first need the notion of subsurface projection.

Definition 6.7. — Let X be a non-annular(2) essential subsurface of
S. The subsurface projection πX : C(S)→ P(C(X)) is given by:

(1)A witness was originally referred to as a hole; this renaming was recommended by
Saul Schleimer.
(2)The definition can be modified to include the case of annuli; however, it is not needed
here.
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• πX(a) = {a} if a ⊂ X,
• πX(a) = ∅ if a ⊂ S \X,
• πX(a) is the set of curves that can realized as a boundary of a
regular neighborhood of α ∪ ∂X, where α is a representative of a
intersecting ∂X minimally.

Definition 6.8. — Let S be a surface and Γ a subgraph of C(S). A
witness for Γ is a subsurface X ⊂ S such that every vertex in Γ intersects
X nontrivially (that is, for every a ∈ Γ the projection πX(a) is nonempty).
A witness X is ideal if the subsurface projection Γ → P(C(X)) \ {∅} is a
quasi-retract.

7. Theorem 1.8 for infinite-type surface

We will now finish the proof of Theorem 1.8. For the entirety of this
section, let S be an infinite-type surface and let P = {P1, . . . , Pn} be a
finite collection of pairwise disjoint closed subsets of Ends(S) with n > 5.

Lemma 7.1. — Sep2(S,P) is connected.

Proof. — Let a, b be non-adjacent elements of Sep2(S,P) and let F ⊂
S be the surface that they fill. As a, b are compact, F is finite-type. By
possibly enlarging F , we may assume that if V is a component of S \ F ,
then V ∗ ⊂ Ends(S) intersects at most one of the Pi. To see the existence of
this enlargement, observe that there exist pairwise disjoint clopen subsets
Ui of Ends(S) such that Pi ⊂ Ui. By intersecting V ∗ with Ui, we see
there is a compact surface F ′ ⊃ F and a component V ′ of S \ F ′ with
(V ′)∗ = V ∗ ∩ Ui; by construction, (V ′)∗ ∩ Uj = ∅ for j 6= i. Repeating this
with every component of S \ F yields the desired enlargement.

For each i ∈ {1, . . . , n}, define Vi to be the collection of components of
S \ F satisfying V ∈ Vi if and only if V ∗ ∩ Pi 6= ∅. We then set

Qi =
⋃
V ∈Vi

{c : c is a component of ∂V }

and Q = {Q1, . . . , Qn}. By Proposition 5.10, Sep2(F,Q) is a connected
subgraph of Sep2(S,P) containing both a and b yielding the result. �

Lemma 7.2. — There exists a compact ideal witness for Sep2(S,P) with
|P| boundary components.
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S

F

Figure 7.1. The subsurface F is an ideal witness for Sep2(S,Ends(S)).

Proof. — As Ends(S) is a normal topological space (i.e. it is T4), we can
find pairwise disjoint open sets Ui containing Pi for 1 6 i 6 n. Further-
more, as Ends(S) is totally disconnected, we may assume {Ui} is a cover
of Ends(S). We can then choose separating (possibly peripheral) simple
closed curves ci such there is a component Vi of S \ ci with Ui = V ∗i .

Now, as {Ui} is a finite cover of Ends(S), we must have that F = S\
⋃
Vi

is a compact subsurface. By possibly enlarging the Vi, we may suppose that
genus(F ) = 0 (see Figure 7.1 for an example).
We claim that F is an ideal witness for Sep2(S,P). Let c ∈ Sep2(S,P)

and suppose it is disjoint from F . It follows there is a component V of
S \ c containing F ; hence, V ∗ contains at least |P| − 1 of the sets in P, a
contradiction. We now have that F is a witness; it is left to show that it is
ideal.
Observe that C(F ) is a subgraph of Sep2(S,P). It follows that the stan-

dard subsurface projection πF : Sep2(S,P) → P(C(F )) is a quasi-retract.
In particular, the subsurface projections of two disjoint curves have bounded
intersection number and hence their distance is bounded (see [29, Lem-
ma 2.1]). This establishes that F is an ideal witness. �

Corollary 7.3. — Sep2(S, P ) is infinite diameter. Furthermore, there
exist infinitely many elements of MCG(S) acting on Sep2(S,P) with posi-
tive translation length.

Proof. — Let F be the ideal witness constructed in Lemma 7.2. Then
Lemma 6.2 implies C(F ) is quasi-isometrically embedded in Sep2(S,P).
In particular, Sep2(S,P) is infinite-diameter and every pseudo-Anosov ele-
ment in PMCG(F ) ⊂ PMCG(S) acts on Sep2(S,P) with positive transla-
tion length. �
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Let us now assume that every set in P is a singleton and let P ⊂ Ends(S)
be the union of these singletons.

Lemma 7.4. — Sep2(S, P ) is δ-hyperbolic, where δ can be chosen inde-
pendently of S and P .

Proof. — Let F be the family of all finite-type surfaces F ⊂ S such that
the ends of each component of S \ F contains at most one point of P .
Observe that F is actually a cover of S. For F ∈ F , let WF be the com-
ponents of ∂F that partition P . Note that |WF | = |P | and Sep2(F,WF ) ⊂
Sep2(S, P ). Given a triangle T ⊂ Sep2(S, P ) there exists F ∈ F such that
T ⊂ Sep2(F,WF ). This fact along with Theorem 5.9 implies there exists
δ such that {Sep2(F,WF )}F∈F is a δ-hyperbolic cover of Sep2(S, P ). The
result follows by applying Lemma 6.5. �

8. Nonseparating curve graphs

The results in this section are not new (see [3, 34]); however, for complete-
ness we provide proofs. Let S be a finite-genus surface with genus(S) > 0
and let NonSep(S) be the induced subgraph of C(S) on the set of non-
separating curves. If genus(S) = 1 we modify the adjacency relation to
intersecting once.

Lemma 8.1. — If F ⊂ S is a finite-type surface with genus(F ) =
genus(S), then the inclusion i : NonSep(F ) ↪→ NonSep(S) is an isometric
embedding.

Proof. — The components of S \ F are punctured disks. By forgetting
all but one puncture in each of these components, we obtain a natural
simplicial map

pF : NonSep(S)→ NonSep(F ).
It is clear that both pF and i are 1-Lipschitz. Moreover, pF ◦i is the identity,
so i is an isometric embedding. �

Proposition 8.2. — Let S be an infinite-type genus-g surface with
0 < g < ∞, then NonSep(S) is hyperbolic if and only if all NonSep(Sg,p)
are δ-hyperbolic with δ independent of p.

Proof. — Recall that from the viewpoint of NonSep(Sg,p) punctures and
boundary components are interchangeable. Let Y denote the collection of
genus-g finite-type subsurfaces of S. Note that Y covers NonSep(S) and
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there is an element NonSep(F ) ∈ Y such that F has p boundary compo-
nents for every p ∈ Z+.
For each NonSep(F ) ∈ Y, the map pF from Lemma 8.1 is a (0,1)-quasi-

retract. Further, the finite collection of vertices of a geodesic triangle in
NonSep(S) fill a finite-type surface, which can be enlarged to sit in Y.
This shows that Y satisfies the conditions of Lemma 6.6 and the result
follows. �

Corollary 8.3. — If genus(S) is positive and finite, NonSep(S) is
connected, infinite-diameter and there are infinitely many elements of
MCG(S) acting on NonSep(S) with positive translation length. Further-
more, it is δ-hyperbolic, for δ independent of S.

Proof. — If S has finite-type, then NonSep(S) is connected (see [16,
Theorem 4.4]) and infinite-diameter (as is every mapping class group in-
variant subgraph of C(S)). Let F ⊂ S be finite-type with genus(F ) =
genus(S), then NonSep(F ) is isometrically embedded in NonSep(S) by
Lemma 8.1. It follows that NonSep(S) is infinite-diameter and that any
pseudo-Anosov supported in F acts with positive translation length. Fur-
ther, as any two elements of NonSep(S) fill a finite-type surface, the con-
nectedness of NonSep(S) follows from the finite-type case. If genus(S) > 1,
using Proposition 8.2 and Rasmussen’s work [34] we get uniform hyperbol-
icity. �

9. Low-index cases

As mentioned in the introduction, having finite-invariance between two
and three does not determine whether S admits a connected graph consist-
ing of curves on which the mapping class group acts with infinite-diameter
orbits. In this section we present examples of surfaces that do admit such
graphs and of surfaces that do not. In the case of f = 1, we conjecture:

Conjecture 9.1. — If S is infinite type and f(S) = 1, then there does
not exist a graph consisting of curves on S with an infinite diameter orbit
of MCG(S).

We call the surface with no punctures and exactly three ends accumu-
lated by genus the tripod surface. Since any permutation of the three ends
can be realized by a mapping class, the only collection of subsets of the
space of ends which is MCG(S)-invariant (as in Definition 1.6) is the set
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of the three singletons. As these are closed and proper subsets, we get that
the tripod surface has f = 3.
The spotted Loch Ness monster surface will be the surface with ex-

actly one end accumulated by genus and a sequence of isolated punctures
converging to the nonplanar end. Its space of ends is a sequence of iso-
lated points (the punctures) converging to the unique end accumulated by
genus. So the only closed proper subset of the space of ends is the singleton
formed by the end accumulated by genus, which is fixed by the mapping
class group. This implies that the spotted Loch Ness monster has f = 1.

Figure 9.1. The spotted Loch Ness monster surface (left) and the tri-
pod surface (right).

Proposition 9.2. — Suppose S is the spotted Loch Ness monster sur-
face (f = 1), the plane minus a Cantor set (f = 2), or the tripod surface
(f = 3). Then any connected graph Γ = Γ(S) consisting of curves with an
action of MCG(S) has finite-diameter orbits.

To see that the plane minus a Cantor set has f = 2, note that the Cantor
set of punctures (denoted by C) and the isolated puncture (denoted by∞)
are closed in the space of ends. Furthermore, any two punctures in C can
be permuted by a mapping class, so no proper subset of it can be part
of a MCG(S)-invariant set. The isolated puncture instead is fixed by the
mapping class group, so {C, {∞}} is MCG(S)-invariant.

Remark 9.3. — The plane minus a Cantor set is the surface considered
by Bavard in [4]. In particular, it admits a connected induced subgraph
of the arc graph on which the mapping class group acts with unbounded
orbits. This shows that graphs consisting of arcs might be better suited for
some low-index cases.

Proof of Proposition 9.2. — We rely again on Propositions 4.1 and 4.2.
Indeed, if Γ contains either a nonseparating curve or a curve cutting off a
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finite-type surface, the conclusion follows from Proposition 4.2. This covers
all cases if S is the spotted Loch Ness monster. If S is the tripod surface, Γ
could contain a curve c which is separating, but does not cut off a finite-type
subsurface. In this case, we apply Proposition 4.1 with

V = {(a, b) : i(a, b) = 0 and S \ (a ∪ b) has no finite-type component}.

Since |Ends(S)| = 3, there is a unique mapping class group orbit of pairs in
V, and if a pair a, b ∈ MCG(S)·c is not in V, there is a curve d ∈ MCG(S)·c
such that (a, d) and (b, d) belong to V (because a and b fill some finite-type
subsurface, so we can choose some curve d far away that does not bound a
finite-type subsurface with a ∪ b).
If S is the plane minus a Cantor set, we apply Proposition 4.1 with

V = {(a, b) : i(a, b) = 0}.

Note that there is a unique mapping class group orbit of curves on S, as the
complement of each curve has two components, one being homeomorphic
to the open disk minus a Cantor set and the other the open annulus minus
a Cantor set. Furthermore, there are two mapping class group orbits of
pairs in V: for (a, b) ∈ V, either S \ a ∪ b is two disks minus a Cantor set
and a once-punctured annulus or it is two disks minus a Cantor set and a
once-punctured annulus minus a Cantor set. Since for any two intersecting
curves a, b there is a component of S \ a ∪ b containing a Cantor set, there
is a curve d disjoint from both a and b. �

On the other hand, the surface with no punctures and exactly two ends
accumulated by genus (Jacob’s ladder surface) has f = 2 and we can show
that it admits a graph consisting of curves with a good action of the map-
ping class group. More precisely, G(S) will be the graph whose vertices
correspond to curves separating the two non-planar ends, and where two
curves are adjacent if they are disjoint and they cobound a genus one sub-
surface.

Lemma 9.4. — G(S) is connected and has infinite-diameter orbits.

Proof. — Consider a, b ∈ G(S). If they are disjoint, then S \ (a ∪ b) has
three components. The component whose boundary consists of both a and
b is finite type, so it has some finite genus k. It is then easy to construct a
path between a and b of length k.
If instead they intersect, then we can choose a curve c ∈ G(S) which is

contained in the complement of the finite-type surface filled by a and b. As
this is disjoint from both a and b, it is connected to both, so a and b are
connected too.
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Figure 9.2. The unbounded orbit of G′(S) on the once-punctured Ja-
cob’s ladder surface S

To show that it has infinite-diameter orbits, note first that if two curves
bound a genus k subsurface, then they are at distance at most k. We want
to show their distance is exactly k. Consider a path a = c0, c1, . . . , cm = b.
The union of the ci is contained in a finite-type subsurface of S, so there
exist d ∈ G(S) such that all ci are in the same connected component of
S \ d. Let gi be the genus of the surface bounded by ci and d. At every
step, gi can change by at most one and |g0−gm| = k. It follows that m > k.
The Jacob’s ladder surface is a cyclic cover of the genus-2 surface. Let τ

denote deck transformation generating the deck group. Note that τ can be
viewed as a translation (similar to Figure 9.3). This shows that τ acts on
G(S) with translation length 1. �

Remark 9.5. — Let S be obtained by puncturing the Jacob’s ladder sur-
face in a single point, then f = 3. If we define G′(S) in the analogous way,
vertices correspond to separating curves separating the nonplanar ends and
adjacency denotes cobounding a genus-one subsurface (either punctured or
not), then Lemma 9.4 holds for G′(S) with the same proof. The infinite-
diameter orbit is shown in Figure 9.2.

Proposition 9.6. — The graph G(S) is not Gromov hyperbolic.

Proof. — Fix K >> 0 and choose a compact genus-K surface Σ ⊂ S

with two boundary components, denoted a and b, each contained in G(S)
(see the surface cobounded by a and b in Figure 9.3).

c2a = c0 b = c5c1 c3 c4

Figure 9.3. A geodesic between a and b in G(S).

Observe that for any x, y ∈ G(S) contained in Σ

dG(Σ)(x, y) > dC(Σ)(x, y),

where dC(Σ) is the distance in C(Σ) and dG(Σ) is the distance in G(Σ).
Choose a geodesic γ = (a = c0, c1, . . . , cK = b) in G(S) (notice that the ci
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are contained in Σ). Let f ∈ MCG(Σ) be a pseudo-Anosov element. Since
f acts loxodromically on C(Σ), there exists k ∈ Z such that

dC(Σ)(fk(ci), cj) > K

for all i, j ∈ {1, . . . ,K − 1}. Set c = cbK/2c. We claim that dC(Σ)(γ, c) is on
the order of K.
For every j ∈ {1, . . . ,K − 1} there is a path connecting c and fk(cj) of

length at most K going through either a or b which travels along γ and
fk(γ).
Fix j ∈ {1, 2, . . . ,K − 1} and let η = (c = e0, e1, . . . , en = fk(cj)) be

a geodesic in G(S). Suppose every element of η intersects Σ, then we can
use subsurface projection to get a path in C(Σ) whose length is on the
order of n; in particular, n must be on the order of K by our assumptions.
Finally, suppose that η contains a curve e disjoint from Σ. But, then either
dG(S)(e, c) > dG(S)(a, c) or dG(S)(e, c) > dG(S)(b, c) implying η has length
greater than bK2 c.
Repeating this process for every such K, we see that geodesics between

two points can be arbitrarily far apart. It follows that G(S) cannot be
Gromov hyperbolic. �

Remark 9.7. — Brian Bowditch [9] proved, using connections with three-
manifolds, that the graph G(S) has geometric rank at least two, that is,
there is a quasi-isometric embedding of Z2 into G(S).

Appendix A. The ends

The underlying motivation for the constructions in this paper come from
investigating the structure of the space of ends. This structure does not
directly show up in our proofs, but given its importance to our work, we
explore the topology of the space of ends in this appendix. We hope it will
be helpful to others thinking about infinite-type surfaces.

Note first that Richards [35, Theorem 2] proved that given any pair
(X,Y ) of compact, second countable, totally disconnected spaces satisfying
Y ⊂ X there exists a surface S with

(Ends(S),A G (S)) = (X,Y ).

The discussion here can mostly be traced back to the Cantor–Bendixson
derivative. We refer the reader to [26] for background on and proofs of the
named theorems about Cantor sets that appear below.
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We will discuss this derivative in the context of an infinite-type surface S.
It follows from Proposition 3.3 and Brouwer’s classification of the Cantor
set that Ends(S) is homeomorphic to a closed subset of the Cantor set.
For the sequel, let C denote the Cantor set and let E ⊂ C be a closed
subset. Note that every closed subset of C is totally disconnected, second
countable, and compact and can therefore be realized as Ends(S) for some
S (this is again [35, Theorem 2]).
Given a topological space X, let X ′ denote the set of limit points of

X. Using transfinite induction, the Cantor–Bendixson derivatives of E are
defined as follows:

• E(0) = E,
• E(α) =

(
E(α−1))′ for any successor ordinal α,

• E(α) =
⋂
β<αE

(β) for any limit ordinal α.
Observe that each Cantor–Bendixson derivative of E is invariant under
Homeo(E).
Let us suppose that E is countable. Using the Cantor–Bendixson deriv-

ative, Mazurkiewicz–Sierpiński [31] gave a complete classification of count-
able compact Hausdorff spaces in terms of ordinals. In particular, E is
homeomorphic to ωαn + 1, where ω is the smallest infinite ordinal, α is a
countable ordinal, and n ∈ Z+. Here, we abused notation and conflated an
ordinal α with the ordinal space consisting of all ordinals less than α en-
dowed with the order topology. The pair (α, n) is called the characteristic
system of E.

If E has characteristic system (α, n), then
• |E(β)| =∞ if β < α,
• |E(α)| = n, and
• |E(β)| = 0 if β > α

Lemma A.1. — Let S be surface satisfying eitherAG(S) = ∅ orAG(S) =
Ends(S). If Ends(S) is countable with characteristic system (α, n) and
contains at least two points, then f(S) = n.

Proof. — Let E = Ends(S) and let E(α) = {a1, . . . , an}. Observe that
E(α) is an invariant set so f(S) > n.

Now let P = {P1, . . . Pm} be an invariant collection of pairwise disjoint
proper closed subsets of E. Let β < α and let x ∈ E(β). If there exists
i ∈ {1, . . .m} such that x ∈ Pi, then

E(β) ⊂
m⋃
i=1

Pi
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as E(β) is homogeneous. Moreover, as β < α, we know |E(β)| is infinite
and therefore there exists jβ ∈ {1, . . . ,m} such that |Pjβ ∩E(β)| is infinite.
As Pjβ is compact and infinite, it must have a limit point; in particular,
Pjβ ∩ E(β+1) is nonempty.
For k ∈ N, let βk = β + k. Repeating the above argument, we see there

exists jk ∈ {1, . . . ,m} such that |Pjk∩E(βk)| is infinite. Another application
of the pigeonhole principle implies that there exists j ∈ {1, . . . ,m} such
that |Pj ∩E(βk)| is infinite for infinitely many values of k. As Pj ∩E(βk) is
compact and Pj ∩ E(βk) ⊃ Pj ∩ E(βk+1) for all k ∈ N, we see that⋂

k∈N
Pj ∩ E(βk) 6= ∅.

In particular, if δ = supk{βk}, then Pj ∩ E(δ) is nonempty.
This inductive process guarantees that for each l ∈ {1, . . . n} there exists

jl ∈ {1, . . . ,m} such that al ∈ Pjl .
Observe that if the collection P ′ = P\{Pj1 , . . . , Pjn} is nonempty, then it

must also be a finite invariant collection of closed proper subsets. The same
argument as above then implies there exists P ∈ P ′ containing an element
of E(α), but this is a contradiction since P∩Pjl = ∅ for all l ∈ {1, . . . , n}. We
can conclude that P ′ is empty and hence m 6 n; therefore, f(S) 6 n. �

Let us now assume that E is uncountable. It is an immediate corollary to
the Cantor–Bendixson theorem and Brouwer’s classification of the Cantor
set that E = C0 ∪ Q0, where C0 ∼= C, Q0 is homeomorphic to an open
countable subset of C, and C0 ∩Q0 = ∅. Also observe that ∂Q0 ⊂ C0 is a
closed subset of C. Reiterating the above discussion, we can build sets Cα
and Qα inductively for a cardinal α > 1 as follows:

• if α is a successor cardinal, set ∂Qα−1 = Cα tQα.
• if α is a limit cardinal, set

⋂
β<α Cβ = Cα tQα.

Observe that for each ordinal α, the sets Cα, ∂Qα, and Q̄α are closed in-
variant subsets of E. The point here is that Homeo(E)-invariant sets can
be buried deep in the Cantor set. This leads us to our last proposition
characterizing f = 0 surfaces.

Proposition A.2. — If S is an infinite-type surface with f(S) = 0, then
S is one of:

(1) the Cantor tree surface,
(2) the blooming Cantor tree surface, or
(3) the Loch Ness monster surface.
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Proof. — If S has both planar ends and ends accumulated by genus, then
AG(S) is a proper closed invariant subset and f(S) > 0. We can therefore
assume that either AG(S) = ∅ or AG(S) = Ends(S).

First suppose that Ends(S) is countable and let (α, n) be its charac-
teristic system. By Lemma A.1, if Ends(S) has at least two points, then
f(S) = n > 1. It follows that Ends(S) must be a single point and therefore
S must be the one-ended infinite-genus surface and thus homeomorphic to
the Loch Ness monster surface.
Now assume that Ends(S) is uncountable, so Ends(S) = C0 tQ0, where

C0 is a Cantor set and Q0 is countable. If Q0 is nonempty, then C0 is a
closed invariant proper subset and f(S) > 0. It follows that Q0 is empty
and Ends(S) is a Cantor set. By the definition of f, the genus of S is either
0 or infinite. As all the ends of S are either planar or accumulated by genus,
we can conclude that S is either the Cantor tree surface or the blooming
Cantor tree surface, respectively. �
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