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TWISTED EIGENVARIETIES AND SELF-DUAL
REPRESENTATIONS

by Zhengyu XIANG

Abstract. — For a reductive group G and a finite order Cartan-type auto-
morphism ι of G, we construct an eigenvariety parameterizing ι-invariant cuspidal
Hecke eigensystems of G. In particular, for G = Gln, we prove, any self-dual cus-
pidal Hecke eigensystem can be deformed in a p-adic family of self-dual cuspidal
Hecke eigensystems containing a Zariski dense subset of classical points.
Résumé. — Pour un groupe réductif G et un automorphisme d’ordre fini ι de

type Cartan de G nous construisons une variété propre paramétrant les systèmes
propres de Hecke automorphes cuspidaux ι-invariants de G. En particulier, pour
G = Gln, on prouve que chaque système propre de Hecke cuspidale autoduale
de pente finie peut être déformé dans une famille p-adique de sytèmes propres de
Hecke cuspidaux autoduaux contenant un sous-ensemble Zariski-dense de points
classiques.

1. Introduction

Let G be a reductive group over Q, consider the locally symmetric space
SG(Kf ) associated to G and a neat open compact subgroup Kf of G(Af ),
the finite adelic points of G. If T is a maximal torus of G and λ a regular
dominant algebraic weight of G with respect to T , consider Vλ, the finite
dimensional irreducible algebraic representation of G with highest weight
λ, and its dual V∨λ . There is a standard action of the Hecke algebra HG on
the cohomology spaces H∗(SG(Kf ),V∨λ(C)). An automorphic representa-
tion that can be realized in H∗(SG(Kf ),V∨λ(C)) is said of level Kf and of
cohomological weight λ.

Once fixed a prime number p and an embedding ip : Qp ↪→ C, we are in-
terested in the behavior of automorphic representations when their weights

Keywords: eigenvariety, p-adic automorphic form, self-dual representation.
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2382 Zhengyu XIANG

varying p-adically. This leads to the study of p-adic automorphic represen-
tations. For simplicity, assume G splits over Qp. Let B be a Borel subgroup
of G/Qp containing T/Qp , consider the situation Kf = KpIm, where Kp is
open compact in G(Apf ) and Im is an Iwahori subgroup of G(Qp) in a
good position with respect to the pair (B, T ). Let Hp be the p-adic Hecke
algebras of G under this setting (see Section 2.1). If π is a cuspidal automor-
phic representation of G whose cohomological weight λalg is algebraic, its
p-stabilizations are irreducible representations of Hp that can be realized
in the cohomology space H∗(SG(Kf ),V∨λ (Qp)) (refer [18, Section 4.1.9]),
where λ = λalgε is a p-adic arithmetic weight obtained by twisting λalg

with some finite order character ε of T (Zp), and Vλ is the locally algebraic
induced representation of a p-adic cell of G(Qp) from λ (see Section 2.3).
Those representations of Hp from p-stabilization are most important ex-
amples of p-adic automorphic representations, and are called classical. Let
S be the finite subset of “bad” places defined in Section 2.1, further re-
moving the information over S form Hp, we obtain a commutative algebra
RS,p, which can be identified in the center of Hp. The central character of
a classical p-adic automorphic representation defines a character of RS,p
appearing in H∗(SG(Kf ),V∨λ (Qp)) for some arithmetic p-adic weight λ. It
is called a p-adic arithmetic Hecke eigensystem of weight λ.
One is interested in interpolating the arithmetic Hecke eigensystems for

weight λ over the p-adic weight space X. For this, Ash and Stevens devel-
opped the notion of “overconvergent” cohomology, which played the role of
“overconvergent modular forms” in the classical theory of p-adic modular
forms ([4]). Concretely, for a p-adic weight λ ∈ X(Qp), there is a Qp-Fréchet
space Dλ, on which the Up operators acting as compact operaters (see Sec-
tion 2.3). This gives an action of Hp on the “overconvergent” cohomology
spaces H∗(SG(Kf ),Dλ). We call an irreducible representation of Hp (resp.
a character of RS,p) appearing in H∗(SG(Kf ),Dλ(Qp)) a p-adic overcon-
vergent automorphic representation (resp. Hecke eigensystem). According
to [4], [18, Theorem 5.4.4] and [20, Corollary 8.6], that every finite slope
arithmetic cuspidal Hecke eigensystem θ lies in a family of finite slope over-
convergent cuspidal Hecke eigensystems whose weights vary p-adical ana-
lytically. This result can be a consequence of the theory of “eigenvariety”.
An eigenvariety for group G is a rigid analytic space whose points param-
etrize finite slope overconvergent Hecke eigensystems. A large part of the
work in [4], [18] and [20] mentioned above are devoted to the construction
of eigenvarieties for different groups.
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TWISTED EIGENVARIETIES AND SELF-DUAL REPRESENTATIONS 2383

There are two motivations for this paper. The first one is about the arith-
meticity of a family of overconvergent Hecke eigensystems, that is, if the
family contains enough arithmetic Hecke eigensystems. In the language of
eigenvariety, it asks an irreducible component of an eigenvareity contain-
ing a Zariski dense subset of arithmetic points (such a component is called
arithmetic. If (modulo twisting) a Hecke eigensystem θ is not in any arith-
metic component, it is called arithmetically rigid. For a concrete definition,
see [3] or Section 7.3 below). In [3], Ash, Pollack and Stevens show that
the answer is not always positive, in particular, for G = Gl3, they make
the next conjecture:

Conjecture 1.1 (Ash–Pollack–Stevens). — Let θ be a finite slope cus-
pidal Hecke eigensystem of Gl3. If θ is not arithmetically rigid, then θ is
essentially self-dual.

In this paper, we obtain the inverse of its statement for Gln:

Theorem 1.2. — Every essentially self-dual finite slope cuspidal Hecke
eigensystem of Gln is not arithmetically rigid.

We actually work on a more general situation. Let ι be Cartan-type auto-
morphism of G such that ι stabilizes (B, T )/Qp , and consider the ι-invariant
automorphic representations (resp. overconvergent representations, Hecke
eigensystems, etc.). Let Xι be the subspace of X consisting of ι-invariant
p-adic weights (see Section 2.2), to study families of ι-invariant Hecke eigen-
systems with weights varying in Xι, we construct twisted eigenvarieties over
Xι parametrizing ι-invariant finite slope overconvergent Hecke eigensystems
(see Section 6):

Theorem 1.3 (twisted eigenvarities). — There is an eigenvariety KιKp

parameterizing ι-invariant finite slope overconvergent Hecke eigensystems
of G, that is, KιKp is a rigid analytic space such that every point y ∈
KιKp(Qp) can be viewed as a pair (λ, θ), where θ is a ι-invariant finite
slope overconvergent Hecke eigensystem of weight λ ∈ Xι(Qp). There is a
subvariety EιKp of KιKp , satisfying:

(1) For any arithmetic (λ, θ) ∈ KιKp(Qp), (λ, θ) is in EιKp(Qp) if and
only if θ is cuspidal and has a non-trivial ι-twisted Euler–Poincare
characteristic.

(2) Every irreducible component of EιKp is arithmetic, equipped with a
projection onto a Zariski dense subset of Xι.

(3) EιKp is equidimensional with the same dimension to Xι.

TOME 68 (2018), FASCICULE 6



2384 Zhengyu XIANG

In particular, if G = Gln and ι is of Cartan-type, the ι-invariance is
same to the self-duality. Then the twisted Euler–Poincare characteristic of
an (essentially) self-dual Hecke eigensystem is always non-trivial. So EιKp

parameterizes all self-dual finite slope cuspidal Hecke eigensystems (see
Section 7). In case that n = 3, this also gives some hint for Ash–Pollack–
Stevens’ conjecture, as in Theorem 7.8 and Remark 7.9 below.
Our second motivation is to develop a twisted version of Urban’s theory

of finite slope character distribution [18, Section 4.5]. A finite slope charac-
ter distribution is a morphism J : Hp → Qp which is a linear combination of
the traces of finite slope overconvergent representations. Urban proves that,
there is an eigenvariety associated to every analytic family of effective finite
slope character distributions, [18, Section 5]. This eigenvariety parameter-
izes the finite slope overconvergent Hecke eigensystems appearing in the
character distributions. However, Urban’s theory excludes many interest-
ing cases, like Gln with n > 2. The reason is, the coefficients of Urban’s
distributions are essentially given by the Euler–Poincare characteristics. So
for a group G such that G(R) does not satisfy the Harish–Chandra con-
dition, they are trivial. To avoids this issue, we introduce the notion of
“twisted” finite slope character distributions (see Section 5). Concretely,
we construct a distribution which is a linear combination of the twisted
traces of ι-invariant finite slope overconvergent representations. We show
this distribution has similar properties as Urban’s character distributions,
in particular, it gives a construction of the twisted eigenvariety Eι in the
theorem above (see Section 6).
In practice, there are two new difficulties. The first one is the lack of a

twisted version of Franke’s trace formula as in [18, Theorem 1.4.2], which
plays an essential role to cut out the cuspidal representations from the
whole cohomology. To cure this, we have to go through Franke’s theory
of Eisenstein spectral sequence ([11]), and study carefully how ι acting on
each step of Franke’s theory. This is done in Section 4, where we proves
a twisted version of Franke’s trace formula (Theorem 4.1). The second
difficulty appears during the construction of the twisted eigenvariety. Since
we consider the twisted traces, locally our twisted distributions are no
longer pseudo-representations as in [18, Section 5.3.1], so we do not have
the “second construction” as Urban did ([18, Section 5.3]). We bypass this
difficulty by borrowing the construction of the full eigenvariety in [20] to
construct a “bigger twisted eigenvariety” first and then working in this
bigger space. This is done in Section 6.3.

ANNALES DE L’INSTITUT FOURIER
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One can view Urban’s finite slope character distribution as a p-adic
analogue to Selberg’s trace formula, then our theory gives an analogue
to the twisted trace formula. In [18, Section 6], Urban gives a simplified
geometric expansion of his distribution following the work of Franke [11]
and Arthur [1]. A complete expansion as [1, (3)] can also be given. In
a consequent paper [21], we will establish a geometric expansion of our
twisted distributions as well. One can then expect a p-adic family version
of Arthur–Clozel’s comparison theory ([2]). we hope this comparison will
give a relation between eigenvarieties.

Acknowledgment. I’d like to thank Professor Eric Urban here, the base
of this work on his paper [18] is obvious. Without his help this paper will
not exist.

2. Preliminary

2.1. Notation

Throughout this paper, we fix p a rational prime number and an iden-
tification Q̂p ∼= C. Let A = AQ be the adelic ring of Q, A∞ and Af its
archimedean and finite part respectively. For any algebraic group H over
Q, put H∞ = H(A∞) and Hf = H(Af ). We also denote by H(A)1 ⊂ H(A)
the subgroup of all h ∈ H(A) with

∏
v |ξ(h)|v = 1 for all characters of H

defined over Q, where the product is running over all places of Q.
Let G be a quasi-split(1) reductive group over Q, denote by Z = ZG its

center. LetK∞ be a fixed maximal compact subgroup ofG∞, and fix a good
maximal compact subgroup K ⊂ G(A) whose archimedean component is
K∞. For every prime number l, denote by Kl an open compact subgroup of
G(Ql). Put Kf =

∏
lKl such that for almost all l 6= p, Kl to be maximal.

Denote by Kp = Kp
f =

∏
l 6=pKl and K = K∞Kf . Consider the locally

symmetric space of G associated to Kf :

(2.1) SG(Kf ) := G(Q)\G(A)/KZ∞.

Properly choose a finite set of representatives {gi}i in G(A) such that

(2.2) G(A) =
⊔
i

G(Q)×G+
∞ × giKf ,

(1)This assumption is not necessary but for the convenience of discussion only. Other-
wise, one has to use the notation as in [18, Section 1.3.1].

TOME 68 (2018), FASCICULE 6



2386 Zhengyu XIANG

where G+
∞ is the identity component of G∞. We then have

(2.3) SG(Kf ) ∼=
⊔
i

Γi \ HG,

where Γi = Γ(gi,K) is the image of giKg−1
i ∩G(Q)+ in Gad(Q) and HG =

G+
∞/K∞Z∞ ∩ G+

∞. We further assume K is neat (that is, Γi contains no
element of finite order), then SG(Kf ) is a smooth real analytic variety of
a finite dimension, say, d. We also write

(2.4) SG := lim−→
Kf

SG(Kf ).

Let T be a maximal torus of G and B a Borel subgroup of G containing
T . Let N be the unipotent radical of B, and N− its opposite. At p, we
fix a Iwahori subgroup I of G(Qp) with respect to B, this means that we
have fixed compatible integral models G,B, T ,N ,N− for G,B, T,N,N−
over Zp (according to a fixed chamber CI of the Bruhat–Tits building BL
of GQp), such that I = I1, where for any integer m > 1,

(2.5) Im = {g ∈ G(Zp) | g ∈ B(Z/pmZ) mod pm}

is the Iwahori subgroup of depth m. By Iwahori decomposition,

(2.6) Im = (Im ∩N−(Qp))T (Zp)N (Zp).

We normalize the Haar measure on G(Qp) such that the measure of I is 1.
Once fixing the Iwahori level at p, we write

(2.7) S̃G,m := lim−→
Kp
f

SG(Kp
f Im).

Now put

(2.8) T+ := {t ∈ T (Qp) | tN (Zp)t−1 ⊂ N (Zp)}

(2.9) T++ :=
{
t ∈ T+

∣∣∣∣∣ ⋂
i>1

tiN (Zp)t−i = {1}
}
,

(2.10) ∆+
m := ImT

+Im, ∆++
m := ImT

++Im,

and consider the p-adic cells

(2.11) Ωm = Im ∩N−(Qp)\Im ⊆ N−(Qp)\G(Qp).

For any g ∈ ∆+
m, write g = n−g tgn

+
g by Iwahori decomposition, then the

∗-action of ∆+
m on Ωm is defined as follow (see [4, Section 5.2] and [18,

Section 3.1.3]): Fixing a splitting ξ of the exact sequence

(2.12) 1→ T (Zp)→ T (Qp)→ T (Qp)/T (Zp)→ 1,

ANNALES DE L’INSTITUT FOURIER
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for any [x] ∈ Ω, define

(2.13) [x] ∗ g = [ξ(tg)−1xg].

As in [18, Section 3.1.2 (11)], we choose ξ so that for any algebraic character
λalg ∈ X∗(T ) and t ∈ T (Qp)

(2.14) λalg(ξ(t)) = |λalg(t)|−1
p .

The Atkin–Lehner algebra of G at p is defined by:

(2.15) Up = C∞c (∆+
m//Im,Zp) ' Zp[T+/T (Zp)],

which does not depend on the depth m. We then define the global p-adic
Hecke algebras:

(2.16) Hp := Hp(G) = C∞c (G(Apf ))⊗ Up,

and for any open compact subgroup Kp of G(Apf ), define its subalgebra of
Kp-bi-invariant functions by:

(2.17) Hp(Kp) = C∞c (Kp\G(Apf )/Kp)⊗ Up
Given t ∈ T+, denote by ut the element in Up whose image in

Zp[T+/T (Zp)] is t. The operator ut can be viewed as the double coset oper-
ator ImtIm as well. A Hecke operator f is called admissible, if f = fp ⊗ ut
and t ∈ T++. We denote by H′p the subalgebra of Hp generated by admis-
sible operators. For fixed Kp, let S be the finite set of primes l such that
Kl is not maximal, define

(2.18) RS,p := C∞c

(
G
(
AS∪{p}f

)
//KS∪{p}

)
⊗ Up

RS,p is commutative and can be identified in the center of Hp(Kp).
Throughout this paper, we assume that G has a finite order automor-

phism ι of Cartan-type, that is, at ∞, ι is of the form ad(g∞) ◦ θ, for some
g∞ ∈ G∞ and the Cartan involution θ (with respect to K∞). It is innocu-
ous to assume that the triples (B, T, Im) are stable under ι. Indeed, let
(B, T, Im) be such a triple and ψ0 the based root datum associated to it,
consider the splitting exact sequence [17, 2.14]:

(2.19) 1→ Int(G)→ Aut(G) β−→ Aut(ψ0)→ 1.

If (B, T, Im) is not stable under ι, we fix a splitting

(2.20) γ : Aut(ψ0)
∼=−→ Aut(G,B, T, {uα}) ↪→ Aut(G)

and replace ι by its image ι′ under γβ, then ι′ fixes the pair (B, T ). Since ι′
has the same image under β as ι, it differs ι by a conjugation. So ι′ is also
of Cartan-type. Since Aut(ψ0) is finite, that ι′ is of finite order. Finally,

TOME 68 (2018), FASCICULE 6



2388 Zhengyu XIANG

noticing that {uα} is the set of an arbitrary choice of nontrivial uα ∈ Uα in
each unipotent root subgroup Uα associated to the basis {α} in ψ0, we can
properly choose {uα} such that each uα corresponds to a wall of a same
chambre C in BL. C gives an Iwahori subgroup which is stable under ι′.

Further assuming that Kp
f is stable under ι, we define ι acting on the

Hecke algebra Hp(Kp) by sending f to f ι, where f ι(g) := f(gι−1) for any
g ∈ G. This is well defined since that T+ and T++ are stable under ι
by (2.8) and (2.9). Moreover, for ut ∈ Up, it can be verified directly that

(2.21) uιt = utι .

2.2. Weight spaces

2.2.1. Classical weight and co-weight

Let X∗(T ) be the set of algebraic weights of T , and X∗(T ) the set of
algebraic co-weights. There is a canonical duality pairing

(2.22) ( · , · ) : X∗(T )×X∗(T )→ Z

such that for any λ ∈ X∗(T ), µ∨ ∈ X∗(T ) and a ∈ Gm,

(2.23) λ ◦ µ∨(a) = a(λ,µ∨)

We define ι acting on X∗(T ) by sending λ to λι such that λι(t) = λ(tι−1)
for any t ∈ T , and define ι acting on X∗(T ) by sending µ∨ to (µ∨)ι such
that (µ∨)ι(a) = (µ∨(a))ι−1 for any a ∈ Gm. One can verify directly that

(2.24) (λι, (µ∨)ι) = (λ, µ∨).

2.2.2. p-adic weight space

There is a rigid space XT associated to T/Qp , such that for any field
L ⊂ Qp,

(2.25) XT (L) = Homcont(T (Zp), L×).

Since T (Zp) ∼= Zrp ×Π, with some finite group Π, that

(2.26) XT (Qp) ∼= Homqp(Π,Q
×
p )× (B1,1(Qp)◦)r.

So the underlying space of XT is finite many copies of the r-tuple open unit
ball, whose points are (continuous) p-adic weights. Put ZKp = Z(Q)

⋂
KpI

and let X := XKp ⊆ XT be the Zariski closure of the subset of p-adic

ANNALES DE L’INSTITUT FOURIER
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weights which are trivial on ZKp . The automorphism ι induces a operator
on X which sends λ to λι, where λι(t) := λ(tι−1) for any t ∈ T (Zp). Denote
by Xι the subspace of X consisting of ι-invariant weights.
Recall, for any n, there is a rigid space Tn such that for any field L ⊂ Qp,

(2.27) O(Tn/L) = An(T (Zp), L),

where An(T (Zp), L) is the space of locally n-analytic L-valued functions
on T (Zp). The natural pairing

(2.28) XT (L)× T (Zp)→ L×, (λ, t) 7→ λ(t)

induces a continuous injective homomorphism T (Zp) ↪→ O(XT )×.

Lemma 2.1. — For any affinoid subdomain U ⊆ X or Xι, there exist
a smallest integer n(U), such that for any finite extension L of Qp, every
element λ ∈ U(L) is n(U)-locally analytic. Moreover, there is a rigid analytic
map U × Tn(U) → B1,1, such that for any L, its realization at L-points is
the pairing (2.28).

It follows immediately from [18, Lemma 3.4.6].

2.3. Analytic induced modules and distribution spaces

2.3.1. Induced modules

We firstly recall necessary definitions from [18, Section 3.2] and intro-
duce varies induced modules. Let F be the splitting field for G and assume
(B, T )/F is a Borel pair contained in some minimal p-pair. For λalg ∈
X∗(T/F ), let Vλalg be the finite dimensional irreducible algebraic represen-
tation of G with highest weight λalg over F . Concretely speaking, for any
subfield F ′ ⊂ C containing F , it can be viewed as the algebraic induced
representation:

(2.29) Vλalg(F ′) = indG(F ′)
B(F ′)(λ

alg)alg.

We can identify λalg with the p-adic weight obtained by the composition

(2.30) T (Zp) ↪→ T (F ) λalg

−−→ F× ↪→ Q×p .

Given any finite extension L/Qp in Qp such that F ⊂ L (under the fixed
embedding Qp ↪→ C), let ε : T (Zp) → L× be a finite character factoring
through T (Zp/pmZp), one can consider the p-adic weight λ = λalgε, and
its m-locally analytic induction

(2.31) Vλ(L) = indG(L)
B(L)(λ)m−an.

TOME 68 (2018), FASCICULE 6
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There is a natural map

(2.32) Vλalg(L)(ε) ↪→ Vλ(L).

The ∗-action described in Section 2.1 induces an action of ∆+ on Vλ(L),
via the right ∗-translation.
Now for any λ ∈ X(L), let Aλ(L) be the space of locally L-analytic

functions f on I such that

(2.33) f(n−tg) = λ(t)f(g),

where, as in (2.6), n− ∈ I ∩N−(Qp), t ∈ T (Zp) and g ∈ I. Aλ(L) can be
viewed as a subspace of A(Ω1, L), the space of locally L-analytic functions
on Ω1: let T (Zp) act on A(Ω1, L) by the natural translation, then

(2.34) Aλ(L) = A(Ω1, L)[λ] := {φ ∈ A(Ω1, L) | tφ = λ(t)φ}

The ∗-action ∆+ on A(Ω1, L) is naturally defined, it commutes with the
translation of T (Zp). So the ∗-action of ∆+ is well defined on Aλ(L). For
g ∈ ∆+ and φ ∈ Aλ(L), we define

(2.35) g ∗ φ([x]) := φ([x] ∗ g).

Now define the L-valued distribution space

(2.36) Dλ(L) := Homcont(Aλ(L), L),

the continuous dual of Aλ(L). The ∗-action of ∆+ on Dλ(L) is natu-
rally defined. A deatiled study of Aλ(L) and Dλ(L) can be found in [18,
Lemma 3.2.8], in particular, we have next proposition:

Proposition 2.2. — Dλ(L) is a compact Fréchet space over L. If δ ∈
∆++, then the ∗-action of δ defines a compact operator on Dλ(L).

Remark 2.3. — The theory of compact operators on orthonormalizable
(p-adic) Banach spaces is originally due to Serre and generalized by Cole-
man [10]. The theory is generalized to compact Fréchet spaces by Urban
in [18, section 2], where he shows that most results of compact operators
on Banach spaces still hold for compact Fréchet spaces.

For λ ∈ Xι, ι acts on Vλ, Vλ and Aλ. Concretely, let f be a function
on N−(L)\G(L), define f ι(g) = f(gι−1). If f is in one of those induced
modules, f ι(bg) = f(bι−1

gι
−1) = λ(tι−1)f(gι−1) = λ(t)f ι(g), for any b =

tn ∈ B. So Vλ, Vλ and Aλ are stable under ι. We let ι act on Dλ via duality.

ANNALES DE L’INSTITUT FOURIER
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2.3.2. Analytic family of induced modules

Let U be an affinoid subdomain of X or Xι. Fix n > n(U). There is a
rigid space (Ωm)rig

n such that O((Ωm)rig
n /L) = An(Ωm, L) for any L ⊂ Qp,

where An(Ωm, L) is the space of locally L-analytic functions on Ωm with
local analytic radius p−n. Keeping this identity, let AU,n(L) be the ring of
rigid analytic L-valued functions on U× (Ω1)rig

n such that

(2.37) f(λ, [tn]) = λ(t)f(λ, [n])

for any λ ∈ U(L), t ∈ T (Zp) and n ∈ N (Zp). Here we view f(λ,−) as a
function in An(Ωm, L). This implies that

(2.38) AU,n = O(U)⊗̂An(N (Zp)).

In particular, AU,n is an O(U)-orthonormalizable Banach space. Similar
to (2.34), since

(2.39) AU,n = {f ∈ O((Ω1)rig
n )⊗̂O(U) | t(f ⊗ 1) = f ⊗ t, t ∈ T (Zp)rig

n },

that the ∗-action of ∆+ is well defined on AU,n.
Now define

(2.40) AU :=
⋃

n>n(U)

AU,n,

and let D′U,n := HomO(U)(AU,n,O(U)) be the continuous O(U)-dual of
AU,n. There is a canonical injective map

(2.41) O(U)⊗̂LDn(N (Zp), L)→ D′U,n.

Let DU,n be the image of this map, define

(2.42) DU := lim←−DU,n.

AU and DU are ∆+-modules with the ∗-action. Since the inclusions AU,n ⊂
AU,n+1 are completely continuous, DU is a Fréchet space over O(U).

Proposition 2.4. — Notation as above, we have
(1) AU ⊗λ L ∼= Aλ(L) and DU ⊗λ L ∼= Dλ(L) via specialization.
(2) If δ ∈ ∆++, the ∗-action of δ gives a compact operator on the
O(U)-projective compact Fréchet space DU.

All of these results can be found in [18, section 3.4].

Remark 2.5. — We make some remarks here:
(1) The ∗-action of ∆+ on D is compatible with the natural action of

I on it.
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(2) The ∗-actions of ∆+ on V∨λalg(L), V∨λ (L), Dλ(L) and DU(L) are
right action, we translate it into a left action by defining for every
δ ∈ ∆+

δ∗ := ∗δ−1

(3) For Kf = KpI, we view D as a Kf -module via the projection
Kf → I.

3. Twisted actions on resolutions and cohomology spaces

3.1. Cohomology spaces and resolutions

We firstly recall some standard results of the cohomology spaces on which
we work later. Let M be a (G(Q),K)-module on which ZK acts trivially.
M defines a local system on SG(Kf ), which is denoted by M as well. One
is interested in the cohomology space H∗(SG(Kf ),M). In this paper, M
is one of V∨λalg(L), V∨λ (L), Dλ(L) and DU(L), where the upper index ∨
indicates the continuous dual space.
There are two equivalent ways to define the cohomology. Let SG(Kf ) =

SG/Kf be the Borel–Serre compactification of the real manifold SG(Kf ),
where SG = G(Q)\G(Af ) × HG and HG is a contractible real manifold
with corners. There is a canonical projection:

(3.1) π : SG → SG(Kf ),

which extends the natural projection π : SG → SG(Kf ).
Fix a finite triangulation of SG(Kf ) and pull it back to SG. Let C∗(Kf )

be the corresponding chain complex, that is, Cq(Kf ) is the free Z-module
over the set of q-dimensional simplexes of the pull-back triangulation.
C∗(Kf ) admits a right Kf -action, and Cq(Kf ) is a free right Z[Kf ]-module
of finite rank. We define

(3.2) RΓ∗(Kf ,M) := HomKf (C∗(Kf ),M),

then RΓj(Kf ,M) is isomorphic to finitely many copies of M and

(3.3) hj(RΓ∗(Kf ,M)) = Hj(SG(Kf ),M).

Another way to define the cohomology is using the M -valued de Rham
complex Ω∗(SG(Kf ),M). The natural duality between Ω∗(SG(Kf )) and
C∗(Kf ) implies that the two definitions are coincident.
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Remark 3.1. — As summarized in [18, Section 1.2], for a (G(Q),K)-
module M , there are two equivalent ways to define the local system M

on SG(Kf ), with respect to the Kf -module structure and to the G(Q)-
module structure respectively. So are the two definitions of cohomology
space above.

3.1.1. Functoriality

There is a functoriality for RΓ∗(Kf ,M). Let ϕ : K ′f → Kf be a group
homomorphism and ϕ# : M → M ′ a homomorphism between a Kf -
module M and a K ′f -module M ′, such that ϕ#(ϕ(k′)m) = k′ϕ#(m) for
any k′ ∈ K ′f and m ∈ M . The pair (ϕ,ϕ#) then induces a morphism
ϕ∗ : RΓ∗(Kf ,M)→ RΓ∗(K ′f ,M ′) up to homotopy, see [18, Section 4.2.5].

3.1.2. Hecke operators on resolution and cohomology

Apply the functoriality, as in [18, Section 4.2], f = fp ⊗ ut ∈ Hp(Kp)
defines a morphism RΓ(t) : RΓ∗(Kf ,M) → RΓ∗(Kf ,M) by the composi-
tion:

RΓ∗(Kf ,M)→ RΓ∗(tKf t
−1,M)→ RΓ∗(Kf∩tKf t

−1,M)→ RΓ∗(Kf ,M)

where the first map is given by the pair (ad(t−1),m 7→ t ∗m), the second
is by the restriction map from Kf ∩ tKf t

−1 to tKf t
−1, and the last one is

given by the corestriction as writing

(3.4) Kf = tjkj(Kf ∩ tKf t
−1).

It is easy to see that RΓ(t1) ◦RΓ(t2) = RΓ(t1t2). This defines an action of
Hp(Kp) on RΓ∗(Kf ,M) and therefore defines an action on the cohomology
spaces H∗(SG(Kf ),M). We denote this action by ∗ as well.

If M = Dλ(L) and t ∈ T++, by the fact that RΓq(Kf ,M) is a fi-
nite copy of M , Proposition 2.2 implies that f is a compact operator on
RΓ∗(KpI,Dλ(L)). If U is an open affinoid of X and λ ∈ U, by Proposi-
tion 2.4, RΓ∗(KpI,Dλ(L)) can be obtained by the specialization of
RΓ∗(KpI,DU) at λ. Moreover, for affinoids U′ ⊂ U, RΓ∗(KpI,DU′) can be
obtained via the natural restriction morphism O(U) → O(U′). The Hecke
action is compatible with specialization and restriction.
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3.1.3. ι action on resolution and cohomology

Assume λ ∈ Xι and U is an open affinoid of Xι. Let M be one of V∨λ(L),
V∨λ (L), Dλ(L) and DU(L). Choose Kf = KpI ⊂ G(Af ), such that Kp is
stable under ι. Consider morphisms ι : Kf → Kf and ι : M → M defined
as in Section 2.

Lemma 3.2. — AssumeM = V∨λ(L), V∨λ (L),Dλ(L) orDU(L). For g ∈ I,
x ∈M ,

(3.5) g ∗ xι = (gι ∗ x)ι

Therefore, by the functoriality, ι defines an morphism on RΓ∗(Kf ,M) up
to homotopy. In particular, ι acts on the cohomology H∗(SG(Kf ),M).

The lemma follows immediately from a computation by definition.

3.1.4. Action of ιHp(Kp)

For ι-invariant Kp, define the ι-twisted Hecke algebra:

(3.6) ιHp(Kp) := Hp(Kp)o 〈ι〉 ,

where 〈ι〉 is the finite group generated by ι and the semi-product o is un-
derstood as a crossed product, since at every place the local Hecke algebra
can be viewed as a group algebra of double cosets. We write f × ι and ι×f
for the products of f ∈ Hp(Kp) and ι. We similarly define ιHp, then ιHp
is the inductive limit of ιHp(Kp).

Lemma 3.3. — There is an action of ιHp(Kp) on RΓ∗(Kf ,M), extend-
ing the ∗-action of Hp(Kp) and ι.

Proof. — We have to check that the ∗-actions of Hp(Kp) and ι on
RΓ∗(K,M) are compatible in the sense that ι×f = f ι× ι. So we only have
to check:

(3.7) ι ◦RΓ(t) ◦ ι−1 = RΓ(tι),

which is again directly from the definition. �

3.1.5. Comparison with the standard sheaf-theoretic action

Assume M = V∨λ(C), we compute the cohomology by de Rham complex:

(3.8) Hq(SG(Kf ),M) = hq(Ω∗(SG(Kf ),M)),
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and we have the standard sheaf-theoretic definion of Hp action on it.
By (2.13), for any φ ∈ Vλ and δ ∈ ∆+,

(3.9) δ ∗ φ = λ(ξ(tδ))−1(δ · φ).

This implies, for any f = fp ⊗ ut ∈ Hp, that the ∗-action of f on
Hq(SG(Kp),M) is the twist of the standard action of f by λ(ξ(t)).
The ι-action on Ω∗(SG(Kf ),M) = Ω∗(SG(Kf ))⊗M is define by (ι−1)∗⊗

ι, where (ι−1)∗ means the pull-back on differential forms induced by the
map

(3.10) ι−1 : SG(Kf )← SG(Kf )

This ι-action can be described explicitly as follow. Let T (SG) and
T (SG(Kf )) be the sheaves of left invariant vector fields on SG and SG(Kf )
respectively, the projection π induces a push-forward surjection:

(3.11) π∗ : T (SG)→ T (SG(Kf )).

One views an q differential form τ in Ω∗(SG(Kf ),M) as a map

(3.12) τ : ∧qT (SG(Kf )→ O(SG(Kf ))⊗M

then τ ι is defined as

(3.13) τ ι(π∗v̄1 ∧ · · · ∧ π∗v̄q)([g]) := (τ((π∗ι−1
∗ v̄1 ∧ · · · ∧ π∗ι−1

∗ v̄q))([g]ι))ι

where v̄ is a left invariant vector field on SG, g ∈ G(A)1 and [g] indicates
the class of g in SG or SG(Kf ). It is easy to check that ι is well defined on
H∗(SG(Kf ),M) under this definition. The duality between Ω∗(SG(Kf ))
and C∗(Kf ) implies that this action coincides with the one defined by
functoriality.

3.2. Twisted action on finite slope cohomology

We need a lemma on slope decompositions of a compact projective
Fréchet space according to compact operators.

Lemma 3.4. — Let A be a Qp-Banach algebra,M a compact projective
Fréchet A-module, and f a compact A-linear operator ofM . Then the Fred-
holm determinant R(f,X) of f is entire over A. If R(f,X) = Q(X)S(X)
over A, such that Q and S are relatively prime and Q is a Fredholm poly-
nomial with invertible leading coefficient, then there is a decomposition
of M :

(3.14) M = Nf (Q)⊕ Ff (Q)

into f -stable close submodules satisfing:
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(1) Q∗(f) annihilates Nf (Q) and is invertible on Ff (Q);
(2) the projector on Nf (Q) is given by EQ(f) with EQ(X) ∈ XA{{X}}

whose coefficients are polynomials in the coefficients of Q and S.

Moreover, if A is noetherian, then Nf (Q) is of finite rank, and the charac-
teristic polynomial of f on Nf (Q) is Q. In particular, for h ∈ Q>0, we may
choose Q(x) such that Nf (Q) = M6h, the 6 h-slope decomposition of M .

Proof. — The lemma is known if M is a projective Banach module by
Serre [15] and Coleman [10]. NowM is a projective compact Fréchet space,
there are projective A-Banach modules Mn with compact operators fn,
such that

(3.15) M = lim←−Mn, f = lim←− fn

with fn = f |Mn. Now R(f,X) = det(1−Xf |Mn) for n sufficiently large, so
R(f,X) = Q(X)S(X) gives the expected decomposition Mn = Nn,f (Q)⊕
Fn,f (Q). Let pn be the projector of Mn onto Nn,f (Q), by [8, Theorem 3.3],
there is a power series φ ∈ A[[T ]] depending only onQ, such that pn = φ(fn).
Moreover, Nn,f (Q) and Fn,f (Q) are given by the image and kernel of pn
respectively. Denote by un+1,n the transation map from Mn+1 to Mn. By
definition, we have a commutative diagram:

(3.16)

M //

f

��

Mn+1
un+1,n //

fn+1

��

Mn

||
fn

��
M // Mn+1 un+1,n

// Mn

Taking projective limit, we have a projector p = lim←−φ(fn) on M and the
decomposition M = Nf (Q) ⊕ Ff (Q). Indeed, by the definition of com-
pact operator, Nn,f (Q) are isomorphic for n sufficiently large. So the last
statement follows. �

Considering admissible f = fp ⊗ ut ∈ RS,p, f defines a compact op-
erator on the complex RΓ(Kf ,Dλ(L)). For any h ∈ Q>0, we define the
6 h-slope part H∗(SG(KpI),Dλ(L))6h of H∗(SG(KpI),Dλ(L)) with re-
spect to f according to the previous lemma. Then the finite slope part of
H∗(SG(KpI),Dλ(L)) is defined by:

(3.17) H∗fs(SG(KpI),Dλ(L)) := lim−→
h

H∗(SG(KpI),Dλ(L))6h.
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Since RS,p is in the center of Hp(Kp), that H∗fs(SG(KpI),Dλ(L)) is inde-
pendent of f , and endowed with the ∗-action of Hp(Kp). We also define

(3.18) H∗fs(S̃G,Dλ(L)) := lim−→
Kp

H∗fs(SG(KpI),Dλ(L)).

Proposition 3.5. — Assume λ ∈ Xι. The ∗-action of Hp(Kp) on the fi-
nite slope cohomology H∗fs(SG(KpI),Dλ(L)) extends to an action of
ιHp(Kp). Therefore the action of Hp on H∗fs(S̃G,Dλ(L)) extends to an
action of ιHp.

Proof. — We only have to prove the first statement. For this we need
the next result from [18, Lemma 2.3.2]:

Lemma 3.6. — Let M , M ′ be two L-Banach (or Fréchet) spaces, u
and u′ endomorphism of M and M ′, and M = M6h

u ⊕ M1 and M ′ =
M ′

6h
u′ ⊕ M ′1 their 6 h-slope decompositions respectively. Assume f is a

continuous linear map from M to M ′ such that f ◦ u = u′ ◦ f , then f

respects the slope decompositions.

Since ι× f = f ι × ι, the lemma implies that

(3.19) ι : Hq
fs(SG(KpI),Dλ(L))6hfι → Hq

fs(SG(KpI),Dλ(L))6hf
is well defined. Let l be the order of ι, define

(3.20) Hq
fs(SG(KpI),Dλ(L))6hι :=

l⋂
i=1

Hq
fs(SG(KpI),Dλ(L))6h

fιi
.

Then

(3.21) ι : Hq
fs(SG(KpI),Dλ(L))6hι → Hq

fs(SG(KpI),Dλ(L))6hι .

Since the finite slope part is independent of f , the proposition is obtained
by taking the inductive limit on h. �

3.3. ι-invariant finite slope representations

In this section, we introduce the ι-invariant finite slope automorphic
representations, which are the main objects we concern in this paper. We
first recall a well-known result for admissible representations of a locally
profinite group. Let G be a locally profinite group, and K an open compact
subgroup ofG. WriteH(G) the Hecke algebra of compact supported smooth
functions of G and H(G,K) its subalgebra of K bi-invariant functions.
Then
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Proposition 3.7. — The map π 7→ πK gives a bijection between
equivalence classes of irreducible smooth representations (π, V ) of H(G)
such that V K 6= 0 and equivalence classes of irreducible H(G,K)-represen-
tations.

3.3.1. Finite slope representations

let (π, V ) be an irreducible representation of Hp defined over a p-adic
field L. We say π is admissible overconvergent of weight λ ∈ X(L) if it is
admissible and a subqoutient of Hq(S̃G,Dλ(L)). Since π is admissible, that
for any Kp, an element in Hp(Kp) acts on V as an endomorphism of finite
rank. By the fact that Hp = lim−→Kp

Hp(Kp), there is a well-defined trace
map:

(3.22) Jπ(f) := tr(π(f))

for any f ∈ Hp. We say π is of level Kp if πKp as a representation of
Hp(Kp) is not trivial. Let σ be an irreducible representation of Hp(Kp).
We say σ is overconvergent of level Kp and weight λ if it is of the form
πK

p for some admissible overconvergent π with level Kp and weight λ.
Then σ is finite dimensional and can be realized in the cohomology space
Hq(SG(KpI),Dλ(L)). For fixed Kp, the Hecke algebra RS,p is included in
the center of Hp. So the restriction of σ to RS,p is a character, which
is denoted by θσ. We call θσ an overconvergent Hecke eigensystem of
level Kp and weight λ. For such θ, obviously the generalized eigenspace
Hq(SG(KpI),Dλ(L))[θ] of θ is non-zero.

Let θ be a Qp-valued character of Up. To recall the definition of the slope
of θ, we assume at the moment that G is split at p (refer [18, Section 4.1.2]
for general situation). If θ(ut) = 0 for some t ∈ T+, then we say that θ is of
infinite slope. Otherwise, we say θ is of finite slope. It is easy to check that
θ is of finite slope if and only if there is t ∈ T++ such that θ(ut) 6= 0. In
this case, θ induces a homomorphism from T (Qp)/T (Zp) to Q×p . We then
define the slope of θ to be the element µθ ∈ X∗(T/Qp), such that for any
µ∨ ∈ X∗(T/Qp)+

(3.23) (µθ, µ∨) = vp(θ(uµ∨(p))).

So we define the slope of an overconvergent Hecke eigensystem θ to be the
slope of its restriction to Up. For a overconvergent representation π or σ,
define its slope to be the slope of the Hecke eigensystem associated to it.
It is easy to see, π, σ or θ is of finite slope if and only if it is realized in
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H∗fs(SG,Dλ(L)). Moreover, for any µ ∈ X∗(T/Qp), we define

(3.24) H∗(SG(Kf ),Dλ(L))6µ =
⊕

θ |µθ6µ

H∗(SG(Kf ),Dλ(L))[θ].

It is easy to see that

(3.25) lim−→
µ

H∗(SG(Kf ),Dλ(L))6µ = H∗fs(SG(Kf ),Dλ(L)).

Let θ be a Qp-valued character of Up and λ an algebraic weight. We say
that θ is non-critical with respect to λ, if its slope µθ is. This means that
for any w 6= id in WG, the Weyl group of G, µθ /∈ w · λ− λ+X∗(T )+.

3.3.2. ι-invariant finite slope representations

Let ρ be a finite slope overconvergent representation of H, where H can
be Hp, Hp(Kp) or RS,p. We denote by ρι the ι-twist of ρ, that is, the
representation of H on Vρ, which sends f ∈ H to ρι(f) := ρ(f ι). We say
ρ is ι-invariant if ρι ∼= ρ. By [6, Appendix], ρ is ι-invariant if and only if
it can be extended to ιH. Indeed, if ρι ∼= ρ, then there is a linear operator
A : Vρ → Vρ of order l such that A◦ρ = ρ◦A. One can extend ρ by setting
ιi acting on Vσ via Ai. Generally, we use capital letters Π, Σ and Θ for an
representation of ιHp, ιHp(Kp) and ιRS,p respectively. The next lemma
summarizes results in [6, Appendix]:

Lemma 3.8. — Notations as above
(1) Assume Σ (resp. Π, Θ) is irreducible, then its restriction to Hp(Kp)

(resp. Hp, RS,p) is irreducible if and only if the trace of Σ (resp. Π,
Θ) is not trivial on ι×Hp(Kp) (resp. ι×Hp, ι×RS,p).

(2) Assume σ (resp. π, θ) is irreducible ι-invariant, then there are ex-
actly l extensions of σ (resp. π, θ) to ιHp(kp) (resp. ιHp, ιRS,p),
say σ̃1, . . . , σ̃l (resp. π̃1, . . . , π̃l; θ̃1, . . . , θ̃l). Each two of them are
differed by a character of order l and are non-isomorphic.

Remark 3.9. — By Proposition 3.7, if σ = πK
P , we can assume that

(3.26) π̃K
p

i = σ̃i.

Throughout this paper, we use this convention.

Let σ̃ be a representation of ιHp(Kp) which extends a ι-invariant over-
convergent representation σ of Hp(Kp). We write

(3.27) Jσ̃(f) := tr(σ̃(ι× f)).
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Last lemma tells that Jσ̃ is not trivial. It is also easy to see the Hecke
eigensystem θσ satisfies

(3.28) θ(f) = θ(f ι) := θι(f)

for any f ∈ RS,p. We say such a Hecke eigensystem ι-invariant. Let θ̃σ̃
be the restriction of σ̃ to ιRS,p. Since ι is of finite order and θ̃σ̃ is finite
dimensional, that θ̃σ̃ is diagonalizable under ι. So θ̃σ̃ is a direct sum of one
dimensional representations of ιRS,p, which must be of the form ˜(θσ)i. So
we have

(3.29) θ̃σ̃ =
l⊕
i=1

( ˜(θσ)i)
m( ˜(θσ)i,θ̃σ̃)

where, m( ˜(θσ)i, θ̃σ̃) is the multiplicity of ˜(θσ)i in θ̃σ̃ and

(3.30)
l∑
i=1

m( ˜(θσ)i, θ̃σ̃) = dim σ.

If f ∈ RS,p, then

(3.31) Jσ̃(f) = tr(ι | σ̃)θσ(f).

Since ι is of finite order, all its eigenvalues must be p-adic units. This implies
a simple but important observation that

(3.32) vp(tr(ι | σ̃)) > 0.

Let θ be a finite slope overconvergent Hecke eigensystem with slope µθ.
It is easy to verify that

(3.33) µθι = µιθ

So we conclude:

Lemma 3.10. — If a finite slope overconvergent representation (resp.
Hecke eigensystem) is ι-invariant, then its slope µθ is ι-invariant.

3.3.3. Classicity

Now we state a twisted analogue to [18, Proposition 4.3.10], which is
the classicity theorem in the cohomological setting. For a dominant weight
λ ∈ X∗(T ) and t ∈ T+, define

(3.34) N(λ, t) := inf
w 6=id

|tw·λ−λ|p

and

(3.35) N ι(λ, t) :=
l

inf
i=1

N(λ, tι
i

).
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Proposition 3.11. — Let λ = λalgε be an arithmetic weight of con-
ductor pnλ , and µ a slope which is non-critical with respect to λalg. Then
for any positive integer m > nλ, we have the canonical isomorphism

(3.36) H∗(SG(KpI),Dλ(L))6µ ∼= H∗(SG(KpIm),V∨λalg(L, ε))6µ

Similarly, with respect to f = fp ⊗ ut, t ∈ T++, for any h 6 vp(N ι(λ, t)),

(3.37) H∗(SG(KpI),Dλ(L))6hι ∼= H∗(SG(KpIm),V∨λalg(L, ε))6hι
Here V∨λalg(L, ε) := (Vλalg(L)(ε))∨.

The proof is same to [18, Proposition 4.3.10].

3.3.4. Spectral expansion of twisted overconvergent traces

Proposition 3.12. — Let λ ∈ Xι(L). For any ι-invariant finite slope
overconvergent representation π of Hp, there are l integers {mq

i (π, λ)}li=i,
such that for all f ∈ H′p,

(3.38) tr(ι× f |Hq
fs(S̃G,Dλ(L))) =

∑
π|πι∼=π

l∑
i=1

mq
i (π, λ)Jπ̃i(f)

Proof. — Since f is admissible, the trace is convergent. Fix t ∈ T++,
for any h ∈ Q>0, consider the ι-stable 6 h-slope part Hq(S̃G,Dλ(L))6hι of
Hq
fs(S̃G,Dλ(L)) with respect to ut. Here we define

(3.39) Hq(S̃G,Dλ(L))6hι := lim−→
Kp

Hq(SG(KpI),Dλ(L))6hι .

It is equipped with an admissible ∗-action of Hp since ut is in the center of
Hp. As the proof of Proposition 3.5, this action extends to ιHp. Let (π, V )
be a finite slope overconvergent Hp-submodule of Hq(S̃G,Dλ(L))6hι , and
ι ∗ (V ) its image under the ∗-action of ι. Consider the next three sets
of finite slope overconvergent representations A,B and C whose elements
are counted with multiplicity: A = {π | ι ∗ (Vπ) = Vπ}, B = {π |πι ∼=
π, ι ∗ (Vπ) ∩ Vπ = ∅} and C = {π |πι � π}.
If π ∈ B or C, write

(3.40) Wπ =
l⊕
i=1

ιi ∗ (Vσ)

as a ιHp-submodule of Hq(S̃G,Dλ(L))6hι . Then ι∗ permutes the compo-
nents of Wπ, and tr(ι × f |Wσ) is trivial. If π ∈ A (this implies that
σ is ι-invariant), then Vπ itself is an irreducible ιHp-submodule of
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Hq(S̃G,Dλ(L))6hι . In particular, Vπ = π̃i for some i. Now for any ι-invariant
π, let mq

i,h(π, λ) be the mulitplicity of π̃i appearing in A. We have

(3.41) tr(ι× f ;Hq(S̃G,Dλ(L)))6hι =
∑

π|πι∼=π

l∑
i=1

mq
i,h(π, λ)Jπ̃i(f).

Let h go to infinite, the multiplicity mq
i,h will stay same as h large enough.

So it converges to some mq
i ∈ Z, and the proposition follows. �

Remark 3.13. — If G admits multiplicity one theorem, then B = ∅ in
the proof above (otherwise, since σ is self-dual, that Vσ ∼= Vσι ∼= V ∗ισ would
appear with multiplicity at least two).

4. Twisted Franke’s trace formula

In this section, we prove a twisted version of Franke’s trace formula [11,
Section 7.7].

4.1. Notation

In this section, we consider more general situation as studied in [11]. Let
G be a connected reductive group over Q which is not necessarily quasi-
split. We fix a minimal parabolic subgroup P0 of G and write its Langlands
decomposition P0 = M0A0N0. Generally, for a standard parabolic subgroup
P of G, we consider its Langlands decomposition P = MPAPNP such
that AP ⊂ A0 and M0 ⊂ MP , where LP = MPAP is the standard Levi
subgroup of P and AP is a maximal spit torus in the center of LP . If group
G is quasi-split as in the other sections of this paper, we assume that the
minimal p-pair (P0, A0) is chosen such that P0 = B and A0 ⊂ T . Write
ǎP = X∗(P )⊗ R and ǎGP its subspace of elements whose restriction to AG
are trivial. If P = P0, we denote ǎG0 := ǎGP0

. Let ǎG+
0 ⊂ ǎG0 be the open

positive Weyl chamber, and +ǎG0 the open positive cone dual to it.
In general, we use small gothics letters for real Lie algebras, for example,

g is the Lie algebra of G∞ and for any parabolic subgroup P , a = aP is
the lie algebra of AP∞ and a0 := aP0 . Since aP = X∗(AP ) ⊗ R, there is
a natural duality between aP and ǎP , which has been denoted by 〈 · , · 〉.
Now the restriction map ǎP → ǎ0 gives an inverse of the dual of natrual
inclusion a0 → aP . So we have decompositions

(4.1) a0 = aP ⊕ aP0 , ǎ0 = ǎP ⊕ ǎP0 .
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If there is another parabolic subgroup Q ⊃ P , we use Franke’s notation aQP
for aP ∩ aQ0 in a0, and similarly ǎQP .
Let mG ⊂ g be the intersection of kernals for all rational characters of G,

and Z(mG) the center of the universal enveloping algebra of mG. For any
standard parabolic subgroup P , define the height functionHP : P (A)→ aP
such that for any x ∈ P (A) and any character ξ of P ,

(4.2)
∏
v

|ξ(x)|v = e〈ξ,HP (x)〉.

HP is then considered as a function onG(A) by the Iwasawa decomposition.
Let V∨λ be as in the last section. Assume AG acting on V∨λ by a character
ξλ, let Iλ ⊂ Z(mG) be the annihilator of ξλ. For any G(Af )-module M
and µ ∈ ǎG, we denote by M(µ) the twist of M in which the action of
g ∈ G(Af ) on M is multiplied by the factor e〈µ,HG(g)〉.
Let R = RG ⊂ X∗(A0) (resp. R+ = R+

G, ∆ = ∆G) be the set of roots
(resp. positive roots, simple positive roots) ofA0 in g. If L is a Levi subgroup
of G, let ρL be the half sum of all positive roots of A0 in L, in particular,
write ρ = ρG. For any parabolic subgroup P = LN , let ρP be the modulus
function on l associated to P . Without confusion, we also consider ρP as
in ǎGP to be the half sum of all the positive roots of aP in nP . For parabolic
subgroups P ⊂ Q, under the natural projection X∗(T )+ ⊗ R→ ǎGP → ǎGQ,
the images of ρG are ρP and ρQ. Let WG be the Weyl group of G and fix
wG0 ∈ WG a longest element. We define

(4.3) WL := {w ∈ WG |w−1(α) ∈ R+, ∀ α ∈ R+ ∩RL}.

As [18, (7)], for any w ∈ WL,

(4.4) w · λ = w(λ+ ρ)− ρ = w(λ+ ρP )− ρP .

Recall the Kostant decomposition:

(4.5) Hq(n,V∨λ(C)) =
⊕
w∈WL

l(w)=n−q

VL,∨w(λ+ρP )+ρP (C),

where n = dim(n) and VLµ is the finite dimensional irreducible algebraic
representation of L with highest weight µ. Define

(4.6) WL
Eis := {w ∈ WL |w−1(β∨) > 0, ∀ β ∈ RP }.

If λ is regular and w ∈ WL
Eis, then the Eisenstein series associated to a class

in H∗(SL,VL,∨w·λ) defines an Eisenstein class in H∗(SG,V∨λ).
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4.2. The Eisenstein spectral sequence

Let VG = C∞umg(G(Q)A(R)0\G(A)) be the space of C∞-functions of
uniform moderate growth, and Rg the natural right translation action of
g ∈ G(A) on VG. Let Aλ be the subspace of VG consisting of the functions
that are annihilated by some power of Iλ. In [11], Franke proved that the
cohomology

(4.7) H∗(SG,V∨λ(C))

can be computed by (mG,K∞) cohomology with coefficients in Aλ:

(4.8) H∗(mG,K∞;C∞(G(Q)A(R)0\G(A))⊗ V∨λ(C))(ξλ)
= H∗(mG,K∞;Aλ ⊗ V∨λ(C))(ξλ).

Indeed, Franke proved that the last cohomology space is the limit of a spec-
tral sequence, which is compiled via the Laurent coefficients of Eisenstein
series.
Let C := CG be the set of associate classes of Q-parabolic subgroups of

G. For {P} ∈ CG, let VG({P}) be the subspace of VG consists of functions
which are negligible along all Q /∈ {P}, that is, the space of functions
φ ∈ VG, such that for every parabolic subgroup Q /∈ {P} and for every
g ∈ AQ(A)K, RgφNQ is orthogonal to the space of cuspidal functions on
LQ(Q)\LQ(A)1, where φNQ is the constant term of φ along NQ, defined by

(4.9) φNQ =
∫
NQ(Q)\NQ(A)

φ(ng)dn

with respect to the normalized Haar measure:

(4.10)
∫
NQ(Q)\NQ(A)

dn = 1.

Set Aλ,{P} := Aλ ∩ VG({P}), then as (g,K∞, G(Af ))-modules,

(4.11) Aλ =
⊕
{P}∈C

Aλ,{P},

and the cohomology (4.7) equals

(4.12)
⊕
{P}

H∗(mG,K∞;Aλ,{P} ⊗ V∨λ(C))(ξλ).

For each {P}, there is a descending filtration (of finite length)AT,pλ,{P}, p =
0, 1, . . . in the space Aλ,{P}. This filtration depends on a finite supported
Z-valued function T which is defined on the closure ǎ+

0 , such that:

(T) T (µ) < T (ν) if µ 6= ν and µ− ν ∈ +ǎ0.
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The successive quotients AT,pλ,{P}/A
T,p+1
λ,{P} can be described in term of Eisen-

stein series. Following [11, Section 6], defineMT,p
λ,{P} to be the set of triples

t = (P,Λ, χ) := (Pt,Λt, χt) with the following properties:

(1) P ∈ {P} is a standard parabolic subgroup;
(2) Λ : AP (A)/A(R)0AP (Q)→ C× is a continuous character. Let λt ∈

(ǎGP )C be the differential of the archimedean component of Λ, we
assume Re(λt) ∈ ǎ+

P and T (Re(λt)) = p.
(3) χ : Z(mG)→ C× is a character, such that:
(4) λt ∈ suppt(Iλ), i.e. for any x ∈ Iλ, ξ(x)(λt + χt) = 0, where

ξ : Z(mG)→ S(t ∩mG)WG is the Harish–Chandra isomorphism.

For t, t′ ∈ MT,p
λ,{P}, define a morphism from t to t′ to be an element of the

Weyl set Ω(at, at′) which maps Λt to Λt′ and χt to χt′ . So MT,p
λ,{P} is a

groupoid. Let CT,pλ,{P} be a set of representatives for the isomorphism classes
of objects ofMT,p

λ,{P}.
For t ∈ MT,p

λ,{P}, define V (t) to be the space of square integrable K ∩
P (A)-finite functions f on P (Q)AP (R)0NP (A)\P (A) with the following
properties

(1) For any parabolic subgroup Q ( P , fNP is orthogonal to the space
of cuspidal forms on MQ(Q)\MQ(A).

(2) f(ag) = e−〈λt,HP (a)〉Λ(a)f(g) for any a ∈ AP (A).
(3) f is a χ-eigenvector of Z(mG).

We let W (t) = indGP V (t) be the space of K-finite functions on the space
P (Q)AP (R)0NP (A)\G(A) such that for any g ∈ G(A), the function f(xg)
of x ∈ P (Q)AP (R)0NP (A)\P (A) belongs to V (t).
Let S(t) be the symmetric algebra S((aGP )C), which is the space of poly-

nomials on (aGP )C, and also viewed as the algebra of finite sums of iterated
derivatives at λt. S(t) is equipped with the structure of aP -module defined
by the rule:

(A) For ξ ∈ aP , δ ∈ S(t) and any η ∈ aGP

(4.13) (ξδ)(η) := e〈ξ,λt+ρPt 〉δ(η + ξ).

It is then extended to a p-module structure by letting m and n act trivially.
S(t) is also equipped with a P (Af )-module structure by the rule:

(B) For any x ∈ P (Af ) and η ∈ aGP

(4.14) (xδ)(η) = e〈η
∨+ρPt ,HP (x)〉δ(η).
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So we get a functor from the groupoid MT,p
λ,{P} to the category of

(g,K∞, G(Af ))-modules, it assigns to t a module

(4.15) M(t) := W (t)⊗ S(t) = indGP V (t)⊗ S(t),

For f ∈W (t) and µ ∈ (ǎGP )C, define the Eisenstein series

(4.16) E(f, µ) :=
∑

γ∈P (Q)\G(Q)

e〈µ+ρP ,HP (γg)〉f(γg).

Moreover, for f⊗δ ∈W (t)⊗S(t), let MWδE(f, µ) ∈ VG({P}) be the main
value of the Laurent expansion of δE(f, µ) at λ∞ (refer [11, Section 6]).
For {P} ∈ C, let C({P}) ⊂ C be the subset defined by the property:

(P) {Q} ∈ C({P}), if there is a parabolic Q ∈ {Q}
such that Q contains some parabolic subgroup in {P}.

[11, Theorem 14] asserts that the quotient AT,pλ,{P}/A
T,p+1
λ,{P} is spanned by

the main values MWδE(f, µ) for all f ⊗ δ in M(t) when t is running over
allMT,p

λ,{Q} and {Q} in C({P}).
We can now state Franke’s theorem ([11, Theorem 19]). It gives a spectral

squence to compute the cohomology space (4.7):

Theorem 4.1 (Franke’s Eisenstein Spectral Sequence (ESS)). — Let λ
be a regular algebraic weight, then there is a spectral sequence:

Ep,q1 =
⊕

t∈CT,p
λ,{P}

Hp+q(mG,K∞;M(t)⊗V∨λ)⇒ Hp+q(mG,K∞;Aλ,{P}⊗V∨λ).

Moreover, this spectral sequence degenerates.

Writing Kt
∞ := K∞ ∩ Pt(R), we compute the summand of Ep,q1 by:

(4.17) Hp+q(mG,K∞;M(t)⊗ V∨λ(C))

= Hp+q(mG,K∞; indGPt V (t)⊗ S(t)⊗ V∨λ(C))

= indG(Af )
Pt(Af )H

p+q(mG ∩ pt,K
t
∞;V (t)⊗ S(t)⊗ V∨λ(C))

=
⊕

i+j=p+q
indG(Af )

Pt(Af )H
i(lt,Kt

∞;Hj(nt;V∨λ(C))⊗ V (t)⊗ S(t)).

Apply the Kostant decomposition (4.5), we have

(4.18) Hi(lt,Kt
∞;Hj(nt;V∨λ(C))⊗ V (t)⊗ S(t))

=
⊕

w∈WLt

l(w)=nt−j

Hi(lt,Kt
∞;VL,∨w(λ+ρPt )+ρPt

(C)⊗ V (t)⊗ S(t)).
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Using the notation of [11, Section 6], for any Θ ∈ ǎt, let CΘ be the one
dimensional vector space C on which x ∈ at acts by muliplication of e〈x,Θ〉.
Twisting VL,∨w(λ+ρPt )+ρPt

⊗ V (t) by a proper CΘ to make it a trivial at-
module, we apply Künneth theorem for each summand in last equation
with respect to l = m + a. Then a standard computation shows that

(4.19) Hi(lt,Kt
∞;Hj(nt;V∨λ(C))⊗ V (t)⊗ S(t))

=
⊕
w∈Wt

j

Hi(mt,Kt
∞;VLt,∨w(λ+ρPt )+ρPt

(C)⊗ V (t))⊗ CρRt+λt

where Wt
j is the subset of w ∈ WL, such that l(w) = n− j and the natual

projection of w(λ+ ρPt) to ǎGPt is λt. Combing all the results above, for λ
regular, the E1-term, Ep,q1 , of (ESS) can be computed by

(4.20)
⊕

t∈CT,p
λ,{P}

⊕
i+j=p+q

⊕
w∈Wt

j

indG(Af )
Pt(Af )H

i(mt,Kt
∞;

VLt,∨w(λ+ρPt )+ρPt
(C)⊗ V (t))⊗ CρRt+λt

Now Franke’s theorem implies Hr(SG,V∨λ(C))(ξ−1
λ ) equals:

(4.21)
⊕
{P}

⊕
p

⊕
t∈CT,p

λ,{P}

Hr(mG,K∞;M(t)⊗ V∨λ(C))

=
⊕
{P}

⊕
p

⊕
t∈CT,p

λ,{P}

⊕
w∈Wt

indG(Af )
Pt(Af )H

r+l(w)−nt(mt,Kt
∞;

VLt,∨w(λ+ρPt )+ρPt
(C)⊗ V (t))⊗ CρPt+λt

where Wt is the subset of w ∈ WL, such that the natual projection of
w(λ+ ρPt) to ǎGPt is λt.

4.3. Twisted Franke’s trace formula

Let λ ∈ X∗(T ) be a regular dominant ι-invariant weight, f ∈ Hp ⊂
C∞c (G(Af )) an admissible p-adic Hecke operator. In this section, we use
(4.21) to compute the alternating trace

(4.22) tr(ι× f |H∗(SG,V∨λ(C))) :=
∑
r

(−1)r tr(ι× f |Hr(SG,V∨λ(C))).

The alternating trace tr(f |H∗(SG,V∨λ(C))) without twisting was com-
puted by Franke and Urban in [11, Section 7.7] and [18, Theorem 1.4.2].
Here we have to study how ι acts on each step from (4.11) to (4.21).
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4.3.1. ι-action on (mG,K∞)-cohomology

Consider the complex

(4.23) C∗(mG,K∞;V∨λ(C)) := HomK∞(∧∗(mG/k∞), VG ⊗ V∨λ(C)),

which computes the (mG,K∞)-cohomology H∗(mG,K∞;VG ⊗ V∨λ(C))
by definition. Let ι∗ : mG → mG be the push-forward map induced from
ι : G(R) → G(R). Define ι : VG → VG by sending ϕ to ϕι, such that
for any [g] ∈ G(Q)A(R)0\G(A), ϕι([g]) = ϕ([g]ι). Then ι acts on
HomK∞(∧q(mG/k∞), VG ⊗ V∨λ(C)) by sending φ to φι, such that

(4.24) φι : X 7→ (φ((ι−1)∗X))ι

for any X ∈ ∧q(mG/k∞). It is straightforward to verify that the action is
well defined up to homotopy.
Now consider the morphism of complexes α : C∗(mG,K∞;V∨λ(C)) →

Ω∗(SG,V∨λ(C)) that induces the isomorphism Hq(mG,K∞;VG⊗V∨λ(C)) ∼=
Hq(SG,V∨λ(C)). Concretely, for φ ∈ Cq(mG,K∞;V∨λ(C)), α assigns it a
q-th differential form τφ, such that for any g ∈ G(A)1,

(4.25) τφ(v̄1 ∧ · · · ∧ v̄q)([g]) = φ(v̄1([e]), . . . , v̄q([e]))([g]),

where v̄ indicates a left invariant vector field on SG and v̄([e]) its value at
[e] ∈ SG. Since φ(v̄1([e]), ..., v̄q([e])) ∈ VG⊗V∨λ(C), φ(v̄1([e]), ..., v̄q([e]))([g])
means to evaluate its first component at [g]. Compare with Section 3.1, it
is easy to see that the ι-action on Hq(mG,K∞;VG ⊗V∨λ(C)) is compatible
with the ι-action on Hq(SG,V∨λ(C)) defined in Section 3.1.

4.3.2. Image of Aλ,{P} under ι

Since that Aλ is stable under ι, we now study the behavior of decompo-
sition (4.11) under ι. Given an associate class {P}, let {P ι} be the class
whose elements are P ι for all P ∈ {P}. Apparently the map {P} 7→ {P ι}
permutes the associate classes. Write {P}ι := {P ι}.

Lemma 4.2. — Let Aιλ,{P} be the image of Aλ,{P} under ι,

(4.26) Aιλ,{P} = Aλ,{P ι−1}

Proof. — Given φ ∈ Aλ,{P}, we have to show that, for any parabolic
Q /∈ {P ι−1} and g ∈ AQ(A)K, Rg(φι)NQ ⊥ L2

cusp(LQ(Q)\LQ(A)1). Let
dnQ be the normalized Haar measure on NQ, then dnQι is same to the
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Haar measure on N ι
Q = NQι induced by the map ι : NQ → N ι

Q = NQι .
Now a direct computation shows that

(4.27) (φι)NQ = (φNQι )ι.

Then gι ∈ AQι(A)K, and

(4.28) Rg(φι)NQ = Rg((φNQι )ι) = (RgιφNQι )ι.

Noting that the restriction of ι on L2
cusp(LQ(Q)\LQ(A)1) identify its image

with L2
cusp(LQι−1 (Q)\LQι−1 (A)1), we have

(4.29) L2
cusp(LQι(Q)\LQι(A)1)ι = L2

cusp(LQ(Q)\LQ(A)1).

Now the conclusion follows. �

This lemma implies that, in the formula (4.21), only those summand
parameterized by {P} = {P}ι will contribute to the twisted alternating
trace.

4.3.3. On Eisenstein series

Consider an associate class {P} and t = (P,Λ, χ) ∈ MT,p
λ,{P} for some

p. For ϕ ∈ W (t) and µ ∈ (ǎGP )C, let Et(ϕ, µ)(g) := E(ϕ, µ)(g) be the
Eisenstein series defined in (4.16), then Aλ is spanned by the principal
values of derivatives of all such E(ϕ, µ).

Lemma 4.3.

(4.30) Et(ϕ, µ)ι = Etι(ϕι, µι
−1

)

where we define
(1) Λι−1 : AP ι−1 (A)/A(R)0AP ι−1 (Q)→ C× as Λι−1(a) := Λ(aι);
(2) χι−1 : mG → C× as χι−1(x) := χ(xι);
(3) tι := (P ι−1

,Λι−1
, χι

−1)
(4) ϕι(g) := ϕ(gι). Then ϕι ∈W (tι).
(5) µι−1 ∈ (ǎG

P ι−1 )C, as a character, it is defined by µι−1(a) := µ(aι).
In particular, there is a natural homomorphism ι : S((ǎGP )C) →
S((ǎG

P ι−1 )C).
So we have a homomorphism between vector spaces

(4.31) ι : M(t)→M(tι)

such that for ϕ⊗ δ ∈M(t) = W (t)⊗ S(t)

(4.32) MWλtδEt(ϕ, µ)ι = MWλtι δ
ιEtι(ϕι, µι

−1
).
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Moreover, ι induces an homomorphism between the (mG,K∞)-cohomology
group,

(4.33) ι : H∗(mG,K∞;M(t)⊗ V∨λ(C))→ H∗(mG,K∞;M(tι)⊗ V∨λ(C))

Proof. — (4.30) and (4.32) are from definition directly. To show (4.33),
one only has to notice that ι is compatible with (4.24). �

Remark 4.4. — The definition of MWλt actually depends on the choice
of a regular element ξt ∈ ǎGP , so here (4.3.11) depends on the choice ξtι =
ξι
−1

t . However, just as the situation in [11, Section 7], it does not matter
our goal.

Recall that the quotient AT,pλ,{P}/A
T,p+1
λ,{P} is spanned by the elements of

form MWλtδE(f, µ). As observed by Franke and Schwermer in [12], the
only relations between these vectors are the relations provided by the
functional equation of the Eisenstein series for singular λt. So if
t ∼= tι in ∪pMT,p

λ,{P}, the image of H∗(mG,K∞;M(t) ⊗ V∨λ(C)) and
H∗(mG,K∞;M(tι) ⊗ V∨λ(C)) in H∗(mG,K∞;Aλ,{P} ⊗ V∨λ(C)) coincide.
This implies that, in the first step of (4.21), only those terms with t ∼= tι

will contribute to the twisted alternating trace.

4.3.4.

For a standard parabolic subgroup P and the associate class {P} contain-
ing P , consider a triple (P, µ, χ) ∈ MT,T (µ)

λ,{P} . Let nP (µ) be the cardinality
of the isomorphism class containing (P, µ, χ), then nP (µ) is the number of
Weyl chambres to which µ belongs, in particular, nP (µ) = 1 if µ is regular.
Define:

(4.34) Υ :=
{
µ ∈ ǎ0

∣∣∣ prǎ0→ǎG
P

(µ+ ρ) is regular in ǎGP , ∀ P
}
,

Υ is dense in ǎ0. From now on, assume that

(R) λ ∈ Υ.

With the assumption (R),Wt = ∅ for any t ∈MT,p
λ,{P}, unless λt is regular.

In particular, in the alternating trace (4.22), only those t with λt regular
will contribute to the trace. In this case, np(λt) = 1, and the condition
t ∼= tι equals the condidtion t = tι.
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Combing the discussion in last several sections, (4.22) is computed by:

∑
t∼=tι

1
nP (λt)

tr
(
ι× f

∣∣∣∣ ( indG(Af )
Pt(Af )

⊕
w∈Wt

H∗+l(w)−nt(mt,Kt
∞;

(4.35)

VLt,∨w(λ+ρPt )+ρPt
(C)⊗ V (t))⊗ CρRt+λt

)
(ξλ)

)
=
∑
P=P ι

∑
Λ=Λι

∑
χ=χι

(−1)nP tr
(
ι× fL

∣∣∣∣ ( ⊕
w∈Wt

H∗+l(w)(mP ,Kt
∞;

VL,∨w(λ+ρP )+ρP (C)⊗ V (t))
)

(ξw(λ+ρP )+ρP )
)
,

where, t is a triple (P,Λ, χ); on the right side of this equation, µ is the differ-
ential of the Archimedean part of Λ and P = LN = MAN the Langlands
decomposition. For a Levi subgroup L, fL is defined by

(4.36) fL(l) = e〈ρP ,HP (l)〉
∫
Kf

∫
NP (Af )

f(klnk−1)dndk,

where the Haar measures are normalized with respect to the Iwasawa de-
composition as in [11, Section 7.7]. The twisting factor appears in (4.36)
because we have twisted the character ξλ in the (mG,K∞)-cohomology.
The twisting term CρP+µ disappears because, as a aP -module, it does not
contribute to the trace. Now combing all χ and all the finite parts Λf of Λ
in the summation, by the definition (1) of V (t), (4.35) equals∑

P=P ι

∑
µ=µι

(−1)nP tr
(
ι× fL

∣∣∣∣ ( ⊕
w∈Wt

H∗+l(w)(mP ,KL
∞;(4.37)

VL,∨w(λ+ρP )+ρP (C)⊗ L2
disc(AP (R)0LP (Q)\LP (A)))

)
(ξw(λ+ρP )+ρP )

)

4.3.5.

Now we study the action of ι on the direct sum over Weyl elements
in the last formula. For every ϕ ∈ VLw(λ+ρP )+ρP (C) ⊂ C(LP (Q)\LP (A)),
write ϕι(x) := ϕ(xι−1). It is easy to see that

(4.38) (VLw(λ+ρP )+ρP (C))ι = VL(w(λ+ρP )+ρP )ι(C).

Lemma 4.5. — Let ι act on the Weyl group W = NG(T )/T via [x] 7→
[xι] for any x ∈ NG(T ). Then

TOME 68 (2018), FASCICULE 6



2412 Zhengyu XIANG

(1) Let Sα be a simple reflection in W corresponding to a simple root
α, then (Sα)ι = Sαι . In particular, ι preserves the length of a Weyl
element.

(2) For any w ∈ W, (w(α))ι = wι(αι).
(3) Let P ∈ P, then ριP = ρP .

In particular

(4.39) (VLw(λ+ρP )+ρP (C))ι = VLwι(λ+ρP )+ρP (C).

Moreover, if λ is regular, (VLw(λ+ρP )+ρP (C))ι = VLw(λ+ρP )+ρP (C) if and only
if wι = w.

Proof. — The proof is straightforward. Concretely speaking, (1) follows
from the fact that Sα is the only nontrivial element in NGα(T )/T (see,
e.g. [14, IV]) and (Sα)ι is a non-trivial element in NGαι (T )/T . (2) follows
from a direct computation: let [x] be a representative of w, for any t ∈ T ,
(w(α))ι(t) = w(α)(tι−1) = α(x−1tι

−1x) and wι(αι)(t) = αι((xι)−1txι) =
α(x−1tι

−1x). (3) follows from the definition that ρP (t) := det(Ad(t)|nP )1/2

(see, e.g. [7, III]) and the commutative diagram ad(t)◦ι = ι◦ad(tι). Finally,
one deduces (4.39) from (1)–(3) directly. �

Now let Wt,ι be the subset of Wt consisting of elements which are in-
variant under ι. The previous lemma implies that (4.37) equals∑

P=P ι

∑
µ=µι

∑
w∈Wt,ι

(−1)nP−l(w) tr(ι× fL | (H∗(mP ,KL
∞;(4.40)

VL,∨w(λ+ρP )+ρP (C)⊗ L2
disc(AP (R)0LP (Q)\LP (A))))(ξw(λ+ρP )+ρP ))

Recall that for any w ∈ Wt, w(λ + ρ) = µ. So when µ is running over
all classes t ∈ MT

λ,{P}, w is running over WL
Eis. Let W

L,ι
Eis be the subset

of WL
Eis consisting of elements which are invariant under ι, the previous

formula equals∑
P=P ι

∑
w∈WL,ι

Eis

(−1)nP−l(w) tr(ι× fL | (H∗(mP ,KL
∞;(4.41)

VL,∨w(λ+ρP )+ρP (C)⊗ L2
disc(AP (R)0LP (Q)\LP (A))))(ξw(λ+ρP )+ρP ))

=
∑
P=P ι

∑
w∈WL,ι

Eis

(−1)nP−l(w) tr(ι× fL | (H∗(mP ,KL
∞;

VL,∨w(λ+ρP )+ρP (C)⊗L2
cusp(AP (R)0LP (Q)\LP (A))))(ξw(λ+ρP )+ρP ))

where the equality holds since w(λ+ ρP ) + ρP is regular for λ ∈ Υ.
Finally, we summarize all the computation above together by:
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Theorem 4.6 (Twisted Franke’s trace formula). — Assume λ is regular
in Υ, then for any f ∈ C∞c (G(Af )),

trst(ι× f |H∗(SG,V∨λ(C)))(4.42)

=
∑
P=P ι

∑
w∈WL,ι

Ein

(−1)l(w)+nP trst(ι×fL |H∗cusp(SL,VL,∨w(λ+ρP )+ρP (C))),

where the notation st indicates that we are using the standard Hecke action.

4.4. Cuspidal decomposition formula

Let L be a finite field extension of Qp as in Section 2, we have fixed
an embedding L ↪→ C. Let λ = λalgε be an arithmetic regular dominant
weight in Xι(L), define the alternating trace:

(4.43) Icl
G(ι× f, λ) := tr∗(ι× f |H∗(SG,V∨λalg(L, ε))),

where ∗ indicates that we are using the ∗-action defined in Section 3.1.

Lemma 4.7. — Assume f = fp ⊗ ut ∈ H′p, then

(4.44) Icl
G(ι× f, λ) = λ(ξ(t)) trst(ι× f |H∗(SG,V∨λalg(C, ε))).

Just like [18, 4.5.1 (29)], this is a direct consequence of (3.9) and [18,
Lemma 4.3.8].

For any f ∈ Hp, define the twisted cuspidal alternating trace by:

(4.45) Icl
G,0(ι× f, λ)

:= meas(Kp)λ(ξ(t)) trst(ι× f |H∗cusp(SG(Kf ),V∨λ(C, ε)))

if f ∈ Hp(Kp). This is well defined since ι is well defined on the cuspidal
cohomology.
For any w ∈ WL and f ∈ Hp(G), define f reg

L,w ∈ Hp(L) as below: For
f = fp ⊗ ut ∈ Hp(G), define:

(4.46) f reg
L,w := e〈ρP ,HP (l)〉εξ,w(t)(fp)′L ⊗ uwtw−1 ,

where the factor εξ,w(t) := ξ(t)w−1(ρP )+ρP |tw−1(ρP )+ρP |p, which is trivial
according to our choice of ξ as (2.14), (fp)′L is the usual non-normalized
constant term

(4.47) (fp)′L(lp) =
∫
Kp
f

∫
N(Ap

f
)
fp(kplpnp(kp)−1)dkpdnp.

For general f , the definition is given by linear extension.
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Theorem 4.8. — Let λ be a regular arithmetic weight such that λalg ∈
Υ, then for any f as above, Icl

G(ι× f, λ) equals∑
P=P ι

∑
v∈WL,ι

Ein

∑
w∈WL,ι

(−1)l(v)+nP ξ(t)λ−w
−1v∗λIcl

L,0(ι× f reg
L,w, v(λ+ ρP ) + ρP ).

Proof. — The proof is essentially same to [18, Lemma 4.6.2]. Since both
sides of the equation are linear on f , it is innocuous to assume that f =
fp ⊗ ut and fp = 1Kp . If λ = λalgε, the finite order character ε will simply
appear in every step of the proof by multiplying a twisting factor, so we
only have to deal with the case that λ = λalg algebraic. By the twisted
Franke’s trace formula and Lemma 4.7, Icl

G(ι× f, λ) equals:

(4.48) λ(ξ(t))
∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP trst(ι× fL |H∗cusp(SL,VL,∨v·λ+2ρP )).

For groupH = L,N or P , writeKp
H := Kp∩H(Apf ). Then for f = 1Kp⊗ut,

we have

(4.49) fL(l) = meas(Kp) meas(Kp
N )1Kp

L
⊗ (ut)L.

So (4.48) equals

(4.50) λ(ξ(t))
∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP meas(Kp) meas(Kp
N )

· trst(ι× 1Kp
L
⊗ (ut)L |H∗cusp(SL,VL,∨v·λ+2ρP ))

= λ(ξ(t))
∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP meas(Kp) meas(Kp
P )

· trst(ι× (ut)L |H∗cusp(SL,VL,∨v·λ+2ρP )K
p
L).

Write µ := v · λ + 2ρP and σµ := H∗cusp(SL,VL,∨µ (C))K
p
L . Since ι is well

defined on σµ, viewing indG(Qp)
P (Qp) σµ as the restriction of indG(Qp)o〈ι〉

P (Qp)o〈ι〉 σµ to
G(Qp), we have

(4.51) trst(ι× (ut)′L |σµ) = trst
(
ι× ut

∣∣∣ indG(Qp)
P (Qp) σµ

)
.

According to the decomposition

(4.52) G(Qp) =
⊔

w∈WL

P (Qp)wI,

there is

(4.53)
(

indG(Qp)
P (Qp) σµ

)I ∼= (σILµ )W
L

,

ANNALES DE L’INSTITUT FOURIER



TWISTED EIGENVARIETIES AND SELF-DUAL REPRESENTATIONS 2415

where the isomorphism is given by φ 7→ (φ(w))w∈WL . In particular, ι acts
on the right side by sending (φ(w)) to (φ(wι)). Let WL,ι be the subset
of WL consisting of elements which are invariant under ι. Write Nw :=
N ∩ w−1Nw and IL := I ∩ L(Qp) = wIw−1 ∩ L(Qp), (4.4.8) equals

(4.54) λ(ξ(t))
∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP meas(Kp) meas(Kp
P )

· |ρP (t)|p trst
(
ι× ItI

∣∣∣ ( indG(Qp)
P (Qp) σµ

)I)
= λ(ξ(t))

∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP meas(Kp) meas(Kp
P )|ρP (t)|p

∑
w∈WL,ι

[Nw(Zp) : tNw(Zp)t−1] trst(ι× ILwtw−1IL |σILµ )

Noting that

(4.55) trst(ι× ILwtw−1IL |σILµ )

= trst(ι× ILwtw−1IL |H∗cusp(SL(Kp
LIL),VL,∨µ ))

=
trst(ι× (1Kp)L ⊗ uwtw−1 |H∗cusp(SL(Kp

LIL),VL,∨µ ))
meas(Kp) meas(Kp

P ) ,

and

(4.56) [Nw(Zp) : tNw(Zp)t−1] = |(w−1(ρP ) + ρP )(t)|−1
p ,

(4.54) equals

λ(ξ(t))
∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP |ρP (t)|p

(4.57)

∑
w∈WL,ι

[Nw(Zp) : tNw(Zp)t−1] trst(ι× (1Kp)L ⊗ uwtw−1 |σILµ )

=
∑
P=P ι

∑
v∈WL,ι

Ein

(−1)l(v)+nP |ρP (t)|p
∑

w∈WL,ι

λ(ξ(t))

w−1(µ)(ξ(t))−1|(w−1(ρP )+ρP )(t)|−1
p Icl

L,0(ι×(1Kp)L⊗uwtw−1 , µ)

=
∑
P=P ι

∑
v∈WL,ι

Ein

∑
w∈WL,ι

(−1)l(v)+nP ξ(t)λ−w
−1(µ)+w−1(ρP )+ρP

· |ρP (t)|pIcl
L,0(ι× εξ,w(t)(1Kp)L ⊗ uwtw−1 , µ)

=
∑
P=P ι

∑
v∈WL,ι

Ein

∑
w∈WL,ι

(−1)l(v)+nP ξ(t)λ−w
−1v∗λIcl

L,0(ι× f reg
L,w, µ).
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Here in the last two equations, we used (2.14) again and substituted µ =
v · λ+ 2ρP . This completes the proof. �

5. Twisted finite slope character distributions

5.1. Twisted finite slope character distributions

In this section, we define the notion of twisted finite slope character
distribution, which is a twisted version of Urban’s finite slope character
distributions in [18, Section 4.1.10].

Definition 5.1. — Let ι be an automorphism of G with finite order l, L
a finite extension of Qp in Qp. An L-valued ι-twisted finite slope character
distribution (ι-twisted FSCD) is a Qp-linear map J : H′p → L, such that
for any ι-invariant finite slope overconvergent representation π of Hp, there
is a set of l integers m̄J(π) := {mJ,i(π) | i = 1, . . . , l}, satisfying:

(1) for any t ∈ T++, h ∈ Q and Kp, there are finitely many π of slope
less than or equal to h, such that m̄J(π) 6= 0 and πKp 6= 0.

(2) for any f ∈ H′p,

J(f) =
∑
π

l∑
i=1

mJ,i(π)Jπ̃i(f)

For any irreducible ι-invariant finite slope representation π, we define the
multiplicity of π in J by

(5.1) mJ(π) :=
∑
i

mJ,i(π).

We say J is effective if it is non-trivial and all its coefficients mJ,i(π)
are non-negative. Given a twisted FSCD J , for any f ∈ H′p, define the
Fredholm determinant of f associated to J by

(5.2) PJ(X, f) :=
∏
π

∏
i

det(1−Xπ̃i(ι× f))mJ,i(π)

As [18, Lemma 4.1.12], PJ(X, f) is an entire power series for all f = fp ⊗
ut ∈ H′p, if and only if J is effective.
If J is effective, for any ι-invariant Kp, define VJ(Kp) to be the comple-

tion of

(5.3)
⊕
π

⊕
i

(V K
p

π̃i )mJ,i(π)
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under the super norm ‖
∑
i vi‖ := supi ‖vi‖. VJ(Kp) is a p-adic Banach

space over Cp with an action of ιHp(Kp). Moreover, if f in H′p(Kp) is
admissible, then it is a completely continuous operator and

(5.4) J(f) = meas(Kp) tr(ι× f |VJ(Kp)).

This observation leads us to give the next definition:

Definition 5.2. — Fix Kp, an L-valued ι-twisted finite slope character
distribution of level Kp is a Qp-linear map J ′ : H′p(Kp) → L, such that
for any ι-invariant finite slope overconvergent representation σ of Hp(Kp),
there is a set of l integers m̄J′(σ) := {mJ′,i(σ) | i = 1, . . . , l}, satisfying:

(1) for any t ∈ T++ and h ∈ Q, there are finitely many σ of slope less
than or equal to h, such that m̄J′(σ) 6= 0.

(2) for any f ∈ H′p(Kp),

J ′(f) =
∑
σ

∑
i

mJ′,i(σ)Jσ̃i(f)

Lemma 5.3. — If J is twisted finite slope character distribution, then
J ′Kp := meas(Kp)−1J is a twisted finite slope character distribution of
level Kp.

Proof. — Let π be a ι-invariant finite slope overconvergent representa-
tion of Hp and π̃ an extension of π to ιHp. Since Kp is ι-invariant, for
f ∈ Hp(Kp),

(5.5) meas(Kp)−1Jπ̃(f) = tr(ι× f | π̃K
p

)

(if π̃Kp = 0, both sides are 0). Let σ̃ be an irreducible constitute of ιHp(Kp)
acting on π̃Kp . If the restriction of σ̃ onHp(Kp) is reducible, by Lemma 3.8,
tr(ι× f | σ̃) = 0. So we have

(5.6)

tr(ι× f | π̃K
p

) =
∑
σ̃

m(σ̃, π̃K
p

) tr(ι× f | σ̃)

=
∑
σ

l∑
j=1

m(σ̃j , π̃K
p

)Jσ̃j (f),

where, in the first equality, the sum of σ̃ is running over all irreducible
constitute of ιHp(Kp) in π̃Kp andm(σ̃, π̃Kp) is its multiplicity, which equals
1 by Proposition 3.7; in the second equality, the sum of σ is running over
all irreducible constitute of Hp(Kp) in πKp such that σ is ι-invariant and
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m(σ̃j , π̃K
p), the multiplicities of σ̃j in π̃K

p , are all 0 except for one j. Now

(5.7)
meas(Kp)−1J(f) =

∑
σι∼=σ

∑
j

(∑
i

mJ,i(π)m(σ̃j , π̃K
p

i )
)
Jσ̃j (f)

=
∑
σι∼=σ

∑
j

mJ,j(π)Jσ̃j (f).

This verifies the condition (2) in the definition. Condition (1) is a direct
consequence of Definition 5.1(1). �

Corollary 5.4. — If σ = πK
p is a finite slope overconvergent repre-

sentation of Hp(Kp), then

(5.8) mJ′
Kp

,i(σ) = mJ,i(π).

Similarly, we define the Fredholm determinant for any f ∈ H′p associated
to J ′ by

(5.9) PJ′(X, f) :=
∏
σ

∏
i

det(1−Xσ̃i(ι× f))mJ′,i(σ)

We say that J ′ is effective if it is non-trivial and all its coefficients mJ′,i(σ)
are non-negative. In this case, we define VJ′ as completion of

(5.10)
⊕
σ

⊕
i

(Vσ̃i)mJ′,i(σ)

under the super norm ‖
∑
i vi‖. Then

(5.11) J ′(f) = tr(ι× f |VJ′).

If J ′ = J ′Kp for some effective J , then it is obvious that J ′ is effective,
VJ′ = VJ(Kp) and for any f ∈ H′p(Kp)

(5.12) PJ′
Kp

(X, f) |PJ(X, f).

5.2. Some ι-twisted distributions

For λ ∈ Xι(L) and f ∈ Hp, define

(5.13) I†G(ι× f, λ) := tr(ι× f |H∗fs(S̃G,Dλ(L))).

Once we fix Kp and if f ∈ Hp(Kp), then

(5.14)
I†G(ι× f, λ) = meas(Kp)× tr(ι× f |H∗fs(SG(KpI),Dλ(L)))

= meas(Kp)× tr(ι× f |RΓ∗(SG(KpI),Dλ(L))),
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and we also define

(5.15) I
′†
G (ι× f, λ,Kp) := tr(ι× f |H∗fs(SG(KpI),Dλ(L))).

Let PιG (resp. LιG) be the set of standard parabolic (resp. Levi) subgroups
which are invariant under ι. For L ∈ LιG and w ∈ WL,ι

Eis , we now define
distributions I†G,0(ι×f, λ) and I†G,L,w(ι×f, λ) by induction on the unipotent
rank of G:
If rk(G) = 0, define

(5.16) I†G,0(ι× f, λ) = I†G,G(ι× f, λ) := I†G(ι× f, λ).

Given a positive integer r and assume the distributions have been defined
for cases that rk(G) is less than r, then for proper L ∈ LιG and f = fp⊗ut,
define

(5.17) Icl
G,L,w(ι× f, λ) := Icl

L,0(ι× f reg
L,w, w · λ+ 2ρP )

for regular dominant weight λ ∈ Υ, and define

(5.18) I†G,L,w(ι× f, λ) := I†L,0(ι× f reg
L,w, w · λ+ 2ρP ),

(5.19) I†G,L(ι× f, λ) :=
∑

w∈WL,ι
Eis

(−1)l(w)+dim nLI†G,L,w(ι× f, λ)

for general p-adic weights. Then define:

I†G,0(ι× f, λ) := I†G(ι× f, λ)−
∑

proper L∈Lι
G

I†G,L(ι× f, λ).

Proposition 5.5. — For ? = L, {L,w} or 0, I†G,?(ι×f, λ) is a ι-twisted
FSCD.

Proof. — For L ∈ LιG, let σL be an irreducible finite slope representation
of HLp , define

(5.20) IGL,w := ind
G(Ap

f
)

L(Ap
f
) (σpf )⊗ θσ,w,

where ind
G(Ap

f
)

L(Ap
f
) is the induction normalized by multiplying the factor

e〈ρP ,HP (g)〉, θσ,w is the character of Up defined by

(5.21) ut 7→ |ρP (t)|pθσ(uwtw−1).

If σL is ι-invariant, let σ̃Li be one of its irreducible extensions to ιHLp . It is
easy to see

(5.22) Jσ̃L
i

(f reg
L,w) = tr(ι× f | IGL,w).
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So by the induction process in the definition above, we only have to verify
the proposition for I†G(ι× f, λ). This follows from Proposition 3.12. �

5.2.1. Classical distributions

The distributions I†? defined above will be p-adic interpolations of the
classical distributions Icl

? , which are defined from (twisted) alternating
traces on classical cohomology. For an arithmetic regular dominant weight
λ ∈ Υ and f ∈ Hp(Kp), meas(Kp)−1Icl

G,0(ι× f, λ) equals

λ(ξ(t)) trst(ι× f |H∗cusp(SG(KpI),V∨λ(C)))(5.23)
= λ(ξ(t)) trst(ι× f |H∗(mG,K∞;

L2
cusp(G(Q)AG(R)0\G(A))K ⊗ V∨λ(C))(ξλ))

=
∑
π

λ(ξ(t))mcusp(π) trst(ι× f |H∗(mG,K∞; (πfin)Kf ⊗ V∨λ(C)))

=
∑
π

mcusp(π) trst(ι |H∗(mG,K∞;πfin
∞ ⊗ V∨λ(C))) tr(ι× f |πKff )

= meas(Kp)−1
∑
π

mcusp(π) trst(ι |H∗(mG,K∞;πfin
∞ ⊗ V∨λ(C)))

tr(ι× f |πIf )

where, as Proposition 3.12, the summation is running over all cuspidal
representations π ⊂ L2

cusp(G(Q)\G(A), ξλ) such that πι = π; πfin is the
Harish–Chandra module of π, i.e., the subspace of π consisting of smooth
vectors that generate a finite dimensional vector space under K∞; and
mcusp(π) is the multiplicity of π in L2

cusp, given by the decomposition

(5.24) L2
cusp(G(Q)\G(A), ξλ) =

⊕
π

πmcusp(π).

By Proposition 3.7, if πIf 6= 0 then it is ι-invariant and irreducible as
a C∞c (I\G(Af )/I,Qp)-module. A constitute of the restriction of πIf on
Hp gives a p-stabilization of πf , and there are only finitely many such
p-stabilizations (see [18, Section 4.1.9]). So

(5.25) tr(ι× f |πIf ) =
∑
ρ

m(ρ, πIf ) tr(ι× f | ρ),

where ρ is running over all irreducible Hp-submodules of πIf such that
ρι = ρ, and m(ρ, πIf ) is the multiplicity of ρ in πIf .
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By the last equality of (5.23), we have to compute the Lefschetz number

(5.26)
L(ι, π, λ) := trst(ι |H∗(mG,K∞;πfin

∞ ⊗ V∨λ(C)))

=
∑
i

(−1)i trst(ι |Hi(mG,K∞;πfin
∞ ⊗ V∨λ(C))).

To do so, we need the next theorem, which is easily deduced from Propo-
sition 5.4, 5.5 and Theorem 5.6 in the original paper of Vogan and Zucker-
man [19, Section 5]:

Theorem 5.6. — Let π be a cuspidal representation (so it is essentially
unitary) such that H∗(mG,K∞;πfin

∞ ⊗ V∨λ(C)) 6= 0, then there exists a
θ-stable parabolic subalgebra q = l + u such that

(5.27) dimV∨λ(C)/uV∨λ(C) = 1

and π∞ is of the form Aq(w0λ). Moreover, one has

(5.28) Hi(mG,K∞;πfin
∞ ⊗ V∨λ(C)) ∼= Homl∩k(∧i−Rq(l ∩ k),C)

To understand the theorem we have to recall some notation from [19].
Here θ is a usual Cartan involution of G∞, which gives a Cartan decom-
position

(5.29) g = p + k.

For a θ-stable parabolic algebra q defined as in [19, Section 2] and an ad-
missible weight λ defined as in [19, (5.1)], Aq(λ) is an irreducible g-module
whose restriction on k contains a represntation µ(q, λ), which is the repre-
sentation of K∞ of highest weight λ + 2ρ(p ∩ u), as in [19, Theorem 5.3].
Here Rq = dim(p ∩ u).

Corollary 5.7. — Assumptions as last theorem, if λ is regular, then
u is maximal unipotent and q is Borel.

Proof. — It’s a simple observation from the previous theorem. The fact
that V∨λ(C)/uV∨λ(C) is one dimensional implies that V∨λ(C) can be realized
in indg

q(χ) with some character χ of l whose restriction to t is −w0λ. How-
ever, since λ is regular, −w0λ is regular too. This means that −w0λ cannot
be extended to a character of any Levi subgroup which contains T proporly
(see e.g. [13, Section II.1.18, II.2.4]). So u is maximal unipotent and q is
Borel. �

The corollary implies that there are only finitely many cuspidal π such
thatH∗(mG,K∞;πfin

∞⊗V∨λ(C)) 6= 0, and their infinity parts π∞ areAb(w0λ).
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Write R = Rb, then for each such π

(5.30)

L(ι, π, λ) =
∑
i

(−1)i tr(ι | Homl∩k(∧i−R(t ∩ p),C))

= (−1)R
∑
i

(−1)i tr(ι | Homl∩k(∧i(t ∩ p),C)).

So we define for any λ arithmetic regular dominant in Υ,

(5.31) qG,ι := L(ι, π, λ).

It is an integer depends on G and ι only. In particular

(5.32)

Icl
G,0(ι× f, λ) =

∑
π=πι

qG,ιmcusp(π) tr(ι× f |πIf )

=
∑
ρ=ρι

qG,ι
∑
ρ⊂πI

f

mcusp(π)m(ρ, πIf ) tr(ι× f | ρ)

=
∑
ρ∼=ρι

qG,ι

l∑
i=1

(
∑
ρ⊂πI

f

mcusp(π)m(ρ̃i, πIf ))Jρ̃i(f).

The discussion above together with (5.22) implies:

Proposition 5.8. — Let λ be an arithmetic regular dominant weight
in Υ. For ? = ∅, {L,w} or 0, Icl

G,?(ι×f, λ) is a ι-twisted finite slope character
distributions.

Proof. — We only have to show the representations appearing in the
twisted traces are of finite slope. Let σ be an classical cuspidal representa-
tion of Hp(Kp), its p-component σp must be of dimension one. As we have
seen in (5.32), every σ appearing in the distribution is ι-invariant, so for
any f = fp ⊗ ut ∈ Hp(Kp)

(5.33) Jσ̃(f) = Jσ̃p(fp)ξθσ(ut)

with some l-th root of unit ξ. Now as observed in Section 3.3.2, if σ is of
infinite slope, θσ(ut) = 0. �

Proposition 5.9. — The character distribution Icl
G,0(ι × f, λ) 6= 0 if

and only if qG,ι 6= 0. In this case, define eG,ι := q−1
G,ι, then eG,ιIcl

G,0(ι× f, λ)
is effective.

Proof. — We only have to prove the first statement. The “only if” part
is obvious. Noting that Up is commutative, the component ρp of ρ at place
p appearing in (5.32) must be a character θρ of Up. So we only have to
show that there exits a one dimensional subspace of πIp which is stable

ANNALES DE L’INSTITUT FOURIER



TWISTED EIGENVARIETIES AND SELF-DUAL REPRESENTATIONS 2423

under ι. This is true, because πIp is finite dimensional and is diagonalizable
under ι. �

Remark 5.10. — In last proposition, we have to divide qG,ι to make
sure that the distribution has integral coefficients. If ι is of order 2, the
Lefschetz numbers are necessarily integral. In this case, we can define
eG,ι = sign(qG,ι). All the results and discussion will be same but the dis-
tribution carries more information.

Remark 5.11. — Throughout this paper we have assumed that ι is of
Cartan-type to make sure that the cuspidal cohomology is not always trivial
([6, Theorem 10.6]). However, our results hold for any Q-rational, finite
order automorphism such that the Lefschetz number is non-trivial.

Now for any Kp, write

(5.34) V cl,λ
G,0 (Kp) := VeG,ιIcl

G,0(λ)(Kp) and V cl,λ,′
G,0 (Kp) := V(eG,ιIcl,′

G,0(λ))Kp

Corollary 5.12.

(5.35) V cl,λ
G,0 (Kp) = V cl,λ,′

G,0 (Kp).

5.2.2. Congruence between overconvergent and classical distributions

Lemma 5.13. — Let λ be a regular arithmetic weight in Υ and f =
fp ⊗ ut ∈ H′p(Kp) is Zp-valued, then

(5.36) I†G(ι× f, λ) ≡ Icl
G(ι× f, λ) mod N ι(λ, t) Meas(Kp),

where N ι(λ, t) is defined in (3.35).

Proof. — Both sides of the congruence are meas(Kp) × Zp-valued by
definition. Let h = vp(N ι(λ, t)). Noting that for any a ∈ Z and t ∈ T+,

(5.37) |aµθ(t)|p = |θ(uta)|p,

(3.31) and the observation (3.32) imply that

I†G(ι× f, λ) ≡ tr(ι× f |H∗fs(SG(KpI),Dλ(L)))6hι mod N ι(λ, t) Meas(Kp)

Icl
G(ι×f, λ) ≡ tr(ι×f |H∗(SG(KpIm),V∨λ(L)))6hι mod N ι(λ, t) Meas(Kp).
Then the lemma is obtained from Proposition 3.11. �

Proposition 5.14. — Let f = fp ⊗ ut ∈ Hp(Kp) be Zp-valued and λ
regular arithmetic. Then

(5.38) I†G,0(ι× f, λ) ≡ Icl
G,0(ι× f, λ) mod N ι(λ, t) Meas(Kp).
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Proof. — We prove the proposition by induction on rk(G). The case
rk(G) = 0 is just the Lemma 5.13 above. Now assume the proposition has
been proved for any proper Levi subgroup L ∈ LιG. Noting that N ι(λ, t)
divides ξ(t)λ−w−1v∗λ if v 6= w, the cuspidal decomposition formula, Theo-
rem 4.8 implies that, modulo N ι(λ, t) Meas(Kp), Icl

G,0(ι×f, λ) is congruent
to

(5.39) Icl
G(ι×f, λ)−

∑
P∈Pι, P 6=G

∑
w∈WL,ι

Eis

(−1)l(w)+nP Icl
L,0(ι×f reg

L,w, w·λ+2ρP ).

Now using the induction hypotheses and Lemma 5.13 again, it is congruent
to

(5.40) I†G(ι× f, λ)−
∑

P∈Pι, P 6=G
I†G,L(ι× f, w · λ+ 2ρP ),

which is, by definition, I†G,0(ι× f, λ). �

Now recall the Definition [18, Definition 4.6.6], let {λn} be a sequence
of algebraic dominant weights in X(Qp) which converges p-adically to a
weight λ in X(Qp). We say the sequence is highly regular if, for all positive
simple root α, we have

(5.41) lim
n→∞

λn(Hα) =∞.

Parallel to [18, Corollary 4.6.8], we have a direct consequence of Proposi-
tion 5.14:

Corollary 5.15. — let {λn} be a highly regular sequence of ι-invariant
dominant weights which converges p-adically to a weight λ ∈ Xι(L). Then
for any f = fp ⊗ ut ∈ H′p, there is

(5.42) lim
n→∞

Icl
G,?(ι× f, λn) = I†G,?(ι× f, λ)

for ? = ∅, 0.

5.3. Analyticity with respect to weight

Now we study I†G,?(ι×f, λ) when weights λ varying over the weight space
Xι. Let U be an open affinoid of Xι and O0(U) the ring of analytic functions
on U bounded by 1. For any finite extension L of Qp in Qp, define

(5.43) ΛXι := lim←−
U⊂Xι

O0(U) ⊂ O(Xι)

and

(5.44) ΛXι,L := ΛXι ⊗ L.
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Proposition 5.16. — Fix f ∈ H′p(Kp), then as functions of λ ∈ Xι,
I†G(ι×f, λ), I†G,M,w(ι×f, λ) and I†G,0(ι×f, λ) are all in ΛXι,Qp . In particular,
they are analytic over Xι.

Proof. — The proof is same to [18, Theorem 4.7.3], so we only sketch it
here. By the induction process in defining I†G,?(ι× f, λ), it suffices to prove
the proposition for I†G(ι × f, λ). Locally over an open affinoid U ⊂ Xι, for
n > n(U), Lemma 2.1 and Proposition 2.4(1) imply that

(5.45) RΓ∗(KpI,DU,n)⊗λ L ∼= RΓ∗(KpI,Dλ,n(L)).

Therefore FU := meas(Kp) tr(ι× f |RΓ∗(KpI,DU,n(U))) (viewed as a func-
tion on U via specialization) is in O(U), such that, for any λ ∈ U, FU(λ) =
I†G(ι × f, λ). Moreover, since ι and f ∈ H′p preserve the O0(U)-lattice
RΓ∗(KpI,D0

U,n), that FU is in O0(U), where D0
U,n is the O0(U) dual of

A0
U,n. So we have

�(5.46) I†G(ι× f,−) = lim←−
U⊂Xι

FU ∈ lim←−
U⊂Xι

O0(U) = ΛXι .

5.4. Effectivity

Proposition 5.17. — If qG,ι 6= 0, then eG,ιI†G,0(ι× f, λ) is an effective
ι-twisted finite slope character distribution.

Proof. — Since algebraic regular dominant weights are dense in the
weight space, by Proposition 5.16, it suffices to prove the proposition for al-
gebraic regular dominant weights λ in Υ. Since qG,ι 6= 0, by Proposition 5.9,
eG,ιI

cl
G,0(ι×f, λ) is effective. Let P cl

G.0(ι×f, λ,X) and P †G.0(ι×f, λ,X) be the
Fredholm determinants associated to eG,ιIcl

G,0(ι×f, λ) and eG,ιI†G,0(ι×f, λ)
respectively, define

(5.47) P †−clG,0 (ι× f, λ,X) = P †G.0(ι× f, λ,X)
P cl
G.0(ι× f, λ,X)

.

We need the lemma below, which is a direct consequence of Proposi-
tion 5.14.

Lemma 5.18. — If λ is regular, then P †−clG,0 (ι×f, λ,X) is a meromorphic
function on A1

rig(Cp), its zeros and poles are all lying in

{x ∈ Cp | |x|p > N ι(λ, t)}

TOME 68 (2018), FASCICULE 6



2426 Zhengyu XIANG

Proof of the Lemma. — If J1 and J2 are two twisted finite slope charac-
ter distributions, then so is J1−J2, and PJ1−J2(X, f)=PJ1(X, f)/PJ2(X, f).
Write I†−clG,0 (ι× f, λ) := I†G,0(ι× f, λ)− Icl

G,0(ι× f, λ). Proposition 5.14 im-
plies that, for Zp-valued f = fp ⊗ ut ∈ Hp(Kp), I†−clG,0 (ι × f, λ)′Kp ≡ 0
mod N ι(λ, t). So P †−clG,0 (ι × f, λ,X) ≡ 1 mod N ι(λ, t). This proves the
lemma. �

Now we can run the same argument as in the proof of [18, Theorem 4.7.3]
to show our proposition. Choose a closed affinoid subdomain U ⊂ Xι which
contains one hence dense algebraic weights in Υ. Shrink U if necessary
so that we can write P †G.0(ι × f, λ,X) as a quotient of relatively prime
Fredholm series over U, that is,

(5.48) P †G.0(ι× f, λ,X) = T (ι× f, λ,X)
B(ι× f, λ,X) ,

with both T (ι × f, λ,X) and B(ι × f, λ,X) are in O(U × A1
rig). Assume

B(ι × f, λ,X) 6= 1, let W be the Fredholm subvariety of U × A1
rig cut out

by T (ι × f, λ,X) and B(ι × f, λ,X), that is, W = Z(B) − Z(T ). Since
the projection pr : Z(B) → U is flat, that its image pr(W) also contains
dense algebraic weights. Now let w = (λ, x) ∈ W(Qp) with λ algebraic,
we can choose w′ = (λ′, x′) p-adically close to w such that λ′ is algebraic
regular dominant in Υ and |x′|p < N ι(λ′, t). So by Lemma 5.18, x′ must
be a pole of P cl

G.0(ι×f, λ′, X). However, since eG,ιIcl
G,0(ι×f, λ′) is effective,

P cl
G.0(ι×f, λ′, X) is entire. So our assumption leads to a contradiction. This

implies that P †G.0(ι × f, λ,X) is entire, therefore, eG,ιI†G,0(ι × f, λ) is also
effective. �

Corollary 5.19. — For any ι-invariant standard Levi subgroup of G,
there exists a number eL,ι such that, for any w ∈ WL,ι

Eis , eL,ιIcl
G,L,w(ι× f, λ)

and eL,ιI
†
G,L,w(ι × f, λ) are effective, unless Icl

G,L,w(ι × f, λ) is trivial for
some algrbraic regular weight λ ∈ Υ

Proof. — It follows from the definition of I†G,L,w(ι × f, λ) and an ex-
actly same argument as the proof of the previous proposition, but for Levi
subgroup L. �

5.5. Multiplicities

For ? = cl or †, write the Fredholm determinants associated to eG,ιI?
G,0(ι×

f, λ) by P ?
G,0(ι× f, λ,X), to eL,ιI?

G,L,w(ι× f, λ) by P ?
G,L,w(ι× f, λ,X). Let
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π be a finite slope overconvergent representation, write the multiplicities:

m̄ι,?
G,0(π, λ) := m̄eG,ιI?

G,0(λ)(π),

mι,?
G,0(π, λ) := meG,ιI?

G,0(λ)(π),
(5.49)

m̄ι,?
G,L,w(π, λ) := m̄eL,ιI?

G,L,w
(λ)(π),

mι,?
G,L,w(π, λ) := meL,ιI?

G,L,w
(λ)(π),

(5.50)

For given Kp, if θ is an overconvergent Hecke eigensystem of levelKp, write
its multiplicity in V ?,λ

G,0(Kp) by m?,ι
G,0(θ, λ). By Proposition 5.5, if θ or π is

not ι-invariant, its multiplicities are 0.

Lemma 5.20. — Let λ be an arithmetic regular weight and π an ι-
invariant finite slope overconvergent representation, which is non-critical
with respect to λalg, then

(5.51) mι,cl
G,0(π, λ) = mι,†

G,0(π, λ)

Proof. — Assume π is of level Kp. Since π is non-critical with respect
to λ, there is t ∈ T++ such that vp(N ι(λ, t)) > vp(θπ(ut)). if necessary,
we can replace t by tN for some positive integer N to make vp(N ι(λ, t))−
vp(θπ(ut)) arbitrarily large. Now consider the finite set of ι-invariant finite
slope overconvergent representations:

ΣtKp = {ρ | ρK
p

6=0, vp(ρ(ut))6vp(N ι(λ, t)), m̄ι,†
G,0(ρ, λ) or m̄ι,cl

G,0(ρ, λ) 6=0}

Since ΣtKp is finite, by Jacobson’s Lemma, there is f ∈ Hp(Kp) such that
π(f) = idπKp and ρ(f) = 0 for any ρ ∈ ΣtKp that is not isomorphic to π.

Consider f0 = (1Kp ⊗ ut)f , we have for ? = † or cl

(5.52) P ?
G,0(ι× f0, λ,X)

=
l∏
i=1

det (1− π̃i(ι× 1Kp ⊗ ut)X)m
ι,?
G,0,i(π,λ)

S?
G,0(X),

where S?
G,0(X) is the product of the determinants of all representations

whose slopes are strictly greater than vp(N ι(λ, t)). Noticing that ΣtMKp =
ΣtKp for any positive integerM , we can therefore choose f independently for
any M . So if necessary, we can replace t by tM such that f0 = (1Kp ⊗ ut)f
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is Zp-valued. Then by Proposition 5.14 and Lemma 5.18, we have

(5.53)
l∏
i=1

det (1− π̃K
p

i (ι× 1Kp ⊗ ut)X)m
ι,†
G,0,i(π,λ)

≡
l∏
i=1

det (1− π̃K
p

i (ι× 1Kp ⊗ ut)X)m
ι,cl
G,0,i(π,λ) mod N ι(λ, t)

and they share the same zeros (order counted) mod N ι(λ, t). If necessary,
replace t by tN as we observed at the beginning of the proof, we can assume
that vp(N ι(λ, t)) is strictly greater than the p-adic valuation of all the
coefficients of

∏l
i=0 det (1− π̃Kp

i (ι× 1Kp ⊗ ut)X)m
ι,?
G,0,i(π,λ), so we have

(5.54)
l∏
i=1

det (1− π̃K
p

i (ι× 1Kp ⊗ ut)X)m
ι,†
G,0,i(π,λ)

=
l∏
i=1

det (1− π̃K
p

i (ι× 1Kp ⊗ ut)X)m
ι,cl
G,0,i(π,λ)

.

In particular, they have the same degree, which are dim(π)mι,†
G,0(π, λ) and

dim(π)mι,cl
G,0(π, λ) respectively. So mι,cl

G,0(π, λ) = mι,†
G,0(π, λ). �

Noting that π̃Kp

i (ι× 1Kp ⊗ ut) = π̃K
p

i (ι)θπ(ut) and πKp is finite dimen-
sional, we can compute (5.54) more explicitly. Fix ξ a primitive l-th roots
of unity, let k(i)

j be the multiplicity of ξj as an eigenvalue of ι in π̃Kp

i . Then
for any i = 1, . . . , l,

(5.55)
l∑
j=i

k
(i)
j = dim πK

p

and

(5.56)
l∏
i=1

det (1− π̃K
p

i (ι× 1Kp ⊗ ut)X)m
ι,?
G,0,i(π,λ)

=
l∏
i=1

(
l∏

j=1
(1− ξjθπ(ut)X)k

(i)
j

)mι,?
G,0,i(π,λ)

=
l∏

j=1
(1− ξjθπ(ut)X)

∑
i
k

(i)
j
mι,?
G,0,i(π,λ).
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This gives us varies identities between the multiplicities. If we compare the
coefficients of degree 1, we have

(5.57)
l∑
i=1

ξimι,†
G,0,i(π, λ) =

l∑
i=1

ξimι,cl
G,0,i(π, λ).

In particular, if l = 2, (5.51) and (5.57) imply that

(5.58) m̄ι,cl
G,0(π, λ) = m̄ι,†

G,0(π, λ).

Let λ = λalgε be an arithmetic weight. If π is a ι-invariant finite slope cus-
pidal representation, its ι-twisted Euler–Poincare characteristic mι

EP (π, λ)
is defined by:∑

q

(−1)q tr(ι | HomHp(π,Hq(S̃G,V∨λalg(C, ε)))).(5.59)

If π is of level Kp, then mι
EP (π, λ) equal:∑

q

(−1)q tr(ι | HomHp(Kp)(πK
p

, Hq(SG(KpI),V∨λalg(C, ε)))).(5.60)

Then a computation as in Section 5.2 shows that

(5.61) mι
EP (π, λ) = qG,ιm

ι,cl
G,0(π, λ).

Since the distribution eG,ιIcl
G,0(ι×f, λ) is effective, mι,cl

G,0,i(π, λ) are all non-
negative. So in case qG,ι 6= 0, mι

EP (π, λ) 6= 0 if and only if mι,cl
G,0(π, λ) 6= 0,

if and only if mι,cl
G,0,i(π, λ) 6= 0 for some i.

We close this section by considering the multiplicities of Hecke eigensys-
tems:

Corollary 5.21. — Let λ be an arithmetic regular weight and θ a
finite slope ι-invariant overconvergent Hecke eigensysem, which is non-
critical with respect to λalg, then

(5.62) mι,cl
G,0(θ, λ) = mι,†

G,0(θ, λ)

Proof. — This is a direct consequence of Lemma 5.20 and the formula
that

�(5.63) mι,?
G,0(θ, λ) =

∑
σ|RS,p=θ

mι,?
G,0(σ, λ) dim σ.
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6. Twisted eigenvarieties

In this section, for group G and finite Cartan-type automorphism ι, as-
suming that qG,ι 6= 0 (so eG := eG,ι 6= 0), we construct eigenvarieties which
parametrize ι-invariant finite slope overconvergent Hecke eigensystems of
G. We call such an eigenvariety a ι-twisted eigenvariety of G.

6.1. Twisted spectral varieties

Consider the effective distribution eGI
†
G.0(ι × f, λ), for fixed Kp and

f ∈ Hp(Kp), write V †,λG,0(Kp) and P †G.0(ι× f, λ,X) for it as (5.34).

Proposition 6.1 (twisted spectral varieties). — For any f = fp⊗ut ∈
H′p(Kp) with t ∈ T++, there is a rigid analytic space Sι(f) ⊂ Xι × A1

rig,
such that (λ, α) ∈ Sι(f)(Qp) if and only if α−1 is an eigenvalue of ι× f on
V †,λG,0(Kp).

Proof. — This is same to [18, Proposition 5.1.6]. Sι(f) is simply defind
as the Fredholm hypersurface cut out by P †G.0(ι× f, λ,X) in Xι×A1

rig. �

6.2. Full eigenvariety

For later use, we summarize some results of [20]. Given Kp, let R̃S,p be
the p-adic completion of RS,p[u−1

t , t ∈ T+]. Define RS,p to be the p-adic
analytic space, such that for any L/Qp in Qp,

(6.1) RS,p(L) = Homct alg(R̃S,p, L).

By construction, θ ∈ RS,p(L) is of finite slope. RS,p(L) has the canonical
p-adic topology induced by the metric |θ− θ′| =: supf∈RS,p |θ(f)− θ′(f)|p.

Set Y = X × RS,p, its L-points Y(L) are pairs (λ, θ). The full eigen-
variety is a rigid analytic space E := EKp over Qp, which is a p-adic
analytic subspace of Y. The space E is equipped with a projection onto
X, such that (λ, θ) ∈ EKp(L) if and only if H∗fs(SG(KpI),Dλ(L))[θ] 6= 0,
and, for any f ∈ RS,p, Rf (θ) := θ(f)−1 is an eigenvalue of f acting on
H∗(SG(KpI),Dλ(L)). Indeed, for any f ∈ RS,p, (λ, θ) 7→ (λ,Rf (θ)) gives
a projection from EKp onto a subvariety Sf of X×A1

rig, and Sf is a piece of
the spectral variety which parameterizes Hecke eigenvalues of f . For detail,
refer [20, Section 6, 7, 8].
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6.3. A big twisted eigenvariety

In this subsection we construct our first twisted eigenvariety Kι using the
method and notation in [20]. Kι will give us a bigger rigid space so that we
can construct inside it other twisted eigenvarities we really concern. Not
like the work of Urban in [18], we have to do so rather than to construct
our twisted eigenvarieties directly. The reason is, since our twisted finite
slope character distributions are constructed from twisted traces, they do
not provide pseudo-repesentations, so we do not have Urban’s “second con-
struction” as [18, Section 5.3]. Then if we follow the direct construction,
what we obtained is only a p-adic analytic space but not a rigid space.
However, Kι will be a rigid analytic space, so its subspaces inherit rigid
structures automatically.

Most results in this subsection are parallel to [20], so we omit the proofs.

6.3.1. Spectral varieties

Let U be an open affinoid subdomain of Xι, consider the action of ιRS,p
on RΓ(KpI,DU) :=

⊕
RΓq(KpI,DU) as in Section 3.1. By Proposition 2.4

and the discussion in Section 3.1.3, for any f ∈ RS,p admissible, there is
a power series PU(f, λ,X) ∈ O(U){{X}}, such that for any λ ∈ U, the
specialization of PU(f, λ,X) at λ is the Fredholm determinant of f acting
on RΓ(KpI,Dλ).

Lemma 6.2 (Urban). — Let j : N ↪→M be a continuous injection of L-
Banach spaces. Let uN and uM be respectively compact endomorphisms of
N andM such that j◦uN = uM ◦j. ThenM/j(N) has slope decomposition
with respect to uM/N = uM (mod j(N)), and

det(1−XuM ) = det(1−XuN ) det(1−XuM/N )

This lemma is [18, Proposition 2.3.9]. Apply Lemma 6.2 to the situation
M = N = RΓ(K,DU) and j = ι∗, we have

(6.2) PU(f, λ,X) = PU(f ι, λ,X).

Let PU(f, λ,X) = QU(X)SU(X) be a polynomial decomposition as in
Lemma 3.4, and

(6.3) RΓ(K,DU) = Nf (QU)⊕ Ff (QU)

the corresponding O(U)-module decomposition. Apply Lemma 6.2 to the
situation N = Nf (QU), M = RΓ(K,DU), j = ι∗, uN = f and uM = f ι, we
have

(6.4) Nfι(QU) = ι ∗ (Nf (QU)).
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Define

(6.5) Nf,ι(QU) =
l⋂
i=1

Nfιi (QU),

which is equipped with a ιHp(Kp) action.
Recall that, in [20, Proposition 6.4], we defined a weight space W ⊂ X,

such that for λ ∈ X, λ ∈W if and only if Hfs(SG(K),Dλ) 6= 0. Similarly,
define

(6.6) Wι
Q,U := suppO(U)

˜H(N∗f,ι(QU)) ⊂ U

and Wι the subspace of Xι obtained by gluing Wι
Q,U for all U and QU.

Then λ ∈Wι
Q(f)(Qp) if and only if H(N∗f,ι(Q)) 6= 0. The next proposition

is a direct consequence of the fact that

(6.7)

Hfs(SG(K),Dλ) = lim−→
h

H(SG(K),Dλ)6hf

= lim−→
h

⋂
i

H(SG(K),Dλ)6h
fιi

:

Proposition 6.3.

(6.8) Wι = Xι ∩W

For an admissible f ∈ RS,p, define set {f}ι := {f ιi × ιj | 1 6 i, j 6 l}.
For any g ∈ {f}ι, define

(6.9) Sι
Q,U,g := suppO(U)[g] H̃

∗
f,ι(Q) ⊂ U× A1

rig

Proposition 6.4. — Sι
Q,U,g is locally finite over Wι

Q,U. A point s =
(λ, α) of U×A1

rig is in Sι
Q,U,g(Qp) if and only if λ ∈Wι

Q,U(Qp) and α−1 is
an eigenvalue of g acting on H∗f,ι(Q).

The proof is same to [20, Proposition 6.6]. Moreover, discuss as in [20,
Section 6], given {f}ι and g ∈ {f}ι, we can glue the local spectral varieties
Sι
Q,U,g for polynomials QU and open affinoid domains U ⊂ Xι:

Theorem 6.5. — There is a spectral variety Sι
g = Sι

Wι,g as a rigid
subspace of Xι × Arig

1 , such that, s = (λ, α) ∈ Sι
g(Qp) if and only if λ ∈

Wι(Qp) and α−1 is an eigenvalue of g acting on H∗fs(SG(K),Dλ).

Corollary 6.6. — If g = ι× f , then

(6.10) Sι(f) ⊂ Sι
g.
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6.3.2. A big twisted eigenvariety

We build an eigenvariety over the spectral varieties constructed in last
subsection as in [20, Section 8]. Let ιR̃S,p be the p-adic completion of
ιRS,p[u−1

t , t ∈ T+]. Since ιRS,p = RS,p o 〈ι〉 and ι is of finite order l, that
ιR̃S,p is an l pieces union of R̃S,p. Define the p-adic space B = BS,p be
such that for any L/Qp,

(6.11) B(L) = Homalg ct(ιR̃S,p, L).

There is a natural morphism

(6.12) i : BS,p(L) −→ RS,p(L)

given by restricting a character θ̃ of ιR̃S,p to R̃S,p, i.e. θ := i(θ̃) = θ̃|R̃S,p .
This morphism is finite and continuous.
Write Zι = ZιS,p := Xι ×B. For any admissible f and g ∈ {f}ι ⊂ ιRS,p,

define the morphism of ringed space

(6.13) Rg : Zι → Xι × Arig
1

by (λ, θ̃) 7→ (λ, θ̃(g)−1) on L-points, and

(6.14) R∗g : O(Xι){{X}} −→ O(Xι)⊗̂ιR̃S,p

by
∑
anX

n 7→
∑
an(g)−n on the function rings.

Define the rigid space

(6.15) D̃ι :=
∏
[f ]ι

∏
g∈[f ]ι

R−1
g Sι

g

as in [20, Section 8], where its G-topology is defined via Rg’s. Concretely,
an open subset of D̃ι is admissible if it is a union of open subsets of the form
Rg,1 × · · · ×R−1

gr (V) for V an open admissible affinoid of Sι
g1
× · · · ×Sι

gr ;
and an admissible covering is the inverse images by Rg’s of the admissible
coverings of the corresponding spectral varieties. Then we have a parallel
result to [20, Proposition 8.1]:

Proposition 6.7. — Assume ỹ = (λ, θ̃) is in Zι(Qp), then ỹ ∈ D̃ι(Qp)
if and only if H∗(SG(K),Dλ)[θ̃] 6= 0 as a ιRS,p-module. Moreover, given
ỹ ∈ D̃ι(Qp), there exists an admissible f , such that

(6.16)
⋂

g∈[f ]ι
R−1
g (Rg(ỹ))

⋂
D̃ι(Qp) = {ỹ}
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For U ⊂ Xι and PU(f,X) = Q(X)S(X) as in Section 6.3.1, let hU
and hιU be the image of RU := O(U) ⊗ RS,p and RιU := O(U) ⊗ ιRS,p
in Endbpf (RΓ(KpI,DU)) respectively, and let hU,Q and hιU,Q be the image
of RU and RιU in Endbpf (Nf,ι(Q)) respectively. Define

(6.17) K̃ι
′

U := sp(hιU)

and

(6.18) K̃ιU,Q := supphι
U,Q

˜H(N∗f,ι(Q)).

Proposition 6.8.
K̃ιU,Q(Qp) =

∏
g∈[f ]ι

R−1
g Sι

Q,U,g(Qp)

The proof of proposition is same to [20, Proposition 8.2]. Moreover, an
argument as [20, Propositions 8.2, 8.3, 8,4] shows that we can patch K̃ιU,Q
with respect to U and Q to obtain a rigid space K̃ιf . Define

(6.19) K̃ι :=
∏
f

K̃ιf .

It is a reduced rigid analytic space, and by Proposition 6.7, 6.8

(6.20) K̃ι(Qp) = D̃ι(Qp).

Now given U and Q as above, define i : K̃ι → E by locally defining

(6.21) i : K̃ιU,Q := supphι
U,Q

˜H(N∗f,ι(Q))→ EU,Q := supphU,Q

˜H(N∗f (Q)).

This is defined by the inclusions hU,Q ↪→hιU,Q andH(N∗f,ι(Q))→H(N∗f (Q)).
In particular, on Qp-points, i sends (λ, θ̃) to (λ, θ := θ̃|RS,p). So it is de-
fined on each fibre K̃ιf coincident with (6.12) and defined locally on points
R−1
g Sι

Q,U,g(Qp). Finally, define Kι as the image of K̃ι under i. Its points are
described by the theorem below

Theorem 6.9. — Assume y = (λ, θ) is in E(Qp), then y ∈ Kι(Qp)
implies that θ is a ι-invariant finite slope overconvergent Hecke eigensystem
of weight λ. For any f ∈ RS,p, Rf maps Kι to Sι

Wι,f . It is locally finite
and surjective. In particular, dimKι 6 dimXι.

This is directly follows from the definition, noting that f ∈ {f}ι.

Remark 6.10. — Generally, Kι is NOT the eigenvariety parameterizing
all ι-invariant Hecke eigensystems. Actually, it parameterizes those θ such
that, as a one-dimensional subspace of H(SG(K),Dλ), ι∗ maps Vθ to itself,
as the set A in the proof of Proposition 3.12.
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6.4. Twisted eigenvariety

Now fix Kp, for any f ∈ RS,p, consider the morphism Rι×f : Zι →
Xι × A1

rig defined as in Section 6.3, and define

(6.22) Ẽι =
∏
f

(Rι×f )−1(Sι(f)),

where the product is running over admissible Hecke operators f .

Theorem 6.11 (twisted eigenvarities). — Given Kp as above, there is
a subvariety EιKp of EKp , satisfying:

(1) For any (λ, θ) ∈ EKp(Qp), (λ, θ) is in EιKp(Qp) if and only if θ is
ι-invariant and m†,ιG,0(θ, λ) 6= 0.

(2) Every irreducible component of EιKp projects surjectively onto a
Zariski dense subset of Xι.

(3) EιKp is equidimensional with the same dimension to Xι, and every
irreducible component is arithmetic.

Proof. — Define Eι := EιKp to be the image of Ẽι under i. Its underly-
ing topological space Eι(Qp) is given by the image i(Ẽι(Qp)). Firstly we
show Eι(Qp) ⊂ EKp(Qp) and the part (1) by modifying the proof of [18,
Proposition 5.2.3]. As in Section 5.1, write

(6.23) V = V †,λG,0(Kp) =
⊕
σ

l⊕
i=1

V
mι,†
G,0,i(σ,λ)

σ̃i
,

where σ = πK
p is running over all ι-invariant finite slope representations

of Hp(Kp) appearing in the distribution eGI†G,0(ι× f, λ)′Kp . Given (λ, θ̃) ∈
Ẽι(L), fix t ∈ T++, set h = vp(θ̃(ut)) and

W = V 6h.

Hp(Kp) acts on W since RS,p is in its center. Since every σ appearing
in V is ι-invariant, that ιHp(Kp) acts on W . Let hW be the image of
RS,p → EndL(W ). It is finitely generated by the image of finitely many
elements {f1, . . . fr} in RS,p. Let Ω be the set consisting of θ̃(ut), θ̃(fi),
and all eigenvalues of ut, ι × ut, fi, ι × fi on W . Now let R be a number
such that for any α, α′ ∈ Ω, vp(α− α′) 6 vp(R), define operators h1 = f1,
hi+1 = fi+1(1 +Rhi) and f = ut(1 +Rhr).
Since (λ, θ̃) ∈ Ẽι(L), there is 0 6= wf ∈ V and σ̃i appeaing in V , such

that

(6.24) θ̃(ι× f)wf = σ(ι× f)wf .
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in particular, wf is an eigenvector of σ(ι × ut) and σ(ι). Denote their
eigenvalue by af and bf respectively. Since ι is of finite order, bf is a unit.
Write θ = σ|RS,p , then (λ, θ) ∈ EKp(Qp), we want to show i(θ̃) = θ.

Indeed, vp(bf ) + vp(θ(ut)) + vp(θ(1 + Rhr)) = vp(θ̃(ι)) + vp(θ̃(ut)) +
vp(θ̃(1+Rhr)). Since bf and θ̃(ι) are units, by the setting of R, vp(θ(ut)) =
vp(θ̃(ut)). This implies that σ actually appears in W . On the other hand,
(af− θ̃(ι×ut))θ(1+Rhr) = θ̃(ι×ut)(θ̃(1+Rhr)−θ(1+Rhr)). This implies
vp(af − θ̃(ι×ut)) > vp(R). So af = θ̃(ι×ut) and θ(hr) = θ̃(hr). Repeating
the process, we have θ̃(fi) = θ(fi) for all fi. Therefor θ̃|RS,p = θ and
i(λ, θ̃) = (λ, θ) ∈ E(L). In particular θ is ι-invariant. By our construction
of θ and formula (5.63), we have m†,ιG,0(θ, λ) 6= 0.
Now we prove the other direction of (1). If Vi := Vσ̃i appearing in (6.23),

let Vi =
⊕

ζ Vi[ζ] be the eigen decomposition of Vi under ι, then ιRS,p acts
on each Vi[ζ]. Let (λ, θ) ∈ E(Qp) be ι-invariant. If mι,†

G,0(θ, λ) 6= 0, there is
some Vi such that Vi[θ] 6= 0 as a RS,p-module. In particular, θ appears in
some Vi[ζ]. Define θ̃ be the extension of θ to ιRS,p by setting θ̃(ι) = ζ. It
is then clear that (λ, θ̃) ∈ Ẽι(Qp) and i(λ, θ̃) = (λ, θ).

With (1), Theorem 6.9 and Remark 6.10 imply that

(6.25) Eι(Qp) ⊂ Kι(Qp)

By construction, for any f ∈ RS,p, there is a commutative diagram:

(6.26)

ẼιKp(Qp)
i //

Rι×f

��

EιKp(Qp)
� � //

Rf

��

KιKp(Qp)

Rf

��
Sι(f)(Qp)

��

(Xι × Arig
1 ) ∩Sf (Qp)

yy

Sι
f (Qp)

||
Xι

&&

� � // Wι = Xι

ww
X

Consider the first column of the diagram. Rι×f is locally finite, and Sf

is constructed by the Fredholm power series. So by the same argument
of [18, Theorem 5.3.7], Rι×f is finite surjective. Now Proposition 6.7 and
Corollary 6.6 enable us to run an argument as in [18, Corollary 5.3.8], so
the composition of the first two arrows in the first column is surjective
onto a Zariski dense subset of Xι. Since i keeps the first coordinate λ,
that the projection from Eι(Qp) to Xι in the second column is also Zariski
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surjective. So dim(Eι) > dim(Xι). However, (6.25) and Theorem 6.9 imply
that dim(Eι) 6 dim(Kι) = dim(Wι) 6 dim(Xι). So we have dim(Eι) =
dim(Xι), Xι = Wι, (which is why we have the third row of the diagram)
and, in particular, the Rf in the third column is also surjective. Together
with Proposition 6.7, an argument as in [18, Corollary 5.3.8] again shows
that Rf in the second column is also locally finite and surjective.

Now since dim(Kι) = dim(Xι), denote by Kι,c the union of codimension 0
arithmetic components (i.e. irreducible components contains a Zariski dense
subset of arithmetic points) of Kι. Then the same argument as [20, Propo-
sition 8.9] shows that

(6.27) Kι,c(Qp) = Eι(Qp)

This proves (2) and (3) of the theorem. �

Remark 6.12. — By the last observation (6.27) in the proof above, through-
out this section we could have worked on the p-adic analytic spaces Eι(Qp)
and finally define the rigid analytic structure on Eι by the one induced
from Kι,c.

7. The case of Gln

In this section, we study the case of G = Gln over Q. Fix the pair (B, T ),
where B is the subgroup of upper triangular matrices and T the diagonal
subgroup. Then

T+ = {diag(t1, . . . , tn) | vp(t1) > · · · > vp(tn)}(7.1)
T++ = {diag(t1, . . . , tn) | vp(t1) > · · · > vp(tn)}(7.2)

Define gι := j(tg−1)j−1 for any g ∈ G, where j = (δi,n+1−j)16i,j6n if n is
odd; and

j =
(

0 (δi,k+1−j)16i,j6k
−(δi,k+1−j)16i,j6k 0

)
if n = 2k is even. It is easy to check that ι is an automorphism of G of
order 2, and ι stabilizes (B, T, Im) and T+, T++.
Let π be an automorphic representation of G. Apparently, π is ι-invariant

if and only if π is self-dual in the usual sense.

TOME 68 (2018), FASCICULE 6



2438 Zhengyu XIANG

7.1. I†G,0(ι× f, λ) is non-trivial

Consider the ι-twisted distribution I†G,0(ι × f, λ) defined for G and ι as
in Section 5.2, we prove it is non-trivial by computing qG,ι as in Proposi-
tion 5.9.

Proposition 7.1. — Let λ ∈ Xι be an arithmetic regular dominant
weight in Υ. Let π be a self-dual finite slope cuspidal representation of
weight λ. Assume that π is non-critical with respect to λ. Then qG,ι 6= 0.

Proof. — It is a computation given by Barbasch and Speh in [5, VI.3]
that

(7.3)

qG,ι =L(ι, Ab(λ), λ)

=(−1)Rb

∑
i

(−1)i tr(ι | Homl∩k(∧i(l ∩ p),C))

=(−1)dn2 e2dn2 e 6= 0.
�

Since ι is of order 2, for ? = cl or †, we define eG,ιI?
G,0(ι × f, λ) as in

Remark 5.10. Considering the last paragraph in Section 5.5, we have

Corollary 7.2. — Let λ ∈ Xι be an arithmetic regular dominant
weight in Υ. Let π be a self-dual finite slope cuspidal representation of
weight λ. Assume that π is non-critical with respect to λ. Thenmι

EP (σ, λ) 6=
0.

Proof. — By the definition (5.59), combining (5.51) and (5.61), we com-
pute as in Section 5.2:

(7.4) mι
EP (π, λ) =

∑
ρ

mcusp(ρ)L(ι, ρ, λ) tr(ι | HomHp(Kp)(πK
p

f , ρf )).

Since G = Gln, the cohomological packet at infinity for λ has only one
element, which is of the form Ab(λ) as in Theorem 5.2.3 (see also [16]). So

(7.5) mι
EP (π, λ)

= L(ι, Ab(λ), λ)
∑

ρ∞=Ab(λ)

mcusp(ρ) tr(ι | HomHp(Kp)(πK
p

f , ρf ))

= (−1)dn2 e2dn2 e
∑

ρ∞=Ab(λ)

tr(ι | HomHp(Kp)(πK
p

f , ρf ))

= (−1)dn2 e2dn2 e 6= 0,
where the last two lines hold since Gln admits the multiplicity one
theorem. �
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Remark 7.3. — Corollary 7.2 implies that the ι-twisted eigenvariety EιKp

we constructed in Theorem 6.11 for Gln parameterizes all non-critical self-
dual finite slope cuspidal Hecke eigensystems of level Kp.

7.2. Essentially self-dual representations

Generally, a representation π of a reductive group is essentially ι-invariant
if there exists an algebraic character χ of Gm such that χ ◦det⊗πι ∼= π. In
our case G = Gln, a representation π is essentially ι-invariant if and only
if it is essentially self-dual in the usual sense.
Now a p-adic weight λ ∈ X(L) is determined by n p-adic characters

χ1, . . . , χn of Gm(Zp) such that

(7.6) λ : diag(t1, . . . , tn) 7→ χ1(t1) . . . χn(tn)

An essentially self-dual weight is characterized by χiχn+1−i = χjχn+1−j
for any 1 6 i, j 6 n. Denote by Xe the subspace of essentially self-dual
weights in X, then dim(Xe) = [n2 ] + 1. Given a character χ, denote by Xeχ
the subspace of essentially self-dual weights with respect to χ in Xe. It is
cut out by the relation χiχn+1−i = χjχn+1−j = χ, then dim(Xeχ) = [n2 ].

We now construct an eigenvariety Ee, which parameterizes all essentially
self-dual finite slope overconvergent Hecke eigensystems of G, by applying
our method to the group G̃ = Gln × Gl1, with involution µ : (g, x) 7→
(gι,det(g)x). We remark here that µ is not of Cartan-type, however, one
can verify that our discussion through Sections 2-6 still works.
LetB1 be the p-adic weight space of Gl1, it is the rigid unit ball. Consider

the weight space X̃ = X ×B1. Denote by X̃µ the µ-invariant subspace of
X̃. It is easy to check that

(7.7) X̃µ = {λ̃ = (λ, χ) |λ ∈ Xeχ, χ ∈ B1}.

Its first component projects bijectively to Xe.
Consider an open compact subgroup K̃f = Kf ×K1

f of G̃(Af ), where Kf

is defined as previous sections and K1
f is a neat open compact subgroup of

Gl1(Af ). We simply fix K1
p = Ẑ and normalize the Haar measure on Gl1

such that meas(Zl) = 1 for any finite place l. Then the associated locally
symmetric space for G̃ is

(7.8) SG̃(K̃f ) ∼= SG(Kf )× (Q×\A×Q/ẐR
×) ' SG(Kf )× {pt} .

For the group Gl1, T+
Gl1

= T++
Gl1

= TGl1(Qp) = Q×p , so the set of Up opera-
tors Up(Gl1) = Zp[T+/T (Zp)] = Zp[Q×p /Z×p ]. This implies that the p-adic
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Hecke algebra for G̃ is given by:

(7.9)
Hp(K̃p) = Hp(Kp)× C∞c (Ẑp\A×pf /Ẑp)⊗ Zp[Q×p /Z×p ]

= Hp(Kp)× C∞c (A×f /Ẑ,Zp).

For any f ∈ H′p(K̃p) admissible, write f = (fG, f1) with fG = fpG ⊗ ut,
t ∈ T++ and fp1 ⊗ ut′ t′ ∈ Q×p .

For a regular dominant weight λ̃ = (λ, χ) ∈ X̃µ, let Vλ̃ be the finite
dimensional irreducible algebraic representation of G̃ with highest weight
λ̃ and Dλ̃ the local distribution space defined in Section 2.3. It is not hard
to see

(7.10) Vλ̃ ∼= Vλ × χ

where the right side is understood as the space Vλ together with an action
of Gl1 given by multiplying the value of χ and the isomorphism is given
by φ 7→ φ1 such that φ1(g) := φ(g, 1) for any g ∈ G. Generally, let π be
an irreducible representation of G̃, since Gl1 is in the center of G̃, π|Gl1 is
given by a character χ and π|G is irreducible as well. It is easy to check
that π ∼= π|G × χ, and π is µ-invariant if and only if π|G is essentially
ι-invariant with respect to χ. If π is a µ-invariant representation of G̃, as
in Section 3.3, we can extend π to a representation π̃ of G̃o 〈µ〉, and then
restrict π̃ to Go 〈µ〉. This gives an µ-action on Vπ such that for any g ∈ G,

(7.11) µ× χ(det(g))π(gι) = π(g)× µ.

Now we can define µ-twisted finite slope character distributions
Icl
? (µ × f, λ̃) and I†? (µ × f, λ̃) as (4.4.1), (4.4.3) and Section 5.2, where

? = G̃, (G̃, 0), (G̃, M̃ , 0). As Remark 5.10 and the discussion in Section 5.4,
Icl
G̃,0(µ×f, λ̃) and I†

G̃,0(µ×f, λ̃) are essentially effective. We can indeed com-
pute them explicitly and relate them to the distributions Icl

G,0(ι×fG, λ) and
I†G,0(ι× fG, λ) for G, where Icl

G̃,0(µ× f, λ̃) equals

meas(Kp)λ̃(ξ(t, t′)) tr(µ× f |H∗cusp(SG̃(K̃f ),V∨
λ̃

(C)))

= meas(Kp)λ(ξ(t))χ(t′) tr(µ× f |H∗cusp(SG̃(K̃f ),V∨
λ̃

(C))
= meas(Kp)λ(ξ(t))χ(t′)χ∨(f1) tr(µ× fG |H∗cusp(SG(Kf ),V∨λ))

=χ(t′)χ∨(f1)Icl
G,0(µ× fG, λ),

where the last second equation follows from Section 3.1 and (7.10), the
action of µ is given as in (7.11). In particular, if χ is trivial,

(7.12) Icl
G̃,0(µ× f, λ̃) = Icl

G,0(ι× fG, λ).
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Now Corollary 5.15 implies that

(7.13) I†
G̃,0(µ× f, λ̃) = χ(t′)χ∨(f1)I†G,0(µ× fG, λ),

and if χ is trivial,

(7.14) I†
G̃,0(µ× f, λ̃) = I†G,0(ι× fG, λ).

Remark 7.4. — Given character χ and λ ∈ Xe that is essentially ι-
invariant with respect to χ, inspired by the above computation, we can
directly define for f ∈ Hp(Kp) that

(7.15) Icl,χ
G,0 (ι× f, λ) := Icl

G,0(µχ × f, λ)

and

(7.16) I†,χG,0(ι× f, λ) := I†G,0(µχ × f, λ)

where the lower index in µχ emphsis that the twisted action µ on the
cohomology spaces are defined according to χ. Just like Proposition 3.12,
one can show that only the traces of representations that are essentially
ι-invariant with respect to χ can contribute to these distributions, and the
discussion in Sections 4-6 works for them as well.

Now let λ̃ = (λ, χ) be an arithmetic weight, π a µ-invariant finite slope
cuspidal representation of G̃, such that π|Gl1 = χ. Let π(χ−1) be π twisting
the inverse of χ byGl1, and πχ be the factorization of π(χ−1) toG ∼= G̃/Gl1,
it is easy to see that πχ is ι-invariant. Compute by definition, we have

(7.17) mµ
EP (π, λ̃) = mι

EP (πχ, λ) 6= 0.

Now by Theorem 6.11, we have

Theorem 7.5. — Assume G = Gln there is an eigenvariety Ee ⊂ E

defined as in Theorem 6.11, such that
(1) there are two projections p1 : Ee → Xe and p2 : Ee → B1, such that

y = (λy, θy) ∈ Ee(Q̄p) if and only if θ is a finite slope overconvergent
Heche eigensystem of weight λy = p1(y) and is essentially self-dual
with respect to χy = p2(y) with m†,ιG,0((θ × χy)χy , (λ× χy)χy ) 6= 0.

(2) Ee is equidimensional of dimension [n2 ] + 1. Its every irreducible
component is arithmetic.

(3) For any χ ∈ B1, set Eeχ = p−1
2 (χ), then Eeχ is the eigenvariety

parameterizing essentially self-dual Hecke eigensystems of G with
respect to χ. In particular, Ee0 = Eι.

(4) The projection p1 maps Eeχ onto Xeχ ⊂ Xe. Eeχ is equidimensional
over Xeχ and all its irreducible components are arithmetic.
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Remark 7.6.
(1) As Remark 11, Ee(Qp) contains all non-critical essentially self-dual

finite slope cuspidal Hecke eigensysems of G.
(2) Applying our theory to I†,χG,0(ι× f, λ), we can construct Eeχ directly,

and we can obtain parallel results to Theorem 6.11 for Eeχ.

7.3. Ash–Pollack–Stevens Conjecture

Let θ0 be a classical finite slope cuspidal Hecke eigensystem of Gln of
regular weight λ0. Recall, as defined in [3], θ0 is called p-adic arithmetically
rigid, if (modulo twisting) it does not admit a p-adic deformation containing
a Zariski dense subset of arithmetic specializations. So if it is contained in
any arithmetic irreducible component of Eeχ, it is not arithmetically rigid.
Conjecture 1.1 claims that, if θ is not essentially self-dual then it is p-adic
arithmetic rigid. Theorem 7.5 gives its inverse:

Corollary 7.7. — Assume θ0 is essentially self-dual with respective
to χ, then it is lying in an arithmetic component of Eeχ. In particular, it is
not p-adic arithmetically rigid,.

Proof. — By Theorem 7.5, (λ0, θ0) ∈ Eeχ(Qp). Consider the subset Σ of
Eeχ(Q̄p) consisting of (λ, θ) such that λ is arithmetic and θ is non-critical
with respect to λ. Σ is Zariski dense in Eeχ(Q̄p) since its projection to Xeχ
contains an arithmetic point λ0. By Corollary 5.21, those points in Σ are
classical and corresponding to cuspidal Hecke eigensystems. �

The next theorem shows that the smooth hyperthesis on arithmetic
points of an eigenvarity may give some hint on the Ash–Pollack–Stevens
conjecture.

Theorem 7.8. — Assume that every arithmetic point in the eigenva-
riety is smooth. Let θ0 be a classical Hecke eigensystem which is not p-
adic arithmetic rigid. Assume the arithmetic component containing θ0 also
contains an arithmetic, essentially self-dual Hecke eigensystem, then this
arithmetic component contains a Zariski dense subset of essentially self-
dual Hecke eigensystems. Moreover, θ0 is essentially self-dual.

Proof. — By [9], the cuspidal cohomology H∗cusp(SGln(K),V∨λ) is triv-
ial unless λ is essentially self-dual. So as [3], (λ0, θ0) is contained in an
arithmetic component over Xe. Then the component must be of dimen-
sion 6 [n2 ] + 1 and, by our assumption, intersects with Ee at some smooth
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point. Since Ee is of dimension [n2 ] + 1. So by our smooth condition that
this arithmetic component is at the same time an irreducible component of
Ee. Finally, assume that λ0 is essentially self-dual with respect to χ0. Then
(λ0, θ0) is contained in an arithmetic component of Eeχ0

, in particular, it is
essentially self-dual with respect to χ0. �

Remark 7.9. — Assume G = Gl3. The Theorem 7.8 assumes that there
is an essentially self-dual point in the arithmetic component. This is not
surprising if the eigenvarieties have good geometry. By [20], we know the
full eigenvariety E has dimension 6 3. Let A an arithmetic component, it
also projects onto Xe and is of dimension at least 1. Since we know that Ee
has dimension 2, it should meet A.
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