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OVERCONVERGENT COHOMOLOGY OF HILBERT
MODULAR VARIETIES AND p-ADIC L-FUNCTIONS

by Daniel BARRERA SALAZAR (*)

Abstract. — For each Hilbert modular form of non-critical slope we con-
struct a p-adic distribution on the Galois group of the maximal abelian extension
unramified outside p and∞ of the totally real field. We prove that the distribution
is admissible and interpolates the critical values of the complex L-function of the
form. This construction is based on the study of the overconvergent cohomology
of Hilbert modular varieties and certain cycles on these varieties.
Résumé. — Pour une forme de Hilbert de pente non critique, l’on construit

une distribution p-adique sur le groupe de Galois de l’extension abélienne maximale
du corps totalement réel, non-ramifiée en dehors de p et ∞. On démontre que la
distribution obtenue est admissible et interpole les valeurs critiques de la fonction
L complexe de la forme de Hilbert. Cette construction est basée sur l’étude de la
cohomologie surconvergente des variétés modulaires de Hilbert et de certains cycles
sur ces variétés.

1. Introduction

The construction and study of p-adic analytic L-functions for elliptic
modular forms has been extensively studied by several authors using dif-
ferent approaches. In [14] the authors described the modular symbols ap-
proach and stated a conjecture about the exceptional zeros of those p-
adic L-functions. Glenn Stevens gave a new construction of these p-adic

Keywords: p-adic L-functions, Hilbert modular forms.
2010 Mathematics Subject Classification: 11F41, 11F67, 11S80.
(*) This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 682152), CONICYT, Agence Nationale de la Recherche grants ANR-10-BLAN-
0114 and ANR-11-LABX-0007-01, Fondation Simone et Cino del Duca, and CRM (Mon-
treal, Canada).



2178 Daniel BARRERA SALAZAR

L-functions using his theory of overconvergent modular symbols (see [18,
20]). His construction works also in families which allowed him to prove the
exceptional zero conjecture (see [19, 21]). For Hilbert modular forms, the
construction and study of p-adic analytic L-functions has been considered
by authors such as Manin [13], Dabrowski and Panchishkin (see [8, 17]),
Mok [15] and Dimitrov [9]. The construction in [9] is based on modular sym-
bols setting a framework for generalising Stevens’ work which is the object
of this paper. Before stating our result, we first briefly recall Stevens’ con-
struction. Let p be a prime and incp : Q ↪→ Qp an embedding. Let N > 4
be an integer such that (N, p) = 1 and we put Γ = Γ0(pN). For k > 2
an integer and L a p-adic field, we denote by Dk(L) the space of L-valued
locally analytic distributions on Zp endowed with an action of Γ depending
on k; the space of overconvergent modular symbols can then be described
as H1

c (Γ,Dk(L)). Let f be a p-stabilization of a newform of weight k and
level N , such that Upf = αf and the p-adic valuation of α is strictly less
than k − 1. Using the Eichler–Shimura isomorphism one obtains a class
ϕ ∈ H1

c (Γ,Symk−2(L)) such that Upϕ = αϕ. The first step in Steven’s
method is to lift ϕ to an element Φ ∈ H1

c (Γ,Dk(L)) such that UpΦ = αΦ
(see [18]). This is an analogue of Coleman’s classicality theorem for over-
convergent modular forms. The p-adic L-function of f is then obtained by
evaluating Φ on the cycle {∞} − {0}.
Let now F be a totally real field of degree d. Consider a Hilbert modu-

lar variety YK of level K ⊂ GL2(A(∞)
F ) and fix a cohomological weight λ

of GL2/F . Let L be a sufficiently large p-adic field. We denote by Dλ(L)
the space of locally analytic distributions on OF ⊗Zp with values in L, en-
dowed with an action of a semigroup in GL2(Qp⊗F ) and having V∨λ(L), the
algebraic representation of weight λ, as a quotient. We consider the over-
convergent cohomology Hd

c (YK ,Dλ(L)). This cohomology was introduced
in [2] and [22], and is the natural object which generalises the overcon-
vergent modular symbols. For a positive rational number h ∈ Q we are
interested in the “slope-6 h part” of this cohomology, which essentially
is the subspace of Hd

c (YK ,Dλ(L)) such that every eigenvalue of Up has
p-adic valuation 6 h and is denoted by Hd

c (YK ,Dλ(L))6h. This subspace
has good properties when Hd

c (YK ,Dλ(L)) admits the so called “6 h-slope
decomposition” with respect to Up, this property implies for example that
Hd
c (YK ,Dλ(L))6h is a direct summand of Hd

c (YK ,Dλ(L)). The following
theorem generalises Stevens’ classicity theorem to the case of Hilbert mod-
ular forms (see 5.1 for more details). Its proof adapts the method of [22],
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where the analogous statement is established for the usual cohomology,
namely by working on the boundary of the Borel–Serre compactification
of YK .

Theorem 1.1. — Hd
c (YK ,Dλ(L)) admits a decomposition with respect

to Up. Moreover there exists h(λ) > 0 depending only on λ, such that if
h < h(λ) then we have a canonical isomorphism:

Hd
c (YK ,Dλ(L))6h ∼ // Hd

c (YK ,V∨λ(L))6h.

An immediate consequence of this result is that given any cuspidal au-
tomorphic representation π of GL2/F contributing to Hd

c (YK ,V∨λ(C)) and
any p-stabilized new vector f in π which has non-critical slope, one has
a well defined class Φ ∈ Hd

c (YK ,Dλ(L)) (see 7.1). The main objective of
this article is to attach a p-adic L-function to such a class. To achieve
this we evaluate this class on the automorphic cycles introduced in [9].
Those cycles are morphisms of real analytic varieties Cn : Xn → YK where
Xn =

∐
Cl+
F

(pn)(R/Z)d−1 ×R×>0 and Cl+F (pn) is the narrow ray class group
of F . We remark that in the case F = Q we are considering the disjoint
union of the paths joining a/pn and∞, for a ∈ {0, . . . , pn−1} coprime to p,
inside the modular curve. In 6.2 we use these cycles to define a distribution
valued sequence of evaluations, evn for each n ∈ N, on the overconvergent
cohomology, which are analogues of the evaluations described in [9, §1.5].
Using ev1 we construct a morphism:

(1.1) Hd
c (YK ,Dλ(L)) // D(Galp, L),

where Galp = Gal(F p,∞/F ) where F p,∞ is the maximal abelian extension
of F unramified outside p and ∞, and D(Galp, L) is the space of locally
analytic distributions on Galp. Then µf ∈ D(Galp, L) is defined as the
image of Φ under the map (1.1). Remark that F p,∞ contains the cyclotomic
extension of F , and denote by N : Galp → L∗ the continuous character
given by the cyclotomic character. For s ∈ Zp and any continuous character
χ : Galp → L∗ we put:

Lp(f , χ, s) := µf (χNs−1).

By construction this function is analytic in the variable s ∈ Zp. We are
now in a position to state our main theorem:

TOME 68 (2018), FASCICULE 5



2180 Daniel BARRERA SALAZAR

Theorem 1.2. — The distribution µf ∈ D(Galp, L) is admissible. Let
χ : Galp → L× be a finite order character of F such that χσ(−1) = 1 for
each σ ∈ ΣF , then we have:

Lp(f , χ, 1) = incp
(
Lp(π ⊗ χ, 1)τ(χ)

Ωπ

)∏
p|p

Zp,

here Lp(π ⊗ χ, s) is the L-function of π twisted by χ without the Euler
factor in p, τ(χ) is the Gauss sum, Ωπ is a period attached to π and Zp are
local factors defined in terms of πp and χp.

The proof of the admissibility uses crucially all evaluations evn. The
proof of the interpolation formula is based on some computations given
in [9].
As mentioned, a study of the p-adic properties of special values of L-

functions attached to Hilbert modular forms was carried out for example
in [8]. The present work has several advantages. For instance while in [8]
the construction of the p-adic L-function was donne by using the Ranking
method we use the theory of overconvergent modular symbols, which is
more flexible to applications. In this direction, in [3], in collaboration with
M. Dimitrov and A. Jorza, we extend the method of the present paper
to construct p-adic L-functions in families, and investigate the exceptional
zero conjecture for central critical values of Hilbert modular forms of any
weight. We would like to point out that the Stevens’ method for the con-
struction of p-adic L-functions, has been developed in the context of GL2
in [4, 24] and [5]. Finally we would like to mention that Januszewski con-
structed p-adic L-functions for GLn ×GLn−1 in [11]. We hope that these
results will motivate similar constructions of p-adic L-functions for more
general reductive groups. The article is structured as follows. In Section 2
we introduce some basic notations used in this work. In Section 3 we prove
the existence of slope decomposition for the compactly supported cohomol-
ogy of Hilbert modular varieties. In Section 4 we introduce some spaces of
distributions. Section 5 is devoted to the proof of Theorem 1.1. In Section 6
we use automorphic cycles to construct evaluations on the overconvergent
cohomology and we construct in particular the map (1.1). Finally in Sec-
tion 7, we construct p-adic L-functions and we prove Theorem 1.2.

Acknowledgments. I would like to thank my PhD thesis advisor,
Mladen Dimitrov, for suggesting this problem and for his guidance and
assistance. I also thank Eric Urban for kindly answering a number of ques-
tions. Thanks are due to Olivier Fouquet, Michael Harris, Adrian Iovita,
Vincent Pilloni and Jacques Tilouine for support and motivation. Finally,
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the author would like to thank the anonymous referees for their helpful
comments and suggestions to improve the presentation of this paper.

2. Hilbert modular varieties

2.1. Notations

Let F be a totally real number field, d = [F : Q] and ΣF be the set of
embeddings of F in C. In this paper we consider Q as a subfield of C and
then we identify ΣF with Hom(F,Q). We denote t = (1, . . . , 1) ∈ ZΣF . We
denote by A the ring of adeles over Q and Af the ring of finite adeles. We
put AF = A ⊗Q F and AF,f = Af ⊗Q F . Let p > 2 be a prime number
and incp : Q ↪→ Qp an embedding. For each σ ∈ ΣF there is an unique
p | p in F such that incp ◦ σ correspond to p. We obtain a decomposition
ΣF =

⊔
p|p Σp, where Σp is the set of σ ∈ ΣF corresponding to p under

incp. Moreover, let vp : Q×p → Q be the non-archimedean valuation such
that vp(p) = 1.

For each prime ideal p over p we choose an uniformizer, $p, of Fp. In all
this paper we suppose that $ep

p = p, where ep is the inertia degree at p.
Using the decomposition F ⊗ Qp =

∏
p|p Fp we obtain a group homomor-

phism u : (F ⊗Qp)× → (OF ⊗Zp)×. Let G = ResOF /ZGL2, B be the Borel
subgroup of the upper triangular matrices and T be the standard torus.
Let Z be the center of G and we denote Gad = G/Z.

2.2. Hilbert modular varieties

2.2.1.

Let G+
∞ be the connected component of the identity in G(R), Z∞ = Z(R)

and K+
∞ = SO2(F∞), where F∞ = F ⊗ R. Let K be an open compact

subgroup of G(Af ) then we define the Hilbert modular variety of level K
by:

YK = G(Q) \G(A)/KK+
∞Z∞.

This variety is a complex manifold and we can describe more explicitly its
connected components. Let C+

K := F×\A×F /det(K)F+
∞ and for each x ∈ C+

K

we choose gx ∈ G(Af ) such that the image of det(gy) in C+
K is x. Then we

have a decomposition:
YK =

⊔
x∈C+

K

Yx,

TOME 68 (2018), FASCICULE 5
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where Yx = G(Q) \ G(Q)gyKG
+
∞/KK

+
∞Z∞. Moreover if we denote Γx =

G(Q) ∩ gyKg
−1
y G+

∞ then Yx ' Γx \ HF , here HF := HΣF and H is the
upper half plane.

Hypothesis 2.1. — We suppose in all this paper that for each x ∈ C+
K

the group Γx := Γx/Γx ∩ Z(Q) is torsion-free.

This hypothesis is satisfied if K is sufficiently small. In that case we
deduce that YK is smooth and the fundamental group of Yx is Γx.

Remark 2.2. — We will fix in all this work representatives gx whose
image in G(Qp) is trivial.

2.2.2. Borel–Serre compactificacion

The variety YK is not compact, here we will describe the Borel–Serre
compactificacion of YK . To construct this compactification we first enlarge
HF . We denote G(Q)+ := G(Q) ∩ G+

∞ and let Gad(Q)+ be the image of
G(Q)+ in Gad(Q). In [6] it is constructed a space HF containing HF , and it
is proved that it is a manifold with corners with smooth boundary. There
is a continuous action of Gad(Q)+ on HF extending the action over HF ,
moreover if Γ is a torsion free arithmetic subgroup of Gad(Q)+ then Γ\HF
is a compact surface with fundamental group Γ. More explicitly we have:

HF := HF t
⊔
P

e(P ),

where the second union is over the set of Borel groups of Gad, and each
e(P ) is a contractible space. Moreover the boundary

⊔
P e(P ) is stable

under the action of Gad(Q)+, in fact we have: γe(P ) = e(γPγ−1) for each
γ ∈ Gad(Q)+ and Borel group P .
Using these notations we define the Borel–Serre compactification of

YK by:
XK :=

⊔
x∈C+

K

Γx \HF .

2.3. Cohomology and Hecke operators

2.3.1. Cohomology

Let M be a module with a right action of K, and suppose that K ∩
Z(Q) acts trivially. We denote by L(M) the sheaf over YK given by the

ANNALES DE L’INSTITUT FOURIER
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local system G(Q) \ (G(A) × M)/KK+
∞Z∞ → YK which is defined by

γ(g,m)kk∞ = (γgkk∞,m · k). For some specific modules M we will be
interested in the cohomology groups: Hi(YK ,L(M)) and Hi

c(YK ,L(M)).
Suppose that the action of K on M factorizes through the image of K into
G(Qp), then the groups Γx act on M and so for ? ∈ {∅, c} we have the
following decomposition:

Hi
?(YK ,L(M)) = ⊕x∈C+

K
Hi

?(Γx \HF ,L(M)) = ⊕x∈C+
K
Hi

?(Γx,M),

where the term in the middle L(M) is the sheaf over Γx \ HF given by
the local system defined by γ(z,m) = (γz,mγ−1) for γ ∈ Γx, z ∈ HF and
m ∈ M . Let Γ be a torsion free arithmetic subgroup of Gad(Q)+ then we
have the following exact sequence:

· · · // Hi
c(Γ \HF ,L(M)) // Hi(Γ \HF ,L(M))

// Hi(Γ \ ∂HF ,L(M)) // · · ·

here the sheaf L(M) on Γ\∂HF is defined as before. The boundary of Γ\HF
is given by tP∈BΓΓP \ e(P ) where BΓ is a fixed set of representatives of
the classes of the Borel groups under the action by conjugation of Γ and
ΓP = Γ ∩ P . Then we obtain:

(2.1)

H•(∂(Γ \HF ),LΓ(M)) '
⊕
P∈BΓ

H•(ΓP \ e(P ),LΓP (M))

'
⊕
P∈BΓ

H•(ΓP ,M).

2.3.2. Hecke operators

Let Λ ⊂ Gad(Q)+ be a semigroup acting on M , Γ, Γ′ ⊂ Λ be as before,
and λ ∈ Λ such that Γ′ ∩ λΓλ−1 is of finite index in Γ′. For ? ∈ {∅, c} we
define:

[ΓγΓ′] : Hi
?(Γ \HF ,M) // Hi

?(Γ′ \HF ,M),

by [ΓλΓ′] = CorΓ′
Γ′∩λΓλ−1◦[λ]◦resΓ

Γ∩λ−1Γ′λ here CorΓ′
Γ′∩λΓλ−1 and resΓ

Γ∩λ−1Γ′λ
are the classical co-restriction and restriction map on the cohomology and
[λ] : Hi

?(Γ∩λ−1Γ′λ\HF ,M)→ Hi
?(Γ′∩λΓλ−1\HF ,M) is given by the map

M →M ,m 7→ mλ. In the same way, we define Hecke operators in the adelic
point of view. Let R ⊂ G(Af ) be a semigroup acting onM . Let K ⊂ G(Af )
be an open compact subgroup contained in R and satisfying 2.1. For each
x ∈ R we put [KxK] = CorK∩xKx−1,K ◦ [x] ◦ resK,K∩x−1Kx:

[KxK] : Hi
?(YK ,L(M)) // Hi

?(YK ,L(M))

TOME 68 (2018), FASCICULE 5
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where CorK∩xKx−1,K and resK,K∩x−1Kx are as before, moreover, the mor-
phism [x] : Hi

?(YK∩x−1Kx,L(M)) → Hi
?(YK∩xKx−1 ,L(M)) is given as fol-

low: let χ : YK∩xKx−1 → YK∩x−1Kx be given by g ∈ G(A) → gx ∈
G(A), then [x] is the morphism obtained using the χ-cohomomorphism
LK∩x−1Kx(M) LK∩xKx−1(M) (in the notations of [7]) which is defined
by (g,m)→ (gx−1, xm).
Denote by Λ2 the image of R in G(Qp), then let Λ1 ⊂ G(Q)+ be the

inverse image of Λ2 under the map G(Q)+ → G(Qp) and finally let Λ ⊂
Gad(Q)+ be the image of Λ1 in Gad(Q)+. Then Λ acts on M and Γy ⊂ Λ
for all y ∈ C+

K . We suppose that x ∈ R satisfy det(K) = det(K ∩ x−1Kx)
and let σ : C+

K → C
+
K be the bijection such that for each y ∈ C+

K we can
write gyx = λygσ(y)kc where λy ∈ G(Q), k ∈ K and c ∈ G+

∞. Then using
the above notations we have:

(2.2) [KxK] =
⊕

y∈C+
K

[Γσ(y)λyΓy].

Notation 2.3. — We use the usual notations about Hecke operators. If( 1 0
0 $p

)
∈ R we denote Up the operator

[
K
( 1 0

0 $p

)
K
]
and if

( 1 0
0 p
)
∈ R the

we write Up =
[
K
( 1 0

0 p
)
K
]
. We have Up =

∏
p|p U

ep
p .

2.4. Algebraic representations of G

Through all this work we fix (k, r) ∈ ZΣF × Z such that kσ > 2,
kσ ≡ r mod 2 and | r |6 kσ − 2 for all σ ∈ ΣF . Let L be a finite
extension of Qp containing a normal closure of F . Attached to the data
(k, r) we get a dominant character, λ, for (GL, BL, TL), corresponding
to (kσ−2+r

2 , −kσ+2+r
2 )σ∈ΣF ∈ (Z × Z)ΣF i.e. if A is a L-algebra then for

t = (( aσ 0
0 bσ

))σ∈ΣF ∈ T (A) we have:

λ(t) =
∏
σ∈ΣF

a
kσ−2+r

2
σ b

−kσ+2+r
2

σ .

Let Vλ be the irreducible algebraic representation of highest weight λ of
GL, then Vλ is the algebraic induction of λ from the Borel subgroup of the
lower triangular matrices to GL. We have an explicit description of this
representation. Let A be a L-algebra then we have:

Vλ(A) ∼=
⊗
σ∈ΣF

Symkσ−2(A)⊗ det
r−kσ+2

2 ,

here the action is given by: (g·P )(X,Y ) = (det(g)) rt−k+2t
2 P (aX−cY,−bX+

dY ), for g = ( a bc d ) ∈ G(A) ' Gl2(A)ΣF and P (X,Y ) is a polynomial in

ANNALES DE L’INSTITUT FOURIER
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the variables X = (Xσ)σ∈ΣF and Y = (Yσ)σ∈ΣF which is homogeneous
of degree kσ − 2 in the variables Xσ and Yσ. We denote L(k, r;L) =⊗

σ∈ΣF Symkσ−2(L) ⊗ det
−r−kσ+2

2 , regarded as a left G(L)-module. Let
crit : L(k, r;L) → L be the morphism such that P (X,Y ) ∈ L(k, r;L) is
sent to the coefficient in front of X k−2t−rt

2 Y
k−2t+rt

2 . Consider the morphism
ec : V∨λ(L)→ L given by ϕ 7→

( k−2t
k−2t+rt

2

)
ϕ(f?), where f? ∈ Vλ(L) is uniquely

determined by the condition f?( 1 z
0 1 ) = z

k−2t+rt
2 for all z ∈ F ⊗Q L. Then

we have the following commutative diagram:

(2.3)

V∨λ(L) ec //

∼
��

L

L(k, r;L)
crit

;;

3. Slope decomposition for the compactly supported
cohomology

In this section we prove the following theorem. Let R ⊂ G(Af ) be a
semigroup and K ⊂ G(Af ) be an open compact subgroup contained in
R satisfying hypothesis 2.1. Let M be a compact Frechet space over L
equipped with a continuous left action of R, where L is a finite extension
of Qp. Suppose that the action of R on M factorizes through the image of
R in G(Qp) and moreover K ∩ Z(Q) acts trivially.

Theorem 3.1. — Let x ∈ R. Suppose that the action of x on M gives
a completely continuous operator on M . Then for each h ∈ Q and i ∈ N
there is a 6 h-decomposition of Hi

c(YK ,L(M)) with respect to [KxK].

This kind of result was proved in [22] to Hi(YK ,L(M)). In this work we
adapt the strategy used in [22], to the cohomology of the boundary of the
Borel–Serre compactification of YK . Finally using the mapping cone we can
prove the theorem.

3.1. Complexes

3.1.1.

Let Γ be a torsion free arithmetic subgroup of Gad(Q)+. The compact
variety Γ\HF is a smooth C∞-variety with corners, then by [16] we can find

TOME 68 (2018), FASCICULE 5
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a finite triangulation of Γ\HF inducing a triangulation on its boundary. We
fix one of those triangulations. Using the natural projection HF → Γ \HF
we obtain a triangulation on HF . For each i ∈ {0, . . . , 2d} we denote by 4i
the set of simplexes of degree i of this last triangulation. The group Γ acts
on 4i, and the quotient by this action is a finite set, in addition each orbit
is in bijection with Γ. Let Ci(Γ) := Z[4i] be the free Z-module generated
by 4i. Then Ci(Γ) is a free Z[Γ]-module of finite rank and by considering
the standard boundary operators we obtain the following exact sequence
of Z[Γ]-modules:

0 // C2d(Γ) // · · · // C1(Γ) // C0(Γ) // Z // 0.

When M is a left Z[Γ]-module we define C•(Γ,M) := HomΓ(C•(Γ),M),
then:

• The cohomology of C•(Γ,M) compute the cohomology of Γ i.e. the
groups H•(Γ,M);

• Ci(Γ,M) is isomorphic to Mri , here ri is the number of orbits of
the action of Γ on 4i.

3.1.2. Complexes from the boundary

From the triangulation of HF fixed in 3.1.1 we obtain a triangulation of
∂HF . If we call 4∂i the set of i-simplexes of this triangulation then in the
same way that in 3.1.1 we consider the Z[Γ]-modules:

C∂i (Γ) := Z[4∂i ].

Let B be the set of Borel groups of Gad and we denote by Z[B] the free
Z-module over B. The group Γ acts on B by conjugation, then Z[B] is in
fact a Z[Γ]-module.

Proposition 3.2. — The Z[Γ]-module C∂i (Γ) is free of finite rank.
Moreover C∂• (Γ) is a resolution of Z[B], i.e. we have the following exact
sequence of Z[Γ]-modules:

(3.1) 0 // C∂2d−1(Γ) // · · · // C∂1 (Γ) // C∂0 (Γ) // Z[B] // 0.

Proof. — The first affirmation is a consequence of the fact that the action
of Γ on ∂HF is free and the triangulation of Γ\HF fixed in 3.1.1 is finite. By
construction, the complex computes the homology of ∂HF . Moreover we
have a decomposition ∂HF =

⊔
P∈B e(P ) (see 2.2.1) where each e(P ) is a

contractible topological space, then Hi(∂HF ) = 0 if i > 0 and H0(∂HF ) =
Z[B]. So we deduce the exact sequence (3.1). �
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If M is a module with an action of Γ then for each i ∈ N we define

Ci∂(Γ,M) := HomΓ(C∂i (Γ),M).

From (3.1) we deduce that C•∂(Γ,M) is a complex. In Proposition 3.4 we
give other description of the complex C•∂(Γ,M). Let P be a Borel of Gad,
let e(P ) be the contractible space attached to P (see 2.2.1) and denote
ΓP := Γ ∩ P (Q). The triangulation of HF fixed in Section 3.1.1 induces
a triangulation of e(P ), then for i ∈ {0, . . . , 2d − 1} we denote by 4Pi
the set of simplexes of dimension i in this triangulation. In fact, we have
4Pi = {s ∈ 4i | s ⊂ e(P )}. We denote Ci(ΓP ) the free Z-module over 4Pi ,
then we have:

Lemma 3.3. — For each i the module Ci(ΓP ) is a free Z[ΓP ]-module
of finite rank. Moreover we have the following exact sequence of Z[ΓP ]-
modules:

(3.2) 0 // C2d−1(ΓP ) // · · · // C1(ΓP ) // C0(ΓP ) // Z // 0.

Proof. — This lemma is proved in the same way as Proposition 3.2. �
IfM is a left Z[ΓP ]-module we define C•(ΓP ,M) := HomΓP (C•(ΓP ),M).

Let BΓ be a fixed set of representatives of the classes of the Borel groups
under the action by conjugation of Γ.

Proposition 3.4. — We have:
(1) For each Z[Γ]-module M we have an isomorphism:

C•∂(Γ,M) ∼ // ⊕P∈BΓC
•(ΓP ,M),

this isomorphism is functorial in M .
(2) Each Ci∂(Γ,M) is isomorphic to finitely many copies ofM . Moreover

the cohomology groups H•(Γ\∂HF ,L(M)) are calculated by taking
the cohomology of the complex C•∂(Γ,M).

Proof. — We have the following decomposition of Z[Γ]-modules:

C∂• (Γ) =
⊕
P∈BΓ

⊕
Q∼P

C•(ΓQ),

then is enough to define for each P ∈ BΓ an isomorphism:

HomΓ(
⊕

Q∼P C•(ΓQ),M) v // C•(ΓP ,M).

Fix P ∈ BΓ. We define HomΓ(
⊕

Q∼P C•(ΓQ),M) → C•(ΓP ,M) by ϕ →
ϕ|C•(ΓP ). We will verify that this map is an isomorphism. Let ϕ such that
ϕ|C•(ΓP ) = 0. Let Q ∼ P and s ∈ C•(ΓQ). There exist γ ∈ Γ such that
γs ∈ C•(ΓP ), then ϕ(s) = γ−1ϕ(γs) = 0. So ϕ = 0 and then the morphism
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is injective. To prove that it is surjective, let ϕ ∈ C•(ΓP ,M) and we define
ϕ :

⊕
Q∼P C•(ΓQ) → M as follows: let s ∈ C•(ΓQ) where Q ∼ P and we

choice γ ∈ Γ such that γs ∈ C•(ΓP ), then we define ϕ(s) := γ−1ϕ(γs). Is
not difficult to prove that ϕ is well defined and is Γ-equivariant.

The first affirmation of part (2) is deduced from the fact that C∂• (Γ)
is a free Z[Γ]-module of finite rank. Finally from part (1) and
decomposition (2.1) we deduce that the cohomology of C•∂(Γ,M) is
H•(Γ \ ∂HF ,L(M)). �

3.1.3. Compact supports

We recall de notion of mapping cone of a morphism of complexes. Let A
be an abelian category. If π = π• : C• → D• is a morphism of complexes
of elements of A, we obtain a new complex of elements in A denoted by
Cone(π)• and defined as follows: for each i ∈ Z we have Cone(π)i :=
Ci ⊕Di−1 and the differential is defined by:

d : Cone(π)i −→ Cone(π)i+1 ,

(c, d) 7−→ (−dC(c),−πi(c) + dD(d)).

If Γ ⊂ Gad(Q) and M a Γ-module we denote π• : C•(Γ,M)→ C•∂(Γ,M)
the morphism of complexes obtained from the inclusion C∂• (Γ) ⊂ C•(Γ).
We define:

C•c (Γ,M) := Cone(π)•.

Proposition 3.5. — Each Cic(Γ,M) is isomorphic to finitely many
copies of M . Moreover the cohomology groups H•c (Γ \HF ,L(M)) are cal-
culated by taking the cohomology of the complex C•c (Γ,M).

Proof. — The first assertion is a direct consequence of 3.1.1 and Propo-
sition 3.4. We have two long exact sequences:

· · · // Hi
c(Γ \HF ,L(M)) // Hi(Γ \HF ,L(M))

// Hi(Γ \ ∂HF ,L(M)) // · · ·

and

· · · // Hi(C•c (Γ,M)) // Hi(C•(Γ,M)) // Hi(C•∂(Γ,M)) // · · ·

Moreover, for each i we haveHi(Γ\HF ,L(M)) ' Hi(C•(Γ,M)) andHi(Γ\
∂HF ,L(M)) ' Hi(C•∂(Γ,M)). Then, using the five lemma we obtain the
proposition. �
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3.2. Hecke operators on complexes

In this subsection we define operators on C•c (Γ,M) which induces the
standard Hecke operators on the cohomology.

3.2.1. Compatible pairs

Let Γ and Γ′ be torsion free arithmetic subgroups of Gad(Q)+ and φ :
Γ→ Γ′ a group homomorphism. We take a left Γ-module N and a left Γ′-
module M . A pair (φ, α) is called compatible if α : M → N is a morphism
of Z[Γ]-modules when we consider M as a Z[Γ]-module via φ. In [22] the
author associates a morphism α• : C•(Γ′,M) → C•(Γ, N) to each such
pair. We obtain an analogous morphism in the boundary.
By Proposition 3.2, C∂• (Γ) is a projective resolution of Z[B] by Z[Γ]-

modules. Via φ we can consider C∂• (Γ′) as other resolution of Z[B] by Z[Γ]-
modules, then there is a map φ• : C∂• (Γ) → C∂• (Γ′) compatible with φ,
and it is unique up to homotopy. Then we obtain a map α• : C•∂(Γ′,M)→
C•∂(Γ, N) given by ϕ → α ◦ ϕ ◦ φ•. This map is uniquely defined up to
homotopy. The relation between these constructions is given by:

C•(Γ) // C•(Γ′)

C∂• (Γ)

OO

// C∂• (Γ′)

OO
C•(Γ, N)

��

C•(Γ′,M)oo

��
C•∂(Γ, N) C•∂(Γ′,M)oo

the first diagram is in homotopy category on Z[Γ] and the second one in
the homotopy category on Z.

• If we take Γ ⊂ Γ′, M = N , φ be the inclusion and α the identity,
then we obtain the restriction map: resΓ′

Γ : C•∂(Γ′,M)→ C•∂(Γ,M).
• Suppose Λ ⊂ Gad(Q)+ is a semigroup, Γ ⊂ Λ and λ ∈ Λ such that
λΓλ−1 ⊂ Λ. Moreover suppose that M is a left Λ-module. We take
φ : λΓλ−1 → Γ given by γ 7→ λ−1γλ and M → M defined by
m 7→ λm. Then obtain a morphism denoted by [λ] : C•∂(Γ,M) →
C•∂(λΓλ−1,M).

3.2.2. Corestriction map

Suppose Γ ⊂ Γ′ is of finite index. The complex C∂• (Γ′) is a projective
resolution of Z[B] by Z[Γ]-modules. Then there exists a map τ : C∂• (Γ′)→
C∂• (Γ) of Γ-modules, unique up to homotopy. If M is a left Γ′-module then
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we obtain a map CorΓ′
Γ : C•∂(Γ,M) → C•∂(Γ′,M) called the corestriction

map and defined as follows: fix a decomposition Γ′ = tqγqΓ then for any
ϕ ∈ C•∂(Γ,M) we put

CorΓ′
Γ (ϕ)(s) =

∑
q

γqϕ(τ(γ−1
q s)).

This map is uniquely defined up to homotopy. In [22] is defined a morphism
CorΓ′

Γ : C•(Γ,M) → C•(Γ′,M), and we have commutative diagrams as
in 3.2.1 relating these two corestriction morphisms.

3.2.3. Hecke operators

Let Λ ⊂ Gad(Q)+ be a semigroup, Γ,Γ′ ⊂ Λ be free torsion arithmetic
groups. Let λ ∈ Λ be such that Γ′ ∩ λΓλ−1 is of finite index in Γ′. We
define:

[ΓλΓ′] : C•∂(Γ,M)→ C•∂(Γ′,M)

by [ΓλΓ′] = CorΓ′
Γ′∩λΓλ−1 ◦ [λ] ◦ resΓ

Γ∩λ−1Γ′λ.

In [22] is defined the Hecke operator [ΓλΓ′] : C•(Γ,M)→ C•(Γ′,M) and
we have the following commutative diagram:

C•(Γ,M)
[ΓλΓ′] //

��

C•(Γ′,M)

��
C•∂(Γ,M)

[ΓλΓ′] // C•∂(Γ′,M)

This diagram live in the homotopy category over Z, in this last category
the mapping is well defined and we obtain a morphism:

(3.3) [ΓλΓ′] : C•c (Γ,M)→ C•c (Γ′,M).

Remark 3.6. — These morphisms give the usual morphisms on the co-
homology.

3.3. Conclusions

Consider the notation on the beginning of this section. On the cohomol-
ogy we have the decomposition (2.2), then from Subsections 3.1 and 3.2 we
obtain immediately the following proposition:
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Proposition 3.7. — Suppose thatK satisfies hypothesis 2.1, the action
of R on M factorizes through the projection R → G(Qp) and K ∩ Z(Q)
acts trivially onM . Then, there exists a bounded complex RΓ•c(K,M) such
that:

(1) The cohomology of RΓ•c(K,M) is H•c (YK ,L(M)).
(2) Each RΓic(K,M) is isomorphic to finitely many copies of M .
(3) We can define operators over RΓ•c(K,M) giving the classical Hecke

operators on Hi
c(YK ,L(M)).

Proof of Theorem 3.1. — From Proposition 3.7 and [22, §2.3.13], we de-
duce the existence of the 6 h-decomposition of RΓ•c(K,M) with respect to
[KxK] for each i ∈ Z. Finally we deduce the theorem from the discussions
in [22, §2.3.10] and [22, §2.3.12]. �

4. Distributions

In this section we recall the definition of the spaces of distributions that
we will use to define the p-adic overconvergent coefficients on Hilbert mod-
ular varieties. Moreover we describe the space of distributions on some
Galois groups.

4.1. Generalities

4.1.1. Definitions

Let X ⊂ Qrp be an open compact subset. Let A(X,L) be the vector
space over L of the locally L-analytic functions f : X → L. Let An(X,L)
be the subspace of A(X,L) such that f ∈ An(X,L) if and only if f is
analytic on the disks of radius p−n. The space An(X,L) is a Banach space
when equipped with the norm defined as follows. Let f ∈ An(X,L) and
fix a covering of X by disks of radius p−n. Fix one of these disks and let
a = (a1, . . . , ar) ∈ X be one of its centers, over this disk we can write:

f(x1, . . . , xr) =
∑

m∈Nr
cm(a)(x1 − a1)m1 . . . (xr − ar)mr ,

Then we define ‖f‖n = sup{p−n
∑

i
mi |cm(a)|p | m ∈ Nr,a} where a

run through the set of centers of the fixed covering of X. Because X is
compact we have A(X,L) = ∪n>0An(X,L) and then we will consider the
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inductive limit topology on A(X,L). Let D(X,L) be the continuous dual
of A(X,L). Moreover, let Dn(X,L) be the continuous dual of An(X,L),
then Dn(X,L) is a Banach space and D(X,L) is the projective limit over
n of the Dn(X,L)’s. It is possible to prove that the inclusions An(X,L) ⊂
An+1(X,L) are completely continuous (see [22, Lemma 3.2.2]). From this
fact we deduce that D(X,L) is a compact Fréchet space.

4.1.2. Admissibility

Let M be a vector space over L endowed with a decomposition M =
∪n∈NMn,such that for each n Mn is a Banach space, Mn ⊂Mn+1 and this
last inclusion is completely continuous. We consider M with the inductive
limit topology of the Mn’s. Let M∨ (resp. M∨n ) be the continuous dual of
M (resp. Mn). If µ ∈ M∨ we denote ‖µ‖n the number ‖µ |Mn ‖n, where
‖ · ‖n is the norm obtained in M∨n .

Definition 4.1. — Let h ∈ Q. A µ ∈M∨ is called h-admissible if there
exists a constant C > 0 such that for each n we have ‖µ‖n 6 Cpnh.

Remark 4.2. — If we take M = A(X,L) and Mn = An(X,L) then
µ ∈ D(X,L) is h-admissible if there exist some C > 0 such that for each
n ∈ N and for all f ∈ An(X,L) we have | µ |p6 Cpnh‖f‖n.

In particular if we put X = Zp then we obtain that if µ ∈ D(Zp, L) is
h-admissible then there exist C > 0 such that for all a ∈ Zp, j ∈ N and
n ∈ N we have:

|µ(1a+pnZp(z − a)j)|p 6 Cpn(h−j).

Compare with [1] and [23].

4.2. Distributions on OF ⊗ Zp.

4.2.1. Spaces

We fix an identification of OF ⊗ Zp with an open compact of Qdp. Using
the notations of 4.1.1 we denote:

A(L) := A(OF ⊗ Zp, L), D(L) := D(OF ⊗ Zp, L),
An(L) := An(OF ⊗ Zp, L), Dn(L) := Dn(OF ⊗ Zp, L)

and we have
D(L)→ Dn(L).
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4.2.2. The action of a semi-group

We define some groups and semi-groups in G(Qp):
• T+ = {( a 0

0 b ) ∈ T (Qp) | ba−1 ∈ OF ⊗ Zp}
• T++ = {( a 0

0 b ) ∈ T (Qp) | ba−1 ∈ pOF ⊗ Zp}.
• I = {( a bc d ) ∈ G(Zp) | c ∈ pOF ⊗ Zp}
• Λp := IT+I =G(Qp)∩{x( a b

pc d ) | a∈ (OF ⊗ Zp)×, b, c, d∈OF ⊗ Zp,
x ∈ (F ⊗Qp)×}

We define an action of Λp on A(L) and D(L). For f ∈ A(L), γ ∈ Λp and
z ∈ OF ⊗ Zp we put:

• If γ = ( a bc d ) ∈ I let:

(γ ∗ f)(z) = λ

(
(a− cz) 0

0 det(γ)(a− cz)−1

)
f

(
−b+ dz

a− cz

)
.

• If γ = ( a 0
0 d ) ∈ T+ let:

(γ ∗ f)(z) = λ

(
u(a) 0

0 u(d)

)
f(da−1z),

see Subsection 2.1 to the definition of the function u.
This definition gives us a well defined continuous action on A(L), simply

because we made explicit the action defined in [22]. The space An(L) is
stable under this action. Then we obtain a continuous action on D(L)
and Dn(L). These spaces endowed with this action are noted by Aλ(L),
Aλ,n(L), Dλ(L) and Dλ,n(L).

Lemma 4.3. — Let γ ∈ T++ then the morphism defined on Dλ(L) is a
compact operator.

Proof. — See [22, Lemma 3.2.8]. �

Remark 4.4. — Depending of the situation we will use the right action
of Λp on D(L) or the left action of Λ−1

p .

4.2.3. OL-modules

Let A(OL) be the OL-module of the functions f ∈ A(L) with values in
OL. The topology in A(L) induces a topology on A(OL) and we denote
by D(OL) its continuous dual. We have A(L) = LA(OL) then we can
consider D(OL) as a OL-sub-module of D(L) in the natural way. It is
important to remark that A(OL) is stable under the action of Λp and then
we obtain a right action of Λp on D(OL). As before we write Aλ(OL)
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and Dλ(OL) when we consider the action of Λp on these modules. We
denote Aλ,n(OL) := Aλ,n(L) ∩ Aλ(OL). This OL-module is stable under
the action of Λp. We consider the induced topology on it and we call its
continuous dual by Dλ,n(OL). Moreover, we have the restriction morphism
Dλ(OL)→ Dλ,n(OL), it is continuous and compatible with the action of Λp.

Remark 4.5. — For each n the space Dλ,n(L) is a Banach L-vector space
and Dλ,n(OL) ⊗ L = Dλ,n(L). But is important to remark that Dλ(L) is
just a compact Frechet and Dλ(OL)⊗ L 6= Dλ(L).

4.2.4.

Let Vλ(L) ↪→ Aλ(L), f 7→ f̂ be given by f̂(z) = f( 1 z
0 1 ) for each z ∈

Zp ⊗ OF , here we consider Vλ(L) as the algebraic induction of λ. This
map is a continuous homomorphism, then we obtain π : Dλ(L)→ Vλ(L)∨.
Moreover, it is I-equivariant map but not Λp-equivariant, in fact for any
µ ∈ Dλ(L) we have:

π

(
µ ∗
(

1 0
0 $p

))
= $

∑
σ∈Σp

kσ−2−r
2

p π(µ) ·
(

1 0
0 $p

)
,

4.2.5. Invariant distributions

Here we define a space of distributions that will be very useful to define
evaluations on the overconvergent cohomology. Let E(1) be the sub-group
of O×F of totally positive units. We denote by A+

λ (L) the space of f ∈
Aλ(L) such that f ∗ ( e 0

0 1 ) = f for all e ∈ E(1). In fact f ∈ A+
λ (L) if and

only if f(ez) = λ( e 0
0 1 )f(z) for any e ∈ E(1) and z ∈ OF ⊗ Zp. We can

verify that A+
λ (L) is stable under the action of T+. Moreover, the space

A+
λ (L) is a Frechet and we have A+

λ (L) = ∪n∈NA+
λ,n(L), here A+

λ,n(L) is
the Banach space given by A+

λ (L)∩Aλ,n(L). Let D+
λ (L) be the continuous

dual of A+
λ (L). Then D+

λ (L) is a compact Frechet and it is endowed with
a continuous right action of T+.

4.3. Distributions on Galois groups

We describe the space of distributions where we find the p-adic L-
functions.
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4.3.1. Galois groups

Let F p,∞ be the maximal abelian extension of F , unramified outside p
and ∞. We denote

Galp = Gal(F p,∞/F ).

Let F 1 be the narrow class field of F , by definition we have Gal(F 1/F ) '
Cl+F . Then we have a natural morphism Galp → Cl+F . The kernel of this
morphism described using by class field theory: we consider E(1) inside
(OF ⊗ Zp)× in the natural way, then we have an exact sequence of topo-
logical groups:

(4.1) 0 // (OF ⊗ Zp)×/E(1) r // Galp // Cl+F // 0.

Then we obtain a natural decomposition Galp =
∐

x∈Cl+
F

Galp,x. If we
choose for each x ∈ Cl+F a σx ∈ Galp,x, then the last exact sequence gives
us a homeomorphism:

(4.2) rx : (OF ⊗ Zp)×/E(1) // Galp,x

Remark 4.6. — Using Class field Theory we can identify finite order char-
acters of Galp with Hecke characters of F of finite order whose conductor
contain only primes of F lying above p. In the rest of this paper we freely
use this identification.

4.3.2.

Let Gal◦p = (OF ⊗Zp)×/E(1). The topological groups Gal◦p and Galp are
p-adic spaces, and we fix isomorphisms of these groups with open compact
subsets of Q1+δ

p , where δ is the Leopoldt defect of F . Then using notations
in 4.1.1 we can consider the spaces A(Galp, L), D(Galp, L), A(Gal◦p, L) and
D(Gal◦p, L); in addition in D(Gal◦p, L) and D(Galp, L) we have the notion
of admissible distribution (see 4.1.1).
From the decomposition Galp =

∐
x∈Cl+

F
Galp,x and (4.2) we obtain an

isomorphism of Frechet spaces A(Galp, L) ∼= A(Gal◦p, L)Cl+
F given by f 7→

(fx)x∈Cl+
F
where fx = f ◦ rx. Then we obtain an isomorphism of compact

Frechet spaces:

(4.3) D(Galp, L) = D(Gal◦p, L)Cl+
F .
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Remark 4.7. — We can identify the space A(Gal◦p, L) with the space
of functions f ∈ A((OF ⊗ Zp)×, L) such that f(ez) = f(z) for all z ∈
(OF ⊗ Zp)× and e ∈ E(1). So we obtain that:

(4.4) A(Galp, L) =
{
f : Galp → L

∣∣∣∣∣ f ◦ rx ◦ π ∈ A((OF ⊗ Zp)×, L)

∀ x ∈ Cl+F

}
,

here π : (OF ⊗ Zp)× → Gal◦p is the natural projection.

4.3.3.

Let A(Gal◦p, L)→ A+
λ (L), f 7→ f be defined by:

(4.5) f(z) =
{

0 if z /∈ (OF ⊗ Zp)×

Aλ( z 0
0 1 )f(z) if z ∈ (OF ⊗ Zp)×,

here A =
( k−2t

k−2t+rt
2

)
∈ Z. This morphism is in fact continuous, then we

obtain:
D+
λ (L)→ D(Gal◦p, L), denoted by µ 7→ µ×.

Lemma 4.8. — We have:
(1) There exists C > 0 depending only on λ such that if n > 1 and

f ∈ An(Gal◦p, L) then f ∈ A+
λ,n(L) and moreover we have ‖f‖n 6

C‖f‖n.
(2) Let h ∈ Q. If µ ∈ D+

λ (L) is a h-admissible distribution then µ× ∈
D(Gal◦p, L) is also h-admissible.

Proof. — Firstly if f ∈ An(Gal◦p, L) then is clear that f ∈ A+
λ,n(L) for

n > 1. Now let gλ : OF ⊗ Zp → L be defined by gλ(z) = Aλ( z 0
0 1 ). Then

gλ ∈ A+
λ,0(L). If we denote C = ‖gλ‖0 then we have ‖f‖n 6 C‖f‖n. The

second part of the lemma is a direct consequence of the first one. �

5. Comparison theorem

Let L be a finite extension of Qp containing the normal closure of F . In
the next two sections we will exclude L of the spaces defined above. For
example we use Vλ, Dλ, D+

λ . . . instead of Vλ(L), Dλ(L), D+
λ (L) . . .

Let K be an open compact subgroup of G(Af ) whose image in G(Qp)
is contained in Λp. The morphism Dλ → V∨λ , described in 4.2.4, is I-
equivariant then we obtain a morphism on the cohomology:

π : Hd
c (YK ,L(Dλ)) // Hd

c (YK ,L(V∨λ)).

ANNALES DE L’INSTITUT FOURIER



OVERCONVERGENT COHOMOLOGY AND p-ADIC L-FUNCTIONS 2197

On Hd
c (YK ,L(Dλ)) we consider the 6-slope decomposition with respect to

Up (the existence of such decomposition is given by Theorem 3.1). Over
Hd
c (YK ,L(V∨λ)) we consider 6-slope decomposition with respect to U0

p =

p

∑
σ∈ΣF

kσ−2−r
2 Up. By 4.2.4 we have π ◦ Up = U0

p ◦ π then π induces a
morphism of the 6-slope parts. In fact we have the following result:

Theorem 5.1. — We denote ko = min{kσ | σ ∈ ΣF }. If h ∈ Q and
h < ko − 1 then we have a canonical isomorphism:

Hd
c (YK ,L(Dλ))6h ∼ // Hd

c (YK ,L(V∨λ))6h.

To proof this theorem we follow [22]. The main difficulty to use the
approach used in [22] is the existence of the slope decomposition for the
compactly supported cohomology, such existence was proved in Section 3.
To finish we use the locally analytic version of the BGG-resolution.

5.1. BGG resolution

Let Vλ = Vλ(L) be the locally algebraic induction as defined in [22,
§3.2.9]. As in [22] we can see Vλ within Aλ and it is invariant under the
action of Λp, then we obtain a Λp-equivariant map Dλ → V ∨λ . We have a
canonical inclusion Vλ ⊂ Vλ, moreover we have a right action of Λp over
Vλ, moreover it is I-equivariant. We obtain an I-equivariant morphism
V ∨λ → V∨λ and then

Hd
c (YK ,L(V ∨λ )) // Hd

c (YK ,L(V∨λ)).

If we consider Up on the left side and U0
p on the right side, then this map

is compatible with these Hecke operators, moreover from Theorem 3.1 we
deduce that Hd

c (YK ,L(V ∨λ )) has slope decomposition with respect to Up.
Then in the same way that in [22, Lemma 4.3.8] we can prove that for each
rational number h we have:

(5.1) Hd
c (YK ,L(V ∨λ ))6h ∼ // Hd

c (YK ,L(V∨λ))6h

We fix σ ∈ ΣF and denote by λσ the algebraic character of T defined by:

λ(t) = a
−kσ+r

2
σ b

kσ+r
2

σ

∏
ρ∈ΣF−σ

a
kρ−2+r

2
ρ b

−kρ+2+r
2

ρ ,

for each t =
(( aρ 0

0 bρ

))
ρ∈ΣF

. From [22, Proposition 3.2.11] we have an I-
equivariant morphism Θσ : Aλ → Aλσ , remark that this morphism is not
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equivariant with respect to the action of all Λp, in fact we have:

Θ
((

1 0
0 p

)
∗ f
)

= p−kσ+1
(

1 0
0 p

)
∗Θ(f).

We obtain an I-equivariant morphism:

(5.2) Θ∨σ : Dλσ // Dλ.

We denote Σ =
∑
σ∈ΣF Θ∨σ , then from [22, Proposition 3.2.12] we have

the following exact sequence:

(5.3)
⊕

σ∈ΣF Dλσ
Σ // Dλ // V ∨λ // 0,

In fact, this sequence is the last part of the locally analytic BGG-resolution
of V ∨λ (see [22, §3.3]).

5.2. Proof of Theorem 5.1

From the discussion in 5.1 we obtain a morphism Hd
c (YK ,L(Dλ)) →

Hd
c (YK ,L(V ∨λ )), this morphism is compatible with the Hecke operators.

From (5.1) is enough to prove that Hd
c (YK ,L(Dλ))6h→Hd

c (YK ,L(V ∨λ ))6h
is an isomorphism. We write ΣF = {σ1, . . . , σd}. We denote Σ0 = ∅ and for
each s ∈ {1, . . . , d} we write:

Σs :=
s∑
j=1

Θ∨σj :
s⊕
j=1
Dλσj → Dλ.

For each s ∈ {1, . . . , d} let Qs be the quotient of Dλσs such that the
following sequence is exact:

0 // Qs
Θ∨σj // coker(Σs−1) // coker(Σs) // 0.

Remark that Λp acts on coker(Σs) and Qs, and in fact the last sequence
is I-equivariant. However, this sequence is not Λp-equivariant, in fact we
have:

0 // Qs //

∗
( 1 0

0 p
)
pkσs−1

��

coker(Σs−1) //

∗
( 1 0

0 p
)

��

coker(Σs) //

∗
( 1 0

0 p
)

��

0

0 // Qs // coker(Σs−1) // coker(Σs) // 0
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Passing to the cohomology and by considering the action of Up we obtain
the following exact sequence:

Hd
c (YK ,L(Qs))6h−(kσs−1) // Hd

c (YK ,L(coker(Σs−1)))6h

// Hd
c (YK ,L(coker(Σs)))6h // Hd+1

c (YK ,L(Qs))6h−(kσs−1).

From 4.2.3 we deduce that inHi
c(YK ,L(Qs))6h−(kσs−1) there is aOL-lattice

invariant by Up, for any i. By assumption, for each s we have h−(kσs−1) <
0 then Hi

c(YK ,L(Qs))6h−(kσs−1) = {0}, and so:

Hd
c (YK ,L(coker(Σs−1)))6h ' Hd

c (YK ,L(coker(Σs)))6h.

Finally, clearly we have coker(Σ0) = Dλ and from (5.3) we obtain
coker(Σd) = V ∨λ then we deduce the theorem.

6. Evaluations on the cohomology

In this section, to each class in the overconvergent cohomology we attach
a distribution over the Galois group introduced in 4.3. Moreover we prove
the admissibility of this distribution when the class is an eigenvector of Up
with slope non zero. To do that we use the automorphic cycles introduced
in [9]. In all this section we fix an open compact subgroup ofG(Af ), denoted
by K, such that {( u v0 1 ) | u ∈ Ô×F , v ∈ ÔF } ⊂ K and its image in G(Qp)
is contained in Λp. We fix {ax | x ∈ Cl+F } ⊂ A×F,f a set of representatives
of Cl+F such that a−1

x ∈ ÔF and ax,p = 1. Using the notations of 2.2.1 we
consider gx to be ( ax 0

0 1 for each x ∈ Cl+F .

6.1. Automorphic cycles

For n ∈ N we denote:

U(pn) := {u ∈ Ô×F |u− 1 ∈ pnÔF } and Cl+F (pn) := F× \ A×F /U(pn)F+
∞.

The group U(pn) is open and compact in A×F,f . Let E(pn)=O×F
⋂
U(pn)F+

∞,
then E(1) is the group of totally positive units of OF . The real analytic
variety Xn := F×\A×F /U(pn) has dimension d. For each y ∈ Cl+F (pn) we fix
a representative ay ∈ A×F we have the following decomposition in connected
components:

Xn =
⊔

y∈Cl+
F

(pn)

Xn,y,

TOME 68 (2018), FASCICULE 5



2200 Daniel BARRERA SALAZAR

where Xn,y = F× \ F×ayU(pn)F+
∞/U(pn). The morphism E(pn) \ F+

∞ →
Xn,y given by [z] → [ayz] is an analytic isomorphism. Moreover from the
Dirichlet’s Theorem E(pn)\F+

∞ is isomorphic to (R/Z)d−1×R. We deduce
that Xn,y is connected and orientable.
If x ∈ AF then we denote xp by its image in F ⊗ Qp. The morphism

A×F → G(A), x 7→ ( x xpp−n0 1 ) induces a morphism of analytic varieties,
called automorphic cycle in [9]: CK,n : Xn → YK .

6.2. Evaluations

We define certain evaluations on the overconvergent cohomology, these
evaluations will be useful to construct our p-adic L-function and to prove
its properties. Let n ∈ N, we define the evaluations in four steps:

Step 1. — The cycle CK,n gives the morphism:

(6.1) Hd
c (YK ,L(Dλ)) // Hd

c (Xn,Fn).

where Fn := C∗K,n(L(Dλ)). We can verify that Fn is the sheaf of locally
constant sections of the local system:

Fn := F× \ (A×F ×Dλ)/U(pn) // Xn,

where the action on A×F ×Dλ is given by f(x, µ)v = (fxv, µ∗( v (vp−1)p−n
0 1 )),

f ∈ F×, x ∈ A×F , µ ∈ Dλ and v ∈ U(pn).

Step 2. — Let Ln(Dλ) be the sheaf over Xn given by the locally constant
sections of the local system:

Ln(Dλ) := F× \ (A×F ×Dλ)/U(pn) // Xn,

where f(x, µ)v = (fxv, µ ∗ ( v 0
0 1 )), f ∈ F×, x ∈ A×F , µ ∈ Dλ and v ∈ U(pn).

The matrix ( 1 −1
0 pn ) ∈ Λp satisfy ( v (vp−1)p−n

0 1 )( 1 −1
0 pn ) = ( 1 −1

0 pn )( v 0
0 1 ) for

each v. Then the morphism A×F × Dλ → A×F × Dλ given by (x, µ) →
(x, µ∗( 1 −1

0 pn )) defines a morphism of sheaves Fn → Ln(Dλ), then we obtain:

(6.2) Hd
c (Xn,Fn) // Hd

c (Xn,Ln(Dλ)).

Step 3. — Let L(Dλ) be the sheaf over E(pn) \ F+
∞ of locally constant

sections of the local system:

E(pn) \ (F+
∞ ×Dλ) // E(pn) \ F+

∞,

where e(c, µ) = (ce, µ ∗ ( e 0
0 1 )) for e ∈ E(pn), c ∈ F+

∞ and µ ∈ Dλ.

ANNALES DE L’INSTITUT FOURIER



OVERCONVERGENT COHOMOLOGY AND p-ADIC L-FUNCTIONS 2201

Let y ∈ Cl+F (pn) and let h : E(pn) \ F+
∞ → Xn,y be given by the repre-

sentative, ay, of y. We have h×(Ln(Dλ)|Xn,y) = L(Dλ) and then we obtain
an isomorphism:

(6.3) Hd
c (Xn,y,Ln(Dλ)|Xn,y) ' Hd

c (E(pn) \ F+
∞,L(Dλ)).

The function Dλ → D+
λ defined by µ→ µ |A+

λ
(see 4.2.5) gives a morphism

of sheaves over E(pn)\F+
∞: L(Dλ))→ D+

λ . Here, by abuse of notation, D+
λ

means the constant sheaf with stalk D+
λ . We obtain a morphism:

(6.4) Hd
c (E(pn) \ F+

∞,L(Dλ)) // Hd
c (E(pn) \ F+

∞,D+
λ ).

The real analytic variety E(pn)\F+
∞ is connected, orientable and of dimen-

sion d then Hd
c (E(pn) \ F+

∞,D+
λ ) ' D+

λ . From (6.3) and (6.4) we obtain:

(6.5) Hd
c (Xn,Ln(Dλ)) // (D+

λ )Cl+
F

(pn).

Step 4. — Finally from (6.1), (6.2) and (6.5). we get the following eval-
uation:

evK,n : Hd
c (YK ,L(Dλ)) // (D+

λ )Cl+
F

(pn).

These different evaluations are related by:

Lemma 6.1. — For each n > 1 we have the following commutative
diagram:

Hd
c (YK ,LK(Dλ))

Up //

evK,n+1

��

Hd
c (YK ,LK(Dλ))

evK,n
��

(D+
λ )Cl+

F
(pn+1) trn // (D+

λ )Cl+
F

(pn)

here trn : (D+
λ )Cl+

F
(pn+1) → (D+

λ )Cl+
F

(pn) is the morphism

trn((µx)x∈Cl+
F

(pn+1)) = (νy)y∈Cl+
F

(pn)

with νy =
∑

x→y µx, where x → y means the set of x ∈ Cl+F (pn+1) whose
image in Cl+F (pn) is y.

Proof. — We prove that in each step of the construction of our evalu-
ations we have a commutative diagram. Firstly we construct a morphism
Hd
c (Xn+1,Fn+1) → Hd

c (Xn,Fn). Let prn : Xn+1 → Xn be the canonical
morphism, F := (prn)∗(Fn+1) and G = Gal(Xn+1/Xn) ' OF /pOF . The
morphism α : Fn+1 → Fn given by (y, µ) → (y, µ ∗ ( 1 0

0 p )) is well defined
because we have the following identity:(

v (vp − 1)p−n−1

0 1

)(
1 0
0 p

)
=
(

1 0
0 p

)(
v (vp − 1)p−n
0 1

)
.
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Let U ⊂ Xn be an open small enough such that pr−1
n (U) = tg∈GUg ⊂

Xn+1 and for each g prn induces an homeomorphism ig : U → Ug, then we
have Γ(U,F) = Γ(pr−1(U),Fn+1) = ⊕g∈GΓ(Ug,Fn+1). We define:

Γ(U,F) // Γ(U,Fn), s = (sg)g∈G // ∑
g∈G α ◦ sg ◦ ig.

We obtain a morphism of sheaves F→Fn. Remark that Hd
c (Xn+1,Fn+1)=

Hd
c (Xn,F), then we obtain:

Hd
c (Xn+1,Fn+1)

∗( 1 0
0 p )
// Hd

c (Xn,Fn) .

We have the following commutative diagram:

Hd
c (YK ,LK(Dλ))

Up //

��

Hd
c (YK ,LK(Dλ))

��
Hd
c (Xn+1,Fn+1)

∗( 1 0
0 p )

// Hd
c (Xn,Fn)

Denote F ′ = pr∗(Ln+1(Dλ)), if we repeat the last construction using in-
stead of α the morphism α′ : Ln+1(Dλ) → Ln(Dλ) defined by (y, µ) →
(y, µ), we obtain a morphism Xn: F ′ → Ln(Dλ) of sheaves over Xn.
This morphism gives us the trace morphism in the cohomology
Hd
c (Xn+1,Ln+1(Dλ)) → Hd

c (Xn,Ln(Dλ)). From ( 1 0
0 p )( 1 −1

0 pn ) = ( 1 −1
0 pn+1 )

we deduce the following commutative diagram:

Hd
c (Xn+1,Fn+1)

��

∗( 1 0
0 p )

// Hd
c (Xn,Fn)

��
Hd
c (Xn+1,Ln+1(Dλ)) trace // Hd

c (Xn,Ln(Dλ))

Finally decomposing the morphism Hd
c (Xn+1,Ln+1(Dλ)) → Hd

c (Xn,

Ln(Dλ)) on the connected components of Xn and Xn+1 we obtain the
following commutative diagram:

Hd
c (Xn+1,Ln+1(Dλ))

��

trace // Hd
c (Xn,Ln(Dλ))

��
(D+

λ )Cl+
F

(pn+1) trn // (D+
λ )Cl+

F
(pn)

�
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6.3. Construction

Using evK,1 we achieve to attach a distribution to each class in the
overconvergent cohomology.
Let Φ ∈ Hd

c (YK ,L(Dλ)) and we write

evK,1(Φ) = (νy)y∈Cl+
F

(p) ∈ (D+
λ )Cl+

F
(p).

For each x ∈ Cl+F we define:

µx =
∑

y∈Cl+
F

(p)x

(νy)× ∈ D(Gal◦p, L),

here Cl+F (p)x is the set of y ∈ Cl+F (p) whose image in Cl+F is x, and (νy)×
is the image of νy under D+

λ → D(Gal◦p, L). Finally let µΦ ∈ D(Galp, L)
be the distribution corresponding to (µx)x∈Cl+

F
∈ D(Gal◦p, L)Cl+

F using the
isomorphism (4.3). Then we have:

(6.6)
µΦ : A(Galp, L) −→ L,

f 7−→
∑

x∈Cl+
F

µx(fx)

where fx ∈ A(Gal◦p, L) is defined in 4.3.2.
The following diagram summarize our construction:

Hd
c (YK ,L(Dλ))

evK,1 // (D+
λ )Cl+

F
(p) // (D+

λ )Cl+
F

��
D(Galp, L) D(Gal◦p, L)Cl+

F
∼oo

6.4. Classical cycles and evaluations

The results of this subsection will be used to prove that the distribution
µΦ ∈ D(Gp, L) is admissible (see 6.5).

6.4.1. Cycles

Let f ∈ F and E ⊂ E(1) be a subgroup of finite index. Let Γ ⊂ GL2(F )
be an arithmetic subgroup such that ( e (1−e)f

0 1 ) ∈ Γ for all e ∈ E. Then
y → f + iy induces a morphism:

cf : E\F+
∞

// Γ\HF .
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Remark 6.2. — Let f, f ′ ∈ F be such that ( 1 (f−f ′)
0 1 ) ∈ Γ then cf = cf ′ .

Let πn : Cl+F (pn)→ Cl+F be the natural map. For each x ∈ Cl+F we write
Cl+F (pn)x := π−1

n (x). Recall that from hypothesis on K we deduce that YK
has ]Cl+F connected components, YK =

⊔
x∈Cl+

F
Yx.

Lemma 6.3. — We have:
(1) If x ∈ Cl+F then Cl+F (pn)x = F× \ F×axF

+
∞Ô×F /U(pn)F+

∞ and we
have an isomorphism Ô×

F

U(pn)E(1) ' Cl+F (pn)x. Moreover the associ-
ation OF → ÔF given by a → ua, where ua is 1 at the premier
numbers different that p and a in p, gives us:( OF

pnOF

)×
E(1)

∼ // Ô×
F

U(pn)E(1)
∼ // Cl+F (pn)x

(2) Fix a set of representatives Sn ⊂ OF for
( OF
pnOF

)×
E(1) . Then we have

the following commutative diagram:⊔
a∈Sn E(pn) \ F+

∞

∼
��

tac−a\p−n // Γx \HF

∼

��
ty∈Cl+

F
(pn)x

Xn,y
CK,n // Yx

Proof. — The part (1) is clear. Let a ∈ Sn and call y the corresponding
class in Cl+F (pn)x. Let [r] ∈ E(pn) \ F+

∞ then its image in Xn,y is [raxua]
and we have CK,n([raxua]) = [( raxua (ap−n)p

0 1 )] = [( rax (−ap−n)∞
0 1 )], the last

identity comes from:(
raxua (ap−n)p

0 1

)
=
(

1 ap−n

0 1

)(
rax (−ap−n)∞
0 1

)(
ua (ap−na−1

x )pf
0 1

)
,

here (ap−na−1
x )pf denotes the finite adele which is (ap−na−1

x )l for l 6= p and
0 for l = p. Finally c−a\p−n([r]) = [− a

pn + ir] = [( r −ap−n0 1 )i] then its image
in Yx is [( r (−ap−n)∞

0 1 )gx] = [( r (−ap−n)∞
0 1 )

(
ax 0
0 1
)
] = CK,n([raxua]). �

6.4.2. Evaluations

We define evaluations on the cohomology of Γ \ HF in the same way
that in 6.2. Let f ∈ F , E ⊂ E(1) and Γ ⊂ GL2(F ) be as before, moreover
we suppose that the image of Γ in G(Qp) is contained in Λp and fix a
decomposition f = ab−1, where a, b ∈ OF and b 6= 0.
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Step 1. — Using cf instead of CK,n in step 1 of 6.2 we obtain:

Hd
c (Γ \HF ,L(Dλ))

c∗f // Hd
c (E \ F+

∞, c
×
f L(Dλ)) .

Step 2. — Explicitly the sheaf c∗fL(Dλ) is given by the fiber bundle E \
(F+
∞ × Dλ) → E \ F+

∞ where e(y, µ) = (ey, µ ∗ ( e−1 f(1−e−1)
0 1 )). So using

( 1 a
0 b ) instead ( 1 −1

0 pn ) of step 2 in 6.2 we obtain:

Hd
c (E \ F+

∞, c
∗
fL(Dλ))

∗( 1 a
0 b )
// Hd

c (E \ F+
∞,L(Dλ)),

here L(Dλ) is the sheaf over E \F+
∞ given by F+

∞×Dλ where the action is
e(y, µ) = (ey, µ ∗ ( e−1 0

0 1 )).

Step 3. — Finally, using Hd
c (E \ F+

∞,L(Dλ) → Hd
c (E \ F+

∞,D+
λ ) ' D+

λ

we obtain:
evΓ,f : Hd

c (Γ \HF ,L(Dλ)) // D+
λ .

6.4.3. Description of evΓ,f

Let Afλ be the subspace of Aλ(L) of functions g such that ( e−1 f(1−e−1)
0 1 )∗

g = g for all e ∈ E. This space is a Frechet space and we denote Dfλ(L) =
Dfλ its continuous dual. The morphism A+

λ → Afλ : g → ( 1 a
0 b ) ∗ g is

continuous and then gives us Dfλ → D
+
λ .As in 4 we consider the subspace

Afλ,0 ⊂ A
f
λ of functions that can be expressed as a converging power series

on all OF ⊗Zp. This space is a Banach space and we call Dfλ,0 its dual. We
have the restriction Dλ,0 → Dfλ,0. In the same way, we can define spaces
Afλ,0(OL) and Dfλ,0(OL) and we have the restriction morphism Dλ,0(OL)→
Dfλ,0(OL).

Remark 6.4. — Let a′, a ∈ OF be defining the same class in
( OF
pnOF

)×
E(1) ,

is not difficult to obtain an isomorphism between Dap
−n

λ and Da
′p−n

λ , and
moreover the following diagram is commutative:

Dap
−n

λ

∼
��

// D+
λ

Da
′p−n

λ

==
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In particular the image of Dap
−n

λ → D+
λ depend only on the class of a in( OF

pnOF

)×
E(1) .

Remark 6.5. — The restriction morphismDλ → Dfλ givesHd
c (E\F+

∞, c
∗
fL(Dλ))→

Hd
c (E\F+

∞,D
f
λ) ' Dfλ. So we obtain a morphism Hd

c (Γ\HF ,L(Dλ))→ Dfλ.
Moreover by definition we have the following commutative diagram:

(6.7)

evΓ,f : Hd
c (Γ \HF ,L(Dλ))

c∗f // Hd
c (E \ F+

∞, c
∗
fL(Dλ)) //

��

D+
λ

Dfλ
∗( 1 a

0 b )

77

Remark 6.6. — In the same way that in the last remark we can define
morphisms:

Hd
c (Γ\HF ,L(Dλ,0))→ Dfλ,0, and Hd

c (Γ\HF ,L(Dλ,0(OL)))→ Dfλ,0(OL).

6.4.4. OL-modules

Lemma 6.7. — Let Γ ⊂ G(Q) be an arithmetic group with image in
G(Qp) contained in Λp. Let φ ∈ Hd

c (Γ\HF ,L(Dλ)), then there exist C(φ) >
0 such that:

• if (f,E) is a pair satisfying conditions in 6.4.2 to respect with
Γ and if ν ∈ Dfλ is the image of φ under the morphism Hd

c (Γ \
HF ,L(Dλ))→ Dfλ defined at the end of 6.4.2, then:

‖ν‖0 6 C(φ).

Proof. — Considering the notation of 4, 6.4.3 and by definition we obtain
the following commutative diagram:

Hd
c (Γ\HF ,L(Dλ))

c∗f //

��

Hd
c (E \F+

∞, c
∗
fL(Dλ)) //

��

Dfλ

��
Hd
c (Γ\HF ,L(Dλ,0))

c∗f // Hd
c (E \F+

∞, c
∗
fL(Dλ,0)) // Dfλ,0

Hd
c (Γ\HF ,L(Dλ,0(OL)))

c∗f //

OO

Hd
c (E \F+

∞, c
∗
fL(Dλ,0(OL))) //

OO

Dfλ,0(OL)

OO
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Dλ,0 is a Banach L-space then there exists β ∈ L× such that the image
of βφ through Hd

c (Γ \ HF ,L(Dλ)) → Hd
c (Γ \ HF ,L(Dλ,0)) is contained in

Hd
c (Γ \HF ,L(Dλ,0(OL))). We write C(φ) =| β |−1

p .
Let (f,E) be as before and let ν ∈ Dfλ be the image of φ under the

morphism Hd
c (Γ \HF ,L(Dλ))→ Dfλ. Because the choice of β the image of

βν in Dfλ,0 is in fact contained in Dfλ,0(OL) and then ‖βν‖0 6 1. Then we
obtain:

‖ν‖0 = C(Φ)‖βν‖0 6 C(Φ). �

6.4.5. Classical and automorphic evaluations

Fix Φ∈Hd
c (YK ,L(Dλ)) and n>1. We denote evK,n(Φ)=(νy)y∈Cl+

F
(pn) ∈

(D+
λ )Cl+

F
(pn). Fix x ∈ Cl+F and a ∈ Sn, then denote by νx,a ∈ D−ap

−n

λ the
image of Φ under:

Hd
c (YK ,L(Dλ)) // Hd

c (Yx,L(Dλ)) // Hd
c (Γx \HF ,L(Dλ)) // D−ap

−n

λ

here the last morphism was described in the end of 6.4.2.

Lemma 6.8. — Let y ∈ Cl+F (pn)x be the image of a ∈ Sn under the

bijection
( OF
pnOF

)×
E(1) ' Cl+F (pn)x. Then we have:

νy = νx,a ∗
(

1 −a
0 pn

)
.

Proof. — From Lemma 6.3 we obtain the following commutative dia-
gram:

Hd
c (Yx,L(Dλ))

C∗n
��

// Hd
c (Γx \HF ,L(Dλ))

⊕a∈Snc
∗
−ap−n

��
Hd
c (ty∈Cl+

F
(pn)x

Xn,y, C
∗
nL(Dλ))

∗( 1 −1
0 pn

)
��

// ⊕a∈SnHd
c (E(pn)\F+

∞, c
∗
−ap−nL(Dλ))

⊕a∈Sn∗(
1 −a
0 pn

)
��

Hd
c (ty∈Cl+

F
(pn)x

Xn,y,Ln(Dλ))

++

// Hd
c (E(pn)\F+

∞,Ln(Dλ))Sn

��

DCl+
F

(pn)x
λ

Here the right column is by definition (evΓx,−ap−n)a∈Sn . Finally we obtain
the result from (6.7) �
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6.5. Admissibility

Lemma 6.9. — Let Φ ∈ Hd
c (YK ,L(Dλ)). Then there exists C = C(Φ) >

0, depending only on Φ, such that for each n > 1 we have ‖νy‖n 6 C where
evK,n(Φ) = (νy)y∈Cl+

F
(pn).

Proof. — Let x ∈ Cl+F . Let Φx ∈ Hd
c (Γx \HF ,L(Dλ)) be the image of Φ.

Let Cx > 0 be given by Lemma 6.7. If n > 1 and y ∈ Cl+F (pn)x let a ∈ Sn

be corresponding to y by the isomorphism
( OF
pnOF

)×
E(1)

∼−→ Cl+F (pn)x. Then
from 6.8 and 6.7 we have:

‖νx‖n = ‖νx,a ∗ ( 1 −a
0 pn )‖n 6 ‖νx,a‖0 6 Cx.

We take C(Φ) := max{Cx | x ∈ Cl+F } �

Proposition 6.10. — Let Φ ∈ Hd
c (YK ,L(Dλ)) be such that Up(Φ) =

αΦ where α ∈ L×. We denote h = vp(α) then µΦ ∈ D(Galp, L) is an
h-admissible distribution.

Proof. — As µΦ ∈D(Galp, L) is obtained from (µx)x∈Cl+
F
∈D(Gal◦p, L)Cl+

F

under isomorphism 4.3, then it is enough to prove that µx is h-admissible for
each x ∈ Cl+F . Fix x ∈ Cl+F . Let n > 1 and denote evK,n(Φ) = (νy)y∈Cl+

F
(pn)

then using Lemma 6.1 we obtain:

µx = α−n+1
∑

y∈Cl+
F

(pn)x

(νy)×.

Let C > 0 be the constant obtained in 4.8 then ‖µx‖n 6:

pnh−hmax{‖(νy)×‖n | y ∈ Cl+F (pn)x}

6 Cpnh−hmax{‖νy‖n | y ∈ Cl+F (pn)x}

Let C(Φ) > 0 be the constant obtained in 6.9, then we deduce that for
each n > 1 we have ‖µx‖n 6 C(Φ)Cp−hpnh, so µx is h-admissible. �

7. Automorphic representations and p-adic L-functions

7.1. Construction

Let π = π∞⊗πf be a cohomological automorphic representation of G(A)
of type (k, r) where (k, r) ∈ ZΣF × Z such that kσ > 2, kσ ≡ r mod 2 and
| r |6 kσ − 2 for each σ ∈ ΣF . Let c be the conductor of π and suppose
that K1(cp) satisfy the condition 2.1. Let kπ be a number field containing
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the normal closure of F and the field of definition of πf . Let L be a p-adic
field containing kπ. We call λ the dominant character attached to the data
(k, r) as in 2.4. Let fπ ∈ S(k,r)(K1(c)) be the newform attached to π (here
S(k,r)(K1(c)) is the space S(k,w)(K1(c),C) with w = (kσ−r2 )σ∈ΣF in the
notations of [10]). We suppose that the following condition is satisfied:

Hypothesis 7.1. — There exists a p-stabilisation of fπ, denoted f ∈
S(k,r)(K1(c) ∩K0(p)) ⊂ S(k,r)(K1(cp)), such that if we denote by ap ∈ Q
the eigenvalue of f with respect to the Hecke operator Up, then we have:

vp

(
incp

(
p

∑
σ∈ΣF

kσ−2−r
2 ap

))
< k0 − 1,

where k0 = min{kσ | σ ∈ ΣF }.

Using a result of Matsushima–Shimura–Harder ([10, Proposition 3.1])
we obtain a class δ1(f) ∈ Hd

cusp(Y1(cp),L(V∨λ(C))). Let Hd
cusp(Y1(cp),

L(V∨λ(C)))[f ,1] be the space of the Hecke eigenclasses in Hd
cusp(Y1(cp),

L(V∨λ(C))) with the same eigenvalues that f and sign (1, . . . , 1) ∈ ZΣF .
This space is 1-dimensional (see [10, §8]), then fixing a period Ωπ ∈ C× we
obtain a well determined class:

φf ∈ Hd
c (Y1(cp),L(V∨λ(L))).

By construction we have U0
pφf = αφf with α = incp(p

∑
σ∈ΣF

kσ−2−r
2 ap).

By hypothesis vp(α) < k0 − 1 and then by Theorem 5.1 there exists an
unique

Φf ∈ Hd
c (Y1(cp),L(Dλ(L)),

whose specialization is φf and UpΦf = αΦf . Using the construction de-
scribed in 6.3 we define:

µf := α−1µΦf ∈ D(Galp, L)

Theorem 7.2. — The distribution µf ∈ D(Galp, L) is h-admissible
where h = vp(α). Let χ : Galp → L× be a finite order character of F
such that χσ(−1) = 1 for each σ ∈ ΣF , then we have:

µf (χ) = incp
(
Lp(π ⊗ χ, 1)τ(χ)

Ωπ

)∏
p|p

Zp,

here Lp(π ⊗ χ, s) is the L-function of π twisted by χ without the Euler
factor in p, τ(χ) is the Gauss sum as defined in [9, §2.5], and:

Zp =

α
−cond(χp)
p if χp is ramified
χp($p)−dp (1−α−1

p χp($p)−1NF/Q(p)−1)
1−αpχp($p) if not.

TOME 68 (2018), FASCICULE 5



2210 Daniel BARRERA SALAZAR

where, dp is the p-adic valuation of the different of F , αp = incp(ap) and
ap is the eigenvalue of f with respect to the hecke operator Up.

In this statement we use Remark 4.6 to see χ : Galp → L× as a finite or-
der Hecke character of F . Remark that from [10, Theorem 8.1] we know that
L(π⊗|·|nAF⊗χ,1)

Ωπ ∈ Q where n is a integer such that −(k0−2)+r
2 6 n 6 (k0−2)+r

2
and χ is any finite order Hecke character of F . We prove this theorem in
the next two subsections. In the next subsection we recall the evaluations
described in [9] and we make explicit the relation with our evaluations.
This explicit relation allow us relate our construction with L-values. We
would like to remark that a basic problem in our construction is the lack
of uniqueness of our p-adic L-functions. This problem is a consequence of
the fact that Theorem 1.2 does not guarantee the interpolation of enough
critical values. This problem is settled in the ongoing work [3]. We refer
to [12] for a precise study of distributions on Galois groups and the problem
of uniqueness.

7.2. A computation of Dimitrov

We follow [9] to define evaluations on Hd
c (YK1(cp),L(V∨λ(L))), moreover

we relate these evaluations with some critical values of L(π, s). Here we
will denote V∨λ(L) by V∨λ and Dλ(L) by Dλ. These evaluations are defined
in the same way as in 6.2:

• Using the automorphic cycle CK1(cp),n we obtain:

Hd
c (YK1(cp),L(V∨λ)) // Hd(Xn, C

×
K1(cp),nL(V∨λ));

• Let Ln(V∨λ) be the sheaf on Xn obtained by considering the action
u ∈ U(pn) on V∨λ by the matrix ( u 0

0 1 ) on the right. Then the right
action of ( 1 −1

0 pn ) on V∨λ gives C×K1(cp),nL(V∨λ)→ Ln(V∨λ) a morphism
of sheaves over Xn. Then we obtain: Hd(Xn, C

×
K1(cp),nL(V∨λ)) →

Hd(Xn,Ln(V∨λ));
• Consider the morphism V∨λ → L defined by ϕ 7→

( k−2t
k−2t+rt

2

)
ϕ(f?),

where f? ∈ V∨λ is uniquely determined by the condition f?( 1 z
0 1 ) =

z
k−2t+rt

2 for all z ∈ F ⊗Q L. Then we obtain Hd(Xn,Ln(V∨λ)) →
Hd(Xn, L) ' LCl+

F
(pn);

• Putting all these steps together we get:

evCl
K1(cp),n : Hd

c (YK1(cp),L(V∨λ)) // LCl+
F

(pn).
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Lemma 7.3. — We put cr : D+
λ → L, µ→ cr(µ) =

( k−2t
k−2t+rt

2

)
µ(z k−2t+rt

2 ).
Then we have the following commutative diagram:

evK1(cp),n : Hd
c (Y1(cp),L(Dλ)) //

��

(D+
λ )Cl+

F
(pn)

cr
��

pn
k−2t−rt

2 evCl
K1(cp),n : Hd

c (Y1(cp),L(V∨λ)) // LCl+
F

(pn)

Proof. — If we denote by π : Dλ → V∨λ the projection, it is I-equivariant,
moreover for each µ ∈ Dλ we have:

π

(
µ ∗
(

1 −1
0 pn

))
= pn

k−2t−rt
2 π(µ) ·

(
1 −1
0 pn

)
.

So comparing the definitions of evCl
K1(cp),n and evK1(cp),n the lemma follows.

�

Lemma 7.4. — Let φf be as in 7.1, and for each n > 1 we denote
evCl

K1(cp),n(φf ) = (ay,f )y∈Cl+
F

(pn) ∈ LCl+
F

(pn). Let χ : Galp → L× be a finite
order character such that χσ(−1) = 1 for each σ ∈ ΣF . Let n > 0 large
enough such that χ factorizes through the projection Galp → Cl+F (pn), then
we have:

pn
k−2t−rt

2 α−n
∑

y∈Cl+
F

(pn)

χ(y)ay,π = incp
(
Lp(π ⊗ χ, 1)τ(χ)

Ωπ

)∏
p|p

Zp.

Proof. — Using the notations of [9, §1.5] with w = (kσ − 2)σ∈ΣF and
w0 = r, and the commutative diagram (2.3) we obtain:

Sw,w0
K1(cp),1,n(φf ) = pn

k−2t−rt
2 α−nevCl

K1(cp),n(φf )

= pn
k−2t−rt

2 α−n(ay,f )y∈Cl+
F

(pn).

Finally the lemma result from the calculations given in the proof of [9,
Theorem 2.4]. �

7.3. Proof of Theorem 7.2

We have that Up(Φf ) = αΦf , then from Lemma 6.10 we deduce that µf
is an h-admissible distribution where h = vp(α).
Let χ : Galp → L× be a finite order character such that χσ(−1) = 1

for each σ ∈ ΣF . Let n > 1 be such that the conductor of χ is divided by
pnOF . Then we can consider χ to be defined on Cl+F (pn).
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We write evK1(cp),n(Φf ) = (νy)y∈Cl+
F

(pn) ∈ (D+
λ )Cl+

F
(pn). From definition

in 4.3.3 and Lemma 6.8, we obtain that if x ∈ Cl+F and y ∈ Cl+F (pn)x then
we have:

ν×y (χx) =
(

k− 2t
k−2t+rt

2

)
χ(y)νy(z

k−2t+rt
2 ),

here χx is given by the composition of the homeomorphism rx : Gal◦p →
Galp,x and χ.
As before we write evCl

K1(cp),n(φf ) = (ay,f )y∈Cl+
F

(pn). Then we have:

µf (χ) = α−1µΦf (χ)

= α−n
∑

x∈Cl+
F

∑
y∈Cl+

F
(pn)x

ν×y (χx)

= α−n
∑

x∈Cl+
F

∑
y∈Cl+

F
(pn)x

(
k− 2t

k−2t+rt
2

)
χ(y)νy(z

k−2t+rt
2 )

= pn
k−2t+rt

2 α−n
∑

y∈Cl+
F

(pn)

χ(y)ay,π,

= incp
(
Lp(π ⊗ χ, 1)τ(χ)

Ωπ

)∏
p|p

Zp.

The second equality follows from Lemma 6.1, the fourth from Lemma 7.3
and the last one from Lemma 7.4.
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