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ON THE FIRST ORDER COHOMOLOGY OF
INFINITE-DIMENSIONAL UNITARY GROUPS

by Manuel HERBST & Karl-Hermann NEEB

Abstract. — We determine precisely for which irreducible unitary highest
weight representation of the group U(∞), the countable direct limit of the finite-
dimensional unitary groups U(n), the corresponding 1-cohomology space H1 does
not vanish. This occurs in particular if a highest weight, viewed as an integer-valued
function on N, is finitely supported. In a second step, we extend the finitely sup-
ported highest weight representations to norm-continuous unitary representations
of the Banach-completions Up(`2) of the direct limit U(∞) with respect to the pth
Schatten norm for 1 6 p 6∞. For p <∞, the corresponding 1-cohomology spaces
H1 do not vanish either, except in three cases. We conclude that these groups do
not have Kazhdan’s Property (T). On the other hand, for p =∞, the first cohomol-
ogy spaces all vanish because U∞(`2) has property (FH) as a bounded topological
group.
Résumé. — Parmi les représentations unitaires irréductibles du groupe U(∞),

la limite directe dénombrable des groupes unitaires de dimension finie U(n), qui
admettent un plus haut poids, nous déterminons précisément celles qui n’ont pas
une 1-cohomologie triviale. Cela se produit en particulier si un plus haut poids,
considéré comme une fonction de valeur entière sur N, est une fonction à support
fini. De plus, nous étendons les représentations admettant un plus haut poids à
support fini en des représentations unitaires irréductibles des complétés de Banach
Up(`2) de la limite directe U(∞) par rapport à la norme p de Schatten pour 1 6
p 6∞. Si p <∞, alors la 1-cohomologie n’est pas triviale non plus avec l’exception
de trois cas particuliers. Nous en déduisons que ces groupes n’ont pas la propriété
(T) de Kazhdan. De l’autre part, en cas de p = ∞, la 1-cohomologie est triviale
puisque le groupe topologique U∞(`2) possède la propriété (FH).

1. Introduction

For a continuous unitary or orthogonal representation (π,H) of the topo-
logical group G we call a map β : G → H a 1-cocycle if it satisfies the

Keywords: First order group cohomology, unitary representation, (Banach–)Lie group,
Lie algebra, direct limit group, Kazhdan’s property (T).
2010 Mathematics Subject Classification: 22E41.
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1-cocycle relation

(1.1) β(gh) = β(g) + π(g)β(h), for all g, h ∈ G.

A 1-cocycle of the form β(g) = ∂v(g) := π(g)v− v for some v ∈ H is called
a 1-coboundary or a trivial 1-cocycle. The vector space of all continuous
1-cocycles associated to (π,H) is denoted by Z1(G, π,H), its subspace of
1-coboundaries by B1(G, π,H). The quotient space

H1(G, π,H) := Z1(G, π,H)/B1(G, π,H)

is called the 1-cohomology space.
Interest in the first order cohomology of Lie groups has grown in the

last decades since it is related to mathematical problems occurring in a
wide range of mathematical disciplines such as geometric group theory,
unitary representations, ergodic theory, stochastic processes and theoretical
physics. Its motivation comes from the construction of irreducible unitary
representations in Fock spaces (cf. [14, 21]), the study of unitary representa-
tions of mapping groups/current groups (cf. [1, 2, 14, 21]), the classification
theory of negative definite functions (cf. [7]), Lévy processes and infinitely
divisible probability distributions (cf. [21]) and continuous tensor products
of unitary representations (cf. [11, 20, 25]). The study of group cohomol-
ogy spaces was notably propagated in the 1970s due to influential papers
by J. P. Serre. One of the key results developed during that decade was
the Delorme–Guichardet Theorem which states that, for a σ-compact lo-
cally compact group G, the following are equivalent (cf. [4, Thm. 2.12.4,
Prop. 2.2.10]):

Property (T). — There exists a compact subset K ⊆ G and some posi-
tive constant ε > 0 such that every continuous unitary represent-
ation (π,H), for which there exists a unit vector v ∈ H such that
supg∈K ‖π(g)v − v‖ < ε, has a non-trivial G-fixed vector, i.e. HG 6= {0}.

Property (FH). — H1(G, π,H) = 0 for every continuous orthogonal rep-
resentation (π,H) of G.

More precisely, the implication (T) =⇒ (FH) holds for arbitrary topo-
logical groups whereas the σ-compactness is necessary for the converse
implication (cf. [4, Rem. 2.12.5]).
It is a well-known fact that a 1-cocycle is trivial if and only if it is bounded

(cf. [4, Prop. 2.2.9]). This implies that compact groups have property (FH)
(see also [21, Thm. 15.1]). In the realm of irreducible unitary representa-
tions of finite dimensional Lie groups, the vanishing of the first cohomology
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spaces occurs surprisingly often: In view of the Delorme–Guichardet The-
orem, [4, Thm. 3.5.4] states that a connected semi-simple Lie group G has
property (FH) if and only if no simple factor of its Lie algebra is isomorpic
to su(n, 1) or so(n, 1) (for n ∈ N). Moreover, up to equivalence, there ex-
ists only a finite number of (topologically complete) irreducible continuous
unitary representations (π,H) of a connected semi-simple Lie group, for
which H1(G, π,H) 6= {0} (cf. [23, Prop. 11]). For a connected nilpotent
Lie group, one can show that H1(G, π,H) = {0} holds for every nontrivial,
irreducible continuous unitary representation (π,H) (e.g. [21, Thm. 17.4]).
In this article, we turn to infinite-dimensional Lie groups: Let H ∼=

`2(N,C) be an infinite-dimensional complex separable Hilbert space. We
consider the unitary groups

(1.2) U(∞) ⊂ U1(H) ⊂ · · · ⊂ Up(H) ⊂ · · · ⊂ U∞(H) ⊂ U(H).

Here U(∞) is the increasing union of the compact Lie groups U(n) :=
U(n,C), endowed with the direct limit Lie group structure (cf. [8,
Thm. 4.3]). Its Lie algebra u(∞) = lim−→ u(n) is an increasing union of fi-
nite dimensional compact Lie algebras (cf. [8, Thm. 4.3]). The other groups
Up(H) := U(H)∩(1+Bp(H)) (for 1 6 p 6∞) are Banach–Lie groups whose
Lie algebras up(H) = u(H) ∩ Bp(H) are determined by the pth Schatten
ideals Bp(H) (cf. [12, §II.5, II.6]). Note that B∞(H) is the space of compact
operators on H. In [15], unitary highest weight representations of the group
U(∞) have been classified by the orbits of the weights λ = (λn)n∈N in ZN

under the Weyl group W ∼= S(N). This means that two highest weight rep-
resentations (πλ,Hλ) and (πµ,Hµ) are equivalent if and only if the entries
of the weights λ and µ coincide up to a finite permutation. The unitary rep-
resentation (πλ,Hλ) extends to the group U1(H) if and only if the weight
λ is bounded (cf. Proposition III.7 and Theorem III.4 in [15]). Moreover,
the proof of Proposition III.10 in [15] shows that (πλ,Hλ) extends to the
group Up(H) for some p > 1 if and only if the weight λ has finite support.
The problem is to determine for which weights λ, the corresponding first
cohomology spaces are trivial. The case λ = 0 corresponds to the one-
dimensional trivial representation and the fact that there is no nonzero
continuous group homomorphism G→ R for each of the unitary groups G
from (1.2) implies that the corresponding 1-cohomology spaces vanish (cf.
Remark 3.7). For λ 6= 0, we derive the following solutions:

Theorem 4.10. — For the direct limit U(∞), the first cohomology
space H1(U(∞), πλ,Hλ) vanishes if and only if either all but finitely many
entries of λ are positive integers or all but finitely many entries are negative
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integers. In particular, for finitely supported weights λ, the corresponding
1-cohomology spaces never vanish.

Theorem 7.9. — For 1 6 p < ∞ and for finitely supported nonzero
weights λ, the first cohomology space H1(Up(H), πλ,Hλ) vanishes in ex-
actly two cases, namely either if Up(H) acts onH via the identical represen-
tation or if Up(H) acts on H∗ via the dual representation. This corresponds
to the case λ = (1, 0, 0, 0, . . . ) (natural action) resp. λ = (−1, 0, 0, 0, . . . )
(conatural action).

In particular, Theorem 7.9 reveals that the group Up(H) (with 1 6 p <

∞) neither has property (FH) nor has property (T). For p = 2, the fact
that U2(H) does not have property (T) has already been shown in [22].
The question whether U2(H) has property (FH) is however stated there as
an open problem (see [22, 3.5]) which is answered by Theorem 7.9.
[3, Prop. 6.5, Rem. 6.8(a)] shows that the full unitary group U(H) and

the group U∞(H) belong to the class of bounded groups. We call a topo-
logical group G bounded if, for every identity neighborhood U ⊆ G, there
exists an integer n ∈ N and a finite subset F ⊆ G such that G ⊆ UnF .(1)

That U(H) and U∞(H) are bounded groups is also shown in [18] with a
proof relying on the spectral calculus of operators on Hilbert spaces. It is
immediate from the definition that bounded groups have property (FH).(2)

Hence, if G ∈ {U∞(H), U(H)} and (π,H) is a continuous unitary repre-
sentation of G, then H1(G, π,H) = {0} (see also [24]). The unitary groups
U(∞) and Up(H) for 1 6 p < ∞ are not bounded because they have
nontrivial 1-cohomology spaces.
The core ideas for the proof of Theorem 4.10 are the following: Any

1-cocycle of one of the unitary groups above has the property that its
restriction to one of the compact subgroups U(n) yields a 1-coboundary.
This leads us to the notion of a conditional 1-cocycle in Section 3. If (Gj)j∈J
is a family of subgroups of the group G, then we call a 1-cocycle conditional
if its restriction to every subgroup Gj yields a 1-coboundary. A special
case arises if G = lim−→Gn is the direct limit of an increasing sequence of
subgroups Gn. The statement that every conditional 1-cocycle (w.r.t. the
family of the subgroups Gn) is a 1-coboundary is then equivalent to the

(1)Using the terminology of [3], this can be expressed as G being bounded in the right
uniformity of the topological group G. If G is connected, one can always use F = {e}
which leads some authors to adopt this as a requirement in their definition.
(2) Indeed, if β : G → H is a continuous 1-cocycle associated to a continuous unitary
representation (π,H) of a bounded group G, then U := {g ∈ G : ‖β(g)‖ < 1} is an
open identity neighborhood and G ⊂ UnF for some n ∈ N and some finite subset F
implies supg∈G ‖β(g)‖ 6 n+ maxf∈F ‖β(f)‖ <∞.
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statement that every Gn-fixed vector is already fixed by the whole group
G provided that n is sufficiently large (cf. Proposition 3.6). In Section 4,
we introduce the highest weight representations (πλ,Hλ) of U(∞) as a
direct limit of highest weight representations of the subgroups U(n) and
we directly conclude that the representation (πλ,Hλ) admits a U(n)-fixed
vector if and only if one of the highest weight subrepresentations of U(k)
(with k > n) admits a U(n)-fixed vector. This observation allows us to
reformulate the problem as a matter of branching from U(k) to U(n). Thus,
Theorem 4.10 is obtained by applying the classical branching law as stated
in Theorem 4.1.
Our strategy to prove Theorem 7.9 can be outlined as follows: For finitely

supported λ, we realize the extended highest weight representations (πλ,Hλ)
of the group Up(H) (for 1 6 p < ∞) as subrepresentations of finite tensor
product representations that are built from the identical and its dual action
of Up(H) on H respectively on the dual H∗ (cf. Section 7). For these finite
tensor product representations (with at least two factors), it is easy to con-
struct nontrivial 1-cocycles as a countably infinite sum of 1-coboundaries
(cf. Section 6). Projecting these 1-cocycles onto the corresponding highest
weight submodules gives nontrivial 1-cocycles for the highest weight repre-
sentations (πλ,Hλ) (cf. Proposition 7.8). That the first cohomology spaces
for the identical representations on H and the dual representation on H∗
(cf. Section 5) vanish is shown in Remark 3.2 and Proposition 5.1.
In a subsequent paper, we plan to treat the case where λ is bounded

with infinite support and the corresponding highest weight representation
(πλ,Hλ) of U(∞) extends to the group U1(H). The problem here is that
it is much harder to realize the representation (πλ,Hλ) concretely than it
is in the finitely supported case. If the first cohomology space vanishes for
the group U(∞), then it also does for the group U1(H) since U(∞) is dense
in U1(H). But this is not the case for every bounded weight with infinite
support and this situation remains, at the present stage, an open problem.

Acknowledgements. We would like to thank the referee for pointing
out the references [3] and [24].

2. Notation, terminology and preliminaries

Throughout this article, we use the symbol H for a complex Hilbert
space. We follow the convention that the scalar product 〈 · , · 〉H of a com-
plex Hilbert space H is linear in the first argument and antilinear in the
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second. If V is any complex vector space, we write V for the complex vec-
tor space with the same addition operation but with scalar multiplication
(λ, v) 7→ λv for v ∈ V and λ ∈ C. We use the symbol G for a (topological)
group and write e for its neutral element. If not otherwise stated, we always
assume that any topological group is a Hausdorff space. A continuous uni-
tary representation (π,H) of G on a complex Hilbert space H is a group
homomorphism π : G → U(H) which is continuous with respect to the
strong operator topology on the unitary group U(H). The unitary repre-
sentation (π,H) is called norm-continuous, if π is continuous with respect
to the norm-topology on U(H). We stick to the convention of writing HG
for the subspace of G-fixed vectors.

2.1. On the Lie groups used in this article

Throughout this article, a Lie group G is either a real Banach–Lie group
or a direct limit of real finite-dimensional Lie groups. We write g := L(G) ∼=
Te(G) for its (real) Lie algebra. The corresponding Lie bracket is denoted by
[ · , · ]. Elements z ∈ gC of the complexified Lie algebra split into z = x+i y,
where x, y ∈ g are uniquely determined and are therefore called the real
resp. imaginary part of z. We obtain an involution on gC via z∗ := −x+ i y
for z = x+ i y.
Let G be a Banach–Lie group and (π,H) be a norm-continuous unitary

representation of G. Every continuous 1-cocycle β : G → H defines a
continuous group homomorphism of Banach–Lie groups

α : G→ Ho U(H), g 7→ (β(g), π(g)).

By the Automatic Smoothness Theorem of Banach–Lie groups (3) we thus
obtain a smooth map. In particular, both maps

π : G→ U(H), β : G→ H

are smooth. Taking the derivative at e, we obtain continuous R-linear maps

dπ : g→ u(H), dβ : g→ H

satisfying, for arbitrary x, y ∈ g, the relations

dπ([x, y]) = dπ(x)dπ(y)− dπ(y)dπ(x)
dβ([x, y]) = dπ(x)dβ(y)− dπ(y)dβ(x).

Complexification yields continuous C-linear maps

dπC : gC → B(H), dβC : gC → H.
(3)For more details see [17, Thm. IV.1.18] and the references given there.

ANNALES DE L’INSTITUT FOURIER
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2.2. Unitary highest weight representations of the group U(n)

Let G be a compact Lie group. Standard references for the classifica-
tion of irreducible unitary representations of G in terms of highest weights
are [27] (for the case G = U(n)) and [10] (for the classical groups). For the
infinite-dimensional unitary groups, we refer to the survey in [16], where
the reader also finds an introduction to Banach–Lie groups and crucial re-
sults from [15]. Here, we briefly introduce the terms highest weight and
highest weight representation for the group U(n) because these concepts
are mentioned several times throughout this paper.
Let (π,H) be an irreducible, continuous unitary representation of U(n).

Then, H is finite–dimensional and the derived Lie algebra representation
(dπC,H) of gl(n,C) is also irreducible. A weight λ of the representation
(dπC,H) is a linear functional λ : h→ C on the maximal abelian subalge-
bra h of diagonal matrices of the Lie algebra gl(n,C). Let b be a maximal
solvable Lie subalgebra of gl(n,C) containing h. It is a consequence of Lie’s
Theorem on the finite dimensional representations of solvable Lie algebras
that there exists a (unique) one-dimensional b-eigenspace in H. The corre-
sponding b-eigenvalue is a Lie algebra homomorphism λ : b → C and its
restriction to h is a weight which is called a highest weight (for b) of the rep-
resentation (π,H). For instance, we may choose b to be the upper triangular
matrices in gl(n,C). Then, one can show that for x = diag(x1, . . . , xn) ∈ h,
we have λ(x) =

∑n
i=1 λixi with decreasingly ordered integer-valued coef-

ficients λi. This means that any irreducible, continuous unitary represen-
tation of U(n) defines a decreasingly ordered integer-valued n-tuple. Con-
versely, to every λ ∈ Zn with λ1 > · · · > λn there exists an irreducible uni-
tary representation (πλ,Hλ) of U(n) with highest weight λ (w.r.t. the solv-
able subalgebra of upper triangular matrices). We call (πλ,Hλ) a unitary
highest weight representation. Two highest weight representations (πλ,Hλ),
(πµ,Hµ) are isomorphic if and only if λ = µ. Therefore, we obtain a one to
one correspondence between the equivalence classes of irreducible, contin-
uous unitary representations of U(n) and the decreasingly ordered vectors
in Zn.
For tuples λ ∈ Zn which are not necessarily decreasingly ordered, we

write (πλ,Hλ) for the unitary highest weight representation correspond-
ing to the decreasingly ordered tuple λ′ which is obtained after a suitable
permutation of the entries of λ. This has the following background: Ev-
ery tuple λ ∈ Zn occurs as a highest weight of some irreducible unitary
representation of U(n) for some solvable subalgebra b containing h. It is a

TOME 68 (2018), FASCICULE 5
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general fact in highest weight theory that two highest weight representa-
tions are isomorphic if and only if the corresponding weights belong to the
same orbit under the Weyl group action on the set of weights. The Weyl
group action on Zn can be realized by the natural permutation action of
Sn on Zn.
The polar map

p : U(n)× u(n)→ GL(n,C), (g, x) 7→ g exp(ix)

is a diffeomorphism and therefore, every continuous unitary representation
(π,H) of U(n) extends to a holomorphic(4) representation of GL(n,C) via
πC(g exp(ix)) := π(g) exp(i dπC(x)). This extension is unique (universal
complexification) and, in view of Weyl’s Unitarian Trick, there is a one-
to-one correspondence between continuous, irreducible unitary represen-
tations of U(n) and irreducible, holomorphic representations of GL(n,C).
In particular, the classification of the equivalence classes of holomorphic
irreducible representations of GL(n,C) in terms of highest weights is the
same as for the group U(n). In this paper, we will use occasionally some
results from the highest weight theory of the group GL(n,C) (especially
from [10]). The preceding remark shows that they may be applied equally
well to the group U(n).

3. Conditional 1-cocycles

In this section, we set the foundation for our analysis of the 1-cocycles
of the unitary groups U(∞) and Up(H) (for 1 6 p < ∞) in Sections 4
and 5. Assume that a topological group G admits an increasing sequence
of subgroups (such that the union is dense in G). If the restriction of a 1-
cocycle on G to each of these subgroups yields a 1-coboundary, then we call
it a conditional 1-cocycle. This concept is based on the observation that
the restriction of any 1-cocycle on the unitary groups U(∞) and Up(H)
(for 1 6 p < ∞) to any of the compact groups U(n) yields a trivial 1-
cocycle. Any conditional 1-cocycle may be viewed as a limit of a sequence
of 1-coboundaries and the question whether the coboundary property is
preserved under this limit can be translated into handy necessary and suf-
ficient criteria (cf. Lemma 3.3). Proposition 3.6 applies in particular to the
group U(∞) and provides a solution to the problem to decide whether a
1-cohomology space of U(∞) is trivial.

(4) In the sense that the derivative is complex linear.
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Let G be a topological group with an ascending sequence of topological
subgroups (Gn)n∈N such that G∞ :=

⋃
n∈NGn is a dense subgroup in G.

Definition 3.1. — Let (π,H) be a continuous unitary represent-
ation of G. A 1-cocycle β : G→ H is called conditional if its restriction to
every subgroup Gn is a 1-coboundary. In particular, every 1-coboundary
on G is a conditional 1-cocycle. We write Z1

cond(G, π,H) for the vector
space of conditional 1-cocycles and H1

cond(G, π,H) for the quotient
Z1
cond(G, π,H)/B1(G, π,H).

We consider a conditional 1-cocycle β ∈ Z1
cond(G, π,H). Restricting β

to the subgroup Gn yields a 1-coboundary by assumption, i.e. β|Gn =
∂vn for some vn ∈ H. The vector vn is unique up to adding a Gn-fixed
vector. We shall write Hn := HGn for the subspace of Gn-fixed vectors.
Any conditional 1-cocycle β thus defines a unique sequence (vn ∈ H⊥n )n∈N
with the following compatibility condition

(3.1) vn − vm ∈ Hm if m 6 n.

This means that we can write β(g) = limn→∞ π(g)vn− vn for any g ∈ G∞.
We will reformulate the compatibility condition in two ways:
First, note that the spaces Hn form a decreasing sequence of Hilbert

subspaces and the intersection is given by
⋂
n∈NHn = HG, the subspace of

G-fixed vectors. For n = 0 we put G0 := {e}, H0 := H and v0 := 0. In view
of H⊥n ∼=

⊕n
k=1

(
H⊥k ∩Hk−1

)
, we can write vn =

∑n
k=1 wk for uniquely

determined wk ∈ Wk := H⊥k ∩ Hk−1. The compatibility condition (3.1)
then reads wk = vk − vk−1, hence every conditional 1-cocycle β defines a
unique sequence (wn ∈Wn)n∈N. For g ∈ G∞, we then have

(3.2) β(g) =
∑
n∈N

π(g)wn − wn.

A second way to interpret (3.1) is as follows: For any v ∈
⋃
n∈NH⊥n ,

the limit limn→∞〈vn, v〉 exists and we obtain an antilinear functional
a :

⋃
n∈NH⊥n → C, v 7→ limn→∞〈vn, v〉 which has the property that its

restriction to every subspace H⊥n is continuous. Moreover, if g ∈ G∞ and
v ∈ H, then π(g)v − v ∈

⋃
n∈NH⊥n and we obtain the relation

(3.3) a(π(g)v − v) = lim
n→∞

〈vn, π(g)v − v〉

= lim
n→∞

〈π(g−1)vn − vn, v〉 = 〈β(g−1), v〉.

Remark 3.2. — In a Lie group context, we assume thatG is a Banach–Lie
group with an increasing sequence (Gn)n∈N of Banach–Lie subgroups such
that G∞ =

⋃
n∈NGn is a dense subgroup. The corresponding Banach–Lie

TOME 68 (2018), FASCICULE 5
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algebras gn form an increasing sequence of Lie subalgebras of g. We write
g∞ :=

⋃
n∈N gn ⊆ g for the union which is a Lie subalgebra of g. Now,

let (π,H) be a norm-continuous unitary representation of G and let β ∈
Z1

cond(G, π,H). Recall that we obtain continuous linear maps dπC : gC →
B(H) and dβC : gC → H via complex linear extension of the derivatives. If
(vn)n∈N is the sequence defined by β, then the compatibility condition (3.1)
implies dβC(z) = limn→∞ dπC(z)vn. For any z ∈ g∞,C ⊆ gC and v ∈ H, we
have dπC(z)v ∈

⋃
n∈NH⊥n and obtain

(3.4) a(dπC(z)v) = lim
n→∞

〈vn,dπC(z)v〉

= lim
n→∞

〈dπC(z∗)vn, v〉 = 〈dβC(z∗), v〉.

This fact will be used later in Section 5.

Lemma 3.3. — Let β, vn and wn be as above. For a vector v ∈
(
HG
)⊥,

the following are equivalent:

(1) The conditional 1-cocycle β is a 1-coboundary with β = ∂v.
(2) The sequence (wn)n∈N is square-summable and v =

∑
n∈N wn.

(3) The sequence (vn)n∈N converges in H with limit v.
(4) The antilinear functional a extends to a continuous antilinear func-

tional on H such that a(v′) = 〈v, v′〉 for all v′ ∈ H.

Proof.
(1) =⇒ (2). — For each vector vn =

∑n
k=1 wk, we have v − vn ∈ Hn =

HGn , hence (v − vn)⊥vn. Since the vectors wk are mutually orthogonal,
we find ‖v‖2 >

∑n
k=1 ‖wk‖

2 for all n ∈ N. This shows that the sequence
(wk)k∈N is square integrable and the series

∑∞
k=1 wk converges in H. By

virtue of (3.2), we have [π(g)−1]v = [π(g)−1]
∑∞
k=1 wk for each g ∈ G and,

since both v and
∑∞
k=1 wk belong to

(
HG
)⊥, we conclude v =

∑∞
k=1 wk.

(2) =⇒ (3). — This is clear, since the convergence of the series implies
that the sequence (vn)n∈N is a Cauchy-sequence in H whose limit coincides
with the limit of the series.
(3) =⇒ (4). — This follows directly from the definition of a.
(4) =⇒ (1). — For any v′ ∈ H and g ∈ G, we have 〈π(g−1)v − v, v′〉 =

a(π(g)v′−v′) = 〈β(g−1), v′〉 by equation (3.3). This shows that β = ∂v. �

Lemma 3.3 shows that if all but finitely many of the spacesWn are trivial,
then every conditional 1-cocycle is trivial. This occurs in particular, if the
Hilbert space H is finite dimensional.
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Remark 3.4. — We have
(
HGn

)⊥ =
⊕n

k=1 Wk for any n ∈ N and
(
HG
)⊥ =⊕̂

k∈NWk. This shows that, for any n ∈ N,

(∀ k > n) Wk = {0} ⇐⇒ HGn = HG.

Thus, we have shown the following corollary.

Corollary 3.5. — If HG = HGn for some n ∈ N, then

H1
cond(G, π,H) = {0}.

We conclude our discussion on conditional 1-cocycles by specializing to
the case where G =

⋃
n∈NGn. We write G = lim−→Gn whenever the group

topology on G coincides with the direct limit topology. This requirement
ensures that every sequence (wn ∈Wn)n∈N defines a conditional 1-cocycle
via equation (3.2). Thus, the space Z1

cond(G, π,H) may be described in
terms of the spaces Wn and we conclude that the converse statement of
Corollary 3.5 holds.

Proposition 3.6. — For G = lim−→Gn, we have the following statements

(1) Z1
cond(G, π,H) ∼=

∏
n∈N

(
HGn

)⊥ ∩HGn−1 .
(2) H1

cond(G, π,H) = {0} ⇐⇒ (∃ n ∈ N) HGn = HG.

Proof.
(1). — Every sequence (wn ∈ Wn)n∈N defines a map β : G → H via

β(g) :=
∑
n∈N π(g)wn − wn for g ∈ G. Then, the restriction to every sub-

group Gn yields a 1-coboundary β|Gn = ∂vn with vn =
∑n
k=1 wk. In par-

ticular, the restriction of β to Gn is continuous. Therefore, β is continuous
with respect to the direct limit topology on G. This shows that β is a con-
ditional 1-cocycle. The above mapping defines an isomorphism of vector
spaces

∏
n∈NWn → Z1

cond(G, π,H).
(2). — In view of Corollary 3.5 and Remark 3.4, it remains to show the

implication H1
cond(G, π,H) = {0} =⇒ (∃ n ∈ N)(∀ k > n) Wk = {0}. The

requirement Z1
cond(G, π,H) = B1(G, π,H) amounts to saying that every

sequence (wn)n∈N ∈
∏
n∈NWn has to be square summable (Lemma 3.3

and (1)). This possible only if all but finitely many Wn are trivial. �

Remark 3.7. — Assume that all subgroups Gn are compact. Then, the
restriction of every 1-cocycle on G to one of the Gn is a 1-coboundary,
hence every 1-cocycle on G is conditional. This means that

Z1(G, π,H) = Z1
cond(G, π,H) and H1(G, π,H) = H1

cond(G, π,H).

Note, that Corollary 3.5 shows that for π = 1, one has {0} = H1(G,1,H)
∼= HomGrp(G,H). This is a version of the fact that there is no nontrivial,
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continuous group homomorphism of G into the group of additive real num-
bers. Moreover, the direct limit topology on G∞ =

⋃
n∈NGn, i.e. the finest

group topology on G∞ for which all inclusions Gn ↪→ G∞ are continuous,
is a group topology (cf. [26, Thm. 2]). Hence, Proposition 3.6 applies in
particular to the group G∞. The unitary group U(∞) is a direct limit of
compact subgroups which are given by the unitary n×n-matrices U(n). Ev-
ery unitary group Up(H) (for H = `2(N,C) and 1 6 p <∞) contains U(∞)
as a dense subgroup. The one-dimensional trivial representation of the uni-
tary groups U(∞) and Up(H) is the unitary highest weight representation
that corresponds to the weight λ = 0 and we have H1(G, π0,H0) = {0} for
every unitary group G occuring in (1.2).

4. Unitary highest weight representations of U(∞)

In this section, we define for every λ ∈ ZN an irreducible unitary rep-
resentation (πλ,Hλ) of U(∞) that we call unitary highest weight repre-
sentation (with highest weight λ). We determine for which λ the spaces
H1(U(∞), πλ,Hλ) are trivial (cf. Theorem 4.10). The main ingredients are
the classical Branching Law for the highest weight representations of the
unitary groups U(n) (cf. Theorem 4.1) and Proposition 3.6.

Let n ∈ N. Recall from Section 2 that for any integer-valued tuple λ ∈
Zn, one can associate a unitary highest weight representation (πλ,Hλ)
of U(n). This representation is irreducible and every irreducible unitary
representation of U(n) is isomorphic to some (πλ,Hλ). Two highest weight
representations (πλ,Hλ), (πµ,Hµ) are isomorphic if and only if the entries
of the weights λ and µ coincide up to permutation. For n > 2 the subgroup
U(n− 1) decomposes a highest weight representation (πλ,Hλ) into a finite
sum of highest weight representations (πη,Hη) of U(n−1) and it is natural
to ask which weights η ∈ Zn−1 occur in the decomposition. The answer is
a classical result in branching theory.

Theorem 4.1. — Let η ∈ Zn and λ ∈ Zn+1 be two decreasingly or-
dered integer-valued tuples. Then, the unitary highest weight representa-
tion (πη,Hη) of U(n) is a subrepresentation of (πλ,Hλ) if and only if the
tuples η and λ satisfy the interlacing condition

(4.1) λ1 > η1 > λ2 > η2 > · · · > λn > ηn > λn+1.

Proof. — A proof can be found e.g. in [10, Thm. 8.1.1]. �
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Definition 4.2. — Let η ∈ Zn and λ ∈ Zn+1 be two integer-valued
tuples. We say that η interlaces λ and write η 4 λ if condition (4.1) is
satisfied after a suitable permutation of the entries of both tuples.

Now, let λ ∈ ZN be an integer-valued sequence. For any n ∈ N, we define
the tuple λ(n) := (λ1, λ2, . . . , λn) ∈ Zn to be the n-tuple consisting of the
first n entries of λ. Then, λ(n) interlaces λ(n+1) and, according to Theo-
rem 4.1, (πλ(n) ,Hλ(n)) occurs as a subrepresentation of (πλ(n+1) ,Hλ(n+1))
(w.r.t. the group U(n)). Hence, each Hλ(n) is isometrically embedded into
Hλ(n+1) and we write Vλ := lim−→Hλ(n) for the direct limit in the category of
pre-Hilbert spaces. The representations πλ(n) canonically define a unitary
representation of U(∞) =

⋃
n∈N U(n) on the pre-Hilbert space Vλ which

we denote by πλ. It is clear that πλ extends to a unitary representation on
the Hilbert space completion Hλ := Vλ which is again denoted by πλ.

Lemma 4.3. — The unitary representation (πλ,Hλ) is continuous and
irreducible.

Proof. — To see the continuity, it is enough to verify that, for any v ∈
Vλ ⊆ Hλ, the orbit map g 7→ πλ(g)v is continuous. For fixed v ∈ Vλ
and sufficiently large n, we may assume that v ∈ Hλ(n) . Therefore, the
restriction of the orbit map to the subgroup U(n) is continuous since the
representation (πλ(n) ,Hλ(n)) is continuous. This is true for all sufficiently
large n and the continuity thus follows from the fact that the group topology
on U(∞) is given by the direct limit topology. That (πλ,Hλ) is irreducible
follows from the fact that direct limits of irreducible representations are
irreducible (cf. [5, Prop. A.5]). �

Definition 4.4. — The unitary representation (πλ,Hλ) is called uni-
tary highest weight representation of U(∞) with highest weight λ ∈ ZN.

Remark 4.5. — In [15, §I,II], the unitary highest weight representations
of the direct limit Lie algebra gl(∞) =

⋃
n∈N gl(n) are classified in terms of

real-valued sequences λ ∈ RN. The corresponding highest weight module is
denoted by L(λ). In Section III of [15] it is shown that the underlying Lie
algebra representation of L(λ) integrates to a representation %̂λ : GL(∞)→
End(L(λ)) if and only if λ ∈ ZN. For any such integer-valued weight λ,
the module L(λ) may be identified with our pre-Hilbert space Vλ and the
restriction of %̂λ to the subgroup U(∞) is just our πλ. Theorem I.20 of [15]
states that two highest weight modules L(λ) and L(µ) are equivalent if and
only if the weights belong to the same orbit under the Weyl group W. As
remarked in Section II, the Weyl group for gl(∞) may be identified with
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the group S(N) of finite permutations on the entries of the weights. Thus,
we conclude that two unitary highest weight representations (πλ,Hλ) and
(πµ,Hµ) of U(∞) are equivalent if and only if the entries of the weights λ
and µ coincide up to a finite(!) permutation of the entries.

Using Proposition 3.6, we want to determine for which tuples λ ∈ ZN,
the 1-cohomology space for the corresponding highest weight representation
(πλ,Hλ) vanishes. This is true for λ = 0 (cf. Remark 3.7) and from now on,
we assume that λ 6= 0. Note that then HU(∞)

λ = {0} by the irreducibility
of the highest weight representation.
We need the following two observations that follow directly from Lem-

ma 4.6 below: Let λ ∈ ZN and (πλ,Hλ) be the corresponding unitary
highest weight representation. For n ∈ N, we have

(4.2) HU(n)
λ = {0} ⇐⇒ (∀ k > n) HU(n)

λ(k) = {0}.

For k > n, we have

(4.3) HU(n)
λ(k) 6= {0} ⇐⇒ H

U(n)
η(k−1) 6= {0} for some η(k−1) 4 λ(k).

Both observations follow from the following lemma:

Lemma 4.6. — Let (π,H) be a continuous unitary representation of the
topological group G. Assume that, for a subset J ⊆ N, we have a family of
G-invariant subspaces (Hj)j∈J such that one of the following conditions is
satisfied:

(1) H =
⊕̂

j∈JHj
(2) H =

⋃
j∈J Hj

Let (ρ,K) be an irreducible representation of G. Then, (ρ,K) occurs as a
subrepresentation in (π,H) if and only if it occurs as a subrepresentation
in (π,Hj) for some j ∈ J .

Proof. — We denote by Pj the orthogonal projection onto the subspace
Hj . We may assume that K ⊂ H is a Hilbert subspace of H. If (ρ,K) ⊂
(π,H), then, in both cases, we find an index j ∈ J for which Pj(K) 6= {0}.
The projection operator Pj |K : K → Hj intertwines ρ and π. Therefore,
Pj(K) ⊂ Hj is a G-invariant subspace. By Schur’s Lemma, we further con-
clude that (Pj |K)∗Pj |K = c1|K. Since the operator (Pj |K)∗Pj |K is positive,
the constant c is real-valued and nonngeative. The case c = 0 is excluded
by Pj(K) 6= {0}. Therefore, A := 1√

c
Pj |K : K → Pj(K) is a linear isometry

intertwining ρ and π. This shows (ρ,K) ⊂ (π,Hj). The converse statement
is trival. �

The equivalence (4.3) motivates the following definition.
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Definition 4.7. — Assume that a property (P) is defined for all tuples
λ ∈ Zk of length k > n. We say that (P) is interlacing-inheritable if a
tuple λ has property (P) if and only if there exists a tuple η 4 λ with
property (P).

The property that the highest weight representation (πλ,Hλ) of U(k)
corresponding to a tuple λ ∈ Zk has a nontrivial U(n)-fixed vector (where
k > n), is interlacing-inheritable. Any two interlacing-inheritable properties
(P) and (P’) are equivalent if and only if they are equivalent for all tuples
λ ∈ Zn of length n.

Lemma 4.8. — Let k > n. For any λ ∈ Zk, the property

(4.4) #{j : λj > 0} > n and #{j : λj 6 0} > n

is interlacing-inheritable.

Proof. — Let λ ∈ Zk for k > n. We may assume w.l.o.g. that λ is
decreasingly ordered. The interlacing condition η 4 λ then reads λ1 >
η1 > λ2 > η2 > · · · > ηk−1 > λk. If η has the property (4.4), then the first
(last) n entries of η are > 0 (6 0), hence so are the first (last) n entries
of λ. Conversely, assume that λ has the required property. We construct
η ∈ Zk−1 as follows: If k > 2n, choose η 4 λ such that the first (last) n
entries of η coincide with the first (last) n entries of λ. If k 6 2n, consider
the set J := {1, 2, . . . , n}∩ {k− 1, k− 2, . . . , k−n}. Put ηj := λj whenever
the index j is smaller than the indices from J and put ηj := λj+1 whenever
the index j is greater than the indices from J . �

Proposition 4.9. — Let k > n and λ ∈ Zk. Then the unitary highest
weight representation (πλ,Hλ) (of U(k)) admits nonzero U(n)-fixed vectors
if and only if the following condition is satisfied:

(4.5) #{j | λj > 0} > n and #{j | λj 6 0} > n.

Proof. — In view of Lemma 4.8, both conditions are interlacing-inherit-
able and it just remains to check that they are equivalent for tuples λ ∈ Zn.
Indeed, (4.5) is satisfied if and only if λ = 0. �

Theorem 4.10. — Let λ ∈ ZN\{0} and (πλ,Hλ) be the corresponding
unitary highest weight representation of U(∞). Then H1(U(∞), πλ,Hλ) =
{0} if and only if either

#{j | λj 6 0} <∞ or #{j | λj > 0} <∞.

Proof. — According to Proposition 3.6, the first cohomology space van-
ishes if and only if there exists some n ∈ N for which HU(n)

λ = {0}. This is
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equivalent to HU(n)
λ(k) = {0} for all k > n (cf. (4.2)), where λ(k) ∈ Zk consists

of the first k entries of λ. By virtue of Proposition 4.9 this can be rewritten
as

(∀ k > n) #{j | λ(k)
j > 0} < n or #{j | λ(k)

j 6 0} < n.

⇐⇒ #{j | λj > 0} < n or #{j | λj 6 0} < n. �

5. The identical representation of Up(H) on H

Now, we prove that the natural actions of the group Up(H) on H resp.
on its topological dual H∗ have trivial 1-cohomology spaces.
Let 1 6 p < ∞ and H be a complex separable Hilbert space with ONB

(en)n∈N. The unitary group Up(H) = U(H) ∩ (1 + Bp(H)) is a Banach–
Lie group with Banach–Lie algebra up(H) = u(H) ∩ Bp(H), i.e. the skew
hermitian operators of pth Schatten class (cf. [12]). Its complexification is
given by the pth Schatten operators up,C(H) = Bp(H). For any z ∈ up,C(H)
the involution z∗ coincides with the usual Hilbert adjoint. The inductive
limit U(∞) is a dense subgroup in Up(H) so that we can apply the results
of Section 3 and in particular Remark 3.2 to any norm-continuous unitary
representation of Up(H). The complexification of the Lie algebra of U(∞)
is given by gl(∞) := lim−→ gl(n,C).
The identical action of Up(H) on H is given by the prescription

Up(H)×H → H, (g, v) 7→ gv.

This action, restricted to U(∞), defines a unitary highest weight repre-
sentation corresponding to the tuple λ := (1, 0, 0, . . . ) which we denote
by (πλ,Hλ) = (id,H). It is clear that the identical action defines a norm-
continuous unitary representation of the group Up(H).

Proposition 5.1. — We have H1(Up(H), id,H) = {0}.

Proof. — For u,w ∈ H, we consider the rank-1-operator w⊗u∗ := 〈·, u〉w
which is an element of Bp(H) for each p ∈ [1,∞] since

‖w ⊗ u∗‖p = ‖w‖ ‖u‖.

For v ∈ H0 := 〈en : n ∈ N〉lin, we have v ⊗ e∗1 ∈ gl(∞). Now, let β ∈
Z1(Up(H), id,H) and a := aβ be the corresponding antilinear functional
from Section 3. Using equation (3.4), we find

|a(v)| = |a(v ⊗ e∗1(e1))| = |〈dβC(e1 ⊗ v∗), e1〉|
6 ‖dβC‖ ‖e1 ⊗ v∗‖p = ‖dβC‖ ‖v‖
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which shows that a extends to a continuous linear functional on H. The
assertion now follows from Lemma 3.3. �

The dual representation (id∗,H∗) is also a unitary highest weight repre-
sentation which corresponds to the tuple λ = (−1, 0, 0, . . . ).

Proposition 5.2. — We have H1(Up(H), id∗,H∗) = {0}.

Proof. — This immediately follows from Proposition 5.1 and the fact
that the first order cohomology space for the dual representation vanishes
if and only if it vanishes for the original representation. �

6. A simple way to construct unbounded 1-cocycles in
finite tensor products

This section should be viewed as a preparation for Section 7. We consider
a countably infinite sum of 1-coboundaries that converges pointwise and ask
whether we thus obtain an unbounded 1-cocycle. To make life easier, we
assume the underlying group G to be completely metrizable since then, the
pointwise converging sum is automatically continuous. This observation is
based on a Baire category argument which is carried out in Appendix A.
Note that the unitary groups Up(H) are completely metrizable for any
p ∈ [1,∞]. We derive a simple sufficient criterion for the unboundedness
of the sum when (π,H) is an arbitrary continuous unitary representation
(cf. Lemma 6.1) and focus afterwards on the case of a finite tensor product
representation (cf. Proposition 6.4).
Let G be a completely metrizable group and (π,H) be a continuous

unitary representation of G.

Lemma 6.1. — Let (en)n∈N be an orthonormal sequence in H such that,
for all n, we have

en ∈ 〈π(g)v − v : g ∈ G, v ∈ H〉lin .

Further, let (an)n∈N be a sequence in C for which the sum β(g) :=∑
n∈N an[π(g)en − en] converges in H for every g ∈ G. Then β : G → H

defines a (continuous) 1-cocycle which is a 1-coboundary if and only if the
sequence (an)n∈N is square summable.

Proof. — That β is a continuous 1-cocycle follows from Corollary A.5.
If
∑
n∈N |an|2 <∞, then we have

(6.1)
∑
n∈N

an[π(g)en − en] = π(g)v − v
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for the vector v :=
∑
n∈N anen. Conversely, assume that β is a 1-coboun-

dary. Then, we find some v ∈ H which satisfies (6.1) for all g ∈ G. Let
(ej)j∈J be a complete orthonormal system in H containing the en, i.e. we
have N ⊆ J . We expand v w.r.t. the system (ej) and obtain the coefficients
bj := 〈v, ej〉. For j ∈ J\N, we put aj := 0. Our assumption then leads to∑

j∈J
(aj − bj)[π(g)ej − ej ] = 0 for all g ∈ G.

Therefore, we have
∑
j∈J(aj − bj)〈ej , w〉 = 0 for any w ∈ D :=

〈π(g)v − v : g ∈ G, v ∈ H〉lin. Since en ∈ D by assumption, we obtain
that

an − bn =
∑
j∈J

(aj − bj)〈ej , en〉 = 0

and we conclude that the sequence (an)n∈N is square integrable. �

Now, we turn to unbounded 1-cocycles of finite tensor products: Assume
that we are givenm > 2 continuous unitary representations (πi,Hi)i=1,...,m

of G. We form the Hilbert tensor product (π,H) :=
⊗̂

i=1,...,m(πi,Hi).

Lemma 6.2. — Let (e(i)
n )n∈N be an orthonormal sequence in Hi. For

simplicity we will write g.e(i)
n instead of πi(g)e(i)

n . Assume that (an)n∈N is
a sequence in C such that, for all i and all g ∈ G,∑

n∈N
|an|2

∥∥∥g.e(i)
n − e(i)

n

∥∥∥2

Hi
<∞.

Then

β(g) :=
∑
n∈N

an

[
g.e(1)

n ⊗̂ . . . ⊗̂g.e(m)
n − e(1)

n ⊗̂ . . . ⊗̂e(m)
n

]
defines a 1-cocycle w.r.t. the tensor product representation. Moreover, we
have the estimate

(6.2)
∑
n∈N
|an|2

∥∥∥g.e(1)
n ⊗̂ . . . ⊗̂g.e(m)

n − e(1)
n ⊗̂ . . . ⊗̂e(m)

n

∥∥∥2

6 m ·
m∑
i=1

∑
n∈N
|an|2

∥∥∥g.e(i)
n − e(i)

n

∥∥∥2

Hi
.

Proof. — It is enough to verify that the sum converges for all g ∈ G

(Corollary A.5). Choose some g ∈ G and unitary operators Ui ∈ U(Hi).
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For fixed j ∈ {1, . . . ,m} and arbitrary M > N ∈ N we calculate∥∥∥∥∥
M∑
n=N

an · U1e
(1)
n ⊗̂ . . . ⊗̂(g − 1).e(j)

n ⊗̂ . . . ⊗̂Ume(m)
n

∥∥∥∥∥
2

=
M∑

n,n′=N
anan′ ·

∏
i 6=j
〈Uie(i)

n , Uie
(i)
n′ 〉Hi · 〈(g − 1).e(j)

n , (g − 1).e(j)
n′ 〉Hj

=
M∑
n=N
|an|2

∥∥∥(g − 1).e(j)
n

∥∥∥2
−→

N,M→∞
0.

We conclude that the sum
∑∞
n=1 an ·U1e

(1)
n ⊗̂ . . . ⊗̂(g−1).e(j)

n ⊗̂ . . . ⊗̂Ume(m)
n

converges for every j and g. This shows that∑
n∈N

an · g.e(1)
n ⊗̂ . . . ⊗̂g.e(m)

n − e(1)
n ⊗̂ . . . ⊗̂e(m)

n

=
m∑
j=1

∑
n∈N

an · g.e(1)
n ⊗̂ . . . ⊗̂g.e(j−1)

n ⊗̂(g − 1).e(j)
n ⊗̂e(j+1)

n ⊗̂ . . . ⊗̂e(m)
n

converges for every g ∈ G. The estimate (6.2) follows from∥∥∥g.e(1)
n ⊗̂ . . . ⊗̂g.e(m)

n − e(1)
n ⊗̂ . . . ⊗̂e(m)

n

∥∥∥2

=

∥∥∥∥∥∥
m∑
j=1

g.e(1)
n ⊗̂ . . . ⊗̂g.e(j−1)

n ⊗̂(g − 1).e(j)
n ⊗̂e(j+1)

n ⊗̂ . . . ⊗̂e(m)
n

∥∥∥∥∥∥
2

6 m
m∑
j=1

∥∥∥(g − 1).e(j)
n

∥∥∥2

Hj
. �

For our purposes, tensor products of the form (π∗µ,H∗m)⊗̂(πλ,Hλ) are of
particular interest, where (πλ,Hλ) and (πµ,Hµ) are two irreducible unitary
representations of G. The canonical isomorphism H∗µ⊗̂Hλ ∼= B2(Hµ,Hλ)
induces a unitary representation on B2(Hµ,Hλ) which is equivalent to the
tensor product π∗µ⊗̂πλ. It is given by the conjugation action

(g,A) 7→ πλ(g)Aπµ(g−1), for all g ∈ G,A ∈ B2(Hµ,Hλ).

In particular, if (πλ,Hλ) and (πµ,Hµ) are isomorphic unitary represen-
tations, then π∗µ⊗̂πλ is equivalent to the conjugation representation on
B2(Hλ).
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Lemma 6.3. — Let A ∈ B(Hµ,Hλ) be a bounded linear operator such
that

β(g) := πλ(g)Aπµ(g−1)−A ∈ B2(Hµ,Hλ)
for every g ∈ G.

(1) Assume that (πλ,Hλ) and (πµ,Hµ) are non-isomorphic representa-
tions. Then, β is a 1-coboundary if and only if A ∈ B2(Hµ,Hλ).

(2) Assume that (πλ,Hλ) = (πµ,Hµ). Then, β is a 1-coboundary if and
only if A ∈ B2(Hλ) + C1.

Proof. — In both cases, β is a 1-coboundary if and only if there exists
B ∈ B2(Hµ,Hλ) such that πλ(g)(A−B)πµ(g−1) = A−B for all g ∈ G. We
denote by BG(Hµ,Hλ) the space of linear bounded operators intertwining
the representations πµ and πλ. If the representation are non-isomorphic,
then Schur’s Lemma implies that BG(Hµ,Hλ) = {0}. This shows the first
assertion. In the case πµ = πλ, Schur’s Lemma states that BG(Hλ) = C · 1
which proves the second assertion. �

Proposition 6.4. — Let (πµ,Hµ) and (πλ,Hλ) be two infinite-
dimensional, irreducible representations of the completely metrizable group
G. Assume that there exists a bounded but not square summable sequence
(an)n∈N ∈ `∞(N,C)\`2(N,C) such that, for some orthonormal sequences
(en)n∈N and (fn)n∈N in Hλ resp. Hµ,

(6.3)
∑
n∈N
|an|2 ‖(πλ(g)− 1)en‖2

Hλ +
∑
n∈N
|an|2 ‖(πµ(g)− 1)fn‖2

Hµ <∞

holds for all g ∈ G. Then H1(G, π∗µ⊗̂πλ,H∗µ⊗̂Hλ) 6= {0}.

Proof. — First, we note that ‖(πµ(g)− 1)fn‖Hµ =
∥∥(π∗µ(g)− 1)f∗n

∥∥
H∗µ

.
By Lemma 6.2, we obtain a 1-cocycle

β(g) :=
∑
n∈N

an[π∗µ(g)f∗n⊗̂πλ(g)en − f∗n⊗̂en]

for the tensor product. With respect to the conjugation action on
B2(Hµ,Hλ) this 1-cocycle has the form β(g) = πλ(g)Aπµ(g−1)−A, where
A =

∑
n∈N anen ⊗ f∗n =

∑
n∈N an〈 · , fn〉Hµen. Since the sequence (an) is

bounded but not square summable, the operator A is bounded but not
Hilbert–Schmidt. If πµ and πλ are not isomorphic, then Lemma 6.3 implies
that β is unbounded. If πµ ∼= πλ are isomorphic, we may assume w.l.o.g.
that πµ = πλ. In this case, Lemma 6.3 implies that β is unbounded unless
A ∈ B2(Hλ) + C1. If this is the case, then (an) is the sum of a constant
and a square summable sequence. It is clear that condition (6.3) then holds
for all bounded sequences (an) because the constant part is nonzero. In
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particular, we may choose the sequence an := (−1)n. The corresponding
diagonal operator A ∈ B(Hλ) cannot be written as a linear combination of
the identity 1 and a Hilbert–Schmidt operator. In particular, the 1-cocycle
β is unbounded. �

7. Unitary highest weight representations of Up(H)

For finitely supported weights λ ∈ ZN, the corresponding unitary high-
est weight representation (πλ,Hλ) of U(∞) extends to a norm-continuous
unitary representation of Up(H) (for 1 6 p < ∞ and H = `2(N,C)). We
realize these representations as subrepresentations in finite tensor products
of the identical representation and its dual representation of Up(H) on H
resp. on H∗ (cf. Definition 7.5). Our results of the preceding section allow
us to construct unbounded 1-cocycles for almost all finitely supported λ.
There are only three exceptional cases where the first cohomology spaces
are trivial (cf. Theorem 7.9).
We denote by (N0)(N)

↓ the set of all decreasingly ordered non-negative
integer-valued tuples with a finite number of positive entries. To any λ ∈
(N0)(N)

↓ , we associate a Young diagram Dλ (also called Ferrers diagram)
which consists of `λ := max{j |λj > 0} rows and the jth row has λj boxes,
so that the whole diagram consists of |λ| :=

∑`λ
i=1 λi boxes. Conversely,

any Young diagram D (with row (and column) length weakly decreasing)
defines a unique λ ∈ (N0)(N)

↓ by counting the row boxes. Given a Young
diagram D, we obtain the conjugate (or transposed) Young diagram D′

by switching rows and columns. Thus, for any λ ∈ (N0)(N)
↓ , we define the

conjugate tuple λ′ ∈ (N0)(N)
↓ via the relation Dλ′ := D′λ. Note that `λ′ = λ1

and the entry j occurs λj − λj+1 times in λ′.

Example 7.1. — For λ := (3, 2, 2, 1) we have

Dλ = and D′λ =

and the conjugate tuple is given by λ′ = (4, 3, 1).

The corresponding Young tableau Tλ is obtained by filling in the boxes
of the young diagram Dλ with the numbers 1, 2, . . . , |λ| in the following
manner: The number 1 is placed in the top box of the first column. The
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number k+1 is placed in the box directly below k, if it exists and otherwise
in the top box of the next column.

Example 7.2. — For λ = (3, 2, 2, 1) this yields

Dλ = −→ Tλ = 1 5 8
2 6
3 7
4

Let Sλ be the permutation group of the set {1, 2, . . . , |λ|}. Denote by Rλ
the subgroup of permutations leaving all subsets defined by the rows of Tλ
invariant and accordingly by Cλ the subgroup leaving all subsets defined
by the columns invariant.
Put H := `2(N,C) and consider the |λ|-fold tensor product H⊗̂|λ|. The

permutation group Sλ acts unitarily on the tensor product via

(σ, ⊗̂|λ|j=1vj) 7→ ⊗̂
|λ|
j=1vσ−1(j)

for σ ∈ Sλ and vj ∈ H. We denote this representation by (ρ,H⊗̂|λ|). The
group Up(H) (for p ∈ [1,∞]) also acts on the tensor product space via the
tensor product representation (id,H)⊗̂|λ|. Both representations commute,
i.e. for σ ∈ Sλ and g ∈ Up(∞), we have ρ(σ) ◦ id⊗̂|λ|(g) = id⊗̂|λ|(g) ◦ ρ(σ).
Therefore, the linear operator

Pλ :=
∑

r∈Rλ,c∈Cλ

sgn(c)ρ(cr),

where sgn(c) denotes the signum of the permutation c, commutes with
id⊗̂|λ| and its image

Hλ := Pλ(H⊗̂|λ|)
is a Up(H)-invariant subspace. We write πλ for the corresponding contin-
uous unitary representation on Hλ. Note that Pλ is not necessarily an
orthogonal projection, but the operators

PCλ := 1
fCλ

∑
c∈Cλ

sgn(c)ρ(c) and PRλ := 1
fRλ

∑
r∈Rλ

ρ(r)

with constants fCλ :=
∏`λ′
j=1(λ′j !) and fRλ :=

∏`λ
j=1(λj !), are orthogonal

projections and we have Pλ = (fCλfRλ) · PCλPRλ . Let (en)n∈N denote an
ONB for H. For n ∈ N, we define the vectors

(7.1) e(λ)
n :=

√
fCλ · ⊗̂

`λ′
m=1 ∧

λ′m
i=1 en+i =

√
fCλ · PCλ(⊗̂`λ′m=1⊗̂

λ′m
i=1en+i).
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By construction, the vectors e(λ)
n are mutually orthgonal. Since

PRλ

 `λ′⊗̂
m=1

λ′m⊗̂
i=1

en+i

 =
`λ′⊗̂
m=1

λ′m⊗̂
i=1

en+i,

we have constructed an orthonormal sequence in Hλ. In particular, if
|λ| > 1, the space Hλ is infinite-dimensional.

Example 7.3. — For λ = (3, 2, 2, 1) the orthonormal sequence (e(λ)
n )n∈N

in Hλ is given by

e(λ)
n =

√
4!3!1!︸ ︷︷ ︸
=12

·(en+1 ∧ en+2 ∧ en+3 ∧ en+4)⊗̂(en+1 ∧ en+2 ∧ en+3)⊗̂en+1.

Lemma 7.4. — For any λ ∈ (N0)(N)
↓ , the continuous unitary representa-

tion (πλ,Hλ) of Up(H) extends the highest weight representation of U(∞)
with highest weight λ from Definition 4.4. In particular, it is irreducible.

Proof. — For any n ∈ N with n > `λ, consider the canonical embedding
(Cn)⊗̂|λ| ↪→ H⊗̂|λ|. The operator Pλ leaves the subspace (Cn)⊗̂|λ| invari-
ant as well as the restriction of id⊗̂|λ| to the subgroup U(n) ⊂ Up(H).
Therefore, the subspace Pλ

(
(Cn)⊗̂|λ|

)
is U(n)-invariant and, according to

Theorem 9.3.9 in [10], this is a unitary highest weight module of U(n) with
highest weight λ(n). This shows that πλ|U(∞) = lim−→πλ(n) is the direct limit
representation on Pλ

(
(C(N))⊗̂|λ|

)
which is dense in Hλ. �

Now, let λ ∈ Z(N) be an integer-valued tuple such that all but finitely
many entries are zero. For any such λ ∈ Z(N), we define λ± ∈ (N0)(N)

↓
to be those tuples for which the entries of the finitely supported tuples
max(±λ, 0) are decreasingly ordered. We put |λ| := |λ+|+|λ−| =

∑∞
i=1 |λi|.

Definition 7.5. — For any λ ∈ Z(N), we call the continuous unitary
representation (πλ,Hλ) := (π∗λ− ,H

∗
λ−)⊗̂(πλ+ ,Hλ+) unitary highest weight

representation of the group Up(H) with heighest weight λ.

We briefly comment on this definition.

Remark 7.6. — That the representation (πλ,Hλ) is irreducible follows
from Section 2.17 of [19]. Using Corollary I.14 of [15], one finds that (πλ,Hλ)
is a unitary highest weight representation of Up(H) in the sense of Defini-
tion III.6 in [15]. For the case p =∞, we refer to [5, Thm. 2.2].

In the remainder of this section we are going to show that, for |λ| > 2,
the first cohomology space H1(Up(H), πλ,Hλ) never vanishes.
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Lemma 7.7. — Put q := 2p
p−2 if 2 < p < ∞ and q := ∞ if 1 6 p 6 2.

For every sequence a = (an)n∈N ∈ `q(N,C), we have∑
n∈N
|an|2 ‖(g − 1)en‖2

H <∞

for every g ∈ Up(H). Moreover, this expression depends continuously on g
in the Up(H)-topology.

Proof. — For A ∈ Br(H) and r ∈ [1,∞], we denote the rth Schatten
norm by

‖A‖r :=
{

(Tr(|A|r)) 1
r if r <∞

‖A‖op if r =∞.
We remind the reader of the generalized Hölder inequality (cf. [9,
Thm. IV.11.2])

(7.2) ‖BC‖r 6 ‖B‖s · ‖C‖t
for B ∈ Bs(H), C ∈ Bt(H) and 1

r 6
1
s + 1

t with s, t ∈ [1,∞].
For 1 6 p 6 2, the statement is clear, since g − 1 ∈ B2(H) and∑
n∈N ‖(g − 1)en‖2 = ‖g − 1‖2

2. For p > 2, we consider the diagonal oper-
ator Aen = anen and note that A ∈ Bq(H) and

∑
n∈N |an|2 ‖(g − 1)en‖2 =

‖(g − 1)A‖2
2. Applying (7.2) with r = 2, s = p and t = q yields the asser-

tion. �

Proposition 7.8. — Let λ ∈ Z(N) such that |λ| > 2. Then, for p ∈
[1,∞), we have

H1(Up(H), πλ,Hλ) 6= {0}.

Proof. — Put an := 1√
n
. Then, the sequence a = (an)n∈N is in `q(N,C)

for all q > 2 but not in `2(N,C) and we know from the previous lemma
that the sum

∑
n∈N

1
n ‖(g − 1)en‖2 is finite for each g ∈ G.

The case |λ−| = 0. — We first treat the case λ ∈ (N0)(N)
↓ . Applying

Lemma 6.2, we obtain a 1-cocycle

β̃(g) :=
∑
n∈N

1√
n

 `λ′⊗̂
m=1

λ′m⊗̂
i=1

gek+i −
`λ′⊗̂
m=1

λ′m⊗̂
i=1

ek+i


for the tensor product representation (id,H)⊗̂|λ|. Projecting onto Hλ and
using (7.1) gives

β(g) :=
√
fCλ · PCλ(β̃(g)) =

∑
n∈N

1√
n

[g.e(λ)
n − e(λ)

n ].
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Here, we have used (7.1) and the fact that PCλ commutes with the repre-
sentation id⊗̂|λ|. Hence, we obtain a 1-cocycle for the highest weight rep-
resentation (πλ,Hλ) and Lemma 6.1 (applied to the sequence (e(λ)

n )n∈N)
tells us that β is in fact unbounded. The condition on the e(λ)

n is satisfied,
since each e(λ)

n is a nontrivial eigenvector of all diagonal operators t−1 for
t ∈ Tp(H), the maximal torus in Up(H).

The case |λ+| = 0. — In this case (πλ,Hλ) = (π∗λ− ,H
∗
λ−) and the asser-

tion follows from the fact that the 1-cohomology of the dual representation
vanishes if and only if it vanishes for the original representation.

The remaining case |λ+|, |λ−| > 1. — We want to apply Proposition 6.4.
It merely remains to verify that∑

n∈N

1
n

∥∥∥(g − 1).e(λ±)
n

∥∥∥2

Hλ±
<∞

for each g ∈ Up(H). Indeed, we can estimate for λ ∈ {λ±} as follows:∑
n∈N

1
n

∥∥∥(g − 1).e(λ)
n

∥∥∥2

Hλ

= fCλ
∑
n∈N

1
n

∥∥∥PCλ [⊗̂`λ′m=1⊗̂
λ′m
i=1gek+i − ⊗̂

`λ′
m=1⊗̂

λ′m
i=1ek+i]

∥∥∥2

Hλ

6 fCλ
∑
n∈N

1
n

∥∥∥⊗̂`λ′m=1⊗̂
λ′m
i=1gek+i − ⊗̂

`λ′
m=1⊗̂

λ′m
i=1ek+i

∥∥∥2

Hλ

(6.2)
6 fCλ |λ|2

∑
n∈N

1
n
‖(g − 1)en‖2

H <∞. �

Proposition 7.8 together with Remark 3.7, Propositions 5.1 and 5.2 yields
the following theorem.

Theorem 7.9. — Put H := `2(N,C). Let λ ∈ Z(N) be a finitely sup-
ported integer-valued sequence and (πλ,Hλ) the corresponding unitary
highest weight representation of Up(H). Then,

H1(Up(H), πλ,Hλ) = {0} ⇐⇒ |λ| 6 1.

One immediate consequence of Theorem 7.9 is that the group Up(H)
does not have property (FH). Since property (T) implies property (FH)
for arbitrary topological groups, this entails that Up(H) does not have
property (T).

Corollary 7.10. — For 1 6 p < ∞, the group Up(H) neither has
property (FH) nor has property (T).
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Appendix A. Infinite sums of 1-coboundaries

Let (π,H) be a continuous unitary representation of the topological
group G. In general, a 1-cocycle β : G → H need not be continuous.
Here, we show that, if β is the pointwise limit of a sequence of continuous
1-cocycles and G is completely metrizable, then a Baire category argument
shows that β is continuous.

Definition A.1. — Let X be a topological Hausdorff space. A subset
A ⊆ X is called of first (Baire) category if it can be written as a countable
union of nowhere dense subsets. Otherwise, A is called a subset of second
(Baire) category. The space X is called Baire space, if every nonempty
open subset is of second category. A function f : X → X ′ with values in
topological Hausdorff space X ′ is called a function of first class or a Baire
one function if it is the pointwise limit of a sequence (fn)n∈N of continuous
functions fn : X → X ′.

Example A.2. — According to the Baire Category Theorem, every com-
plete metric space (X, d) is a Baire space (cf. [6, §5, Thm. 1]). In particular,
the subset A = X is of second category.

Theorem A.3. — Let (X, d), (X ′, d′) be metric spaces and f : X → X ′

be a first class function. Then the points of discontinuity of f form a subset
of first category.

Proof. — See e.g. [13, §45.3]. �

Proposition A.4. — Let (π,H) be a continuous unitary representation
of the completely metrizable group G and let β : G→ H be the pointwise
limit of a sequence of continuous 1-cocycles (βn)n∈N. Then β is a continuous
1-cocycle.

Proof. — The pointwise convergence implies that the map β is a first
class function. It is straightforward to check that the 1-cocycle relation (1.1)
is satisfied, hence β is a 1-cocycle. Moreover, the 1-cocycle relation shows
that the points of discontinuity of β are either the empty set or coincide with
the whole group G. In the latter case, the group G would have to be of first
category since β is a first class function (Theorem A.3). This contradicts
the fact that G is of second category (Baire Category Theorem). �

Corollary A.5. — Let (π,H) be a continuous unitary representation
of the completely metrizable group G and let (vn)n∈N be a sequence in
H for which the sum

∑
n∈N π(g)vn − vn converges for every g ∈ G. Then

β(g) :=
∑
n∈N π(g)vn − vn defines a continuous 1-cocycle.
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