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CONVERGENT ISOCRYSTALS ON SIMPLY
CONNECTED VARIETIES

by Hélène ESNAULT & Atsushi SHIHO (*)

Abstract. — It is conjectured by de Jong that, if X is a connected smooth
projective variety over an algebraically closed field k of characteristic p > 0 with
trivial étale fundamental group, any isocrystal on X is constant. We prove this
conjecture under certain additional assumptions.
Résumé. — de Jong a conjecturé que sur une variété lisse projective connexe

sur un corps algébriquement clos de caractéristique p > 0, de groupe fondamen-
tal étale trivial, tout isocristal est constant. Nous prouvons cette conjecture sous
certaines hypothèses supplémentaires.

Introduction

The fundamental group is an important invariant in topology, algebraic
geometry and arithmetic geometry. For a complex connected smooth pro-
jective variety X, the topological fundamental group π1(X) (based at some
point), which classifies all the coverings of X, is defined in a topological,
non-algebraic way. But there are (at least) two approaches to define the
fundamental group of X in an algebraic way. One is the étale fundamental
group πét

1 (X) [16, V] (based at some geometric point), which classifies all
the finite étale coverings ofX. It is isomorphic to the profinite completion of
π1(X). Another one is the category of OX -coherent DX -modules, which is
equivalent to the category of finite dimensional complex linear representa-
tions of π1(X) via the Riemann–Hilbert correspondence. As for the relation
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between these two algebraic approaches, Malčev [27] and Grothendieck [15]
proved that, if πét

1 (X) = {1}, then there are no non-constant OX -coherent
DX -modules.
This leads to the question of an analog for a connected smooth projective

varietyX over an algebraically closed field k of characteristic p > 0, namely,
the question to compare the étale fundamental group πét

1 (X) of X and
the category of OX -coherent D-modules on X. Due to the absence of the
topological fundamental group of X, the relation between them is more
mysterious.
One issue to precisely formulate the question above is that there are

many versions of D-modules which are defined on X. One can consider the
full ring of differential operators, or the ring of PD-differential operators.
One can consider with or without thickenings to the Witt ring W of k, and
one can impose various nilpotence or convergence conditions.(1)

When we consider the full ring of differential operators DX on X in
usual sense (without any thickenings to W ), the category of OX -coherent
DX -modules is equivalent to the category Inf(X/k) of crystals of finite
presentation on the infinitesimal site (X/k)inf of X over k. In this case,
Gieseker [11] conjectured in 1975 that, on a connected smooth projective
variety X over an algebraically closed field k of characteristic p > 0 with
πét

1 (X) = {1}, there are no non-constant OX -coherent DX -modules. This
conjecture was answered affirmatively in [9, Thm. 1.1].
When we consider the full ring of differential operators on X with thick-

enings to W , we obtain the category Inf(X/W ) of crystals of finite pre-
sentation on the infinitesimal site (X/W )inf of X over W (see Section 1
for the definition). This is a W -linear category which lifts Inf(X/k). Be-
cause this category contains p-power torsion objects which cannot be con-
stant even when πét

1 (X) = {1}, it is natural to consider the Q-linearization
Inf(X/W )Q, which we call the category of infinitesimal isocrystals. This
category is known to be too small to capture all the geometric objects, but
it is still an interesting category because it contains the geometric objects
coming from finite étale coverings of X.
The category of (certain) modules on the ring of PD-differential operators

on X with thickenings toW and quasi-nilpotence condition is studied most

(1)Also, we can consider D-modules on X with Frobenius structure. In this case, a p-adic
analogue of the Riemann–Hilbert correspondence, which gives an equivalence between
the category of p-adic representations of πét

1 (X) and the category of unit-root convergent
F -isocrystals on X, is known by Crew [8]. Although it is also interesting to consider the
case with Frobenius structure, we concentrate to the case without Frobenius structure
in this article.
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extensively, which is defined as the category Crys(X/W ) of crystals of finite
presentation on the crystalline site (X/W )crys of X over W (see Section 1
for the definition). As before, it is natural to consider the Q-linearization
Crys(X/W )Q, which we call the category of isocrystals.

After [9], de Jong conjectured in 2010 that, on a connected smooth pro-
jective variety X over an algebraically closed field k of characteristic p > 0
with πét

1 (X) = {1}, there are no non-constant isocrystals on X.
In this article, we consider the conjecture of de Jong for a closely re-

lated and slightly smaller category Conv(X/K) (where K is the fraction
field of W ), the category of convergent isocrystals on X over K, which
is introduced by Ogus [31, Def. 2.7]. This corresponds to the category of
(certain) modules on the ring of differential operators on X with thicken-
ings to W , tensorization with Q and the convergence condition, which is
slightly stronger than the quasi-nilpotence condition. Although the cate-
gory Conv(X/K) is slightly smaller than Crys(X/W )Q, it is large enough
to contain the objects coming from geometry (e.g., the Gauß–Manin con-
vergent isocrystals defined by Ogus [31, Thm. 3.7]) and enjoys nice topo-
logical properties such as proper descent. Over an algebraically closed field,
it shares many properties with the category of lisse Q̄`-sheaves.

The conjecture of de Jong (for convergent isocrystals) is not trivial even
when X is liftable to a smooth projective scheme XW over SpecW , be-
cause the étale fundamental group of the geometric generic fiber of XW

need not be trivial. On the other hand, for a proper smooth morphism
f : Y −→ X which is liftable to a proper smooth morphism fW : YW −→
XW , we can prove the constancy of the Gauß–Manin convergent isocrys-
tal Rifconv ∗OY/K [31, Thm. 3.7] rather easily, in the following way. If we
denote by fL : YL −→ XL the base change of fW to a field L contain-
ing W , it suffices to prove the constancy of RifK,dR∗OYK as a module
with an integrable connection, by [31, Thm. 3.10]. Then we may assume
that K ⊆ C and it suffices to prove the constancy of Rifan

C,∗CY an
C
, where

fan
C : Y an

C −→ Xan
C is the analytification of fC. This is reduced to the

constancy of RifC,∗Q` for a prime ` 6= p by Artin’s comparison theo-
rem [1, XVI,4], and reduces to the constancy of RifW,∗Q`, which is true
by Grothendieck’s base change theorem on the étale fundamental group
{1} = πét

1 (X)
∼=−→ πét

1 (XW ) [13, Thm. 18.1.2]. Thus we find this conjecture
interesting enough.
Our main result is a partial solution to the conjecture of de Jong for

convergent isocrystals, which is stated as follows.

TOME 68 (2018), FASCICULE 5
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Theorem A. — Let X be a connected smooth projective variety over
k with trivial étale fundamental group. Then

(1) any convergent isocrystal which is filtered so that the associated
graded is a sum of rank 1 convergent isocrystals, is constant;

(2) if the maximal slope of the sheaf of 1-forms on X is non-positive,
then any convergent isocrystal is constant.

We refer to Theorem 2.8(1) and Corollary 2.9 for this formulation. The-
orem 2.8 is more precisely formulated: in (2), positive slopes of the sheaf of
1-forms on X are allowed, according to the maximal rank of the irreducible
constituents of the given convergent isocrystal.

We now explain the main ideas of the proof. Convergent isocrystals are
known to be Frobenius divisible, although p-torsion free crystals in one
isocrystal class (called lattices of an isocrystal) are not. Using this, one
proves in Proposition 3.1 that the Chern classes of the value EX on X of
a crystal E over W vanish when E is a lattice of a convergent isocrystal.
If one assumes in addition that EX is strongly µ-semistable, one sees

that the subquotients associated to some filtration of EX yield points in the
moduli of χ-stable sheaves with vanishing Chern classes. Then, assuming
now that X has trivial fundamental group, it is proved in Propositions 3.3,
3.4, 3.5 by a noetherianity argument, that not only infinitely Frobenius
divisible sheaves are constant (Gieseker’s conjecture proved in [9]), but
also strongly µ-semistable ones with vanishing Chern classes which admit
a large enough Frobenius divisibility.
This, together with the crystalline deformation theory in Propositions 3.7,

3.8, Corollary 3.9 which allows to prove the constancy modulo pn from that
on X, leads to the following theorem (see Theorem 2.6).

Theorem B. — Let X be a connected smooth projective variety over k
with trivial étale fundamental group and let E be a convergent isocrystal.
If, for any n ∈ N, the Fn-division E(n) of E admits a lattice such that its
value on X as a coherent OX -module is strongly µ-semistable, then E is
trivial.

Also, one proves a Langton type theorem in Proposition 4.1, claiming
the existence of a lattice whose restriction to a crystal on X over k is
µ-semistable. One proves Theorem A, together with its refinements not
discussed in the introduction, using Theorem B and the slope condition
on the sheaf of 1-forms which forces the requested stability conditions (see
Proposition 4.2).

ANNALES DE L’INSTITUT FOURIER
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As another consequence of Theorem B, we have the following corollary,
which confirms the conjecture of de Jong for infinitesimal isocrystals (see
Corollary 2.7).

Corollary C. — Let X be a connected smooth projective variety over
k with trivial étale fundamental group. Then any infinitesimal isocrystal
on X is constant.

Acknowledgement. The first named author thanks Johan de Jong for
inviting her in the fall of 2010 to lecture on [9] at Columbia University,
after which he formulated the conjecture discussed here. She thanks Arthur
Ogus for subsequent fruitful discussions which solved the abelian case (see
Proposition 2.10 for a precise statement), Yves André for discussions on the
moduli points of isocrystals in Simpson’s moduli of flat connections on a
characteristic 0 lift of X, Adrian Langer for enlightening discussions on [22,
Thm. 5.1]. She thanks Takeshi Saito for offering hospitality in summer 2014
at the Graduate School of Mathematical Sciences, the University of Tokyo,
where this work was started (see [36]). The second named author thanks
Kirti Joshi for his suggestion to consider the condition µmax(Ω1

X) 6 0. Both
authors thank one of the anonymous referees for gracious, constructive and
helpful comments.

1. Preliminaries

In this section, we review some facts on (iso)crystals, infinitesimal
(iso)crystals, convergent isocrystals, and Cartier transform of Ogus–Volo-
godsky.

Throughout the article, we fix an algebraically closed field k of charac-
teristic p > 0. Let W be the Witt ring of k and K be the fraction field of
W . For n ∈ N, put Wn := W/pnW . Let σ : k −→ k be the Frobenius map
a 7→ ap on k. Let σW : W −→ W be the automorphism which lifts σ and
let σK : K −→ K be the automorphism induced by σW .
First we summarize a few facts on (iso)crystals from [7, §5/6/7],

[2, III/IV]. For a scheme X of finite type over k, let (X/W )crys (resp.
(X/Wn)crys) be the crystalline site on X/W (resp. X/Wn). An object is a
pair (U ↪→ T, δ), where U ↪→ T is a closed immersion over Wn for some
n (resp. over Wn) from an open subscheme U of X to a scheme T and δ
is a PD-structure on Ker(OT → OU ), compatible with the canonical PD-
structure on pWn. Morphisms are the obvious ones. For the definition of

TOME 68 (2018), FASCICULE 5



2114 Hélène ESNAULT & Atsushi SHIHO

coverings, see [7, p. 5.2]. The structure sheaf OX/W on (X/W )crys (resp.
OX/Wn

on (X/Wn)crys) is defined by the rule (U ↪→ T, δ) 7→ Γ(T,OT ).
A sheaf E ofOX/W -modules (resp.OX/Wn

-modules) on (X/W )crys (resp.
on (X/Wn)crys) is equivalent to the datum of a sheaf of OT -modules ET
in the Zariski topology of T for each object T := (U ↪→ T, δ), and of an
OT ′ -linear morphism ϕ∗ET → ET ′ for each morphism ϕ : (U ′ ↪→ T ′, δ′)→
(U ↪→ T, δ), which is an isomorphism when ϕ : T ′ → T is an open immer-
sion and U ′ is equal to U ×T T ′. The sheaf ET is called the value of E at
T . Via the module structure of OT over itself, OX/W (resp. OX/Wn

) is a
sheaf of OX/W -modules (resp. OX/Wn

-modules).
A sheaf E of OX/W -modules (resp. of OX/Wn

-modules) on (X/W )crys
(resp. on (X/Wn)crys) is a crystal if the morphisms ϕ∗ET → ET ′ are all
isomorphisms. A crystal is of finite presentation if its value ET is an OT -
module of finite presentation for any (U ↪→ T, δ). The category of crystals
of finite presentation on (X/W )crys (resp. on (X/Wn)crys) is denoted by
Crys(X/W ) (resp. Crys(X/Wn)), as a full subcategory of the category of
sheaves of OX/W -modules (resp. of OX/Wn

-modules). The structure sheaf
OX/W (resp. OX/Wn

) is a crystal. It is known [2, IV Prop. 1.7.6] that
Crys(X/W ), Crys(X/Wn) are abelian categories. Furthermore, the cate-
gories Crys(X/W ), Crys(X/Wn) satisfy the descent property for Zariski
coverings of X, that is, crystals “glue” in the Zariski topology.

If we denote the topos associated to (X/W )crys by (X/W )∼crys, it is func-
torial with respect to X/W , namely, if we have a commutative diagram

(1.1)

X ′
f //

��

X

��
Spf(W )

f ′ // Spf(W )

with X ′ of finite type over k, we have the canonical morphism of topoi
(X ′/W )∼crys −→ (X/W )∼crys [7, §5]. It induces the morphism of ringed topoi
((X ′/W )∼crys,OX′/W ) −→ ((X/W )∼crys,OX/W ) and the pullback functor
f∗ : Crys(X/W ) −→ Crys(X ′/W ). Similar functoriality holds also for the
ringed topos ((X/Wn)∼crys,OX/Wn

) associated to (X/Wn)crys and the cat-
egory Crys(X/Wn).

The natural inclusion of sites (X/Wn)crys ↪→ (X/W )crys induces the
restriction functor

(1.2) Crys(X/W ) −→ Crys(X/Wn); E 7→ En.

ANNALES DE L’INSTITUT FOURIER
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Since (X/W )crys is the 2-inductive limit of the sites (X/Wn)crys [7, p. 7–22],
we have the equivalence

(1.3) Crys(X/W ) '−→ lim←−
n

Crys(X/Wn); E 7→ (En)n.

The functors (1.2), (1.3) are also functorial with respect to X/W .
For any object (U ↪→ T, δ) in (X/W )crys (resp. (X/Wn)crys), the functor

of evaluation at T

(1.4) Crys(X/W ) −→ Coh(OT ) (resp. Crys(X/Wn) −→ Coh(OT ));
E 7→ ET

is defined, where Coh(OT ) denotes the category of sheaves ofOT -modules of
finite type. It is known to be right exact. This follows from [2, IV Rem. 1.7.8]
and [2, III Prop. 1.1.5].
If U ↪→ Y is a closed immersion from an open subscheme U of X into

a smooth scheme Y over Wn and T := (U ↪→ T, δ) is its PD-envelope [7,
p. 3.20], the functor (1.4) is exact [2, IV Prop. 1.7.5]. Moreover, we have an
equivalence of categories lifting (1.4), which we explain now. The derivation
d : OY → Ω1

Y is extended canonically to a PD-derivation d : OT → Ω1
T :=

OT ⊗OY Ω1
Y , and we have the notion of OT -modules of finite presentation

with integrable connection on T with respect to this PD-derivation [7, §4].
With the obvious morphisms, we denote the category of such objects by
MIC(T ), and denote the full subcategory consisting of quasi-nilpotent ones
by MIC(T )qn. (For the definition of the quasi-nilpotence, see [7, Def. 4.10].)
For T = (U ↪→ T, δ) as above and E ∈ Crys(U/Wn), ET is naturally
endowed with a quasi-nilpotent integrable connection ∇ET : ET → ET ⊗
Ω1
T , and we have a natural equivalence of abelian categories

(1.5) Crys(U/Wn) '−→ MIC(T )qn; E 7→ (ET ,∇ET ).

We use the functors (1.4), (1.5) in the following cases. First, for a smooth
variety X over k, we have the right exact functors

Crys(X/W ) −→ Coh(OX),(1.6)
Crys(X/Wn) −→ Coh(OX)(1.7)

of evaluation at X := (X id
↪→ X, 0). When n = 1, the functor (1.7) is exact.

The functor (1.6) (resp. (1.7)) is functorial with respect to X/W (resp.
X/Wn).
Next, let X be a smooth variety over k and assume that we have a lifting

of X to a p-adic smooth formal scheme XW over W . As X/k is smooth,

TOME 68 (2018), FASCICULE 5
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there always exists such a lifting on affine open subschemes of X. If we put
Xn := XW ⊗W Wn, the evaluation at

Xn := (X ↪→ Xn, canonical PD-structure on pOXn)

induces the equivalence

(1.8) Crys(X/Wn) '−→ MIC(Xn)qn.

So we have an equivalence of categories

(1.9) Crys(X/W ) '−→ lim←−
n

MIC(Xn)qn =: MIC(XW )qn;

E 7→ lim←−
n

(EXn ,∇EXn ) =: (EXW ,∇EXW ).

In addition, there exists a full embedding

(1.10) MIC(XW )qn ↪→ (OXW -coherent left D̂(0)
XW /W

-modules),

where D̂(0)
XW /W

:= lim←−D
(0)
Xn/Wn

and D(0)
Xn/Wn

is the ring of PD-differential
operators, by [7, Thm. 4.8]. When there exists a local basis x1, . . . , xd of
XW over W , D̂(0)

XW /W
is topologically generated by(

∂

∂x

)n
:=
(

∂

∂x1

)n1 ( ∂

∂x2

)n2

· · ·
(

∂

∂xd

)nd
(n := (n1, . . . , nd) ∈ Nd)

over OXW [7, §4].
The functors (1.9), (1.10) are functorial with respect to XW /W , namely,

if there exists a diagram

(1.11)

X ′W
fW //

��

XW

��
Spf(W )

f ′ // Spf(W )

lifting (1.1), the functor (1.9) is compatible with the pullback f∗ on the
left hand side and the pullback f∗W on the right hand side. Also, the func-
tor (1.10) is compatible with the pullback f∗W .
We say that an object (EXW ,∇EXW ) (resp. (EXn ,∇EXn )) in MIC(XW )qn

(resp. in MIC(Xn)qn) is p-torsion if so is EXW (resp.EXn). Since the re-
striction functors

(p-torsion objects in MIC(XW )qn) −→ MIC(X)qn,

(p-torsion objects in MIC(Xn)qn) −→ MIC(X)qn

ANNALES DE L’INSTITUT FOURIER
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are equivalences, we see by (1.8), (1.9) and Zariski descent that the restric-
tion functors

(p-torsion objects in Crys(X/W )) −→ Crys(X/k),
(p-torsion objects in Crys(X/Wn)) −→ Crys(X/k)

are equivalences.
When X is projective over k and we are given a fixed closed k-immersion

ι : X ↪→ PNk , we denote the PD-envelope of X ι
↪→ PNk ↪→ PNWn

by Dn :=
(X ↪→ Dn, δn). Then the equivalence of categories (1.5) becomes globally
defined on X [7, Thm. 6.6]

(1.12) Crys(X/Wn) '−→ MIC(Dn)qn; E 7→ (EDn ,∇EDn ).

A crystal E ∈ Crys(X/W ) (resp. Crys(X/Wn)) is called locally free if,
for any object (U ↪→ T, δ) in (X/W )crys (resp. Crys(X/Wn)), ET is locally
free of finite rank.
A crystal E ∈ Crys(X/W ) is said to be p-torsion free if the multiplication

by p on E is injective.
A crystal E ∈ Crys(X/Wn) is called flat overWn if, for any 1 6 i 6 n−1,

the morphism E/pn−iE −→ E induced by the multiplication by pi is an
isomorphism onto its image piE ⊂ E.
When we have a lifting of X to a p-adic smooth formal scheme XW over

W , E ∈ Crys(X/W ) is locally free (resp. p-torsion free) if and only if EXW
is locally free (resp. p-torsion free), and E ∈ Crys(X/Wn) is flat over Wn

if and only if EXn is flat over Wn, where Xn := XW ⊗W Wn. Therefore,
E ∈ Crys(X/W ) is locally free if and only if its value EX ∈ Coh(X) is
locally free, if and only if its restriction to Crys(X/k) is locally free. Also,
E ∈ Crys(X/W ) is p-torsion free if and only if En is flat over Wn for each
n ∈ N, where (En)n ∈ lim←−n Crys(X/Wn) is the object corresponding to E
via (1.3).
For a smooth variety X over k, let Crys(X/W )Q be the Q-linearization

of the category Crys(X/W ), which is called the category of isocrystals on
X. This means that the objects of Crys(X/W )Q are those of Crys(X/W )
and that the morphisms of Crys(X/W )Q are those of Crys(X/W ) tensored
with Q. So one has a natural functor Crys(X/W ) Q⊗−−→ Crys(X/W )Q which
is the identity on objects. The image of E by this functor is denoted by
Q⊗ E . When X is liftable to a p-adic smooth formal scheme XW over W ,
the functors (1.9) and (1.10) induce the full embedding

(1.13) Crys(X/W )Q ↪→ ((Q⊗OXW)-coherent left (Q⊗D̂(0)
XW/W

)-modules),

which is functorial with respect to XW /W .

TOME 68 (2018), FASCICULE 5
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Next, we recall the basic facts on infinitesimal (iso)crystals. Basic refer-
ences are [14], [30], [7, §2]. For a schemeX of finite type over k, let (X/W )inf
(resp. (X/Wn)inf) be the infinitesimal site on X/W (resp. X/Wn). An ob-
ject is a nilpotent closed immersion U ↪→ T over Wn for some n (resp. over
Wn) from an open subscheme U of X to a scheme T . Morphisms are the
obvious ones and the covering is defined in the same way as in the case of
crystalline site. Thus one has a natural functor (X/W )crys → (X/W )inf .
We can define the structure sheaf OX/W (resp. OX/Wn

) and the notion of
crystals of finite presentation on (X/W )inf (resp. (X/Wn)inf), which we call
infinitesimal crystals on X/W (resp. X/Wn), in the same way as in the case
of crystalline site. We denote the category of infinitesimal crystals on X/W
(resp. X/Wn) by Inf(X/W ) (resp. Inf(X/Wn)). The categories Inf(X/W ),
Inf(X/Wn) also satisfy the descent property for Zariski coverings of X.
The topos (X/W )∼inf associated to (X/W )inf is also functorial with re-

spect to X/W . To prove it, we need to prove the analogue of [7, Lem. 5.11,
5.12, 5.13] for infinitesimal site. The proof of [7, Lem. 5.11, 5.13] works as
it is (and we don’t need the argument on PD-structure). The proof of [7,
Lem. 5.12] works if we define T there to be the N -th infinitesimal neigh-
borhood of U in T1 ×Y T2 for N � 0. As a consequence, if we are given
a diagram (1.1), we have the morphism of topoi (X ′/W )∼inf −→ (X/W )∼inf ,
the morphism of ringed topoi ((X ′/W )∼inf ,OX′/W ) −→ ((X/W )∼inf ,OX/W )
and the pullback functor f∗ : Inf(X/W ) −→ Inf(X ′/W ). Similar functo-
riality holds also for the ringed topos ((X/Wn)∼inf ,OX/Wn

) associated to
(X/Wn)inf and the category Inf(X/Wn).
As in the case of crystalline site, the natural inclusion of sites(X/Wn)inf ↪→

(X/W )inf induces the restriction functor

(1.14) Inf(X/W ) −→ Inf(X/Wn); E 7→ En,

which induces the equivalence

(1.15) Inf(X/W ) '−→ lim←−
n

Inf(X/Wn); E 7→ (En)n.

The functors (1.14), (1.15) are also functorial with respect to X/W . Also,
for any object U ↪→ T in (X/W )inf (resp. (X/Wn)inf), the functor of eval-
uation at T

(1.16) Inf(X/W )−→Coh(OT ) (resp. Inf(X/Wn)−→Coh(OT )); E 7→ET

is defined.
When X is a smooth variety over k and there exists a lifting of X to

a p-adic smooth formal scheme XW over W , we have an equivalence of
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categories

(1.17) Inf(X/Wn) '−→ (OXn -coherent left DXn/Wn
-modules),

where Xn := XW ⊗W Wn and DXn/Wn
is the full ring of differential oper-

ators of Xn over Wn. Thus we have an equivalence of categories

(1.18) Inf(X/W ) '−→ (OXW -coherent left D̂XW /W -modules),

where D̂XW /W := lim←−nDXn/Wn
, and the action of D̂XW /W on objects on

the right hand side is assumed to be continuous. When there exists a local
basis x1, . . . , xd of XW over W , D̂XW /W is topologically generated by

1
n!

(
∂

∂x

)n
:= 1

n1!

(
∂

∂x1

)n1 1
n2!

(
∂

∂x2

)n2

· · · 1
nd!

(
∂

∂xd

)nd
(n := (n1, . . . , nd) ∈ Nd) over OXW [7, §2].

We give a proof of the equivalence (1.17), which seems to be missing
in the literature. For n,m, r ∈ N, let Xn(r)m (resp. Xn(r)′m) be the m-th
infinitesimal neighborhood of X (resp. Xn) in

Xn(r) := Xn ×Wn · · · ×Wn Xn︸ ︷︷ ︸
r+1

.

Also, for i = 1, 2, let pi,m : Xn(1)m −→ Xn (resp. p′i,m : Xn(1)′m −→ Xn)
be the morphism induced by the i-th projection Xn(1) −→ Xn, and for
1 6 i < j 6 3, let pi,j,m : Xn(2)m −→ Xn(1)m (resp. p′i,j,m : Xn(2)′m −→
Xn(1)′m) be the morphism induced by the projection Xn(2) −→ Xn(1) into
the i-th and j-th factors. We denote by Str(X/Wn) (resp. Str(Xn/Wn))
be the category of pairs (E, {εm}m), where E is a coherent OXn-module
and {εm : p∗2,mE

'−→ p∗1,mE}m (resp. {εm : p′∗2,mE
'−→ p′

∗
1,mE}m) is a

compatible family of linear isomorphisms such that ε0 = idE and p∗1,2,mε ◦
p∗2,3,mε = p∗1,3,mε (resp. p′∗1,2,mε ◦ p′

∗
2,3,mε = p′

∗
1,3,mε). Such a datum is

usually called a stratification on E.
Then, one has the functor

(1.19) Inf(X/Wn) −→ Str(X/Wn);

E 7→ (EXn , {p∗2,mEXn
'−→ EXn(1)m

'←− p∗1,mEXn}m).

We can also define the functor

(1.20) Str(X/Wn) −→ Inf(X/Wn)

of converse direction as follows. If we are given (E, {εm}m) ∈ Str(X/Wn)
and an object U ↪→ T in (X/Wn)inf , we define the coherent OT -module
ET in the following way. Since there exists a morphism ϕ : T −→ Xn over
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Wn lifting the closed immersion X ↪→ Xn locally on T , ET is defined by
ET := ϕ∗E locally. If we have two morphisms ϕ,ϕ′ : T −→ Xn as above,
ϕ × ϕ′ induces a morphism ψ : T −→ Xn(1)m for some m, and ψ∗εm
defines a gluing data for the sheaf ET defined locally as above. Thus ET
is defined globally on T by descent. Then the family {ET }U↪→T gives an
object of Inf(X/Wn). Thus the functor (1.20) is defined. One can check
that it defines a quasi-inverse of (1.19), and so (1.19) is an equivalence.
Next, because the canonical closed immersions Xn(r)m ↪→ Xn(r)′m in-

duce the isomorphism {Xn(r)m}m
'−→ {Xn(r)′m} as ind-schemes, we have

the canonical equivalence of categories

(1.21) Str(Xn/Wn) '−→ Str(X/Wn).

Finally, we have an equivalence

(1.22) Str(Xn/Wn) '−→ (OXn -coherent left DXn/Wn
-modules)

by [7, Prop. 2.11, Rem. 2.13]. By combining (1.19), the quasi-inverse
of (1.21) and (1.22), we obtain the equivalence (1.17).
By construction, the functors (1.19), (1.21) and (1.22) are functorial with

respect to XW /W , namely, if we are given a diagram as (1.11), we have the
pullback by fW modulo pn on Str(X/Wn),Str(Xn/Wn), and the category
of OXn -coherent left DXn/Wn

-modules, and the functors are compatible
with respect to f∗ on Inf(X/Wn) and the above pullback functors. Thus
the functors (1.17), (1.18) are also functorial with respect to XW /W .
For any infinitesimal crystal E on X/W or X/Wn, the value ET of E at

any U ↪→ T is locally free. To prove this, it suffices to consider the case of
infinitesimal crystals on X over k, and in this case, the claim follows from
the equivalence (1.17), Katz’ theorem [11, Thm. 1.3] and [35, Lem. 6].
For a smooth variety X over k, let Inf(X/W )Q be the Q-linearization

of the category Inf(X/W ), which is called the category of infinitesimal
isocrystals on X. As in the case of crystalline site, one has a natural functor
Inf(X/W ) Q⊗−−→ Inf(X/W )Q. When X is liftable to a p-adic smooth formal
scheme XW over W , the functor (1.18) induces the full embedding

(1.23) Inf(X/W )Q ↪→((Q⊗OXW )-coherent left (Q⊗D̂XW/W )-modules),

which is functorial with respect to XW /W . For objects in the right hand
side, the action of Q⊗ D̂XW /W is assumed to be continuous.

Next we recall the basic facts on convergent isocrystals [31], [32]. On a
scheme X of finite type over k, the category Enl(X/W ) of enlargements
is defined in [31, Def. 2.1]. Objects are pairs (T, zT ) where T is a p-adic
formal flat scheme of finite type over Spf(W ) together with a morphism
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(T ⊗W k)red
zT−−→ X. Morphisms in the category are the obvious ones. A

convergent isocrystal [31, Def. 2.7] on X/K is a crystal on Enl(X/W ) with
value on (T, zT ) in the Q-linearization Coh(OT )Q of the category Coh(OT ).
This defines a category Conv(X/K) with the obvious morphisms, which is
abelian [31, Cor. 2.10]. We denote the structure convergent isocrystal on
X/K by OX/K . The category Conv(X/K) is functorial with respect to
X/W , and it has descent property for Zariski coverings.
When X is liftable to a p-adic smooth formal scheme XW over W , we

have the equivalence

(1.24) Conv(X/K) '−→ ((Q⊗OXW )-coherent left D†XW ,Q-modules),

where D†XW ,Q = lim−→m
Q⊗D̂(m)

XW /W
, D̂(m)

XW /W
:= lim←−nD

(m)
Xn/Wn

(Xn := XW ⊗
Wn) and D(m)

Xn/Wn
is the ring of PD-differential operators of level m [4,

Prop. 4.1.4]. It is functorial with respect to XW /W .
For a smooth variety X over k, Ogus defines in [32, Thm. 0.7.2] a fully

faithful functor

(1.25) Φ : Conv(X/K) −→ Crys(X/W )Q

using a nice system of objects in Enl(X/W ) and the local nature of isocrys-
tals [32, Lem. 0.7.5], such that, for any E ∈ Conv(X/K), the convergent
cohomology Hi

conv(X/K, E) (defined in [32, §4]) and the crystalline coho-
mology Hi

crys(X/W,Φ(E)) coincide [32, Thm. 0.7.7]. The functor Φ is func-
torial with respect to X/W . Also, when X is liftable to a p-adic smooth
formal scheme XW over W , Φ is compatible with the canonical functor

(1.26) ((Q⊗OXW )-coherent left D†XW ,Q-modules)

−→ ((Q⊗OXW )-coherent left (Q⊗ D̂(0)
XW /W

)-modules),

via (1.13) and (1.24). The functor (1.26) is obviously functorial with respect
to XW /W . In the following, we omit to write the functor Φ and regard a
convergent isocrystal E on X as an isocrystal on (X/W )crys via the functor
Φ. For the whole theory of convergent isocrystals, we also refer to [3], [26].
For a smooth variety X over k, we have the natural functor (X/W )crys →

(X/W )inf , which induces the functors

Φ′ : Inf(X/W ) −→ Crys(X/W ), Φ′Q : Inf(X/W )Q −→ Crys(X/W )Q.

They are functorial with respect to X/W . When X is liftable to a p-adic
smooth formal scheme XW over W , Φ′ and Φ′Q are compatible with the
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canonical functors

(1.27) (OXW -coherent left D̂XW /W -modules)

−→ (OXW -coherent left D̂(0)
XW /W

-modules),

(1.28) ((Q⊗OXW )-coherent left (Q⊗ D̂XW /W )-modules)

−→ ((Q⊗OXW )-coherent left (Q⊗ D̂(0)
XW /W

)-modules)

via (1.9), (1.10), (1.13), (1.18) (1.23), because the constructions involved
are done in a parallel way for (iso)crystals and infinitesimal (iso)crystals.
The functors (1.27) and (1.28) are functorial with respect to XW /W .
We prove that Φ′ is fully faithful. To see this, we may work locally by

Zariski descent for morphisms in Inf(X/W ) and Crys(X/W ). So we may
assume that X lifts to a p-adic smooth formal scheme XW over W . Thus
we are reduced to proving the full faithfulness of (1.27). Noting the local
freeness of the values of any object in Inf(X/W ), we are reduced to proving
the equality

M D̂XW/W=0 '−→M
D̂(0)
XW/W

=0

of horizontal elements for any OXW -locally free D̂XW /W -moduleM . This is
clear because any such M is flat over W and the image of Q⊗Z D̂(0)

XW /W
is

dense inQ⊗ZD̂XW /W because, in terms of local coodinates x := (x1, ..., xd),
the former contains the sections 1

n!
(
∂
∂x

)n (n ∈ Nd) which topologically
generates the latter. As a consequence, we see that the functor Φ′Q is also
fully faithful.
Also, we prove that the functor Φ′Q factors through Φ and thus induces

the functor
Inf(X/W )Q −→ Conv(X/K)

which we denote also by Φ′Q. To prove it, we may work locally by Zariski
descent for Conv(X/K) and full faithfulness of Φ. So we may assume that
X lifts to a p-adic smooth formal scheme XW over W , and in this case, the
claim follows from the fact that the functor (1.28) factors through (1.26).
In the following, we omit to write also the functor Φ′Q and regard an in-
finitesimal isocrystal on X as a convergent isocrystal on X/K (hence an
isocrystal on X) via the functor Φ′Q.

We recall the functoriality of the categories discussed above with respect
to the absolute Frobenius morphism F : X −→ X. By applying the func-
toriality with respect to the diagram (1.1) in the case f = F and f ′ = σW ,
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we obtain the pullback functors

• Crys(X/W ) −→ Crys(X/W ), • Crys(X/Wn) −→ Crys(X/Wn),
• MIC(X)qn −→ MIC(X)qn, • MIC(X) −→ MIC(X),
• Coh(X) −→ Coh(X), • Crys(X/W )Q −→ Crys(X/W )Q,
• Inf(X/W ) −→ Inf(X/W ), • Inf(X/Wn) −→ Inf(X/Wn),
• Inf(X/W )Q −→ Inf(X/W )Q, • Conv(X/K) −→ Conv(X/K),

which we all denote by F ∗. By the functoriality discussed above, the func-
tors (1.2), (1.3), (1.6), (1.7), (1.8) for n = 1, (1.14), (1.15), Φ, Φ′ and Φ′Q
are compatible with the various Frobenius pullbacks F ∗. In particular, the
pullback F ∗ by Frobenius on Crys(X/W )Q respects the full subcategories
Conv(X/K), Inf(X/W )Q.
When X is liftable to a p-adic smooth formal scheme XW over W and F

is liftable to a morphism FW : XW −→ XW over σW , FW and σW induce
the pullback functors

• MIC(Xn)qn −→ MIC(Xn)qn, • MIC(XW )qn −→ MIC(XW )qn,

• Str(X/Wn) −→ Str(X/Wn), • Str(Xn/Wn) −→ Str(Xn/Wn),

• (OXW -coherent left D̂(0)
XW /W

-modules)

−→ (OXW -coherent left D̂(0)
XW /W

-modules),

• ((Q⊗OXW )-coherent left (Q⊗ D̂(0)
XW /W

)-modules)

−→ ((Q⊗OXW )-coherent left (Q⊗ D̂(0)
XW /W

)-modules),

• (OXn -coherent left DXn/Wn
-modules)

−→ (OXn -coherent left DXn/Wn
-modules),

• (OXW -coherent left D̂XW /W -modules)

−→ (OXW -coherent left D̂XW /W -modules),

• ((Q⊗OXW )-coherent left (Q⊗ D̂XW /W )-modules)

−→ ((Q⊗OXW )-coherent left (Q⊗ D̂XW /W )-modules),

• ((Q⊗OXW )-coherent left D†XW ,Q-modules)

−→ ((Q⊗OXW )-coherent left D†XW ,Q-modules),

which we all denote by F ∗W . The functors (1.8), (1.9), (1.10), (1.13), (1.17),
(1.18), (1.19), (1.21), (1.22), (1.23), (1.24), (1.26), (1.27), (1.28) are com-
patible with the various pullbacks by F ∗ or F ∗W .
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We give a short review on Cartier descent and the inverse Cartier trans-
form after Ogus–Vologodsky [33].
For (E,∇) ∈ MIC(X), one defines the p-curvature β : S•TX −→

EndOX (E), which is an F ∗-linear algebra homomorphism. We say that
(E,∇) has zero p-curvature (resp. has nilpotent p-curvature of length p−1)
if β(SnTX) = 0 for n > 1 (resp. n > p). We denote the full subcategory of
MIC(X) of modules with integrable connection with zero p-curvature (resp.
nilpotent p-curvature of length p − 1) by MIC0(X) (resp. MICp−1(X)).
The forgetful functor MICs(X)→ Coh(X), s = 0, p− 1, yields the abelian
structure on MICs(X) with respect to which the functor is exact.
A Higgs module is a pair (H, θ) consisting of a coherent OX -module H

and an OX -linear morphism θ : H −→ H ⊗ Ω1
X satisfying the integra-

bility condition θ ∧ θ = 0. The map θ, called the Higgs field, induces an
OX -algebra homomorphism S•TX −→ EndOX (H), denoted by the same
symbol θ. We say that (H, θ) has nilpotent Higgs field of length 6 p − 1
if θ(SnTX) = 0 for n > p. With the obvious morphisms, we denote the
category of Higgs modules with Higgs field zero (resp. nilpotent Higgs field
of length 6 p − 1) by HIG0(X) (resp. HIGp−1(X)). The forgetful func-
tor HIGs(X) → Coh(X), s = 0, p − 1, yields the abelian structure on
HIGp−1(X) with respect to which the functor is exact, and is an equiva-
lence of categories for s = 0.
For a coherent OX -module E, F ∗E is uniquely endowed with an inte-

grable connection ∇can with zero p-curvature which is characterized by the
condition that F−1(E) ⊂ F ∗E is the subsheaf of abelian groups of flat
sections. The functor

(1.29) Coh(OX) −→ MIC0(X), E 7→ (F ∗E,∇can)

is an equivalence of categories. This fact is called Cartier descent ([33, §2]).
It is easy to see by direct calculation that the functor F ∗ : MIC(X) −→
MIC(X) factors through (1.29) and hence it has the form

(1.30) F ∗ : MIC(X) (E,∇)7→E−−−−−−→ Coh(X) (1.29)−−−−→ MIC0(X) ⊂ MIC(X);
(E,∇) 7→ (F ∗E,∇can).

Ogus–Vologodsky generalized the equivalence (1.29) when X admits a
smooth lifting X̃ over W2. (In [33], they assume the existence of a smooth
lifting X̃ ′ of the Frobenius twistX ′ := X⊗σk overW2, but this is equivalent
to the condition above because k is perfect.) Assuming the existence of X̃,
they generalized the equivalence (1.29) to the equivalence

(1.31) C−1 : HIGp−1(X) −→ MICp−1(X),
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which is called the inverse Cartier transform. (Precisely speaking, the func-
tor C−1 here is the functor C−1

X/S ◦ π
∗
X/S used in [33, (4.16.1)] for X/S =

(X, X̃ ′)/ SpecW2 and S = Spec k.) Note that any object (E,∇) in
MIC(X)qn with E torsion free of rank 6 p is contained in MICp−1(X).
Finally, we recall some terminologies on (semi)stability. When X is pro-

jective, we fix a k-embedding ι : X ↪→ PNk of X into a projective space and
denote the pullback of OPN

k
(1) to X by OX(1). For a coherent, torsion free

OX -module E, the slope µ(E) = deg(E)/ rank(E) and the reduced Hilbert
polynomial pE(n) = χ(X,E⊗OXOX(n))/ rank(E) are defined with respect
to OX(1), as well as µ- (Mumford–Takemoto) or χ- (Gieseker–Maruyama)
(semi)stability. As usual, E ∈ Coh(X) is said to be µ-(semi)stable if it is
torsion free and µ(E′) < µ(E) (µ(E′) 6 µ(E)) for any strict subobject
0 6= E′ ⊂ E, and it is said to be strongly µ-semistable if (Fn)∗(E) is
µ-semistable for all natural numbers n. Similarly for χ-(semi)stability.
We say that an object E in Crys(X/k) = MIC(X)qn is µ-semistable as a

crystal if E is torsion free as an OX -module and µ(E′) 6 µ(E) for any non-
zero subobject E′ of E in Crys(X/k) = MIC(X)qn. Similarly, we say that
an object (E,∇) in MICp−1(X) (resp. in HIGp−1(X)) is µ-(semi)stable if
E ∈ Coh(X) is torsion free and µ(E′) < µ(E) (µ(E′) 6 µ(E)) for any strict
subobject 0 6= (E′,∇′) of (E,∇) in MICp−1(X) (resp. in HIGp−1(X)).

2. Statement of the main results

We say that E ∈ Crys(X/W )Q (resp. Conv(X/K), Inf(X/W )Q, Inf(X/k))
is constant when it is isomorphic to a finite sum of the structure isocrystal
Q⊗OX/W (resp. the structure convergent isocrystal OX/K , the structure
isocrystal Q ⊗ OX/W , the strucure crystal OX/k). As a p-adic version of
Gieseker’s conjecture, according to which if a smooth projective variety X
over an algebraically closed field k has a trivial étale fundamental group,
then infinitesimal crystals on X/k, that is OX -coherent DX -modules, are
constant (see [9] for a positive answer), Johan de Jong posed the following
conjecture in October 2010:

Conjecture 2.1 (de Jong). — LetX be a connected smooth projective
variety over an algebraically closed field k of characteristic p > 0 and
assume that the étale fundamental group ofX is trivial. Then any isocrystal
E ∈ Crys(X/W )Q is constant.

By the fully faithful functor Φ : Conv(X/K) → Crys(X/W )Q defined
in (1.25), Conjecture 2.1 contains the sub-conjecture
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Conjecture 2.2. — Let X be a connected smooth projective variety
over an algebraically closed field k of characteristic p > 0 and assume that
the étale fundamental group of X is trivial. Then any convergent isocrystal
E ∈ Conv(X/K) is constant.

The aim of this article is to discuss Conjecture 2.2. We restrict our at-
tention to Conjecture 2.2 rather than Conjecture 2.1 mainly because we
shall strongly use the following proposition, which is a special case of [31,
Cor. 4.10]:

Proposition 2.3. — Let X be a smooth variety over k. Then the pull-
back functor F ∗ : Conv(X/K) → Conv(X/K) is an equivalence of cate-
gories.

Hence, for any convergent isocrystal E on X/K and for any n ∈ N, there
is the unique convergent isocrystal E(n) on X/K with F ∗nE(n) = E up to
isomorphism. We call this E(n) the Fn-division of E .

Remark 2.4. — The category Conv(X/K) is characterized as the inter-
section ⋂

n

Im(F ∗)n

of the essential images of (F ∗)n (n ∈ N) in Crys(X/W )Q. The inclusion
Conv(X/K) ⊆

⋂
n Im(F ∗)n follows from Proposition 2.3. To prove the

inclusion in the other direction, we take E ∈
⋂
n Im(F ∗)n. To prove that E

belongs to Conv(X/K), we may work locally, and so we may assume that
X is liftable to a p-adic smooth formal scheme XW over W endowed with
a lift FW : XW −→ XW of Frobenius morphism F on X. Then FW induces
an equivalence of categories

(F ∗W )n : ((Q⊗OXW )-coherent left (Q⊗ D̂(0)
XW /W

)-modules)
'−→ ((Q⊗OXW )-coherent left (Q⊗ D̂(n)

XW /W
)-modules)

such that the composition of it with the canonical functor

((Q⊗OXW )-coherent left (Q⊗ D̂(n)
XW /W

)-modules)

−→ ((Q⊗OXW )-coherent left (Q⊗ D̂(0)
XW /W

)-modules)

is equal to the pullback functor (F ∗W )n on the category of (Q ⊗ OXW )-
coherent left (Q ⊗ D̂(0)

XW /W
)-modules, by [5, Thm. 4.1.3, Rem. 4.1.4(v)].

From this and the compatibility of the functor (1.13) with F ∗ and F ∗W , we
see that the (Q⊗OXW )-coherent left (Q⊗D̂(0)

XW /W
)-module corresponding
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to E admits an action of Q⊗D̂(n)
XW /W

for any n. Such actions for n ∈ N are
consistent because Q⊗ D̂(0)

XW /W
is dense in Q⊗ D̂(n)

XW /W
. Thus the actions

induce the action of D†XW ,Q := lim−→n
Q ⊗ D̂(n)

XW /W
. Hence E belongs to

Conv(X/K) by the equivalence (1.24).

Remark 2.5. — Proposition 2.3 does not necessarily extend to
Crys(X/W )Q via (1.25) even when X is projective and smooth, as is shown
in Proposition 2.13 below.

Given E in Conv(X/K) or Crys(X/W )Q, a crystal E ∈ Crys(X/W ) is
called a lattice of E if it is p-torsion free and E = Q⊗ E in Crys(X/W )Q.
Out of any choice E ∈ Crys(X/W ) with E = Q ⊗ E in Crys(X/W )Q, one
constructs a lattice as follows. The surjective morphisms E/Ker(pn+1) →
E/Ker(pn) in Crys(X/W ) become isomorphisms for n large. Indeed, as
X is of finite type, it is enough to show it on an affine X, for which one
applies (1.9). Then E/Ker(pn) for n large is a lattice of E . Clearly, there
are then many lattices of the same E .

We now formulate the first main result, proved in Section 3 (compare
with [36, Thm. 1.7, Cor. 1.10]).

Theorem 2.6. — Let X be a connected smooth projective variety over
k with trivial étale fundamental group. If E ∈ Conv(X/K) is such that for
any n ∈ N, the Fn-division E(n) of E admits a lattice E(n) with E

(n)
X ∈

Coh(X) strongly µ-semistable, then E is constant.

We have the following corollary confirming the conjecture of de Jong for
infinitesimal isocrystals, which will be also proved in Section 3.

Corollary 2.7. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Then any infinitesimal isocrys-
tal on X is constant.

A non-zero E ∈ Conv(X/K) is called irreducible if it is in its category
(recall it is abelian), i.e. if it does not admit any non-zero strict subobject.
In general, every object admits a Jordan–Hölder filtration. Its irreducible
subquotients are called irreducible constituents. Using Theorem 2.6, we
shall prove the following theorem in Section 4.

Theorem 2.8. — Let X be a connected smooth projective variety over
k with trivial étale fundamental group. If E ∈ Conv(X/K) satisfies either
of the following conditions:

(1) any irreducible constituent of E is of rank 1;
(2) µmax(Ω1

X) < 2 and any irreducible constituent of E is of rank 6 2;
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(3) µmax(Ω1
X) < 1 and any irreducible constituent of E is of rank 6 3;

(4) r > 4, µmax(Ω1
X) < 1

N(r) and any irreducible constituent of E is of
rank 6 r, where N(r) := maxa,b>1,a+b6r lcm(a, b).

then E is constant.

Corollary 2.9. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Then

(1) any E ∈ Conv(X/K) of rank 1 is constant;
(2) if µmax(Ω1

X) 6 0, then any E ∈ Conv(X/K) is constant.

By [24, Thm.0.1], simply connected non-uniruled Calabi–Yau varieties of
dimension d in characteristic > (d−1)(d−2) fulfill condition (2). However,
even if many examples of Calabi–Yau varieties which are not liftable to
characteristic 0 are known, it is not clear whether some of them are not
uniruled. If X is simply connected and uniruled, it is likely that one can
show that E ∈ Conv(X/K) is constant directly by geometric method.

When p > 3, there is a purely cohomological proof of Corollary 2.9(1).
The following proposition is due to the first named author and Ogus.

Proposition 2.10. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Then

(1) for p > 3, any locally free E ∈ Crys(X/W ) of rank 1 is constant;
(2) extensions in Crys(X/W )Q of Q⊗OX/W by itself are constant.

Proof. — Since the étale fundamental group is trivial, H1(X,O×X) has
no torsion of order prime to p. Hence so does the reduced Picard scheme
Pic0

red(X), which implies that Pic0
red(X) = 0. Hence H1

crys(X/W,OX/W ) =
0 because it is the Dieudonné crystal associated to Pic0

red(X) ([18, II
Rem. 3.11.2]). This proves (2).
To prove (1), it suffices to prove the similar assertion for crystals on the

nilpotent crystalline site (X/W )Ncrys, by [2, IV Rem. 1.6.6].
One has the exact sequences on (X/W )Ncrys,

1 −→ K −→ O×X/W −→ O
×
X −→ 1,(2.1)

0 −→ J −→ OX/W −→ OX −→ 0,(2.2)

defining J and K. The p-adic logarithm log : K → J and exponential exp :
J → K functions are well defined and are isomorphisms on (X/W )Ncrys.
Hence, from the exact sequences (2.1), (2.2), we obtain on (X/W )Ncrys the
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exact sequences

(2.3) 0→ H1
Ncrys(X/W, J)→ H1

Ncrys(X/W,O×X/W ) α→ H1(X,O×X)
β→ H2

Ncrys(X/W, J),

and

(2.4) 0→ H1
Ncrys(X/W, J) γ→ H1

Ncrys(X/W,OX/W ).

From (2.4) and the vanishing H1
Ncrys(X/W,OX/W ) = H1

crys(X/W,
OX/W ) = 0 (where the first equality follows from [2, V 2.4]), one deduces
H1

Ncrys(X/W, J) = 0. Hence α is injective. Moreover, by (2.3), we obtain
the commutative diagram

(2.5)

H1
Ncrys(X,O

×
X/W ) α // H1(X,O×X)

γ◦log ◦β //

δ

��

H2
Ncrys(X/W,OX/W )

H1(X,O×X)⊗ Zp
ε // H2

Ncrys(X/W,OX/W ),

where δ is induced by the inclusion Z −→ Zp and ε is the Zp-linearization
of γ ◦ log ◦β. By construction, the upper horizontal line is a complex. On
the other hand, δ is injective because H1(X,O×X) has no torsion of order
prime to p. Also, by the commutativity of the diagram [12, I (5.1.7)], ε is
identified with the map NS(X)⊗ Zp −→ H2

crys(X/W,OX/W ) given in [18,
II Prop. 6.8] and so it is injective. Then an easy diagram chase shows that
H1

Ncrys(X,O
×
X/W ) = 0. This proves (1). �

Proposition 2.10 together with the following proposition implies Corol-
lary 2.9(1) when p > 3.

Proposition 2.11. — Let X be a smooth variety over k. Then any
isocrystal on X which is filtered such that the associated graded isocrystal
is a sum of rank 1 isocrystals admits a locally free lattice.

Proof. — We start with the rank 1 case. The idea of the proof is simple.
Locally it uses the equivalence (1.9) and the fact that the reflexive hull of
a rank 1 coherent sheaf on a regular scheme is locally free.

So assume first X lifts to an affine p-adic smooth formal scheme XW =
Spf(A) (hence X = Spec(A/p)). Let E be a lattice of a rank 1 isocrystal
E . Via (1.9), writing M = Γ(XW , E), E ∈ Crys(X/W ) is given by an
integrable quasi-nilpotent connection

(2.6) ∇M : M →M ⊗A Ω̂1
A
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where Ω̂1
A := lim←−n Γ(Xn,Ω1

Xn
). Then A, Ω̂1

A, M are sheafified to O, Ω1, M
on Spec(A) by the standard procedure.
As M is p-torsion free and A[p−1] ⊗A M is a projective module over

A[p−1] of rank 1, there is a closed codimension > 2 subscheme C ⊂ Spec(A)
such that M restricted to Spec(A) \ C is locally free of rank 1. Define
N = Γ(Spec(A)\C,M). Then, as A is regular, N is a projective A-module
of rank 1 and, as Ω̂1

A is a projective A-module, projection formula implies
that (2.6) induces an integrable connection

(2.7) ∇N : N → N ⊗A Ω̂1
A

which is quasi-nilpotent, as this condition is local on sections of M. The
connection (2.7) can be seen as a connection on XW = Spf(A), and so it
defines a locally free lattice E in Crys(X/W ) of E .
Then we can glue the locally defined lattices of E by Lemma 2.12 below,

by replacing the lattices E by pnE for suitable n’s. This finishes the proof
of the rank 1 case.
Let 0→ E ′ a−→ E b−→ E ′′ → 0 be an exact sequence in Crys(X/W )Q, with

E 6= 0, E ′′ 6= 0, both E ′, E ′′ satisfying the assumptions of the proposition.
Let E be a lattice of E . Then 0→ a−1(Ker(b)) a−→ E

b−→ b(E)→ 0 is an exact
sequence ε in Crys(X/W ), while a−1(Ker(b)) is a lattice of E ′, and b(E) is
a lattice of E ′′. By induction on the rank of E , there are locally free lattices
E′ of E ′ and E′′ of E ′′, which we can rescale by multiplication with p-powers
such that they are injective maps E′′ i−→ b(E) and a−1(Ker(b)) j−→ E′. If
we pull back ε by i and push the resulting extension by j, we obtain the
extension 0→ E′ → E′′′ → E′′ → 0 of E′′ by E′ in Crys(X/W ) such that
Q⊗ E′′′ = E . Moreover, E′′′ is locally free. This finishes the proof. �

Lemma 2.12. — Let X be a connected smooth variety over k and let
E,E′ be rank 1 locally free crystals on (X/W )crys endowed with an iso-
morphism ϕ : Q⊗E

∼=−→ Q⊗E′ in Crys(X/W )Q. Then, for some n ∈ Z, ϕ
induces an isomorphism pnE

∼=−→ E′ in Crys(X/W ).

Proof. — By assumption, ϕ induces the isomorphism Q⊗ (E∨⊗E′)
∼=−→

Q⊗OX/W in Crys(X/W )Q. ThusH0
crys(X/W,E∨⊗E′) = HomCrys(X/W )(E,

E′) = pnW for some n ∈ Z. Hence ϕ induces an invertible morphism
pnE −→ E′, thus an isomorphism. �

We shall reprove in Theorem 4.3 by a different method a weaker version
of Proposition 2.11, together with statements in the higher rank case.

Finally in this section, we provide an example for which F ∗ is not sur-
jective on Crys(X/W )Q, which we promised in Remark 2.5.

ANNALES DE L’INSTITUT FOURIER



CONVERGENT ISOCRYSTALS 2131

Proposition 2.13. — Assume p > 3 and let X be a supersingular
elliptic curve. Then the pullback functor

F ∗ : Crys(X/W )Q −→ Crys(X/W )Q
is not essentially surjective.

Proof. — Let XW be a formal lift of X over Spf W and let ω be a gen-
erator of H1(XW ,Ω1

XW /W
). Then (OXW , d + pω) defines a module with

integrable connection on XW over W and one can check that it is quasi-
nilpotent. Hence it defines a non-constant locally free crystal of rank 1 on
(X/W )crys, which we denote by E. We prove

Claim. — (OXW , d+ pω) ∈ Crys(X/W )Q is not infinitely F ∗-divisible.

By Lemma 2.12, when E′ is a locally free crystal of rank 1 on (X/W )crys
such that Q ⊗ E ∼= Q ⊗ E′, then E and E′ are isomorphic crystals. So, if
E is infinitely F ∗-divisible in Crys(X/W )Q, then so in Crys(X/W ). Hence
it suffices to prove that E is not infinitely F ∗-divisible in Crys(X/W ).
By the restriction functor from Crys(X/W ) to the category of crystals

on (X/W )Ncrys, it is enough to show that E on (X/W )Ncrys is not infinitely
F ∗-divisible.

Assume that E = (F ∗)nE′n with E′n ∈ H1
Ncrys(X/W,O

×
X/W ) for n ∈ N.

Then (E′n)X ∈ H1(X,O×X) is a pn-torsion line bundle, thus is constant as
X is supersingular. Thus via (2.3), E,E′n ∈ H1

Ncrys(X/W, J), and via (2.4),
0 6= γ(E) = (F ∗)nγ(E′n) ∈ H1

Ncrys(X/W,OX/W ) = H1
crys(X/W,OX/W ).

As the slopes of F ∗ on H1
crys(X/W,OX/W ) are strictly positive, this is

impossible. �

3. Proof of Theorem 2.6

In this section, we prove Theorem 2.6, so throughout, X is a smooth
projective variety of dimension d over an algebraically closed field k of
characteristic p > 0.

A coherent OX -module E has crystalline Chern classes ccrys
i (E) in crys-

talline cohomology H2i
crys(X/W ), a module of finite type over W . In [21,

§1.1], numerical Chern classes ci(E) are defined in the group Zd−i(X)/∼,
where ∼ is the numerical equivalence relation on the free group on dimen-
sion (d − i)-points. Denoting by Hi

alg ⊂ H2i
crys(X/W ) the sub-W -module

spanned by the ccrys
i (E)’s, one has a group homomorphism Hi

alg →
(Zd−i(X)/∼) ⊗Z W . Since Zd−i(X)/∼ is a free Z-module of finite rank,
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ccrys
i (E) = 0 implies ci(E) = 0. As the (reduced) Hilbert polynomial de-
pends only on ci(E), if ci(E) = 0 for all i > 1, then pE = pOX .

Proposition 3.1. — Let X be a smooth projective variety over k, let E
be a convergent isocrystal on X/K and let E ∈ Crys(X/W ) be a lattice of
E . Then ccrys

i (EX) = 0 for any i > 0, and, if EX is torsion free, pEX = pOX ,

µ(EX) = 0.

Proof. — For n ∈ N, let E(n) be the Fn-division of E and let E(n) ∈
Crys(X/W ) be a lattice of E(n). As X is smooth, there exists locally a lift
XW of X to a smooth p-adic formal scheme over W and a local lift of F
on XW , which is faithfully flat. Thus the equivalence (1.9) implies that
the p-torsion freeness of a crystal is preserved by F ∗ and so (F ∗)nE(n)

is a lattice of E . In addition ((F ∗)nE(n))X = (F ∗)nE(n)
X . Hence, if we

prove ccrys
i (EX) = ccrys

i ((F ∗)nE(n)
X ) in this situation, we have ccrys

i (EX) =
ccrys
i ((F ∗)nE(n)

X ) = pniccrys
i (E(n)

X ) for all n > 1, thus ccrys
i (EX) = 0 in

the finite type W -module H2i
crys(X/W ), as claimed. Therefore, it suffices to

prove that ccrys
i (EX) does not depend on the choice of the lattice E.

So let E′ be another lattice of E . Then, replacing E′ by paE′ for some
a ∈ N, one has pnE ⊆ E′ ⊆ E for some n ∈ N, where pnE is the image of
pn : E −→ E, and it suffices to treat this case. For 0 6 i 6 n, let E′i be the
image of the map E′ ⊕ piE −→ E defined as the sum of inclusions. Then
we have E′0 = E,E′

n = E′ and pE′i−1 ⊆ E′
i ⊆ E′

i−1 (1 6 i 6 n). So to
prove the equality ccrys

i (E) = ccrys
i (E′), we may assume that pE ⊆ E′ ⊆ E.

If we denote Q := Coker(E′ → E), we have the following commutative
diagram with exact horizontal lines in Crys(X/W ):

0 // E′ //

p

��

E //

p

��

Q //

p

��

0

0 // E′ // E // Q // 0.

By the snake lemma, we obtain the exact sequence

0 −→ Q −→ E′/pE′ −→ E/pE −→ Q −→ 0

in Crys(X/W ). Since all the objects in the above sequence are p-torsion,
we can regard it as an exact sequence in Crys(X/k). By evaluating this
sequence at X and noting the equalities

(E/pE)X = EX/pEX = EX , (E′/pE′)X = E′X/pE
′
X = E′X ,

we obtain the exact sequence

0 −→ QX −→ E′X −→ EX −→ QX −→ 0
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of coherent OX -modules. Hence [EX ] = [E′X ] in K0(X) and so ccrys
i (EX) =

ccrys
i (E′X) for all i ∈ N. �

Remark 3.2. — After this article was written, the vanishing of the higher
crystalline Chern classes of EX has been proven in more generality. In [10],
we proved H2i

crys(X/W ) 3 ccrys
i (EX) = 0 for i > 0 under the assumptions

that EX is locally free. Bhatt and Lurie announced Q ⊗ H2i
crys(X/W ) 3

ccrys
i (EX) = 0 for i > 0 in the general case, as well as the second named
author. The two proofs are different, in a way as are the two proofs pre-
sented in [10] in the locally free case.

The following proposition, which uses Gieseker’s conjecture, proven in [9],
is the key step for the proof.

Proposition 3.3. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Let r be a positive integer.
Then there exists a positive integer a = a(X, r) satisfying the follow-
ing condition: For any sequence of χ-stable sheaves {Ei}ai=0 on X with
rank E0 6 r, pEi = pOX (0 6 i 6 a) and F ∗Ei = Ei+1 (0 6 i 6 a− 1), Ea
is necessarily of rank 1 and isomorphic to OX .

Proof. — By standard base change argument, we may assume that k is
uncountable. For 1 6 s 6 r, let Ms be the moduli of χ-stable sheaves on X
with rank s and reduced Hilbert polynomial pOX , which is constructed by
Langer ([20], [19]). It is a quasi-projective scheme over k. Also, let Ms,n be
the locus of closed points consisting of χ-stable sheaves G such that (F ∗)nG
remains χ-stable. It is known to be an open subvariety of Ms endowed
with the reduced structure. (See discussion in the beginning of [9, §3].)
The pullback by F induces the morphism V (over σ) called Verschiebung

· · · −→Ms,2
V−→Ms,1

V−→Ms.

Let ImV n be the image of V n : Ms,n −→Ms, which is a constructible set
of the topological space Ms. Then, dim ImV n is stable for n � 0, which
we denote by f . Assume f > 0. Then the generic point of some irreducible
closed subscheme of dimension f remains contained in ImV n (n ∈ N). Pick
such an irreducible closed subscheme and denote it by C. Then C ∩ ImV n

is non-empty for any n ∈ N and it contains an open subscheme of C.
So there exists a closed subscheme Dn ( C of smaller dimension such
that C ∩ ImV n ⊇ C \ Dn. Then C ∩ (

⋂
n ImV n) ⊇ C \ (

⋃
nDn), and

C \ (
⋃
nDn) contains at least two k-rational points P, P ′, because k is

uncountable. On the other hand, the k-rational points of
⋂
n ImV n are

moduli points of infinitely F -divisible torsion free sheaves, thus they are
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locally free infinitely F -divisible sheaves. By the affirmation [9, Thm. 1.1]
of Gieseker’s conjecture,

⋂
n ImV n is either empty or consists only of the

moduli point of OX . Since P, P ′ are different k-rational points of
⋂
n ImV n,

this is a contradiction. So ImV n consists of a finite set of points (possibly
empty) for some n. Then, since

⋂
n ImV n is empty (if s > 2) or consists

of one point corresponding to OX (if s = 1), it is equal to ImV a(s) for
some a(s) ∈ N. Let us define a to be the maximum of natural numbers
a(s) (s 6 r). Then, if we are given a sequence {Ei}ai=0 as in the statement
of the proposition with s := rankE0 6 r, Ea defines a k-rational point of
ImV a(s) ⊆Ms. Then s should be equal to 1 and Ea should be isomorphic
to OX . �

We also use the following proposition.

Proposition 3.4. — Let X be a connected projective smooth variety
over k with trivial étale fundamental group. Then there exists a positive
integer b = b(X) satisfying the following condition: For any sequence of
locally free sheaves {Ei}b(r−1)

i=0 on X with rank E0 = r, F ∗Ei = Ei+1 (0 6
i 6 b(r − 1) − 1) such that E0 is an iterated extension of OX , Eb(r−1) is
isomorphic to OrX .

Proof. — The proof is similar to that in [9, Prop. 2.4]. By [29, Cor. on
p. 143], one has the decomposition

H1(X,OX) = H1(X,OX)nilp ⊕H1(X,OX)ss

of H1(X,OX) as k-vector spaces such that the absolute Frobenius F ∗ acts
nilpotently onH1(X,OX)nilp and as a bijection onH1(X,OX)ss. Moreover,
one has

(3.1) H1(X,OX)ss = H1(X,OX)F=1 ⊗Fp k

= H1
ét(X,Fp)⊗Fp k = Hom(πét

1 (X),Fp)⊗Fp k = 0,

and there exists some b ∈ N such that (F ∗)b acts by 0 on H1(X,OX)nilp,
sinceH1(X,OX)nilp is finite-dimensional. So (F ∗)b acts by 0 onH1(X,OX).
We prove the proposition for this choice of b.
By assumption on E0, there exists a filtration

0 = E0,0 ⊂ E0,1 ⊂ · · · ⊂ E0,r = E0

the graded quotients of which are isomorphic to OX . By pulling back to Ei
via (F ∗)i, we obtain the filtration

0 = Ei,0 ⊂ Ei,1 ⊂ · · · ⊂ Ei,r = Ei
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of Ei still with graded quotients isomorphic to OX . We prove that Eb(`−1),`
is isomorphic to O`X by induction on `. Assume that Eb(`−1),` ∼= O`X . Then,
for b(`− 1) 6 n 6 `, consider the extension class en of the exact sequence

0 −→ En,` −→ En,`+1 −→ OX −→ 0

in H1(X,En,`) = H1(X,OX)`. The family of classes {en}b`n=b(`−1) defines
an element of the inverse limit of the diagram

H1(X,OX)` F∗−→ · · · F
∗

−→ H1(X,OX)`

of length b with last component eb`. Then, by definition of b, eb` = 0. So
Eb`,`+1 is isomorphic to O`+1

X . This finishes the proof. �

We use Propositions 3.3 and 3.4 to proceed towards the proof of Theo-
rem 2.6.

Proposition 3.5. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Let r be a positive integer.
Let E ∈ Conv(X/K) be of rank r and let E be a lattice of E such that
EX ∈ Coh(X) is strongly µ-semistable. Then, there exists a positive integer
c = c(X, r) such that ((F ∗)cE)X ∈ Crys(X/k) is constant.

The following result of Langer [21, Thm. 4.1] plays a crucial rôle in the
proof of Proposition 3.5.

Theorem 3.6 (Langer). — LetX be a smooth projective variety over k,
let E be a strongly µ-semistable sheaf with vanishing Chern classes. Then
there exists a filtration of E whose graded quotients are µ-stable, strongly
µ-semistable locally free sheaves with vanishing Chern classes.

Proof of Proposition 3.5. — Take a = a(X, r), b = b(X) ∈ N so that the
statement of Propsitions 3.3, 3.4 are satisfied, and set c := br(r−1)+ar+1.
We prove that the proposition is true for this choice of c.

First, note that (F ∗)nEX = ((F ∗)nE)X for any n ∈ N. Hence (F ∗)nEX
has vanishing Chern classes by Proposition 3.1, and is strongly µ-semistable
by assumption, for all n > 0.
For 0 6 n 6 c−1 = br(r−1)+ar, define a filtration {((F ∗)nEX)q}qnq=0 of

(F ∗)nEX whose graded quotients are µ-stable, strongly µ-semistable with
vanishing Chern classes, in the following way. First, when n = 0, take a
filtration {(EX)q}q0

q=0 of EX whose graded quotients are µ-stable, strongly
µ-semistable with vanishing Chern classes. (Such a filtration exists by The-
orem 3.6 because EX has vanishing Chern classes by Proposition 3.1 and
strongly µ-semistable by assumption.) By definition of {((F ∗)n−1EX)q}qn−1

q=0 ,
the pull-back {F ∗((F ∗)n−1EX)q}qn−1

q=0 of it by F ∗ defines a filtration of
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(F ∗)nEX whose graded quotients are strongly µ-semistable with vanishing
Chern classes. Then, using Theorem 3.6 for the graded quotients, we can
refine this filtration to a filtration {((F ∗)nEX)q}qnq=0 of (F ∗)nEX whose
graded pieces are µ-stable, strongly µ-semistable with vanishing Chern
classes.
By definition, we have

1 6 q0 6 q1 6 · · · 6 qc−1 = qbr(r−1)+ar 6 r.

So, there exists some j with 0 6 j 6 b(r − 1)2 + a(r − 1) such that qj =
· · · = qj+b(r−1)+a(=: Q).

Put Gn,q := ((F ∗)nEX)q/((F ∗)nEX)q−1. Then, for each 1 6 q 6 Q,
any subsequence of length a of the sequence {Gn,q}j+b(r−1)+a

n=j satisfies the
assumption of Proposition 3.3. Hence {Gn,q}j+b(r−1)+a

n=j+a ’s (1 6 q 6 Q) are
isomorphic to the constant sequence {OX}j+b(r−1)+a

n=j+a . Then, we can apply
Proposition 3.4 to the sequence {(F ∗)nEX}j+b(r−1)+a

n=j+a . So (F ∗)j+b(r−1)+a×
EX = OrX (hence (F ∗)c−1EX = OrX) in Coh(X).

Therefore, ((F ∗)c−1E)X has the form (OrX ,∇) when regarded as an ob-
ject in MIC(X)qn via the equivalence (1.8). Then, by (1.30), one has

((F ∗)cE)X = F ∗(OrX ,∇) = (OrX , d)

in MIC(X)qn. So ((F ∗)cE)X ∈ Crys(X/k) is constant. �

Proposition 3.5 deals with the value of a lattice of an isocrystal in
Crys(X/k). To go up to Crys(X/Wn), we consider the deformation the-
ory of crystals.
Let X be a smooth projective variety over k and fix n, r ∈ N. Let us

denote the restriction functor Crys(X/Wn+1) −→ Crys(X/Wn) by G 7→ G.
Let D be the set of pairs (G,ϕ) consisting of G ∈ Crys(X/Wn+1) and an
isomorphism ϕ : OrX/Wn

'−→ G in Crys(X/Wn). Then D is a pointed
set, whose distinguished element is (OX/Wn+1 , id). The pullback (G,ϕ) 7→
(F ∗G,F ∗ϕ) by F ∗ defines a morphism of pointed sets F ∗ : D −→ D. We
denote by Hn

crys(X/k) the crystalline cohomology of X over k, which is the
same as the de Rham cohomology Hn(X,Ω•X/k).

Proposition 3.7. — Let the notations be as above. Then there is an
isomorphism of pointed sets

e : D '−→ H1
crys(X/k)r

2
.
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Moreover, the following diagram is commutative:

(3.2) D e //

F∗

��

H1
crys(X/k)r2

F∗

��
D e // H1

crys(X/k)r2
.

Proof. — For ` = n, n+1, letD` be the PD-envelope of the closed immer-
sion X

ι
↪→ PNk ↪→ PNW`

. Using the equivalence Crys(X/W`) ∼= MIC(D`)qn

of (1.12), we consider the pointed set D in terms of objects in MIC(D`)qn.
Namely, we denote the restriction MIC(Dn+1) −→ MIC(Dn)qn by (G,∇) 7→
(G,∇) and we regard D as the set of pairs ((G,∇), ϕ) consisting of (G,∇) ∈
MIC(Dn+1)qn and an isomorphism ϕ : (ODn , d) '−→ (G,∇) in MIC(Dn)qn.

Assume given an object G := ((G,∇), ϕ) in D. Take an affine open cover-
ing U = {Uα}α of Dn+1 and for each α, take an isomorphism ψα : OrUα

'−→
G|Uα which lifts ϕ|Dn×Dn+1Uα

. On each Uα, the connection ψα∗(∇) is writ-
ten as d + pnAα, where Aα ∈ Mr(Γ(Uα,Ω1

D1
)). On each Uαβ := Uα ∩ Uβ ,

the gluing (ψα|Uαβ )−1 ◦ (ψβ |Uαβ ) is given by 1 + pnBαβ , where Bαβ ∈
Mr(Γ(Uαβ ,OD1)). Then, dAα = 0 by the integrability of the connection
ψα
∗(∇) and Bβγ − Bαγ + Bαβ = 0 by the cocycle condition for the maps

(ψα|Uαβ )−1 ◦ (ψβ |Uαβ ). Also, by the compatibility of the connection with
the gluing, we have the equality

(1 + pnBαβ)−1d(1 + pnBαβ) + (1 + pnBαβ)−1pnAα(1 + pnBαβ) = pnAβ .

We see from this the equality Aβ−Aα = dBαβ . So ({Aα}, {Bαβ}) defines a
1-cocycle of Tot Γ(U ,Ω•D1

)r2 . We define e(G) to be the class of this 1-cocycle
in the cohomology H1(Tot Γ(U ,Ω•D1

)r2) = H1
crys(X/k)r2 .

In order to show that this is well-defined, we need to check that e(G) is
independent of the choice of the affine open covering U = {Uα}α and the
isomorphisms {ψα}α. If we choose another set of isomorphisms {ψ′α}α, we
have another set of matrices ({A′α}, {B′αβ}). Then, on each Uα, the map
ψ−1
α ◦ ψ′α is given by 1 + pnCα, where Cα ∈ Mr(Γ(Uα,OD1)), and we see

by direct calculation the equalities dCα = A′α − Aα, Cβ − Cα = B′αβ −
Bαβ . So the class e(G) does not depend on the choice of the isomorphisms
{ψα}α. One can prove the independence of the choice of affine open covering
U = {Uα}α by taking a refinement. So we obtain the map e : D −→
H1

crys(X/k)r2 , and it is easily seen that this is a map of pointed sets. One
can prove the bijectivity of e by considering the above argument in reverse
direction.
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Finally, we prove the commuativity of the diagram (3.2). Let FP : PNWn+1

−→ PNWn+1
be the σ∗Wn+1

-linear map which sends the coordinates to their
p-th powers. Then, there exists a unique PD-morphism FDn+1 : Dn+1 −→
Dn+1 which makes the following diagram commutative:

X //

F

��

Dn+1 //

FDn+1

��

PNWn+1

P
��

X // Dn+1 // PNWn+1
.

Because FDn+1 mod p is equal to the Frobenius map FD1 for D1, we see
(from the above expression of cocycle) that the class e(G) = [({Aα}, {Bαβ})]
is sent by F ∗ (on cohomology) to [({F ∗D1

Aα}, {F ∗D1
Bαβ})] = e(F ∗(G)).

From this, we see the desired commutativity. �

Proposition 3.8. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Let E ∈ Conv(X/K). Let E
be a lattice of E such that the restriction EX ∈ Crys(X/k) is constant.
Then there exists a positive integer d = d(X) such that, for any n ∈ N, the
restriction ((F ∗)d(n−1)E)n of (F ∗)d(n−1)E ∈ Crys(X/W ) to Crys(X/Wn)
is constant.

Proof. — We have the decomposition H1
crys(X/k) = H1

crys(X/k)nilp ⊕
H1

crys(X/k)ss of H1
crys(X/k) as in the proof of Proposition 3.4, where H1(X,

OX) is replaced by H1
crys(X/k). As F ∗ is 0 on the image of H0(X,Ω1

X/k)
in H1

crys(X/k), one has H1
crys(X/k)ss ⊂ H1(X,OX)ss = 0 by (3.1), and

there exists some d ∈ N such that (F ∗)d acts by 0 on H1
crys(X/k)nilp, since

H1
crys(X/k)nilp is finite-dimensional. So (F ∗)d acts by 0 on H1

crys(X/k). We
prove the proposition for this choice of d, by induction on n.

Assume that ((F ∗)c+d(n−1)E)n is constant. Then ((F ∗)c+d(n−1)E)n+1
defines the class e(((F ∗)c+d(n−1)E)n+1) inH1

crys(X/k)r2 by Proposition 3.7.
Then, by definition of d, we have 0 = (F ∗)de(((F ∗)c+d(n−1)E)n+1) =
e(((F ∗)c+dnE)n+1), and so ((F ∗)c+dnE)n+1 is constant again by Propo-
sition 3.7. This finishes the proof. �

Combining Propositions 3.5 and 3.8, we obtain the following:

Corollary 3.9. — Let X be a connected smooth projective variety
over k with trivial étale fundamental group. Let r be a positive integer.
Let E ∈ Conv(X/K) of rank r and let E be a lattice of E such that
EX ∈ Coh(X) is strongly µ-semistable. Let c = c(X, r) and d = d(X) be
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as in Proposition 3.5 and Proposition 3.8. Then, for any n ∈ N, the restric-
tion ((F ∗)c+d(n−1)E)n of (F ∗)c+d(n−1)E ∈ Crys(X/W ) to Crys(X/Wn) is
constant.

Now we can finish the proof of Theorem 2.6:
Proof of Theorem 2.6. — Let r be the rank of E and let c = c(X, r),

d = d(X) be as in Proposition 3.5, Proposition 3.8 for X and r. Apply
Corollary 3.9 to E(c+d(n−1)) and its lattice E(c+d(n−1)) for each n > 1.
Then we see that the restriction of G(n) := (F ∗)c+d(n−1)E(c+d(n−1)) to
Crys(X/Wn), which we denote by G

(n)
n , is constant. Note that, for any

n > 1, this is a lattice of (F ∗)c+d(n−1)E(c+d(n−1)) = E .
We put E := G(1) so that it is a lattice of E with E1 ∈ Crys(X/k)

constant. We may assume by replacingG(n) by pmnG(n) for suitablemn ∈ Z
that G(n) ⊆ E, G(n) 6⊆ E. We further fix a natural number m > 1. Then,
for any n > m, the image of the composite map

(3.3) H0
crys(X/Wn, G

(n)
n ) −→ H0

crys(X/Wn, En)

−→ H0
crys(X/Wn, En/p

mEn) = H0
crys(X/Wm, Em)

is not zero: Otherwise, as G(n)
n is constant, it would be contained in pmEn ⊂

En. Hence G(n) is contained in pE, which is a contradiction. So, for n > m,
the map

H0
crys(X/Wn, En) −→ H0

crys(X/Wn, En/p
mEn) = H0

crys(X/Wm, Em)

is non-zero. Hence{
Im(H0

crys(X/Wn, En) −→ H0
crys(X/Wm, Em))

}
n>m

is a decreasing family of non-zero Wm-submodules of the finite type Wm-
module H0

crys(X/Wm, Em). So, Wm being an Artinian ring, the family is
stationary, thus non-zero, and

0 6=
⋂

m6n∈N
Im(H0

crys(X/Wn, En) −→ H0
crys(X/Wm, Em)).

Thus the system {H0
crys(X/Wn, En)}n satisfies the Mittag–Leffler condition

and
0 6= H0

crys(X/W,E) = lim←−
n

H0
crys(X/Wn, En).

As E is p-torsion free, H0
crys(X/W,E) is a free module of rank s over W ,

for some 1 6 s 6 r. If s < r, then the quotient Q := E/
(
H0

crys(X/W,E)⊗W
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OX/W
)
∈ Crys(X/W ) is nonzero. The p-torsion of Q is identified with the

kernel of the homomorphism

(H0
crys(X/W,E)/p)⊗k OX/k = OsX/k

−→ E1 = H0
crys(X/k,E1)⊗k OX/k = OrX/k

in Crys(X/k), which is zero. Thus Q ∈ Crys(X/W ) is p-torsion free. By
multiplying the composite map G(n) ↪→ E � Q with a suitable p-power, we
obtain a map G(n) → Q whose image is not contained in pQ. Then the dia-
gram (3.3) with En replaced by Qn shows that H0

crys(X/W,Q) 6= 0. On the
other hand, one has the exact sequence 0→ H0

crys(X/W,E)⊗W OX/W
ι−→

E
q−→ Q→ 0 in Crys(X/W ). By definition, H0

crys(ι) is an isomorphism and
by Proposition 2.10(2), H0

crys(q) is surjective. Thus H0
crys(X/W,Q) = 0,

a contradiction. Thus s = r and E is constant in Crys(X/W ), thus E is
constant in Crys(X/W )Q. This finishes the proof. �

We give a proof of Corollary 2.7.

Proof of Corollary 2.7. — We check that any infinitesimal isocrystal
E = Q ⊗ E ∈ Inf(X/W )Q satisfies the assumption of Theorem 2.6. By
Proposition 3.10 below, the functor F ∗ : Inf(X/W ) −→ Inf(X/W ) is an
equivalence. Thus the Fn-division E(n) of E has the form Q⊗E(n) for some
E(n) ∈ Inf(X/W ). Then the value E(n)

X of E(n) at X has the structure of an
object in Inf(X/k), which is constant by the affirmation [9] of Gieseker’s
conjecture. So E

(n)
X is isomorphic to OrX for some r and hence strongly

µ-semistable. �

Proposition 3.10. — For a smooth variety X over k, the functor

F ∗ : Inf(X/W ) −→ Inf(X/W )

is an equivalence.

Proof. — Because the category Inf(X/W ) satisfies the Zariski descent
property, we may work locally. So we may assume that X lifts to a p-adic
smooth formal schemeXW overW on which there exists a lift FW : XW −→
XW of Frobenius morphism on X. Then we have the equivalence (1.18) in
which the functor F ∗ on the left hand side is compatible with the pull-back
F ∗W by FW on the right hand side. Thus it suffices to see that F ∗W is an
equivalence, which is proven in [6, Thm. 2.1]. �
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4. Proof of Theorem 2.8

In this section, we prove Theorem 2.8. The following proposition, which
is a crystalline version of Langton’s theorem [25], is a key step for the proof:

Proposition 4.1. — Let X be a smooth projective variety over k and
let E ∈ Crys(X/W )Q be irreducible. Then there exists E ∈ Crys(X/W )
with E = Q⊗ E such that EX ∈ Crys(X/k) = MIC(X)qn is µ-semistable.

Proof. — We follow the proof of Langer [22, Thm. 5.1] and Huybrechts–
Lehn’s book [17, 2.B]. Let us consider the following two claims:

(A) There exists E ∈ Crys(X/W ) with E = Q ⊗ E such that EX ∈
Coh(X) is torsion free.

(B) There exists E ∈ Crys(X/W ) with E = Q ⊗ E such that EX ∈
Crys(X/k) = MIC(X)qn is µ-semistable.

To prove the proposition, we first prove the claim (A) and then prove the
claim (B). However, since the proof of (A) and that of (B) are parallel, we
will describe them simultaneously in the following.
First take a p-torsion free crystal E ∈ Crys(X/W ) with E = Q ⊗ E

in the case (A), and take a p-torsion free crystal E ∈ Crys(X/W ) with
E = Q⊗ E and EX torsion free in the case (B). (This is possible because,
when we prove (B), we can assume the claim (A).) Put E0 := E. If E0 does
not satisfy the conclusion of the claim, let B0 be the maximal torsion OX -
submodule of E0

X in the case (A) and the maximal destabilizing subobject
of E0

X in the category Crys(X/k) in the case (B). In the case (A), one can
check (by looking at E0

X as an object (E0
X ,∇) in MIC(X) and noting the

fact that fe = 0 (e ∈ E0
X , f ∈ OX) implies f2∇(e) = 0) that B0 is actually

an object in Crys(X/k). Let E1 be the kernel of E0 −→ E0
X −→ E0

X/B
0.

If E1 satisfies the conclusion of the claim, we are done. Otherwise, let B1

be the maximal torsion OX -submodule (actually an object in Crys(X/k))
of E1

X in the case (A) and the maximal destabilizing subobject of E1
X in

the category Crys(X/k) in the case (B). If the claim is not true, we obtain
a sequence

E = E0 ⊃ E1 ⊃ E2 ⊃ · · · .
Let Gn := EnX/B

n = En/En+1. Note that in the case (A), the rank of
Gn is the same as the rank of EnX , which is the same as the rank of E . In
addition, as Bn ⊂ EnX is the maximal torsion submodule, Gn is torsion free
in Coh(X). In the case (B), Gn is nonzero by definition of Bn, and torsion
free by the maximality of Bn. By definition, one has exact sequences 0→
En+1 → En → Gn → 0 and 0 → En/pEn+1 → En+1

1 → En+1/pEn →
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0, both in Crys(X/W ). As pEn/pEn+1 ∼= Gn and En+1/pEn = Bn in
Crys(X/W ), this yields the exact sequences

(4.1) 0−→Bn −→ EnX −→Gn −→ 0, 0−→Gn −→ En+1
X −→Bn −→ 0

in Crys(X/k). From these, we see that the slope µ(EnX) of EnX is constant
and so equal to µ(EX) in the case (B).

Let Cn be the kernel of the composite Bn+1 → En+1
X → Bn. It is nothing

but Bn+1 ∩ Gn, and this is zero in the case (A) because Bn+1 is torsion
while Gn is torsion free. In the case (B), if Cn = 0, µ(Bn+1) 6 µ(Bn) due
to the maximality of Bn. If Cn 6= 0, µ(Cn) 6 µmax(Gn) < µ(Bn) because
Cn is a subobject of Gn and Bn is the maximal destabilizing subobject.
So, if µ(Bn+1) 6 µ(Cn), we obtain the inequality µ(Bn+1) < µ(Bn). On
the other hand, if µ(Bn+1) > µ(Cn), we have µ(Bn+1) < µ(Bn+1/Cn) 6
µ(Bn) because Bn is µ-semistable as a crystal. Hence µ(Bn+1) < µ(Bn)
when Cn 6= 0. In conclusion, µ(Bn) (n ∈ N) is non-increasing, and strictly
decreasing when Cn 6= 0. But the latter case can happen only finitely many
times, because µ(Bn) should be contained in 1

r!Z (where r is the rank of
E) and > µ(E1). Therefore, Cn = 0 for n� 0 in the case (B).

So we may assume that Cn = 0, namely, Bn+1 ∩ Gn = 0. This implies
that we have the inclusions

(4.2) · · · ⊇ Bn ⊇ Bn+1 ⊇ · · · , · · · ⊆ Gn ⊆ Gn+1 ⊆ · · · .

We may assume also that the rank of Gn is constant and that µ(Bn) (n ∈
N), µ(Gn) (n ∈ N) are constant in the case (B). Note also that Gn = Gn+1

if and only if Bn = Bn+1.
Next we prove that Gn is constant for n � 0. In the case (A), the

support of Bn is non-increasing and so it is constant for n � 0. So, for
n � 0, Bn = Bn+1 outside some codimension 2 closed subscheme of X.
Indeed, if the support of the Bn for n large is in codimension > 2, there
is nothing to prove, else it is a divisor, and Bn on each generic point of
the divisor is eventually constant. So Gn = Gn+1 outside a codimension 2
closed subscheme. Hence the double dual of Gn is constant and, as Gn is
torsion free, contains all the Gn. So the right tower in (4.2) is stationary
and then Gn is constant for n � 0. In the case (B), the constancy of
the rank and the slope and the torsion freeness of Gn imply the equality
Gn = Gn+1.

So we may assume that Bn, Gn are constant. So we write it by B,G,
respectively. Then the exact sequences (4.1) split, and so EnX = B ⊕ G.
Now define Qn := E/En. Then Qn has a natural filtration whose graded
quotients are Ei/Ei+1 ∼= G. This implies that Qn is nonzero and when
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regarded as an object in Crys(X/Wn), it is flat over Wn. So Q = (Qn)n ∈
Crys(X/W ) is a nonzero p-torsion free crystal. Also, we have the canonical
surjection E −→ Q, hence the surjection E −→ Q ⊗Q. In the case (A), if
it is not an isomorphism, this contradicts the irreducibility of E . If it is an
isomorphism, Q gives the lattice such that QX = Q1 = G is torsion free.
In the case (B), since B is non-zero and torsion free, E −→ Q ⊗ Q is not
an isomorphism, and this contradicts the irreducibility of E . This finishes
the proof. �

Proposition 4.2. — Let X be a smooth projective variety over k and
let G ∈ Crys(X/k) be of rank r and µ-semistable. Assume moreover one of
the following conditions:

(1) r = 1;
(2) µmax(Ω1

X) < 2, r = 2 and µ(G) = 0;
(3) µmax(Ω1

X) < 1, r = 3 and µ(G) = 0;
(4) µmax(Ω1

X) < 1
N(r) , where N(r) := maxa,b>1,a+b6r lcm(a, b).

Then G is strongly µ-semistable in Coh(X).

Proof. — In the case (1), the only point of the assertion is that the
Frobenius pullbacks of G remain torsion free, which is trivial because tor-
sion freeness of OX -modules is preserved by F ∗ as X is smooth so F ∗ is
flat and for any section of OX , its p-th power lies in F−1OX . So we will
prove the proposition in the cases (2), (3) or (4). The proof is a variant of
that in [28, Thm. 2.1].
First we prove the claim that any µ-semistable sheaf H of rank r is

strongly µ-semistable in Coh(X) under one of the following conditions:

(a) µmax(Ω1
X) < 2, r = 2 and µ(H) = 0;

(b) µmax(Ω1
X) < 1, r = 3 and µ(H) = 0;

(c) µmax(Ω1
X) < 1

N(r) . In this case, we prove it by induction on r.

For this, it suffices to prove that F ∗H is µ-semistable in Coh(X). Assume
the contrary and let H ′ ⊂ F ∗H be the maximal destablizing subsheaf
of H. Let H ′′ := H/H ′. Then the connection ∇can : F ∗H −→ F ∗H ⊗
Ω1
X in (1.29) induces a linear map ∇can : H ′ −→ H ′′ ⊗ Ω1

X . If we prove
∇can = 0, (H ′,∇can|H′) defines a submodule with integrable connection of
(F ∗H,∇can) and so there exists aOX -submoduleH ′0 ofH withH ′ = F ∗H ′0.
Then we have pµ(H ′0) = µ(H ′) > µ(F ∗H) = pµ(H) and this contradicts
the µ-semistability of H. So it suffices to prove the equality ∇can = 0. To
prove it, we may replaceH ′′ by its graded quotients with respect to Harder–
Narasimhan filtration. So we may assume that H ′, H ′′ are µ-semistable and
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µ(H ′) > µ(H ′′). Also, it suffices to prove that the map

f : TX −→ Hom(H ′, H ′′)

(where TX denotes the tangent sheaf onX) induced by∇can is equal to zero.
Since TX is locally free and Hom(H ′, H ′′) is torsion free as H ′′ is, it suffices
to prove f = 0 outside some codimension 2 closed subscheme of X. Until
the end of the proof of the claim, we will consider sheaves and morphisms of
sheaves up to some codimension 2 subscheme in X. Then Hom(H ′, H ′′) ∼=
H ′
∨ ⊗H ′′. When (a) or (b) is satisfied, at least one of H ′, H ′′ is of rank 1.

So H ′∨ ⊗H ′′ is µ-semistable of slope −µ(H ′) + µ(H ′′), which is 6 −2 in
the case (a) and 6 −1 in the case (b) (we use the assumption µ(H) = 0
here). Hence −µ(H ′) + µ(H ′′) < −µmax(Ω1

X) = µmin(TX). So we see that
f = 0.

When (c) is satisfied, H ′, H ′′ are strongly µ-semistable by induction hy-
pothesis. Then, by [34, Thm. 3.23] (see also [19, Cor. A.3.1]), H ′∨ ⊗ H ′′
is µ-semistable of slope −µ(H ′) + µ(H ′′) 6 −1

lcm(rankH′,rankH′′) 6 −
1

N(r) <

−µmax(Ω1
X) = µmin(TX). So we see that f = 0 also in this case.

Now we prove the proposition. In the proof, we regard G as an object in
MIC(X)qn and so we denote it by (G,∇). By the argument above, it suffices
to prove that G is µ-semistable as sheaf. Assume the contrary and let
H ′ ⊂ G be the maximal destablizing subsheaf of G. Let H ′′ := G/H ′. Then
the connection ∇ : G −→ G⊗Ω1

X induces a linear map ∇ : H −→ H ′⊗Ω1
X .

It suffices to prove that ∇ = 0: Indeed, if this is the case, (H,∇|H) defines
a destabilizing subobject of (G,∇), which is a contradiction.
We prove that ∇ = 0 in a similar way to the proof of ∇can = 0 above.

We replace H ′′ by its graded quotients with respect to Harder–Narasimhan
filtration so thatH ′, H ′′ are µ-semistable and µ(H ′) > µ(H ′′), and we prove
that the map

f : TX −→ Hom(H ′, H ′′)

induced by ∇ is equal to zero outside some codimension 2 closed sub-
scheme of X. Working again up to some codimension 2 subscheme in
X, we have Hom(H ′, H ′′) ∼= H ′

∨ ⊗ H ′′. When (1) or (2) is satisfied, at
least one of H ′, H ′′ is of rank 1. So H ′

∨ ⊗ H ′′ is µ-semistable of slope
−µ(H ′) + µ(H ′′), which is 6 −2 in the case (1) and 6 −1 in the case (2)
(we use the assumption µ(G) = 0 here). In the case (3), H ′, H ′′ are strongly
µ-semistable by the claim we proved above. Then, H ′∨⊗H ′′ is µ-semistable
of slope −µ(H ′) + µ(H ′′) 6 −1

lcm(rankH′,rankH′′) 6 −
1

N(r) < −µmax(Ω1
X) =

µmin(TX). So we see that f = 0 also in this case. �

Now we give a proof of Theorem 2.8:
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Proof of Theorem 2.8. — First assume that E is irreducible. In this case,
any Fn-division E(n) of E is also irreducible. Then, by Propositions 3.1,
4.1 and 4.2, each E(n) admits a lattice E(n) such that E(n)

X is strongly
µ-semistable as OX -module. So, by Theorem 2.6, we see that E is constant.

In the general case, E has a filtration whose graded quotients are irre-
ducible. So, by the previous case, E can be written as an iterated extension
of constant convergent isocrystals. Since we have H1

conv(X/K,OX/K) =
Q⊗H1

crys(X/W,OX/W ) = 0, where the second equality is proven in Propo-
sition 2.10(2), this finishes the proof. �

We give another application of Proposition 4.1. It seems that the follow-
ing question is frequently asked among experts:

Question. — Let X be a smooth variety of finite type over k and let
E ∈ Conv(X/K). Does there exist a locally free E ∈ Crys(X/W ) with
E = Q⊗ E?

We give the following partial answer to this question, using Proposi-
tion 4.1:

Theorem 4.3. — Let X be a smooth projective variety over k, let E ∈
Conv(X/K). Assume one of the following:

(1) The rank of irreducible constituents of E are 1.
(2) µmax(Ω1

X) < 2 and the rank of irreducible constituents of E are 6 2.
(3) µmax(Ω1

X) < 1 and the rank of irreducible constituents of E are 6 3.
(4) r > 4, µmax(Ω1

X) < 1
N(r) and the rank of irreducible constituents of

E are 6 r, where N(r) := maxa,b>1,a+b6r lcm(a, b).
(5) X lifts to a smooth scheme X̃ over W2 and the rank of irreducible

constituents of E are 6 p.
Then there exists E ∈ Crys(X/W ) locally free with E = Q⊗ E.

The case (1) reproves a weaker version of Proposition 2.11. Also, when
µmax(Ω1

X) 6 0, any convergent isocrystal E on X admits a locally free
crystal E on (X/W )crys with E = Q⊗ E.
Proof. — First we prove the theorem in the cases (1), (2), (3) or (4) by

induction on the rank of E . When E is irreducible, there exists a lattice E of
E such that EX ∈ Coh(X) is strongly µ-semistable, by Propositions 3.1, 4.1
and 4.2. This, together with Proposition 3.1, Theorem 3.6 implies that EX
is locally free. Hence E is also locally free. When E is not irreducible, we
have an irreducible convergent subisocrystal E ′ ( E . Put E ′′ := E/E ′. Then,
by induction hypothesis, there exist locally free lattices E′, E′′ of E ′, E ′′,
respectively. Then H1

conv(X/K, E ′′∨ ⊗ E ′) = Q ⊗ H1
crys(X/W,E′′

∨ ⊗ E′),

TOME 68 (2018), FASCICULE 5



2146 Hélène ESNAULT & Atsushi SHIHO

and from this we see that there exists an extension E of E′ by E′′ in
Crys(X/W ) with E ∼= Q ⊗ E. This E is locally free by construction, and
so the theorem is true for E .

Next we prove the theorem in the case (5). By the argument in the
previous paragraph, we may assume that E is irreducible. Using Proposi-
tion 4.1, we take a lattice E of E such that the restriction (EX ,∇) of E
to Crys(X/k) = MIC(X)qn is µ-semistable. By assumption, rank EX 6 p.
Hence (EX ,∇) is contained in MICp−1(X). So, by [33], there exists a Higgs
module (H, θ) ∈ HIGp−1(X) such that C−1(H, θ) = (EX ,∇), where C−1 is
the inverse Cartier transform. By Proposition 3.1, EX has vanishing Chern
classes. From this and the µ-semistability of (EX ,∇), we see that (H, θ) is
µ-semistable Higgs module with vanishing Chern classes, by [23, Lem. 2,
Cor. 1]. Then, by [23, Thm. 11], H is locally free. Hence so is EX , and then
E is locally free. �
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