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STRONG APPROXIMATION WITH BRAUER–MANIN
OBSTRUCTION FOR TORIC VARIETIES

by Yang CAO & Fei XU

Abstract. — For smooth open toric varieties, we establish strong approxima-
tion off infinity with Brauer–Manin obstruction.
Résumé. — Pour les variétés toriques lisses ouvertes, on établit l’approximation

forte par rapport à l’obstruction de Brauer–Manin hors de infini.

1. Introduction

Strong approximation has various arithmetic application, for example
to determine the existence of integral points by the local-global principle.
By using Manin’s idea, J.-L. Colliot-Thélène and F. Xu established strong
approximation with Brauer–Manin obstruction for homogeneous spaces of
semi-simple and simply connected algebraic groups in [9] to refine the clas-
sical strong approximation. Since then, a significant progress for strong
approximation with Brauer–Manin obstruction has been made for various
homogeneous spaces of linear algebraic groups in [1, 13, 17, 26] and families
of homogeneous spaces in [5, 10]. In this paper, we study strong approx-
imation with Brauer–Manin obstruction for open smooth toric varieties.
Such varieties have been extensively studied over algebraically closed fields
(see [15, 20]). However they are hard to study over number fields. For
example, a smooth toric variety may not be covered by open affine toric
subvarieties over a field.

Notation and terminology are standard. Let k be a number field, Ωk the
set of all primes in k and ∞k the set of all archimedean primes in k. Write
v <∞k for v ∈ Ωk \ ∞k. Let Ok be the ring of integers of k and Ok,S the

Keywords: torus, toric variety, strong approximation, Brauer–Manin obstruction.
2010 Mathematics Subject Classification: 11G35, 14G05, 20G30.



1880 Yang CAO & Fei XU

S-integers of k for a finite set S of Ωk containing ∞k. For each v ∈ Ωk, the
completion of k at v is denoted by kv and the completion of Ok at v by
Ov. Write Ov = kv for v ∈ ∞k. Let Ak be the ring of adeles of k and AS

k

the adeles of k without S-components.
For any scheme X of finite type over k, we denote

Br(X) = H2
ét(X,Gm),

Br1(X) = ker[Br(X)→ Br(Xk̄)],
Bra(X) = coker[Br(k)→ Br1(X)]

where Gm is the group scheme defined by the multiplicative group and
Xk̄ = X ×k k̄ with a fixed algebraic closure k̄ of k. We also use An to
denote an affine space of dimension n. For any subset B of Br(X), one
defines

X(Ak)B =
{

(xv)v∈Ωk ∈ X(Ak)

∣∣∣∣∣ ∑
v∈Ωk

invv(ξ(xv)) = 0, ∀ ξ ∈ B
}

where

invv : Br(kv)
∼=−→


Q/Z if v is finite
1
2Z/Z if v is real
0 if v is complex

by local class field theory. This set is a closed subset of X(Ak) endowed
with adelic topology ([11, §4]). As discovered by Manin, class field theory
implies that X(k) ⊆ X(Ak)B . Let πP denote the projection from adelic
points X(Ak) to adelic points without P -components X(AP

k ) for any finite
subset P of Ωk.

Definition 1.1. — Let X be a scheme of finite type over k, and P a
finite subset of Ωk.

(1) Suppose X(Ak) 6= ∅. We say that X satisfies strong approximation
off P if X(k) is dense in πP (X(Ak)).

(2) Suppose X(Ak)Br(X) 6= ∅. We say that X satisfies strong approx-
imation with Brauer–Manin obstruction off P if X(k) is dense in
πP (X(Ak)Br(X)).

A toric variety over k is defined as a partial equivariant compactification
of a torus over k. More precisely, a toric variety is an integral normal and
separated scheme of finite type over k containing an torus T as Zariski open
subset with a compatible action of T (see [12] or [15]). The main result of
this paper is the following theorem.
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STRONG APPROXIMATION FOR TORIC VARIETIES 1881

Theorem 1.2. — Any smooth toric variety over k satisfies strong ap-
proximation with Brauer–Manin obstruction off ∞k.

Comparing with Theorem 2 in [17] for tori, one also has that a smooth
toric varietyX satisfies strong approximation with algebraic Brauer–Manin
obstruction Br1(X). However, one can not force the rational point to land
in some prescribed connected components at real places from our proof at
this moment. As a corollary, we have:
Corollary 1.3. — Let P be a subset of Ωk with P ⊇ ∞k. Then any

smooth toric variety over k satisfies strong approximation with Brauer–
Manin obstruction off P .

We learned that D. Wei has obtained the same result in [25] under the
condition k̄[X]× = k̄×. More precisely, he proves that for any smooth
toric variety X satisfying k̄[X]× = k̄×, any closed subset W ⊆ X with
codim(W,X) > 2, and any v0 ∈ Ωk, the variety X −W satisfies strong ap-
proximation with Brauer–Manin obstruction off v0. Without the condition
k̄[X]× = k̄×, this result does not hold in general (see Example 5.2).
This paper is organized as follows.
In Section 2, we study the structure of smooth toric varieties over an arbi-

trary field of characteristic 0. We give a structure theorem for affine smooth
toric varieties (Proposition 2.4). We then define the notion of smooth toric
varieties of pure divisorial type (Definition 2.5) and the notion of standard
toric varieties (Definition 2.8). In any smooth toric variety, there exists a
closed subvariety of codimension > 2, whose complement is a smooth toric
variety of pure divisorial type (Proposition 2.6). We construct a morphism
from a standard toric variety to a given toric variety, and prove a structure
theorem for smooth toric varieties by this morphism (Proposition 2.10).
In Section 3, we extend strong approximation with Brauer–Manin ob-

struction off ∞k for tori proved by Harari in [17] to a relative strong
approximation with Brauer–Manin obstruction off ∞k for tori (Proposi-
tion 3.4). We establish strong approximation off ∞k for standard toric
varieties (Corollary 3.7).
In Section 4, using the morphism constructed in Section 2, we establish

the crucial step (Proposition 4.1), which gives a precise relation between
the Ov-points of a given toric variety and the Ov-points of a standard toric
variety for almost all place v ∈ Ωk. Then, by combining relative strong ap-
proximation for tori and strong approximation for standard toric varieties,
we establish strong approximation with Brauer–Manin obstruction off ∞k

for smooth toric varieties of pure divisorial type (Proposition 4.3), and then
for any smooth open toric varieties (Theorem 4.5).

TOME 68 (2018), FASCICULE 5
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In Section 5, we give an example (Example 5.2), which shows that the
complement of a point in a toric variety may no longer satisfy strong ap-
proximation with Brauer–Manin obstruction off ∞k. This is in contrast
with the case of affine space minus a closed subscheme of codimension > 2
(Proposition 3.6).

Acknowledgements. Special thanks are due to J.-L. Colliot-Thélène
who suggested significant improvement from the original version. We would
like to thank Jiangxue Fang for helpful discussion on toric varieties and
David Harari for drawing our attention to [3]. Part of the work was done
when the second named author visited IHES from Nov. 2013 to Dec. 2013
and was also supported by NSFC grant no. 11031004.

2. Structure of smooth toric varieties

Toric varieties have been extensively studied over an algebraically closed
field (see [15, 20]). In this section, we study the structure of toric varieties
over a field k with char(k) = 0. Let k̄ be an algebraic closure of k. For a
torus T over k, we denote the character group of T by T ∗ = Homk̄(T,Gm),
which is a free Z-module of finite rank with continuous action of Γk =
Gal(k̄/k). It is well-known that these two categories are anti-equivalent
(see [14, Exposé X, Proposition 1.4]).
The simplest example of toric variety is As ×Gtm containing the natural

open torus Gs+tm for some non-negative integers s and t. Such toric varieties
are the building blocks of smooth toric varieties. The following lemma is
due to Sumihiro in [24].

Lemma 2.1 (Sumihiro). — Let k = k̄. Any toric variety (T ↪→ X) has
a finite open covering {Uj} of X over k̄ such that all (T ↪→ Uj)’s are
affine toric sub-varieties over k̄. Moreover, if X is smooth, then one has
isomorphisms of toric varieties over k̄

T
∼= //

iT

��

Gsj+tjm

��
Uj ∼=

// Asj ×k̄ G
tj
m

with some integers sj , tj > 0 and sj + tj = dim(T ) for each j, where iT is
the toric embedding T ↪→ X.

ANNALES DE L’INSTITUT FOURIER
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Proof. — By Lemma 8 and Corollary 2 in [24], one has a finite affine
open covering {Uj} of X over k̄ such that all Uj ’s are T -stable. Since X is
irreducible, one has Uj ∩ iT (T ) 6= ∅. Take

x0 = iT (t0) ∈ Uj(k̄) ∩ iT (T (k̄))

with t0 ∈ T (k̄) and one obtains iT (T (k̄)) = iT (T (k̄)t0) ⊆ Uj(k̄). Therefore
iT : T ↪→ Uj for all j by Hilbert Nullstellensatz and all Uj ’s are toric
varieties with respect to T .
If X is smooth, all Uj ’s are smooth. Thus (T ↪→ Uj) is isomorphic to

(Gsj+tjm ↪→ Asj×k̄G
tj
m) by the criterion of smoothness for affine toric variety

(see [20, Theorem 1.10]) for all j. �

Remark 2.2. — Lemma 2.1 does not hold over a general field. For exam-
ple, consider the conic x2 − ay2 = z2 inside P2 over Q with a 6∈ (Q×)2.
This conic is a toric variety containing an open subset with z 6= 0 which is
isomorphic to the restriction of scalar of the norm one torus

T = Res1
Q(
√
a)/Q(Gm).

This toric variety has no open affine toric subvariety covering over Q. This
is because the complement of T inside this conic is a point of degree 2 over
Q. If an affine toric subvariety over Q contains this point, then this affine
toric variety is the whole space. However, this conic is not affine.

The set of rational points of toric varieties can be covered by open affine
toric sub-varieties.

Corollary 2.3. — Let (T ↪→ X) be a toric variety over k. If x ∈ X(k),
there is an open affine toric subvariety (T ↪→ M) of (T ↪→ X) over k such
that x ∈M(k).

Proof. — For x ∈ X(k), there is a finite Galois extension k′/k and an
open affine toric variety (Tk ×k k′ ↪→ U) over k′ such that x ∈ U(k′) by
Lemma 2.1. Then

x ∈M =
⋂

σ∈Gal(k′/k)

σ(U)

and M is stable under Gal(k′/k). One concludes that M is defined over
k by Galois descent (see [2, §6.2, Example B]) and (T ↪→ M) is an open
affine toric variety over k by separateness of X. �

Since the number of k̄-orbits of T (k̄) in X(k̄) are finite for a smooth toric
variety X over k, by Galois descent, there is a smallest open affine toric
subvariety containing a given rational point over k.

TOME 68 (2018), FASCICULE 5
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Proposition 2.4. — If (T ↪→ X) is a smooth affine toric variety over
k, then the homomorphism of Γk-modules

k̄[T ]×/k̄× → DivXk̄\Tk̄(Xk̄); f 7→ divXk̄\Tk̄(f)

is surjective, which induces an injective homomorphism of tori

ResK/k(Gm)→ T

with a finite étale k-algebra K/k. Moreover,
(1) This injective homomorphism of tori can be extended to a closed

immersion of toric varieties ResK/k(A1) ↪→ X.
(2) (ResK/k(Gm) ↪→ ResK/k(A1)) is a unique closed toric subvariety of

(T ↪→ X) such that the quotient homomorphism

φ : T → T1 with T1 = T/ResK/k(Gm)

can be extended to a faithful flat morphism φ : X → T1 over k
commuting with the action

T ×k X
φ×φ //

mX

��

T1 ×k T1

mT1

��
X

φ
// T1

and φ−1(1) ∼= ResK/k(A1).
(3) φ induces an isomorphism Br1(T1) ∼→ Br1(X).

Proof. — Since Pic(Xk̄) = 0 by Lemma 2.1, one has that every Weil
divisor of Xk̄ is principal and the following sequence

1→ k̄[X]×/k̄× → k̄[T ]×/k̄× → DivXk̄\Tk̄(Xk̄)→ 1

of Γk-module by sending f 7→ divXk̄\Tk̄(f) is exact for any f ∈ k̄[T ]×.
Since DivXk̄\Tk̄(Xk̄) is a permutation Galois module, there is a finite étale
k-algebra K/k such that

(ResK/k(Gm))∗ = DivXk̄\Tk̄(Xk̄)

and the induced map ResK/k(Gm) → T is an injective homomorphism of
tori.
(1). — Fix the set of generators {D1, . . . , Ds} of DivXk̄\Tk̄(Xk̄) such that

each Di is a primitive divisor of Xk̄ for 1 6 i 6 s. For any f ∈ k̄[X], one has
ordDi(f) > 0 for 1 6 i 6 s. This implies that the injective homomorphism

ANNALES DE L’INSTITUT FOURIER
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of tori ResK/k(Gm) → T can be extended to ResK/k(A1) → X. Since Di

is principal for 1 6 i 6 s, one further concludes the map

k̄[X]→ k̄[ResK/k(A1)]

is surjective. Namely, the extended morphism ResK/k(A1)→ X is a closed
immersion.
(2). — By the above short exact sequence, one has that T ∗1 = k̄[X]×/k̄×.

Let
B = {f ∈ k̄[X]× : f(1T ) = 1}

which is stable under the action of Γk and k̄[B] be the group algebra gen-
erated by B over k̄. Then

k̄[X]× ∼= k̄× ⊕B, f 7→ (f(1), f(1)−1f)

as Γk-module. The k̄-algebra isomorphism

k̄[T1] ∼= k̄[B] induced by B ∼= k̄[X]×/k̄×

is compatible with Γk-action. Moreover, the natural inclusion of k̄-algebras
k̄[B] ⊆ k̄[X] is compatible with Γk-action as well. This gives the morphism
X → T1 over k which extends φ : T → T1. Since φ is a homomorphism of
tori, this implies that the diagram in (2) commutes.
Since φ−1(1) contains ResK/k(Gm) and is closed, one obtains that φ−1(1)

contains ResK/k(A1). By comparing the dimension, one concludes that
φ−1(1) = ResK/k(A1).
By Lemma 2.1, one has

Xk̄
∼= As ×k̄ (T1 ×k k̄) and φ̄ = φ×k k̄ : Xk̄ → T1 ×k k̄

is the projection. Therefore φ : X → T1 is faithfully flat.
Now we prove the uniqueness. Suppose that (T ↪→ X) contains another

closed toric subvariety

(ResK′/k(Gm) ↪→ ResK′/k(A1))

with a finite étale k-algebra K ′/k such that the quotient homomorphism

φ′ : T → T ′1 with T ′1 = T/ResK′/k(Gm)

can be extended to a morphism φ′ : X → T ′1 over k satisfying φ′−1(1) =
ResK′/k(A1). In this case, φ′ induces an injective Γk-homomorphism

χ∗ : T ′∗1 → k̄[X]×/k̄× = T ∗1 such that T ∗1 /χ
∗(T ′∗1 ) is torsion free

and φ′ = χ◦φ with T1
χ−→ T ′1 is induced by χ∗. Since φ′−1(1) = ResK′/k(A1),

one has k̄[φ′−1(1)]× = k̄×. Since φ : X → T1 is faithfully flat, φ : φ′−1(1)→
χ−1(1) is faithfully flat. Thus φ∗ : k̄[χ−1(1)]× → k̄[φ′−1(1)]× = k̄× is

TOME 68 (2018), FASCICULE 5
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injective. Since χ−1(1) = ker(χ), one has k̄[ker(χ)]× = k̄× and ker(χ) is
trivial. This implies that T ∗1 = χ∗(T ′∗1 ) and χ is an isomorphism. One
concludes that φ−1(1) = φ′−1(1) and the uniqueness follows.
(3). — By the Hochschild–Serre spectral sequence (see [22, Lemma 6.3])

with Pic(Xk̄) = Pic(T1 ×k k̄) = 0, we have

Br1(X) ∼= H2(k, k̄[X]×) ∼= H2(k, k̄[T1]×) ∼= Br1(T1)

induced by φ. �

The following kind of toric varieties is crucial for studying strong approx-
imation.

Definition 2.5. — A smooth toric variety (T ↪→ X) over k is called of
pure divisorial type if the dimension of any T (k̄)-orbit of X(k̄) is dim(T )
or dim(T ) − 1. Equivalently, the dimension of any cone in the fan of X is
strictly less than 2.

We would like to thank J.-L. Colliot-Thélène for improving the following
result.

Proposition 2.6. — Let (T ↪→ X) be a smooth toric variety over k
and Y = X \ [(X \ T )sing] where (X \ T )sing is the singular part of X \ T .
Then (T ↪→ Y ) is the unique open toric subvariety of (T ↪→ X) of pure
divisorial type over k such that codim(X \ Y,X) > 2.

Proof. — Without loss of generality, one can assume that k = k̄. By
Lemma 2.1, there is a finite open affine toric subvariety covering {Uj} with
Uj ∼= Asj ×k̄ G

tj
m. Since Uj \ T is a closed subvariety of Uj defined by the

equation
∏sj
i=1 xi = 0 where x1, . . . , xsj are the coordinates of Asj , the

singular part (Uj \ T )sing of Uj \ T consists of the points of which at least
two coordinates among x1, . . . , xsj are zero. Therefore Uj \ [(Uj \ T )sing] is
an open toric subvariety of Uj of pure divisorial type with

codim([(Uj \ T )sing], Uj) > 2.

Since

X \ T =
⋃
j

(Uj \ T ) and (X \ T )sing =
⋃
j

(Uj \ T )sing,

one concludes that (T ↪→ Y ) is an open toric subvariety of (T ↪→ X) of
pure divisorial type over k such that codim(X \ Y,X) > 2.
Suppose Z is another open toric subvariety of pure divisorial type of X.

Since the dimension of T (k̄) orbits in Z is dim(T ) or dim(T )− 1, one has
Z ⊆ Y by the above construction. If one further assumes that dim(X\Z) <

ANNALES DE L’INSTITUT FOURIER
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dim(T ) − 1, then X \ Z ⊆ X \ Y by the above construction. This implies
that Y ⊆ Z. Therefore Z = Y and the uniqueness follows. �

Lemma 2.7. — If (Ti ↪→ Xi) are smooth toric varieties over k and
(Ti ↪→ Yi) are the unique open toric subvarieties of pure divisorial type
with codim(Xi \ Yi, Xi) > 2 for 1 6 i 6 n respectively, then the unique
open toric subvariety (

∏n
i=1 Ti ↪→ Y ) of pure divisorial type with

codim
((

n∏
i=1

Xi

)
\ Y,

n∏
i=1

Xi

)
> 2 in

(
n∏
i=1

Ti ↪→
n∏
i=1

Xi

)
is given by

Y =
n⋃
i=1

(T1 ×k · · · ×k Ti−1 ×k Yi ×k Ti+1 ×k · · · ×k Tn).

Proof. — Since

dim((T1 ×k · · · ×k Tn)(k̄) · (x1, . . . , xn)) =
n∑
i=1

dim(Ti(k̄) · xi)

for any (x1, . . . , xn) ∈ X1(k̄)× · · · ×Xn(k̄), one obtains that

dim((T1 ×k · · · ×k Tn)(k̄) · (x1, . . . , xn)) = dim(T1 ×k · · · ×k Tn)− 1

if and only if there is 1 6 i0 6 n such that

dim(Ti(k̄) · xi) =
{

dim(Ti)− 1 if i = i0,
dim(Ti) otherwise.

This implies that
n⋃
i=1

(T1 ×k · · · ×k Ti−1 ×k Yi ×k Ti+1 ×k · · · ×k Tn)

is of pure divisorial type and contains all orbits of dimension dim(T1 ×k
· · · ×k Tn) or dim(T1 ×k · · · ×k Tn)− 1. �

Definition 2.8. — Let d be a positive integer, and ki/k some finite
field extensions for 1 6 i 6 d. We note K :=

∏d
i=1 ki. A smooth toric

variety (ResK/k(Gm) ↪→ X) over k is called the standard toric variety with
respect to K/k, if it is the unique open toric subvariety of pure divisorial
type over k in

(ResK/k(Gm) ↪→ ResK/k(A1))

with codim(ResK/k(A1) \X, ResK/k(A1)) > 2.

TOME 68 (2018), FASCICULE 5
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Let X be a smooth toric variety of pure divisorial type with respect to
T over k and

(2.1) X \ T =
d∐
i=1

Ci and Ui = X \

∐
j 6=i

Cj


for 1 6 i 6 d, where the Ci’s are integral closed sub-schemes of X over
k with codimension one. Then Ui is an open toric subvariety of X over k
for 1 6 i 6 d. By Lemma 2.1, one obtains that each T -orbit in X over k̄
is smooth. Since (X \ T )(k̄) is a disjoint union of T (k̄)-orbits of dimension
dim(T ) − 1 and Ci is a sub-union among such orbits permuted by Galois
action, one has that Ci is also smooth for 1 6 i 6 d.
Let ki be the algebraic closure of k inside k(Ci) for 1 6 i 6 d. There is

a closed geometrically integral sub-scheme Di over ki such that

(2.2) Ci ×k k̄ =
∐
σ∈Υi

σ(Di)

where Υi = Γk/Γki is the set of all k-embedding of ki into k̄ for 1 6 i 6 d.
Since Γki acts on

∐
τ∈Υi,τ 6=1 τ(Di) stably, one concludes that Γσ(ki) =

σΓkiσ−1 acts on
∐
τ∈Υi,τ 6=σ τ(Di) stably for each σ ∈ Υi. This implies

that the scheme
∐
τ∈Υi,τ 6=σ τ(Di) is defined over σ(ki) for each σ ∈ Υi by

Galois descent.
For each σ ∈ Υi, one defines

(2.3) σ(Zi) = (X ×k σ(ki)) \

 ∐
τ∈Υi,τ 6=σ

τ(Di)

∪
∐
j 6=i

Cj ×k σ(kj)


which is an open toric subvariety of (T ×k σ(ki) ↪→ X ×k σ(ki)) over σ(ki)
for 1 6 i 6 d. Since Di is geometrically integral, this implies that σ(Zi)
contains only two orbits over k̄ for 1 6 i 6 d. Since σ(Zi) is covered by
open affine toric sub-varieties over k̄ by Lemma 2.1, the open affine toric
sub-varieties which contain the closed orbit must be σ(Zi). This implies
that σ(Zi) is affine and {σ(Zi)×σ(ki) k̄}σ∈Υi is a smooth open affine toric
subvariety covering of Ui ×k k̄ for 1 6 i 6 d.

By Proposition 2.4 and its proof, the short exact sequence

(2.4) 1→ k̄[σ(Zi)]×/k̄×
φ∗σ−−→ k̄[T ]×/k̄× %∗σ−→ Zσ(Di)→ 1

of Γσ(ki)-module given by sending f to its valuation at σ(Di) yields the
exact sequence of tori

(2.5) 1→ Gm
%σ−→ T ×k σ(ki)

φσ−−→ Tσ → 1

ANNALES DE L’INSTITUT FOURIER
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over σ(ki) with (Tσ)∗ = k̄[σ(Zi)]×/k̄× and a closed immersion of toric
varieties

(2.6) (Gm ↪→ A1) %σ−→ (T ×k σ(ki) ↪→ σ(Zi))

over σ(ki). Moreover the morphism φσ can be extended to

(2.7) φσ : σ(Zi)→ Tσ with %σ(A1) = φ−1
σ (1)

for any σ ∈ Υi.

Lemma 2.9. — With the above notation, one considers the homomor-
phism of Γk-modules

ρ∗i : k̄[T ]×/k̄× → Div(Ui×kk̄)\Tk̄(Ui ×k k̄)

sending f to div(Ui×kk̄)\Tk̄(f) and obtains a homomorphism Reski/k Gm
ρi−→

T of tori over k for 1 6 i 6 d. If (Reski/k Gm ↪→ Vi) is the standard toric
variety with respect to ki/k, then the homomorphism ρi can be extended
to a morphism of toric varieties

(Reski/k(Gm) ↪→ Vi)
ρi−→ (T ↪→ Ui)

over k for 1 6 i 6 d.

Proof. — Since
ρ∗i (f) =

∑
σ∈Υi

%∗σ(f)

for any f ∈ k̄[T ]×/k̄× by (2.4) where Υi is the set of all k-embedding of ki
into k̄, one has

(2.8)

ρi : Reski/k Gm(k̄) = (k̄ ⊗k ki)× =
∏
σ∈Υi

k̄× → T (k̄);

(aσ)σ∈Υi 7→
∏
σ∈Υi

%σ(aσ)

for 1 6 i 6 d. Let

Yσ = Spec(k̄[xσ, xτ , x−1
τ ]τ∈Υi; τ 6=σ) ⊂ Reski/k(A1)×k k̄ = Spec(k̄[xσ]σ∈Υi)

for each σ ∈ Υi. Then {Yσ}σ∈Υi is an open affine covering of Vi ×k k̄ for
1 6 i 6 d.
Applying (2.6) over k̄, one obtains

%σ : Spec(k̄[xσ])→ σ(Zi)×σ(ki) k̄ ⊆ Ui ×k k̄

and ρi can be extended to

ρi : Yσ → σ(Zi)×σ(ki) k̄ ⊆ Ui ×k k̄

for each σ ∈ Υi. Therefore ρi can be extended to Vi for 1 6 i 6 d. �
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Gluing all ρi in Lemma 2.9 together for 1 6 i 6 d, one obtains the
following proposition.

Proposition 2.10. — Let (T ↪→ X) be a smooth toric variety of pure
divisorial type over k and

ρ : T0 = ResK/k(Gm)→ T

be the homomorphism of tori induced by the homomorphism of Γk-modules

ρ∗ : k̄[T ]×/k̄× → DivXk̄\Tk̄(Xk̄); f 7→ divXk̄\Tk̄(f)

where K =
∏d
i=1 ki and ki is the algebraic closure of k inside k(Ci) with

Ci in (2.1). If T0 = ResK/k(Gm) ↪→ V is the standard toric variety respect
to K/k, then ρ can be extended to a morphism of toric varieties (T0 ↪→
V ) ρ−→ (T ↪→ X).

Proof. — By Lemma 2.7, one has

V =
d⋃
i=1

 ∏
16j6i−1

Reskj/k(Gm)×k Vi ×k
∏

i+16j6d
Reskj/k(Gm)


where Vi is given in Lemma 2.9 for 1 6 i 6 d. Define

gi :
∏

16j6i−1
Reskj/k(Gm)×k Vi ×k

∏
i+16j6d

Reskj/k(Gm)

ρ1×···×ρd−−−−−−→ T ×k · · · ×k Ui ×k · · · ×k T
id×···×iUi×···×id−−−−−−−−−−−→ T ×k · · · ×k X ×k · · · ×k T

mX−−→ X

where iUi is the open inclusion Ui ⊆ X and ρi is given in Lemma 2.9 and
mX is the action of T for 1 6 i 6 d. Since ρ∗ =

⊕d
i=1 ρ

∗
i , one concludes

that gi|T0 = ρ for 1 6 i 6 d. Therefore the morphisms {gi}16i6d can be
glued together to obtain the required morphism. �

By purity (see [4, end of p. 24]) and Lemma 2.6, one only needs to
compute the Brauer groups of smooth toric varieties of pure divisorial type.

Proposition 2.11. — One has the following exact sequence

0→ Bra(X)→ Bra(T ) ρ∗−→ Bra(T0)

for a smooth toric variety (T ↪→ X) of pure divisorial type over k, where ρ
and T0 are given by Proposition 2.10 and ρ∗ is the induced by ρ.
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Proof. — From Colliot-Thélène and Sansuc [7, §1] (see also [23, Dia-
gram 4.15]), we have a commutative diagram with exact rows and exact
columns

0

��

0

��

0

��
H2(k, k̄[X]×/k̄×) //

��

H2(k, T ∗) h2 //

h1

��

H2(k, k̄[T ]×/k̄[X]×)

h4

��
Bra(X) //

��

Bra(T )

��

h3 // H2(k,DivXk̄−Tk̄(Xk̄))

��
H1(k, P ic(Xk̄)) // H1(k, P ic(Tk̄)) = 0 // H2(k, P icXk̄−Tk̄(Xk̄)).

Since T ∗0 ∼= DivXk̄−Tk̄(Xk̄), the result follows from the fact that h3 ◦ h1 =
h4 ◦ h2 is induced by ρ∗ : T ∗ → T ∗0 . �

3. Relative strong approximation for tori

Harari proved strong approximation with Brauer–Manin obstruction off
∞k for tori in [17]. In this section, we consider a homomorphism T1 → T2
of tori and extend strong approximation with Brauer–Manin obstruction
off ∞k for this relative situation based on Harari’s result. One can recover
Harari’s result when T1 is trivial. In [13], Demarche used a similar idea for
studying hyper-cohomology of complexes of two tori with finite kernel to
establish strong approximation with Brauer–Manin obstruction off ∞k for
reductive groups.

Definition 3.1. — Let X be a smooth separated integral scheme of
finite type over k. An integral model X of X over Ok (or Ok,S for some
finite subset S of Ωk containing ∞k) is defined to be a smooth separated
integral scheme of finite type over Ok (or Ok,S) such that X ×Ok k = X

(or X×Ok,S k = X).
If T is a group of multiplicative type over k, an integral model T of T

over Ok (or Ok,S) is defined to be an integral model of T which is a group
scheme of multiplicative type over Ok (or Ok,S) extended from T .
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Let X be a separated integral scheme of finite type over k and π0(X(kv))
be the set of connected components of X(kv) for each v ∈ ∞k. Define

X(Ak)• =
[ ∏
v∈∞k

π0(X(kv))
]
×X(A∞k )

and

X(Ak)B• =
{

(xv)v∈Ωk ∈ X(Ak)•

∣∣∣∣∣ ∑
v∈Ωk

invv(ξ(xv)) = 0, ∀ ξ ∈ B
}

for any subset B of Bra(X). This is well-defined because any element in
Bra(X) takes a constant value on each connected component of X(kv) for
any v ∈ ∞k (see [1, §1.3]).

Lemma 3.2. — Let ψ : T1 → T2 be a homomorphism of tori. Then
ψ(T1(kv)) is closed in T2(kv) for all v ∈ Ωk.

Proof. — Let T be the image of ψ. For any v ∈ Ωk, one has that
ψ(T1(kv)) is an open subgroup of T (kv) by Corollary 1 in [21, Chapter 3].
Therefore ψ(T1(kv)) is closed in T (kv). It is clear that T (kv) is closed in
T2(kv). One concludes that ψ(T1(kv)) is closed in T2(kv). �

Proposition 3.3. — With the same notation as that in Lemma 3.2,
one has

ψ(T1(Ak)) =
( ∏
v∈Ωk

ψ(T1(kv))
)
∩ T2(Ak) ⊆

∏
v∈Ωk

T2(kv).

In particular, ψ(T1(Ak)) is closed in T2(Ak).

Proof. — If ψ is surjective, one has the short exact sequence of groups
of multiplicative type

1→ T0 → T1
ψ−→ T2 → 1

with T0 = kerψ. There is a finite subset S of Ωk containing ∞k such that
the above short exact sequence extends to

1→ T0 → T1
ψS−−→ T2 → 1

over Ok,S , where T0, T1 and T2 are integral models of T0, T1 and T2 over
Ok,S respectively. For v 6∈ S, this yields exact sequences:

1 // T0(Ov) //

��

T1(Ov)
ψS //

��

T2(Ov) //

��

H1
fppf (Ov,T0)

��
1 // T0(kv) // T1(kv)

ψ // T2(kv) // H1(kv, T0).
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By Proposition 2.2 in [6], the natural map H1
fppf (Ov,T0)→ H1(kv, T0) is

injective. Then
ψ(T1(kv)) ∩T2(Ov) = ψS(T1(Ov))

for all v 6∈ S. Therefore

ψ(T1(Ak)) =
( ∏
v∈Ωk

ψ(T1(kv))
)
∩ T2(Ak)

and the subset ψ(T1(Ak)) is a closed subgroup of T2(Ak) by Lemma 3.2.
In general, there is a closed sub-torus T of T2 such that ψ factors through

the surjective homomorphism T1 → T . By the above arguments, one has

ψ(T1(Ak)) =
( ∏
v∈Ωk

ψ(T1(kv))
)
∩ T (Ak)

and ψ(T1(Ak)) is closed in T (Ak). Since T is a closed sub-torus of T2, one
has

T (Ak) =
( ∏
v∈Ωk

T (kv)
)
∩ T2(Ak)

and T (Ak) is a closed subset of T2(Ak). Therefore one concludes that

ψ(T1(Ak)) =
( ∏
v∈Ωk

ψ(T1(kv))
)
∩ T2(Ak)

and ψ(T1(Ak)) is closed in T2(Ak) by Lemma 3.2. �

By the functoriality of étale cohomology, one obtains an induced group
homomorphism

ψ∗Br : Bra(T2)→ Bra(T1)
for any homomorphism ψ : T1 → T2 of tori. For each v ∈ ∞k, since the map
ψ maps each connected component of T1(kv) into one connected component
of T2(kv), one has

ψ(T1(Ak)•) ⊆ T2(Ak)ker(ψ∗Br)
•

by the functoriality of Brauer–Manin pairing (see [23, (5.3), p. 102]). One
can extend strong approximation for tori proved by Harari in [17] to the
following relative strong approximation for tori.

Proposition 3.4. — Let ψ : T1 → T2 be a homomorphism of tori with
X1(T1) = 0. Then the image of T2(k) is dense in

T2(Ak)ker(ψ∗Br)
• /ψ(T1(Ak)•)

with the quotient topology.
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Proof. — By Theorem 2 in [17] and functoriality, one has the following
commutative diagram of exact sequences

0 // T1(k) //

��

T1(Ak)• //

��

Bra(T1)D //

��

X1(T1) = 0

0 // T2(k) // T2(Ak)• // Bra(T2)D

where T1(k) and T2(k) are the topological closure of T1(k) and T2(k) in
T1(Ak)• and T2(Ak)• respectively and

Bra(Ti)D = Hom(Bra(Ti),Q/Z)

for i = 1, 2. Since Q/Z is an injective Z-module, one has Hom(∗,Q/Z) is
an exact functor and the sequence

Bra(T1)D → Bra(T2)D → ker(ψ∗Br)D → 0

is exact. Therefore the natural map

T2(k)→ T2(Ak)ker(ψ∗Br)
• /ψ(T1(Ak)•)

is surjective by the snake lemma. Since the topological closure of the image
of T2(k) in

T2(Ak)ker(ψ∗Br)
• /ψ(T1(Ak)•)

with the quotient topology contains the image of T2(k), one obtains the
result as desired. �

Remark 3.5. — One can state Proposition 3.4 in the following equivalent
version for better understanding of relative strong approximation.
If [( ∏

v∈∞k

avNC/kv (T2(C))
)
× U

]
∩ T2(Ak)ker(ψ∗Br) 6= ∅,

for an open subset U of T2(A∞k ) and av ∈ T (kv) with v ∈ ∞k, then there
are x ∈ T2(k) and y ∈ T1(Ak) such that

xψ(y) ∈
( ∏
v∈∞k

avNC/kv (T2(C))
)
× U.

In order to prove our main result, we need the following useful result.

Proposition 3.6. — Let S be a finite non-empty subset of Ωk, and U
an open subscheme of An with codim(An \ U,An) > 2. Then U satisfies
strong approximation off S.
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Proof. — Fixing the coordinates, we consider the projection

p : An → A1; (x1, . . . , xn) 7→ x1

of the first coordinate. It is clear that any fibre of p above rational points
are k-isomorphic to An−1. Let Z = An \ U and pZ be the restriction of p
to Z. We claim that the set

F = {x ∈ A1(k) : dim(p−1(x) ∩ Z) = dim(Z)}

is finite. Indeed, if pZ(Z) is finite, then p−1(x) ∩ Z = ∅ for almost all
x ∈ A1(k) and the claim follows. Otherwise, pZ is dominant. Then pZ is
flat over an open dense subset of A1 by Theorem 2.16 in [19, Chapter I,
§2]. Therefore the claim follows by Remark 2.6(b) in [19, Chapter I, §2].
Let pU : U → A1 be the restriction of p to U . Since dim(p−1(x)) >

dim(p−1(x) ∩ Z) for any x ∈ A1(k̄), one has

p−1
U (x) = p−1(x) ∩ U = p−1(x) \ (p−1(x) ∩ Z) 6= ∅

and p−1
U (x) is geometrically integral. In order to apply Proposition 3.1

in [10] to pU with an open subset W = A1 \ F of A1, one only needs to
verify three condition (i), (ii) and (iii) there to be true. Condition (i) is
clearly true. By the above claim, one obtains that

codim(p−1(x) ∩ Z, p−1(x)) > 2

for all x ∈ W (k). Condition (ii) follows from induction. Since p−1(x)(kv)
is Zariski dense in p−1(x) for any x ∈ A1(kv) (see Theorem 2.2 in [21,
Chapter 2]), one concludes

p−1
U (x)(kv) = (p−1(x) ∩ U)(kv) = p−1(x)(kv) \ (p−1(x) ∩ Z)(kv) 6= ∅

for any v. This implies Condition (iii) is satisfied as well. �

Corollary 3.7. — Let d be a positive integer, S a finite nonempty
subset of Ωk, and ki/k some finite field extensions for 1 6 i 6 d. We
note K :=

∏d
i=1 ki. Then the standard toric variety (ResK/k(Gm) ↪→ X)

satisfies strong approximation off S.

Proof. — There exists an isomorphism ResK/k(A1) ∼→ A[K:k]. The result
holds from Proposition 3.6. �

4. Proof of main theorem

In this section, we keep the same notation as in the previous sections.
Let (T ↪→ X) be a smooth toric variety of pure divisorial type over k.
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• Fix integral models X, T, Ci, Ui of X, T , Ci, Ui in (2.1) and Vi

of Vi in Lemma 2.9 and V of V in Proposition 2.10 over Ok,S for a
finite subset S ⊃ ∞k in Ωk with 1 6 i 6 d respectively.

• Fix integral models σ(Zi) of σ(Zi) in (2.3) and Tσ of Tσ in (2.7)
over Oσ(ki),S for a finite subset S ⊃ ∞k in Ωk with 1 6 i 6 d and
σ ∈ Υi, where Υi is the set of all k-embedding of ki into k̄ and
Oσ(ki),S is the integral closures of Ok,S inside σ(ki).

One can always enlarge S so that
(i) The action mX of T on X as toric variety extends to

mT : T×Ok,S X→ X

as an action of group scheme.
(ii) For 1 6 i 6 d, the open immersion Ui ⊆ X in (2.1) can be extended

to an open immersion Ui ⊆ X over Ok,S . One obtains ∪di=1Ui is
an open subset of X. Since both ∪di=1Ui and X are integral models
of X over Ok,S . By enlarging S, one concludes that {Ui}di=1 is an
open covering of X. Moreover, Ui is covered by

T
gi // Ui Ci

hioo

over Ok,S , where gi is an open immersion and hi is the complement
of gi, which is a closed immersion. Moreover, Ci is smooth over
Ok,S for 1 6 i 6 d.

(iii) The morphism ρ in Proposition 2.10 extends to ρ : V→ X and ∏
16j6i−1

ResOkj,S/Ok,S (Gm)×Ok,S Vi ×Ok,S
∏

i+16j6d
ResOkj,S/Ok,S (Gm)


16i6d

is an open covering of V.
(iv) Both morphism %σ in (2.6) and morphism φσ in (2.7) extend to

%σ : A1
Oσ(ki),S

→ σ(Zi) and φσ : σ(Zi)→ Tσ

over Oσ(ki),S for all σ ∈ Υi and 1 6 i 6 d. Moreover, the exact
sequence in (2.5) extends to

1→ Gm,Oσ(ki),S
→ T→ Tσ → 1

over Oσ(ki),S and Im(%σ) = φ−1
σ (1Tσ ) over Oσ(ki),S for 1 6 i 6 d

and all σ ∈ Υi.
Let Ok̄,S be the integral closure of Ok,S inside k̄.

(v) Ci ×Ok,S Ok̄,S =
∐
σ∈Υi((σ(Zi) \ T) ×Oσ(ki),S

Ok̄,S) and (σ(Zi) \
T)×Oσ(ki),S

Ok̄,S is integral for 1 6 i 6 d.
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(vi) The morphism ρi in Lemma 2.9 extends to the following commuta-
tive diagram

ResOki,S/Ok,S (Gm)
ρi //

��

T

��
Vi

ρi // Ui

over Ok,S and {Spec(Ok̄,S [xσ, xτ , x−1
τ ]τ∈Υi; τ 6=σ)}σ∈Υi is an open

covering of Vi ×Ok,S Ok̄,S for 1 6 i 6 d.
The following proposition is crucial for proving our main theorem.

Proposition 4.1. — With notation as above, one has

X(Ov) ∩ T (kv) = T(Ov) · ρ(V(Ov) ∩ T0(kv)) ⊆ X(kv)

for all v 6∈ S, where T0 =
∏d
i=1 Reski/k(Gm).

Proof. — By the above conditions (i) and (iii), one only needs to prove

X(Ov) ∩ T (kv) ⊆ T(Ov) · ρ(V(Ov) ∩ T0(kv)).

Let Ti = Reski/k(Gm) for 1 6 i 6 d. Since

ρi(Vi(Ov) ∩ Ti(kv)) ⊆ ρ(V(Ov) ∩ T0(kv))

by the above condition (iii) and (vi), it is sufficient to show that

Ui(Ov) ∩ T (kv) ⊆ T(Ov) · ρi(Vi(Ov) ∩ Ti(kv))

for each 1 6 i 6 d by the above condition (ii).
Let α ∈ (Ui(Ov) ∩ T (kv)) \T(Ov). Since α is a section

α : Spec(Ov)→ Ui ×Ok,S Ov,

the closed point mv of Spec(Ov) under α maps to Ci×Ok,SOv by the above
condition (ii). Since Ci ×Ok,S Ov is smooth over Ov, there is a section

β : Spec(Ov)→ Ci ×Ok,S Ov
such that β(mv) = α(mv).
Fix a prime w in k̄ above v. Extending the condition (v) to the ring of

integers Ok̄w of k̄w, one obtains σα ∈ Υi such that (σα(Zi) \ T) ×Oσα(ki)

Ok̄w is the unique connected component containing β. This implies that
Gal(k̄w/kv) acts on (σα(Zi) \ T) ×Oσα(ki)

Ok̄w stably. Therefore σα(Zi)
is defined over Ov by Galois descent and σα(Di) is defined over kv. On
one hand, the Galois group Gal(k̄/k) acts on {σ(Di)}σ∈Υi transitively and
the stabilizer of σα(Di) is Gal(k̄/σα(ki)). On the other hand, the closed
subgroup Gal(k̄w/kv) acts trivially on σα(Di). One concludes that σα(ki) ⊆
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kv and Oσ(ki),S ⊂ Ov. Therefore all morphisms in the condition (iv) can
be extended to Ov.

Since H1
et(Ov,Gm) = 0, one concludes that the homomorphism

φσα : T(Ov)→ Tσα(Ov)

is surjective by the above condition (iv). There is t ∈ T(Ov) such that

t · α ∈ φ−1
σα (1) = Im(%σα)

over Ov by the above condition (iv). This implies that there is γ ∈
A1
Ov

(Ov) = Ov such that %σα(γ) = t · α. Since α ∈ T (kv), one has that
γ 6= 0. Define

δ = (δσ)σ∈Υi ∈ Vi(Ok̄v ) ⊆
∏
σ∈Υi

Ok̄v

as follows

δσ =
{
γ if σ = σα,

1 otherwise.
Since Gal(k̄v/kv) acts on Υi but fixes σα, one has δ ∈ Vi(Ov) ∩ Ti(kv) by
the above condition (vi) and Galois descent. Therefore

ρi(δ) = %σα(γ) = α · t

as desired by the formula (2.8). �

The following local approximation enables us to consider X(Ov)∩T (kv)
instead of X(Ov).

Proposition 4.2. — Let (T ↪→ X) be a smooth toric variety over kv
with v ∈ Ωk. If x ∈ X(kv) \ T (kv), then there is y ∈ T (kv) such that y is
as close to x as required and

invv(ξ(x)) = invv(ξ(y))

for all ξ ∈ Br1(X).

Proof. — By Corollary 2.3, there is an open affine smooth toric subva-
riety M of X such that x ∈ M(kv). By Proposition 2.4, there are finite
extensions Ei/kv such that∏

i

ResEi/kv (Gm) ↪→
∏
i

ResEi/kv (A1)

is a closed toric subvariety of (T ↪→M) and the quotient homomorphism

φ : T → T1 with T1 = T/

(∏
i

ResEi/kv (Gm)
)

can be extended to φ : M → T1 and φ−1(1) =
∏
i ResEi/kv (A1).
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By Shapiro’s Lemma and Hilbert 90, one has the map T (kv)
φ−→ T1(kv)

is surjective. There is α ∈ T (kv) such that φ(x) = φ(α). Since φ is T -
equivariant, this implies that

α−1x ∈ (φ−1(1))(kv) =
∏
i

Ei.

Choose z′ ∈
∏
iE
×
i close to α−1x such that y = α · z′ is as close to x as

required.
For any ξ ∈ Br1(X), there are η ∈ Br1(T1) such that

φ∗(η) = ξ

by Br1(X) ↪→ Br1(M) ∼← Br1(T1) and Proposition 2.4. Since φ(x) =
φ(α) = φ(αz′) = φ(y), one has

invv(η(φ(x))) = invv(η(φ(y))).

By functoriality, this implies

invv(φ∗(η)(x)) = invv(φ∗(η)(y)).

Since

invv(φ∗(η)(x)) = invv(ξ(x)) and invv(φ∗(η)(y)) = invv(ξ(y)),

one obtains the result as desired. �

Proposition 4.3. — If X is a smooth toric variety of pure divisorial
type, then X satisfies strong approximation with Brauer–Manin obstruc-
tion off ∞k.

Proof. — For any non-empty open subset Ξ ⊆ X(Ak)Br1 X , there are a
sufficiently large finite subset S1 of Ωk containing S and an open subset
W =

∏
v∈ΩkWv of X(Ak) such that

∅ 6= W ∩X(Ak)Br1 X ⊆ Ξ,

and Wv = X(Ov) for all v 6∈ S1.

Let (xv)v∈Ωk ∈ W ∩ X(Ak)Br1 X . By Proposition 4.2, one can assume
that xv ∈ T (kv) for all v ∈ Ωk. Then

xv ∈Wv ∩ T (kv) = X(Ov) ∩ T (kv) = T(Ov) · ρ(V(Ov) ∩ T0(kv))

for v 6∈ S1 by Proposition 4.1, where T0 =
∏d
i=1 Reski/k(Gm). Let

tv ∈ T(Ov) and βv ∈ V(Ov) ∩ T0(kv)

such that xv = tv · ρ(βv) for all v 6∈ S1 and tv = xv for v ∈ S1. Then
(tv)v∈Ωk ∈ T (Ak).
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Since tv induces a morphism X ×k kv → X ×k kv for all v ∈ Ωk, one has

invv(ξ(xv)) = invv(ξ(tv · ρ(βv))) = invv((ρ∗t∗ξ)(βv))

and
invv(ξ(tv)) = invv((ρ∗t∗ξ)(1T0))

for all ξ ∈ Br1(X). By the purity of Brauer groups (see [16, Part III,
Theorem 6.1]), one has Br1(V ×k kv) = Br(kv). Therefore invv(ξ(xv)) =
invv(ξ(tv)) for all v ∈ Ωk.
By Proposition 2.11 and Proposition 3.4 or Remark 3.5 with X1(T0) =

0, there are t ∈ T (k) and yA ∈ T0(Ak) such that

tρ(yA) ∈

 ∏
v∈∞k

T (kv)×
∏

v∈S1\∞k

(Wv ∩ T (kv))×
∏
v 6∈S1

T(Ov)

.
Therefore the open subset of V (Ak)

ρ−1

t−1

 ∏
v∈∞k

X(kv)×
∏
v 6∈∞k

Wv


contains yA and is not empty. Then there is

y ∈ V (k) ∩ ρ−1

t−1

 ∏
v∈∞k

X(kv)×
∏
v 6∈∞k

Wv


by Corollary 3.7. This implies that

t · ρ(y) ∈

 ∏
v∈∞k

X(kv)×
∏
v 6∈∞k

Wv

 ∩X(k)

as desired. �

For general smooth toric varieties, one needs to extend a part of Propo-
sition 2.4 to integral models.

Lemma 4.4. — Suppose an affine smooth toric variety (T ↪→ X) over
kv can be extended to an open immersion T ↪→ X over Ov such that T is a
torus over Ov and X is an affine scheme of finite type over Ov for v <∞k.
If the base change of the above open immersion fits into a commutative
diagram

T×Ov Ov
ur //

∼=
��

X×Ov Ourv
∼=
��

Gs+tm,Ourv
// AsOurv ×Ourv Gtm,Ourv
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over Ourv , where Ourv is the ring of integers of the maximal unramified
extension kurv of kv such that the left vertical arrow is an isomorphism of
group schemes over Ourv , then one has the following commutative diagram∏h

i=1 ResOki/Ov (Gm,Oki )
ι //

��

T

��∏h
i=1 ResOki/Ov (A1

Oki
) // X

where the horizontal arrows are closed immersions and the vertical arrows
are open immersions and Oki ’s are the rings of integers of finite unramified
extensions ki/kv for 1 6 i 6 h. Moreover ι is a homomorphism of Ov-tori
and the quotient map φ : T→ coker(ι) can be extended to φ : X→ coker(ι)
such that

φ−1(1) =
h∏
i=1

ResOki/Ov (A1
Oki

)

over Ov.

Proof. — Since

Pic(X×Ov Ourv ) = Pic(AsOurv ×Ourv Gtm,Ourv ) = 0,

one has the following short exact sequence

1→ Ourv [X]×/Ourv
× φ∗−→ Ourv [T]×/Ourv

×

ι∗−→ Div(X×OvOurv )\(T×OvOurv )(X×Ov Ourv )→ 1

of Gal(kurv /kv)-module by sending f 7→ div(X×OvOurv )\(T×OvOurv )(f) for any
f ∈ Ourv [T]×. By Theorem 1.2 and Theorem 3.1 in [14, Exposé VIII], one
obtains an exact sequence of affine group schemes

1→
h∏
i=1

ResOki/Ov (Gm,Oki )
ι−→ T φ−→ coker(ι)→ 1

over Ov where Oki ’s are the rings of integers of the finite unramified ex-
tensions ki/kv for 1 6 i 6 h, and where coker(ι) is a torus over Ov with

HomOurv
(coker(ι)×Ov Ourv ,Gm,Ourv ) = Ourv [X]×/Ourv

×

as Gal(kurv /kv)-module. Let

B = {f ∈ Ourv [X]× | f(1T) = 1}

TOME 68 (2018), FASCICULE 5



1902 Yang CAO & Fei XU

which is stable under the action of Gal(kurv /kv). Then Ourv [X]× = Ourv
×⊕B

as Gal(kurv /kv)-module and

coker(ι)×Ov Ourv ∼= Spec(Ourv [B]) induced by B ∼= Ourv [X]×/Ourv
×

is compatible with Gal(kurv /kv)-action by Theorem 1.2 in [14, Exposé VIII].
Moreover, the natural inclusion of Ourv -algebras Ourv [B] ⊆ Ourv [X] which is
also compatible with Gal(kurv /kv)-action gives the extension X φ−→ coker(ι)
of T φ−→ coker(ι) over Ov.

Write

T×Ov Ourv = Spec(Ourv [x1, x
−1
1 , . . . , xs, x

−1
s , y1, y

−1
1 , . . . , yt, y

−1
t ])

and
X×Ov Ourv = Spec(Ourv [x1, . . . , xs, y1, y

−1
1 , . . . , yt, y

−1
t ])

such that xi(1T) = yj(1T) = 1 for 1 6 i 6 s and 1 6 j 6 t by the given
diagram. Then

coker(ι)×Ov Ourv = Spec(Ourv [y1, y
−1
1 , . . . , yt, y

−1
t ])

and
φur = φ×Ov Ourv : X×Ov Ourv → coker(ι)×Ov Ourv

is the projection and

φ−1(1)×Ov Ourv = (φur)−1(1) = Spec(Ourv [x1, . . . , xs]).

Since
div(X×OvOurv )\(T×OvOurv )(xi) = divX×OvOurv (xi)

and the action of Gal(kurv /kv) on {divX×OvOurv (xi)}si=1 is same as the action
on the coordinates {xi}si=1 by smoothness of X ×Ov Ourv and the normal-
ization of xi for 1 6 i 6 s, one concludes that

φ−1(1) =
h∏
i=1

ResOki/Ov (A1
Oki

)

as required. �

Theorem 4.5. — Any smooth toric variety satisfies strong approxima-
tion with Brauer–Manin obstruction off ∞k.

Proof. — Let (T ↪→ X) be a smooth toric variety over k and F be the
set of all open affine toric sub-varieties over k̄. Since there are only finitely
many T (k̄)-orbits in X(k̄), one gets F is finite. Moreover if A and B are in
F, then A ∩ B ∈ F and σ(A) ∈ F for any σ ∈ Γk by the separateness of X
over k. Let k′/k be a finite Galois extension such that T ×k k′ ∼= Gnm and
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U is defined over k′ and U ∼= AsU ×GtUm with non-negative integers sU and
tU over k′ for all U ∈ F.

By Proposition 2.6, there is a unique open toric subvariety Y ⊂ X of
pure divisorial type over k such that dim(X \Y ) < dim(T )− 1. Let S be a
finite subset of Ωk containing ∞k and X, Y and T be the integral model
of X, Y and T over Ok,S respectively such that

(1) Every prime v 6∈ S is unramified in k′/k.
(2) The open immersion T ↪→ X and the action T ×kX

mX−−→ X extend
to

T ↪→ X and T×Ok,S X mX−−→ X

over Ok,S .
(3) The open immersion T ↪→ Y and the action T ×k Y

mY−−→ Y extend
to

T ↪→ Y and T×Ok,S Y mY−−→ Y

over Ok,S .
(4) The open immersion Y ↪→ X extends to Y ↪→ X over Ok,S .
(5) Let F be the set of an integral model U over the integral closure

Ok′,S of Ok,S in k′ with an open immersion U ↪→ X ×Ok,S Ok′,S
over Ok′,S which extends U ↪→ X ×k k′ over k′ for each element
U ∈ F such that

A ∩B ∈ F and σ(A) ∈ F

whenever A,B ∈ F and σ ∈ Gal(k′/k). Moreover

T×Ok,S Ok′,S ∼= Gnm,Ok′,S and X×Ok,S Ok′,S =
⋃

U∈F

U

with U ∼= AsUOk′,S ×GtUm,Ok′,S over Ok′,S for each U ∈ F.

Let W =
∏
v∈ΩkWv be an open subset of X(Ak) and S1 be a finite

subset of Ωk containing S such that

(xv)v∈Ωk ∈W ∩X(Ak)BraX and Wv = X(Ov)

for all v 6∈ S1.
For v ∈ S1, we can assume that xv ∈ T (kv) ∩ Wv ⊆ Y (kv) ∩ Wv by

Proposition 4.2.
For v 6∈ S1, we can assume that xv ∈ T(Ov). Indeed, since xv ∈ X(Ov),

there is U ∈ F in the above condition (5) such that xv ∈ U(Ok′w) for a
prime w|v in k′, where Ok′w is the ring of integers of k′w. By the above
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condition (5) ⋂
σ∈Gal(k′w/kv)

σ(U) ∈ F

and there is an affine scheme Mv over Ov such that

Mv ×Ov Ok′w =

 ⋂
σ∈Gal(k′w/kv)

σ(U)

×Ok′,S Ok′w
with xv ∈Mv(Ov) by Galois descent. Since⋂

σ∈Gal(k′w/kv)

σ(U)×Ok′,S k
′ ∈ F

and every element in F is a smooth affine open toric subvariety of Xk̄, one
obtains that Mv ×Ov kv is a smooth affine toric variety. Moreover

(Tv = T×Ok,S Ov ↪→Mv) extends (Tv = T ×k kv ↪→Mv ×Ov kv).

By the above condition (1) and (5), one can apply Lemma 4.4 to obtain a
surjective homomorphism of Ov-tori Tv

φ−→ T1 for some Ov-torus T1 such
that

ker(φ) =
h∏
i=1

ResOki/Ov (Gm,Oki )

where Oki ’s are the rings of integers of finite unramified extensions ki/kv for
1 6 i 6 h. Moreover, this map φ can be extended to a morphism Mv

φ−→ T1.
Since H1

et(Ov, ker(φ)) = 0, one has Tv(Ov)
φ−→ T1(Ov) is surjective by étale

cohomology. If xv 6∈ T(Ov), there is tv ∈ Tv(Ov) such that φ(xv) = φ(tv).
By Proposition 2.4 or the proof of Proposition 4.2, one has

invv(ξ(xv)) = invv(ξ(tv))

for all ξ ∈ Br1(X). Therefore one can replace xv with tv if necessary.
Therefore one can assume

(xv)v∈Ωk ∈

∏
v∈S1

(Wv ∩ Y (kv))×
∏
v 6∈S1

Y(Ov)

 ∩ Y (Ak)Bra(Y )

by the above condition (3) and Bra(X) ∼= Bra(Y ) induced by open immer-
sion. By Proposition 4.3, there is y ∈ Y (k) ⊆ X(k) such that

y ∈
∏
v∈S1

(Wv ∩ Y (kv))×
∏
v 6∈S1

Y(Ov) ⊆
∏
v∈∞

X(kv)×
∏
v 6∈∞k

Wv

by the above condition (4) as desired. �
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5. An example

At the end of [18], Harari and Voloch constructed an open curve
which does not satisfy strong approximation with Brauer–Manin obstruc-
tion. However their counter-example is not geometrically rational. Colliot-
Thélène and Wittenberg gave an open rational surface over Q ([8, Exam-
ple 5.10]) which does not satisfy strong approximation with Brauer–Manin
obstruction. Here we provide another such open rational surface. We ex-
plain that the complement of a point in a toric variety may no longer satisfy
strong approximation with Brauer–Manin obstruction. We also show that
strong approximation with Brauer–Manin obstruction is not stable under
finite extensions of the ground field.
Before giving the explicit example, we have the following lemma.

Lemma 5.1. — Let f : X → Y be a morphism of schemes over a number
field k such that the induced map f∗ : Br(Y )→ Br(X) is surjective. If Y (k)
is discrete in Y (AS

k ) and X satisfies strong approximation with Brauer–
Manin obstruction off S for some finite subset S of Ωk, then any fiber
f−1(y) satisfies strong approximation off S for y ∈ Y (k).

Proof. — Since Y (k) is discrete in Y (AS
k ), there is an open subset Uy of

Y (AS
k ) such that

Y (k) ∩ Uy = {y}
for each y ∈ Y (k). Let

(xv)v 6∈S ∈W ⊆ f−1(y)(AS
k )

be a non-empty open subset. Since f−1(y) is a closed sub-scheme of X,
there is an open subset W1 of X(AS

k ) such that W = W1 ∩ [f−1(y)(AS
k )].

Let xv ∈ f−1(y)(kv) for v ∈ S. Then

(xv)v∈Ωk ∈

[∏
v∈S

X(kv)× (W1 ∩ f−1(Uy))
]
∩X(Ak)Br(X) 6= ∅

by the surjection of f∗ : Br(Y ) → Br(X) and the functoriality of Brauer–
Manin pairing. Since X satisfies strong approximation with Brauer–Manin
obstruction off S, there is x ∈ X(k) such that x ∈ W1 ∩ f−1(Uy). This
implies that f(x) ∈ Uy and f(x) = y. Therefore x ∈W as desired. �

Example 5.2. — Let X = (A1 ×k Gm) \ {(0, 1)} over a number field k.
(1) If k = Q or an imaginary quadratic field, then X does not satisfy

strong approximation with Brauer–Manin obstruction off ∞k.
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(2) Otherwise X satisfies strong approximation with Brauer–Manin ob-
struction off ∞k.

Proof.

(1). — If k = Q or an imaginary quadratic field, one takes Y = Gm and
the morphism f : X → Y by restriction of the projection map A1×kGm →
Gm to X. Since O×k is finite, one has Y (k) is discrete in Y (A∞k ). The
morphism f induces an isomorphism

f∗ : Br(Y ) = Br(Gm)
∼=−→ Br(A1 ×Gm) = Br(X)

by homotopy invariance of etale cohomology (see [19, Chapter VI, §4,
Corollary 4.20]) and the standard Kummer sequence argument. Suppose
X satisfies strong approximation with Brauer–Manin obstruction off ∞k.
Then all fibers f−1(y) satisfy strong approximation off ∞k by Lemma 5.1.
However f−1(1) ∼= Gm does not satisfy strong approximation off ∞k. A
contradiction is derived.

(2). — LetW =
∏
v∈ΩkWv be an open subset inX(Ak) with (xv)v∈Ωk ∈

W ∩X(Ak)Br1(X). There is a finite subset S of Ωk containing∞k such that{
xv ∈ Uv × Vv ⊆Wv ⊆ (k×v × kv \ {(1, 0)}) for v ∈ S,
xv ∈Wv = X(Ov) = (O×v ×O×v ) ∪ ((O×v \ (1 + πvOv))×Ov) for v 6∈ S,

where Uv and Vv are the open subsets of k×v and kv respectively for v ∈ S
and πv is the uniformizer of kv for v 6∈ S. Consider two projection

p : Gm ×k A1 → Gm and q : Gm ×k A1 → A1.

If k is neither Q nor an imaginary quadratic field, then O×k is infinite.
Therefore k× is not discrete in Gm(A∞k ).
Since k× is dense in Pr∞(Gm(Ak)Bra(Gm)), one concludes that k× \ {1}

is also dense in Pr∞(Gm(Ak)Bra(Gm)). By the functoriality of Brauer–
Manin pairing, one has p((xv)) ∈ Gm(Ak)Bra(Gm). Choose an open subset∏
v∈ΩkMv of Gm(Ak) containing p((xv)v∈Ωk) such that

Mv = k×v v ∈ ∞k,

Mv = Uv v ∈ S \∞k,

Mv = O×v v 6∈ S.

There is b ∈ k× \ {1} such that b ∈
∏
v∈ΩkMv. Let S1 be a finite subset

of Ωk containing S such that b − 1 ∈ O×v for all v 6∈ S1. Choose an open
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subset
∏
v∈Ωk Nv of Ak 

Nv = kv v ∈ ∞k,

Nv = Vv v ∈ S,
Nv = O×v v ∈ S1 \ S,
Nv = Ov v 6∈ S1.

Then there is c ∈ k× such that c ∈
∏
v∈Ωk Nv by strong approximation for

A1. Then (b, c) ∈W as desired. �

BIBLIOGRAPHY

[1] M. Borovoi & C. Demarche, “Manin obstruction to strong approximation for
homogeneous spaces”, Comment. Math. Helv. 88 (2013), p. 1-54.

[2] S. Bosch, W. Lütkebohmert &M. Raynaud, Néron models, Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge, vol. 21, Springer, 1990, x+325 pages.

[3] A. Chambert-Loir & Y. Tschinkel, “Integral points of bounded height on toric
varieties”, https://arxiv.org/abs/1006.3345v2, 2012.

[4] J.-L. Colliot-Thélène, “Birational invariants, purity and the Gersten conjecture”,
in K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Di-
vision Algebras, Proceedings of Symposia in Pure Mathematics, Part I, Proceedings
of Symposia in Pure Mathematics, vol. 58, American Mathematical Society, 1992,
p. 1-64.

[5] J.-L. Colliot-Thélène & D. Harari, “Approximation forte en famille”, J. Reine
Angew. Math. 710 (2016), p. 173-198.

[6] J.-L. Colliot-Thélène & J.-J. Sansuc, “Cohomologie des groupes de type multi-
plicatif sur les schémas réguliers”, C. R. Math. Acad. Sci. Paris 287 (1978), p. 449-
452.

[7] ———, “La descente sur les variétés rationnelles II”, Duke Math. J. 54 (1987),
p. 375-492.

[8] J.-L. Colliot-Thélène & O. Wittenberg, “Groupe de Brauer et points entiers
de deux familles de surfaces cubiques affines”, Am. J. Math. 134 (2012), no. 5,
p. 1303-1327.

[9] J.-L. Colliot-Thélène & F. Xu, “Brauer–Manin obstruction for integral points
of homogeneous spaces and representations by integral quadratic forms”, Compos.
Math. 145 (2009), no. 2, p. 309-363.

[10] ———, “Strong approximation for the total space of certain quadric fibrations”,
Acta Arith. 157 (2013), no. 2, p. 169-199.

[11] B. Conrad, “Weil and Grothendieck approaches to adelic points”, Enseign. Math.
58 (2012), no. 1-2, p. 61-97.

[12] D. Cox, J. Little & H. Schenck, Toric Varieties, Graduate Studies in Mathemat-
ics, vol. 124, American Mathematical Society, 2011, xxiv+841 pages.

[13] C. Demarche, “Le défaut d’approximation forte dans les groupes linéaires con-
nexes”, Proc. Lond. Math. Soc. 102 (2011), no. 3, p. 563-597.

[14] M. Demazure & A. Grothendieck, Schémas en groupes. II: Groupes de type
multiplicatif, et structure des schémas en groupes généraux (SGA 3), Lecture Notes
in Math., vol. 152, Springer, 1970, ix+654 pages.

[15] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol.
131, Princeton University Press, 1993, xi+157 pages.

TOME 68 (2018), FASCICULE 5

https://arxiv.org/abs/1006.3345v2


1908 Yang CAO & Fei XU

[16] A. Grothendieck, “Le groupe de Brauer (I, II, III)”, in Dix exposés sur la coho-
mologie des schéma, Advanced Studies in Pure Mathematics, vol. 3, North-Holland;
Masson, 1968, p. 46-189.

[17] D. Harari, “Le défaut d’approximation forte pour les groupes algébriques commu-
tatifs”, Algebra Number Theory 2 (2008), no. 5, p. 595-611.

[18] D. Harari & J. F. Voloch, “The Brauer-Manin obstruction for integral points on
curves”, Math. Proc. Camb. Philos. Soc. 149 (2010), p. 413-421.

[19] J. S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton
University Press, 1980.

[20] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge, vol. 15, Springer, 1987, viii+212 pages.

[21] V. Platonov & A. Rapinchuk, Algebraic groups and number theory, Pure and
Applied Mathematics, vol. 139, Academic Press, 1994, xi+614 pages.

[22] J.-J. Sansuc, “Groupe de Brauer et arithmétique des groupes algébriques linéaires
sur un corps de nombres”, J. Reine Angew. Math. 327 (1981), p. 12-80.

[23] A. N. Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathe-
matics, vol. 144, Cambridge University Press, 2001, viii+187 pages.

[24] H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ. 14 (1974), p. 1-28.
[25] D. Wei, “Strong approximation for the variety containing a torus”, https://arxiv.

org/abs/1403.1035, 2014.
[26] D. Wei & F. Xu, “Integral points for groups of multiplicative type”, Adv. Math.

232 (2013), no. 1, p. 36-56.

Manuscrit reçu le 9 décembre 2015,
révisé le 20 décembre 2016,
accepté le 7 novembre 2017.

Yang CAO
School of Mathematical Sciences,
Capital Normal University,
105 Xisanhuanbeilu,
100048 Beijing, China
yangcao1988@gmail.com
Fei XU
School of Mathematical Sciences,
Capital Normal University,
105 Xisanhuanbeilu,
100048 Beijing, China
xufei@math.ac.cn

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1403.1035
https://arxiv.org/abs/1403.1035
mailto:yangcao1988@gmail.com
mailto:xufei@math.ac.cn

	1. Introduction
	2. Structure of smooth toric varieties
	3. Relative strong approximation for tori
	4. Proof of main theorem
	5. An example
	Bibliography

