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HILBERT AND THOMPSON GEOMETRIES
ISOMETRIC TO INFINITE-DIMENSIONAL BANACH

SPACES

by Cormac WALSH

Abstract. — We study the horofunction boundaries of Hilbert and Thomp-
son geometries, and of Banach spaces, in arbitrary dimension. By comparing the
boundaries of these spaces, we show that the only Hilbert and Thompson geome-
tries that are isometric to Banach spaces are the ones defined on the cone of positive
continuous functions on a compact space.
Résumé. — Nous étudions les frontières d’horofonctions des géométries de

Hilbert et de Thompson, et des espaces de Banach, en dimension arbitraire. En
comparant les frontières de ces espaces, nous montrons que les seules géométries
de Hilbert et de Thompson qui sont isométriques à des espaces de Banach sont
celles qui sont définies sur le cône de fonctions continues positives sur un espace
compact.

1. Introduction

It was observed by Nussbaum [20, p. 22–23] and de la Harpe [13] that the
Hilbert geometry on a finite-dimensional simplex is isometric to a normed
space. Later, Foertsch and Karlsson [10] proved the converse, that is, if a
Hilbert geometry on a finite-dimensional convex domain is isometric to a
normed space, then the domain is a simplex. In this paper, we extend this
result to infinite dimension.

The natural setting is that of order unit spaces. An order unit space is a
triple (X,C, u) consisting of a vector spaceX, an Archimedean convex cone
C in X, and an order unit u in C. Recall that the cone C is Archimedean
if whenever x ∈ X and y ∈ C satisfy nx 6 y for all n ∈ N, we have x 6 0,
and that an element u ∈ C is an order unit if for each x ∈ X there is some

Keywords: Hilbert metric, cone, isometry, Banach space, horofunction boundary.
2010 Mathematics Subject Classification: 46A40, 46B04, 46A55.



1832 Cormac WALSH

λ > 0 such that x 6 λu. Let C be the interior of C with respect to the
topology on X coming from the order unit norm. Define, for each x and y
in C,

M(x, y) := inf{λ > 0 | x 6 λy}.

Since every element of C is an order unit, this quantity is finite. Hilbert’s
projective metric is defined to be

dH(x, y) := logM(x, y)M(y, x), for each x, y ∈ C.

It satisfies dH(λx, νy) = dH(x, y), for all x, y ∈ C and λ, ν > 0, and is a
metric on the projective space P (C) of the cone.
In infinite dimension the role of the simplex will be played by the cone

C+(K) of positive continuous functions on a compact topological space K.
This cone lives in the linear space C(K) of continuous functions on K, and
is the interior of C+(K), the cone of non-negative continuous functions on
K. The triple (C(K), C+(K), u) forms an order unit space, where u is the
function on K that is identically 1. It is not hard to show that the Hilbert
metric on C+(K) is the following:

dH(x, y) = log sup
k,k′∈K

x(k)
y(k)

y(k′)
x(k′) , for x, y ∈ C+(K).

The map log : C+(K) → C(K) that takes the logarithm coordinate-wise is
an isometry when C(K) is equipped with the semi-norm

||z||H := sup
k∈K

zk − inf
k∈K

zk.

Denote by ≡ the equivalence relation on C(K) where two functions are
equivalent if they differ by a constant, that it, x ≡ y if x = y + c for
some constant c. The seminorm || · ||H is a norm on the quotient space
C(K)/≡. This space is a Banach space, and we denote it by H(K). The
coordinate-wise logarithm map induces an isometry from the projective
space P (C+(K)) to H(K). We show that every Hilbert geometry isometric
to a Banach space arises in this way. When we talk about the Hilbert
geometry on a cone C, we assume that C is the interior of the cone of some
order unit space, and we mean the Hilbert metric on the projective space
P (C).

Theorem 12.7. — If a Hilbert geometry on a cone C is isometric to a
Banach space, then C is linearly isomorphic to C+(K), for some compact
Hausdorff space K.
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HILBERT AND THOMPSON GEOMETRIES 1833

We also prove a similar result for another metric related to the Hilbert
metric, the Thompson metric. This is defined, on the interior C of the cone
of an order unit space, in the following way:

dT (x, y) := log max
(
M(x, y),M(y, x)

)
, for each x, y ∈ C.

Note that the Thompson metric is a metric on C, not on its projective
space.

Theorem 11.3. — If a Thompson geometry on a cone C is isometric to
a Banach space, then C is linearly isomorphic to C+(K), for some compact
Hausdorff space K.

The main technique we use in both cases is to compare the horofunction
boundary of the Banach space with that of the Hilbert or Thompson ge-
ometry. The horofunction boundary was first introduced by Gromov [12].
Since it is defined purely in terms of the metric structure, it is useful for
studying isometries of metric spaces.

In finite dimension, the horofunction boundary of normed spaces was
investigated in [23] and that of Hilbert geometries in [24]. The results for
the Hilbert geometry were used to determine the isometry group of this ge-
ometry in the polyhedral case [16] and in general [28]. See [27] for a survey
of these results. Other papers have dealt with isometries of Hilbert geome-
tries in special cases: see [13] for simplices and strictly convex domains; [17]
for the two dimensional case; [18] and [19] for the set of positive definite
Hermitian matrices of trace 1; and [9] for the cross-section of a symmetric
cone. Many partial results are contained in the thesis [22]. There are also
some results concerning isometries in infinite dimension [14, 15].
Usually, when one develops the theory of the horofunction boundary, one

makes the assumption that the space is proper, that is, that closed balls
are compact. For normed spaces and Hilbert geometries, this is equivalent
to the dimension being finite. To deal with infinite-dimensional spaces, we
are forced to extend the framework. For example, we must use nets rather
than sequences. In Section 2, we reprove some basic results concerning the
horofunction boundary in this setting. We study the boundary of normed
spaces in Section 3. In this and later sections, we make extensive use of
the theory of affine functions on a compact set, including some Choquet
Theory. To demonstrate the usefulness of the horofunction boundary, we
give a short proof of the Mazur–Ulam theorem in Section 4. We determine
explicitly the Busemann points in the boundary of the important Banach
space (C(K), || · ||∞) in Section 5. Crucial to our method will be to consider
the Hilbert and Thompson metrics as symmetrisations of a non-symmetric
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1834 Cormac WALSH

metric, the Funk metric. In Sections 6, 7, and 8, we study the boundaries of,
respectively, the reverse of the Funk metric, the Funk metric itself, and the
Hilbert metric. Again, we take a closer look, in Section 9, at an example,
here the cone C+(K). We study the boundary of the Thompson geometry
in Section 10, which allows us to prove Theorem 11.3 in Section 11. We
prove Theorem 12.7 in Section 12.

Acknowledgements. I had many very useful discussions with Bas Lem-
mens about this work. This work was partially supported by the ANR
“Finsler”.

2. Preliminaries

2.1. Hilbert’s metric

Let C be a cone in a real vector space X. In other words, C is closed
under addition and under multiplication by non-negative real numbers, and
C ∩ −C = {0}. The cone C induces a partial ordering 6 on X by x 6 y

if y − x ∈ C. We say that C is Archimedean if, whenever x ∈ X and
y ∈ C satisfy nx 6 y for all n ∈ N, we have x 6 0. An order unit is an
element u ∈ C such that for each x ∈ X there is some λ > 0 such that
x 6 λu. An order unit space (X,C, u) is a vector space X equipped with
an Archimedean cone C containing an order unit u. We define the order
unit norm on X:

||x||u := inf{λ > 0 | −λu 6 x 6 λu}, for all x ∈ X.

We use on X the topology induced by || · ||u. It is known that, under this
topology, C is closed [5, Theorem 2.55] and has non-empty interior. Indeed,
the interior C of C is precisely the set of its order units; see [14]. On C we
define Hilbert’s projective metric as in the introduction.
Hilbert originally defined his metric on bounded open convex sets. Sup-

pose Ω is such a set, and that we are given two distinct points x and y in
Ω. Define w and z to be the points in the boundary ∂Ω of Ω such that w,
x, y, and z are collinear and arranged in this order along the line in which
they lie. Hilbert defined the distance between x and y to be the logarithm
of the cross ratio of these four points:

dH(x, y) := log |xz| |wy|
|yz| |wx|

.

ANNALES DE L’INSTITUT FOURIER



HILBERT AND THOMPSON GEOMETRIES 1835

Figure 2.1. Hilbert’s definition of a distance.

In the case of an infinite-dimensional cone, one may recover Hilbert’s
original definition if the cone has a strictly positive state, that is, if there
exists a continuous linear functional ψ that is positive everywhere on C.
In this situation, Hilbert’s definition applied to the cross section Ω :=
{x ∈ C | ψ(x) = 1} agrees with the definition in the introduction. It was
shown in [14] that Hilbert’s definition makes sense if and only if the convex
domain is affinely isomorphic to a cross section of the cone of an order
unit space. Not every order unit space has a strictly positive state however.
For example, take X := RY , the space of real-valued bounded functions
on some uncountable set Y . The subset of these functions that are non-
negative is an Archimedean cone, and the function that is identically 1 is
an order unit. On spaces such as these, the metric dH is well-defined even
though Hilbert’s original construction is not.

2.2. The Funk and reverse-Funk metrics

Essential to our method will be to consider the Hilbert and Thompson
metrics as symmetrisations of the Funk metric, which is defined as follows:

dF (x, y) := logM(x, y), for all x ∈ X and y ∈ C.

This metric first appeared in [11]. We call its reverse dR(x, y) := dF (y, x)
the reverse-Funk metric. Like Hilbert’s metric, the Funk metric was first
defined on bounded open convex sets. On a cross section Ω of a cone C,
one can show that

dF (x, y) = log |xz|
|yz|

and dR(x, y) = log |wy|
|wx|

,

TOME 68 (2018), FASCICULE 5



1836 Cormac WALSH

for all x, y ∈ Ω. Here w and z are the points of the boundary ∂Ω shown
in Figure 2.1. On Ω, the Funk metric is a quasi-metric, in other words, it
satisfies the usual metric space axioms except that of symmetry. On C, it
satisfies the triangle inequality but is not non-negative. It has the following
homogeneity property:

dF (αx, βy) = dF (x, y) + logα− log β, for all x, y ∈ C and α, β > 0.

Observe that both the Hilbert and Thompson metrics are symmetrisa-
tions of the Funk metric: for all x, y ∈ C,

dH(x, y) = dF (x, y) + dR(x, y)
and dT (x, y) = max

(
dF (x, y), dR(x, y)

)
.

2.3. The horofunction boundary

Let (X, d) be a metric space. Associate to each point z ∈ X the function
ψz : X → R,

ψz(x) := d(x, z)− d(b, z),
where b ∈ X is some base-point. It can be shown that the map ψ : X →
C(X), z 7→ ψz is injective and continuous. Here, C(X) is the space of con-
tinuous real-valued functions on X. On this space, we take the topology of
uniform convergence on compact sets. We identify X with its image under
ψ. Let cl denote the topological closure operator. Since elements of clψ(X)
are equi-Lipschitzian, uniform convergence on compact sets is equivalent to
pointwise convergence, by the Ascoli–Arzelà theorem. Also, from the same
theorem, the set clψ(X) is compact. We call it the horofunction compact-
ification. We define the horofunction boundary of (X, d) to be

X(∞) :=
(

clψ(X)
)
\ψ(X),

The elements of this set are the horofunctions of (X, d). Although this
definition appears to depend on the choice of base-point, one may verify
that horofunction boundaries coming from different base-points are home-
omorphic, and that corresponding horofunctions differ only by an additive
constant.

2.4. Almost geodesics and Busemann points

In the finite-dimensional setting one commonly considers geodesics pa-
rameterised by Z or R. In infinite dimension, however, one must use nets.

ANNALES DE L’INSTITUT FOURIER



HILBERT AND THOMPSON GEOMETRIES 1837

Recall that a set is said to be pre-ordered if it is endowed with a binary re-
lation 6 that is reflexive and transitive, but not necessarily anti-symmetric.
A directed set is a nonempty pre-ordered set such that every pair of ele-
ments has an upper bound in the set. A net in a topological space is a
function from a directed set to the space.

Definition 2.1. — A net of real-valued functions fα is almost non-
increasing if, for any ε > 0, there exists A such that fα > fα′ − ε, for all α
and α′ greater than A, with α 6 α′.

An almost non-decreasing net is defined similarly. Observe that if fα is
an almost non-increasing net of functions, and mα is a net (on the same
directed set) of real numbers converging to zero, then fα+mα is also almost
non-increasing.

Definition 2.2. — A net in a metric space is almost geodesic if, for all
ε > 0,

d(b, zα′) > d(b, zα) + d(zα, zα′)− ε,

for α and α′ large enough, with α 6 α′.

This definition is similar to Rieffel’s [21], except that here we use nets
rather than sequences and the almost geodesics are unparameterised. Note
that any subnet of an almost geodesic is an almost geodesic. Almost
geodesics are very closely related to almost non-increasing nets, as the
following proposition shows.

Proposition 2.3. — Let zα be a net in a metric space. Then, zα is
an almost geodesic if and only if φzα := d( · , zα) − d(b, zα) is an almost
non-increasing net.

Proof. — Let ε > 0 be given. Assume zα is almost geodesic. So, for α
and α′ large enough, with α 6 α′,

d(b, zα′) > d(b, zα) + d(zα, zα′)− ε.

Let x be a point in the metric space. Combining the above inequality with
the triangle inequality concerning the points x, zα, and zα′ , we get

d(x, zα)− d(b, zα) > d(x, zα′)− d(b, zα′)− ε.(2.1)

We conclude that the net φzα is almost non-increasing.
Now assume that φzα is almost non-increasing, in other words that (2.1)

holds when α and α′ are large enough, with α 6 α′, for all points x. Taking
x equal to zα, we get that zα is an almost geodesic. �

TOME 68 (2018), FASCICULE 5



1838 Cormac WALSH

The following lemma extends Dini’s theorem.

Lemma 2.4. — Let gα be an almost non-increasing net of functions on a
Hausdorff space X. Then, gα converges pointwise to a function g. If the gα
are upper-semicontinuous, then so is the limit. If furthermoreX is compact,
then sup gα converges to sup g.

Proof. — Let gα be an almost non-increasing net of functions on X, and
choose x ∈ X. It is clear that for each ε > 0, we have lim infα gα(x) >
lim supα gα(x) − ε, from which it follows that gα(x) converges. Denote by
g the pointwise limit of gα.
Assume that each gα is upper semicontinuous. Let xβ be a net in X

converging to a point x ∈ X. So gα(x) > lim supβ gα(xβ), for each α. Let
ε > 0. That gα is almost non-increasing implies that g 6 gα + ε for α large
enough. So, choose α large enough that this holds and gα(x) 6 g(x) + ε.
Putting all this together, we get g(x) > lim supβ g(xβ)−2ε, and we conclude
that g is upper semicontinuous.
Now assume that X is compact. So, for each α, since gα is upper semi-

continuous, it attains its supremum at some point xα, and furthermore the
net xα has a cluster point x in X. By passing to a subnet if necessary, we
may assume that gα(xα) converges to a limit l, and that xα converges to x.
Let ε > 0. For α large enough, gα′(xα′) 6 gα(xα′)+ ε for all α′ > α. Taking
the limit supremum in α′, using the upper semicontinuity of gα, and then
taking the limit in α we get that l 6 g(x) + ε 6 sup g + ε, and hence that
l 6 sup g, since ε was chosen arbitrarily. The opposite inequality comes
from the fact that, in general, the limit of a supremum is greater than or
equal to the supremum of the limit. We have shown that any limit point of
sup gα = gα(xα) is equal to sup g. �

It is clear from Proposition 2.3 and the first part of Lemma 2.4 that every
almost geodesic converges in the horofunction compactification X ∪X(∞).
We say that a horofunction, in other words an element of X(∞), is a
Busemann point if it is the limit of an almost geodesic.

The following proposition will be needed in Section 8.

Proposition 2.5. — Let zα be an almost geodesic in a complete metric
space (X, d) with basepoint b. If d(b, zα) is bounded, then zα converges to
a point in X.

Proof. — For any ε > 0, we have, for α and α′ large enough with α 6 α′,

d(b, zα) 6 d(b, zα) + d(zα, zα′) 6 d(b, zα′) + ε.

ANNALES DE L’INSTITUT FOURIER
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Hence, d(b, zα) is an almost non-decreasing net of real numbers. By as-
sumption, it is bounded above. We deduce that it converges to some real
number, as α tends to infinity. Using this and again the almost-geodesic
property of the net zα, we get that, given any ε > 0, we have d(zα, zβ) < ε,
for all α and β large enough with α 6 β. The same is true when α′ is substi-
tuted for α. It follows using the triangle inequality that d(zα, zα′) < 2ε, for
α and α′ large enough, without requiring that α 6 α′. So, zα is a Cauchy
net, and hence converges since X is assumed complete. �

2.5. The detour cost

Let (X, d) be a metric space with base-point b. One defines the detour
cost for any two horofunctions ξ and η in X(∞) to be

H(ξ, η) := sup
W3ξ

inf
x∈W∩X

(
d(b, x) + η(x)

)
,

where the supremum is taken over all neighbourhoodsW of ξ in X∪X(∞).
This concept first appeared in [1] in a slightly different setting. More detail
about it can be found in [26].

Lemma 2.6. — Let ξ and η be horofunctions of a metric space (X, d).
Then, there exists a net zα converging to ξ such that

H(ξ, η) = lim
α

(
d(b, zα) + η(zα)

)
.

Proof. — To ease notation, write f(x) := d(b, x) + η(x), for all x ∈ X.
Let N be the set of neighbourhoods of ξ in X ∪X(∞). Define a pre-order
on the set

D := {(W,x) ∈ N ×X | x ∈W ∩X}

by (W1, x1) 6 (W2, x2) ifW1 ⊃W2. This pre-order makes D into a directed
set. For each β := (W,x) ∈ D, let wβ := x. Clearly, the net wβ converges to
ξ. Let E be an open neighbourhood of H(ξ, η) in [0,∞], and let (W ′, x′) ∈
D. Take W ∈ N small enough that W ⊂W ′ and

inf
x∈W∩X

f(x) ∈ E.

We can then take x ∈W ∩X such that f(x) ∈ E. So, β := (W,x) satisfies
β > (W ′, x′) and f(wβ) ∈ E. This shows that H(ξ, η) is a cluster point of
the net f(wβ). Therefore, there is some subnet zα of wβ such that f(zα)
converges to H(ξ, η). �
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The following was proved in [25, Lemma 3.3] in a slightly different setting.
There is a proof in [26] that works with very little modification in the
present setting with nets.

Lemma 2.7. — Let zα be an almost-geodesic net converging to a Buse-
mann point ξ, and let y ∈ X. Then,

lim
α

(
d(y, zα) + ξ(zα)

)
= ξ(y).

Moreover, for any horofunction η,

H(ξ, η) = lim
α

(
d(b, zα) + η(zα)

)
.

The proof of the next result however is different for nets.

Theorem 2.8. — A horofunction ξ is a Busemann point if and only if
H(ξ, ξ) = 0.

Proof. — If ξ is a Busemann point, then it follows from Lemma 2.7 that
H(ξ, ξ) = 0.
Now assume that ξ is a horofunction satisfyingH(ξ,ξ) = 0. By Lemma2.6,

there is a net zα : D → X in the metric space (X, d) converging to ξ such
that d(b, zα) + ξ(zα) converges to zero. Define the set

D′ :=

(α, β, ε) ∈ D ×D × (0,∞)

∣∣∣∣∣∣∣
α 6 β, and
|d(zα, zγ)− d(b, zγ)− ξ(zα)| < ε

for all γ > β

 .

Observe that, for any α ∈ D and ε > 0, there exists β ∈ D such that
(α, β, ε) ∈ D′, because d( · , zγ)−d(b, zγ) converges pointwise to ξ( · ). Define
on D′ the pre-order 6, where (α, β, ε) 6 (α′, β′, ε′) if either the two triples
are identical, or if β 6 α′ and ε > ε′. This relation is easily seen to be
reflexive and transitive. Also, it is not hard to show that D′ is directed by
6. The map h : D′ → D, (α, β, ε) 7→ α is monotone, and its image is cofinal,
that is, for any α′ ∈ D, there exists (α, β, ε) ∈ D′ such that h(α, β, ε) > α′.
So, the net yκ defined by yκ := zh(κ), for all κ ∈ D′, is a subnet of zα. In
particular, it converges to ξ. Moreover, d(b, yκ) + ξ(yκ) converges to zero.
Let κ := (α, β, ε) and κ′ := (α′, β′, ε′) be elements of D′, satisfying κ 6 κ′.
So, α′ > β, which implies that |d(zα, zα′)− d(b, zα′)− ξ(zα)| < ε.
Hence, for any ε > 0,

d(yκ, yκ′)− d(b, yκ′) < ξ(yκ) + ε

< −d(b, yκ) + 2ε,

for κ and κ′ large enough, with κ 6 κ′. This proves that yκ is an almost-
geodesic. �
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HILBERT AND THOMPSON GEOMETRIES 1841

The detour cost satisfies the triangle inequality and is non-negative. By
symmetrising the detour cost, we obtain a metric on the set of Busemann
points:

δ(ξ, η) := H(ξ, η) +H(η, ξ), for all Busemann points ξ and η.

We call δ the detour metric. It is possibly infinite valued, so it is actually
an extended metric. One may partition the set of Busemann points into
disjoint subsets in such a way that δ(ξ, η) is finite if and only if ξ and η

lie in the same subset. We call these subsets the parts of the horofunc-
tion boundary. Of particular interest are the parts that consist of a single
Busemann point, which are called the singleton parts.
The following expression for the detour cost will prove useful. See [28,

Proposition 4.5].

Proposition 2.9. — Let ξ be a Busemann point, and η a horofunction
of a metric space (X, d). Then,

H(ξ, η) = sup
x∈X

(
η(x)− ξ(x)

)
= inf

{
λ ∈ R | η( · ) 6 ξ( · ) + λ

}
.

3. The Busemann points of a normed space

In this section, we determine the Busemann points of an arbitrary normed
space. LetK be a convex subset of a locally-convex topological vector space
E. A function f : K → (−∞,∞] is said to be affine if

f
(
(1− λ)x+ λy

)
= (1− λ)f(x) + λf(y),

for all x, y ∈ K and λ ∈ (0, 1). We denote by A(K,E) the set of affine
functions on K that are the restrictions of continuous finite-valued affine
functions on the whole of E. The following is [2, Corollary I.1.4]

Lemma 3.1. — If K is a compact convex subset of E and a : K →
(−∞,∞] is a lower semicontinuous affine function, then there is a non-
decreasing net in A(K,E) converging pointwise to a.

Let (X, || · ||) be a normed space. We denote by B the unit ball of X, and
by B◦ the dual ball. The topological dual space of X is denoted by X∗,
and we take the weak∗ topology on this space. The dual ball is compact
in the weak∗ topology, by the Banach–Alaoglu theorem. Recall that the
Legendre–Fenchel transform of a function f on X is defined to be

f∗(y) := sup
x∈X

(
〈y, x〉 − f(x)

)
, for all y ∈ X∗.
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Since it is a supremum of weak* continuous affine functions, f∗ is weak*
lower semi-continuous and convex. One may also define the transform of a
function g on X∗ as follows:

g∗(x) := sup
y∈X∗

(
〈y, x〉 − g(y)

)
, for all x ∈ X.

These maps are inverses of one another in the following sense. A func-
tion taking values in (−∞,∞] is said to be proper if it is not identically
∞. Recall that a lower semicontinuous convex function is automatically
weakly lower semicontinuous. Denoting by Γ(X) the proper lower semicon-
tinuous convex functions on X, and by Γ∗(X∗) the proper weak* lower
semicontinuous convex functions on X∗, we have

f∗∗ = f for f ∈ Γ(X) and g∗∗ = g for g ∈ Γ∗(X∗).

We use the notation f |G to denote the restriction of a function f to a
set G. Also, we denote by XB(∞) the set of Busemann points of a metric
space X.

Theorem 3.2. — Let (X, || · ||) be a normed space. A function on X

is in X ∪ XB(∞) if and only if it is the Legendre–Fenchel transform of a
function that is affine on the dual ball, infinite outside the dual ball, weak*
lower semi-continuous, and has infimum 0.

Proof. — The Legendre–Fenchel transform of any function is automati-
cally weak* lower semi-continuous. Every Busemann point is 1-Lipschitz,
and so its transform takes the value ∞ outside the dual ball. Since each
Busemann point takes the value 0 at the origin, the transform has infimum
0. That the transform of a Busemann point must be affine on the dual
ball was proved in [23, Lemma 3.1]; the theorem is stated there for finite
dimensional spaces, but the proof works in infinite dimension as well.

Now let f be a real-valued function on X such that its transform f∗ has
the properties stated. By Lemma 3.1, there exists a non-decreasing net gα of
elements of A(B◦, X∗) that converges pointwise to f∗. For each α, we may
write gα = 〈 · , zα〉|B◦+cα, where zα ∈ X and cα ∈ R. Let mα := inf gα, for
each α. So, mα is a non-decreasing net of real numbers, and by Lemma 2.4
it converges to inf f∗ = 0. It is not too hard to calculate that, for each α,
the transform of φzα( · ) := ||zα − · || − ||zα|| is φ∗zα = gα − mα; see [23].
The Legendre–Fenchel transform is order-reversing, and so the net (gα)∗ is
non-increasing. So, by the observation after the Definition 2.1, (gα)∗ +mα

is almost non-increasing. But

(gα)∗ +mα = (gα −mα)∗ = φzα , for all α.
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Therefore, by Proposition 2.3, zα is an almost geodesic in (X, || · ||).
Let x be a point in X. We have

φzα(x) = mα + sup
y∈B◦

(
〈y, x〉 − gα(y)

)
, for all α.

Since gα is non-decreasing, the net of functions 〈 · , x〉 − gα( · ) is non-
increasing. So, by Lemma 2.4, its supremum over the dual ball B◦ converges
to the supremum of the pointwise limit 〈 · , x〉− f∗( · ). We deduce that φzα
converges pointwise to f . We have thus proved that f is either a Busemann
point or a point in the horofunction compactification corresponding to an
element of X. �

We now determine the detour metric on the boundary of a normed space.

Theorem 3.3. — Let ξ1 and ξ2 be Busemann points of a normed space,
having Legendre–Fenchel transforms g1 and g2, respectively. Then, the dis-
tance between them in the detour metric is

δ(ξ1, ξ2) = sup
y∈B◦

(
g1(y)− g2(y)

)
+ sup
y∈B◦

(
g2(y)− g1(y)

)
.

(We are using here the convention that +∞− (+∞) = −∞.)

Proof. — By the properties of the Legendre–Fenchel transform, we have,
for any λ ∈ R, that ξ2 6 ξ1 + λ if and only if g2 > g1 − λ. So, applying
Proposition 2.9, we get

H(ξ1, ξ2) = inf
{
λ ∈ R | g2 > g1 − λ

}
= sup
y∈B◦

(
g1(y)− g2(y)

)
.

The result is now obtained upon symmetrising. �

Corollary 3.4. — Two Busemann points of a normed space are in the
same part if and only if their respective Legendre–Fenchel transforms g1
and g2 satisfy

g1 − c 6 g2 6 g1 + c, for some c ∈ R.(3.1)

We say that a convex subset Z of a convex set D is an extreme set of
D if the endpoints of any line segment in D are contained in Z whenever
any point of the relative interior of the line segment is. If an extreme set
consists of a single point, we call the point an extreme point.

Corollary 3.5. — A function ξ is a singleton Busemann point of a
normed space if and only if it is an extreme point of the dual ball.

Proof. — Let ξ1 be an extreme point of the dual ball. Considering it
as function on the normed space X, we calculate its transform g1, which
we find to take the value zero at ξ1 and infinity everywhere else. So, by
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Theorem 3.2, ξ1 is in X ∪ XB(∞). Since g1 is not continuous, ξ1 does
not correspond to an element of X, and so it is a Busemann point. Let
ξ2 be another Busemann point in the same part, which implies that its
transform g2 satisfies (3.1). So, g2 is finite at ξ1 and infinite everywhere
else, and since, by Theorem 3.2, it has infimum zero, we get that g2 = g1.
Hence ξ2 is identical to ξ1.
Now let ξ1 be a Busemann point that is not an extreme point of the dual

ball, and let g1 be its transform. Since g1 is affine on the dual ball, the
set on which it is finite is an extreme set of this ball, and therefore must
contain at least two points, for otherwise ξ1 would be an extreme point.
Choose an element x of the normed space such that 〈 · , x〉 separates these
two points, that is, does not take the same value at the two points. The
function

g2 := g1 + 〈 · , x〉 − inf
B◦

(g1 + 〈 · , x〉)

satisfies all the conditions of Theorem 3.2, and so its transform ξ2 is a
Busemann point. Moreover, g1 and g2 satisfy (3.1), which implies that ξ2
is in the same part as ξ1. But, by construction, g2 differs from g1, and so
ξ2 differs from ξ1. We have shown that if a Busemann point is a singleton,
then it is an extreme point of the dual ball. �

4. The Mazur–Ulam Theorem

The techniques developed so far allow us to write a short proof of the
Mazur–Ulam theorem. Recall that, according to Corollary 3.5, the single-
ton Busemann points of a normed space are exactly the extreme points
of the dual ball. Recall also that any surjective isometry between metric
spaces can be extended to a homeomorphism between their horofunction
boundaries, which maps singletons to singletons.

Theorem 4.1 (Mazur–Ulam). — Let Λ: X → Y be a surjective isom-
etry between two normed spaces. Then, Λ is affine.

Proof. — It will suffice to assume that Λ maps the origin of X to the
origin of Y , and show that it is linear. So, take α, β ∈ R and x, y ∈ X.
Let f be an extreme point of the dual ball of Y . So, f is a singleton of
the horofunction boundary of Y . Therefore, f ◦ Λ is a singleton of the
horofunction boundary of X, and hence an extreme point of the dual ball
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of X, and hence linear. So,

f
(
Λ(αx+ βy)

)
= αf(Λ(x)) + βf(Λ(y))
= f(αΛ(x) + βΛ(y)).

Since this is true for every extreme point f of the dual ball of Y , we have
Λ(αx+ βy) = αΛ(x) + βΛ(y). �

5. The horofunction boundary of (C(K), || · ||∞)

In this section we look in more detail at the space C(K) with the supre-
mum norm, where K is an arbitrary compact Hausdorff space. Here we can
describe explicitly the Busemann points. We use ∨ to denote maximum,
and ∧ to denote minimum.

Theorem 5.1. — The Busemann points of (C(K), || · ||∞) are the func-
tions of the following form

Φ(g) := sup
x∈K

(
−u(x)−g(x)

)
∨ sup
x∈K

(
−v(x)+g(x)

)
, for all g ∈ C(K),(5.1)

where u and v are two lower-semicontinuous functions from K → [0,∞],
such that inf u ∧ inf v = 0, and such that u(x) ∨ v(x) =∞ for all x ∈ K.

The proof will use the characterisation in Section 3 of the Legendre–
Fenchel transforms of the Busemann points of a normed space. Recall that
these were shown to be the functions that are affine on the dual ball, infinite
outside the dual ball, weak* lower semi-continuous, and have infimum 0. We
will identify all such functions on the dual space of C(K). Recall that the
dual space of C(K) is car(K), the set of regular signed Borel measures onK
of bounded variation. Any element µ of car(K) can be written µ = µ+−µ−,
where µ− and µ+ are non-negative measures. This is called the Jordan
decomposition. The dual norm is the total variation norm, which satisfies
||µ|| = ||µ+||+ ||µ−||.

Proposition 5.2. — Consider a function Θ: car(K) → [0,∞] that is
not the restriction to the dual ball of a continuous affine function. Then,
Θ is affine on the dual ball, infinite outside the dual ball, weak* lower
semi-continuous, and has infimum 0 if and only if it can be written

Θ(µ) = Ξ(µ) :=

+∞, ||µ|| 6= 1;∫
udµ− +

∫
v dµ+, ||µ|| = 1,

(5.2)

where u and v are as in the statement of Theorem 5.1.
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The proof of this proposition will require several lemmas.

Lemma 5.3. — The function Ξ in (5.2) is lower semicontinuous.

Proof. — Let µα be a net in car(K) converging in the weak* topology
to µ ∈ car(K). We must show that lim infα Ξ(µα) > Ξ(µ). By taking
a subnet if necessary, we may suppose that Ξ(µα) converges to a limit.
We assume that this limit is finite, for otherwise there is nothing to prove.
This implies that ||µα|| = 1, eventually. Since the dual unit ball is compact,
we may, by taking a further subnet if necessary, assume that µ+

α and µ−α
converge, respectively, to non-negative measures ν and ν′. These measures
satisfy µ = µ+ − µ− = ν − ν′, and, so, from the minimality property of
the Jordan decomposition, ν > µ+ and ν′ > µ−. Since u and v are lower-
semicontinuous, we get from the Portmanteau theorem that

lim inf
α

Ξ(µα) > lim inf
α

(∫
udµ−α

)
+ lim inf

α

(∫
v dµ+

α

)
>
∫
udν′ +

∫
v dν.(5.3)

Consider the case where µ̄ := ν−µ+ = ν′−µ− is non-zero. Since u+v is
identically infinity, either

∫
udµ̄ or

∫
v dµ̄ must equal infinity. This implies

that the right-hand-side of (5.3) is equal to infinity, which contradicts our
assumption that lim infα Ξ(µα) is finite. On the other hand, if ν = µ+ and
ν′ = µ−, then

||µ|| = ||µ+||+ ||µ−|| = ||ν||+ ||ν′||
= lim

α
||µ+

α ||+ lim
α
||µ−α || = lim

α
||µα|| = 1.

So, in this case, the right-hand-side of (5.3) is equal to Ξ(µ), which estab-
lishes the required inequality. �

Lemma 5.4. — Let µ1 and µ2 be in the closed unit ball of car(K),
and let µ := (1 − λ)µ1 + λµ2, for some λ ∈ (0, 1). If ||µ|| = 1, then
||µ1|| = ||µ2|| = 1, and µ+ = (1− λ)µ+

1 + λµ+
2 and µ− = (1− λ)µ−1 + λµ−2 .

Proof. — Observe that the functions ν 7→ ||ν+|| and ν 7→ ||ν−|| are both
convex, and hence

||µ+|| 6 (1− λ)||µ+
1 ||+ λ||µ+

2 ||(5.4)

and ||µ−|| 6 (1− λ)||µ−1 ||+ λ||µ−2 ||.(5.5)

Moreover, the sum of these two functions is ν 7→ ||ν||. Using that ||µ1|| 6 1
and ||µ2|| 6 1, and ||µ|| = 1, we deduce that inequalities (5.4) and (5.5)
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are actually equalities. Since ν 7→ ν+ is also convex, we have µ+ 6 (1 −
λ)µ+

1 + λµ+
2 . Combining this with the equalities just established, we get

that µ+ = (1 − λ)µ+
1 + λµ+

2 , since the norm is additive on non-negative
measures. The equation involving µ− is proved similarly. �

Lemma 5.5. — The function Ξ is affine on the unit ball of car(K).

Proof. — Let µ, µ1, and µ2 be in the unit ball of car(K), such that
µ = (1 − λ)µ1 + λµ2, for some λ ∈ (0, 1). We wish to show that Ξ(µ) =
(1− λ)Ξ(µ1) + λΞ(µ2).
Consider the case where ||µ|| = 1. By Lemma 5.4, ||µ1|| = ||µ2|| = 1, and

µ+ = (1 − λ)µ+
1 + λµ+

2 and µ− = (1 − λ)µ−1 + λµ−2 . We deduce that the
second case in the definition of Ξ is the relevant one, for each of µ, µ1, and
µ2, and furthermore that the affine relation holds.
Now consider the case where ||µ|| < 1. So, Ξ(µ) =∞. To prove the affine

relation, we must show that either Ξ(µ1) or Ξ(µ2) is infinite. Assume for
the sake of contradiction that both Ξ(µ1) and Ξ(µ2) are finite. Denote by
U and V the subsets of K where, respectively, u and v are finite. So, U and
V are disjoint. From the definition of Ξ, we see that ||µ1|| = ||µ2|| = 1, that
µ+

1 and µ+
2 are concentrated on V , and that µ−1 and µ−2 are concentrated

on U . It follows that µ+ = (1 − λ)µ+
1 + λµ+

2 and µ− = (1 − λ)µ−1 + λµ−2 .
So, ||µ|| = ||µ+||+ ||µ−|| = 1, which gives a contradiction. �

The following result is due to Choquet; see [2, Theorem I.2.6].

Theorem 5.6. — If f is a real-valued affine function of the first Baire
class on a compact convex set K in a locally-convex Hausdorff space, then
f is bounded and f(x) =

∫
f dµ, where µ is any probability measure on K

and x is the barycenter of µ.

We will need a version of Lebesgue’s monotone convergence theorem for
nets of functions. The following was proved in [6, Proposition 2.13].

Lemma 5.7. — Let X be a locally-compact and σ-compact Hausdorff
space, and let λ be a positive Borel measure that is complete and regular
and satisfies λ(K) < ∞ for all compact sets K ⊂ X. Let I be a directed
set, and let fi : X → [0,∞], i ∈ I, be a family of lower semicontinuous
functions that is monotone non-decreasing. Set f(x) := supi∈I fi(x) for all
x ∈ X. Then, ∫

X

f dλ = sup
i∈I

∫
X

fi dλ.

Lemma 5.8. — If a function Θ: car(K) → [0,∞] is affine on the dual
ball, infinite outside the dual ball, weak* lower semi-continuous, and has
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infimum 0, then either it can be written in the form (5.2) or it is the
restriction to the dual ball of a continuous affine function on the dual
space.

Proof. — Denote by δx the measure consisting of an atom of mass one
at a point x. Define the functions

v : K → [0,∞], v(x) := Θ(δx),
and u : K → [0,∞], u(x) := Θ(−δx).

These two functions are non-negative because inf Θ = 0. Moreover, the dual
ball is weak* compact, and so, as a lower semicontinuous affine function, Θ
attains its infimum over it at an extreme point. Recall that, in the present
case, the extreme points are exactly the positive and negative Dirac masses;
denote the set of these by ∂e := ∂+

e ∪ ∂−e , where ∂+
e := {δx | x ∈ K} and

∂−e := {−δx | x ∈ K}. Thus, inf u ∧ inf v = 0. Also observe that u and v
are lower semicontinuous. Consider the case where u(x) and v(x) are both
finite for some x ∈ K. This implies that Θ(0) is finite since Θ is affine. It
follows from this that Θ is finite on the whole of the dual ball. Using the
fact that the dual ball is balanced, that is, closed under multiplication by
scalars of absolute value less than or equal to 1, we can reflect about the
origin to get that Θ is upper semicontinuous. So, Θ is continuous on the
dual ball. It is hence the restriction of a continuous affine function on the
whole dual space; see [2, Corollary I.1.9].
So, from now on, assume that u(x) ∨ v(x) =∞, for all x ∈ K
Since Θ is affine on the dual ball and infinite outside it, the set where

Θ is finite is an extreme set of the dual ball. Note that, given any distinct
points µ1 and µ2 in the dual ball such that ||µ2|| < 1, there is a line segment
in the dual ball having µ1 as an endpoint and µ2 as a point in its relative
interior. It follows that if Θ is finite at some point µ2 with ||µ2|| < 1, then
Θ is finite everywhere in the dual ball. But this contradicts what we have
just assumed, and we conclude that Θ(µ) takes the value +∞ if ||µ|| < 1.
Now, let µ be in the dual ball such that ||µ|| = 1. By Choquet theory,

there is a probability measure µ on the dual ball that has barycenter µ
and is pseudo-concentrated on the extreme points of the dual ball. In the
present case, since the set of extreme points is closed, and hence measurable,
µ is concentrated on the extreme points. In fact, we have the following
description of µ: writing an arbitrary measurable subset U of ∂e in the
form

U = {δx | x ∈ U+ ⊂ K} ∪ {−δx | x ∈ U− ⊂ K},
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we have µ[U ] := µ+[U+] + µ−[U−].
By Lemma 3.1, there is a net gα of continuous affine functions on the

dual space that is non-decreasing on the dual ball and converges pointwise
there to Θ. Applying Theorem 5.6 and Lemma 5.7, we get

Θ(µ) = lim
α
gα(µ)

= lim
α

∫
gα dµ

=
∫

Θ dµ

=
∫
K

Θ(δx) dµ+ +
∫
K

Θ(−δx) dµ−

=
∫
K

v(x) dµ+ +
∫
K

u(x) dµ−. �

Proof of Proposition 5.2. — Any function Ξ of the given form is clearly
infinite outside the dual ball and has infimum zero. The rest was proved in
Lemmas 5.3, 5.5, and 5.8. �

Lemma 5.9. — The function Ξ is the Legendre–Fenchel transform of
the function Φ in Theorem 5.1.

Proof. — Fix g ∈ C(K), and let Ψ: car(K) → [−∞,∞) be defined by
Ψ(µ) := 〈µ, g〉 −Ξ(µ). By Lemmas 5.3 and 5.5, Ψ is upper-semicontinuous
and affine on the unit ball of car(K). Outside the unit ball, Ψ takes the value
−∞. So, the supremum of Ψ is attained at an extreme point of the unit
ball. The set of these extreme points is {δx | x ∈ K} ∪ {−δx | x ∈ K}. For
all x ∈ K, we have that Ψ(δx) = g(x)− v(x) and Ψ(−δx) = −g(x)− u(x).
It follows that the Legendre-Fenchel transform of Ξ is the function Φ given
in (5.1). Since Ξ is a lower-semicontinuous proper convex function, it is
equal to the transform of its transform. �

We can now prove Theorem 5.1.
Proof of Theorem 5.1. — We combine Theorem 3.2, Proposition 5.2,

and Lemma 5.9. �

6. The horofunction boundary of the reverse-Funk
geometry

Although they are not strictly speaking metric spaces, the reverse-Funk
and Funk geometries retain enough of the properties of metric spaces for
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the definition of the horofunction boundary, and of Busemann points, to
make sense. In this and the following section, we study the boundary of
these two geometries. Recall that the indicator function IE of a set E is
defined to take the value 1 on E and the value 0 everywhere else.

Lemma 6.1. — Let D be a compact convex subset of a locally-convex
Hausdorff space E, and let f1 and f2 be upper-semicontinuous affine func-
tions on D with values in [0,∞). If supD f1/g 6 supD f2/g for each contin-
uous real-valued affine function g on E that is positive on D, then f1 6 f2
on D.

Proof. — Let y be an extreme point of D. The function 1/ I{y}, which
takes the value 1 at y and the value ∞ everywhere else, is a weak*-
lower-semicontinuous affine function on D. Therefore, there exists a non-
decreasing net gα of continuous real-valued affine functions that are positive
on D such that gα converges pointwise on D to 1/ I{y}. So, both f1/gα and
f2/gα are non-increasing nets of real-valued upper-semicontinuous func-
tions on D converging pointwise, respectively, to f1 I{y} and f2 I{y}. By
Lemma 2.4, supD f1/gα and supD f2/gα converge respectively to f1(y) and
f2(y). We conclude that f1(y) 6 f2(y). This is true for any extreme point
of D, and the conclusion follows on applying Bauer’s minimum princi-
ple [7]. �

The proof of the next lemma is similar to that of the previous one.

Lemma 6.2. — Let D be a compact convex subset of a locally-convex
Hausdorff space E, and let f1 and f2 be lower-semicontinuous affine func-
tions on D with values in (0,∞]. If supD g/f1 6 supD g/f2 for each contin-
uous real-valued affine function g on E that is positive on D, then f1 > f2
on D.

Suppose we have a reverse-Funk geometry on C, the interior of the cone
of an order unit space. We take the basepoint to be the order unit, which
we denote by b. Consider the following cross-section of the dual cone: D :=
{y ∈ C∗ | 〈y, b〉 = 1}. Observe that if g is the restriction to D of an element
of z of C, and is normalised to have supremum 1, then g is a continuous
positive affine function and

dR( · , z)− dR(b, z) = log sup
y∈D

g(y)
〈y, · 〉

.

The following theorem gives the Busemann points of the reverse-Funk
geometry.
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Theorem 6.3. — Let C be the interior of the cone of an order unit
space, and denote by D the cross-section of the dual cone, as above. The
Busemann points of the reverse-Funk geometry on C are the functions of
the following form:

ξ(x) := log sup
y∈D

g(y)
〈y, x〉

, for all x ∈ C,(6.1)

where g is a weak*-upper-semicontinuous non-negative affine function on
D with supremum 1, that is not the restriction to D of an element of C.

Proof. — Let ξ be of the above form. Take a net gα of elements of C
that, when viewed as a net of continuous affine functions on D, is non-
increasing and converges pointwise to g. Fix x ∈ C. So, the function
y 7→ gα(y)/〈y, x〉 defined on D is non-increasing and converges pointwise
to g(y)/〈y, x〉. Therefore, by Lemma 2.4, the net

dR(x, gα) := log sup
y∈D

gα(y)
〈y, x〉

converges to ξ(x). In particular, dR(b, gα) converges to zero. It follows that
gα converges to ξ in the reverse-Funk horofunction compactification. More-
over, the monotonicity of the convergence implies that dR( · , gα)−dR(b, gα)
is an almost non-increasing net of functions; see the observation after Defi-
nition 2.1. Although Proposition 2.3 was stated for metric spaces, it also ap-
plies to the reverse-Funk geometry since the only property used in the proof
was the triangle inequality. We conclude that gα is an almost-geodesic, and
that ξ is a Busemann point.
Now let gα be an almost-geodesic net in C converging to a Busemann

point ξ. So, dR( · , gα)−dR(b, gα) is an almost non-increasing net of functions
converging to ξ. By scaling gα if necessary, we may assume that dR(b, gα) =
0, for all α. So, for any ε > 0, there exists an index A such that

sup
y∈D

gα′(y)
〈y, x〉

6 eε sup
y∈D

gα(y)
〈y, x〉

, for all x ∈ C,

whenever α and α′ satisfy A 6 α 6 α′. But this implies by Lemma 6.1
that gα′ 6 eεgα on D, whenever A 6 α 6 α′. We conclude that log gα|D is
an almost non-increasing net. Applying Lemma 2.4 and exponentiating, we
get that gα converges pointwise on D to an upper semicontinuous function
g, which is necessarily affine and non-negative.
By applying Lemma 2.4 to the function log gα( · )−log〈 · , x〉 on D, we get

that ξ, which is the pointwise limit of dR( · , gα), has the form given in the
statement of the theorem. The normalisation can be verified by evaluating
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at b. Since it was assumed that ξ is a Busemann point, and in particular a
horofunction, g|D can not be the restriction to D of an element of C. �

Theorem 6.4. — Let ξ1 and ξ2 be Busemann points of the reverse-Funk
geometry, corresponding via (6.1) to affine functions g1 and g2, respectively,
with the properties specified in Theorem 6.3. Then, the distance between
them in the detour metric is

δ(ξ1, ξ2) = log sup
y∈D

g1(y)
g2(y) + log sup

y∈D

g2(y)
g1(y) .

(The supremum is always taken only over those points where the ratio is
well-defined).

Proof. — For any λ ∈ R, we have that ξ2 6 ξ1 + λ if and only if

sup
y∈D

g2(y)
〈y, x〉

6 sup
y∈D

g1(y)
〈y, x〉

eλ, for all x ∈ C.

By Lemma 6.1, this is equivalent to g2 6 g1 exp(λ). It follows using Propo-
sition 2.9 that

H(ξ1, ξ2) = inf
{
λ ∈ R | ξ2( · ) 6 ξ1( · ) + λ

}
= log sup

y∈D

g2(y)
g1(y) .

The result is now obtained upon symmetrising. �

Corollary 6.5. — The two reverse-Funk Busemann points ξ1 and ξ2
are in the same part if and only if g2/λ 6 g1 6 λg2, for some λ > 0.

Questions 6.6. — Is it possible for reverse-Funk geometries to have
non-Busemann horofunctions? This is not the case in finite dimension [24],
and we will see in Section 9 that it is not the case either for the positive cone
C+(K). The affine function g in Theorem 6.3 can be extended in a unique
way to a linear functional on the dual space. One can calculate that the ball
of the norm dual to the order unit norm is conv(D∪−D). Since g is always
bounded on D, its extension is continuous in the dual-norm topology. What
are the singleton Busemann points of the reverse-Funk geometry? In finite
dimension, there is a singleton corresponding to each extreme ray of the
closed cone C, that is, to each of its 1-dimensional extreme sets; see [24].
In general, do the singletons correspond exactly to the extreme rays of the
bidual cone?

We have some partial results concerning the singleton Busemann points
of this geometry.
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Proposition 6.7. — Let ξ be a Busemann point of the reverse-Funk
geometry, and let g be as in (6.1). Extend g to the whole of the dual space.
If g is in an extreme ray of the bidual cone C∗∗, then ξ is a singleton
Busemann point.

Proof. — Let ξ1 and ξ2 be distinct Busemann points in the same part.
By Theorem 6.3, we may write both of these points in the form (6.1), with
g1 and g2, respectively, substituted in for g. Both g1 and g2 are bounded on
D, and therefore their extensions to the whole dual space are continuous in
the norm topology of the dual. Thus, they are both elements of the bidual.
By Corollary 6.5, there exists λ > 0 such that g2/λ 6 g1 6 λg2 onD. Define
f = g1 +g2/λ and h = g1−g2/λ. Both f and h are linear functionals on the
dual space that are continuous in the dual-norm topology. Moreover, they
are non-negative on D. We conclude that f and h are in the bidual cone.
But we have g1 = f/2 + h/2, which shows that g1 is not in an extreme ray
of the bidual cone. �

Let U be the cone of finite-valued weak∗-upper-semicontinuous linear
functionals on the dual space that are non-negative on the dual cone C∗.

Proposition 6.8. — Let ξ be a Busemann point of the reverse-Funk
geometry, and let g be as in (6.1). Extend g to the whole of the dual space.
If ξ is a singleton, then g is in an extreme ray of the cone U .

Proof. — Suppose that g = g1+g2, with g1 and g2 in U . Let g′ := g1+2g2.
By normalising g′, the conditions of Theorem 6.3 are met, so we obtain a
Busemann point ξ′. Moreover, g′/2 6 g 6 g′ on D, and so according
to Theorem 6.4, ξ and ξ′ lie in the same part of the boundary. So, by
assumption, ξ = ξ′, which implies that g′ is a multiple of g, which further
implies that g1 is a multiple of g2. �

7. The horofunction boundary of the Funk geometry

The proof of the following theorem parallels that of the corresponding
result for the reverse-Funk geometry, Theorem 6.3. Recall that we have
defined the cross-section D := {y ∈ C∗ | 〈y, b〉 = 1}.

Theorem 7.1. — The Busemann points of the Funk geometry on C are
the functions of the following form:

ξ(x) := log sup
y∈D

〈y, x〉
f(y) , for all x ∈ C,(7.1)
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where f is a weak*-lower-semicontinuous non-negative affine function on
D, with infimum 1, that is not the restriction to D of an element of C.

The descriptions of the detour metric and the parts of the boundary are
also similar to the corresponding results for the reverse-Funk geometry.

Theorem 7.2. — Let ξ1 and ξ2 be Busemann points of the Funk ge-
ometry, corresponding via (7.1) to affine functions f1 and f2, respectively,
with the properties specified in Theorem 7.1. Then, the distance between
them in the detour metric is

δ(ξ1, ξ2) = log sup
y∈D

f1(y)
f2(y) + log sup

y∈D

f2(y)
f1(y) .

(The supremum is always taken only over those points where the ratio is
well-defined).

Corollary 7.3. — The two Funk Busemann points ξ1 and ξ2 are in
the same part if and only if f2/λ 6 f1 6 λf2, for some λ > 0.

Unlike in the case of the reverse-Funk geometry, we can determine ex-
plicitly the singleton Busemann points of the Funk geometry.

Corollary 7.4. — A function is a singleton Busemann point of the
Funk geometry if and only if it can be written log〈y, · 〉, where y is an
extreme point of D.

Proof. — The proof is similar to that of Corollary 3.5, when one considers
the cross-section D instead of the dual ball. �

8. The horofunction boundary of the Hilbert geometry

In this section, we relate the boundary of the Hilbert geometry to those of
the reverse-Funk and Funk geometries. We denote by P (C) the projective
space of the cone C, and by [h] the projective class of an element h of C.
Recall that we may regard the elements of C as positive continuous linear
functionals on C∗.

Proposition 8.1. — Let zα be a net in C. Then, zα is an almost-
geodesic in the Hilbert geometry if and only if it is an almost-geodesic in
both the Funk and reverse-Funk geometries.
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Proof. — Recall that we have chosen a basepoint b in C. For α and α′
satisfying α 6 α′, define

R(α, α′) := dR(b, zα) + dR(zα, zα′)− dR(b, zα′),
F (α, α′) := dF (b, zα) + dF (zα, zα′)− dF (b, zα′),

and H(α, α′) := dH(b, zα) + dH(zα, zα′)− dH(b, zα′).

Clearly H = R + F . Also, by the triangle inequality, R, F , and H are
all non-negative. For any α and α′ with α 6 α′, and any ε > 0, we have
that H(α, α′) < ε implies R(α, α′) < ε and F (α, α′) < ε. Conversely, we
have that R(α, α′) < ε/2 and F (α, α′) < ε/2 implies H(α, α′) < ε. The
conclusion follows easily. �

We define the following compatibility relation between reverse-Funk and
Funk Busemann points. We write ξR ∼ ξF , when there exists a net in C

that is an almost-geodesic in both the reverse-Funk and the Funk geometry,
and converges to ξR in the former and to ξF in the latter.

Theorem 8.2. — The Busemann points of the Hilbert geometry are
the functions of the form ξH := ξR+ ξF , where ξR and ξF are, respectively,
reverse-Funk and Funk Busemann points, satisfying ξR ∼ ξF .

Proof. — Let ξR and ξF be as in the statement. So, there exists a net
zα in C that is an almost-geodesic in both the reverse-Funk geometry and
the Funk geometry, and converges to ξR in the former and to ξF in the
latter. Applying Proposition 8.1, we get that zα is an almost-geodesic in
the Hilbert geometry, and it must necessarily converge to ξR + ξF .
To prove the converse, let ξH be a Busemann point of the Hilbert ge-

ometry, and let zα be an almost-geodesic net converging to it. By Propo-
sition 8.1, zα is an almost-geodesic in both the reverse-Funk and Funk
geometries, and so converges to a Busemann point ξR in the former and
to a Busemann point ξF in the latter. So, ξR ∼ ξF , and we also have that
ξH = ξR + ξF . �

Our next theorem gives a formula for the detour metric in the Hilbert
geometry.

Theorem 8.3. — Let ξH = ξR + ξF and ξ′H := ξ′R + ξ′F be Busemann
points of a Hilbert geometry, each written as the sum of a reverse-Funk
Busemann point and a Funk Busemann point that are compatible with
one another. Then, the distance between them in the detour metric is

δH(ξH , ξ′H) = δR(ξR, ξ′R) + δF (ξF , ξ′F ),
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where δR and δF denote, respectively, the detour metrics in the reverse-
Funk and Funk geometries.

Proof. — Let zα be a net in C that is an almost-geodesic in both the
reverse-Funk and the Funk geometries, converging in the former to ξR and
in the latter to ξF . By Proposition 8.1, zα is also an almost-geodesic of the
Hilbert geometry. In this geometry, it converges to ξH . By Lemma 2.7, we
have

HR(ξR, ξ′R) = lim
α

(
dR(b, zα) + ξ′R(zα)

)
and HF (ξF , ξ′F ) = lim

α

(
dF (b, zα) + ξ′F (zα)

)
,

where HR and HF denote the detour cost in the reverse-Funk and Funk
geometries, respectively. Adding, and using Lemma 2.7 again, we get that
HR(ξR, ξ′R) + HF (ξF , ξ′F ) = HH(ξH , ξ′H), where HH is the Hilbert detour
cost. The result follows upon symmetrising. �

Theorem 8.4. — Each Busemann point of the Hilbert geometry can be
written in a unique way as ξH := ξR+ξF , where ξR and ξF are, respectively,
reverse-Funk and Funk Busemann points, satisfying ξR ∼ ξF .

Proof. — That each Busemann point can be written in this way was
proved in Theorem 8.2. To prove uniqueness, suppose that ξH = ξR+ ξF =
ξ′R+ξ′F , where ξR and ξ′R are reverse-Funk Busemann points and ξF and ξ′F
are Funk Busemann points, with ξR ∼ ξF and ξ′R ∼ ξ′F . By Theorem 8.3,

δR(ξR, ξ′R) + δF (ξF , ξ′F ) = δH(ξH , ξH) = 0.

It follows that both δR(ξR, ξ′R) and δF (ξF , ξ′F ) are zero, and hence that
ξR = ξ′R and ξF = ξ′F . �

Our next goal is to make explicit the meaning of the compatibility re-
lation ∼. Recall that we have defined the cross-section D := {y ∈ C∗ |
〈y, b〉 = 1}. Suppose we are given two non-negative affine functions f and
g on D with the following properties. We assume that g is upper semicon-
tinuous and has supremum 1, whereas f is lower semicontinuous and has
infimum 1. We assume further that g takes the value zero everywhere that
f is finite. Denote by Z the set

Z :=
{

(h, h′) ∈ C × C | [h] = [h′] and g < h 6 h′ < f on D
}
.

We define a relation � on Z in the following way: we say that (h1, h
′
1) �

(h2, h
′
2) if h2 6 h1 and h′1 6 h′2 on D. It is clear that this ordering is

reflexive, transitive, and antisymmetric.
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Lemma 8.5. — We have f = sup{h′|D | (h, h′) ∈ Z} and g = inf{h|D |
(h, h′) ∈ Z}.

Proof. — Define the epigraph of f and the (truncated) hypograph of g:

epi f :=
{

(x, λ) ∈ D × R | f(x) 6 λ
}

and hyp g :=
{

(x, λ) ∈ D × R | g(x) > λ > 0
}
.

Both of these sets are closed and convex, and hyp g is compact. Let x ∈ D
and λ > 0 be such that λ < f(x). Let K be the convex hull of the union of
{(x, λ)} and hyp g. It is not hard to check that K is compact and disjoint
from epi f . Therefore, by the Hahn–Banach separation theorem, there is a
closed hyperplane H in E × R that strongly separates epi f and K. Here
we are denoting by E the affine hull of D. Note that the strong separation
implies that H can not be of the form H ′×R, where H ′ is a hyperplane of
E. It follows that H is the graph of a continuous affine function h : E → R,
satisfying g < h < f on D, and h(x) > λ. We can extend h to the whole of
the dual space in a unique way by requiring homogeneity. Since h is strictly
positive on D, this gives us an element of C, which we denote again by h.
So (h, h) ∈ Z. Using that λ can be chosen arbitrarily close to f(x), we
get that f(x) 6 sup{h′(x) | (h′′, h′) ∈ Z}. The opposite inequality follows
trivially from the definition of Z. The second part is similar, but we must
be careful because the epigraph of f is not necessarily compact. So, this
time, we choose λ arbitrarily so that λ > g(x), and separate hyp g from the
convex hull of the following three sets,

epi f ∩ {(y, β) ∈ D × R | 0 6 β 6 2},
{(y, β) ∈ D × R | β = 2},

and {(x, λ)}.

All three of these sets are compact, and, since none of them intersect hyp g,
neither does the convex hull of their union. In the same manner as before,
we obtain an element h of C satisfying g < h < min(2, f) on D, and
h(x) < λ, and the rest of the proof is the same. �

Lemma 8.6. — Let h be a lower-semicontinuous affine function on D,
and let {hi}i be a finite collection of upper-semicontinuous affine functions
on D satisfying hi < h, for each i. Then there exists a h′ ∈ C such that
maxi hi < h′ < h on D.

Proof. — The proof is similar to that of the previous lemma. If h is
identically ∞, then the proof is trivial, so we assume the contrary. We
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choose I ∈ (−∞, inf h), and separate epih from the convex hull of the
union of the compact sets

hyphi ∩ {(y, β) ∈ D × R | I 6 β}, for all i,
and {(y, β) ∈ D × R | β = I}.

We obtain h′ ∈ C satisfying I < h′ < h, and hi(y) < h′(y) for all i and all
y ∈ D such that I 6 hi(y). The conclusion follows. �

Lemma 8.7. — The set Z is a directed set under the ordering �.

Proof. — Let (h1, h
′
1) and (h2, h

′
2) be in Z. By Lemma 8.6, there is a

continuous real-valued linear functional h′ satisfying

max(h′1, h′2) < h′ < f, on D.

Since g is upper-semicontinuous, and h1 and h2 are continuous, the func-
tion min(h1, h2) − g attains its infimum over D. This infimum is positive.
Choose an ε ∈ (0, 1) strictly smaller than this infimum. Let λ ∈ (0, 1) be
such that 0 < λh′ < ε on D. So, k := g + λh′ is a non-negative upper-
semicontinuous affine function on D. We have that

max(g, λh′1, λh′2) < k < min(h1, h2).

Also, since g takes the value zero everywhere that f is finite, we have
k < λf .
We deduce using Lemma 8.6 that there exists a real-valued continuous

linear functional l satisfying k < l < min(h1, h2, λf) on D. Hence g < l.
Moreover,

max(h′1, h′2) < l

λ
< f.

We have thus proved that (l, l/λ) is in Z, and that

(h1, h
′
1) �

(
l,
l

λ

)
and (h2, h

′
2) �

(
l,
l

λ

)
. �

We can now say which reverse-Funk and Funk Busemann points are
compatible, at least for complete Hilbert geometries.

Proposition 8.8. — Let C be a cone giving rise to a complete Hilbert
geometry. Let ξR and ξF be, respectively, a reverse-Funk Busemann point
(of the form (6.1)) and a Funk Busemann point (of the form (7.1)). Then,
ξR ∼ ξF if and only if, for each y ∈ D, either g(y) = 0 or f(y) =∞.

Proof. — Assume that g and f satisfy the stated condition. The set Z
with the ordering � defined using g and f is a directed set, by Lemma 8.7.
Consider the net zα defined on the directed set Z by zα := α, for all α ∈ Z.
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Write (gα, fα) := zα, for each α ∈ Z. Observe that gα is non-increasing,
and fα is non-decreasing.
Combining Lemmas 2.4 and 8.5, we get that the net fα converges to f .
Fix x ∈ C. So, the net of functions y 7→ 〈y, x〉/fα(y) is non-increasing

and converges pointwise to 〈y, x〉/f(y). Therefore, by Lemma 2.4, the net

dF (x, fα) = log sup
y∈D

〈y, x〉
fα(y)

converges to ξF (x). In particular, dF (b, fα) converges to zero. It follows that
fα converges to ξF in the horofunction compactification of the Funk geome-
try. Moreover, the monotonicity of the convergence implies that dF ( · , fα)−
dF (b, fα) is an almost non-increasing net of functions (see the observation
after Definition 2.1). So, by Proposition 2.3, fα is an almost-geodesic. (Note
that, although this proposition was stated for metric spaces, it also applies
to the Funk geometry since all that was required in the proof was the tri-
angle inequality.) Recall that convergence to a point in the horofunction
boundary of the Funk geometry is a property of the projective classes of
the points rather than of the points themselves. So, [fα] converges in the
Funk geometry to the Funk Busemann point ξF . The same method works
to show that [gα] converges in the reverse-Funk geometry to the reverse-
Funk Busemann point ξR. Recall, moreover, that [fα] = [gα], for all α. We
have shown that ξR ∼ ξF .
To prove the converse, assume that ξR ∼ ξF holds. So, there is a net

zα in C that is an almost-geodesic in both the Funk and reverse-Funk
geometries, and converges to ξF in the former and to ξR in the latter. By
using reasoning similar to that in second part of the proof of Theorem 6.3,
we get that zα/ exp(dR(b, zα)) converges pointwise to g on D. Similarly,
zα exp(dF (b, zα)) converges pointwise to f . It follows that dH(b, zα) :=
dR(b, zα) + dF (b, zα) converges to log(f(y)/g(y)), for all y ∈ D. But this
net grows without bound according to Proposition 2.5, and so the latter
function is identically infinity. We have shown that, at each point of D,
either g is zero, or f is infinite. �

Next we show that compatibility between points only depends on the
parts in which they lie.

Proposition 8.9. — Assume the Hilbert geometry is complete. Let ξR
and ξ′R be reverse-Funk Busemann points in the same part, and let ξF and
ξ′F be Funk Busemann points in the same part. If ξR ∼ ξF , then ξ′R ∼ ξ′F .

Proof. — This follows from combining Proposition 8.8 with Corollar-
ies 6.5 and 7.3. �
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Corollary 8.10. — A Busemann point ξH = ξR + ξF of a complete
Hilbert geometry, with ξR ∼ ξF , is a singleton if and only if ξR and ξF
are singleton Busemann points of, respectively, the reverse-Funk and Funk
geometries.

Proof. — Assume that ξR is not a singleton, that is, there exists another
reverse-Funk Busemann point ξ′R in the same part as it. By, Proposition 8.9,
ξ′R ∼ ξF , and so, by Theorem 8.2, ξ′H := ξ′R + ξF is a Busemann point of
the Hilbert geometry. From Theorem 8.3, we see that ξ′H and ξH lie in the
same part. Hence, ξH is not a singleton. One may also prove in the same
way that if ξF is not a singleton, then neither is ξH .

Assume now that there exists a Busemann point ξ′H = ξ′R + ξ′F , of the
Hilbert geometry, with ξ′R ∼ ξ′F , that is distinct from ξH but in the same
part as it. So, either ξR and ξ′R are distinct, or ξF and ξ′F are. By Theo-
rem 8.3, ξ′R is in the same part as ξR, and ξ′F is in the same part as ξF .
This shows that either ξR or ξF is not a singleton. �

9. The Hilbert geometry on the cone C+(K)

In this section, we study the positive cone C+(K), that is, the cone of
positive continuous functions on a compact Hausdorff spaceK. We take the
basepoint b to be the function that is identically equal to 1. The dual cone
of C+(K) is the cone ca+

r (K) of regular Borel measures on K. The cross
section D := {µ ∈ ca+

r (K) | 〈µ, b〉 = 1} consists of the probability measures
on K. The extreme points of this cross section are the Dirac masses.

9.1. The boundary of the reverse-Funk geometry on C+(K)

The reverse-Funk metric on C+(K) is given by

dR(f, g) = log sup
x∈K

g(x)
f(x) , for all g, f in C+(K).

Recall that the hypograph of a function f : X → [−∞,∞] is the set
hyp f := {(x, α) ∈ X × R | α 6 f(x)}. A net of functions is said to
converge in the hypograph topology if their hypographs converge in the
Kuratowski–Painlevé topology [8].
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Proposition 9.1. — The horofunctions of the reverse-Funk geometry
on the positive cone C+(K) are the functions of the form

ξR(h) := log sup
x∈K

g(x)
h(x) , for all h ∈ C+(K),(9.1)

where g : K → [0, 1] is an upper-semicontinuous function with supremum
1 that is not both positive and continuous. All these horofunctions are
Busemann points.

Proof. — Let ξR be of the above form. Write

ḡ(µ) :=
∫
K

g dµ, for all µ ∈ ca+
r (K).

Let h ∈ C+(K), and denote by Dh the set of elements µ of the dual cone
such that 〈µ, h〉 :=

∫
K
hdµ = 1. So Dh is a cross-section of the dual cone.

Observe that ḡ is an upper-semicontinuous affine function on Dh, and so
attains its supremum over this set at one of the extreme points of the
set. These extreme points are the points of the form δx/h(x), with x ∈ K,
where δx denotes the unit atomic mass at a point x. Using that the function
ḡ(µ)/〈µ, h〉 is invariant under scaling µ, we get

sup
µ∈D

ḡ(µ)
〈µ, h〉

= sup
µ∈Dh

ḡ(µ) = sup
x∈K

g(x)
h(x) .

Note that, on D, the function ḡ is non-negative, upper-semicontinuous,
and affine, and that its supremum over this set is 1. We conclude, using
Theorem 6.3, that the function ξR is a Busemann point of the reverse-Funk
geometry of C+(K).
Now let gα be a net in C+(K) converging to a horofunction. By scaling if

necessary, we may assume that the supremum of each gα is 1. Consider the
hypographs hyp(gα) of these functions. This is a net of closed subsets ofK×
R. By the theorem of Mrowka (see [8, Theorem 5.2.11, p. 149]), this net has
a subnet that converges in the Kuratowski–Painlevé topology. Therefore, gα
has a subnet that converges in the hypograph topology to a proper upper-
semicontinuous function g. We reuse the notation gα to denote this subnet.
Since gα takes values in [0, 1], so also does g. From [8, Theorem 5.3.6,
p. 160], we get that sup gα converges to sup g. Thus, sup g = 1.
Fix h ∈ C+(K). We have that gα/h converges in the hypograph topol-

ogy to the proper upper semicontinuous function g/h. Applying [8, Theo-
rem 5.3.6] again, we get that

lim
α

sup
x∈K

gα(x)
h(x) = sup

x∈K

g(x)
h(x) .
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Since h was chosen arbitrarily, we see that gα converges in the horofunction
boundary to a point of the required form. �

9.2. The boundary of the Funk geometry on C+(K)

Proposition 9.2. — The horofunctions of the Funk geometry on the
positive cone C+(K) are the functions of the form

ξF (h) := log sup
x∈K

h(x)
f(x) , for all h ∈ C+(K),(9.2)

where f : K → [1,∞] is a lower-semicontinuous function with infimum 1
that is not both finite and continuous. All these horofunctions are Buse-
mann points.

Proof. — Use Proposition 9.1 and the fact that the pointwise reciprocal
map is an isometry taking the reverse-Funk metric to the Funk metric. �

9.3. The boundary of the Hilbert geometry on C+(K)

Proposition 9.3. — The Busemann points of the Hilbert geometry on
the positive cone C+(K) are the functions of the form

ξH(h) := log sup
x∈K

g(x)
h(x) + log sup

x∈K

h(x)
f(x) , for all h ∈ C+(K),

where g : K → [0, 1] is an upper-semicontinuous function with supremum
1, and f : K → [1,∞] is a lower-semicontinuous function with infimum 1,
and, for each x ∈ K, either g(x) = 0 or f(x) =∞.

Proof. — By Theorem 8.2, the Busemann points of the Hilbert geometry
are exactly the functions of the form ξR + ξF , with ξR ∼ ξF , where ξR
and ξF are Busemann points of, respectively, the reverse-Funk and Funk
geometries. The Busemann points of these geometries were described in
Propositions 9.1 and 9.2. Let g and f be as in those propositions, and
write ḡ(µ) :=

∫
K
g dµ, and f̄(µ) :=

∫
K
f dµ, for all µ ∈ D. Proposition 8.8

states that ξR ∼ ξF if and only if ḡ and f̄ are not both positive and finite at
any point of D. It is not too hard to show that this condition is equivalent
to g and f not being both positive and finite at any point of K. �
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Figure 9.1. A sequence in C+[0, 1] converging to a horofunction

We have seen that all reverse-Funk horofunctions and all Funk horofunc-
tions on the cone C+(K) are Busemann points. However, it is not necessarily
true that all Hilbert horofunctions on this cone are Busemann. Indeed, con-
sider the case whereK := [0, 1] and take for example g := I[0,1/2) /2+I[1/2,1]
and f := I[0,1/2] +2 I(1/2,1]. Here IE is the indicator function of a set E,
which takes the value 1 on E and the value 0 everywhere else. By the propo-
sitions above, ξR is a Busemann point of the reverse-Funk geometry and
ξF is a Busemann point of the Funk geometry, where ξR and ξF are defined
as in (9.1) and (9.2), respectively. Observe that if hn is a non-increasing
sequence of continuous functions on [0, 1] that converges pointwise to g,
then hn is an almost-geodesic and converges to ξR in the reverse-Funk ge-
ometry; see Figure 9.1. Moreover, it converges to ξF in the Funk geometry,
although it is not an almost geodesic in this geometry. This shows that
ξR + ξF is a horofunction of the Hilbert geometry. However, ξR + ξF is not
a Busemann point of this geometry, according to Proposition 9.3, since f
and g do not satisfy the compatibility condition. Thus, the situation differs
markedly from the finite-dimensional case. There, the reverse-Funk horo-
functions are all automatically Busemann, and every Hilbert horofunction
is Busemann if and only if every Funk horofunction is; see [24].

10. The horofunction boundary of the Thompson
geometry

Here we study the boundary of the Thompson geometry. Recall that
reverse-Funk Busemann points are of the form (6.1) and Funk Busemann
points are of the form (7.1). It was shown in Proposition 8.8, that if ξR
and ξF are Busemann points of their respective geometries, then ξR ∼ ξF
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if and only if, for each y ∈ D, either g(y) = 0 or f(y) =∞. Here, g and f
are the functionals appearing in (6.1) and (7.1).
For each x ∈ C, define the following functions on C:

rx( · ) := log M(x, · )
M(x, b) and fx( · ) := log M( · , x)

M(b, x) .

Let ∨ and ∧ denote, respectively, maximum and minimum. We use the
convention that addition and subtraction take precedence over these oper-
ators. We write x+ := x ∨ 0 and x− := x ∧ 0. Let R := R ∪ {−∞,+∞}.
Given two real-valued functions f1 and f2 on the same set, and c ∈ R,
define

[f1, f2, c] := f1 + c− ∨ f2 − c+.

Observe that if c = ∞, then [f1, f2, c] = f1, whereas if c = −∞, then
[f1, f2, c] = f2.

Let BR and BF be the set of Busemann points of the reverse-Funk and
Funk geometries, respectively.

Proposition 10.1. — Let C be a cone giving rise to a complete Thomp-
son geometry. The set of Busemann points of this geometry is

{rz | z ∈ C} ∪ {fz | z ∈ C} ∪BR ∪BF
∪ {[ξR, ξF , c] | ξR ∈ BR, ξF ∈ BF , ξR ∼ ξF , c ∈ R}.

Proof. — The proof that functions of the stated form are Busemann
points carries over with little change from the finite-dimensional version in
Proposition 9.3 of [28].

Let ξT be a Busemann point of the Thompson geometry, and let zα be
an almost-geodesic net in C converging to it. By taking subnets if neces-
sary, we may assume that zα converges in both the Funk and reverse-Funk
horofunction compactifications, to limits ξF and ξR, respectively, and fur-
thermore that dR(b, zα) − dF (b, zα) converges to a limit c in R. So, as α
tends to infinity,

dR(b, zα)− dT (b, zα)→ c−,

and dF (b, zα)− dT (b, zα)→ −c+.

Therefore, for all y ∈ C,

dT (y, zα)− dT (b, zα) =
(
dR(y, zα)− dT (b, zα)

)
∨
(
dF (y, zα)− dT (b, zα)

)
→
(
ξR(y) + c−

)
∨
(
ξF (y)− c+

)
= [ξR, ξF , c](y).
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Consider the case where c <∞. Let λ > 0 be such that c < 2 log λ. For
α large enough,

dR(λb, zα)− dF (λb, zα) = dR(b, zα)− dF (b, zα)− 2 log λ < 0,

and hence dT (λb, zα) = dF (λb, zα). Note also that dT (zα, zα′)> dF (zα, zα′),
for all α and α′. Recall that an almost-geodesic remains an almost-geodesic
when the basepoint is changed. It will be convenient to consider almost-
geodesics with respect to the basepoint λb. Let ε > 0 be given. Since zα is
an almost geodesic in the Thompson geometry, we have, for α and α′ large
enough, with α 6 α′,

dT (λb, zα′) > dT (λb, zα) + dT (zα, zα′)− ε,

and hence, again for α and α′ large enough, with α 6 α′,

dF (λb, zα′) > dF (λb, zα) + dF (zα, zα′)− ε.

We deduce that zα is an almost-geodesic in the Funk geometry, and so ξF
is either of the form fz, with z ∈ C, or a Funk Busemann point. Similarly,
when c > −∞, zα is an almost-geodesic in the reverse-Funk geometry and
ξR is either of the form rz, with z ∈ C, or a reverse-Funk Busemann point.
So, if c = ∞, then ξT is equal to ξR and is in {rz | z ∈ C} ∪ BR. On the
other hand, if c = −∞, then ξT is equal to ξF and is in {fz | z ∈ C} ∪BF .
There remains the case where c is finite. Since ξT was assumed to be in
the horofunction boundary, we have, by Proposition 2.5, that dT (b, zα)
converges to infinity, and so both dR(b, zα) and dF (b, zα) do too, since their
difference remains bounded. It follows that both ξR and ξF are Busemann
points. We have shown that ξT = [ξR, ξF , c], with ξR ∈ BR and ξF ∈ BF
such that ξR ∼ ξF . �

We extended the definition of H by setting H(ξ + u, η+ v) := H(ξ, η) +
v−u for all Busemann points ξ and η, and u, v ∈ [−∞, 0]. Here, we use the
convention that −∞ is absorbing for addition. The following proposition
was proved in [28] in the finite-dimensional case, but the proof carries over
to infinite dimension.

Proposition 10.2. — The distance in the detour metric between
two Busemann points ξT and ξ′T in a complete Thompson geometry is
δ(ξT , ξ′T ) = dH(x, x′) if ξT = rx and ξ′T = rx′ , with x, x′ ∈ C. The same
formula holds when ξT = fx and ξ′T = fx′ , with x, x′ ∈ C. If ξT = [ξR, ξF , c]
and ξ′T = [ξ′R, ξ′F , c′], with ξR, ξ′R ∈ BR and ξF , ξ′F ∈ BF such that ξR ∼ ξF ,
ξ′R ∼ ξ′F , and c, c′ ∈ R, then

δ(ξT , ξ′T ) = max
(
H(ξ̄R, ξ̄′R), H(ξ̄F , ξ̄′F )

)
+ max

(
H(ξ̄′R, ξ̄R), H(ξ̄′F , ξ̄F )

)
,
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where

ξ̄R := ξR + c−, ξ̄F := ξF − c+,

ξ̄′R := ξ′R + c′−, ξ̄′F := ξ′F − c′+.

In all other cases, δ(ξT , ξ′T ) =∞.

Corollary 10.3. — The set of singletons of a complete Thompson
geometry is exactly the union of the Funk singletons and the reverse-Funk
singletons.

11. Thompson geometries isometric to Banach spaces

In this section we determine which Thompson geometries are isometric
to Banach spaces. We start with a technical lemma.

Lemma 11.1. — For all α, β ∈ R, the sequence pn := n−1 log(exp(nα)+
exp(nβ)) is non-increasing.

Proof. — Fix n ∈ N. Observe that, for any r ∈ {0, . . . , n},

e(α−β)(n−r) + e(β−α)r > 1,

since one or other of the terms is greater than or equal to 1. Equivalently,

eαn + eβn > eαreβ(n−r).

The following inequality may be estabished by expanding the binomial on
each side, and comparing terms with the same binomial coefficient using
the previous inequality:

(eαn + eβn)(eαn + eβn)n >
(
eα(n+1) + eβ(n+1))n.

Taking logarithms and rearranging, we get pn > pn+1. �

Recall that a linear subspace of a Riesz space (vector lattice) E is a
Riesz subspace if it is closed under the lattice operations on E. We will
need the lattice version of the Stone–Weierstrass theorem. This theorem
states [4] that if K is a compact space and C(K) is the space of continuous
real-valued functions on K, then any Riesz subspace of C(K) that separates
the points of K and contains the constant function 1 is uniformly dense
in C(K). The setting for the next lemma is an order unit space (V,C, u).
Recall that the Thompson metric is defined on C, the interior of C with
respect to the topology on V coming from the order unit norm.
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Lemma 11.2. — Let Φ be a bijection from a linear space X to C. Take
the basepoint in C to be b := Φ(0), and let K be the pointwise closure of
some set of Funk singletons. Assume that the pullback f ◦Φ of each element
f of K is linear. Then, the map φ : X → C(K), x 7→ φx, where

φx(f) := f(Φ(x)), for all f ∈ K,

is linear and its image is uniformly dense in C(K).

Proof. — Recall that each Funk singleton can be written f = log y|C ,
where y is an extreme point of the cross-section D := {y ∈ C∗ | 〈y, b〉 = 1}
of the dual cone C∗. Pointwise convergence of these functions is just weak*
convergence in the dual space. So, K is a closed subset of a compact set,
and is therefore compact. We have, for all α, β ∈ R, and x, y ∈ X, and
f ∈ K,

φαx+βy(f) = f ◦ Φ(αx+ βy) = αf ◦ Φ(x) + βf ◦ Φ(y)
= αφx(f) + βφy(f).

Therefore, φ is linear. Furthermore, the image of φ is a linear subspace of
C(K). For each n ∈ N, define the following operation on X:

x⊕n y := 1
n

Φ−1(Φ(nx) + Φ(ny)), for x, y ∈ X.

Fix x and y in X. Let f ∈ K, and write g := f ◦ Φ. So, g is a linear
functional on X. Recall that, according to Corollary 7.4, f is the logarithm
of a linear functional l on the cone, that is, f = log ◦ l for some linear
functional l on C. Note that l = exp ◦ f . We have, for each n ∈ N,

g(x⊕n y) = 1
n
g
(
Φ−1(Φ(nx) + Φ(ny))

)
= 1
n
f(Φ(nx) + Φ(ny))

= 1
n

log(l ◦ Φ(nx) + l ◦ Φ(ny))

= 1
n

log
(

exp ◦f ◦ Φ(nx) + exp ◦f ◦ Φ(ny)
)

= 1
n

log
(

exp(ng(x)) + exp(ng(y))
)
.

Using Lemma 11.1, we get that the sequence g(x ⊕n y) = φx⊕ny(f) con-
verges monotonically to its limit, max{g(x), g(y)}, as n tends to infinity.
Since this is true for every f ∈ K, we have that φx⊕ny converges monotoni-
cally and pointwise to φx∨φy, and hence converges to this limit uniformly,
by Dini’s theorem. Therefore, φx ∨ φy is in cl Imφ, the closure in the uni-
form topology of the image of φ. Let p and q be in cl Imφ. So, there exist
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sequences xn and yn in X such that p is the limit of φxn and q is the limit
of φyn . By the result of the previous paragraph, φxn ∨ φyn is in cl Imφ, for
all n. Therefore, the limit of this sequence, which equals p∨q, is in the same
set. We have shown that cl Imφ is closed under supremum. It follows [3,
p. 319] that this set is a Riesz subspace of C(K). Let f1 and f2 be distinct
elements of K. So, there is some y ∈ C such that f1(y) 6= f2(y). Setting
x := Φ−1(y), we can write this φx(f1) 6= φx(f2). This shows that Imφ sep-
arates the points of K. Recall that we have chosen the basepoint b of the
cone so that b = Φ(0). Write x := Φ−1(eb), where e is Euler’s number. Let
f ∈ K. Since f is the logarithm of a linear functional, f(αz) = logα+f(z)
for all points z in the cone, and all α > 0. So, since f(b) = 0, we get
f(eb) = 1. Hence, φx(f) = f(eb) = 1. We have shown that the constant
function 1 is in the image of φ. Applying the Stone–Weierstrass theorem
to cl Imφ, we get that cl Imφ is dense in C(K), and so Imφ is dense in
C(K). �

Theorem 11.3. — If a Thompson geometry is isometric to a Banach
space, then the cone is linearly isomorphic to C+(K), for some compact
Hausdorff space K.

Proof. — Assume that Φ: X → C is a bijective isometry from a Ba-
nach space (X, || · ||) to a Thompson geometry on a cone C. We choose the
basepoint b of the cone so that b = Φ(0). Let K be the pointwise closure
of the set of Funk singletons of C. Each element f of K can be written
f = log y|C , where y is in the weak* closure of the set of extreme points
of the cross-section D := {y ∈ C∗ | 〈y, b〉 = 1} of the dual cone C∗. Since
it is a closed subset of a compact set, K is compact. By Corollary 10.3,
each Funk singleton f is also a Thompson singleton, and so its pullback
f ◦Φ is a singleton Busemann point of the Banach space X, and is therefore
linear, by Corollary 3.5. It follows that f ◦ Φ is linear for all f ∈ K. Let φ
be defined as in Lemma 11.2. According to that lemma, the image of the
Banach space X under φ is a uniformly dense subspace of C(K).
Let F denote the set of Funk singletons. Recall that the following formula

for the Funk metric holds for an arbitrary cone (see [28, Proposition 4.4]):

dF (w, z) = sup
f∈F

(
f(w)− f(z)

)
, for all w, z ∈ C.

So, the Thompson metric is given by

dT (w, z) = dF (w, z) ∨ dF (z, w) = sup
f∈F

∣∣f(w)− f(z)
∣∣, for all w, z ∈ C.
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The same formula holds with F replaced by K since the former is dense in
the latter. We conclude that, for all x, y ∈ X,

||y − x|| = dT (Φ(x),Φ(y)) = sup
f∈K
|f(Φ(x))− f(Φ(y))|

= sup
f∈K
|φx(f)− φy(f)|.

Therefore φ is an isometry from (X, || · ||) to C(K) with the supremum
norm. But we have assumed that X is complete, and so its image under φ
is complete. We conclude that this image is the whole of C(K). We have
shown that φ is an isometric linear-isomorphism from X to C(K). Define
the map Θ := exp ◦φ ◦ Φ−1 from C to C+(K). For each p ∈ C, we have

(Θp)(f) = exp ◦φΦ−1p(f) = ef(p), for all f ∈ K.

Since f is the logarithm of a linear functional on C, it follows that Θ is
linear. So, Θ is a linear isomorphism between C and C+(K). �

12. Hilbert geometries isometric to Banach spaces

Here we prove that the only Hilbert geometries isometric to Banach
spaces are the ones on the cones C+(K), for some compact space K. We
first require some lemmas concerning singleton Busemann points in cone
geometries and in Banach spaces.

Lemma 12.1. — Let zα be an almost-geodesic net in the Funk geometry
on a cone C, converging to a Funk Busemann point ξF and normalised so
that dF (b, zα) = 0 for all α. If ξR is a reverse-Funk Busemann point such
that ξR(zα) converges to −∞, then ξR ∼ ξF .

Proof. — Write ξR and ξF in the form (6.1) and (7.1), respectively, with
appropriate g and f . Choose ε > 0. Since zα is a Funk almost-geodesic, we
have by Proposition 2.3 that dF ( · , zα)−dF (b, zα) is almost non-increasing.
Note that the proposition was stated for metric spaces, but it also applies to
the Funk geometry since the only property used was the triangle inequality.
So, for α large enough, dF (x, zα) > ξF (x) − ε, for all x ∈ C. This is
equivalent to

sup
y∈D

〈y, x〉
〈y, zα〉

> e−ε sup
y∈D

〈y, x〉
f(y) , for all x ∈ C,

where D := {y ∈ C∗ | 〈y, b〉 = 1}. Applying Lemma 6.2, we get that
〈 · , zα〉 6 exp(ε)f on D, for α large enough. Since ξR(zα) converges to
−∞, we have that supy∈D g(y)/〈y, zα〉 converges to zero, which implies
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that g(y)/〈y, zα〉 converges to zero for all y ∈ D. We deduce that, if g(y)
is non-zero for some y ∈ D, then 〈y, zα〉 converges to infinity, and so f(y)
is infinite. The conclusion follows on applying Proposition 8.8. �

Lemma 12.2. — Let s be a singleton of a Banach space, and let φ : x 7→
x+ v be the translation by some vector v. Then, φ leaves s invariant.

Proof. — By Corollary 3.5, s is linear, and the conclusion follows
easily. �

Lemma 12.3. — Let s and s′ be singletons of a Banach space (X, || · ||).
Then, there exists an almost-geodesic net zα converging to s such that
s′(zα) converges to either ∞ or −∞.

Proof. — Let zα be an almost geodesic converging to s, and denote by
D the directed set on which the net zα is based. By taking a subnet if
necessary, we may assume that s′(zα) converges to a limit in [−∞,∞]. If
this limit is infinite, then the conclusion of the lemma holds, so assume the
contrary.
Take a point v in the Banach space such that s′(v) < 0. Observe that for

each n ∈ N, the net zα + nv is an almost geodesic, and by Lemma 12.2 it
converges to s. We denote by d(x, y) := ||y−x|| the metric coming from the
norm || · ||. Denote by N the set of neighbourhoods of s in the horofunction
compactification of X. Let D′ be the set of elements (W,x, n, ε, A) of N ×
X × N× (0,∞)×D such that

(i) x = zα + nv for some α > A;
(ii) x ∈W ;
(iii) 0 6 d(b, x) + s(x) < ε.
Note that, given any W ∈ N , n ∈ N, ε ∈ (0,∞), and A ∈ D, we can find

an x ∈ X satisfying (i), (ii), and (iii). Indeed, in the case of (iii), we use
Lemma 2.7. Define on D′ an order by (W,x, n, ε, A) 6 (W ′, x′, n′, ε′, A′) if
the two elements are the same, or if W ⊃W ′, n 6 n′, ε > ε′, A 6 A′, and

|d(x, y)− d(b, y)− s(x)| < ε, for all y ∈W ′.(12.1)

It is not hard to verify that this order makes D′ into a directed set. Define
the net yβ := x, for β := (W,x, n, ε, A). It is clear that yβ converges to s.
Suppose some λ > 0 is given. If β := (W,x, n, ε, A) is large enough that

ε < λ/2, and β′ := (W ′, x′, n′, ε′, A′) is such that β 6 β′, then combin-
ing (iii) and (12.1) we get

d(b, yβ) + d(yβ , yβ′)− d(b, yβ′) < λ.
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This proves that the net yβ is an almost geodesic. Since s′ is linear, s′(yβ) =
s′(zα) + ns′(v), for all β, where α depends on β and is as in (i). Both α

and n can be made as large as we wish by taking β large enough, and so
s′(yβ) converges to −∞. �

Observe that if ξR and ξF are reverse-Funk and Funk horofunctions,
respectively, then ξR + ξF is constant on each projective class of the cone,
and so we may consider it to be defined on P (C). Recall that, according
to Corollary 8.10, the singleton Busemann points of a complete Hilbert
geometry are the points of the form ξR+ξF , where ξR and ξF are singleton
Busemann points of, respectively, the reverse-Funk and Funk geometries,
satisfying ξR ∼ ξF .

Lemma 12.4. — Let Φ: X → P (C) be a bijective isometry from a Ba-
nach space to the Hilbert geometry on a cone. Let s be a singleton of the
Banach space. Write s = (ξR + ξF ) ◦ Φ and −s = (ξ′R + ξ′F ) ◦ Φ, where
ξR and ξ′R are singletons of the reverse-Funk geometry, and ξF and ξ′F are
singletons of the Funk geometry, satisfying ξR ∼ ξF and ξ′R ∼ ξ′F . Then,
ξR = −ξ′F and ξ′R = −ξF .

Proof. — Take an almost geodesic zβ in the Banach space converging
to s. Let [yβ ] := Φ(zβ) be the image of this net in P (C), and take re-
spresentatives yβ . So, yβ is an almost geodesic in the Hilbert geometry,
and therefore it is also an almost geodesic in both the reverse-Funk and
Funk geometries. Hence, it converges to a Busemann point in both of these
geometries. Moreover, the sum of the two Busemann points is equal to
the Hilbert geometry Busemann point ξR + ξF . Since, by Theorem 8.4, a
Hilbert geometry Busemann point can be written in a unique way as the
sum of a reverse-Funk Busemann point and a Funk Busemann point, we
see that the limit of yβ in the reverse-Funk geometry is ξR and that the
limit of yβ in the Funk geometry is ξF . Let [p] and [q] be points in the
projective space P (C) of the cone, and fix representatives, p and q. Taking
the reflection z′β := 2Φ−1([p])− zβ of the net zβ in the point Φ−1([p]), we
get an almost geodesic converging to −s. As before, let [y′β ] := Φ(z′β), for
all β, and take representatives y′β . Again, this is an almost geodesic in the
Hilbert geometry, converging this time to ξ′R in the reverse-Funk geometry
and to ξ′F in the Funk geometry. For all β, since Φ−1([p]) is the midpoint
of z′β and zβ , we have

dH(y′β , p) + dH(p, yβ) = dH(y′β , yβ).
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This implies that

dF (y′β , p) + dF (p, yβ) = dF (y′β , yβ), for all β.(12.2)

Recall that

ξF (q)− ξF (p) = lim
β

(
dF (q, yβ)− dF (p, yβ)

)
and ξ′R(q)− ξ′R(p) = lim

β

(
dF (y′β , q)− dF (y′β , p)

)
.

Combining these two equations with (12.2), and using the Funk metric
triangle inequality applied to points y′β , q, and yβ , we get ξF (q)− ξF (p) +
ξ′R(q)−ξ′R(p) > 0. But this holds for arbitrary p and q in C, and so ξ′R+ξF
must be constant on C. Since this function takes the value zero at the
basepoint b, we see that it is zero everywhere. The proof that ξR + ξ′F = 0
is similar. �

Given a cone C, we use F to denote the set of singleton Busemann
points ξF of the Funk geometry on C such that there exists a reverse-Funk
singleton Busemann point ξR satisfying ξR ∼ ξF .

Lemma 12.5. — Let C be a cone whose Hilbert geometry is isometric
to a Banach space X. Let Φ′ : X ′ → C be a bijection from another linear
space X ′ to C, such that the pullback ξH ◦ Φ′ of every Hilbert geometry
singleton ξH is a linear functional on X ′. If there exists ηF ∈ F whose
pullback is linear, then the pullback of every element of F is linear.

Proof. — Since ηF is in F , there is some reverse-Funk singleton ηR sat-
isfying ηR ∼ ηF , and hence ηH := ηR + ηF is a Hilbert singleton, by
Corollary 8.10.
Let ξF ∈ F . So, there is some singleton ξR of the reverse-Funk geometry

such that ξH := ξR + ξF is a singleton of the Hilbert geometry. From
the isometry between the Banach space X and the Hilbert geometry, we
get that there is another singleton ξ′H of the Hilbert geometry satisfying
ξ′H = −ξH . We may write ξ′H = ξ′R + ξ′F , where ξ′R and ξ′F are singletons
of the reverse-Funk and Funk geometries, respectively.
Using Lemma 12.3 and the isometry between the Banach space X and

the Hilbert geometry, we get that there exists an almost geodesic net [yα]
in P (C) converging in the Hilbert geometry to ηH such that either ξH(yα)
or ξ′H(yα) converges to −∞. Consider the former case. For all α, take a
representative yα of the projective class [yα] so that dF (b, yα) = 0, which
implies, by the triangle inequality, that dF (b, · ) 6 dF (yα, · ) on C, and
hence that ξF (yα) > 0. Since we are supposing that ξH(yα) = ξR(yα) +
ξF (yα) converges to −∞, we must have that ξR(yα) converges to −∞. From
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Proposition 8.1, we get that yα is an almost geodesic in the Funk geometry.
In this geometry, it converges to ηF . Applying Lemma 12.1, we get that
ξR ∼ ηF . This means that ξR+ηF is a singleton of the Hilbert geometry on
C, and so, by assumption, its pullback (ξR + ηF ) ◦Φ′ is linear. We deduce
that ξR ◦Φ′ is linear, and hence that ξF ◦Φ′ = (ξH − ξR)◦Φ′ is linear. Now
consider the latter case, that is, where ξ′H(yα) = ξ′R(yα)+ξ′F (yα) converges
to −∞. Using reasoning similar to that in the previous case, we get that
ξ′R ◦Φ′ is linear. But, according to Lemma 12.4, ξ′R = −ξF , and so ξF ◦Φ′
is linear. �

Lemma 12.6. — If a Hilbert geometry on a cone C is isometric to a
Banach space, then the singleton Busemann points of the Hilbert geometry
are exactly the functions of the form ξF − ξ′F , with ξF and ξ′F distinct
elements of F .

Proof. — Let ξH be a Hilbert geometry singleton. By Corollary 8.10, we
may write ξH = ξR + ξF , where ξR and ξF are reverse-Funk and Funk sin-
gletons, respectively, satisfying ξR ∼ ξF . So, ξF is in F . From Lemma 12.4,
we get that ξR = −ξ′F , for some ξ′F ∈ F . This shows that ξH is of the
required form.
Let ξF and ξ′F be distinct elements of F . By Corollary 7.4, we may

write ξF = log〈y, · 〉 and ξ′F = log〈y′, · 〉, where y and y′ are distinct ex-
treme points of the cross-section D of the dual cone. Let yα be a net in C
such that 〈 · , yα〉 is non-decreasing and converges pointwise on D to 1/ Iy.
By Lemma 2.4, dF (b, yα) converges to 0. Write zα := yα exp(dF (b, yα)), for
all α. So, zα is a scaling of yα by a factor that converges to 1. One easily cal-
culates that dF (b, zα) = 0, for all α. Furthermore, zα is an almost geodesic
converging to ξF in the Funk geometry. Observe that ξ′F (zα) = log〈y′, zα〉
converges to ∞, as α tends to infinity. But, by Lemma 12.4, −ξ′F = ξR
for some reverse-Funk singleton ξR. Applying Lemma 12.1, we get that
ξR ∼ ξF . So, by Corollary 8.10, ξF −ξ′F is a Hilbert geometry singleton. �

Let K be a compact space. Define the following seminorm on C(K).

||x||H := sup
f∈K

x(f)− inf
f∈K

x(f).

Denote by ≡ the equivalence relation on C(K) where two functions are
equivalent if they differ by a constant, that it, x ≡ y if x = y + c for some
constant c ∈ R. The seminorm ||x||H is a norm on the quotient C(K)/≡.
This space is a Banach space, and we denote it by H(K).
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Theorem 12.7. — If a Hilbert geometry on a cone C is isometric to a
Banach space, then C is linearly isomorphic to C+(K) for some compact
Hausdorff space K.

Proof. — Let Φ: X → P (C) be a bijective isometry from a Banach
space (X, || · ||) to the Hilbert geometry on C. Each singleton of the Hilbert
geometry may be written ξR + ξF , where ξR and ξF are singletons of the
reverse-Funk and Funk geometries, respectively, and ξR ∼ ξF . Let F denote
the set of Funk singletons that appear in this way, and denote by K the
pointwise closure of this set of functions. Recall that each element f of
K can be written f = log y|C , where y is in the weak* closure of the set
of extreme points of the cross-section D := {y ∈ C∗ | 〈y, b〉 = 1} of the
dual cone C∗. Since K is a closed subset of a compact set, it is compact.
Consider the linear space X ′ := X × R, and define a map Φ′ : X ′ → C in
the following way. Fix a choice of a particular ηF ∈ F . For each x ∈ X, the
projective class Φ(x) is a ray in C, and along this ray the function ηF is
monotonically increasing, taking values from −∞ to∞. So, for each x ∈ X
and α ∈ R, we may define Φ′(x, α) to be the representative of Φ(x) where
ηF takes the value α. Observe that, since by definition

(ηF ◦ Φ′)(x, α) = α, for all x ∈ X and α ∈ R,(12.3)

we have that ηF ◦ Φ′ is linear.
Consider a Hilbert singleton ξH . Since Hilbert horofunctions are constant

on projective classes, ξH ◦Φ′(x, α) = ξH ◦Φ(x). But ξH ◦Φ is a singleton of
X, and hence linear. We conclude that the pullback ξH ◦Φ′ of ξH is linear
on X ′.
Applying Lemma 12.5, we get that f ◦ Φ′ is linear for all f ∈ F , and it

follows that the same is true for all f ∈ K. Define the map φ : X ′ → C(K),
x 7→ φx as in Lemma 11.2. That is,

φx(f) := f(Φ′(x)), for all f ∈ K.

According to Lemma 11.2, φ is linear and its image is a uniformly dense
subspace of C(K). We make the following claim, the proof of which we
postpone.

Claim 12.8. — The image of X ′ under the map φ is a complete subset
of (C(K), || · ||∞).

From this claim, we conclude that the image of φ is the whole of C(K).
Extend the norm on X to a seminorm on X ′ by ignoring the second

coordinate. We again use || · || to denote this seminorm. We make a second
claim.
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Claim 12.9. — The map φ from (X ′, || · ||) to (C(K), || · ||H) is an
isometry.

It follows, upon quotienting on each side by the respective 1-dimensional
subspace where the seminorm is zero, that X is isometric to H(K). Define
the map Θ := exp ◦φ ◦ Φ′−1 from C to C+(K). For each p ∈ C, we have

(Θp)(f) = exp ◦φΦ′−1(p)(f) = ef(p), for all f ∈ K.

Since f is the logarithm of a linear functional on C, it follows that Θ is
linear. So, Θ is a linear isomorphism between C and C+(K). �

Proof of Claim 12.9. — Let S be the set of singletons of the Banach
space (X, || · ||). Extend each s ∈ S to X ′ by s(x, α) := s(x), for all x ∈ X
and α ∈ R. We have that ||x|| = sups∈S s(x), for all x in X. Using the
correspondence between the singletons of the Banach space and those of
the Hilbert geometry, we get from Lemma 12.6 that a function s is in S if
and only if it is of the form s = ξF ◦ Φ′ − ξ′F ◦ Φ′, with ξF and ξ′F distinct
elements of F . Note that if ξF and ξ′F were identical, then ξF ◦Φ′− ξ′F ◦Φ′
would be zero. So, for any p := (x, α) ∈ X ′,

||p|| = sup
ξF ,ξ′F∈F

(
ξF ◦ Φ′(p)− ξ′F ◦ Φ′(p)

)
= sup
ξF∈F

φp(ξF )− inf
ξ′
F
∈F

φp(ξ′F )

= ||φp||H ,

since F is dense in K. �

Proof of Claim 12.8. — Recall that we extend the norm on X to a
seminorm || · || on X ′ by ignoring the second coordinate. Consider another
norm on X ′ defined by

||p||′ := ||x||+ |α|, for all p := (x, α) in X ′.

This is the `1-product of two complete norms, and so makes X ′ into a Ba-
nach space. From Claim 12.9 and (12.3), we see that φ induces an isometry
between the norm || · ||′ on X ′ and the norm || · ||′′ on C(K) defined by

||g||′′ := ||g||H + |g(ηF )|, for all g in C(K).

But it is not hard to show that || · ||∞ 6 || · ||′′ 6 3|| · ||∞, and so || · ||′′ and
|| · ||∞ are equivalent norms on C(K). It follows that the image of φ is a
complete subset of (C(K), || · ||∞). �
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