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WEAK TYPE OPERATOR LIPSCHITZ AND
COMMUTATOR ESTIMATES FOR COMMUTING

TUPLES

by Martijn CASPERS,
Fedor SUKOCHEV & Dmitriy ZANIN (*)

Abstract. — Let f : Rd → R be a Lipschitz function. If B is a bounded self-
adjoint operator and if {Ak}d

k=1 are commuting bounded self-adjoint operators
such that [Ak, B] ∈ L1(H), then

‖[f(A1, . . . , Ad), B]‖1,∞ 6 c(d)‖∇(f)‖∞ max
16k6d

‖[Ak, B]‖1,

where c(d) is a constant independent of f , M and A, B and ‖ · ‖1,∞ denotes the
weak L1-norm.

If {Xk}d
k=1 (respectively, {Yk}d

k=1) are commuting bounded self-adjoint opera-
tors such that Xk − Yk ∈ L1(H), then

‖f(X1, . . . , Xd)− f(Y1, . . . , Yd)‖1,∞ 6 c(d)‖∇(f)‖∞ max
16k6d

‖Xk − Yk‖1.

Résumé. — Soit f : Rd → R une fonction Lipschitzienne. Si B est un opérateur
borné auto-adjoint et si {Ak}d

k=1 sont des opérateurs bornés auto-adjoints qui
commutent et tels que [Ak, B] ∈ L1(H), alors

‖[f(A1, . . . , Ad), B]‖1,∞ 6 c(d)‖∇(f)‖∞ max
16k6d

‖[Ak, B]‖1,

où c(d) est une constante indépendante de f , M et A, B et ‖ · ‖1,∞ désigne la
norme L1-faible.

Si {Xk}d
k=1 (respectivement {Yk}d

k=1) sont des opérateurs bornés qui com-
mutent et tels que Xk − Yk ∈ L1(H), alors

‖f(X1, . . . , Xd)− f(Y1, . . . , Yd)‖1,∞ 6 c(d)‖∇(f)‖∞ max
16k6d

‖Xk − Yk‖1.
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1. Introduction

Let f : R → R be a Lipschitz function. Let M be a semi-finite von
Neumann algebra and letMsa be its self-adjoint part. This paper deals with
differentiability properties of (multi-dimensional versions of) the mapping

(1.1) Msa 3 A 7→ f(A).

The interest in such differentiability problems comes from very diverse di-
rections:

(i) the mapping (1.1) relates strongly to perturbations of commutators,
(ii) there is a prolific series of papers devoted to differentiability and

Lipschitz properties of (1.1),
(iii) the map (1.1) relates to Connes’ non-commutative geometry and in

particular the spectral action, see [10, 32, 34].

The roots of the results of this paper can be traced back to a problem of
Krein [21] which led to a remarkable diversity of papers concerning double
operator integrals and Schur multipliers. The original Krein problem asks if
for a function f being Lipschitz implies that it is operator Lipschitz, mean-
ing that (1.1) is Lipschitz for the uniform norm onMsa. Krein’s question
is very natural but it was shown that it has a negative answer [14], unless
one imposes stricter differentiability assumptions on f (like belonging to
certain Besov or Sobolev spaces), see [1, 2, 28] to name just a few. Contri-
butions to the problem were made by various people including Davies [11],
Kato [18] and Kosaki [20] who found positive and negative results (under
suitable conditions) for the analogue of Krein’s problem for Lp-norms.

With the development of double operator integrals (see e.g. [5, 25, 26])
significant steps forward were made on Lipschitz and differentiability prop-
erties of the mapping (1.1), which were shown to be equivalent to vari-
ous commutator estimates (see [4], [12, Theorem 2.2]). In turn this led to
questions on the behavior of certain Schur multipliers and related double
operator integrals.

Finding estimates, even if they are non-optimal, for norms of Schur mul-
tipliers is a highly non-trivial task. The hard part is that Schur multipliers
acting on L∞-spaces (or just matrix algebras) can often be estimated using
Stinespring dilations, see e.g. [29]. However, if one considers Schur multi-
pliers on Lp-spaces this tool is inapplicable. Therefore, in order to attack
Krein’s problem for Lp-spaces, p 6= 1,∞ we are forced to introduce new
techniques.

ANNALES DE L’INSTITUT FOURIER



LIPSCHITZ AND COMMUTATOR ESTIMATES 1645

A corner stone result was obtained in [31] (see also [16]): it was shown by
D. Potapov and the second named author that the mapping (1.1) is Lips-
chitz continuous with respect to the Lp-norm, 1 < p <∞. As [31] involves
an application of the vector valued Marcinkiewicz multiplier theorem (due
to Bourgain) it was not clear what the optimal non-commutative Lipschitz
constants are. A sharp estimate for Lp-spaces was found in [7]. However
in the category of symmetric spaces the question whether the so-called
weak-(1, 1) estimate holds remained open.

A first result in this weak-(1, 1) direction was obtained by Nazarov and
Peller [24] who proved it in the special case that A − B has rank 1. In
the same paper a question concerning validity of this result for an arbi-
trary trace class perturbation A−B was posed. A full answer for f being
the absolute value map was obtained in [9] using positive definite Schur
multipliers and triangular truncations. In [8] this result was extended to all
Lipschitz functions. The result is ultimate for the functions of 1 variable: it
is optimal within the category of symmetric spaces and it implies all other
known estimates on perturbations of commutators and Lipschitz functions
obtained before [7, 9, 11, 12, 13, 18, 20, 24, 31]. The key ingredient of the
proof in [8] is a new connection with non-commutative Calderón–Zygmund
theory and in particular with the main result from Parcet’s fundamental
paper [27] (see also the recent paper by Cadilhac [6] for a substantially
shorter proof).
In this paper we focus on multi-dimensional (or multi-variable) Lips-

chitz estimates for the mapping (1.1) which naturally includes a version
of the Nazarov–Peller problem for normal operators. This study is deeply
connected with that of classical Fourier multipliers. In particular, the di-
mension dependence of classes of multipliers as Bochner–Riesz multipliers,
Riesz multipliers, (directional) Hilbert transforms et cetera, has been an
important theme of research (we refer to Grafakos’s book [15] with ample
such results). Therefore, it is natural to look at the higher dimensional
behavior of (1.1). Some results were obtained in [19] and [7]. However,
the results in these papers are not optimal. In this paper we obtain the
following.

Theorem 1.1. — For every Lipschitz function f : Rd → R and for every
collection A = {Ak}dk=1 ⊂ B(H) of commuting self-adjoint operators such
that [Ak, B] ∈ L1(H), we have

‖[f(A), B]‖1,∞ 6 c(d)‖∇(f)‖∞ · max
16k6d

‖[Ak, B]‖1.

TOME 68 (2018), FASCICULE 4



1646 Martijn CASPERS, Fedor SUKOCHEV & Dmitriy ZANIN

For every Lipschitz function f : Rd → R and for every collections X =
{Xk}dk=1 ⊂ B(H), Y = {Yk}dk=1 ⊂ B(H) of commuting self-adjoint opera-
tors such that Xk − Yk ∈ L1(H), we have

‖f(X)− f(Y)‖1,∞ 6 c(d)‖∇(f)‖∞ · max
16k6d

‖Xk − Yk‖1.

As a corollary of Theorem 1.1 we extend our main result from [8] to nor-
mal operators, see Corollary 5.4, which substantially improves correspond-
ing results in [2, 7] (see also [1]). This extension is based on a strengthened
version of the transference principle from [8] as explained in Section 4. In
the text we prove a somewhat stronger result than Theorem 1.1 in terms of
double operator integrals (see the next section for the definitions), of which
the main Theorem 1.1 is a corollary.

Theorem 1.2. — For every Lipschitz function f : Rd → R and for every
collection A = {Ak}dk=1 of commuting self-adjoint operator in a semifinite
von Neumann algebraM, we have

‖TA,A
fk0

(V )‖1,∞ 6 c(d)‖∇(f)‖∞‖V ‖1, V ∈ (L1 ∩ L2)(M),

for every 1 6 k0 6 d. Here, fk0 is defined by (2.7).

Our proofs are based on weak type versions of de Leeuw theorems [22]
and a delicate analysis of homogeneous Calderón–Zygmund operators.

2. Preliminaries

2.1. General notation

Throughout the paper d is an integer > 1. Our main result, Theorem 1.1,
concerns d-tuples of commuting self-adjoint operators, whereas the proofs
involve an analysis on Rd+1 and Td+1. We use

∇ = (∂1, . . . , ∂d+1) = 1
i
( ∂

∂t1
, . . . ,

∂

∂td+1
)

for the gradient, which is an unbounded operator on L2(Rd+1). We use F
for the Fourier transform F(f)(t) = (2π)−(d+1)/2 ∫

Rd+1 f(s)e−i〈s,t〉ds.
Let M be a semifinite von Neumann algebra equipped with a faithful

normal semifinite trace τ. In this paper, we always presume that M is
represented on a separable Hilbert space.
A (closed and densely defined) operator x affiliated with M is called

τ−measurable if τ(E|x|(s,∞)) <∞ for sufficiently large s. We denote the

ANNALES DE L’INSTITUT FOURIER



LIPSCHITZ AND COMMUTATOR ESTIMATES 1647

set of all τ−measurable operators by S(M, τ). For every x ∈ S(M, τ), we
define its singular value function µ(A) by setting

µ(t, x) = inf{‖x(1− p)‖∞ : τ(p) 6 t}.

Equivalently, for positive self-adjoint operators x ∈ S(M, τ), we have

nx(s) = τ(Ex(s,∞)), µ(t, x) = inf{s : nx(s) < t}.

We have for x, y ∈ S(M, τ) (see e.g. [23, Corollary 2.3.16])

(2.1) µ(t+ s, x+ y) 6 µ(t, x) + µ(s, y), t, s > 0.

Let S((0,∞)× (0,∞)) = S(L∞((0,∞)× (0,∞)),
∫

ds) where the integral
is the Lebesgue integral. Recall that every x ∈ S(M, τ), y ∈M such µ(x)⊗
µ(y) ∈ S((0,∞)× (0,∞)) we have (see [8, Eqn. (4.1)] for the proof),

(2.2) µ(x⊗ y) = µ(µ(x)⊗ µ(y)).

For a measurable function f on Rd+1 we use σl(f)(t) = f(l−1t), l > 0. Note
that

(2.3) ‖σl(f)‖1 = ld+1‖f‖1, ‖σl(f)‖2 = l(d+1)/2‖f‖2,

where the norms are with respect to the Lebesgue measure on Rd+1.

2.2. Non-commutative spaces

For 1 6 p <∞ we set,

Lp(M) = {x ∈ S(M, τ) : τ(|x|p) <∞}, ‖x‖p = (τ(|x|p))
1
p .

The Banach spaces (Lp(M), ‖ · ‖p), 1 6 p < ∞ are separable. Further, in
this paper the Schatten trace class L1(B(H)) is denoted by L1(H). Define
the space L1,∞(M) by setting

L1,∞(M) = {x ∈ S(M, τ) : sup
t>0

tµ(t, x) <∞}.

We equip L1,∞(M) with the functional ‖ · ‖1,∞ defined by the formula

‖x‖1,∞ = sup
t>0

tµ(t, x), x ∈ L1,∞(M).

It follows from (2.1) that

‖x+ y‖1,∞ = sup
t>0

tµ(t, x+ y) 6 sup
t>0

t

(
µ

(
t

2 , x
)

+ µ

(
t

2 , y
))

6 sup
t>0

tµ

(
t

2 , x
)

+ sup
t>0

tµ

(
t

2 , y
)

= 2‖x‖1,∞ + 2‖y‖1,∞.

TOME 68 (2018), FASCICULE 4
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In particular, ‖ · ‖1,∞ is a quasi-norm. The quasi-normed space (L1,∞(M),
‖ · ‖1,∞) is, in fact, quasi-Banach (see e.g. [17, Section 7] or [35]). Naturally
we set L1,∞(Rd+1) =L1,∞(L∞(Rd+1)) and L1,∞(Td+1) =L1,∞(L∞(Td+1)).

2.3. Weak type inequalities for Calderón–Zygmund operators

Parcet [27] proved a non-commutative extension of Calderón–Zygmund
theory.

Let K be a tempered distribution on Rd+1 which we refer to as the con-
volution kernel. We letWK be the associated Calderón–Zygmund operator,
formally given by f 7→ K ∗ f. In what follows, we only consider tempered
distributions having local values. Our kernels have local value at every non-
zero point in Rd+1 (see the proof of Theorem 2.2 below) and hence can be
identified with measurable functions K : Rd+1\{0} → C.

Let M be a semi-finite von Neumann algebra with normal, semi-finite,
faithful trace τ. The operator 1 ⊗WK can, under suitable conditions, be
defined as a non-commutative Calderón–Zygmund operator by letting it
act on the second tensor leg of L1(M)⊗̂L1(Rd+1). The following theorem
in particular gives a sufficient condition for such an operator to act from L1
to L1,∞. Its proof was improved/shortened very recently by Cadilhac [6].

Theorem 2.1 ([6, 27]). — Let K : Rd+1\{0} → C be a kernel satisfying
the conditions

(2.4) |K|(t) 6 const
|t|d+1 , |∇K|(t) 6 const

|t|d+2 .

LetM be a semi-finite von Neumann algebra. If WK ∈ B(L2(Rd+1)), then
the operator 1⊗WK defines a bounded map from L1(M⊗ L∞(Rd+1)) to
L1,∞(M⊗ L∞(Rd+1)).

We need a very special case of Theorem 2.1.

Theorem 2.2. — If g ∈ L∞(Rd+1) is a smooth homogeneous function of
degree 0, then 1⊗g(∇) defines(1) a bounded map from L1(M⊗L∞(Rd+1))
to L1,∞(M⊗ L∞(Rd+1)).

Proof. — Without loss of generality, the function g is mean zero on the
sphere Sd (this can always be achieved by subtracting a constant from g).
By Theorem 6 on p. 75 in [33] and using that g has mean 0, we have

(1)Here, g(∇) = F−1MgF , where Mg is the multiplication operator by the function g.
In other words, it is a Fourier multiplier associated to the symbol g.

ANNALES DE L’INSTITUT FOURIER
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g(∇) = WK , where K = F−1(g) is a smooth homogeneous function of
degree −d − 1. The gradient of the function K is a smooth homogeneous
function of degree −d− 2. These conditions guarantee that (2.4) holds for
K and by Theorem 2.1, the assertion follows. �

In Section 3, we prove the following compact analogue of Theorem 2.2.
The transference arguments in Section 4 require such a compact form. We
let ∇Td+1 be the gradient operator on the (d+ 1)-torus.

Theorem 2.3. — If g is a smooth homogeneous function on Rd+1\{0}
of degree 0 (we also set g(0) = 0), then the operator 1⊗g(∇Td+1) : L2(M⊗
L∞(Td+1))→ L2(M⊗L∞(Td+1)) admits a bounded extension acting from
L1(M⊗ L∞(Td+1)) to L1,∞(M⊗ L∞(Td+1)).

Remark 2.4. — Theorem 2.3 should be understood as a de Leeuw theo-
rem in the following sense. Assume for simplicity thatM = C. The oper-
ator g(∇) in Theorem 2.2 is a Fourier multiplier with symbol g, whereas
the operator g(∇Td+1) is the Fourier multiplier on L2(Td+1) whose symbol
is the restriction of g to Zd+1. Theorem 2.3 then shows that g|Zd+1 is the
symbol of a bounded multiplier L1(Td+1) → L1,∞(Td+1). This is a weak
(1, 1) version of de Leeuw’s theorem [22].

2.4. Double operator integrals

Let A = {Ak}dk=1 be a collection of commuting self-adjoint operators
affiliated with M. Consider projection valued measures on Rd acting on
the Hilbert space L2(M) by the formulae

x→

(
d∏
k=1

EAk(Bk)
)
x, x→ x

(
d∏
k=1

EAk(Ck)
)
, x ∈ L2(M).

These spectral measures commute and, hence (see Theorem V.2.6 in [3]),
there exists a countably additive (in the strong operator topology) proj-
ection-valued measure ν on R2d acting on the Hilbert space L2(M) by the
formula

(2.5) ν(B1×· · ·×Bd×C1×· · ·×Cd) : x→
(

d∏
k=1

EAk(Bk)
)
x

(
d∏
k=1

EAk(Ck)
)
,

with x ∈ L2(M). Integrating a bounded Borel function ξ on R2d with
respect to the measure ν produces a bounded operator acting on the Hilbert
space L2(M). In what follows, we denote the latter operator by TA,A

ξ (see
also [26, Remark 3.1]).

TOME 68 (2018), FASCICULE 4
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In the special case when Ak are bounded and spec(Ak) ⊂ Z, we have

(2.6) TA,A
ξ (V ) =

∑
i,j∈Zd

ξ(i, j)
(

d∏
k=1

EAk({ik})
)
V

(
d∏
k=1

EAk({jk})
)
.

We are mostly interested in the case ξ = fk for a Lipschitz function f.

Here, for 1 6 k 6 d and λ, µ ∈ Rd,

(2.7) fk(λ, µ) =
{ (f(λ)−f(µ))(λk−µk)

〈λ−µ,λ−µ〉 , λ 6= µ

0, λ = µ.

3. A de Leeuw type theorem for Calderón–Zygmund
operators of convolution type

In this section we collect de Leeuw type results (cf. [22]) needed in the
subsequent proofs. The main result is Theorem 2.3. This theorem should be
understood as a restriction theorem for (homogeneous) Fourier multipliers,
see Remark 2.4.

The strategy of the proof is as follows. One finds an asymptotic em-
bedding of L1(Td+1) (resp. L1,∞(Td+1)) into L1(Rd+1) (resp. L1,∞(Rd+1))
such that this asymptotic embedding intertwines the Fourier multipliers/
Calderón–Zygmund operators and their discretizations.
In what follows,

Gl(t) = (l
√

2π)−(d+1)e−
|t|2

2l2 , t ∈ Rd+1, l > 0.

We have that ‖Gl‖1 = 1. Let F stand for the Fourier transform. Note that

(FGl)(t) = (l
√

2π)−(d+1)
∫
e−
|s|2

2l2 e−i〈t,s〉ds

= (l
√

2π)−(d+1)
∫
e−
|s|2

2 e−i〈lt,s〉ds = G1(lt).
(3.1)

We set

(3.2) ek(t) := ei〈k,t〉, k, t ∈ Rd+1.

Let α = (α1, . . . , αd+1) where αk ∈ Z+. The notation ∂α is used for h(∇),
where h(t) =

∏d+1
k=1 t

αk
k , t ∈ Rd+1. Since |ek| = 1, it follows that the multi-

plication operator Mek : L2(Rd+1)→ L2(Rd+1) is unitary. We have

Me−kg(∇)Mek = g(Me−k∇Mek) = g(∇+ k).

ANNALES DE L’INSTITUT FOURIER



LIPSCHITZ AND COMMUTATOR ESTIMATES 1651

Remark 3.1. — The Gaussian functions Gl are needed to normalize our
asymptotic embeddings given by periodizations of functions (see Lem-
mas 3.8 and 3.9 for exact statements). These asymptotic embeddings are
closely related to the Bohr compactification of Rd+1.

The following lemma is a (d + 1)−dimensional analogue of Lemma 7
in [30]. Here, for every multi-index α, we use the notation |α| = α1 + · · ·+
αd+1.

Lemma 3.2. — For every function h on Rd+1 whose partial derivatives
up to order d+ 1 belong to L2(Rd+1) we have

‖F−1(h)‖1 6 2
d+1

2
∑

|α|6d+1

‖∂α(h)‖2.

Proof. — For every A ⊂ {1, . . . , d + 1}, we define the set OA ⊂ Rd+1

by setting

OA = {t ∈ Rd+1 : |tk| > 1, k ∈ A , |tk| 6 1, k /∈ A }.

We also define the function hA on Rd+1 by setting

hA (t) =
∏
k∈A

tk, t ∈ Rd+1.

Note that the sets OA form a partition of Rd+1 and that for every choice
of A we have ‖h−1

A χOA ‖2 6 2 d+1
2 .

We have
‖F−1(h)‖1 6

∑
A⊂{1,...,d+1}

‖F−1(h)χOA ‖1.

By the Hölder inequality

‖F−1(h)‖1 6
∑

A⊂{1,...,d+1}

‖hAF−1(h)‖2‖h−1
A χOA ‖2.

By the previous paragraph and the Plancherel identity

‖F−1(h)‖1 6 2
d+1

2
∑

A⊂{1,...,d+1}

‖F−1(hA (∇)h)‖2

= 2
d+1

2
∑

A⊂{1,...,d+1}

‖hA (∇)h‖2.

The proof follows as hA (∇) = ∂α. �

For a multi-index α = (α1, . . . , αd+1) ∈ Zd+1
+ let |α| =

∑d+1
i=1 αi. We shall

without further reference use the fact that ∂α(σl(f)) = l−|α|σl(∂α(f)) for
any smooth function f on Rd+1.

TOME 68 (2018), FASCICULE 4
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Lemma 3.3. — Let g ∈ L∞(Rd+1) be a smooth function with all deriva-
tives assumed to be uniformly bounded. If (∂αg)(0) = 0 for every multi-
index α with |α| 6 d, then

‖(g(∇))(Gl)‖1 → 0, l→∞.

Proof. — We have g(∇) = F−1MgF , with Mg the multiplication oper-
ator with g on L2(Rd+1). Recall again that F(Gl)(t) = G1(lt), t ∈ Rd+1.

Thus, see e.g. (3.1),

(g(∇))(Gl) = F−1MgF(Gl) = F−1(ghl),

where hl(t) = G1(lt), t ∈ Rd+1. It follows from Lemma 3.2 that

(3.3)

‖F−1(ghl)‖1 6 2
d+1

2
∑

|α|6d+1

‖∂α(ghl)‖2

6 2
d+1

2
∑

|α|+|β|6d+1

‖∂α(g)∂β(hl)‖2.

Due to the assumption that (∂βg)(0) = 0 for every multi-index β with
|β| 6 d, all coefficients in the Taylor expansion of g around 0 of the terms of
order 6 d vanish. If |α| < d+1, then all coefficients in the Taylor expansion
of ∂αg around 0 of the terms of order 6 d− |α| vanish. In other words, we
have

∂αg(t) = O(|t|d+1−|α|), t→ 0.
As all derivatives of g are assumed to be uniformly bounded functions, we
obtain that

∂αg(t) = O(|t|d+1−|α|), t ∈ Rd+1.

Let f(t) = |t|, t ∈ Rd+1. It follows from the preceding equality that |∂αg| 6
c(g)fd+1−|α|, |α| < d+ 1, for some constant c(g). As all derivatives of g are
assumed to be uniformly bounded functions, the latter inequality trivially
holds for |α| = d+ 1.

By (3.3) and the preceding paragraph, we have

‖F−1(ghl)‖1 6 2
d+1

2 c(g)
∑

|α|+|β|6d+1

‖fd+1−|α|∂β(hl)‖2.

We have

∂β(hl) = l|β|σ 1
l
(∂βG1), fd+1−|α| = l|α|−d−1σ 1

l
(fd+1−|α|).

Thus,

‖fd+1−|α|∂β(hl)‖2 = l|β|+|α|−d−1‖σ 1
l
(fd+1−|α|∂β(G1))‖2

= l|β|+|α|−
3
2 (d+1)‖fd+1−|α|∂βG1‖2 → 0.

ANNALES DE L’INSTITUT FOURIER



LIPSCHITZ AND COMMUTATOR ESTIMATES 1653

This concludes the proof. �

Lemma 3.4. — If g : Rd+1 → C is a Schwartz function such that g(0) =
0, then

‖(g(∇))(Gl)‖1 → 0, l→∞.

Proof. — Define Schwartz functions gj : Rd+1 → C, 1 6 j 6 d + 1, by
setting

gj(t) = g(0, . . . , 0, tj , . . . , td+1)− g(0, . . . , 0, tj+1, . . . , td+1)
tj

, t ∈ Rd+1.

We have,

g(t) =
d+1∑
j=1

tjgj(t).

and, therefore,

(3.4) g(∇)(Gl) =
d+1∑
j=1

gj(∇) ·
(
∂jGl

)
.

It follows from the Young inequality that

‖gj(∇)x‖1 = ‖F−1MgjFx‖1 = ‖F−1(gj) ∗ x‖1 6 ‖F−1(gj)‖1‖x‖1,

where x ∈ L1(Rd+1). The proof then follows provided that for x = ∂jGl, 1 6
j 6 d+ 1 we have,

(3.5) ‖∂jGl‖1 → 0, l→∞.

Indeed, a direct computation yields,

∂jGl = 1
ld+2σl(hj), where hj(t) := itjG1(t), t ∈ Rd+1.

So appealing to (2.3), we obtain

‖∂j(Gl)‖1 = 1
l
‖hj‖1 → 0. �

Lemma 3.5. — Let g ∈ L∞(Rd+1) be a smooth function with all its
derivatives assumed to be uniformly bounded. If k ∈ Rd+1, then

‖(g(∇))(Glek)− g(k)Glek‖1 → 0, l→∞.

Here ek is given by (3.2).

Proof. — Suppose first that k = 0 and g(0) = 0. Let ψ be a Schwartz
function on Rd+1 such that ψ(t) = 1 whenever |t| 6 1. Set

φ(t) =
∑
|α|6d

i|α|∏d+1
k=1(αk)!

(∂αg)(0)tαψ(t), t ∈ Rd+1.
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Clearly, φ is a Schwartz function with φ(0) = 0. By definition of ∂β , we
have, for β 6= α,

∂β(tα)|t=0 = 0 and, therefore, ∂β(tαψ(t))|t=0 = 0.

By definition of ∂β , we also have, for β = α,

∂β(tα) = i−|α| ·
d+1∏
k=1

(αk)!

and, therefore,

∂β(tαψ(t))|t=0 = i−|α| ·
d+1∏
k=1

(αk)!.

It follows that
(∂βg)(0) = (∂βφ)(0), |β| 6 d.

In other words, the function g−φ satisfies the assumptions of Lemma 3.3.
Using Lemmas 3.3 and 3.4, we obtain

‖((g − φ)(∇))(Gl)‖1 → 0, ‖(φ(∇))(Gl)‖1 → 0, l→∞.

Using triangle inequality, we obtain

‖(g(∇))(Gl)‖1 → 0, l→∞.

This proves the assertion in our special case.
To prove the assertion in general, note that

‖g(∇)(Glek)− g(k)Glek‖1 = ‖(Me−kg(∇)Mek − g(k))(Gl)‖1

= ‖(g(∇+ k)− g(k))(Gl)‖1.
(3.6)

Now as t→ g(t+ k)− g(k) is a function satisfying the assumptions of the
first paragraph, we see that (3.6) goes to 0 as l→∞. �

The following Lemma 3.6 is the main intertwining property as we ex-
plained in the beginning of this section.

Lemma 3.6. — Let g ∈ L∞(Rd+1) be a smooth (except at 0) homoge-
neous function of degree 0. For every 0 6= k ∈ Rd+1, we have

‖(g(∇))(Glek)− g(k)Glek‖1,∞ → 0, l→∞.

Proof. — Fix 0 6= k ∈ Rd+1. Fix a Schwartz function φ supported on the
ball {|t|2 < |k|2} such that φ(t) = 1 whenever |t|2 6 1

2 |k|2. Clearly, both
functions φ and g(1− φ) satisfy the conditions of Lemma 3.5. We obtain

‖((g(1− φ))(∇))(Glek)− g(k)Glek‖1,∞

6 ‖((g(1− φ))(∇))(Glek)− g(k)Glek‖1 → 0, l→∞
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And also
‖(φ(∇))(Glek)‖1 → 0, l→∞.

By Theorem 1 on p. 29 in [33] (see especially Step 2 on p. 30; one can
also use Theorem 2.2 here), the operator g(∇) : L1(Rd+1) → L1,∞(Rd+1)
is bounded. Thus, since φ satisfies the assumptions of Lemma 3.3,

‖(gφ(∇))(Glek)‖1,∞ 6 ‖g(∇)‖L1→L1,∞‖(φ(∇))(Glek)‖1 → 0, l→∞.

The assertion follows by applying triangle inequality. �

Lemma 3.7. — Let A ∈ L1(M1) and let B ∈ L1,∞(M2). We have

‖A⊗B‖1,∞ 6 ‖A‖1‖B‖1,∞.

Proof. — Define the function z on (0,∞) by setting z(t) := t−1, t > 0.
We have

µ(A⊗B) (2.2)= µ(µ(A)⊗ µ(B)) 6 ‖B‖1,∞µ(µ(A)⊗ z).

We claim that for every positive decreasing function x ∈ L1(0,∞), we
have µ(x ⊗ z) = ‖x‖1z. Set xn =

∑n2−1
k=0 µ(k+1

n , x)χ( kn ,
k+1
n ), n > 1. The

functions χ( kn ,
k+1
n )⊗z, 0 6 k < n2, are disjointly supported. These functions

are equidistributed and have the same distribution as 1
nz. Indeed, if we

compare distribution functions

nχ( kn , k+1
n )⊗z(u) := m

({
(s, t) : χ( kn ,

k+1
n )(s)t

−1 > u
})

= 1
n
m({t : t−1 > u}) = 1

n
u−1 = n 1

n z
(u).

Therefore,

µ(xn ⊗ z) = µ

(
n2−1∑
k=0

µ

(
k + 1
n

, x

)
χ( kn ,

k+1
n ) ⊗ z

)

= µ

(
n2−1⊕
k=0

1
n
µ

(
k + 1
n

, x

)
z

)
= ‖xn‖1z.

It is immediate that xn ↑ µ(x) and, therefore, xn⊗zµ(x)⊗z and µ(xn⊗z) ↑
µ(x⊗ z). This proves the claim. �

Let
per :M⊗ L∞(Td+1)→M⊗ L∞(Rd+1)

be the natural embedding by periodicity. Under the identification M ⊗
L∞(Rd+1) ' L∞(Rd+1,M) (the latter being understood as weakly mea-
surable, essentially bounded functions) and similarly for the torus, it is
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defined as
per(f)(t) = f(t mod 2π), t ∈ Rd+1.

We consider T with total Haar measure 2π. The next Lemma 3.8 provides
the asymptotic embedding of L1(Td+1) to L1(Rd+1).

Lemma 3.8. — For every W ∈ L1(M⊗ L∞(Td+1)), we have

lim
l→∞

‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1)) = 1
(2π)d+1 ‖W‖L1(M⊗L∞(Td+1)).

Proof. — For every m ∈ Z, define l(m), n(m) ∈ Z by setting

(3.7) l(m) =
{
m m > 0
m+ 1 m < 0,

(3.8) n(m) =
{
m+ 1 m > 0
m m < 0.

Next set
l(m) = (l(m1), . . . , l(md+1)), m ∈ Zd+1,

n(m) = (n(m1), . . . , n(md+1)), m ∈ Zd+1.

Clearly,
‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1))

=
∑

m∈Zd+1

‖ per(W ) · (1⊗Gl) · (1⊗ χ2πm+[0,2π]d+1)‖L1(M⊗L∞(Rd+1)).

By construction,

Gl(2πn(m)) 6 Gl(t) 6 Gl(2πl(m)), t ∈ 2πm+ [0, 2π]d+1.

Hence,
‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1))

6
∑

m∈Zd+1

Gl(2πl(m))‖ per(W ) · (1⊗ χ2πm+[0,2π]d+1)‖L1(M⊗L∞(Rd+1))

= ‖W‖L1(M⊗L∞(Td+1)) ·
∑

m∈Zd+1

Gl(2πl(m)).

Similarly,
‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1))

>
∑

m∈Zd+1

Gl(2πn(m))‖per(W ) · (1⊗ χ2πm+[0,2π]d+1)‖L1(M⊗L∞(Rd+1))

= ‖W‖L1(M⊗L∞(Td+1)) ·
∑

m∈Zd+1

Gl(2πn(m)).
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We have

∑
m∈Zd+1

Gl(2πl(m)) =
(∑
m∈Z

Gl(2πl(m))
)d+1

=
( 1
l
√

2π
+ 1
l
√

2π

∑
m∈Z

e−
(2πm)2

2l2
)d+1

→ 1
(2π)d+1 , l→∞,

where the limit is by elementary Riemann integration. Similarly

∑
m∈Zd+1

Gl(2πn(m)) =
(∑
m∈Z

Gl(2πn(m))
)d+1

=
(
− 1
l
√

2π
+ 1
l
√

2π

∑
m∈Z

e−
(2πm)2

2l2

)d+1
→ 1

(2π)d+1 , l→∞.

Combining the last 4 equations completes the proof as they show that we
have estimates

1
(2π)d+1 ‖W‖L1(M⊗L∞(Td+1)) − εl 6 ‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1))

6
1

(2π)d+1 ‖W‖L1(M⊗L∞(Td+1)) + εl.

for some sequences εl > 0 that converges to 0. �

The next lemma gives the asymptotic norm estimate of periodizations of
elements of L1,∞(Td+1) with the norms of L1,∞(Rd+1).

Lemma 3.9. — For every W ∈ L1,∞(M⊗ L∞(Td+1)), we have

lim inf
l→∞

‖ per(W ) · (1⊗Gl)‖L1,∞(M⊗L∞(Rd+1)) & ‖W‖L1,∞(M⊗L∞(Td+1)).

Here, & means inequality up to some constant independent of W .

Proof. — We estimate crudely,

Gl(t) > c(d)l−d−1, |t| 6 4πl,

χ{|t|64πl} >
∑
|m|6l

χ2πm+[0,2π]d .

Hence,
‖ per(W ) · (1⊗Gl)‖L1,∞(M⊗L∞(Rd+1))

> c(d)l−d−1

∥∥∥∥∥∥per(W ) ·

1⊗
∑
|m|6l

χ2πm+[0,2π]d

∥∥∥∥∥∥
L1,∞(M⊗L∞(Rd+1))

.
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Since the elements per(W ) · (1 ⊗ χ2πm+[0,2π]d) with |m| 6 l are pairwise
orthogonal we have that

per(W ) · (1⊗
∑
|m|6l

χ2πm+[0,2π]d) ∈ L1,∞(M⊗ L∞(Rd+1))

and ⊕
|m|6l

W ∈ L1,∞(M⊗ L∞(Td+1)⊗ l∞)

are unitarily equivalent. Then

‖ per(W ) · (1⊗Gl)‖L1,∞(M⊗L∞(Rd+1))

> c(d)l−d−1

∥∥∥∥∥∥
⊕
|m|6l

W

∥∥∥∥∥∥
L1,∞(M⊗L∞(Td+1)⊗l∞)

.

Let nl be the number ofm ∈ Zd+1 with |m|2 6 l. Note that nl & ld+1. Then
µ(t,

⊕
|m|6lW ) = µ(n−1

l t,W ) from which we may continue the estimate

‖ per(W ) · (1⊗Gl)‖L1,∞(M⊗L∞(Rd+1))

> c(d)l−d−1nl‖W‖L1,∞(M⊗L∞(Td+1))

> c(d)‖W‖L1,∞(M⊗L∞(Td+1)). �

We are now fully equipped to prove our main result.

Proof of Theorem 2.3. — Let A ⊂ Zd+1 be a finite set. Let

W =
∑
k∈A

Wk ⊗ ek, Wk ∈ L1(M).

Firstly, we prove
‖(1⊗ g(∇))(W )‖1,∞ . ‖W‖1,

for W as above. We have

W0 ⊗ e0 =
(

1⊗
∫ )

(W ).

As conditional expectations are contractions on L1, then so is the operator
1⊗

∫
. We, therefore, have∥∥∥∥∥ ∑

0 6=k∈A

Wk ⊗ ek

∥∥∥∥∥
1

6

∥∥∥∥∥ ∑
k∈A

Wk ⊗ ek

∥∥∥∥∥
1

+ ‖W0 ⊗ e0‖1 6 2‖W‖1, k ∈ A.
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Therefore, we may (and will) assume without loss of generality that 0 /∈ A .

By Theorem 2.1, we have

‖(1⊗ g(∇))(per(W ) · (1⊗Gl))‖L1,∞(M⊗L∞(Rd+1))

6 ‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1)).

By respectively Lemma 3.7 and Lemma 3.6 we have for each k ∈ A as
l→∞,

‖(1⊗ g(∇))(Wk ⊗Glek)− g(k)(Wk ⊗G(l)ek)‖1,∞

6 ‖Wk‖1‖(g(∇))(Glek)− g(k)Glek‖1,∞ → 0.

The quasi-triangle inequality gives for sums of arbitrary operators xα that∥∥∥∥∥∑
α∈A

xα

∥∥∥∥∥
1,∞

6 2|A|
∑
α∈A
‖xα‖1,∞.

So it follows that as l→∞∥∥∥∥∥∑
k∈A

(1⊗ g(∇))(Wk ⊗Glek)−
∑
k∈A

g(k)(Wk ⊗G(l)ek)

∥∥∥∥∥
1,∞

→ 0.

In other words we have as l→∞

‖(1⊗ g(∇))(per(W ) · (1⊗Gl))− per((1⊗ g(∇))(W ))(1⊗Gl)‖1,∞ → 0.

Thus,

(3.9) lim inf
l→∞

‖ per((1⊗ g(∇))(W )) · (1⊗Gl)‖L1,∞(M⊗L∞(Rd+1))

6 lim inf
l→∞

‖ per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1)).

It follows now from Lemma 3.9, (3.9) and Lemma 3.8 that

(3.10) ‖(1⊗ g(∇Td+1))(W )‖L1,∞(M⊗L∞(Td+1))

. lim inf
l→∞

‖per((1⊗ g(∇Td+1))W ) · (1⊗Gl)‖L1,∞(M⊗L∞(Rd+1))

6 lim inf
l→∞

‖per(W ) · (1⊗Gl)‖L1(M⊗L∞(Rd+1))

. ‖W‖L1(M⊗L∞(Td+1)).

This proves the assertion for our specific W .
To see the assertion in general, fix an arbitrary W ∈ L1(M⊗L∞(Td+1))

and choose Wm as above such that Wm → W in L1(M ⊗ L∞(Td+1))
as m → ∞ (see Lemma A.6). In particular, the sequence {Wm}m>1 ⊂
L1(M ⊗ L∞(Td+1)) is Cauchy. By (3.10), the sequence {(1 ⊗ g(∇))
(Wm)}m>1 ⊂ L1,∞(M⊗ L∞(Td+1)) is also Cauchy. Denote the limit by
T (W ). If also W ∈ L2(M ⊗ L∞(Td+1)), then the sequence {Wm}m>1
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can be chosen such that also Wm → W in L2(M ⊗ L∞(Td+1)) (see
Remark A.5). Thus, T (W ) = (1 ⊗ g(∇))(W ) for W ∈ (L1 ∩ L2)(M ⊗
L∞(Td+1)). This completes the proof. �

4. Proof of Theorem 1.2 for the case of integral spectra

The next Theorem 4.1 provides the crucial connection between Calderón–
Zygmund operators and commutator estimates. The equality (4.1) should
be understood as a transference to Schur multipliers argument. Note that
here we have an exact equality (4.1), which we did not yet obtain in [8].

Theorem 4.1. — For every contraction(2) f : Zd → Z and for every
collection of commuting self-adjoint operators A = {Ak}dk=1 ⊂ M with
spec(Ak) ⊂ Z, we have

‖TA,A
fk0

(V )‖1,∞ 6 c(d)‖V ‖1, V ∈ L1(M), 1 6 k0 6 d.

Here, fk0 is given by (2.7).

Proof. — Fix 1 6 k0 6 d. The idea is to construct a bounded linear
operator S : L1(M⊗ L∞(Td+1)) → L1,∞(M⊗ L∞(Td+1)) (independent
of f) and an isometric embedding I : L1(M) → L1(M ⊗ L∞(Td+1)),
I : L1,∞(M)→ L1,∞(M⊗ L∞(Td+1)) (dependent on f) such that

(4.1) S ◦ I = I ◦ TA,A
fk0

.

Fix a smooth function ς : [0, 1] → R such that ς(u) = u, u ∈ [ 1
2 , 1] and

ς(u) > 1
3 , u ∈ [0, 1

2 ]. Define a smooth function g : Sd → R by setting

g(t) = tk0td+1

ς(
∑d
k=1 t

2
k)
, |t|2 = 1.

Extend g to a smooth homogeneous function g : Rd+1\{0} → R (of de-
gree 0) by setting g(t) = g( t

|t|2 ), 0 6= t ∈ Rd+1, and g(0) = 0. For |t|2 = 1,
the conditions

∑d
k=1 t

2
k >

1
2 and |td+1| 6 (

∑d
k=1 t

2
k) 1

2 are equivalent. Hence,

(4.2) g(t) = tk0td+1∑d
k=1 t

2
k

, |td+1| 6

(
d∑
k=1

t2k

) 1
2

, 0 6= t ∈ Rd+1.

By assumption, Ak =
∑
ik∈Z ikpk,ik , where {pk,ik}ik∈Z are pairwise or-

thogonal projections such that
∑
ik∈Z pk,ik = 1. Since A is bounded, it fol-

lows that pk,ik = 0 for all but finitely many ik ∈ Z. Hence, these sums are, in

(2)Here, contraction means a Lipschitz function with constant 1. That is, |f(i)−f(j)| 6
|i− j|2 for all i, j ∈ Zd.
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fact, finite. For every i = (i1, . . . , id) ∈ Zd, set pi = p1,i1 . . . pd,id . It is imme-
diate that {pi}i∈Zd are pairwise orthogonal projections and

∑
i∈Zd pi = 1.

Consider a unitary operator

Uf =
∑
i∈Zd

pi ⊗ e(i,f(i)),

where e(i,f(i)) is given in (3.2).
We are now ready to define the operators S and I. Set

S(W ) = (1⊗ g(∇Td+1))

 ∑
i,j∈Zd

i 6=j

(pi ⊗ 1)W (pj ⊗ 1)

 ,

W ∈ L1(M⊗ L∞(Rd+1)),

I(V ) = Uf (V ⊗ 1)U∗f , V ∈ L1,∞(M).
Since f is a contraction we have that |f(i)−f(j)| 6 |i− j|2 and therefore

by (4.2) we obtain

g(i− j, f(i)− f(j)) = fk0(i, j), i, j ∈ Zd.

In particular

g(∇Td+1)(e(i−j,f(i)−f(j))) = fk0(i, j)e(i−j,f(i)−f(j)), i, j ∈ Zd.

Recall also that fk0(i, i) = 0, i ∈ Zd. We now prove the transference equal-
ity (4.1):

S(I(V ))

= S

(∑
i∈Zd

pi ⊗ e(i,f(i))

)
·

( ∑
i,j∈Zd

piV pj ⊗ 1
)
·

(∑
i∈Zd

pi ⊗ e(i,f(i))

)∗
= S

( ∑
i,j∈Zd

piV pj ⊗ e(i−j,f(i)−f(j))

)
(4.2)=

∑
i,j∈Zd

i6=j

piV pj ⊗ fk0(i, j)e(i−j,f(i)−f(j))

=
(∑

i∈Zd
pi ⊗ e(i,f(i))

)
·

( ∑
i,j∈Zd

piT
A,A
fk0

(V )pj ⊗ 1
)
·

(∑
i∈Zd

pi ⊗ e(i,f(i))

)∗
= Uf · (TA,A

fk0
(V )⊗ 1) · U∗f = I(TA,A

fk0
(V )).
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By Theorem 2.3, the mapping

1⊗ g(∇Td+1) : L1(M⊗ L∞(Td+1))→ L1,∞(M⊗ L∞(Td+1)).

is bounded. Therefore,

‖TA,A
fk0

(V )‖L1,∞(M) = ‖I(TA,A
fk0

(V ))‖L1,∞(M⊗L∞(Td+1))

= ‖S(I(V ))‖L1,∞(M⊗L∞(Td+1))

6 ‖S‖L1(M⊗L∞(Td+1))→L1,∞(M⊗L∞(Td+1))‖I(V )‖L1(M⊗L∞(Td+1))

. ‖1⊗ g(∇)‖L1(M⊗L∞(Td+1))→L1,∞(M⊗L∞(Td+1))‖V ‖L1(M).

This completes the proof. �

5. Proof of the main results

In this section we collect the results announced in the abstract and its
corollaries.

Lemma 5.1. — Let A = {Ak}dk=1 ⊂ M be an arbitrary collection of
commuting self-adjoint operators. If {ξn}n>0 is a uniformly bounded se-
quence of Borel functions on R2d such that ξn → ξ everywhere, then

(5.1) TA,A
ξn

(V )→ TA,A
ξ (V ), V ∈ L2(M)

in L2(M) as n→∞.

Proof. — Let ν be a projection valued measure on R2d considered in
Subsection 2.4 (see (2.5)). Let γ : R→ R2d be a Borel measurable bijection.
Clearly, ν◦γ is a countably additive projection valued measure on R. Hence,
there exists a self-adjoint operator B acting on the Hilbert space L2(M)
such that EB = ν ◦ γ.
Set ηn = ξn ◦ γ and η = ξ ◦ γ. We have ηn → η everywhere on R. Thus,

TA,A
ξn

=
∫
R2d

ξndν =
∫
R
ηn(λ)dEB(λ) = ηn(B)→ η(B)

=
∫
R
η(λ)dEB(λ) =

∫
R2d

ξdν = TA,A
ξ .

Here, the convergence is understood with respect to the strong operator
topology on the space B(L2(M)). In particular, (5.1) follows. �

In the next proof let bxc be the largest integer smaller than x and let
{x} = x− bxc be the fractional part.
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Proof of Theorem 1.2.

Step 1. — Let f : Rd → R be a contraction. We claim that the mapping
fn : Zd → Z defined by the formula

fn(i) =
⌊
n

2 f
(

i
n

)⌋
, i ∈ Zd,

is also a contraction.
Indeed, we have

fn(i)− fn(j) = n

2

(
f

(
i
n

)
− f

(
j
n

))
+
({

n

2 f
(

j
n

)}
−
{
n

2 f
(

i
n

)})
.

By assumption, we have that
n

2

∣∣∣∣f ( i
n

)
− f

(
j
n

)∣∣∣∣ 6 n

2

∣∣∣∣ i
n
− j
n

∣∣∣∣ 6 1
2 |i− j|.

It is immediate that{
n

2 f
(

j
n

)}
−
{
n

2 f
(

i
n

)}
∈ (−1, 1).

Thus,
|fn(i)− fn(j)| < 1

2 |i− j|+ 1.

If |i− j| > 2, then

|fn(i)− fn(j)| < 1
2 |i− j|+ 1 6 |i− j|

and the claim follows. If |i− j| < 2, then

|fn(i)− fn(j)| < 1
2 |i− j|+ 1 < 2.

Since |fn(i)− fn(j)| ∈ N, it follows that

|fn(i)− fn(j)| 6 1 6 |i− j|

provided that i 6= j. This proves the claim for |i− j| < 2.

Step 2. — Let f : Rd → R be a contraction. For every n > 1, set

Ak,n
def=
∑
ik∈Z

ikEAk

([
ik
n
,
ik + 1
n

))
, An = {Ak,n}dk=1.

Fix 1 6 k0 6 d. Then

ξn(t, s) = (fn)k0(i, j), tk ∈
[
ik
n
,
ik + 1
n

)
, sk ∈

[
jk
n
,
jk + 1
n

)
, i, j ∈ Zd.

It is immediate that (see e.g. Lemma 8 in [30] for a much stronger assertion)

TA,A
ξn

(V ) = TAn,An

(fn)k0
(V ).
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It follows from Theorem 4.1 that

‖TA,A
ξn

(V )‖1,∞ 6 c(d)‖V ‖1.

Note that ξn → 1
2fk0 everywhere. It follows from Lemma 5.1 that

TA,A
ξn

(V )→ TA,A
1
2 fk0

(V ), V ∈ L2(M)

in L2(M) (and, hence, in measure; see e.g [26]) as n → ∞. Since the
quasi-norm in L1,∞(M) is a Fatou quasi-norm [23], it follows that

‖TA,A
fk0

(V )‖1,∞ 6 c(d)‖V ‖1, V ∈ (L1 ∩ L2)(M). �

Corollary 5.2. — For every Lipschitz function f : Rd → R and for
every collection A = {Ak}dk=1 of bounded commuting self-adjoint opera-
tors, the operator TA,A

fk
extends to a bounded operator from Lp(M) to

Lp(M), 1 < p <∞.

Proof. — By Theorem 1.2, TA,A
fk

extends to a bounded operator from
L1(M) to L1,∞(M) for every 1 6 k 6 d. Since also TA,A

fk
: L2(M) →

L2(M), it follows from real interpolation that TA,A
fk

: Lp(M) → Lp(M),
1 < p < 2. Thus, (TA,A

fk
)∗ : L p

p−1
(M) → L p

p−1
(M), 1 < p < 2. Since

fk(s, t) = fk(t, s), s, t ∈ Rd, it follows that (TA,A
fk

)∗ = TA,A
fk

. In particular,
TA,A
fk

: L p
p−1

(M)→ L p
p−1

(M), 1 < p < 2. This concludes the proof. �

Lemma 5.3. — If Ak, B ∈ B(H), 1 6 k 6 d, are self-adjoint operators
such that [Ak, B] ∈ L2(H), 1 6 k 6 d, then, for every Lipschitz function
f, we have

d∑
k=1

TA,A
fk

([Ak, B]) = [f(A), B].

Here fk is given by (2.7).

Proof. — By definition of double operator integral given in Subsec-
tion 2.4, we have for any bounded Borel function on R2d,

(5.2) TA,A
ξ1

TA,A
ξ2

= TA,A
ξ1ξ2

.

Let ξ1,k = fk and let ξ2,k(λ, µ) = λk−µk when |λ|2, |µ|2 6 sup16k6d ‖Ak‖∞,
ξ2,k(λ, µ) = 0 when |λ|2 > sup16k6d ‖Ak‖∞ or |µ|2 > sup16k6d ‖Ak‖∞. It
is immediate that(

d∑
k=1

ξ1,kξ2,k

)
(λ, µ) = f(λ)− f(µ),

λ, µ ∈ Rd, s.t. |λ|2, |µ|2 6 sup
16k6d

‖Ak‖∞.
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If p is a finite rank projection, then pB ∈ L2(H) and

TA,A∑d

k=1
ξ1,kξ2,k

(pB) = f(A)pB − pBf(A), TA,A
ξ2,k

(pB) = AkpB − pBAk,

Applying (5.2) to the operator pB ∈ L2(H), we obtain

(5.3)
d∑
k=1

TA,A
fk

(AkpB − pBAk) = f(A)pB − pBf(A).

By Theorem 4.2 in [36], there exists a sequence pl of finite rank pro-
jections such that pl → 1 strongly and such that, for every 1 6 k 6 d,

[Ak, pl] → 0 as l → ∞ in Ld(H) for d > 1 and in L2(H) if d = 1. In
particular,

AkplB − plBAk = pl[Ak, B] + [Ak, pl]B → [Ak, B], l→∞,

in Ld(H).
By the preceding paragraph and Corollary 5.2, we have

(5.4) TA,A
fk

(AkplB − plBAk)→ TA,A
fk

([Ak, B]), l→∞,

in Ld(H). On the other hand,

(5.5) f(A)plB − plBf(A)→ f(A)B −Bf(A), l→∞,

in the strong operator topology. Substituting (5.4) and (5.5) into (5.3), we
conclude the proof. �

Proof of Theorem 1.1. — By assumption, [Ak, B] ∈ L1(H) ⊂ L2(H).
The first assertion follows by combining Lemma 5.3 and Theorem 1.2. Ap-
plying the first assertion to the operators

Ak =
(
Xk 0
0 Yk

)
, B =

(
0 1
1 0

)
,

we obtain the second assertion. �

Corollary 5.4. — For every Lipschitz function f : C → R and for
every normal operator A ∈ B(H) and every B ∈ B(H) such that [A,B] ∈
L1(H), we have

‖[f(A), B]‖1,∞ 6 c(d)‖∇(f)‖∞‖[A,B]‖1.

For every Lipschitz function f : C→ R and for every pair X,Y ∈ B(H) of
normal operators such that X − Y ∈ L1(H), we have

‖f(X)− f(Y )‖1,∞ 6 c(d)‖∇(f)‖∞‖X − Y ‖1.
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Proof. — An operator A is normal if and only if it can be written as
A = A1 + iA2 with A1 and A2 commuting self-adjoint operators. Identi-
fying C ' R2 we may see f as a 2 real variable Lipschitz function, say
f̃ , and this identification is compatible with spectral calculus, i.e. f(A) =
f̃(A1, A2). Then the corollary is a direct consequence of the statements in
Theorem 1.1. �

Appendix. Fejér’s lemma

In our proof we use a von Neumann-valued Fejér’s lemma. As we could
not find a reference to this type of vector valued case we prove it here for
convenience of the reader.

We let el, l ∈ Z denote the standard trigonometric functions on the
torus. Let E be the conditional expectationM⊗L∞(Td+1)→M⊗ 1. For
k ∈ Zd+1

+ , let
Sk(x) =

∑
l∈Zd+1

−k6l6k

E(x(1⊗ el)∗)(1⊗ el).

For n ∈ Z+, we set

An(x) = (n+ 1)−d−1
∑

k∈Zd+1
+

k6(n,...,n)

Sk(x).

Here, the order on Zd+1
+ is defined bym 6 n ifmj 6 nj for all 1 6 j 6 d+1.

Remark A.5. — It follows directly that for x ∈ L2(M⊗ Td+1) we have
‖Anx− x‖2 → 0 as n→∞.

The assertion below is known as Fejér’s lemma.

Lemma A.6. — We have ‖An(x) − x‖1 → 0 for all x ∈ L1(M⊗ Td+1)
as n→∞.

Proof. — We split the proof in steps.

Step 1. — We claim that

‖Anx‖1 6 ‖x‖1, x ∈ L1(M⊗ Td+1), n > 0.

To see this fact, we identify the space L1(M⊗ Td+1) with the space of
vector-valued functions L1(Td+1, L1(M)).We now write a pointwise equal-
ity

(An(x))(t) =
∫
Td+1

x(t+ s)Φn(s)ds, s ∈ Td+1.
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Here, Φn : Td+1 → R is the Fejér kernel possessing the following properties.

Φn(s) > 0,
∫
Td+1

Φn(s)ds = 1.

Thus,
‖Anx‖1 6

∫
Td+1
‖x( ·+ s)‖1Φn(s)ds = ‖x‖1.

Step 2. — Fix ε > 0 and choose a projection p ∈M such that τ(p) <∞
and such that ‖x′‖1 < ε, where

x′ := x− (p⊗ 1)x(p⊗ 1).

Choose y ∈ L2(pMp⊗ Td+1) such that

‖y − (p⊗ 1)x(p⊗ 1)‖1 < ε.

In particular, we have that ‖y − x‖1 < 2ε.
We clearly have Any → y in L2(pMp⊗Td+1). Since τ(p) <∞, it follows

that Any → y in L1(pMp ⊗ Td+1). Thus, Any → y in L1(M⊗ Td+1).
Choose N so large that ‖Any − y‖1 < ε for n > N. It follows from Step 1
that

‖Anx− x‖1 6 ‖An(x− y)‖1 + ‖Any − y‖1 + ‖x− y‖1

6 2‖x− y‖1 + ‖Any − y‖1 6 4ε+ ‖Any − y‖1 < 5ε, n > N.

Since ε > 0 is arbitrarily small, the assertion follows. �
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