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DIFFRACTION OF ELASTIC WAVES BY EDGES

by Vitaly KATSNELSON

Abstract. — We investigate the diffraction of singularities of solutions to the
linear elastic equation on manifolds with edge singularities. Such manifolds are
modeled on the product of a smooth manifold and a cone over a compact fiber. For
the fundamental solution, the initial pole generates a pressure wave (p-wave), and
a secondary, slower shear wave (s-wave). If the initial pole is appropriately situated
near the edge, we show that when a p-wave strikes the edge, the diffracted p-waves
and s-waves (i.e. loosely speaking, their singularities together with the singularities
of the incoming p-wave are not limits of rays associated to the pressure wave speed
which just miss the edge) are weaker in a Sobolev sense than the incident p-wave.
We also show an analogous result for an s-wave that hits the edge, and provide
results for more general situations.
Résumé. — Nous examinons la diffraction des singularités associées aux solu-

tions de l’équation élastique linéaire dans des domaines contenant des singularités
aux bords. Ces domaines sont définis comme le produit d’un domaine régulier et
d’un cône sur une fibre compacte. Concernant la solution fondamentale, le pôle
initial génère une onde de pression (p-wave) ainsi qu’une onde de cisaillement se-
condaire plus lente (s-wave). Si le pôle initial est situé près du bord, nous montrons
que lorsque l’onde de pression frappe le bord, les ondes de pression et de cisaillement
diffractées (c.a.d en quelques mots, leurs singularités ainsi que les singularités des
ondes de pression incidentes ne sont pas les limites des rayons associés à la vélocité
des ondes de pression manquant le bord de peu) sont plus faible au sens de Sobolev
que les ondes de pression incidentes. Nous montrons de plus un résultat analogue
pour une onde de cisaillement frappant le bord, et nous donnons des résultats pour
des situations plus générales.

1. Introduction

The purpose of this paper is to investigate the diffractive behavior of
singularities of solutions to the linear elastic equation. In elastic theory, if
we consider a bounded isotropic elastic medium with a smooth boundary,
then a singular impulse in the interior generates two distinct waves called
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1448 Vitaly KATSNELSON

the pressure wave and the slower, secondary wave or shear wave (p-wave and
s-wave for short). In such a situation, Taylor in [12], and Yamamoto in [18]
showed that when either of these waves hits the boundary transversely,
this interaction will generate at least a p or an s wave moving away from
the boundary, with the possibility of both a p and s wave being generated,
which often occurs in seismic experiments. To be more precise, this means
that if the elastic wave solution u has singularities along the ray path of
either wave hitting the boundary, then it will have a singularity of the same
Sobolev strength along the ray path (called p-ray or s-ray) of at least one
outgoing, reflected p or s wave. That is, if a solution u fails to be inHs along
an incoming p-ray hitting the boundary transversely, then it fails to be in
Hs along either the reflected p or s ray. Yamamoto in [18] refined this result
by showing that if there is an incoming p wave which hits the boundary at a
certain time, then even when there is no incoming s wave at that time, both
a reflected p and s wave will be generated moving away from the boundary.
An elementary parametrix construction using “geometric optics” solutions
easily demonstrates such results as done in [13].
Of considerable interest is what happens when the medium has edges

or corners beyond the codimension one case. In particular, one is inter-
ested in what happens when a singular impulse generates p and s waves
that approach such an edge (indeed, it is known by the results in [5] and
Dencker [1] that along such waves in the interior of the medium, the solu-
tion must have the same Sobolev strength singularity). For a simpler, scalar
wave equation Vasy in [15] showed that if a solution to the wave equation
is singular along an incoming ray (these turn out to be geodesics in the
manifold) approaching an edge of codimension > 2, then it will generally
produce singularities along a whole cone-generating family of outgoing rays
(i.e. a cone of geodesics moving away from the edge). This result did not
distinguish as seen in experimental physics between the stronger “geomet-
ric” waves versus the weaker, “diffracted” waves (when speaking of weaker
and stronger waves, we mean in the Sobolev sense where we measure which
Sobolev space solutions lie in along certain bicharacteristics corresponding
to the wave operator).
Over time, many results were obtained describing propagation of singu-

larities on singular manifolds, but they also did not show whether diffracted
rays were weaker than the incoming ray as seen in experimental physics. In
a remarkable breakthrough, Melrose, Vasy, and Wunsch in [10, 8, 9] showed
how to distinguish between weaker “diffracted” waves and the other waves
to show that under a certain “nonfocusing” assumption (which in a model
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DIFFRACTION OF ELASTIC WAVES 1449

case of manifolds with a warped product metric, would mean that in cylin-
drical coordinates, one is able to smooth out the solution even a little bit
beyond its overall regularity by merely smoothing out its angular coor-
dinates), the solution is smoother along the outgoing diffracted front by
an amount related to the codimension of the edge being hit. They even
confirmed the intuition that the diffracted waves are precisely those that
together with the incoming wave, cannot be approximated in the Sobolev
sens e by waves which just miss the edge by an infinitesimal amount. As a
start, our goal is to obtain such results for the linear elastic equation, which
is a nonscalar setting. Unfortunately, even though we have some conjectures
on what propagation of singularities looks like in this setting, the nonscalar
nature of the problem amplifies the complexity by a considerable degree
and we do not have a useful result in this direction yet.(1) (2) Nevertheless,
distinguishing between regular and “diffracted” p-waves and s-waves is con-
siderably easier, and it is precisely this directio n we pursue in this paper.
Indeed, under certain semi-global hypotheses, we will show what happens
on the diffracted front of a p and s wave hitting an edge transversely. See
also Remark 14.2 for more details regarding the implications of not having
a b-propagation theorem.

1.1. Basic Setup

The setting will be a n-manifold X with boundary equipped with an edge
metric, which is called an edge manifold. The way to visualize this is by
taking a manifold with corners and then introducing cylindrical coordinates
near an edge, by blowing up the edge and introducing coordinates on this
blow up.(3) Precisely, the boundary of X has a fibration

Z → ∂X
π0−→ Y, with compact fiber Z, dim(Z) = f.

Also, X has a boundary defining function x, and near ∂X the metric is of
the form

(1.1) g = dx2 + π̃∗0h+ x2k

(1) In fact, this is also the reason that we do not study the propagation of polarization
(see [1]) as would be natural in the elastic setting. See Remark 10.3 for more details.
(2)We do show that coisotropic regularity with a loss in underlying Sobolev order does
propagate along rays determined by Snell’s law as described in Remark 14.2.
(3)The edge manifolds we work with here are not exactly this type of blowup since the
fiber at the boundary of such a blow up would have corners, but our edge manifolds have
boundaryless fibers. Nevertheless, when one stays away from the corners of the fibers on
the blown-up manifold, it represents a good visualization of the manifolds in the setting
of this paper. See Section 3 for a more precise description.
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1450 Vitaly KATSNELSON

with h ∈ C∞([0, ε) × Y ;Sym2T ∗([0, ε) × Y )) and k ∈ C∞(U ;Sym2T ∗M);
we further assume that h|x=0 is a nondegenerate metric on Y and k|x=0
is a nondegenerate fiber metric. Here we extended the fibration π0 to a
fibration π̃0 : U → [0, ε)× Y on a neighborhood U of ∂X.

1.1.1. A motivational non-example

Before proceeding further, we want to motivate how edge manifolds will
arise naturally in practice by considering a non-example of a manifold with
corners. Suppose that near an edge of some manifold with corners X, we
have the coordinates x1, . . . , xf+1, y1, . . . , yn−f−1 and the edge is given by
the vanishing of x1, . . . , xf+1 ∈ [0,∞). Since we are interested in under-
standing what happens when a wave interacts with the edge, as well as
getting extra information along the diffracted waves, we introduce “cylin-
drical coordinates” as

x =
√
x2

1 + · · ·+ x2
k+1, zj = xj/x, yi.

This will transform the standard Riemannian metric into an edge metric. If
one does a real blow-up of this edge, then the above coordinates act as local
projective coordinates on the blown-up manifold. The fibers of the blowup
have corners given by the vanishing of some of the zj . Away from such
corners in the fibers, this blow up is exactly the setting of edge manifolds
we consider in this paper, where the fibers do not have corners.
Since we work with the linear elastic equation, set M = Rt ×X, which

is an n+ 1 dimensional edge manifold representing the space-time setting.
The boundary of M still has a fibration with compact fiber Z and base
Y × Rt. Local coordinates on M will be denoted

(t, x, y, z) = (t, x, y1, . . . , yn−f−1, z1, . . . , zf ).

We consider distributional solutions u ∈ D′(M ;TX) to the elastic equa-
tion

(1.2) Pu = (D2
t −L)u = (D2

t −∇∗µ∇− div∗(λ+µ) div +R0)u = 0 on M

where ∇ is the Levi-Civita connection on X pulled back to M via the
projection p : M → X, div is the divergence operator on sections of TX
pulled back to the manifold M via p, R0 ∈ C∞(M ; End(TX)), and µ, λ ∈
C∞(X) are the Lamé parameters.

We shall consider below only solutions of (1.2) lying in some “finite en-
ergy space”, which plays an analogous role as setting boundary conditions.
Thus, let us denote Dα as the domain of Lα/2, where L is the Friedrichs
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DIFFRACTION OF ELASTIC WAVES 1451

extension of the operator above, also labeled L, on the space Ċ∞(X;TX),
of smooth functions vanishing to infinite order at the boundary. We require
that a solution be admissible in the sense that it lies in C(R;Dα) for some
α ∈ R.

As described in [8], in terms of adapted coordinates t, x, y, z near a
boundary point of M , an element of Ve(M) is locally an arbitrary smooth
combination of the basis vector fields

(1.3) x∂t, x∂x, x∂yj , ∂zk

and so Ve(M) is equal to the space of all sections of a vector bundle,
which is called the edge tangent bundle and denoted e TM. This bundle is
canonically isomorphic to the usual tangent bundle over the interior (and
non-canonically isomorphic to it globally) with a well-defined bundle map
e TM → TM which has rank f over the boundary. As we will justify
shortly, we should think of the fiber coordinate, zj , as angular coordinates,
with dual coordinates ζj being the angular momentum. The dual bundle is
the edge cotangent bundle

e T ∗M ;
it is spanned by dt

x ,
dx
x ,

dyj
x ,dzj , with corresponding dual coordinates

τ, ξ, ηj , ζj .

Such bundles and vector fields show up naturally when studying the
wave operator or the elastic operator since in cylindrical coordinates, these
operators are shown to be products of vector fields in x−1Ve(M). Neverthe-
less, Vasy already showed in [15] that singularities of solutions to the wave
equation should be described by a different bundle called the b-cotangent
bundle, denoted b T ∗M (which is the dual to the b-tangent bundle, de-
noted b TM , whose basis elements are locally described by x∂x, ∂yj , ∂zk ;
see Section 2 for complete definitions). Thus, if we want to describe the
propagation of singularities for the elastic equation, this would be the most
natural bundle to use as well. However, since P is not a b-operator, trying
to obtain such results would be very complicated for two reasons: first, the
interaction between edge operators and b-operators requires a significant
effort to des cribe. Secondly, P no longer has a scalar principal symbol, so
trying to find clever b-operators that are positive along the Hamilton flow
associated to P presents considerable technical challenges, and will not be
pursued in this paper. We expect that in the b-setting, a p-wave hitting
∂M , would give rise to a whole cone of singularities as in the scalar wave
equation, but should also give rise to s-waves as well. A more manageable
task that we pursue here is to at least describe the diffractive behavior of
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1452 Vitaly KATSNELSON

an incoming p and s wave. The edge setting is precisely adapted for this
purpose.
As commonly known, the characteristic set of the elastic operator P ,

denoted Σ ⊂ e T ∗M , can be decomposed into two mutually disjoint sets
corresponding to two waves with different wave speeds, called the pressure
wave and the shear wave. Indeed, if we denote σ(P ) as the principle symbol
of the elastic operator, then det(σ(P )) is the product of principal symbols
of two scalar wave equations with different sound speeds. These are the p
and s waves, and it is precisely the characteristic sets of these two scalar
waves which determine the characteristic set of P . We will use the notation

Σ := det(σ(P ))−1(0) = Σp ∪ Σs
to describe Σ as the union of characteristic sets for the p and s waves
(see Section 3.2 and 3.3 for a precise description of this and the defini-
tions that follow). Hence, the notions of elliptic, glancing, and hyperbolic
sets make sense for each of these scalar waves, so we can refer to the el-
liptic/hyperbolic/glancing set of P in terms of the p and s waves, but we
have to be sure to specify which of the two elliptic,hyperbolic, or glancing
sets we are referring to. We will use superscripts and subscripts “p” and
“s” in the notation for various sets and functions to denote which wave we
are referring to; if we do not want to specify, then we will just write “p/s”
for such superscripts and subscripts. In order to fix things, lets assume in
this introduction that we are working inside Σp, i.e. we are going to work
with the bicharacteristic flow of the pressure wave, wh ich means we are
inside the elliptic region of the s-waves. Local coordinates on M with their
respective dual coordinates provide local coordinates for e T ∗M denoted

(t, x, y, z, τ, ξ, η, ζ) ∈ e T ∗M.

With the notation of [8], for each normalized point

(1.4) α = (t̄, ȳ, z̄, τ̄ = ±1, η̄) ∈ Hp ⇔ |η̄| < c−1
p ,

where 0 < cp ∈ C∞(X) denotes the speed of a p-wave, it was shown that
there are two line segments of “normal” null bicharacteristics in Σp, each
ending at one of the two points above α inside e T ∗∂MM given by solutions
ξ̄ of ξ̄2 + η̄2 = c−2

p . These will be denoted

Fp•,α,

where • is permitted to be I or O, for “incoming” or “outgoing”, as sgn ξ̄ =
± sgn τ̄ (+ for I and − for O). Thus, one should view a p-bicharacteristic
FpI,α hitting the boundary at a point above α and then immediately exiting
the boundary along another p-bicharacteristic say FpO,α′ where α′ lies in
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DIFFRACTION OF ELASTIC WAVES 1453

the same fiber Z(t̄,ȳ) as α, i.e. they only differ by their z coordinate. The
exact relation between α and α′, and the relation between the Sobolev
regularity of u along FpI,α versus its Sobolev regularity along FpO,α′ is the
main interest of this paper in order to describe the diffraction of waves.
The sets Fp•,α are quite explicit when the fibration and metric are of true
product form

dx2 + h(y,dy) + x2k(z,dz).
Then the principal symbol corresponding to the p-wave is simply

qp =
τ2 − c2p(ξ2 + |η|2h + |ζ|2k)

x2 .

When cp is constant, the bicharacteristics (i.e. the flow curves of the Hamil-
ton vector field Hqp inside e T ∗M) hitting the boundary are simply

FpI,α = {t 6 t̄, x = c2p(t̄− t)|ξ̄|, y = y(t), z = z̄, τ = τ̄ , ξ = ξ̄, η = η(t), ζ = 0}

and

FpO,α = {t > t̄, x = c2p(t−t̄)|ξ̄|, y = y(t), z = z̄, τ = τ̄ , ξ = ξ̄, η = η(t), ζ = 0};

where (y(t), η(t)) evolves along a geodesic in Y with speed cp which passes
through (ȳ, η̄) at time t = t̄, and where τ̄2 = c2p(ξ̄2 + |η|2) = 1, and we
have chosen the sign of ξ̄ to agree/disagree with the sign of τ̄ in the incom-
ing/outgoing cases. The case of Fs•,α is almost the same, except one has
a different wave speed denoted cs < cp. This is exactly analogous to the
example given in the introduction of [8].

1.2. Past results on the wave equation

We summarize some results taken from [8, Section 1]. When one considers
the standard wave operator � = D2

t−∆g, then one has the same definitions
and notation above except with cp = 1. In the model case, similar to above,
for each normalized point

α = (t̄, ȳ, z̄, τ̄ = ±1, η̄) ∈ H, |η̄| < 1,

the bicharacteristics are

FI,α = {t 6 t̄, x = (t̄− t)|ξ̄|, y = y(t), z = z̄, τ = τ̄ , ξ = ξ̄, η = η(t), ζ = 0}

and

FO,α = {t > t̄, x = (t− t̄)|ξ̄|, y = y(t), z = z̄, τ = τ̄ , ξ = ξ̄, η = η(t), ζ = 0}.

As it is Z-invariant over the boundary, we may write H as the pull-back
to ∂M via π0 of a corresponding set Ḣ. One may therefore consider all
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1454 Vitaly KATSNELSON

the bicharacteristics meeting the boundary in a single fiber, with the same
“slow variables” (t, y) and set

Ḟ•,q =
⋃

p∈π−1
0 (q)

F•,p, q ∈ Ḣ.

These are pencils of bicharacteristics touching the boundary at a given lo-
cation in the “slow” spacetime variables (t, y), with given momenta in those
variables; the union over all (t, y) of such families form smooth coisotropic
(involutive) manifolds in the cotangent bundles near the boundary. Then
Melrose, Vasy, Wunsch have already shown Snell’s Law for the wave equa-
tion, stating that tangential momentum and energy is preserved when a
wave interacts with an edge, in the form of the following theorem:

Theorem 1.1 ([8, Theorem 1.1]). — For an admissible solution, u, to
the wave equation and any q ∈ Ḣ (4) ,

ḞoI,q ∩WFk(u) = ∅ ⇒ ḞoO,q ∩WFk(u) = ∅.

(The fact that η(q) is the same for the incoming and outgoing rays is
the preservation of tangential momentum even though ∂ḞI,q and ∂ḞO,q (5)

are different. The fact that the rays stay in the characteristic set shows
the energy preservation.) As mentioned already, this is the type of theorem
that has remained elusive for the elastic equation since its proof for the
wave equation relies heavily on the fact that � is an operator with a scalar
principal symbol.
The analysis in [8] then distinguishes between the “diffracted” waves and

the “geometric” waves. Indeed, let o ∈ X be near the boundary, and

uo(t) = sin t
√

∆√
∆

δo

be the fundamental solution. Then u0(t) ∈ Hs
loc(M), and one has the fol-

lowing theorem

Corollary 1.2 ([8, Corollary 1.4]). — For all o ∈ Xo let Lo denote
the flowout of SN∗({o}) along bicharacteristics lying over Xo. If o is suf-
ficiently close to ∂X, then for short time, the fundamental solution u0 is
a Lagrangian distribution along L0 lying in H−n/2+1−0 together with a
diffracted wave, singular only at FO, that lies in H−n/2+1+f/2−0, away
from its intersection with Lo.

(4)See [4, Section 1] for the definitions of WFk

(5)These refer to the endpoints at the boundary of the respective families of bicharac-
teristics; see Section 3.3 for a precise description
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H−0

H1/2−0

π

H−0

H−0

t = t0

t = t0 + ∆t

t = t0 + ∆t+ δ

Figure 1.1. For the scalar wave equation (on a simple cone), an inci-
dent wave (navy blue) of Sobolev order H−0 starts at time t = t0 and
reaches the cone tip at t = t0 +∆t. An infinite circular family of waves
is diffracted, the dark red ones being weaker of Sobolev order H1/2−0.
However, two rays (orange) are geometrically related to the incident
ray having its Sobolev strength as well. They are an angular distance
π away from the incident ray.

1.3. Sketch of the results

We will obtain an analogous result for the elastic equation. However, the
situation becomes more interesting because there are two waves to consider.
Indeed, the unique feature is that

Ḣp ∩ Ḣs 6= ∅.

For example, for the α introduced in (1.4), one also has

|η̄| < c−1
p < c−1

s

so points that lie above α are solutions ξ̄ of ξ̄2+η̄2 = c−2
p or of ξ̄2+η̄2 = c−2

s .
Thus, for a solution to the homogeneous elastic equation u, a singularity of
u may enter the boundary along a particular ray in ḞpI,π0(α) and then exit
the boundary along not just rays in ḞpO,π0(α), but along rays in ḞsO,π0(α)

as well. With α′ in the same Z fiber as α, a ray Fp/sO,α′ is a geometric
p-bicharacteristic if this ray, together with FpI,α is locally a limit of p-
bicharacteristics lying in T ∗Mo that just miss the edge. Otherwise, it is
diffractive. In the case of the scalar wave equation, the fundamental solution
is less singular in a Sobolev sense on the “diffractive” bicharacteristics, but
has the same Sobolev strength singularity as the incident wave along the

TOME 68 (2018), FASCICULE 4
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geometric bicharacteristics. For the elastic equation however, the incoming
p-ray FpI,α together with the outgoing s-ray FsO,α′ , could never be a limit
of p-bicharactersics and so FsO,α′ must be diffractive, in which we would
expect an improvement in the Sobolev order of u along such an s-ray.
If (t0, o) ∈Mo then the solution to

Pu = δt0,o,

vanishing for t < t0, is called the forward fundamental solution, where
δt0,o denotes the delta distribution. Thus, one consequence of our main
theorem is

Theorem 1.3. — For all (t0, o) ∈ Mo let Lpt0,o resp. Lst0,o, denote the
flowout of SN∗({o}) along p-bicharacteristics, respectively s-bicharacte-
ristics, lying over Mo, which lie over o at t = t0. If o is sufficiently close to
∂X, then for a short time beyond when the first p-wave, singular along some
FpI,α, emanating from o at time t0 hits the edge, the forward fundamental
solution u = ut0,o is a Lagrangian distribution along Lt0,o := Lpt0,o ∪ L

s
t0,o

lying in Hs for all s < −n/2 + 1 together with diffracted waves that lie in
Hr for all r < −n/2+1+f/2 along points in Fp/sO not geometrically related
to α, away from their intersection with Lt0,o. More precisely, if we consider
the first incoming p-wave transverse to the boundary, i.e. u ∈ H−n/2+1−0

along FpI,α but WF(u) ∩ FpI,α 6= ∅, then each of the outgoing diffracted
p and s waves are weaker in the sense that u ∈ Hr along the p and s-
bicharacteristics not geometrically related to FpI,α for all r < −n/2 + 1 +
f/2. Similarly, if we consider the first incoming s-wave transverse to the
boundary, i.e. u ∈ Hs along FsI,α then each of the outgoing diffracted
p and s waves are weaker in the sense that u ∈ Hr along the p and s-
bicharacteristics not geometrically related to FsI,α for all r < −n/2+1+f/2.

As mentioned already, we do not claim to prescribe the location of
the outgoing singularities produced from the initial singularity hitting the
boundary. See Remark 14.2 for a detailed discussion.

1.4. Plan for the proof

To prove the theorem, we will adopt an approach similar to the one pre-
sented in [8, Section 1.3]. First, we would like to prove an analog of Hör-
mander propagation theorem (see [4, Section 1.2]) for the bicharacteristic
flow of Hqp/s inside e T ∗M for rays that approach the boundary, which we
labeled Fp/s earlier. However, such an approach runs into the obstruction
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H−0

H1/2−0

H1/2−0

H−0

H−0

t = t0

t = t0 + ∆t + ε

t = t0 + ∆t+ ε

t = t0 + ∆t

Figure 1.2. For the elastic wave equation, an incident p-wave (red)
say, of Sobolev order H−0 starts at time t = t0 and reaches the cone
tip at t = t0 + ∆t. An infinite circular family of p-waves (red) and
s-waves (yellow) is diffracted, the red ones being weaker of Sobolev
order H1/2−0. However, two rays (dark red) are geometrically related
to the incident ray having its Sobolev strength as well. The s-waves
are not geometrically related to the incident p-wave and are weaker,
being of Sobolev strength H1/2−0.

presented by manifolds with radial points, which occur at the boundary
and at which the Hamilton flow vanishes. Hence, such points become sad-
dle equilibria for the Hamilton flow, and Fp/sI/O form part of the stable (I)
or unstable (O) manifolds of such equilibria that are transversal to the
boundary x = 0. The other stable/unstable manifolds of the these critical
manifolds of equilibria are contained in the boundary x = 0. Thus, the type
of propagation of singularities result we want is that a singularity enters
the boundary x = 0 along (say) the stable manifold of one of these critical
manifolds, propagating through the critical manifold and out through its
unstable manifold; propagating across the boundary to the stable manifold
of the other critical manifold; and then through it and back out of the
boundary along the corresponding unstable manifold. The key is that the
propagation across the boundary leaves the variables (t, y) unaffected, and
so this process will show us which bicharacteristics inside Fp/sO will be the
geometric continuations of an incident bicharacteristic (say) FpI,α.
The problem is that propagation into or out of a radial point is subject

to a threshold amount of regularity that one may propagate. In particular,
propagation results into and out of the boundary along bicharacteristics in
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the edge cotangent bundle up to a given Sobolev order are restricted by
the largest power of x by which u is divisible, relative to the corresponding
scale of edge Sobolev spaces. Thus, propagating (say) Hs regularity along
FpI into a radial point, will only lead to Hs′ regularity along certain rays in
FpO, but s′ may be much smaller than s and so we will not know the true
Sobolev strength of the solution along such scattered rays.
Hence, we must initially settle for less information. It will turn out

that ḞpI is a coisotropic submanifold of the cotangent bundle and as such
“coisotropic regularity” with respect to it may be defined in terms of iter-
ated regularity under the application of pseudodifferential operators with
symbols vanishing along ḞpI,•. Thus, we begin by showing that coisotropic
regularity in this sense, of any order, propagates through the boundary,
with a fixed loss of derivatives. Then under the assumption that a solu-
tion u lies locally in time in some fixed energy space for the operator L,
we prove a propagation of semi-global regularity to show that it must lie
in such an energy space for all times. By interpolation of such a result
combined with the coisotropic regularity propagation, it will follow that
coisotropic regularity propagates into, along, and out of the boundary with
epsilon derivative loss.
As we are in a non-scalar setting, we cannot directly adopt the commu-

tator techniques used to prove such results since such techniques heavily
rely on the scalar wave equation setting. Nevertheless if (say) we are trying
to propagate along ḞpI , we may project an elastic wave solution u to the
s-wave eigenspace of p; the projected distribution will satisfy an elliptic
type of equation which will provide simpler elliptic estimates for this piece.
This is because even though Hp ∩ Hs is not always empty, in the bundle
e T ∗M , Σp and Σs are disjoint, which means that σe(P ) will always have
an elliptic eigenvalue (i.e. qp 6= 0 or qs 6= 0 at each point in e T ∗M not
in the 0-section). For the piece u projected to the p-wave eigenspace, we
will actually be able to adapt a commutator proof as in the scalar wave
equation. Hence, in Section 9, we will prove partial elliptic e stimates for
the “s” part of u. Sections 10 and 11 will be used to prove a propagation
result for the “p”-part of u. We then combine both of these two results
to yield the full propagation of coisotropic regularity of u under certain
semi-global hypotheses (see Corollary 11.18). Afterwards, we dualize the
argument to obtain the propagation of coinvolutivity (this is analogous to
the “nonfocusing” condition introduced in [8]). In the final section, com-
bining the propagation of coisotropic regularity with the dual notion of
coinvolutivity, we will be able to interpolate to prove the main theorem.
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Regarding our terminology, we use the term “coisotropic” to stay con-
sistent with previous papers. The dual notion would technically be “co-
coisotropic”, but since this is a nonstandard, awkward term, we opt to
refer to the dual notion by “coinvolutivity.” We do not use the term “non-
focusing” in [8] since it does not fit with the elastic setting where there are
multiple wave speeds.

2. Edge and b-calculus

The edge calculus of pseudodifferential operators was introduced by
Mazzeo in [7] and a full summary of their wavefront set and composition
properties was given by Wunsch and Melrose in [10, Section 5]. We will use
the exact notation appearing in [8, Section 3] for the calculus so we will
avoid repeating it here. The notation uses Ψ∗,∗e (M) to denote the bifiltered
algebra of pseudodifferential edge operators on C−∞(M).
As in [9, Section 3], we also fix a non-degenerate b-density ν on M , i.e.

ν is of the form x−1ν0, ν0 a non-degenerate C∞ density on M , which is
a nowhere-vanishing section of the density bundle ΩM := |

∧n |(M). The
density gives an inner product on Ċ∞(M). When below we refer to adjoints,
we mean this relative to ν, but the statements listed below not only do not
depend on ν of the stated form, but would even hold for any non-degenerate
density x−lν0, ν0 as above, l arbitrary, as the statements listed below imply
conjugation by xl preserves the calculi.

An important feature is that we have principal symbol maps σe,m

σe,m : Ψm,l
e (M)→ xl

[
Smphg( e T ∗M)/Sm−1

phg ( e T ∗M)
]
;

the range space for σe can be conveniently identified with C∞( e S∗M)
If A ∈ Ψm,l

e (M) and B ∈ Ψm′,l′

e (M) then

σe,m+m′−1,l+l′(i[A,B]) = {σe,m,l(A), σe,m,l(B)}
:= He,σe,m,l(A)(σe,m,l(B)),

where the Poisson bracket is computed with respect to the singular sym-
plectic structure on e T ∗M described above, and He,σe,m,l(A) is the edge-
Hamilton vector field.
If A = {Aδ}{δ∈[0,1]} is a uniformly bounded family in Ψm,l

e (M) (some-
times written Aδ ∈ L∞([0, 1]δ,Ψm,l

e )) then

q /∈WF′e(A) (sometimes written WF′e,L∞(Aδ))
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if there exists a B ∈ Ψ0,0
e (M) such that BAδ is uniformly bounded in

Ψ−∞,le (M).
There is a continuous quantization map (by no means unique)

Ope : xlSmphg( e T ∗M)→ Ψm,l
e (M)

which satisfies

σe,m,l(Ope(a)) = [a] ∈ xlSmphg( e T ∗M)/Sm−1
phg ( e T ∗M)

∀ a ∈ xlSmphg( e T ∗M) and WF′e(Ope(a)) ⊂ ess supp(a).

Associated with the edge calculus there is a scale of Sobolev spaces. For
integral order these may be defined directly. Thus for k ∈ N and any s ∈ R
we set

(2.1) Hk,s
e (R×X) =

{
u ∈ xsL2

b,loc(R×X);
Pu ∈ xsL2

b,loc(R×X)

∀ P ∈ Diffke(X)

}
, k ∈ N.

where

L2
b(M) =

{
f :
∫
|f |2ν <∞

}
.

For general orders, the edge Sobolev spaces can be defined using the cal-
culus.

Definition 2.1.
u ∈ Hm,l

e (M)⇔ Ψm,−l
e (M) · u ⊂ L2

b(M).

The usual properties for Sobolev spaces and wavefront sets in the stan-
dard PsiDO setting carry over to these spaces and a summary may be found
in [10, Section 3].

The passage of the above calculus to vector bundles is only notational
with all the essential properties preserved. For any vector bundle E over a
manifold M , we denote Ψm,l

e (M ;E) as the bi-filtered ?-algebra with all the
properties described above, except we in addition use trivializations of E
to construct the operators locally. Elements of this algebra are now maps

Ψm,l
e (M ;E) 3 A : Ċ∞(M ;E)→ Ċ∞(M ;E),

Ψm,l
e (M ;E) 3 A : C−∞(M ;E)→ C−∞(M ;E),

and
Ψm,l
e (M ;E) 3 A : Hm′,l′

e (M ;E)→ Hm′−m,l′+l
e (M ;E),

with Hm′,l′

e (M ;E) defined analogously to the scalar case. The principal
symbol maps are the same, except locally inside a trivialization, A is a

ANNALES DE L’INSTITUT FOURIER



DIFFRACTION OF ELASTIC WAVES 1461

matrix of edge operators and σe(A) is a matrix of symbols. Precisely, we
have

σe,m,l : Ψm,l
e (M ;E)→ xlSmhom( e T ∗M \ o;π∗Hom(E,E)),

where π : e T ∗M → M is the bundle projection, and Smhom denotes homo-
geneous degree m, C∞ functions on e T ∗M \ o, while

σe,m,l : Ψm,l
e∞(M ;E)→ xl

Sm( e T ∗M \ o;π∗Hom(E,E))
Sm−1( e T ∗M \ o;π∗Hom(E,E)) .

are equivalence classes of symbols.
As explained in [16, Section 3], the only additional caveat is that for Bj ∈

Ψmj ,lj
e (M ;E), it is not necessarily true that [B1, B2] becomes lower order,

i.e. it does not necessarily lie in the space Ψm1+m2−1,l1+l2
e (M ;E) since the

principal symbols of B1 and B2 may fail to commute. However, suppose
B1, B2 are principally scalar, i.e. a multiple of the identity homomorphism:

σe,mj ,lj (Bj) = xlj bj Id, bj ∈ S
mj
hom( e T ∗M \ o),

then the principal symbols do commute and their commutator is

[B1, B2] ∈ Ψm1+m2−1,l1+l2
e (M ;E)

with
σe,m1+m2−1,l1+l2([B1, B2]) = xl1+l2i(He,b1b2) Id .

On the other hand, suppose now that only B1 has a scalar principal
symbol of above. Then σe,m1,l1(B1) and σe,m2,l2(B2) commute, hence

σe,m1+m2,l1+l2([B1, B2]) = 0

so
[B1, B2] ∈ Ψm1+m2−1,l1+l2

e (M ;E).
The b-calculus is now exactly analogous, and a good exposition may be

found in [15, Section 2 and 3]. In the next section we will describe the
relevant manifolds and bundles where we do our microlocal analysis.

3. Edge Manifolds and Bundles

In this section, we will give a concrete description of edge manifolds and
edge metrics, and then give several examples. We will then describe the
Hamilton vector fields associated with the elastic operator. This exposition
is taken almost verbatim from [8].
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3.1. Edge Manifolds and Edge Metrics

LetX be an n-dimensional manifold with boundary, where the boundary,
∂X is the total space of a fibration

Z → ∂X
π0−→ Y,

where Y,Z are without boundary. Let b and f respectively denote the
dimensions of Y and Z (the “base” and the “fiber”). As in [8, Proposi-
tion 2.1], we can choose change coordinates to get a convenient form of the
edge metric (6) :

(3.1) g = dx2 + h(x, y,dy) + xh′(x, y, z, dy) + x2k(x, y, z, dy,dz).

The essential properties of edge manifolds and metrics are already described
in [8] so we simply refer the reader there for the basic definitions.

3.2. Principal symbols and Hamilton vector fields

In this part, we will use the edge bundles just described to give a nice
description of the operator P , its principal symbol, and its Hamilton flow.
Recall that g denotes the edge metric on X, and τ, ξ, η, ζ are the fiber coor-
dinates on the bundle e T ∗M . From now on, we will denote the canonical
coordinates on e T ∗M as (t, x, y, z, τ, ξ, η, ζ) ≡ (w, τ, ϑ). As a coordinate
free description, the elastic operator is given by P = D2

t − L where

L = ∇∗µ∇+ div∗(λ+ µ) div +R0

with all operators as described in the introduction. The upshot of using the
edge cotangent bundle is that we now naturally have P ∈ x−2Diff2

e(M ;TX),
and σe(P ) ∈ x−2C∞( e T ∗M \o;π∗ End(TX)), denoting the principal sym-
bol of P . In a local coordinate chart, where TX is trivialized using the
coordinate trivialization, we have

(3.2) σe(P )(w, τ, ϑ) =
(
τ2

x2 − µ|ϑ|
2
g

)
⊗ Id−(λ+ µ)ϑ⊗ ϑ

x2

∈ x−2S2
hom( e T ∗M ; End(TX)),

keeping in mind that we view g−1 as a metric on the fibers of e T ∗X. It
will be convenient to denote p = σe(P ) and g̃ = x−2g. Then we can easily
compute

det(p) = qp(qs)n−1

(6)We never actually need this simplified form and all arguments go through without
it, except it makes calculations simpler in several places.
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where

qp =
τ2 − c2p|ϑ|2g̃

x2 , qs =
τ2 − c2s|ϑ|2g̃

x2 ,

with cp =
√
λ+ 2µ, and cs = √µ, where µ, λ+µ are assumed to be strictly

positive. These correspond to the principal symbols for the p-wave and
s-wave respectively.
In order to connect with the notation used in the introduction, the char-

acteristic set of p, i.e. Σ = Σdet(p) = det(x2p)−1(0), can then be decomposed
into two disjoint sets

Σ = Σqp ∪ Σqs := Σp ∪ Σs,

with Σp/s given by the vanishing of x2qp/s.
In order to get a propagation result, we must look at the Hamilton vector

field of q (with q being either qp or qs) as a section of the tangent space of the
edge cotangent bundle, i.e. Hq ∈ C∞( e T ∗X;T ( e T ∗X)). By considering
two new edge metrics

(3.3) gp/s := c−2
p/sg,

then qp/s are the principal symbols of the wave operators obtained from
these metrics.
With the notation of the edge metric in Proposition 3.1, let (Hij) and

(Kij) (which are nondegenerate) be defined respectively as the dy⊗dy and
dz⊗dz parts of h and k at x = 0. Let (Hij) and (Kij) denote the inverses,
and an O(xk) term denotes xk times a function in C∞(X). Hence, we may
copy down for later use the computation done in [8, (2.4)] adapted to the
edge metrics g:

(3.4) − 1
2x

2Hqp/s = −τx∂t + τξc2p/s∂τ + c2p/sξx∂x + (c2p/sξ2 + c2p/s|ζ|
2
K̄

)∂ξ

+ (c2p/sζiK̄
ij
p/s +O(x))∂zj

+ (−1
2c

2
p/sζiζj

∂K̄ij

∂zk
− cp/s|ζ|2K̄

∂cp/s

∂zk
+O(x))∂ζk

+ (xc2p/sηjHij +O(x2))∂yi + (c2p/sξηi +O(x))∂ηi ;

where as in [8, (2.4)], K̄ij denotes a term of the form K−1 +O(x).
As usual, it is convenient to work with the cosphere bundle, e S∗M ,

viewed as the boundary “at infinity” of the radial compactification of
e T ∗M . Introducing the new variable

σ = |τ |−1,
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we have a lemma taken from [8, Section 2] whose proof is almost verbatim
in our setting

Lemma 3.1 ([8, Lemma 2.3]). — Inside e S∗M ∩ Σ, − 1
2x

2σHqp/s van-
ishes exactly at x = 0, ζ̂ = 0.

Let the linearization of −(1/2)x2σHqp/s at q ∈ Σ∩ e S∗M (where x = 0,
ζ̂ = 0) be Aq. We then have the following taken directly from [8, Lemma 2.3]
and its proof, but rewritten to include the weights cp/s:

Lemma 3.2. — For q ∈ Ḣp/s, i.e. such that ξ̂(q) 6= 0, the eigenvalues
of Aq are −c2p/sξ̂, 0, and c2p/sξ̂, with dx being an eigenvector of eigenvalue
c2p/sξ̂. Moreover, modulo the span of dx, the −c2p/sξ̂-eigenspace is spanned
by dσ and the dζ̂j .

Remark 3.3 ([8, Remark 2.4]). — This shows in particular that the space
of the dζ̂j (plus a suitable multiple of dx) is invariantly given as the sta-
ble/unstable eigenspace of Aq inside T ∗q e S∗M according to ξ̂ > 0 or ξ̂ < 0.
We denote this subspace of T ∗q e S∗M by T ∗,−q ( e S∗M).

Our main focus will be to understand those bicharacteristics associated
to qp and qs which approach the boundary ∂M transversely. Even though
in our case we only care about the bicharacteristic flow in e T ∗M , general
broken bicharacteristics are usually defined in b T ∗M so we will adopt the
notation in [8, Section 7], and proceed to write down the relevant concepts
adapted to our setting.
Let π denote the bundle map e T ∗M → b T ∗M given in canonical coor-

dinates by
π(t, x, y, z, τ, ξ, η, ζ) = (t, x, y, z, τ, xξ, η, xζ).

The compressed cotangent bundle is defined by setting
b Ṫ ∗M = π( e T ∗M)/Z,

π̇ : e T ∗M → b Ṫ ∗M

the projection, where, here and henceforth, the quotient by Z acts only
over the boundary, and the topology is given by the quotient topology. The
cosphere bundles

b S∗M, b Ṡ∗M, e S∗M

are naturally defined in an analogous manner as done in Section 2.
Next, it will be convenient to denote

q̃p/s = x2qp/s
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so that q̃p/s is smooth up to the boundary. Observe that

q̃p/s|x=0 = τ2 − c2p/s(ξ2 + |η|2h + |ζ|2k).

Hence, we have that on Σ (which is away from the 0-section of e T ∗M),
τ 6= 0 so that restricted to Σ, non-zero covectors are mapped to non-zero
covectors by π and π̇ (that is, ∂M is non-characteristic). Thus, π, π̇ define
maps, denoted with the same letter:

π : Σ→ b S∗M, π̇ : Σ→ b Ṡ∗M, Σ = (det(x2p))−1({0})/R+.

(Note that here we denote Σ,Σp,Σs as before except now as a subset of
e S∗M when we quotient out by the R+ action on the fibers.) We also set

Σ̇ = π̇(Σ) = π̇(Σp) ∪ π̇(Σs) = Σ̇p ∪ Σ̇s;

these are called the compressed characteristic sets. As mentioned in the
introduction, we can now define the “elliptic”, “glancing”, and “hyperbolic”
sets separately for the p and the s waves:

Ep = π( e S∗∂MM) \ π(Σp)

Gp = {q ∈ π( e S∗∂MM) : Card(π−1(q) ∩ Σp) = 1}

Hp = {q ∈ π( e S∗∂MM) : Card(π−1(q) ∩ Σp) > 2}.

In coordinates, we have

π(0, t, y, x, ξ, τ̂ , η̂, ζ̂) = (0, t, y, x, 0, τ̂ , η̂, 0)

hence the three sets are defined by {τ̂2 < c2p|η̂|2}, {τ̂2 = c2p|η̂|2}, {τ̂
2 >

c2p|η̂|2} respectively inside π( e S∗∂MM), which is given by x = 0, ζ̂ = 0,
ξ̂ = 0.

Continuing the notation in [8] we may define the corresponding set in
b Ṡ∗∂MM(hence quotiented by Z and denoted with a dot):

Ėp = Ep/Z,

Ġp = Gp/Z,

Ḣp = Hp/Z.

Naturally, we have the analogous sets for the s-waves:

Es, Gs, Hs, Ės, Ġs, Ḣs.

Notice now that Σ̇p ∩ Σ̇s 6= ∅. This is precisely why an incoming p-wave
hitting the boundary may generate both p and s waves traveling away from
the boundary. We will now make such notions very precise by discussing
bicharacteristics.
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3.3. p/s-Bicharacteristics

In order to better understand what we mean by p-waves and s-waves, let
us define the notion of bicharacteristics as done in [8].

Definition 3.4. — Let the flow of Hqp inside e T ∗Mo be called a p-
bicharacteristic, and the flow of Hqs be called an s- bicharacteristic.

We now explain these notions of incoming/outgoing and make the con-
nection with the notation F , Ḟ presented in the introduction. Given α ∈
Hp, then Section 2 in [8] shows that there exist unique maximally ex-
tended incoming/outgoing p-bicharacteristics γI/O (incoming just means
γI approaches the boundary as t increases, while outgoing means γO moves
away from the boundary as t increases), where sgn ξ(α) = ± sgn τ(α), such
that α = ∂(γ̄•); we denote these curves

Fp•,α ⊂ e T ∗M.

Likewise, for β ∈ Ḣp we let

Ḟp•,β =
⋃

α∈π−1
0 β

Fp•,α.

As in [8] we abuse notation slightly to write

ḢpI/O = ∂ḞpI/O
for the endpoints of incoming/outgoing hyperbolic p-bicharacteristics at
the boundary. We also define all these sets for p replaced by s for the s-
bicharacteristics. We end with a crucial remark to explain our notation
throughout the paper.

Remark 3.5. — Even though all the sets just defined are natural subsets
of b T ∗M , nevertheless we will abuse notation and view HpI/O, F

p
I,O, HsI/O,

FsI,O as sitting inside e T ∗M instead. This is because most of our analysis
is done on the edge cotangent bundle rather than the b-bundle. Concretely,
for α ∈ Hp one has

π−1(α) =
(
t, x = 0, y, z, τ, ξ = ±

√
c−2
p τ2 − |η|2, η, ζ = 0

)
∈ HpI/O.

The same goes for the s-version of these sets. We do this in order to stay con-
sistent with the notation used in [8] and to avoid introducing new notation
which offers very little distinction with the notation already introduced.

We now introduce the analog to forward and backward geodesic flow,
which was Definition 7.12 in [8].
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Definition 3.6. — Let q, q′ ∈ Hp, with π0(q) = π0(q′). We say that

FpI,q,F
p
O,q′

are related under the forward geometric flow (and vice-versa under the
backward flow) if there exists a p-bicharacteristic in e T ∗∂MM whose limit
points are q, q′ ∈ e T ∗∂MM with the identification introduced in the previous
remark. In such a case, we sometimes write

q ∼G q′

to signify that they are “geometrically” related. Otherwise, they are called
“diffractive”. If a ∈ FpI,q with q ∈ H, we let the forward flowout of a to
be the union of the forward p-bicharacteristic segment through a and all
the FpO,q′ that are related to FpI,q, under the forward geometric flow (and
vice-versa for backward flow). We make the analogous definitions for the
s-geometric flow.
Also, even though bicharacteristics might sometimes be infinitely ex-

tended, the sets Ḟp/sI/O are smooth manifolds only for short times near t(q).
Thus, when we refer to such sets in our proofs, we are assuming some un-
derlying time interval near t(q) where they are well-defined as manifolds.

Remark 3.7. — By definition, FpI,q and FsO,q′ can never be geometrically
related. Hence, for any q ∈ HpI , then FsO,q′ will always be a nongeometric
(i.e. diffracted) ray generated by FpI,q whenever π0(q) = π0(q′).

4. Domains

In this section, we will describe the Friedrichs form domain for the elastic
operator, and then use that to identify the Dirichlet form domain for P .
This will help us identify some basic properties for solution to the elas-
tic equation to be used later when we prove regularity results. For edge
propagation, it will be essential to identify the domains of powers of

L = 2∇∗sµ∇s + div∗ λ div
= ∇∗µ∇+ div∗(λ+ µ) div +R0

introduced in the introduction, where R0 ∈ x−2C∞(M,End(TX)) is a bun-
dle endomorphism, and ∇s is the algebraic symmetrization of ∇ making
∇su a symmetric (1, 1) tensor for u ∈ C∞. The equality above relating
∇s and ∇ just follows from well known Weitzenböck identities (see for
example [14, p. 263 Exercise 3]). Precisely, one has

(4.1) ∇∗s∇s = 1
2∇
∗∇+ 1

2 div∗ div +R0.
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Now, the metric g on X allows us to define the Hilbert space denoted
L2
g(X;TX), and so we start with the following definition.

Definition 4.1. — For u, v ∈ Ċ∞(X;TX), we define the sesqilinear
form associated to L

B(u, v) :=
∫
X

λ(div(u))(div(v̄)) dg + 2
∫
X

µ(∇su,∇sv̄) dg,

where ( · , · ) denotes the metric inner product on TX ⊗ T ∗X. This allows
us to define the quadratic form domain

D = cl{Ċ∞(X;TX) w.r.t. B(u, u) + ‖u‖2L2
g(X;TX)}

The Friedrich’s form domain is then just

Dom(LFr) = {u ∈ D : Lu ∈ L2
g(X;TX)}.

We also let Ds denote the corresponding domain of Ls/2.

Notice that we automatically have H1,1−(f+1)/2
e ⊂ D along with the

inequality
‖v‖D . ‖v‖H1,1−(f+1)/2

e

for v ∈ Ċ∞(X,TX). This is because in a local coordinate chart where
TX is trivialized, terms such as ‖ div(v)‖ and ‖∇sv‖ may be estimated by
‖x−1v‖, ‖Dxv‖, ‖Dyv‖, and ‖x−1Dzv‖. The key point is that the reverse
inequality is true as well when we have f > 1. Indeed, we have

‖x−1Dzv‖2 + ‖Dxv‖2 + ‖Dyv‖2 . ‖v‖2 + ‖∇v‖2

. ‖v‖2 +B(v, v) = ‖v‖2D.

However, we also have by Hardy’s inequality that for f > 1

‖x−1v‖2 . ‖Dxv‖2 + ‖v‖2 . ‖∇v‖2 + ‖v‖2 . ‖v‖2D.

Hence, just as in [8] we have

Lemma 4.2. — If f > 1, then D = H
1,1−(f+1)/2
e (X;TX).

As in [8, Section 5] we remark that multiplication of C∞Y (X) (the subspace
of C∞(X) consisting of fiber constant functions on ∂X) preserves D. Thus,
D can be characterized locally away from ∂X, plus locally in Y near ∂X
(i.e. near ∂X the domain does not have a local characterization, but it is
local in the base Y , so the non-locality is in the fiber Z.)
Since we will be working on the manifold M throughout the paper,

we will need that the metric dt2 + dg gives rise to the Hilbert space
L2
g(M ;TX). More precisely, we will now describe the notation used for

this inner product.
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Definition 4.3. — Let u, v ∈ Ċ∞(M ;TX). Suppose TX is given a
local trivialization and u = (ui), v = (vj) with respect to the trivialization.
Denote g = (gij) as the matrix corresponding to our given edge metric; the
fiber inner product takes the form

(u, v)g =
∑
ij

giju
iv̄j .

By a standard partition of unity argument, the global inner product of
sections of TX takes the form

〈u, v〉 =
∫
M

(u, v)g dgdt.

This gives rise to a dual pairing between the spaces Hm,l
e (M ;TX) and

(Hm,l
e (M ;TX))∗. This convenient choice of inner product makes P formally

self adjoint, so we indeed have

(4.2) P = P ∗ formally

Adopting the conventions in [8], we also write D̃, etc. for the analogous
space on M :

Definition 4.4. — ‖u‖2D̃ = ‖Dtu‖2L2(M) +
∫
B(u, u) dt+ ‖u‖2L2(M). We

also write D̃([a, b]) for the space with the same norm on [a, b]×X.

A further localization of D will be useful.

Definition 4.5. — For u ∈ C−∞(X), we say u ∈ Dloc if φu ∈ D for all
fiber constant φ ∈ C∞c (X). Similarly, for u ∈ C−∞(X), we say that u ∈ D′loc
if φu ∈ D′ for all fiber constant φ ∈ C∞c (X). The localized domains on M
are defined analogously along with powers of L.

We will also use Melrose’s b-calculus since certain admissible elastic wave
equation solutions will naturally lie in a b-based Sobolev space. Their def-
inition and properties are in [8, Section 6] for the scalar case, and in [16]
for the vector bundle case. We will use the notation in those papers such
as

Hm
b,D,c(M ;TX), Hm

b,D,loc,WFb, etc.
Thus, we say a solution to the elastic equation is admissible if it lies in some
Hm
b,D̃,loc(M : TX). We will mostly use them to prove finite propagation

speed with respect to such spaces as in Section 12.5.
Also, to avoid cluttering with notation, we will often omit the bundle TX

when describing spaces such as Ψe, Hs,m
e , etc. when there’s no risk of con-

fusion. In fact, the nonscalar nature of all these spaces will only be relevant
in a few key places which we will indicate explicitly. One such place where
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it is particularly relevant is when describing adjoints of pseudodifferential
operators, which we prepare to do in the next section.

5. Adjoints

An important ingredient in the proof of diffraction will be to place our
operator P in a model form, as well as using positive commutator argu-
ments. Such analysis invariably uses the L2

g-based adjoints of pseudodiffer-
ential operators, and since our operators are acting on sections of a vector
bundle, these are no longer so trivial.

5.1. Adjoints of Edge Pseudodifferential Operators

To begin, consider an arbitrary A ∈ Ψ∞e (M ;TX). Picking a trivialization
of TX, the principal symbol, a = σe(A) is an n×n matrix of symbols. As is
known (see [5] for example), if we denote A† as the L2(M ;TX) adjoint of A
with the Euclidean inner product on the fibers of TX using a trivialization,
and integration with respect to the metric, then

σe(A†) = a†,

where in local coordinates, a† is the conjugate transpose of the matrix a.
So with the notation in Definition 4.3, we compute

〈u,Av〉 =
∫
M

(u,Av)g dtdg =
∫
M

(gu,Av) dtdg =
∫
M

(g−1A†gu, v)g dtdg.

Hence, we have

A∗ = g−1A†g and σe(A∗) = g−1a†g.

Thus, if one is not dealing with a principally scalar operator A, its adjoint is
more complicated than just being the conjugate transpose of its principal
symbol. However, if A is principally scalar, then things are much nicer.
Indeed, following Vasy in [16], for A0 ∈ Ψe(M), let A†0 denote the L2

g(M)-
adjoint of A0 with principal symbol a0, and let A = A0 ⊗ Id. In this case

(5.1) A∗ = g−1(A†0 ⊗ Id)g and σe(A∗) = ā0 ⊗ Id .

An analogous discussion applies for operators in Ψ∞,−∞e . In particular,
(5.1) implies that when A has a real, scalar principal symbol, then for
A ∈ Ψm,l

e (M), we in fact have

A∗ −A ∈ Ψm−1,l
e (M ;TX).
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Thus, we will constantly use this fact that when an operator has a real
scalar, principal symbol, then it differs by it’s adjoint by an operator of
lower order, which is usually nonscalar.

6. Coisotropic regularity and Coinvolutivity

In this section, we will make the formal definitions of a distribution being
coisotropic or coinvolutive, which was described in only loose terms in the
introduction.

6.1. Coisotropic Regularity and Coinvolutive Regularity

First, we cite an important theorem in [8] adapted to our notation whose
proof is identical as the one presented in that paper:

Theorem 6.1 ([8, Theorem 4.1]). — Away from glancing rays, the sets
Fp and Fs are coisotropic submanifolds of the symplectic manifold e T ∗M ,
i.e. each contains its symplectic orthocomplement.

We also make the following definition, taken from [8], but changed only
slightly to distinguish between p and s bicharacteristics, and to allow
certain nonscalar terms. We first give the definition corresponding to p-
bicharacteristics since the s-rays are similar.
Fix an arbitrary open set U ⊂ e T ∗M disjoint from p-rays meeting x =

ξ = 0, i.e. away from the set Gp.

Definition 6.2.
(1) Let Ψe(U ;TX) be the subset of Ψe(M ;TX) consisting of operators

A with WF′e(A) ⊂ U .
(2) Let Mp denote the module of pseudodifferential operators in

Ψ1
e(M ;TX) given by

Mp = {A ∈ Ψ1
e(U ;TX) : σ(A) = a0 ⊗ Id with a0|Ḟp = 0}.

(3) Let Ap be the algebra generated byMp, where we require its ele-
ments to have scalar principal symbol, with Akp = A∩Ψk

e(M ;TX).
Let H be a Hilbert space on which Ψ0

e(M ;TX) acts, and let K ⊂
e T ∗(M) be a conic set.

(4) We say that u has p-coisotropic regularity of order k relative to H in
K if there exists A ∈ Ψ0

e(M), elliptic on K, such that AkpAu ⊂ H.
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(5) We say that u is coinvolutive of degree k relative to H on K if there
exists A ∈ Ψ0

e(M ;TX), elliptic on K, such that Au ⊂ AkH. We
say u is coinvolutive relative to H on K if it satisfies the condition
to some degree.

We also have the following important lemmas taken from [8], appropri-
ately tweaked in order to account apply to the vector bundle case, but
whose proofs nevertheless remain the same:

Lemma 6.3 (adapted from [8, Lemma 4.4]). — Mp is closed under com-
mutators and is finitely generated in the sense that there exists finitely
many Ai ∈ Ψ1

e(M ;TX), i = 0, 1, . . . , N , with scalar principal symbol,
A0 = Id, such that

Mp =
{
A ∈ Ψ1

e(U ;TX) :
∃ Qi ∈ Ψ0

e(U), scalar principal symbol,

A =
∑N
j=0QiAi

}
Moreover, we make take AN to have principal symbol |τ |aN⊗Id = |τ |−1qp⊗
Id, and Ai for i < N to have principal symbol |τ |ai ⊗ Id with dai(q) ∈
T ∗,−q ( e S∗M) for q ∈ ∂Ḟp, where we used the notation of Remark 3.3.

We also have as in [8]

Lemma 6.4. — If Ai, 0 6 i 6 N , are generators forMp in the sense of
Lemma 6.3 with A0 = Id, then

Akp =
{

Σ|α|6kQαΠN
i=1A

αi
i :

Qα ∈ Ψ0
e(U ;TX)

has scalar principal symbol

}
where α runs over multiindices α : {1, . . . , N} → N0 and |α| = α1 + . . . αN .

Remark 6.5 ([8, Remark 4.6]). — The notation here is that the empty
product is A0 = Id, and the product is ordered by ascending indices Ai.
The lemma is an immediate consequence ofMp being both a Lie algebra
and a module; the point being that products may be freely rearranged,
module terms in Ak−1.

As in [9, Section 6], we will use some useful facts about coisotropic man-
ifolds. Indeed, away from {x = 0}, we may always (locally) conjugate by
an FIO to a convenient normal form: being coisotropic, locally Fp/s can be
put in a model form ζ = 0 by a symplectomorphism Φ in some canonical
coordinates (y, z, η, ζ), see [5, Theorem 21.2.4] (for coisotropic submani-
folds one has k = n− l, dim(S) = 2n, in the theorem). We state the result
as a lemma:
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Lemma 6.6. — We may quantize Φ to a FIO T , elliptic on some neigh-
borhood of w ∈ Fp/s to have the following properties

(1) u has coisotropic regularity of order k (near w) with respect to Hs

if and only if Dγ
zTu ∈ Hs whenever |γ| < k.

(2) u is coinvolutive of order k (near w) with respect to Hs if and only
if Tu ∈ Σ|γ|6kDγ

zH
s.

The key additional information we need is a lemma in [8].

Lemma 6.7 ([8, Lemma 4.7]). — For l = 1, . . . , N − 1,

(6.1) x2i[Al, Qp] = ΣNj=0CljAj , Clj ∈ Ψ1
e, σ(Clj)|∂Ḟp = 0 for j 6= 0.

(All operators above are principally scalar)

The same definition and lemmas apply for the s-bicharacteristics. We
now introduce the following notation to describe the Hilbert spaces of dis-
tributions which have coisotropic regularity of a certain degree. From now
on we will use the notationM or A to refer to either the p or s versions of
the module, and it will be clear in context which one we are referring to.

Definition 6.8. — For the set U introduced in Definition 6.2, we can
define the space of distributions which have coisotropic regularity of degree
k w.r.t. Hm,l

e on microlocally inside U .

IkHm,l
e (U,Mp/s(U)) := {u ∈ H−∞,le (M) : Akp/su ∈ Hm,l

e }.

(here, Akp/s really stands for Akp/s(U).)

We will need one final piece of information in order to analyze regularity
with respect to Mp/s in the later sections. Let Qp/s ∈ Ψ2,−2

e (M) be a
quantization of the edge symbols qp/s corresponding to the p/s waves. Let
Wm,l ∈ Ψm,l

e (M) have symbol wm,l = |τ |mxl near Σ where τ 6= 0, and has
an arbitrary smooth extension elsewhere. As shown in [8, Section 4], we
have the following crucial computation

(6.2) i[Wm,l, Qp/s] = Wm+1,l−2C0 where C0 ∈ Ψ0,0
e (M),

σe(C0)|∂Ḟp/s = −(m+ l)c2p/sξ̂.

Finally, we will need some theorems that describe the propagation of
coisotropic regularity on Mo, where we do not deal with boundaries. Such
results are old and well-known. For example Dencker in [1] shows how inside
Mo one may find a parametrix to reduce P to a scalar wave operator in
order to invoke Hörmander’s theorem (cf. [3, Theorem 6.1.1]) for standard
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propagation of singularities. Thus, one has the following, stated in a similar
fashion to [9, Section 6]:
If K ⊂ Mo is compact, then there is δ > 0 such that if p ∈ S∗KM

o

and γp/s is a p/s-bicharacteristic, then for s ∈ (−δ, δ), γ(s) ∈ Mo. As
s is equivalent to t as a parameter along a bicharacteristic, we have the
following result similar to [9, Corollary 6.13].

Corollary 6.9. — Suppose K ⊂ Mo is compact. Suppose that f is
coisotropic, resp. coinvolutive (on the coisotropic (Fp/s)o), of order k rela-
tive to Hm−1, supported in t > T . Let u be the unique solution of Pu = f ,
supported in t > T . Then there exits δ0 > 0 such that u is coisotropic,
resp. coinvolutive ((on the coisotropic (Fp/s)o)), of order k relative to Hm

at p ∈ S∗KMo if t(p) < T + δ0.
The analogous statements hold if f is supported in t < T , and u is the

unique solution to Pu = f supported in t < T , by virtue of vanishing there,
except one needs t(p) > T − δ0 in the above notation.

(We remark that when we write p/s in the statement of the proposition
as well as the following corollaries, we mean that the statement holds either
in the p case where each p/s is replaced by p, or in the s case where each
p/s is replaced by s.)

(We also remark that one could certainly give an alternative proof of
this proposition by positive commutator arguments similar to, but much
easier than, those used for propagation of coisotropic edge regularity in the
following several sections.)

Of course, what happens to coisotropic regularity and coinvolutive reg-
ularity when bicharacteristics reach ∂M is of considerable interest, and
occupy the remainder of this paper.
Having described the notation and definitions to be used, we proceed

with the first piece in the proof of the main theorem in the next section.

7. Inner Products and Trivializations

Throughout the sections, we will be working in local coordinates of the
manifold where the bundle TX is trivialized as well. Now the metric inner
product 〈 · , · 〉g on L2(Rt × X;TX) certainly does not depend on which
trivialization we choose for TX, but when we express our operators as ma-
trices, we are certainly fixing a local frame for TX in which our matrices
are expressed. For example, the matrix we wrote for the principal symbol
of the elastic operator p = σe,2,−2(P ) was expressed in the coordinate local

ANNALES DE L’INSTITUT FOURIER



DIFFRACTION OF ELASTIC WAVES 1475

frame {∂x, ∂yi , ∂zj} within some coordinate patch. However, it will be com-
putationally convenient to use orthonormal frames to express our operators
so that if Q ∈ Ψm,l

e (M ;TX) is a self-adjoint operator with respect to the
metric inner product, then one may find an operator S ∈ Ψ0,0

e (M ;TX)
such that S∗QS will have a principal symbol which may be written as a
diagonal matrix w ith respect to an orthonormal trivialization. We will now
give the details of such a construction in a general abstract setting.
Let us first describe this process in an abstract simplified setting where

(X, g) is a compact, n-dimensional Riemannian manifold without boundary
with metric g. Let E be a vector bundle of rank N , endowed with an
inner product ( · , · )E and consider operators P ∈ Ψm(X;E). Again, 〈 · , · 〉
denotes the metric inner product where ( · , · ) is an inner product on E

and integration is with respect to dg. Observe that the principal symbol
p = σm(P ) is an element of the symbol space Sm(T ∗X; End(π∗E)) where
π : T ∗X → X is the projection. Now, fix a coordinate patch O ⊂ X

where we have x, ξ denoting local coordinates on T ∗X and an orthonormal
trivialization

Ê = ÊO = {ê1(x), . . . , ên(x)} for x ∈ O.

(Orthonormal means (êi(x), êj(x)) = δij ∀ x ∈ O.) Hence, for a distribution
u = Σkukêk(x) ∈ D′c(O;E), uk ∈ D′c(O), the action of P on u is given by

Pu = P (Σnk=1ukêk(x)) = Σi
(

ΣjPij(uj)
)

êi(x)

for some Pij ∈ Ψm(O) scalar pseudodifferential operators. Thus, in the
chart O, to say that P is represented by a matrix (Pij) of pseudodifferential
operators, we are implicitly using a choice of trivialization Ê . Thus, it might
be more correct to write P Ê = (Pij) to make this choice more explicit.
Likewise the principal symbol p depends on this trivialization and we may
write

[p]Ê = (pij)

where pij are the principal symbols of Pij . Now suppose that P is self-
adjoint so that p = p(x, ξ) is self-adjoint as well in the sense that

(pv, w)E = (v, pw)E , ∀ v, w ∈ Ex.

Thus, identifying E with O × CN inside O, then by the spectral theorem,
we may find a orthonormal basis of eigenvectors (which we assume to be
smooth inside this local patch)

E = EO = {e1(x, ξ), . . . , en(x, ξ)}, ej ∈ C∞(T ∗O;CN )
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such that

p(x, ξ)(ej) = λjej for scalar functions λj ∈ C∞(T ∗O).

Indeed, certainly for each fixed (x, ξ) ∈ T ∗O, such λj(x, ξ) will exist, but
the smoothness is less obvious and needs additional assumptions. However,
in the case of the isotropic elastic operator, the eigenvalues will be smooth,
so we just assume here that the λj(x, ξ) are in C∞(T ∗O). The associated
eigenvectors are also smooth in small neighborhoods despite the multiplic-
ity of the eigenvalues (see for instance [18] for explicit constructions).
Now, define the linear operator k : π∗x,ξE → π∗x,ξE by k(êj) = ej on the

set T ∗O. Indeed we may view k as an element of S0(T ∗O; End(E)). Here,
End(E) is the vector bundle with fiber at (x, ξ) consisting of linear maps
from Ex to Ex. Since the êi are orthonormal, then k is actually orthogonal.
Indeed, for v = Σiviêi and w = Σiwiêi

(kv, kw)E = viwj(ei, ej)E = viwjδij = viwj(êi, êj)E = (v, w)E .

Hence, certainly k−1 exists and we may diagonalize p by setting

p̃ = k−1pk ⇒ p̃(êj) = λj êj for each j.

Thus, we have
[p̃]Ê = diag(λ1, . . . , λn).

The entire discussion above applies in the exact same way to edge-
pseudodifferential operators since the discussion was entirely microlocal.
Thus, translating the discussion above to the setting of this paper means
our underlying manifold is (M, g), the vector bundle is E = TX and the
inner product on TX is the metric inner product ( · , · )g. Let us fix any or-
thonormal frame Ê for TX. Since p = σe,2,−2(P ) is symmetric with respect
to ( · , · )g, there is a symbol s ∈ S0( e T ∗M ; End(TX)) such that locally,
for any (t, x, y, z, τ, ξ, η, ζ) ∈ e T ∗M ,

s(t, x, y, z, τ, ξ, η, ζ) ∈ End(TX) is orthogonal with respect to ( · , · )g.

Then the adjoint s∗ of s with respect to this inner product is the inverse of
s and s∗ps is a diagonal matrix with respect to the trivialization Ê . Thus,
for Sections 9, 10, and 11 whenever we trivialize TX we will be using this
orthonormal trivialization where all vectors and matrices are expressed
with respect to this trivialization without explicitly saying so.
We now have the tools necessary to conjugate the elastic operator P into

a model form.
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8. Constructing the conjugated elastic operator

We have arranged things on a principal symbol level, but for our pur-
poses, we will need information beyond the principal symbol. Again we let
O ⊂ M be a neighborhood inside of a local chart where TX is trivialized
according to the trivialization described above. Then let S0 be a quantiza-
tion of s. Since s is orthogonal, one has s−1 = s∗ (with the adjoint taken
with respect to ( · , · )g inner product on TX). Thus,

(8.1) s∗s = ss∗ = Id ⇒ S∗0S0 = Id +R−1, for some R−1 ∈ Ψ−1,0
e (O)

by using the edge calculus and since σe,0,0(S∗0 ) = s∗. Thus, S∗0 is certainly
not a parametrix for S0 but if one replaces S0 by an asymptotic sum S0 +∑
j S−j where S−j is of order −j then one can solve algebraic equations

for the principal symbols of S−j (analogous to the microlocal square root
construction argument as in) so that this sum becomes a true parametrix.
We leave out the details and merely state the lemma.

Lemma 8.1. — With the above notation, one may find an operator S ∈
Ψ0,0
e (O;TX) such that SS∗ − Id ∈ Ψ−∞,0e (O;TX), and P̃ := S∗PS ∈

Ψ2,−2
e (O;TX) has principal symbol

σe,2,−2(P̃ ) = diag(qp, qs Idn−1).

9. Partial Elliptic Regularity

The first step to proving Theorem 1.3 is to show that coisotropic regu-
larity is preserved along Ḟp/sI , and that coisotropic regularity along ḞpI,α
implies coisotropic regularity along ḞpO,α (one may look at Corollary 11.18
for an exact statement). The key to proving this is to break up a solution
u of the equation Pu = 0 as u = up + us corresponding to the qp and
qs eigenspaces of σe(P ) respectively. The point is that along Fp, which is
inside the p characteristic set Σp, us will solve an elliptic equation, and so
we will obtain elliptic estimates for us. We will show in the later sections
how this will allow us to analyze the piece up separately. We now proceed
to give a precise description of us and up along with the elliptic estimates
that follow.
First, we have several remarks regarding notation. We will continue to

suppress the manifold and the bundle in the notation of various spaces
to avoid cluttering when there’s no risk of confusion. Also, unless specifi-
cally mentioned, all our operators will be assumed scalar unless mentioned
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specifically so that symbols a are identified with a⊗Id and scalar operators
A with A⊗ Id.
To prove a propagation result, we will employ a positive commutator

argument as done in [8]. One of the main advantages to working on e T ∗M

is that P is naturally an edge operator, and we can put it into a model
form by conjugating P to be a diagonal operator. The principal symbol
p = σe,2,−2(P ) is symmetric with respect to the metric inner product so we
may find s, s∗ ∈ e S0,0, ss∗ = Id, matrices of symbols with s∗ the adjoint
of s with respect to the metric inner product on TX, so that

s∗ps = diag(qp, qs Idn−1) := p̃

as explained in the previous section when we use an orthonormal trivializa-
tion of TX. Recall qp, qs ∈ e S2,−2 are the principal symbols corresponding
to the pressure and shear waves. Now we let S, S∗ be quantizations of s, s∗
respectively in Ψ∗,∗e . As done in Lemma 8.1, we may locally arrange that
S, S∗ are inverses of each other modulo a low order error term we denote
by E ∈ Ψ−∞,0e .

For now, let us work with the conjugated operator

(9.1) P̃ = S∗PS,

such that

σe,2,−2(P̃ ) =
[
qp 0
0 qs Idn−1

]
.

Now, let Πp,Πs ∈ Ψ0,0
e (M ;TX), denote the projections to the qp, qs-

eigenspaces of P̃ respectively. In fact, inside a local chart where all bundles
are trivialized, we can write these down explicitly for v ∈ C−∞(M ;TX):

Πpv = Πp

 v1
...
vn

 =


v1
0
...
0

 , and Πs

 v1
...
vn

 =


0
v2
...
vn

 .

With this explicit form, we clearly see that [P̃ ,Πp/s] is lower order since
the principal symbol of P̃ is diagonal, that is

(9.2) [P̃ ,Πp/s] ∈ Ψ1,−2
e (M).

For a distribution v, denote

vp = Πpv, vs = Πsv.

Now that we have introduced these projections, let us introduce another
piece of notation that will keep equations from becoming cluttered. In local
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charts where bundles are trivialized, we will view elements of C−∞(M ;TX)
as vectors with two components corresponding to the p and s projections
above. That is, for v ∈ C−∞(M ;TX) we will write v = [ vIvII ] where vI is
a vector with 1 component corresponding to the p-eigenspace and vII is
a vector with n − 1 components corresponding to the s-eigenspace. Cor-
respondingly, we may write operators E ∈ Ψ∞,−∞e (M ;TX) within a local
chart as

E =
[
EI EII
EIII EIV

]
,

where EI is a (1× 1) matrix, EII a (1× n− 1) matrix, EIII a (n− 1× 1)
matrix, and EIV a (n−1×n−1) matrix. We will again use the convention
that if Ej is scalar, then we will write it as Ej rather than Ej ⊗ Id when it
is clear in the context.
To proceed, take α ∈ Hp and let O be a local chart containing the

projection of α to M where all bundles are trivialized. Suppose we have
P̃ u ∈ Hm−1,l−2

e and u ∈ Hm,l
e microlocally near α. Thus, for any G̃′ ∈ Ψ0,0

e

that is elliptic at α, has Schwartz kernel that is compactly supported in
O × O, and is microlocally supported close to α, we have G̃′u ∈ Hm,l

e .
Observe that

G̃′P̃ us = G̃′ΠsP̃ u+ G̃′[P̃ ,Πs]u.
Since G̃′[P̃ ,Πs] ∈ Ψ1,−2

e and it is microlocally supported near where u ∈
Hm,l
e , then G̃′[P̃ ,Πs]u ∈ Ψm−1,l−2

e . We thus conclude that

(9.3) G̃′P̃ us ∈ Ψm−1,l−2
e .

This proves part of the following proposition, which gives the main semi-
elliptic estimate:

Proposition 9.1. — Suppose α /∈WFm,le (u), P̃ u ∈ Hm−1,l−2
e microlo-

cally near α, and α ∈ Σp \ Σs. Let G ∈ Ψ0,0
e elliptic near α with a

Schwartz kernel compactly supported in O×O, such that WF′(G) ∩Σs =
WF′(G) ∩WFm,le (u) = ∅. Then α /∈WFm−1,l−2

e (P̃ us) and Gus ∈ Hm+1,l
e .

Moreover, the following estimate holds

‖Gus‖Hm+1,l
e

6 C
(
‖G′P̃ u‖Hm−1,l−2

e
+ ‖G′′u‖Hm,le

+ ‖u‖H−N,l
e,loc

)
,

for some G′, G′′ ∈ Ψ0,0
e elliptic on α, microsupported in a neighborhood of

α, and whose Schwartz kernels are supported in O ×O.

Remark 9.2. — This is the crucial place where we need Σp and Σs to be
disjoint, since otherwise, we could never get such a semielliptic estimate.
Without such an estimate, none of the theorems that we prove later would
go through.
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Proof. — This is a symbolic exercise using that qs(α) 6= 0, together with
the usual microlocal elliptic regularity. We also work in a local chart near
the projection of α to the manifold where all bundles are trivialized. Indeed,
take a parametrix P̃−0 ∈ Ψ−2,2

e such that P̃−0 qs(w, eDw)⊗ Id− Id ∈ Ψ0,0
e ,

and α /∈WF′(P̃−0 qs(w, eDw)⊗ Id− Id). In fact, since WF′(G) is compact
and disjoint from Σs, a parametrix may be chosen so that

WF′(G) ∩WF′(P̃−0 qs(w, eDw)⊗ Id− Id) = ∅.

Then set P̃− ∈ Ψ−2,2
e as

P̃− =
[

0 0
0 P̃−0

]
.

We then have

P̃−P̃ − Id =
[
− Id 0
R′ R′′

]
:= R ∈ Ψ0,0

e and WF′(G) ∩WF′(R′′) = ∅,

where R′ ∈ Ψ−1,0
e (M) and R′′ ∈ Ψ0,0

e (M).
We now compute

(9.4) Gus = GP̃−P̃ us +GRus = GP̃−P̃ us +GR′′us ∈ Hm+1,l
e

since WF′(G̃P̃−)
⋂

WFm−1,l−2(P̃ us) = ∅ by (9.3), and

WF′(GR′′)
⋂

WFm,l(us) = ∅.

Now let G̃′, G′ ∈ Ψ0,0
e with G̃′ elliptic on WF′(GP̃−) and G′ elliptic on the

microsupport of G̃′, and such that one still has

WF′(G′) ∩WFm−1,l−2
e (P̃ u) = WF′(G′) ∩WFm,le (u) = ∅,

with G̃′ having the same property. Then by the ellipticity of G′, G̃′ in
the aforementioned regions together with microlocal elliptic regularity, and
equation (9.3) gives

‖GP̃−P̃ us‖Hm+1,l
e

. ‖G̃′P̃ us‖Hm−1,l−2
e

+ ‖u‖H−N,l
e,loc

. ‖G̃′ΠsP̃ u‖Hm−1,l−2
e

+ ‖G̃′[P̃ ,Πs]u‖Hm−1,l−2
e

+ ‖u‖H−N,l
e,loc

. ‖G′P̃ u‖Hm−1,l−2
e

+ ‖G′u‖Hm,le
+ ‖u‖H−N,l

e,loc
,(9.5)

where the last inequality follows by the ellipticity of G′ on WF′(G̃′) com-
bined with microlocal elliptic regularity. We also have a similar estimate
using microlocal elliptic regularity for the other term

(9.6) ‖GR′′us‖Hm+1,l
e

. ‖G′u‖Hm,le
+ ‖u‖H−N,l

e,loc
.
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Thus, combining (9.4) with the inequalities (9.5), and (9.6) gives the result
of the proposition. �

The essential point in the proof was which characteristic set the point
α belonged to. Thus, with essentially no changes except notation in the
above proof, we get the analogous semi-elliptic estimates for α ∈ Σs. We
record it here for later use:

Proposition 9.3. — Suppose α /∈ WFm,le (u), P̃ u ∈ Hm−1,l
e microlo-

cally near α, and α ∈ Σs \ Σp. Let G ∈ Ψ0,0
e elliptic near α with a

Schwartz kernel compactly supported in O×O, such that WF′(G)∩Σp =
WF′(G) ∩WFm,le (u) = ∅. Then α /∈WFm−1,l−2

e (P̃ up) and Gup ∈ Hm+1,l
e .

Moreover, the following estimate holds

‖Gup‖Hm+1,l
e

6 C
(
‖G′P̃ u‖Hm−1,l−2

e
+ ‖G′′u‖Hm,le

+ ‖u‖H−N,l
e,loc

)
,

for some G′, G′′ ∈ Ψ0,0
e elliptic near α, microsupported in a neighborhood

of α, and whose Schwartz kernels are supported in O ×O.

In the next section, we will discuss propagation into and out of the edge,
which will rely on our semi-elliptic estimates.

10. Edge Propagation

In this section, we describe the propagation of edge regularity into and
out of the edge. First, let us state our main theorem for propagation
to/away from the edge.

Theorem 10.1. — Let u ∈ H−N,le be a distribution.
(1) Let m > l + f/2. Given α ∈ HpI , if u ∈ Hm microlocally on FpI,α \

∂M and Pu ∈ Hm−1,l−2
e microlocally on F̄pI,α, then u ∈ Hm,l′

e

microlocally at α,∀ l′ < l.

(2) Letm < l+f/2.Given α ∈ HpO, suppose U is a neighborhood of α in
e S∗|∂MM such that WFm,le (u) ∩U ⊂ ∂FpO and WFm−1,l−2

e (Pu) ∩
U = ∅, then α /∈WFm,le (u).

Remark 10.2. — In (2), although the theorem is stated with U ⊂ e S∗∂MM ,
such that (U \∂FpO)∩WFm,l(u) = ∅ we may actually enlarge U as follows.
Since WF∗,∗e (u) is closed, we can find a small neighborhood U1 ⊂ e S∗M

of U so that (U1 \ F
p

O) ∩WFm,le (u) = ∅. We will refer to U1 in the proof.
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To prove this theorem, we will use the conjugated operator P̃ introduced
in equation (9.1) of the previous section. Let u be as in the statement of the
above theorem. Since S∗ is a parametrix for S, we transform the problem
by letting ũ = S∗u so that with Lemma 8.1, one has

(10.1) P̃ ũ = S∗PS(S∗u) = S∗Pu+ S∗PRu, for some R ∈ Ψ−∞,0e

⇒WFm−1,l−2
e (P̃ ũ) = WFm−1,l−2

e (Pu)

by the ellipticity of S and S∗. Hence, P̃ ũ satisfies the same assumptions
as Pu in the statement of the above theorem. We will work with this
transformed equation from now on.
We will prove Theorem 10.1 by a positive commutator argument for

“radial points” as done in [8, Section 11]. Thus, via an inductive argument
which we justify later, we want to show that if α /∈WFm−ε̃,le (u) then in fact
α /∈WFm,le (u) where α and u satisfy the assumptions of the above theorem,
and 0 < ε̃ 6 1/2. By the ellipticity of S∗, ũ satisfies the same property, so
we’re essentially going to improve the Sobolev order of ũmicrolocally by ε̃ at
each step. To proceed, let {Aδ}δ∈[0,1] be a scalar, uniformly bounded family
in Ψm′,l′

e (M), and microlocally supported in a set disjoint from WFm−ε̃,le (u).
If m′ is picked so that all the following pairings are finite, we compute

(10.2) 〈AδP̃ ũ, A∗δ ũ〉 − 〈Aδũ, AδP̃ ũ〉

= 〈[A2
δ , P̃ ]ũ, ũ〉

= 〈[A2
δ , P̃ ](ũp + ũs), ũp + ũs〉

= 〈[A2
δ , P̃ ]ũp, ũp〉+ 〈[A2

δ , P̃ ]ũp, ũs〉

+ 〈[A2
δ , P̃ ]ũs, ũp〉+ 〈[A2

δ , P̃ ]ũs, ũs〉

Our strategy will be to estimate the first term on the right using a standard
positive commutator estimate, while the other three terms will be estimated
using Proposition 9.1 derived in the previous section. This first term will
be called the pp term while the others will be called the ps, sp, ss terms.
We will estimate the terms containing ũs first since those are elementary
now that we have Proposition 9.1.

Remark 10.3. — While it may seem more natural to analyze the propa-
gation of polarization (see [1]) for an elastic system, we do not pursue that
here. This is because we are not proving a b-propagation theorem (Snell’s
law for elastic wave diffraction), which would show the location of singu-
larities produced when a singularity interacts with the edge; in such a case,
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analyzing the change in polarization of s-waves from such an interaction
becomes natural.
Nevertheless, one may ask whether a propagation of polarization theo-

rem is possible in the edge calculus in the form of Theorem 11.15 and its
corollaries. Typically however, the Sobolev order the polarization direction
(the constituent of the distribution that is most singular) only differs from
the Sobolev order of the whole distribution by one order when tracking the
Sobolev polarization set [2, Definition 2.8] along a bicharacteristic. Hence,
with the (possibly serious) losses in Sobolev order due to radial points in
the theorems mentioned (such losses would be eliminated if we had the
b-propagation theorem described in the introduction and in Remark 14.2),
it is not immediately clear whether a Sobolev order improvement is pos-
sible without going through a full proof. Such a proof would require un-
derstanding the propagation of polarization into and out of a radial point
which requires a very different type of analysis than presented here. One
may see [2] for what such differences entail albeit in another setting. We
intend to pursue this in a future paper.
We still note that our positive commutator methods may be adapted to

show a propagation result in the interior, and hence provide an alternate
proof of Dencker’s result. Essentially, the operator S constructed above
encodes the possible polarizations of our solution along a bicharacteristic
(and we do provide a regularity estimate for ũs), and so not much would
be gained in analyzing the propagation of polarization in the interior.

10.1. Estimating the sp, ps, ss terms

The key is that the terms in (10.2) involving ũs will be controlled by
elliptic estimates. The exact orders are very important here. Since Aδ is
scalar, then [A2

δ , P̃ ] ∈ Ψ2m′+1,2l′−2
e (M) so in order to eventually show that

ũ is in Hm,l
e microlocally near α, we must have

2m′ + 1 = 2m, 2l′ − 2 = 2
(
−l − f + 1

2

)
⇒ m′ = m− 1/2, l′ = −l − (f + 1)/2.

To justify pairings, we also have that

(10.3) P̃A2
δ ∈ Ψ2m+1,−2l−(f+1)

e

⇒ P̃A2
δ : Hm−ε̃,l

e → H−m−1−ε̃,−l−(f+1)
e = (Hm+1+ε̃,l

e )∗
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and

(10.4) [P̃ , A2
δ ] ∈ Ψ2m,−2l−(f+1)

e

⇒ [A2
δ , P̃ ] : Hm−ε̃,l

e → H−m−ε̃,−l−(f+1)
e = (Hm+ε̃,l

e )∗

We will state our bounds on the ps, sp, ss terms as a proposition.

Proposition 10.4. — Suppose that K ⊂ U ⊂ e S∗M with K a com-
pact neighborhood of α ∈ Hp, U open, and let O be a coordinate patch
containing the projection of α to M where all bundles are trivialized. Let
A = {A2

δ ∈ Ψ2m−1,2l′
e (M) : δ ∈ (0, 1]} a family with WF′e,L∞(A) ⊂ K

which is bounded in Ψ2m
e (M) and has Schwartz kernels uniformly supported

in O×O. Suppose that WFm−ε̃,le (u)∩U = ∅ and WFm−1,l−2
e (Pu)∩U = ∅

for 0 < ε̃ 6 1/2. Then the following pairings are justified and remain uni-
formly bounded even as δ → 0:

〈[A2
δ , P̃ ]ũp, ũs〉, 〈[A2

δ , P̃ ]ũs, ũp〉, 〈[A2
δ , P̃ ]ũs, ũs〉

Proof. — All operators we will mention here are assumed to have
Schwartz kernels compactly supported in O × O. First, note that the as-
sumption on u and the ellipticity of S imply ũ ∈ Hm−ε̃,l

e microlocally near
U as well. Thus, we trivially have ũp ∈ Hm−ε̃,l

e microlocally near U by
microlocality of Πp and since Πp is 0’th order. Pick G1 ∈ Ψ0,0

e elliptic on
WF′e,L∞(Aδ), microsupported where ũ is in Hm−ε̃,l

e . Hence, G1 is elliptic
on WF′e,L∞([A2

δ , P̃ ]Πp) as well. By microlocal elliptic regularity of G1, the
mapping property in (10.4), and continuity, we may estimate

‖[A2
δ , P̃ ]ũp‖H−m−ε̃,−l−(f+1)

e
6 C(‖G1ũ‖Hm−ε̃,le

+ ‖ũ‖H−N,le
).

Also, if we let G ∈ Ψ0,0
e (M) elliptic at α, microsupported inside U such

that

(10.5) WF′e(I −G) ∩WF′e,L∞(A) = ∅,

then Proposition 9.1 implies Gũs ∈ Hm−ε̃+1,l
e ⊂ Hm+ε̃,l

e (the inclusion of
Hilbert spaces is due to ε̃ 6 1/2) and

‖Gũs‖Hm+ε̃,l
e

6 ‖Gũs‖Hm−ε̃+1,l
e

6 C(‖G′P̃ ũs‖Hm−ε̃−1,l−2
e

+ ‖G′′ũ‖Hm−ε̃,le
+ ‖ũ‖H−N,le

),

for some G′, G′′ ∈ Ψ0
e microsupported inside U and elliptic at α. To pro-

ceed, the microsupport property of G in (10.5) implies (I −G)[A2
δ , P̃ ] is a

uniformly bounded family in Ψ−∞,le , so we get the following uniform esti-
mate (since Πp/s are clearly bounded operators between on edge Sobolev
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spaces)
|〈(I −G∗)[A2

δ , P̃ ]ũp, ũs〉| 6 C‖ũ‖2H−N,le
.

Combining these estimates and using the L2
g-dual pairing with the

Cauchy–Schwarz inequality, we obtain

|〈[A2
δ , P̃ ]ũp, ũs〉| = |〈(I −G∗)[A2

δ , P̃ ]ũp, ũs〉|+ |〈[A2
δ , P̃ ]ũp, Gũs〉|

. |〈(I −G∗)[A2
δ , P̃ ]ũp, ũs〉|

+ ‖[A2
δ , P̃ ]ũp‖H−m−ε̃,−l−(f+1)

e
‖Gũs‖Hm+ε̃,l

e

. ‖G′ũ‖2
Hm−ε̃,le

+ ‖G1ũ‖2Hm−ε̃,le
+ ‖G′′P̃ ũ‖2

Hm−ε̃−1,l−2
e

+ ‖ũ‖2
H−N,le

.

The other terms are bounded analogously. �

10.2. Reducing 〈[A2
δ , P̃ ]ũp, ũp〉 to the case of a scalar wave

equation

In this part, since Aδ is a scalar operator, we will express it as

Aδ = Aδ,0 ⊗ Id

to make some calculations more transparent, where Aδ,0 has all the prop-
erties already mentioned for Aδ and is an honest edge pseudodifferential
operator on scalar distributions. First, a careful calculation shows that

(10.6) [A2
δ , P̃ ] =

[
[A2
δ,0, Qp] F ′δ
F ′′δ F ′′′δ

]
=
[

[A2
δ,0, Qp] 0

0 F ′′′δ

]
+ F̃δ,

with σ(Qp) = qp ∈ x−2S2( e T ∗M), F ′δ, F ′′δ , F̃δ ∈ Ψm′,l′−2
e and F ′′′δ ∈

Ψm′+1,l′−2
e uniformly bounded families. We won’t have control over F ′′′δ

but that’s irrelevant since we have

(10.7) 〈[A2
δ , P̃ ]ũp, ũp〉 = 〈[A2

δ,0, Qp]ũp, ũp〉+ 〈F̃δũp, ũp〉.

Thus, since F̃δ is lower order and will be handled by inductive assump-
tions as we show later, we are reduced to a commutator with Qp, whose
principal symbol is the same as that of a scalar wave operator. Now we pro-
ceed to construct A0,δ in the same fashion as done in [8]. However, since Qp
does not commute with Dt, we will need more care for the regularization
argument.
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10.3. Constructing the family of test operators A0,δ

Notice that the principal symbol of Qp is that of a scalar wave operator
associated to the metric gp so that the construction of the test operator
in [8, Section 11] goes through almost verbatim. For regularization, we
define

(10.8) ϕδ(y) = (1 + δy)−ε̃/2 ⇒ ϕ′δ(y) = −ε̃δ/2(1 + δy)−1ϕδ(y),

where 0 < ε̃ 6 1/2,
We then have the following lemma whose proof is almost identical to

what is done in [8, Section 11] where no regularization is done, and in [10,
Section 8] where a regularization is done albeit a slightly different setting.

Lemma 10.5. — With the notation above, and settingm′ = m−1/2 and
l′ = −l− (f − 1)/2, then for α ∈ HpI/O and assuming either m′+ l′− ε̃ > 0
or m′ + l′ < 0, we have may find an edge PsiDO Aδ,0 with the following
properties:

(10.9) i[A2
δ,0, Qp] = ±B∗δBδ ±

∑
j

B∗δ,jBδ,j + Eδ + Cδ +Kδ + Fδ

with
(1) Aδ,0 ∈ Ψm−1/2−ε̃,l′

e for δ > 0, elliptic at α, uniformly bounded in
Ψm−1/2,l′
e , and Aδ,0 → A0 in Ψm−1/2+ε,l′

e for any ε > 0. Moreover,
given any conic neighborhood U of α, the family A = {Aδ,0}δ∈[0,1]
may be chosen so that WF′e,L∞(A) is contained in U .

(2) Bδ, Bδ,j ∈ Ψm−ε̃,l′−1
e for δ > 0, elliptic at α, uniformly bounded in

Ψm,l′−1
e , and Bδ → B,Bδ,j → Bj in Ψm+ε,l′−1

e for any ε > 0.
(3) Eδ ∈ Ψ2m,2l′−2

e uniformly bounded, Eδ ∈ Ψ2m−2ε̃,2l′−2
e for δ > 0,

and WF′e,L∞(Eδ) ⊂ T ∗Mo in the case m′ + l′ − ε̃ > 0. In the case
m′+ l′ < 0, if u satisfies the hypothesis of (2) in Theorem 10.1 with
U1 as in Remark 10.2, then one may arrange that

WF′e,L∞(Eδ) ⊂ U1 \ F
p

O,α uniformly

and such that u ∈ Hm,l
e microlocally on WF′e,L∞(Eδ).

(4) Cδ ∈ Ψ−∞,2l′−2
e uniformly bounded.

(5) Kδ ∈ Ψ2m,2l′−2
e uniformly bounded, Kδ ∈ Ψ2m−2ε̃,2l′−2

e for δ > 0,
and WF′e,L∞(Kδ)

⋂
Σp = ∅

(6) Fδ ∈ Ψ2m−1,2l′−2
e uniformly bounded.

What is noteworthy for us is that

(10.10) σe(Aδ,0) = (±τ)m−1/2xl
′
φδ(|τ |2)a′
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a′ ∈ S0( e T ∗M) is a nonnegative symbol that is elliptic at α, whose support
may be made arbitrarily close to α, and is supported near Σ(P ) so that
τ 6= 0 on supp(a′). Also,

σe(Bδ) = bδ =
√
±(m′ + l′ − ε̃δ/2(1 + δ|τ |2)−1)c0wm,l′−1ϕδ(|τ |2)á

which is a well-defined symbol in xl′Sm
′+1/2

e , is non-negative since ±c0 > 0
and m′ + l′ − ε̃ > 0 on supp(a′).

10.4. Proving propagation in/out of the edge

We now have all the pieces to prove Theorem 10.1. First, we prove the
key lemma which is a “baby” version of the theorem.

Lemma 10.6.
(1) Suppose m > l + f/2 + ε̃ for some 0 < ε̃ 6 1/2, and α ∈ HpI .

(10.11) α /∈WFm−ε̃,le (u), WFm,le (u) ∩ (FpI,α \ ∂M) = ∅,

α /∈WFm−1,l−2
e (Pu), ⇒ α /∈WFm,le (u).

(2) Suppose m < l + f/2 and α ∈ HpO, and U is a neighborhood of α
in e S∗∂M (M).

(10.12) α /∈WFm−ε̃,le (u), WFm,le (u) ∩ U ⊂ ∂FpO,α, α /∈WFm−1,l−2
e (Pu),

⇒ α /∈WFm,le (u).

Proof. — We will prove both parts simultaneously and point out the
relevant differences. Again, we let O be a local coordinate neighborhood of
the projection of α to M where all bundles are trivialized, and we assume
all operators constructed here have Schwartz kernels compactly supported
in O ×O. As already shown, ũ and P̃ ũ satisfy the same assumptions as u
and Pu in this lemma. It will be convenient to let

m′ = m− 1/2 and l′ = −l − (f − 1)/2,

so the hypothesis of the lemma would saym′+l′−ε̃ > 0 for (1) andm′+l′ <
0 for (2). Also, as shown in the proof of Proposition 10.4, one trivially has
α /∈WFm−ε̃,le (ũp) as well. Let A = {Aδ}δ∈[0,1] be as in Lemma 10.5 where
the microsupport of Aδ may be made sufficiently close to α such that

(10.13) WF′e,L∞(A) ∩WFm−ε̃,le (ũp) = ∅

and WF′e,L∞(A) ∩WFm−1,l−2
e (P̃ ũ) = ∅
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so that A0,δũp remains bounded in L2
g(M) for δ > 0. By (10.2) and (10.7),

for δ > 0 so that the integration by parts and the pairings are justified, we
have

〈AδP̃ ũ, A∗δ ũ〉 − 〈Aδũ, A∗δP̃ ũ〉 = 〈[A2
δ , P̃ ]ũ, ũ〉

= 〈[A2
δ,0, Qp]ũp, ũp〉+ 〈F̃δũp, ũp〉+ 〈[A2

δ , P̃ ]ũp, ũs〉

+ 〈[A2
δ , P̃ ]ũs, ũp〉+ 〈[A2

δ , P̃ ]ũs, ũs〉

In fact, it is already shown in [9, (7.17)] along with the proof in that paper,
that indeed, the first equality above does hold.
Thus, applying Lemma 10.5 to the computation above, where the Bδ,j

terms may be ignored since they have the same sign in front of them as the
Bδ term, we get the following estimate:

‖Bδũp‖2(10.14)

6 |〈Fδũp, ũp〉|+ |〈AδP̃ ũ, A∗δ ũ〉|+ |〈Aδũ, A∗δ P̃ ũ〉|

+ |〈Eδũp, ũp〉|+ |〈Cδũp, ũp〉|+ |〈Kδũp, ũp〉|+ |〈F̃δũp, ũp〉|

+ |〈[A2
δ , P̃ ]ũp, ũs〉|+ |〈[A2

δ , P̃ ]ũs, ũp〉|+ |〈[A2
δ , P̃ ]ũs, ũs〉|.

We now justify why each term in the RHS of the above inequality remains
uniformly bounded. First observe that for an operator G ∈ Ψ2m−1,2l′−2

e one
has

(10.15) G :Hm−ε̃,l
e →H−m+1−ε̃,−l+(f−1)

e ⊂H−m+ε̃,−l+(f−1)
e = (Hm−ε̃,l

e )∗.

The operators Fδ, F̃δ, Cδ are uniformly bounded in Ψ2m−1,2l′−2
e i.e. of

lower order than the main term. Since ũp is microlocally in Hm−ε̃,l
e on their

microsupports (which are contained in WF′e,L∞(A)), then (10.15) implies
|〈F̃δũp, ũp〉|, |〈Fδũp, ũp〉|, |〈Cδũp, ũp〉| are valid dual pairings and remain
uniformly bounded even as δ → 0.
Let us turn to the term with Eδ, where Eδ differs depending on whether

we are proving (1) or (2) of this lemma. If the hypothesis of (1) in the
lemma is satisfied, then as stated in Lemma 10.5, we may arrange that
WF′e,L∞(Eδ) is uniformly bounded away from ∂M , and that WF′e,L∞(Eδ)∩
WFm,l(ũp) = ∅ using (10.11) (recall that ũp satisfies the same hypothesis
as ũ). Thus, the term with Eδ remains uniformly bounded in this case. If
instead we are proving (2) of the lemma, then (3) of Lemma 10.5 shows
ũ ∈ Hm,l

e microlocally on WF′e,L∞(Eδ) (so ũp will have the same property
as explained before), where in this case

WF′e,L∞(Eδ) ⊂ U1 \ F
p

O,α uniformly.
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Thus, the term with Eδ remains uniformly bounded just like the “incoming”
radial point case we just described.
For the Kδ term, we have qp elliptic on WF′e,L∞(Kδ). Using the edge

pseudodifferential calculus, since P̃ and
[
Qp 0
0 Qs

]
have the same principal

symbol,

P̃ =
[
Qp 0
0 Qs

]
+ P1

for some P1 ∈ Ψ1,−2
e (M ;TX). Thus, inside O where bundles are trivialized,

P̃ ũp = Qpũp + P1ũp which implies Qpũp ∈ Hm−1−ε̃,l−2
e microlocally on

WF′e,L∞(A). Hence, by microlocal elliptic regularity of Qp, we then have
up ∈ Hm+1−ε̃,l

e microlocally on WF′e,L∞(Kδ) so Kδũp ∈ H−m+1−ε̃,l−2l′
e ⊂

H−m+ε̃,l−2l′
e even as δ → 0.
Next, all the terms in (10.14) involving ũs are uniformly bounded by

Proposition 10.4.
Lastly, we must justify the uniform boundedness of the terms containing

P̃ ũ, which requires a closer analysis of the principal symbol of Aδ. For this
part, α being an incoming radial point versus outgoing is irrelevant so we
suppress this distinction. As this type of argument is standard for positive
commutator estimates, we merely refer the interested reader to [4, p. 19
proof of Theorem 1.5] and [6, proof of Lemma 9.6.1] for the details since
the only relevant feature is having a scalar principal symbol for Aδ. �

This lemma will be all we need in order to prove Theorem 10.1.

Proof of Theorem 10.1. — The following proof is taken directly from [9]
with only minor notational changes, and we provide extra details to enhance
the transparency of the proof. We will only prove (1) of the theorem, as the
proof of (2) would only require some trivial sign changes. By assumption,
m > l + f/2 implies there exists ε̃ ∈ (0, 1/2] such that

m > l + f/2 + ε̃.

First, observe that if we have u ∈ H−N,le and −N > l+f/2, then −N+ ε̃ >

l+f/2+ ε̃, and so by applying the first part of Lemma 10.6 iteratively (with
m replaced first by −N + ε̃), improving by ε̃ in edge-Sobolev order at each
step, we obtain α /∈WFm,le (u) (however at the last step of the iteration we
might only need to improve edge-Sobolev order by an amount less than ε̃).

To consider the other case, suppose l > −N − f/2. Now define

l0 = sup{r : α /∈WFm,re (u)}.
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First notice that the set over which the supremum is taken is non-empty
since we can always find an r0 >> 0 such that l+f/2−r0 < −N, so that an
analogous iterative procedure as in the first case shows α /∈WFm,l−r0

e (u).
Next observe that if we can show that l0 = l, then the theorem will be
proved. The details are in [8]. �

In the next section, we will improve this last theorem by showing coiso-
tropic regularity into and out of the edge, that is, regularity at α under
application of elements in Akp to u under certain assumptions.

11. Propagation of coisotropic regularity

In this section, we get the coisotropic improvement by building up from
the theorem in the previous section. The main result is at the end of this
section, which is Theorem 11.15.

The first theorem we will prove is an analogue of Theorem 10.1 but with
an improvement incorporating the propagation of regularity of u under
application of elements in Ak. Since we will first prove propagation along p-
bicharacteristics, we will often suppress the p/s distinction in the modules
by assuming that A and M will refer to the p-versions i.e. Mp and Ap
introduced in Section 6.1; we note however that all results here will hold
for the s-bicharacteristics as well, and we will provide more details of this
at the end of the section.

Theorem 11.1. — Let u ∈ H−N,le be a distribution.
(1) Let m > l+f/2 + 1/2. Given α ∈ HpI , if Akpu ⊂ Hm microlocally in
FpI,α \ ∂M and AkpPu ⊂ Hm−1,l−2

e microlocally at α, then Akpu ⊂
Hm,l′

e microlocally at α, ∀ l′ < l.

(2) Let m < l + f/2. Given α ∈ HpO, if there exists a neighborhood U
of α in e S∗|∂MM such that WFm,le (Aγu) ∩ U ⊂ ∂FpO for all Aγ ∈
Akp and AkpPu ∈ Hm−1,l−2

e microlocally at α, then Akpu ⊂ Hm,l′

e

microlocally at α, ∀ l′ < l.

Remark 11.2. — One should notice that there is a loss of order 1/2 in
the case of (1) of the theorem compared to the theorem in the previous
section. This is because regularization is not free as we saw in the proof of
the previous theorem, yet one may only improve coisotropic regularity by
positive integer powers A. Hence, it is not enough to regularize by just ε̃
as in the proof of Lemma 10.6. If one could microlocalize in such a way as
to make sense of Ak for non-integer k, then indeed we would not have this
loss of 1/2 edge-derivatives.

ANNALES DE L’INSTITUT FOURIER



DIFFRACTION OF ELASTIC WAVES 1491

Remark 11.3. — This is a remark taken from [8, Remark 11.2]. For any
point α ∈ e T ∗∂MM \ {ζ = 0} there is an element of Akp elliptic there,
hence (1), with k =∞, shows that solutions with (infinite order) coisotropic
regularity have no wavefront set in e T ∗∂MM \ {ζ = 0}. Indeed this result
holds microlocally in the edge cotangent bundle. Note that the set {x =
0, ζ = 0} is just the set of radial points for the Hamilton vector field Hqp .

We will again work with ũ and P̃ ũ as introduced in the last section.
As before, the ellipticity of S and S∗ imply that ũ and P̃ ũ satisfy the
same assumptions as u and Pu of the above theorem. Hence, it will suffice
to prove coisotropic regularity at α for ũ. The case of k = 0 is exactly
Theorem 10.1 already proven in the last section. To get the coisotropic
improvement, we give the following heuristic to show what we plan to do.
First, since the theorem is local in nature, let us fix some small neighbor-

hoods to make our constructions here more explicit. Let O be a neighbor-
hood of the projection of α to M inside a coordinate patch where all bun-
dles are trivialized. We will assume all operators constructed have Schwartz
kernels compactly supported in O ×O. Next, let

(11.1) U1 ⊂ e S∗M

be a precompact neighborhood of α away from the glancing rays such that

WFm,le (Ak−1ũ) ∩ U1 = ∅ and WFm−1,l
e (AkP̃ ũ) ∩ U1 = ∅.

To avoid cluttered notation we will write M and A when we really mean
M(U1) and A(U1) as in Definition 6.2 often without explicitly clarifying.

Let Aγ ∈ Ak be a generator with multiindex γ as introduced in Sec-
tion 6.1, and

(11.2) A = A0 ⊗ Id ∈ Ψ0,0
e (U1), Aγ,m′,l′ = Wm′,l′Aγ ,

and Aγ,m′,l′,δ = ΛδAγ,m′,l′

for {Λδ}δ∈[0,1] a scalar, uniformly bounded family of operators in Ψ0,0
e which

will serve as a regularizer. Assumingm′ is chosen such that all the following
quantities are bounded and that the integration by parts is valid, we have

(11.3)

〈AAγ,m′,l′,δP̃ ũ, A∗Aγ,m′,l′,δũ〉 − 〈AAγ,m′,l′,δũ, A∗Aγ,m′,l′,δP̃ ũ〉

= 〈[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, P̃ ]ũ, ũ〉

= 〈[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, Qp]ũp, ũp〉

+〈[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, F ]ũp, ũp〉

+〈[A∗γ,m′,l′,δA2Aγ,m′,l′ , P̃ ]ũp, ũs〉+〈[A∗γ,m′,l′,δA2Aγ,m′,l′ , P̃ ]ũs, ũ〉,
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where in the last equality we used (10.6) and (10.7) for some F ∈
Ψ1,−2
e (M ;TX).
As a first step, for Aγ ∈ Ak, to first prove coisotropic regularity of order

k with respect to Hm−1/2,l
e on ell(A), we must bound the quantities

〈AAγ,m′,l′,δP̃ ũp, AAγ,m′,l′,δũs〉 and 〈AAγ,m′,l′,δP̃ ũs, AAγ,m′,l′,δũ〉

appearing in (11.3). To do this, we will obtain elliptic estimates for Aγ ũs
using Proposition 9.1 to directly bound these quantities. Afterwards, will
do a careful commutator computation to bound the term with Qp.

In order to do commutator estimates, it will be convenient first to obtain
a model form for commutators involving Aγ with the following lemma:

Lemma 11.4. — Let G ∈ Ψr′,s′

e and Aγ ∈ Ak. Then

[G,Aγ ] ∈ Ψr′,s′

e Ak−1 :=
{

N∑
j=1

QjÃj : Qj ∈ Ψr′,s′

e , Ãj ∈ Ak−1, N ∈ N

}
.

(Note: No special properties of our particular module A are used here,
so any such module suffices)

Proof. — This follows by induction and a tedious, explicit compu-
tation of the commutator. The details may be found in [6, proof of Lem-
ma 10.1.4]. �

This lemma actually provides us with a very useful corollary.

Corollary 11.5. — Let A ∈ Ψm′,l′

e Ak′(U1;TX) for some U1 ⊂ e S∗M

a precompact open set. Then A has the following mapping property for
k′ 6 k:

A : IkHm,l
e (U1,Mp(U1))→ Ik−k

′
Hm−m′,l+l′
e (U1,Mp(U1)).

Proof. — Let u ∈ IkHm,l
e (U1,Mp(U1)) and Aγ ∈ Ak−k

′(U1). Then

AγAu = AAγu+ [Aγ , A]u.

Observe that AAγ ∈ Ψm′,l′

e Ak(U1;TX) so that AAγu ∈ Hm−m′,l+l′
e . Also,

by the previous lemma [Aγ , A] ∈ Ψm′,l′

e Ak−1(U1;TX) and so [Aγ , A]u ∈
Hm−m′,l+l′
e as well. This completes the proof. �

With the aid of the above lemma, we may finally obtain elliptic regularity
of Akũs under certain regularity assumptions for Akũ and AkP̃ ũ. This will
be essential for bounding the terms in (11.3) containing ũs.
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Lemma 11.6. — Let α ∈ Hp. Then

α /∈WFm,le (Akũ) and α /∈WFm−1,l−2
e (AkP̃ ũ)

⇒ α /∈WFm−1,l
e (AkP̃ ũs) and α /∈WFm+1,l

e (Akũs).

(The point here is that ũs is microlocally one edge-derivative smoother that
ũ. Also, A here really means Ap(U) where U ⊂ e S∗M is a neighborhood
of α away from glancing rays. For details, see Section 6.1.)

Proof. — First let O be a neighborhood of πM (α) contained in a local
chart where all bundles are trivialized, and we assume that all operators
constructed here have Schwartz kernels supported on O×O. Let Aγ ∈ Ak
be arbitrary. Then

AγP̃ ũs = AγΠsP̃ ũ+Aγ [Πs, P̃ ]ũ.

Since AγΠs ∈ Ψ0,0
e Ak by Lemma 11.4, then AγΠsP̃ ũ ∈ Hm−1,l−2

e microlo-
cally at α by the assumption on P̃ ũ. Likewise, we have shown in Section 9
that [Πs, P̃ ] ∈ Ψ1,−2

e (M ;TX) so Aγ [Πs, P̃ ] ∈ Ψ1,−2Ak by Lemma 11.4;
this implies Aγ [Πs, P̃ ]ũ ∈ Hm−1,l−2

e microlocally at α by the assumption
on ũ. This proves the first part of the lemma, that AkP̃ ũs ⊂ Hm−1,l−2

e

microlocally at α.
Next let P̃− ∈ Ψ−2,2

e (M ;TX) be the parametrix for P− as constructed
in Proposition 9.1, where we also showed

ũs = P̃−P̃ ũs +R′′ũs

where R′′ ∈ Ψ0,0
e (M) and α /∈WF′e(R′′). Thus,

Aγ ũs = AγP̃
−P̃ ũs +AγR

′′ũs.

Then AγP̃− ∈ Ψ−2,2
e Ak by Lemma 11.4 so AγP̃−P̃ ũs ∈ Hm+1,l

e microlo-
cally at α. Proceeding, since α /∈ WF′e(R′′) then by microlocality of R′′
then AγR′′ũs ∈ Hm+1,l

e microlocally at α (in fact α /∈ WF∞,le (AγR′′ũs)).
This shows, Aγ ũs ∈ Hm+1,l

e microlocally at α, which concludes the proof
of the lemma. �

The proof of the above lemma actually shows something a little bit
stronger where we can replace α by a small neighborhood of α:

Lemma 11.7. — Let α ∈ Hp and U ⊂ e S∗M be a precompact neigh-
borhood of α. Then

U ∩WFm,le (Akũ) = ∅ and U ∩WFm−1,l−2
e (AkP̃ ũ) = ∅

⇒ U ∩WFm−1,l−2
e (AkP̃ ũs) = ∅ and U ∩WFm+1,l

e (Akũs) = ∅.
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We also need to understand adjoints in A. Since the operators in Ak and
their adjoints are principally scalar with real principal symbols, if Aγ ∈ Ak
then one has a priori A∗γ −Aγ ∈ Ψk−1

e , but in fact, we can do better:

Lemma 11.8. — We have

A−A∗ ∈ Ψ0,0
e Ak−1 for any A ∈ Ak.

Remark 11.9. — We must put Ψ0,0
e Ak−1 rather than just Ak−1 in the

above lemma since we are allowing A−A∗ to not be principally scalar.

Proof. — We use induction. The case k = 1 is trivial as mentioned before
the lemma since elements of A have real, scalar principal symbols. Thus,
suppose the result holds for k−1. It suffices to prove this for the generators
of Ak, and so we let Aγ ∈ Ak be a generator. Then Aγ = Aγ′Aj for some
Aj a generator inM and Aγ′ ∈ Ak−1. By the induction hypothesis applied
to Aγ′ , one has A∗γ = A∗jA

∗
γ′ = A∗j (Aγ′ + Ek−2) for some Ek−2 ∈ Ψ0

eAk−2.
Notice A∗j −Aj ∈ Ψ0

e and [Aj , Aγ′ ] ∈ Ak−1, so we have

A∗γ = AjAγ′ +AjEk−2 + (A∗j −Aj)Aγ′ + (A∗j −Aj)Ek−2

= Aγ + [Aj , Aγ′ ] +AjEk−2 + (A∗j −Aj)Aγ′ + (A∗j −Aj)Ek−2.

By Lemma 11.4, AjEk−2 ∈ Ψ0,0
e Ak−1, and similarly for all the other terms

on the RHS of the above equation besides for Aγ . This gives the desired
conclusion. �

We now turn to the main commutator proof for the term in (11.3) involv-
ing Qp. First, we have another crucial lemma will allow us to only worry
about only those generators Aγ which do not contain AN . This is no longer
trivial, as P̃ ũ having a certain amount of regularity does not imply auto-
matically that Qpũp has the same amount of coisotropic regularity, which
is what is needed for proving coisotropic regularity of ũp. Nevertheless,
we have arranged everything so that the following lemma, similar to [8,
Lemma A.4] still remains true.

Lemma 11.10. — Suppose ũ is coisotropic order k − 1 on O relative to
Hm,l
e and P̃ ũ ∈ IkHm−1,l

e (O,Mp(O)). Then for O′ ⊂ O, u is coisotropic of
order k on O′ relative toHm,l

e if for each multiindex γ, with |γ| = k, γN = 0,
there exists Bγ ∈ Ψ0,0

e , elliptic on O′ such that BγAγ,m,lũ ∈ L2.

Proof. — First, inside a local chart where bundles are trivialized, we
represent P̃ as

P̃ =
[
Qp 0
0 Qs

]
+
[
F1 F2
∗ ∗

]
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for F1, F2 ∈ Ψ1,−2
e and the ∗ also refer to operators in this space. By a

partition of unity, we may suppose without loss of generality that O is
contained inside a local chart where bundles are trivialized. Then P̃ ũ ∈
IkHm−1,l

e (O,Mp(O)) implies

Qpũp ∈ IkHm−1,l−2
e (O,Mp(O))− F1ũp − F2ũs(11.4)

⇒ Ak−1Qpũp⊂I1Hm−1,l−2
e (O,Mp(O))−Ak−1F1ũp−Ak−1F2ũs.(11.5)

One then uses Lemma 11.7 to estimate ũs, and the rest of the proof proceeds
analogously as in [8, proof of Lemma A.3], with full details in our setting
in [6, Lemma 10.1.11]. �

To proceed with the commutator proof, we recall Lemma A.4 in [8] appro-
priately adapted to our setting where we view our operators as principally
scalar operators acting on a vector bundle. Due to the previous lemma, γ, β
will stand for reduced multiindices, with γN = 0, βN = 0. Also, from now
on, the choice of regularizer Λδ, and operator A0 will play a crucial role.
Indeed we let A0 to be the quantization of a′ in (10.10), and Λδ constructed
in (10.8), to be the regularizer whose principal symbol is

(11.6) σe(Λδ) =
√
φδ(|τ |2) = (1 + δ|τ |2)−ε̃/2 on supp(a′).

Thus, {Λ}δ∈(0,1] ⊂ Ψ−ε̃,0e (M), is uniformly bounded in Ψ0,0
e (M) down to

δ → 0, and Λδ → Id in Ψε,0
e (M) for any ε > 0.

Lemma 11.11. — Suppose A0 ∈ Ψ0,0
e is as described above. Then

(11.7)
∑
|γ|=k

i[A∗γ,m′,l′,δA2
0Aγ,m′,l′,δ, Qp]

=
∑

|γ|,|β|=k

A∗γ,m′+1/2,l′−1,δA
∗
0C
′
γβ,δA0Aβ,m′+1/2,l′−1,δ

+
∑
|γ|=k

(A∗γ,m′+1/2,l′−1,δA0Eγ,m′+1/2,l−1,δ

+ E∗γ,m′+1/2,l−1,δA0Aβ,m′+1/2,l′−1,δ)

+
∑
|γ|=k

A∗γ,m′,l′,δi[A2
0, Qp]Aγ,m′,l′,δ

where

Eγ,m′,l′,δ = Wm′,l′Eγ,δ, Eγ,δ ∈ Ψ0,0
e Ak−1 + Ψ0,0

e Ak−1AN ,

WF′e,L∞(Eγ,δ) ⊂WF′(A0) uniformly and for all γ, β,
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(11.8) C ′γβ ∈ Ψ0,0
e uniformly bounded,

σ(C ′γβ)|∂Ḟ = −(m′ + l′ − ε̃δ(1 + δ|τ |2)−1)ξ̂c2pδγβ

Remark 11.12. — This is an important remark taken from [8, Rem-
ark A.5]. The first term on the right hand side of (11.7) is the principal term
in terms of Ap order; both Aγ,m,l and Aβ,m,l have A order k. Moreover,
(11.8) states that it has non-zero principal symbol near ∂Ḟp depending on
the sign of m′ + l′ and ξ̂. The terms involving Eγ,m′,l′ have A order k − 1,
or include a factor of AN , so they can be treated as error terms. On the
other hand i[A2

0, Qp] must be arranged to be positive, which will come from
Lemma 10.5 as we show below.

Proof. — The proof proceeds exactly as in [8, Lemma A.4] with full
details in [6, Lemma 10.1.12]. �

We now have all the pieces to prove Theorem 11.1.
Proof of Theorem 11.1. — We do the proof by induction. The case k = 0

was precisely Theorem 10.1. We may prove both parts of the theorem at
once and point out the relevant differences. Let us assume then the theorem
holds for k − 1, i.e.

α /∈WFm,l̃e (Ak−1u).
For notational convenience, we will suppose l̃ = l since the l̃ < l condition
only came from the interpolation argument in Theorem 10.1, but does not
affect any of the arguments here. It will be convenient to denote

ξ̄ = ξ(α).

Then by the closedness of WFe, there exists a neighborhood Ok of α over
which ξ has a fixed sign which is that of ξ̄, such that

• u ∈ Ik−1Hm,l
e (Ok,Mp(Ok))

• Pu ∈ IkHm−1,l−2
e (Ok,Mp(Ok))

and the projection of Ok to M is inside a local coordinate patch where all
bundles are trivialized, and all operators constructed have Schwartz kernels
compactly supported in πM (Ok) × πM (Ok). The “first step” is to show ũ

has coisotropic regularity of order k relative to Hm−1/2,l
e microlocally over

a compact subset of Ok, and then do an analogous “second step” to show ũ

has coisotropic regularity of order k relative to Hm,l
e at α. Since the proof of

the “first step” is almost identical and even easier than the “second step”,
we only prove the “second step” and afterwards comment on why the “first
step” is easier. Thus, let us instead assume

• ũ ∈ IkHm−1/2,l
e (Ok,Mp(Ok))
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• P̃ ũ ∈ IkHm−1,l−2
e (Ok,Mp(Ok))

so by Lemma 11.7 (applying it twice first replacing m by m−1/2 and then
replacing k by k − 1) one also has

(11.9) ũs ∈ IkHm+1/2,l
e (Ok,Mp(Ok)) ∩ Ik−1Hm+1,l

e (Ok,Mp(Ok)) and

P̃ ũs = ΠsP̃ ũ+ [P̃ ,Πs]ũ

∈ IkHm−3/2,l−2
e (Ok,Mp(Ok)) ∩ Ik−1Hm−1,l

e (Ok,Mp(Ok))

by Corollary 11.5 and since [P̃ ,Πs] is in Ψ1,−2
e . We need only show that ũ

has coisotropic regularity of order k relative to Hm,l
e over some neighbor-

hood of α.
Now let Aγ and Aγ,m′,l′,δ be as described in (11.2) with U1 there replaced

by Ok, and

m′ = m− 1/2 l′ = −l − (f − 1)/2.

Note that for the regularizing term of Aγ,m′,l′,δ explained in (11.6), we take

ε̃ = 1
2 .

Also let A ∈ Ψ0,0
e (Ok;Cn) be a scalar operator with principal symbol a′

as described in (10.10). For clarity, we also write

A = A0 ⊗ Id .

As, shown there, the microsupport of A may be made arbitrarily close to
α so that one indeed has

WF′e,L∞(AAγ,m′,l′,δ) ⊂ Ok.

Thus, as shown in (11.3), for δ > 0 (where the integration by parts is
justified by the proof in Lemma 10.6)

〈AAγ,m′,l′,δũ, A∗Aγ,m′,l′,δP̃ ũ〉 − 〈AAγ,m′,l′,δP̃ ũ, A∗Aγ,m′,l′,δũ〉
(11.10)

= 〈AAγ,m′,l′,δũ, A∗Aγ,m′,l′,δP̃ ũs〉 − 〈AAγ,m′,l′,δP̃ ũs, A∗Aγ,m′,l′,δũ〉

+ 〈AAγ,m′,l′,δũs, A∗Aγ,m′,l′,δP̃ ũp〉 − 〈AAγ,m′,l′,δP̃ ũp, A∗Aγ,m′,l′,δũs〉

+ 〈[A∗γ,m′,l′,δA2
0Aγ,m′,l′,δ, Qp]ũp, ũp〉+ 〈[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, F ]ũp, ũp〉,

with F ∈ Ψ1,−2
e (M ;TX).

So with the notation in Lemma 11.11, as done in [8, Appendix], we let

C ′δ = diag((C ′γβ,δ), . . . , (C ′γβ,δ)) (n copies) such that |γ| = |β| = k,

as a block diagonal matrix (with n blocks) of operators, or rather as an
operator on a trivial vector bundle with fiber Rn|Mk| over a neighborhood

TOME 68 (2018), FASCICULE 4



1498 Vitaly KATSNELSON

of Fpα, where |Mk| denotes the number of elements of the set Mk of multi-
indices |γ| = k. Also, let

c′δ = σ(C ′δ)|∂Ḟpα = −(m′ + l′ − ε̃δ(1 + δ|τ |2)−1)c2pξ̂ Idn|Mk| .

Thus, c′δ is positive or negative definite with the sign of −(m′+ l′− ε̃)ξ̄, so
the same is true microlocally near Ḟpα. Thus we have

sgn(ξ̄)σ(C ′0)|∂Ḟp

{
< 0 if m′ + l′ − ε̃ > 0
> 0 if m′ + l′ < 0.

The first case happens when assuming (1) of the theorem, while the second
case happens when (2) is assumed. Then shrinking Ok if necessary, we may
find B ∈ Ψ0,0

e , G ∈ Ψ−1,0
e , with σ(B) > 0 on Ok such that

(11.11) sgn(ξ̄)A∗0C ′δA0 = A∗0(∓B∗B +G)A0

with the (−) in the case of (1) of the lemma and the (+) in the case of (2)
of the lemma. Also, shrinking Ok if necessary, we have from the proof
of Lemma 10.5 (where we do not use the regularizer φδ there, and only
consider the Hamilton derivative of a′ there) that

(11.12)
sgn(ξ̄)i[A2

0, Qp] =
∑
∓B̃∗j B̃j + E + C +K + F̃

B̃j ∈ Ψ1/2,−1
e (Ok), E,K ∈ Ψ1,−2

e , C, F̃ ∈ Ψ0,−2
e (Ok),

where ũp is coisotropic of order k with respect to Hm,l
e in a neighborhood of

WF′e(E) as explained in the proof of Lemma 10.6, and WF′e(K) ∩Σp = ∅.
Note that the (∓) we have in (11.12) is different from the signs in that
lemma since there, the sign of ξ̄ was taken into account rather than the
sign of m′ + l′.
Now, let

Âδũp = (A0Aγ,m′+1/2,l′−1,δũp)|γ|=k,
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regarded as a column vector of length n|Mk|. Now, using Lemma 11.11 and
substituting (11.11), (11.12) into (11.7) we obtain∑

|γ|=k

sgn(ξ̂)〈i[A∗γ,m′,l′,δA2
0Aγ,m′,l′,δ, Qp]ũp, ũp〉

= ∓‖BÂδũp‖2 ∓ ‖B̃jÂδũp‖2

+
∑
|γ|=k

(
〈Eγ,m′+1/2,l′−1,δũp, A0Aγ,m′+1/2,l′−1,δũp〉

+ 〈A0Aγ,m′+1/2,l′−1,δũp, Eγ,m′+1/2,l′−1,δũp〉
)

+
∑
|γ|=k

〈(E + C +K + F̃ )Aγ,m′,l′,δũp, Aγ,m′,l′,δũp〉

+ 〈Âũp, GÂũp〉

If we substitute the above equation into (11.10), drop the terms
involving B̃j and apply the Cauchy–Schwarz inequality to the terms with
Eγ,m′+1/2,l′−1,δ, we have for any ε1 > 0

‖BÂδũp‖2(11.13)

6
∑
|γ|=k

(
|〈AAγ,m′,l′,δũ, A∗Aγ,m′,l′,δP̃ ũ〉|

+ |〈AAγ,m′,l′,δP̃ ũ, A∗Aγ,m′,l′,δũ〉|

+ |〈AAγ,m′,l′,δũ, A∗Aγ,m′,l′,δP̃ ũs〉|

+ |〈AAγ,m′,l′,δP̃ ũs, A∗Aγ,m′,l′,δũ〉|

+ |〈AAγ,m′,l′,δũs, A∗Aγ,m′,l′,δP̃ ũp〉|

+ |〈AAγ,m′,l′,δP̃ ũp, A∗Aγ,m′,l′,δũs〉|

+ |〈[Aγ,m′,l′,δA2Aγ,m′,l′,δ, F ]ũp, ũp〉|
)

+ ε1‖Âδũp‖2 + ε−1
1

∑
|γ|=k

‖Eγ,m′+1/2,l′−1,δũp‖2

+
∑
|γ|=k

|〈(E + C +K + F̃ )Aγ,m′,l′,δũp, Aγ,m′,l′,δũp〉|

+ |〈Âδũp, GÂδũp〉|.

Before proceeding, let us first make a remark regarding the intuition of the
proof.

Remark 11.13. — The goal is to uniformly bound the rest of the terms
on the right of the above inequality. The term containing P̃ ũ will remain

TOME 68 (2018), FASCICULE 4



1500 Vitaly KATSNELSON

bounded due to a priori assumptions on P̃ ũ, which put it in a better space
microlocally at α then what would be dictated by the space ũ is in. The
terms with ũs are also considered “error” terms since ũs satisfies better
elliptic estimates. All the remaining terms are either of lower order so that
they may be bounded by the inductive assumption, or are terms with E

or K, which are microsupported in regions where we assume ũ is better
to begin with, so may be treated as “error” terms as well. Hence, in the
ensuing proof we are merely justifying why all the terms may be treat as
such error terms that are bounded due to the inductive step or the initial
assumptions, as is standard in all positive commutator proofs.

Choosing ε1 > 0 small enough, the ‖Âδũp‖2 term on the right can be
absorbed in the left hand side as done in [8, Proof of Proposition A.6].
Let us justify that the terms with Eγ,m′+1/2,l′−1,δ, E,K,C, F̃ ,G, P̃ ũ re-

main uniformly bounded as well.
• First, we turn to the term with Eγ,m′+1/2,l′−1,δ. Writing ũp = ũ−ũs

and using (11.9) gives

(11.14) ũp ∈ Ik−1Hm,l
e (Ok,Mp(Ok)).

Next, the proof of Lemma 11.10 then shows

(11.15) AN ũp ∈ Ik−1Hm,l
e (Ok,Mp(Ok))

⇒ Ψm,l′−1
e Ak−1(Ok)AN ũp ⊂ H0,−(f+1)/2

e

Thus,

Eγ,m,l′−l,δũp ∈ H0,−(f+1)/2
e uniformly as δ → 0

⇒ ‖Eγ,m,l′−l,δũp‖ remains uniformly bounded as δ → 0.

• The terms involving C, F̃ , G,F̃ ′ ∈ Ψ0,−2
e (O′k), G′ ∈ Ψ−1,0

e (O′k)
are lower order than the principal term and so these remain uni-
formly bounded exactly as in the proof of Proposition 10.4 when
we bounded the term with F there. Exact details are already in [8,
Proposition A.6] and [6, Theorem 10.1.1].

• We now turn to the terms involving K and E. Now Qp is elliptic
on WF′e,L∞(ΛδK) so by microlocal elliptic regularity, there exists a
Q− ∈ Ψ−2,2

e such that

I = Q−Qp +R1 for some R1 ∈ Ψ0,0
e (Ok),

WF′(R1) ∩WF′e,L∞(ΛδK) = ∅.
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So using Corollary 11.5, (11.15) to give us the order of Qpũp, and
microlocal elliptic regularity of Qp implies ũp is coisotropic of or-
der k on WF′e,L∞(ΛδK) with respect to Hm,l

e (M). Similarly, by the
hypothesis of the theorem, we similarly have ũp is coisotropic of
order k microlocally in a neighborhood of WF′e,L∞(ΛδE) with re-
spect to Hm,l

e . By looking at the orders of the operators E,K and
the microlocal edge-Sobolev regularity of ũp over WF′e,L∞(E +K)
gives uniform boundedness of these terms exactly as in [8, Propo-
sition A.6].

• We turn to the term involving P̃ ũ. Estimating this term is a stan-
dard argument in commutator proofs since P̃ ũ is of a better order
than a priori expected by the Sobolev order of ũ. We refer the
interested reader to [4, Proof of Theorem 1.5] and [6, Proof of The-
orem 10.1.1].

• Proceeding, F ′ may also be estimated as a lower order error term
exactly as the term with Eγ,m′+1/2,l′−1,δ as shown in the proof [6,
Theorem 10.1.1].

• Finally, we look at the terms containing ũs. Let us first consider

〈[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, P̃ ]ũs, ũ〉(11.16)

Observe that
ord(ũs, ũ) = (2k, 2m),

while

[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, P̃ ] ∈ Ψ2m,2l′−2
e A2k + Ψ2m+1,2l′−2

e A2k−1.

Thus, writing [A∗γ,m′,l′,δA2Aγ,m′,l′,δ, P̃ ] = C1 + C2 with C1 ∈
Ψ2m,2l′−2
e A2k and C2 ∈ Ψ2m+1,2l′−2

e A2k−1, the term 〈C1ũs, ũ〉 re-
mains uniformly bounded, while the term 〈C2ũs, ũ〉 may be dealt
with as the F ′ term above using an analogous estimate as for the
P̃ ũ term. The other “ũs” term

〈[A∗γ,m′,l′,δA2Aγ,m′,l′,δ, P̃ ]ũp, ũs〉

appearing on the right of (11.13) is dealt with in a similar fashion
since all that is relevant are the edge-Sobolev spaces ũs and ũp
belong to.

Thus, after absorbing all the terms mentioned into the left of (11.13)
and then letting δ → 0 shows ũp has coisotropic regularity of order k on
ell(A) with respect to Hm−1/2,l

e due to Lemma 11.10. Since ũs has the same
property, we have shown ũ has coisotropic regularity of order k on ell(A)
with respect to Hm−1/2,l

e .
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To show the first part of the argument, one assumes that ũ ∈
Ik−1Hm,l

e (O′k,Mp(O′k)) for any open O′k whose closure is compactly con-
tained in Ok, and then shows ũ has coisotropic regularity of order k with
respect to Hm−1/2,l

e microlocally over α. This is easier than the proof above
since we only need to improve coisotropic order, but not Sobolev order. The
proof is exactly analogous to the proof of [8, Proposition A.6], and the full
details in our setting are in [6, Theorem 10.1.1]. �

Notice that all our proofs only relied on the diagonal form of the principal
symbol of P̃ , so interchanging p and s in all the above proofs, but instead
looking at α ∈ Σs, gives us the parallel theorem:

Theorem 11.14. — Let u ∈ H−N,le be a distribution.
(1) Let m > l+f/2 + 1/2. Given α ∈ HsI , if Aksu ⊂ Hm microlocally in
FsI,α \ ∂M and AksPu ⊂ Hm−1,l−2

e microlocally at α, then Aksu ⊂
Hm,l′

e microlocally at α, ∀ l′ < l.

(2) Let m < l + f/2. Given α ∈ HsO, if there exists a neighborhood U
of α in e S∗|∂MM such that WFm,le (Aγu) ∩ U ⊂ ∂FsO for all Aγ ∈
Aks and AksPu ∈ Hm−1,l−2

e microlocally at α, then Aksu ⊂ Hm,l′

e

microlocally at α, ∀ l′ < l.

We may finally combine all our results to prove the main propagation
of coisotropic regularity theorem with an important corollary, following
closely [9, Section 8].

Theorem 11.15. — Let β ∈ Ḣp, k ∈ N and δ > 0. Suppose that
u ∈ H−N,le . Suppose also that

(1) α ∈ HpO and α is projected to β in the fiber.
(2) u has coisotropic regularity of order k relative to Hm (on the

coisotropic ḞpI (resp. ḞsI )) in an open set containing all points in
ḞpI,β∩{0 < x < δ} (resp. ḞsI,β∩{0 < x < δ}) that are geometrically
related to α.

(3) Pu has coisotropic regularity of order k relative to Hm−1 in a
neighborhood of (FpO,α)o (resp. (FsO,α)o). In addition, there exists
a neighborhood of {x = 0} such that Pu has coisotropic regularity
of order k relative to Hm−1,l−2

e on this neighborhood.
Then u has coisotropic regularity of order k relative to Hm′ for all

m′ < min(m− 1/2, l + f/2)

(on the coisotropic ḞpO (resp. ḞsO)) in a neighborhood of FpO,α (resp. FsO,α)
strictly away from ∂M .
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Remark 11.16. — The assumption on Pu near {x = 0} is there not just
to apply Theorem 11.1, but to also allow us to propagate regularity along
the edge {x = 0} away from HpI/O. Indeed, since the module Mp has
elliptic elements at such points, the assumption on Pu along this region
just means Pu ∈ Hm+k−1,l−2

e microlocally at such points, and this will
allow us to propagate edge singularities along the edge away from radial
points via more traditional methods.

As an immediate consequence, one also gets the following corollary where
we don’t distinguish among geometric rays:

Corollary 11.17. — Let α ∈ Ḣp, and k ∈ N. Suppose that u ∈ H−N,le

and Pu is coisotropic of order k relative to Hm−1,l−2
e in a neighborhood

of {x = 0}, and also on a neighborhood of ḞpO,α. Suppose also that u has
coisotropic regularity of order k relative toHm (on the coisotropic ḞpI (resp.
ḞsI )) near Ḟ

p
I,α (resp. ḞsI,α) strictly away from ∂M . Then u has coisotropic

regularity of order k relative to Hm′ for all

m′ < min(m− 1/2, l + f/2)

(on the coisotropic ḞpO (resp. ḞsO)) near Ḟ
p
O,α (resp. ḞsO) strictly away from

∂M .

Proof of Theorem 11.15. — We follow closely a clever argument used
in [8] and [9]. First, set l̃ = min(l,m − f/2 − 1/2 − 0) so that u ∈ H−N,l̃e .
Notice that if l < m−f/2−1/2−0, then m > f/2+l+1/2 = l̃+f/2+1/2.
On the other hand, if m−f/2−1/2−0 6 l, then l̃+f/2+1/2 = m−f/2−
1/2− 0 + 1/2 + f/2 = m− 0 < m so this shows m > l̃+ f/2 + 1/2. Hence,
Theorem 11.1(1) is applicable (applied to each α′ geometrically related
to α, with α in the theorem replaced by α′), and one may then propagate
along the edge and back out of the edge by the same argument as in [8]. �
As in [9, Corollary 8.3], we prove that the regularity with respect to which

coisotropic regularity is gained in the above results is, in fact, independent
of the weight l:

Corollary 11.18. — Let β ∈ Ḣp, ε > 0 and k ∈ N. Suppose that
u ∈ Hs−1

b,D̃,loc(I ×X) when restricted to I ⊂ (∞, t(β)), a precompact time
interval, and Pu ∈ Hs

b,D̃′,loc(M). Then there is a k′ (depending on k and ε)
such that if

(1) α ∈ HpO and α is projected to β in the fiber.
(2) u has coisotropic regularity of order k′ relative to Hs (on the coiso-

tropic FpI (resp. FsI ) in an open set containing all points in ḞpI,β

TOME 68 (2018), FASCICULE 4



1504 Vitaly KATSNELSON

(resp. ḞsI,β) strictly away from ∂M that are geometrically related
to α,

(3) Pu has coisotropic regularity of order k′ relative to Hs−1 (on the
coisotropic Fp (resp. Fs)) in an open set containing all points in
FpO,α (resp. FsO,α) strictly away from ∂M . Also, there exists a neigh-
borhood of {x = 0} such that Pu ∈ HN

b,D′(M) for anyN−1 > s+k′,
then u has coisotropic regularity of order k relative to Hs−ε (on the coiso-
tropic FpO (resp. FsO)) in a neighborhood of FpO,α (resp. ḞsO,α) strictly away
from ∂M .

We also record an immediate consequence of the above corollary where
we do not distinguish between geometric and diffractive rays.

Corollary 11.19. — Let α ∈ Ḣ, ε > 0 and k ∈ N. Suppose u ∈
Hs−1
b,D̃,loc(I × X) when restricted to I ⊂ (∞, t(α)), a precompact time in-

terval, and Pu ∈ Hs
b,D̃′,loc(M). Then there is a k′ (depending on k and ε)

such that if
(1) u has coisotropic regularity of order k′ relative to Hs (on the coiso-

tropic ḞpI (resp. ḞsI )) in a neighborhood of ḞpI,α (resp. ḞsI,α) strictly
away from ∂M

(2) Pu has coisotropic regularity of order k′ relative to Hs−1 on a
neighborhood of ḞpO,α strictly away from ∂M . Also, there exists a
neighborhood of {x = 0} such that Pu ∈ HN

b,D′(M) for any N−1 >
s+ k′ on this neighborhood,

then u has coisotropic regularity of order k relative to Hs−ε (on the coiso-
tropic ḞpO (resp. ḞsO) in a neighborhood of ḞpO,α (resp. ḞsO,α) strictly away
from ∂M .

Remark 11.20. — Note that the assumption u ∈ Hs−1
b,D̃,loc(I × X) is es-

sential for these corollaries. Indeed, Theorem 11.15 allows us to propagate
coisotropic regularity into and out of the edge only with respect to a Sobolev
space of low order. Hence, this assumption on u will allow us to improve this
order by means of an interpolation argument. Such an assumption would
not be needed if we had a b-propagation result (i.e. a version of Snell’s Law
telling us that the angular momentum is preserved along outgoing rays gen-
erated by the incident ray) that would already tell us that u is microlocally
in Hs along (FpO,α)o.

Proof of Corollary 11.18. — The key is to identify a weighted edge
space that u lies in. The assumption that u ∈ Hs−1

b,D̃,loc(I × X) and Pu ∈
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Hs
b,D̃′,loc(M) implies by Theorem 12.3

(11.17) u ∈ Hs−1
b,D̃,loc(M),

i.e. u is in such a space for all times and not just restricted to the interval
I. One then shows that

u ∈ Hs−1,−(f+1)/2
e,loc (M)

to be able to apply the previous corollaries to prove a low edge regularity
propagation result along the outgoing p-ray, followed by an interpolation
argument. The details are almost identical as in the proof of [8, Theo-
rem 12.1], [9, Corollary 8.3], and [6, Corollary 10.1.20]. �

The next several sections will be devoted to establishing a duality result
of the previous theorem. The first step will be to establish a vital energy
estimate, which we do in the next section.

12. Energy Estimates

In this section, we state the crucial energy estimates that are at the heart
of dualizing the propagation of coisotropic regularity argument. The proofs
here are standard arguments for obtaining energy estimates for hyperbolic
equations, so we do not go into the proofs here as not much novelty would
be offered. We simply refer the interested reader to [6, Chapter 11] for full,
comprehensive proofs.

First, we need a notion of a distance function for a metric g in (1.1) that
is degenerate at the boundary. Following [11, Chapter 1], let us define

d(x, y) = infγ l(γ),

where l(γ) is the length of a curve γ : [0, 1] → X under the metric g and
the infimum is taken over continuous piecewise C1 curves γ joining x and
y. The distance function may actually be degenerate for two points in ∂X.

Theorem 12.1 (Finite Speed of Propagation; taken from [6, Corol-
lary 11.4.2]). — Let w0 ∈ ∂X and K := B̄r(w0) a closed geodesic ball
of radius r > 0 around w0 using the metric. Denote κ := [supK(λ+ 2µ)]−1

and fix any sufficiently small δ, ε0 > 0 and times T−0 < T0 < T1 − ε0 < T1
such that 0 < κ−1((T1−T−0 )− ε20) < r and 0 < κ−1((T1−T−0 )− ε20− δ). If

u ∈ H−ND̃,b , Pu ∈ H
m+1
D̃′,b on the set

{(t, p) : d2(p, w0) 6 κ−1(T1 − t)2, T−0 6 t 6 T1 − ε0}
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and

u ∈ Hm
D̃,b on {(t, p) : d2(p, w0) 6 κ−1(T1 − t)2, T−0 6 t 6 T0},

then for any compact interval I ⊂ (T−0 , T1 − ε0),

u ∈ Hm
D̃,b on {(t, p) : d2(p, w0) 6 κ−1((T1 − t)2 − δ), t ∈ I}

Moreover, the following estimate holds

‖u‖2Hm
D̃,b

({(t,p)∈I×X: d2(p,w0)6κ−1((T1−t)2−δ)})

6 C
(
‖Pu‖2

Hm+1
D̃′,b

({(t,p)∈[T−0 ,T1]×X: d2(p,w0)6κ−1(T1−t)2})

+ ‖u‖2
Hm
D̃,b

({(t,p)∈[T−0 ,T0]×X: d2(p,w0)6κ−1(T1−t)2})

+ ‖u‖2
H−N
D̃,b

({(t,p)∈[T−0 ,T1]×X: d2(p,w0)6κ−1(T1−t)2})

)
Remark 12.2. — The theorem is proven for f = dim(Z) > 1, but would

hold for the f = 1 case using the argument in [8, Section 10]. Since the proof
is long, tedious, and beyond the scope of this work, we merely assume that
finite speed of propagation holds for this case as well in the above theorem.

We also have a useful estimate giving us a semi-global propagation of b
regularity.

Theorem 12.3 ([6, Corollary 11.4.3]). — Fix times T−0 < T0 < T1.
Suppose that

(1) u ∈ H−ND̃,b ((T−0 , T1)×X)
(2) Pu ∈ Hm+1

D̃′,b ((T−0 , T1)×X)
(3) u ∈ Hm

D̃,b((T
−
0 , T0)×X) when restricted to T−0 6 t 6 T0.

Then for any time interval I ⊂ (T−0 , T1) we in fact have u ∈ Hm
D̃,b(I ×X),

and moreover, the following estimate holds

‖u‖2
Hm
D̃,b

((T−0 +δ,T1−ε)×X)

6 C
(
‖u‖2

H−N
D̃,b

((T−0 ,T1)×X) + ‖Pu‖2
Hm+1
D̃′,b

((T−0 ,T1)×X)

+ ‖u‖2
Hm
D̃,b

((T−0 ,T0)×X)

)
with a constant C that depends on ε, δ.

Next, using Theorem 12.3 to propagation b-regularity in time, one may
deduce the following theorem exactly as done in [17, Theorem 8.12] and
in [5, Volume 3]:
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Theorem 12.4 ([6, Theorem 11.2.9]). — Suppose t0 < t′1 < t1. Let
m′ ∈ R and

f ∈ Hm+1
b,D̃′ (M ;TX)•(t0,∞)

for some m > m′. Then there exists a unique u ∈ Hm′

b,D̃(M ;TX)•[t0,∞)
solving Pu = f . Moreover, one in fact has u ∈ Hm

b,D̃(M ;TX), and the
estimate

(12.1) ‖u‖Hm
b,D̃

(M)|[t0,t′1]
. ‖Pu‖Hm+1

b,D̃′
(M)|(t0,t1]

.

Finally, we may prove the global result:

Theorem 12.5 ([6, Theorem 11.4.4]). — Let m ∈ R and suppose κ =
supX(λ + 2µ) < ∞. Given f ∈ Hm+1

b,D̃′,loc(M)•(t0,∞), there exists a unique
forward solution u ∈ Hm

b,D̃,loc(M)•[t0,∞) such that Pu = f .

Proof. — The proof is as done in [5, Volume 3] with full details in our
setting in [6, Theorem 11.4.4]. �

By use of these energy estimates, we will prove propagation of coinvolu-
tive regularity and our main result on diffraction in the next section.

13. Dualization and Diffraction of Elastic Waves

In this section, we dualize the results in Section 11 to obtain the propa-
gation of coinvolutive regularity through the edge. Throughout this section,
we assume that all operators constructed here are scalar unless mentioned
otherwise.

Next, it will be convenient to pick out certain subsets of Ḟ that restrict
the flow of bicharacteristics to certain time intervals, so we introduce the
following definition.

Definition 13.1. — Let α ∈ Ḣp/s and I a compact time interval either
contained in (t(α),∞) or (−∞, t(α)). Denote by

Ḟp/s•,α (I) = (Ḟp/s•,α )o ∩ t−1(I) ⊂ (Ḟp/s•,α )o, with • = I or O

which is the set of all points in Ḟp/s•,α whose t coordinate is an element of I.
We always assume that I is picked close enough to t(α) so that Fp/s exist
as smooth coisotropic manifolds over I.
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Theorem 13.2. — Let u ∈ H−∞
b,D̃,loc(M) be a solution to the elastic

equation. Take α ∈ Ḣp. Assume there is a time interval I ⊂ (−∞, t(α)),
k ∈ N, and B0 ∈ Ψ0

c(Mo) elliptic on ḞpI,α(I) such that

(13.1) u ∈ Hs+1
b,D̃′,loc(I×X) +B0v where B0v ∈ Akp(Hs+1

b,D̃′(I×X))

when u is restricted to I×X (as a distribution). Then there exists a k′ ∈ N
such that u is coinvolutive on (ḞpO,α′)o with respect to Hr for any r < s.

Remark 13.3. — The assumption on u just means that during some time
interval before the p-bicharacteristics in ḞpI,α reach α, u is globally nice,
i.e. Hs everywhere, except that it is slightly worse on a subset of (ḞpI,α)o
by being coinvolutive there.

Remark 13.4. — The essential idea of the proof is as in [9, Remark 9.3],
which we will adapt to our setting. Our previous results show that under
certain assumptions, coisotropic regularity entering the edge along ḞpI,α
imply coisotropic regularity along ḞpO,α. In other words, regularity under
the application of Aγ along (ḞpI,α)o with respect to H−s combined with
assumed semi-global regularity by being in H−s−1

b,D̃ (I×X), yields regularity
under Aγ′ along (ḞpO,α)o w.r.t. H−s−ε. The dual condition to this is lying
in the range of the operators Aγ in the relevant regions. Thus, using time
reversal and duality, the condition of coinvolutive regularity along ḞpI,α
w.r.t. Hs, i.e. lying in the range of Aγ microlocalized there, combined
with being in Hs+1

b,D̃′ elsewhere for some short time interval projected from
(ḞpI,α)o, leads to coinvolutive regularity along (ḞpO,α) w.r.t. Hs−ε, i.e. lying
in the range of Aγ′ microlocalized there.

Proof. — We follow closely the proof of [9, Theorem 9.2]. We first assume
s 6 0 to simplify notation; we will return to the general case at the end of
the argument. Fix an ε > 0. Let T = t(α), and choose T0 < T < T1 so that
I ⊂ (T0, T ) and T1 is close to T as will be specified later. Let χ be smooth
step function such that χ ≡ 0 on a neighborhood of (−∞, T0] and χ ≡ 1
on a neighborhood of (T,∞), so that one also has supp(dχ) ⊂ I. We find
that

v ≡ χu

satisfies

Pv = f with f = [P, χ]u.
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Since dχ is supported in I, our initial hypothesis implies that

f = [P, χ]u0 + [P, χ]u1 := f0 + f1, for some u0 ∈ Hs+1
b,D̃′(I×X),

and u1 is coinvolutive of order k w.r.t. Hs+1
b,D̃′ on Ḟ

p
I,α(I).

Also, notice that v vanishes on a neighborhood of (−∞, T0] ×X. We will
then write

v = P−1
+ f

as the unique forward solution to the equation Pφ = f . Observe that since
∂t is a b-differential operator, then [P, χ] ∈ Diff1

b(M ;TX)

⇒ f0 = [P, χ]u0 ∈ Hs
b,D′(M)

since the support condition on dχ allows us to extend f0 to all of M . Then
by Theorem 12.5, there exists a unique forward solution

P−1
+ f0 ∈ Hs−1

b,D (M ;TX), satisfying P (P−1
+ f0) = f0.

In particular, P−1
+ f0 ∈ Hs microlocally at w since w is away from ∂M .

By definition, this is certainly a stronger condition than P−1
+ f0 being coin-

volutive relative toHs−ε at w; hence we conclude that P−1
+ f0 is coinvolutive

of order k′ for some k′ to be determined relative to Hs−ε at w. Since v ≡ u
for t > T , all we need to show is that the unique forward solution, denoted
P−1

+ f1, of Pv1 = f1 is coinvolutive of order k′ relative to Hs−ε at w. The
proof of this proceeds identically to the proof of [9, Theorem 9.2]. All that
is necessary is propagation of coisotropic regularity and an energy estimate,
both of which have been proven, followed by a duality argument using the
Hahn–Banach theorem. �

We may now combine the result on propagation of coisotropic regularity
with the coinvolutive propagation to show that regularity of the solution
to the elastic equation propagates precisely along the geometric rays. Our
main theorem is then

Theorem 13.5. — Let u ∈ HS−1
b,D̃ (M ;TX), q ∈ Ḣp, and α ∈ Hp pro-

jecting to q. Suppose there is a compact time interval I ⊂ (−∞, t(α)) and
B0 ∈ Ψ0

c(Mo) that is elliptic on ḞpI,q(I), for which u ∈ Hs+1
b,D̃′(I×X) +B0v

for a distribution v such that B0v ∈ Akp(Hs+1
b,D̃′(I×X)) when u is restricted

to I ×X. Then,

(FpI,α′)
o ∩WFs(u) = ∅ ∀ α′ geometrically related to α

⇒ (FpO,α)o ∩WFr(u) = ∅ ∀ r < s.
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(Again we always assume I is close enough to t(α) so that FpI is a smooth
manifold over I.)

Proof. — With the hypothesis of the theorem, pick any w ∈ (FpO,α)o.
Here, we follow the proof of Theorem 13.2 to separate u into microlocalized
pieces. Thus, let χ, T0 < T := t(α) < T1, and v = χu as in that proof.
Also, one has

Pv = f0 + f1

with f0 ∈ Hs
b,D̃′(I × X) and f1 coinvolutive of order k on ḞpI,α(I) w.r.t.

Hs
b,D̃′(I ×X). By Theorem 12.5, P−1

+ f0 ∈ Hs−1
b,D̃ (M ;TX) which in partic-

ular, since w is away from ∂M , implies

w /∈WFs(P−1
+ f0).

Thus, all we need to show is that w /∈WFr(P−1
+ f1) ∀ r < s since u agrees

with v for t > T . It will be convenient to denote I ′ := supp(dχ) ⊂ I,
where by construction I ′± δ ⊂ I for some δ > 0. Now, the assumption that
WFs(u) ∩

⋃
{α′:α′∼Gα}(F

p
I,α′)o = ∅ implies that

(13.2) WFs−1(f1) ∩
⋃

{α′∈Hp
I
:α′∼Gα}

(FpI,α′)
o = ∅

when we write f1 = [P, χ]u − f0 since f0 satisfies this condition, [P, χ] is
a first order differential operator, and the microlocality of [P, χ]. Thus, let
B̃ ∈ Ψ0

b(M) scalar, with Schwartz kernel supported in (I × Xo)2, elliptic
on FpI,α′(I ′) for each α′ geometrically related to α such that

(13.3) WF′(Id−B̃) ∩ FpI,α′(I
′) = ∅ for α′ ∼G α

(this is possible exactly because I ′±δ ⊂ I). We also make B̃ microsupported
in a small enough neighborhood of ḞpI,α so that

B̃f1 ∈ Hs−1

using (13.2). So again using Theorem 12.5 shows P−1
+ B̃f1 is microlocally

in Hs at w. Hence, we are left with understanding P−1
+ (Id−B̃)f1.

Let α′ be such that π0(α′) = q and is geometrically related to α. Since, f1
is supported in I ′×X, it vanishes on (I\I ′)×X. Also (Id−B̃)f1 = f1−B̃f1
is supported in I×X, so by microlocality and (13.3), one has

WF∞((Id−B̃)f1) ∩ (FpI,α′)
o = ∅.

Thus, if we set
u1 = P−1

+ (Id−B̃)f1,
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then using propagation of coisotropic regularity over Mo Corollary 6.9
(with k =∞ and s = S in the statement of the corollary) shows that

WFS(Ak̃u1) ∩ (FpI,α′)
o = ∅ ∀ k̃ ∈ N, α′ ∼G α.

Next, (Id−B̃)f1 vanishes for t > T− for some T− < T implies that
WF∞(f1) is disjoint from (ḞpO,α)o, and f1 ∈ H∞b,D′ microlocally in a neigh-
borhood of ∂ḞpO,α. Thus, Corollary 11.18 applies to show that microlocally
at w one has

(13.4) Aγu1 ∈ HS−0 ∀ γ multiindex.

Analogously, we may use Corollary 6.9 (with s and k in the notation of that
corollary being the same s and k here) over Mo to conclude that u1 has
coinvolutive regularity of order k on (ḞpI,q)o w.r.t. Hs. Then the regularity
properties just described for f1 near ḞpO,α allow us to apply Theorem 13.2
to conclude that microlocally near w

(13.5) u1 ∈
∑
|γ|6k′

Aγ(Hr).

The rest of the proof is an interpolation argument, using an FIO to turn
elements of A into a model form and then interpolating between infinite
coisotropic regularity and low Sobolev regularity. The exact argument may
be found in the proof of [9, Theorem 9.6] to show u1 ∈ Hr−ε microlocally
at w. Since r < s and ε > 0 was arbitrary, this gives the desired result. �

14. Application to the fundamental solution

Now consider the fundamental solution

u = P−1
+ δ = P−1

+ (δ(t0,o) ⊗ Id) for (t0, o) ∈Mo.

Corollary 14.1. — For all (t0, o) ∈ Mo let Lpt0,o (resp. Lst0,o) de-
note the flowout of the set SN∗({o}) along p-bicharacteristics, resp. s-
bicharacteristics, lying over Mo, which lie over o and t = t0. If o is suf-
ficiently close to ∂X, then for some short time beyond when the first p-
bicharacteristic FpI,α, α ∈ Hp lying over (t0, o) reaches the boundary, the
forward fundamental solution u = ut0,o is a Lagrangian distribution along
Lt0,o := Lpt0,o∪L

s
t0,o lying inH

s for all s < −n/2+1 together with diffracted
waves that lie in Hr along rays in (Ḟp/sO,β)o, β ∈ Ḣp, α projects to β, that
are not geometrically related to α for all r < −n/2 + 1 + f/2, away from
their intersection with Lt0,o. More precisely, if we consider the first incom-
ing p-wave transverse to the boundary, i.e. u ∈ H−n/2+1−0 along FpI,α but
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WF∞(u)∩ (FpI,α)o 6= ∅; then each of the outgoing diffracted p and s waves
are weaker in the sense that u ∈ Hr along the outgoing p and s bichar-
acteristics not geometrically related to FpI,α for all r < −n/2 + 1 + f/2.
Similarly, if we consider the first incoming s-wave transverse to the bound-
ary, i.e. u ∈ H−n/2+1−0 along FsI,α, then each of the outgoing diffracted p
and s waves are weaker in the sense that u ∈ Hr along the outgoing p and s
bicharacteristics not geometrically relate to FsI,α for all r < −n/2+1+f/2.

Remark 14.2. — As described in the introduction, our theorems only de-
scribe the diffraction effects of a singularity interacting with the boundary,
but does not prove the location of singularities (with the same Sobolev
strength) generated by the interaction (this would be given as a b-propa-
gation theorem as in [8, Theorem 1.2]), which would expectably be governed
by Snell’s law (i.e. that the tangential momentum variables τ, η get pre-
served at the boundary for outgoing rays). In fact, one may a priori have
a jump in the base variables for the singularities produced, in that a sin-
gularity interacting at the boundary produces a singularity at some other
location of the boundary (concretely, y, t may have a jump). However, our
results on finite speed of propagation exactly preclude a singularity jump-
ing to a new location in Y instantaneously, but does not preclude a jump
in time or momentum variables. If we denote α ∈ HpI as our incoming sin
gularity at the boundary, then without a b-propagation result, singularities
may theoretically be produced at any points β ∈ Hp/sO not violating finite
speed of propagation; in particular, we would only know that t(β) > t(α)
and y(β) is close enough to y(α) determined by t(β)−t(α) and the propaga-
tion speed. Paradoxically, we cannot even rule out having the edge produce
more singularities at later times past when the initial singularity hits the
edge; a b-propagation theorem certainly would exclude this.
Nevertheless, Theorem 11.15 and its corollary do show that one gets

propagation of coisotropic regularity along outgoing rays given by Snell’s
law even though the underlying Sobolev order might get severely lowered.
In fact, coisotropic regularity propagates along geometrically related rays
in that suppose one has a bicharacteristic that hits the edge backwards
at some α ∈ Hp/sO . If the wave solution u has coisotropic regularity of a
certain order k on just the geometrically related incident rays, then it will
have coisotropic regularity of order k along this outgoing ray with respect
to a lower order Sobolev space. A b-propagation theorem would essentially
recover this potentially big Sobolev order loss.
Hence, once a b-propagation theorem is proven showing Snell’s law of a

singularity interacting with the boundary, it will be neither an improvement
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nor a replacement for our results. Rather, it will be a beautiful complement
to our theorems in that a singularity interacting with the boundary may
only produce outgoing singularities according to Snell’s law, and our the-
orems show that the non-geometric (diffractive) singularities from this set
must be weaker in Sobolev order by an amount depending on the dimension
of the edge.

Proof. — Let w ∈ (Ḟp/sO,β)o not geometrically related to any point in FpI,α
(by definition, no point in ḞsO,β is geometrically related to FpI,α, so we
get the diffractive improvement on all such points). In order to consider
p-waves and s-waves separately, using that Σp ∩Σs = ∅, pick Q ∈ Ψ0

c(Mo)
whose wavefront set is disjoint from Σs and is elliptic on S∗(t0,o)M ∩ Σp.
Then write

δ = Qδ + (I −Q)δ = δp + δs

and denote
up = P−1

+ δp, us = P−1
+ δs.

We will show up and us each belong to H−n/2+1+f/2−0 microlocally at w.

Step 1: Obtaining regularity for up. — By construction of up, using also
that it is a forward solution, we obtain by propagation of singularities in
the form of Corollary 6.9 that

(14.1) WF(up) ∩ Ls = ∅ ⇒ WF(up) ∩ (FsI )o = ∅.

Denote t̄ = t(α). We are assuming that this is the first time a p-bichara-
cteristic strikes the boundary. We will show the diffractive improvement for
up first, as us involves a separate argument.

We want to further break up ũp into a piece microsupported along the
incoming bicharacteristic segment FpI,α and a piece microsupported away
from this ray. To this end, let Q0 ∈ Ψ0

c(M) have microsupport in a small
neighborhood (to be determined later) of (FpI,α)o which is elliptic on a
smaller neighborhood of (FpI,α)o. Consider the decomposition

δp = Q0δp + (I −Q0)δp ≡ δp,0 + δp,1,

and
up = P−1

+ (δp,0) + P−1
+ (δp,1) ≡ u0 + u1.

Step 1.1: Getting regularity of u0 piece, where up = u0 + u1. — By the
microlocality property of PsiDO’s, one has

(14.2) WF(δp,0) ⊂ S∗(t0,o)M ∩WF′(Q) ∩WF′(Q0).
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Notice that if w ∈ FsO,β for some β ∈ HsO, then (14.1) already implies that

WF(u0) ∩ (FsI,β′)o = ∅ for β′ ∼G β.

On the other hand suppose w ∈ FpO,β for some β ∈ HpO that lies in the
same fiber as α. Notice that if β′ ∈ HpI is geometrically related to β so that
FpI,β′ are points geometrically related to w, then FpI,β′ does not lie over
(t̄, o) by the assumption that w is not geometrically related to any point in
FpI,α. Thus,

WF(δp,0) ∩ FpI,β′ = ∅ for β′ ∼G β.

As before, this implies using Corollary 6.9 and since u0 is smooth for t <
t0 − δ that

(14.3) WF(u0) ∩ (FpI,β′)
o for β′ ∼G β.

Hence, taking any q ∈ Ḣp such that β lies in the same equivalence class
as q, we need to show that u0 satisfies the coinvolutive hypothesis of The-
orem 13.5 on ḞpI,q in order to apply that theorem to u0 to get improved
regularity at w.
To proceed, it is well known that inside (∞, t̄)×Mo (i.e., before the first

p-bicharacteristic hits ∂M) u0 is a Lagrangian distribution associated to
the Lagrangian

(14.4) Lp0 := L(WF(δp,0) ∩ Σ) = Lp(WF(δp,0) ∩ Σp)
⊂ Lp(S∗(t0,o)M

o ∩WF′(Q0) ∩ Σp)

where L(K) refers to the flowout fromK ⊂ S∗Mo of both p and s bicharac-
teristics.(7) The equality above follows from (14.2) and since WF′(Q)∩Σs =
∅. Notice, Lp0 may be visualized as a conic spray of p-bicharacteristics that
are close to FpI,α. In fact, up is a Lagrangian distribution associated to
Lp0 of order s′ = n/4 − 5/4 (this is just determined by the Sobolev space
δp,o lies in, and its relation to the order of a Lagrangian distribution). By
picking o close enough to ∂M , the intersection of Lp0 and FpI is transverse
at ḞpI,q as shown in [9, Section 9].(8) Hence, by the analogous proof of [9,
Corollary 9.7], which first brings Lp0 and (FpI )o to respective normal forms,
there is a compact interval I ⊂ (t0, t̄) (i.e. before the first p-bicharacteristic
hits the boundary, and such that FpI is still well-defined on this interval)

(7)This can be proven by the argument we used to prove coisotropic regularity in Sec-
tion 11 by reducing P to a standard wave equation, and then invoking a well-known wave
equation result, which states that the forward fundamental solution is a Lagrangian dis-
tribution associated to the flowout of the Hamilton vector field.
(8)These are facts from symplectic geometry, unrelated to any particulars of the elastic
equation.
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such that u0 is coinvolutive of some large order N > 0 on a neighborhood
of ḞpI,q(I) with respect to H−n/2+1+f/2−0. Thus, there is a neighborhood
U0 of ḞpI,q(I) such that

(14.5) B0u0 ∈ ANp (H−n/2+1+f/2−0) if B0 ∈ Ψ0
c(Mo), WF′(B0) ⊂ U0.

By a standard microlocal partition of unity, when restricted to
I × Xo, u0 is the sum of a distribution in H∞b,D′ and a distribution in
ANp (H−n/2+1+f/2−0), the former coming from the part of u0 microsup-
ported away from Lp0.
Hence, together with (14.3), u0 satisfies the hypothesis of Theorem 13.5,

and we may conclude from that theorem that u0 lies in H−n/2+1+f/2−0

microlocally at w.
We may now turn to the piece u1 = P−1

+ (δp,1).
Step 1.2: Getting regularity of u1 piece. — By construction of u1 and

propagation of singularities, we conclude (by an analogous argument as
done for u0) that u1 is microsupported away from a neighborhood Vα
of F̄pI,α for t < t̄. Thus, letting T0 < t̄, since t̄ is the first time a p-
bicharacteristic hits the boundary, then u1(T0) is smooth in a neighbor-
hood of ∂X. Let Bε1(ρX(α)) be a neighborhood contained in ρX(F̄pI,α).
Then assuming o is close enough to ∂X that no p-geodesics intersect each
other up until time t̄, then the microsupport property of u1 implies u1 is
smooth on Bε1(ρX(α)) for t 6 T0. Hence, by finite propagation speed via
Theorem 12.1, u1 is smooth on some interval of time past t̄, but in a smaller
ball. In particular, it is microlocally smooth on some point of FpO,β and h
ence at w by propagation of singularities.

Step 2: Getting regularity of the us piece. — This piece is even easier.
By the same argument used to obtain (14.4), if we let t̄s denote the first
time an s-bicharacteristic lying over S∗(t0,o)M

o hits the boundary, then for
times t < t̄s, us is a Lagrangian distribution associated to the Lagrangian

(14.6) Ls = L(WF′(δs) ∩ Σ) = Ls(S∗(t0,o)M
o ∩ Σs).

Since cs < cp, then t̄s < t̄ and so us is smooth for times inside (t̄s, t̄). Thus,
we may find a geodesic ball B centered at ρ(α), in which us is in H∞b,D̃. So
by the same argument used for up,1 invoking Theorem 12.1, we conclude
that us lies in H−n/2+1+f/2−0 microlocally at w as well (notice that here,
it is irrelevant whether w ∈ Fp or w ∈ Fs, which only mattered when
we spoke about u0, since the finite propagation speed corollary makes no
reference to p or s bicharacteristics).
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The analogous argument then works when analyzing the first s-bichara-
cteristic lying over S∗(t0,o)M

o to hit the boundary. �
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