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GENERIC FREE RESOLUTIONS AND ROOT SYSTEMS

by Jerzy WEYMAN (*)

Abstract. — In this paper I give an explicit construction of the generic rings
R̂gen for free resolutions of length 3 over Noetherian commutative C-algebras. The
key role is played by the defect Lie algebra introduced in [18]. The defect algebra
turns out to be a parabolic subalgebra in a Kac–Moody Lie algebra associated
to the graph Tp,q,r corresponding to the format of the resolution. The ring R̂gen

is Noetherian if and only if the graph Tp,q,r corresponding to a given format is
a Dynkin diagram. In such case R̂gen has rational singularities so it is Cohen–
Macaulay. The ring R̂gen is a deformation of a commutative ring R̂spec which has
a structure of a multiplicity free module over a product of Kac–Moody Lie algebras
corresponding to the graph Tp,q,r and a product of two general linear Lie algebras.
Résumé. — Dans ce papier je présente une construction explicite des anneaux

génériques R̂gen pour les résolutions libres de longueur 3 sur des C-algèbres noe-
thériennes commutatives. L’élément clé est l’algèbre de Lie de défaut introduite
dans [18]. Il s’avère que l’algèbre de défaut est une sous-algèbre parabolique d’une
algèbre de Kac–Moody associée au graphe Tp,q,r correspondant au format de la
résolution. L’anneau R̂gen est noethérien si et seulement si le graphe Tp,q,r cor-
respondant à un format donné est un diagramme de Dynkin. Dans ce cas R̂gen a
des singularitées rationnelles donc il est de Cohen–Macaulay. L’anneau R̂gen est
une déformation d’un anneau commutatif R̂spec qui possède une structure de mo-
dule sans multiplicité sur un produit d’algèbres de Kac–Moody correspondant au
graphe Tp,q,r et un produit de deux algèbres de Lie linéaires générales.

1. Introduction

In this paper I consider a problem of existence of generic free resolutions
of length three.

Keywords: Finite free resolutions, structure theorems, Kac–Moody Lie algebras.
2010 Mathematics Subject Classification: 13D02, 13D25, 17B67, 14M05, 14M07, 14M17,
14M27.
(*) The author was partially supported by NSF grants DMS-0901185 and DMS 1400740.
He also acknowledges the support of Alexander von Humboldt Foundation.



1242 Jerzy WEYMAN

Let us look at free acyclic complexes F• (i.e. complexes whose only
nonzero homology group is H0(F•)) of the form

F• : 0 // F3
d3 // F2

d2 // F1
d1 // F0

over commutative Noetherian rings R, with rankFi = fi (0 6 i 6 3),
rank(di) = ri (1 6 i 6 3). The quadruple (f0, f1, f2, f3) is the format of
the complex F•. We always have fi = ri + ri+1 (0 6 i 6 3), with the
convention that r4 = 0.
For the resolutions of such format (f0, f1, f2, f3) we say that a pair

(Rgen,Fgen• ) where Rgen is a commutative ring and Fgen• is an acyclic free
complex of format (f0, f1, f2, f3) over Rgen is a generic resolution of this
format if two conditions are satisfied:

(1) The complex Fgen• is acyclic over Rgen,
(2) For every acyclic free complex G• over a Noetherian ring S there

exists a ring homomorphism ϕ : Rgen −→ S such that

G• = Fgen• ⊗Rgen S.

Of particular interest is whether the ring Rgen is Noetherian, because it
can be shown quite easily that a non-Noetherian (non-unique) generic pair
always exists ([1]).
For complexes of length 2 the existence of the pairs (Rgen,Fgen• ) was

established by Hochster ([9]). He also proved that this generic ring is Noe-
therian. Later the generic rings for resolutions of length two were described
very explicitly (see [16] and references therein). This case is, however spe-
cial, as only for the case of the resolution of length two the ring Rgen is
unique.
For free resolutions of length three the situation is much more difficult.

We limit ourselves to considering the case of characteristic zero. Thus all
commutative rings considered in this paper are C-algebras, i.e. we work
over an algebraically closed field of characteristic zero. The results are true
also for Q-algebras as the representations of the group GLn are defined
over Q.
In [18] I constructed for each format of length three a pair (R̂gen, F̂gen• )

obtained by a specific process of killing cycles in a generic complex. I con-
jectured that the pair (R̂gen, F̂gen• ) is generic for each format of length
three.

ANNALES DE L’INSTITUT FOURIER



GENERIC FREE RESOLUTIONS AND ROOT SYSTEMS 1243

The key point in the construction was defining a family of certain graded
Lie algebras L(r, E, F ) (defect Lie algebras) depending on a natural number
r and two vector spaces E,F over C. The defect Lie algebra related to the
resolution F• is the Lie algebra L(r1 + 1, F3, F1).

In [18] I proved that the assertion that the pair (R̂gen, F̂gen• ) gives a
generic pair is true provided a certain family of three term complexes over
the enveloping algebra of the corresponding defect Lie algebra L(r, E, F )
is exact at a middle term.
In the present paper this program is completed.
I associate to the format (f0, f1, f2, f3) the graph Tp,q,r with p, q, r given

by the rule r3 = r − 1, r2 = q + 1, r1 = p− 1.
The key new observation is that the defect Lie algebra L(p,E, F ) core-

sponding to our format is the parabolic subalgebra associated to certain
grading of the Kac–Moody Lie algebra g(Tp,q,r). This grading is deter-
mined by choosing a particular simple root of g(Tp,q,r). The complexes
constructed in [18] turn out to be parts of the parabolic Bernstein–Gelfand–
Gelfand complexes (BGG complexes for short) associated to this grading
on g(Tp,q,r). This shows immediately that these complexes are exact at
prescribed places and thus it proves that the pair (R̂gen, F̂gen• ) indeed is a
generic pair for every format of length three.
Moreover, the link with Kac–Moody Lie algebra allows to prove much

more precise results. It turns out that the generic ring R̂gen has a deforma-
tion to a commutative ring R̂spec which has a structure of a module over
a bigger Kac–Moody Lie algebra g(Tp,q,r)× gl(F2)× gl(F0). This allows to
prove several properties of R̂gen.
We show that the ring R̂gen is Noetherian whenever the Lie algebra L is

finite dimensional. Thus the generic ring R̂gen is Noetherian if and only if
the diagram Tp,q,r is a Dynkin diagram. Moreover, in Noetherian cases the
ring R̂gen has rational singularities and so it is Cohen–Macaulay.
The paper is organized as follows.
In Section 2 we recall the basic notions on free resolutions and on the

grade of ideals in the non-Noetherian rings (true grade in the sense of
Northcott) we will use throughout.

Section 3 recalls the basic results on Kac–Moody Lie algebras. In Sec-
tion 4 more precise formulas for the Kac–Moody Lie algebras associated to
the graphs Tp,q,r are worked out. The reader is advised to skip these two
sections in the first reading.

TOME 68 (2018), FASCICULE 3



1244 Jerzy WEYMAN

Section 5 describes the geometric approach using higher derived image
functors to proving acyclicity of complexes.

In Section 6 we discuss the structure of the rings Ra generated by the
entries of maps in a generic complex and the Buchsbaum–Eisenbud mul-
tipliers. These rings are the starting point of our construction. We make
explicit the representation structure of the rings Ra and of the homology
of the generic complex Fa• over Ra.

In Section 7 we define the higher structure maps pi. These are the cycles
we kill to get the generic ring R̂gen. We also show the connection of these
maps with the defect Lie algebra.
Section 8 summarizes the approach from [18]. We recall there that gener-

icity of R̂gen would follow from exactness of some three term complexes.
In Section 9 the main results are proved. The identification of the defect

algebra with the parabolic algebra in the Kac–Moody Lie algebra g(Tp,q,r)
is carried out. The three terms complexes become parts of parabolic BGG
resolutions of g(Tp,q,r) so they are exact in needed places.

In Section 10 we analyze the representation structure, generators and
relations of the rings R̂gen, and discuss its deformation to R̂spec. We also
prove that in cases these rings are Noetherian they have rational singular-
ities.
In Section 11 we give precise descriptions of the pairs (R̂gen, F̂gen• ) in the

simplest cases. It means we give a “naive” description of the generators as
entries in the matrices of some cycles whose existence one could deduce
just from the universality property of R̂gen.
Section 12 contains some applications, including questions and conjec-

tures about possible variations of the present approach. We are interested
in particular in extending our results to perfect resolutions. The triality for
the graphs Tp,q,r suggests a possible connection with linkage theory.

Acknowledgments
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who provided many insights. I also had helpful discussions with Luchezar
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HwanLee, MatthewMiller, Piotr Pragacz, AlexTchernev and OanaVeliche.
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2. Background on finite free resolutions

Throughout the paper we work with complexes

F• : 0 // Fn
dn // Fn−1 // . . . // Fi

di // Fi−1 // . . . // F1
d1 // F0

of the free modules over a commutative Noetherian ring R. The map di can
be thought of (after choosing bases in modules Fi) as a matrix with entries
in R. We define the rank ri of di as the size of the biggest non-vanishing
minor of that matrix. It is routine to check that this notion does not depend
on the choice of bases in our free modules. The ideal of ri× ri minors of di
is denoted I(di).
We assume that di : Fi −→ Fi−1 has rank ri, and that

fi := rankFi = ri + ri+1

with the convention rn+1 = 0, r0 > 0. We fix the numbers fi, ri. We will
say that a complex with these ranks has a format (f0, . . . , fn). We assume
throughout that the format is valid, i.e. the numbers ri satisfying the above
conditions exist.
All of this is motivated by the Buchsbaum–Eisenbud exactness criterion.

Theorem 2.1 ([2]). — The complex F• over a Noetherian ring R is
acyclic if and only if

(1) ri + ri+1 = rankFi for all i = 1, . . . , n,
(2) depthR(I(di) > i for i = 1, . . . , n.

A finite free resolution over R is a free acyclic complex F•.
Buchsbaum and Eisenbud proved a fundamental structure theorem (the

First Structure Theorem from [3]).

Theorem 2.2. — Let F• be a finite free resolution over a Noetherian
ring R. Then there exist unique maps ai : R −→

∧ri Fi such that
(1) an =

∧rn dn,
(2) We have factorizations

∧ri Fi =
∧ri+1 F ∗i

∧ri di
//

a∗i+1 &&

∧ri Fi−1.

R

ai

;;

The coordinates of maps ai are the Plücker coordinates of the images of
maps di. In this formulation we identify the complementary exterior powers∧ri Fi and ∧ri+1 F ∗i so the diagram above is

∏
i SL(Fi) equivariant. One

TOME 68 (2018), FASCICULE 3



1246 Jerzy WEYMAN

can easily write down more precise
∏
iGL(Fi) equivariant version, and we

do it in Section 6. We refer to the maps ai as to Buchsbaum–Eisenbud
multipliers.
Later Bruns generalized this result to prove the existence of the maps ai

for all free complexes F• for which the rank condition ri + ri+1 = rank(Fi)
for i = 1, . . . , n is satisfied, and such that depth I(d1) > 1, depth I(di) > 2
for all i > 2.
Let us fix a format (f0, . . . , fn). We consider the pairs (S,G) where S

is a Noetherian ring and G is a free resolution of format (f0, . . . , fn) over
S. We say that a pair (Rgen,Fgen• ) is a generic free resolution of format
(f0, . . . , fn) (or that Rgen is a generic ring for this format) if for every
pair (S,G) there exists a (not necessarily unique) homomorphism of rings
ϕ : Rgen −→ S such that G = Fgen• ⊗Rgen S. The main problem considered
in this paper is the existence and structure of generic rings for formats of
length three.
Throughout the paper we will deal with the notion of depth of ideals over

the rings that are not necessarily Noetherian. This is based on the results
of Northcott from his book [14].

He defined the true grade

GradeR(I,M)
= sup
n>0

gradeR[x1,...,xn](I ⊗R R[x1, . . . , xn],M ⊗R R[x1, . . . , xn])

and proved that Theorems 2.1 and 2.2 hold with this definition of the depth
over any ring R. Thus we will use the theory over arbitrary rings and in
case of (possibly) non-Noetherian ring, depth will mean the true grade in
the above sense.

3. Generalities on Kac–Moody Lie algebras

3.1. Kac–Moody Lie algebras

In this section we recall the basic definitions of Kac–Moody Lie algebras.
The main reference is [10].

Let A be a generalized Cartan matrix, i.e. an n× n integer matrix

A = (ai,j)16i,j6n

such that ai,i = 2 for i = 1, . . . , n, ai,j 6 0 for i 6= j and such that ai,j = 0
implies aj,i = 0.

ANNALES DE L’INSTITUT FOURIER
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We will actually assume that A is symmetrizable, i.e. there exist a diag-
onal matrix D with diagonal entries ε1, . . . , εn and a symmetric matrix B
such that

A = DB.

Let l = rank(A). Consider the complex vector space h of dimension 2n−l.
We take Π = {α1, . . . , αn} in h∗ to be the coordinate functions. This is the
basis of simple roots. We take Π∨ = {α∨1 , . . . , α∨n} in h such that

〈α∨i , αj〉 = ai,j .

Thus we can think of α∨i as the i-th column of A. The set Π∨ is a basis of
simple coroots.
The Kac–Moody Lie algebra g(A) is the Lie algebra generated by ele-

ments ei, fi, 1 6 i 6 n, with the following defining relations:

[h, h′] = 0 for h, h′ ∈ h,

[h, ej ] = 〈h, αj〉ej , [h, fj ] = −〈h, αj〉fj ,
[ei, fj ] = δi,jα

∨
i ,

ad(ei)1−ai,j (ej)) = ad(fi)1−ai,j (fj) = 0 for i 6= j.

Let Q = ⊕ni=1Zαi, Q+ = ⊕ni=1Z+αi, and Q− = −Q+. We define a partial
ordering > on h∗ by λ > µ if and only if λ− µ ∈ Q+. The Kac–Moody Lie
algebra g = g(A) has the root space decomposition g = ⊕α∈Qgα, where
gα = {x ∈ g | [h, x] = α(h)x}. An element α ∈ Q is called a root if α 6= 0
and gα 6= 0. The number mult(α) = dim gα is called the multiplicity of the
root α. A root α > 0 (resp. α < 0) is called positive (resp. negative). One
can easily show that every root is either positive or negative. We denote
by ∆,∆+,∆− the sets of roots, positive and negative roots respectively.
For α =

∑n
i=1 kiαi ∈ Q the number ht(α) :=

∑n
i=1 ki is called the

height of α. We define the principal gradation on g = ⊕j∈Zgj by setting
gj = ⊕ht(α)=jgα. Note that g0 = h, g−1 = ⊕Cfj , g1 = ⊕Cei. Let g± =
⊕j>1g±j . Then we have the principal triangular decomposition

g = g+ ⊕ g0 ⊕ g−.

The Weyl group of A is a subgroup of Aut(h∗) generated by the simple
reflections

ri(λ) = λ− 〈λ, α∨i 〉αi
for λ ∈ h∗.
We choose the weight ρ ∈ h∗ by requiring

〈ρ, α∨i 〉 = 1, for i = 1, . . . , n.

TOME 68 (2018), FASCICULE 3



1248 Jerzy WEYMAN

A g-module V is h-diagonalizable if V = ⊕λ∈h∗Vλ where Vλ = {v ∈
V | h · v = λ(h)v ∀ h ∈ h} is the λ weight space. If Vλ 6= 0 then λ is a
weight of V . The number multλ(V ) := dimVλ is called the multiplicity of
λ in V . When all the weight spaces are finite dimensional we define the
character of V to be

chV =
∑
λ∈h∗

(dimVλ)eλ,

where eλ are the basis elements of the group algebra C[h∗] with the binary
operation eλeµ = eλ+µ.

Let P (V ) be the set of weights in V and let D(λ) = {µ ∈ h∗ | µ 6 λ}.
We define the category O as follows: its objects are h-diagonalizable g-
modules with finite dimensional weight spaces such that there exist finitely
many elements µ1, . . . , µs with P (V ) ⊂ ∪si=1D(µi), and the morphisms
are g-module homomorphisms. An h-diagonalizable module V is said to
be integrable if all the ei, fi (i = 1, . . . , n) are locally nilpotent on V . All
the integrable modules in the category O are completely reducible ([10,
Corollary 10.7]).
A g-module V is called a highest weight module with highest weight λ

if there is a nonzero vector v ∈ V such that
(i) g+ · v = 0,
(ii) h · v = λ(h)v for all h ∈ h,
(iii) U(g) · v = V .

The vector v is called a highest weight vector. Let b+ = h+g+ be the Borel
subalgebra of g and Cλ the one dimensional b-module defined by g+ ·1 = 0,
h · 1 = λ(h)1 for h ∈ h. The induced module M(λ) = U(g) ⊗U(b) Cλ is
called the Verma module with highest weight λ. Every highest weight g-
module with highest weight λ is a quotient of M(λ). The Verma module
contains a unique maximal proper submodule J(λ). Hence the quotient
V (λ) := M(λ)/J(λ) is irreducible, and we have a bijection between h∗ and
the set of irreducible modules in the category O given by λ 7→ V (λ).
If λ is dominant integral i.e. λ(α∨i ) ∈ Z+ for all i = 1, . . . , n, then

V (λ) is integrable and we have the Weyl–Kac character formula ([10, The-
orem 10.4])

chV (λ) =
∑
w∈W (−1)l(w)ew(λ+ρ)−ρ∏
α∈∆+

(1− e−α)dim gα
.

Here ρ is given by ρ(α∨i ) = 1 for i = 1, . . . , n. When λ = 0 we obtain the
denominator identity∑

w∈W
(−1)l(w)ew(λ+ρ)−ρ =

∏
α∈∆+

(1− e−α)dim gα

ANNALES DE L’INSTITUT FOURIER



GENERIC FREE RESOLUTIONS AND ROOT SYSTEMS 1249

3.2. Kostant formula

Let us choose a subset S ⊂ Π. This defines the grading on the Kac–
Moody Lie algebra

g(A) =
⊕
m∈Z

g(A)(S)
m .

For m 6= 0 the component g(A)(S)
m is the span of root spaces g(A)α where

α is a root which written in a basis of simple roots has m as a sum of
coefficients of αi with αi /∈ S. Such m is denoted htS(α). For m = 0
g(A)(S)

0 also includes the Cartan subalgebra h. We denote

g(A)(S)
+ =

⊕
m>0

g(A)(S)
m , g(A)(S)

− =
⊕
m<0

g(A)(S)
m ,

so we have
g(A) = g(A)(S)

+ ⊕ g(A)(S)
0 ⊕ g(A)(S)

− .

We also define the subalgebra gS , Weyl groupWS , ∆S , ∆∨S as the objects
defined for the Cartan matrix A′ = (ak,l)k,l∈S . So WS is generated by
reflections rk, k ∈ S.
Define ∆(S)± = ∆± \∆±S and similarly for ∆(S).
We also define the subset

W (S) = {w ∈W | Φw ⊂ ∆+(S)}.

where Φw = {α ∈ ∆+ | w−1(α) < 0}.
Let C be a trivial g-module. The homology modules Hk(g(S)

− ,C) are
obtained from the complex of g(S)

0 -modules

. . . // ∧k(g(S)
− ) dk // ∧k−1(g(S)

− ) // · · · // ∧1(g(S)
− ) d1 // ∧0(g(S)

− ) d0 // C // 0,

where the differential dk :
∧k(g(S)

− ) −→
∧k−1(g(S)

− ) is defined as follows

dk(x1 ∧ · · · ∧ xk) =
∑
s<t

(−1)s+t[xs, xt] ∧ x1 · · · ∧ x̂s ∧ · · · ∧ x̂t ∧ · · · ∧ xk

for k > 2, xi ∈ g
(S)
− , and d1 = d0 = 0.

For simplicity we write Hk(g(S)
− ) instead of Hk(g(S)

− ,C). Each of the
terms

∧k(g(S)
− ) has a Z-grading induced by that on g

(S)
− . For j > 0 we

define
∧k(g(S)

− )−j to be the subspace of
∧k(g(S)

− ) spanned by the vec-
tors of the form x1 ∧ · · · ∧ xk such that deg(x1) + · · · + deg(xk) = −j.
The homology module Hk(g(S)

− ) also has the induced Z-grading. Note that∧k(g(S)
− )−j = Hk(g(S)

− )−j = 0 for k > j. The g
(S)
0 -module structure of the

TOME 68 (2018), FASCICULE 3



1250 Jerzy WEYMAN

homology modules Hk(g(S)
− ) is determined by the following formula known

as Kostant’s formula.

Theorem 3.1 ([7], [13]).

Hk(g(S)
− ) = ⊕w∈W (S),l(w)=kVS(wρ− ρ),

where VS(λ) denotes the integrable highest weight g(S)
0 -module with highest

weight λ.

3.3. Parabolic version of a BGG resolution

Definition 3.2. — Let S ⊂ {1, . . . , n}. Let p(S) = ⊕j>0(g(S))−j be the
parabolic subalgebra. Define a generalized Verma module

M(λ)(S) = U(g)⊗U(p(S)) LS(λ)

where VS(λ) is considered as a g
(S)
0 ⊕ g

(S)
+ -module where g(S)

+ acts trivially.

Theorem 3.3 ([12, Section 9.2]). — There exists an exact complex of
p(S)-modules

· · · // F p(S)
// · · · // F 1

(S)
// F 0

(S)
// V (λ) // 0

where

F p(S) = ⊕w∈W ′(S),l(w)=pM(w−1 · λ)(S).

Here V (λ) is the irreducible g-module of highest weight λ, w · λ := w(λ+
ρ)− ρ, and

W ′(S) = {w ∈W | l(wv) > l(w) ∀ v ∈W(S)}

where W(S) denotes the subgroup of W generated by ri (i ∈ S). Thus W ′(S)
is the set of elements of minimal length in the cosets of W(S) (there is one
in each coset).

ANNALES DE L’INSTITUT FOURIER
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4. The Kac–Moody Lie algebra of type Tp,q,r

We will be interested in the special diagrams Tp,q,r defined as follows

xp−1 xp−2 · · · x1 u y1 · · · yq−2 yq−1

z1

..
.

zr−2

zr−1

We recall some basic notions about Kac–Moody Lie algebra g(Tp.q.r)
associated to this diagram. The generalized Cartan matrix A(Tp,q,r) has
rows and columns indexed by the set {0, 1, . . . , p−1, 1′, . . . , (q−1)′, 1′′, . . . ,
(r− 1)′′} corresponding to the vertices u, x1, . . . , xp−1, y1, . . . , yq−1, z1, . . . ,

zr−1 respectively. Sometimes we denote vertices by natural numbers from
[1, p+ q + r − 2], in the order listed above.
The entries of A are given by

A(Tp,q,r)i,j =


2 if i = j;
−1 if the nodes i and j are incident in Tp,q,r;
0 otherwise.

We set n := p+ q + r − 2 so A(Tp,q,r) is an n× n matrix. The following
is an easy consequence of results in [10].

Proposition 4.1.
(1) If Tp,q,r is a Dynkin diagram, then the matrix A(Tp,q,r) has rank n.

The quadratic form corresponding to A(Tp,q,r) is positive definite.
(2) If Tp,q,r is an affine Dynkin diagram, then the matrix A(Tp,q,r) has

rank n− 1. The quadratic form corresponding to A(Tp,q,r) is semi-
positive definite.

(3) In all other cases the matrix A(Tp,q,r) has rank n. The quadratic
form corresponding to A(Tp,q,r) has signature (n− 1, 1).

Proof. — The first two statements are special cases of Theorem 4.3, the
last is exercise 4.6 from [10]. �

Let us describe the roots, coroots and the Weyl group. We take the vector
space h of dimension n if Tp,q,r is not affine and n+ 1 if it is.

TOME 68 (2018), FASCICULE 3
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Assume first that Tp,q,r is not affine. We take Π = {α1, . . . , αn} in h∗

to be the coordinate functions. This is the basis of simple roots. We take
Π∨ = {α∨1 , . . . , α∨n} in h such that

〈α∨i , αj〉 = ai,j .

Thus we can think of α∨i as the i-th column of A(Tp,q,r). The set Π∨ is a
basis of simple coroots.
As defined in the previous section, the Weyl group of A is a subgroup of

Aut(h∗) generated by the simple reflections.

ri(λ) = λ− 〈λ, α∨i 〉αi.

for λ ∈ h∗. For the graph Tp,q,r (or any tree) there is also a combinatorial
formula

ri(λ1, . . . , λn) = (λ1, . . . , λn)− 2λiαi +
∑
x−i

λiαx.

This means that to calculate the value of the reflection ri on λ (thought of
as a graph Tp,q,r with labeled vertices), we reverse the sign of a label at i,
and add this label to the labels of all neighbors of i.
For the affine Tp,q,r the above formulas are still true (one has to remember

that α∨1 , . . . , α∨n are still independent because they also have a component
on the (n + 1)’st coordinate αn+1 which is not a part of a basis of simple
roots).
We now specialize to A = A(Tp,q,r) and to S = [1, n]\{p+q}. This means

the distinguished root is the root corresponding to the vertex z1. We will
write g := g(Tp,q,r) and gi := g

(S)
i in this case. We have the following

proposition.

Proposition 4.2. — We have
(1) g0 = slr−1 × slp+q × C,
(2) g1 = Cr−1 ⊗

∧p Cp+q,
(3) g2 =

∧2 Cr−1 ⊗Ker (S2(
∧pCp+q) −→ S2pCp+q)

⊕S2Cr−1⊗Ker(
∧2(

∧pCp+q) −→ S2p−1,12Cp+q).
(4) The higher components Lm can be defined as cokernels of the graded

components of the Koszul complex (
∧3 L)m −→ (

∧2 L)m −→
Lm −→ 0.

Proof. — We use the generalized Kostant formula to identify g(Tp,q,r)(S)
>0

for S = [1, n]\{p+ q}. We denote by si the simple reflection corresponding
to the vertex i, where vertices are labeled by 0, 1, . . . , p−1, 1′, . . . , (q−1)′,
1′′, . . . , (r − 1)′′ as in Section 3. The only elements of length two in the
subgroup W (S) are the elements s1′′s0 and s1′′s2′′ . We identify a weight
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with a labeled Dynkin diagram, each vertex labeled by a coefficient of the
coresponding fundamental weight. Calculating the corresponding values of
wρ− ρ and using the formula (2) we get

s1′′s0ρ− ρ =

0 0 · · · 1 0 1 · · · 0 0

−3

2

..
.

0

0

with values zero at all other vertices. This (discarding labeling of the vertex
1′′) corresponds to the representation S2Cr−1 ⊗ S2p−1,12Cp+q.

s1′′s2′′ρ− ρ =

0 0 · · · 0 1 0 · · · 0 0

−3

0

1

..
.

0

0

with values zero at all other vertices. This (discarding labeling of the vertex
1′′) corresponds to the representation

∧2 Cr−1 ⊗ S2pCp+q. Since these are
the only weights in H2(g(S)

+ ), description d) follows. �

Taking E = Cr−1, F = Cp+q we denote L(p,E, F ) the positive part

L(p,E, F ) = ⊕i>0gi.

Proposition 4.3. — The algebra L(p,E, F ) is finite dimensional if and
only if one of the following cases occurs.

(1) p = q = 2, r > 2 arbitrary,
(2) q = r = 2, p > 3 arbitrary,
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(3) q = 2, r = 3, p = 3, 4, 5,
(4) q = 3, r = 2, p = 3, 4, 5,
(5) q = 2, p = 3, r = 4, 5.

Proof. — Indeed, the listed cases are exactly the cases when Tp,q,r is a
Dynkin diagram. To be more precise, we have Tp,q,r = Dr+2 in case a),
Tp,q,r = Dp+2 in case b), Tp,q,r = Ep+3 in case c), Tp,q,r = Ep+3 in case
d) and Tp,q,r = Er+3 in case e). In the listed cases the algebra L(p,E, F )
is obviously finite dimensional. In the other cases, the positive part of the
Kac–Moody Lie algebra is infinite dimensional. �

Let us also calculate the beginning part of the parabolic BGG resolutions
for the case under consideration, i.e. g := g(Tp,q,r), S = {[1, n] \ {p+ q}}.

Proposition 4.4. — Let g := g(Tp,q,r), S = {[1, n] \ {p + q}}. Let us
consider the highest weight λ = (λ1, . . . , λn). The three initial terms of the
parabolic BGG complex described in Theorem 3.3 are.

M(rp+qr1 · λ)(S) ⊕M(rp+qrp+q+1 · λ)(S)

��
M(rp+q · λ)(S)

��
M(λ)(S)

where M(µ)(S) denotes the parabolic Verma module.
To make things explicit we identify the weights

rp+q · λ = (λ1 + λp+q + 1, . . . ,−λp+q − 2, λp+q + λp+q+1 + 1, . . . ),

where listed components are at vertices 1, p + q, p + q + 1 and not listed
ones are the same as in λ.

rp+qr1 · λ = (λp+q − 1, λ1 + λ2 + 1, . . . , λ1 + λp+1 + 1, . . . ,
− λ1 − λp+q − 3, λ1 + λp+q + λp+q+1 + 1, . . . )

where listed components are at vertices 1, 2, p, p+q, p+q+1 and not listed
ones are the same as in λ.

rp+qrp+q+1 · λ = (λ1 + λp+q + λp+q+1 + 1, . . . ,−λp+q − λp+q+1 − 5,
λp+q − 1, λp+q+1 + λp+q+2 + 1, . . . )

where listed components are at vertices 1, p+ q, p+ q+ 1, p+ q+ 2 and not
listed ones are the same as in λ.
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5. Geometric approach to acyclicity

We prove the geometric result on acyclicity of free complexes. It is based
on homological algebra and it is essential for our approach.

Theorem 5.1. — Let X = SpecR, and let j : U −→ X be an open
immersion. Let

G : 0 // Gn // Gn−1 // · · · // G1 // G0

be a complex of free R-modules (treated as a complex of sheaves over X)
such that G |U is acyclic. Then Hn(G⊗ j∗OU ) = 0, Hn−1(G⊗ j∗OU ) = 0,
and the complex G ⊗ j∗OU is acyclic if and only if Rij∗OU = 0 for i =
1, . . . , n− 2.

Proof. — Before we start, let us decompose the complex G |U to short
exact sequences. Denoting Bi = Im(Gi+1 |U −→ Gi |U ) we have exact
sequences

0 // Bi // Gi |U // Bi−1 // 0

for i = 2, . . . , n (with Bn = 0) and

0 // B1 // G1 |U // G0 |U .

This induces long exact sequences

0 // j∗Bi // Gi ⊗ j∗OU // j∗Bi−1 // R1j∗Bi // · · ·

as well as an exact sequence

0 // j∗B1 // G1 ⊗ j∗OU // G0 ⊗ j∗OU .

Next we show that vanishing of higher direct images implies acyclicity.
Indeed, our vanishing implies that Rij∗Bn−s = 0 for 1 6 i 6 n− s− 1. So
the above exact sequences have last term zero and we get that G ⊗ j∗OU
is acyclic.
To prove the reverse implication let us proceed by induction on n. For

n = 2 there is nothing to prove. For n = 3 we see from the exact sequences
that H3(G) = H2(G) = 0 and H1(G) = Ker(R1j∗G3 −→ R1j∗G2). We
need

Lemma 5.2. — Let M be an R-module. Let ϕ : F −→ G be a map of
free R-modules of finite rank. Denote by I(ϕ) the ideal of maximal minors
of ϕ. Then ϕ⊗M is a monomorphism if and only if depthR(I(ϕ),M) > 1.

Proof. — This is a special case of Theorem 2, Appendix B from [14]. �
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In our case R1j∗OU is supported onX\U so Ker(R1j∗G3 −→ R1j∗G2) =
0 implies R1j∗OU = 0, completing the case n = 3. Assume the result is
proved for n− 1 and the complex j∗G = G⊗ j∗OU is acyclic. By induction
(applied to G truncated at G1) we have

R1j∗OU = R2j∗OU = · · · = Rn−3J∗OU = 0.

Now our long exact sequences imply that Rn−3j∗Bn−2 = Rn−4j∗Bn−3 =
· · · = R1j∗B2. We also have the exact sequence

0 // Rn−3j∗Bn−2 // Rn−2j∗Gn // Rn−2j∗Gn−1.

Also, from the exact sequences we can deduce that

H1(G⊗ j∗OU ) = Ker(R1j∗B2 → R1j∗G2) = R1j∗B2

This means that if H1(G ⊗ j∗OU ) = 0 then R1j∗B2 = 0, so the map
Rn−2j∗Gn −→ Rn−2j∗Gn−1 is a monomorphism, which implies by Lem-
ma 5.2 that Rn−2j∗OU = 0. �

6. The rings Ra generated by Buchsbaum–Eisenbud
multipliers

In this section we recall properties of the rings Ra which are obtained
from coordinate rings of the varieties of generic complexes by adding the
Buchsbaum–Eisenbud multipliers and factoring the relations satisfied by
them. These rings are the starting point of our construction. Their prop-
erties (rational singularities and sphericality) are essential for the whole
approach. Most of the results of this section were proved in [16, Section 1].
The additional results are easy consequences.
In what follows we use heavily representation theory of GLn. For a GLn

dominant weight λ = (λ1, . . . , λn) ∈ Zn we denote SλF = S(λ1,λ2,...,λn)F

the Schur functor on the space F = Kn. For the purpose of this paper a
spherical variety is a variety with a linearly reductive group action whose
coordinate ring is a multiplicity free representation of this group.
Let us fix the format (f0, . . . , fn). We work over a fixed field K. In this

section we assume that K has characteristic zero. Consider the variety Xc

of complexes

0 // Fn
dn // Fn−1 // · · · // F1

d1 // F0

of vector spaces over K, with rankFi = fi and rank di 6 ri. We fix bases
{eij(i)}16j(i)6fi of Fi for each i = 1, . . . , n.
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The coordinate ring Rc ofXc can be obtained as follows. We add toK the
variables X(i)

j(i),k(i) (1 6 i 6 n, 1 6 j(i) 6 fi−1, 1 6 k(i) 6 fi) which are the
entries of the generic maps di in bases {eij(i)}16j(i)6fi . The corresponding
fi−1×fi matrix of variables over Sc is denotedX(i). We denote the resulting
polynomial ring Sc. We define the ideal Jc in the polynomial ring Sc as
follows. Jc is generated by the entries of matrices X(i−1) ◦X(i) (2 6 i 6 n)
and by the (ri + 1) × (ri + 1) minors of X(i) (1 6 i 6 n − 1). Finally we
define Rc := Sc/Jc. The ring Rc is the coordinate ring of Xc which is the
variety of generic complexes.
Recall that the variety Xc has a natural desingularization Zc. For i =

1, . . . , n − 1 denote by Grass(ri+1, Fi) the Grassmannian of subspaces of
rank ri+1 of Fi. Let

0 // Ri // Fi ×Grass(ri+1, Fi) // Qi // 0

be the tautological sequence on Grass(ri+1, Fi).

Zc =
{

((d1, . . . , dn), (R1, . . . , Rn−1))

∈ Xc ×
∏n−1
i=1 Grass(ri+1, Fi)

∣∣∣∣∣ Im(di+1) ⊂ Ri

}
.

Denote p : Zc −→
∏n−1
i−1 , q : Zc −→ Xc the natural projections. We have

p∗OZc = ⊗ni=1 Sym(Qi ⊗R∗i−1), where Qn = Fn.

Theorem 6.1 ([5], [16]). — The variety Xc carries the natural action of
the group GL :=

∏n
i=0GL(Fi). It is a spherical variety and it has rational

singularities. The coordinate ring Rc has a multiplicity free decomposition
to the irreducible representations of GL given by the formula

Rc = ⊕α(1),...,α(n) ⊗ni=0 S(α(i)
1 ,...,α

(i)
ri
,−α(i+1)

ri+1 ,...,−α
(i+1)
1 )Fi

where we sum over all n-tuples (α(1), . . . , α(n)) of partitions, with the i-th
partition α(i) = (α(i)

1 , . . . α
(i)
ri ) having at most ri parts. Here by convention

α(n+1) = 0 has no parts and α(0) = (0f0−r1) has f0 − r1 parts.

This result follows by standard methods from Cauchy decomposition

⊗ni=1 Sym(Qi ⊗R∗i−1) = ⊕α(1),...,α(n) ⊗ni=1 Sα(i)Qi ⊗ Sα(i)R∗i−1,

and the fact that by Bott theorem the higher cohomology of the above
sheaf vanishes and the sections decompose as given in the Theorem 6.1.
We have a generic complex Fc• of format (f0, . . . , fn) defined over the

ring Rc. It is a complex

Fc• : 0 −→ Fn ⊗Rc
dn−→Fn−1 ⊗Rc −→ . . . −→ F1 ⊗Rc

d1−→F0 ⊗Rc
with di given (in our bases of Fi) by the matrix X(i).
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In [16, Section 1] we carried a similar procedure for the rings Ra.
Consider the affine space X =

∏n
i=1HomK(Fi, Fi−1) ×

∏n−1
i=1

∧ri Fi−1.
The coordinates in HomK(Fi, Fi−1) are the entries of the map di and the
coordinates of

∧fi Fi−1 are the Buchsbaum–Eisenbud multipliers ai. We
also consider the analogue of the desingularization Zc.

Za ⊂ X ×
n−1∏
i=1

Grass(ri+1, Fi)

Definition 6.2. — The variety Za,

Za ⊂ X ×
n−1∏
i=1

Grass(ri+1, Fi)

is defined by the following conditions. A point

{(d1, . . . , dn; a1, . . . , an−1), (R1, . . . , Rn−1)} ∈ X ×
n−1∏
i=1

Grass(ri+1, Fi)

is in Za if and only if the following conditions are satisfied.
(1) Im(di) ⊂ Ri ⊂ Ker(di−1),
(2) ai ∈

∧i
Ri−1,

(3) For the induced map d′i : Qi −→ Ri−1 we have d′n = an, d′i = ai+1ai
for i = 1, . . . , n− 1.

We denote p : Za −→ X, q : Za −→
∏n−1
i=1 Grass(ri+1, Fi) two projections,

and we define the variety Xa := p(Za) ⊂ X.

The variety Za is fiber bundle over
∏n−1
i=1 Grass(ri+1, Fi), and the fi-

bre over a point (R1, . . . , Rn−1) is the affine variety given by the general
ri × ri matrices d′i : Qi −→ Ri−1 and elements ai ∈

∧ri Ri−1 satisfying
relations (3).
It turns out that Za has rational singularities so it can be used in a

similar way to Zc. The following result is proved in [16, Section 1].

Theorem 6.3. — The varietyXa carries the natural action of the group
GL :=

∏n
i=0GL(Fi). It is a spherical variety and it has rational singular-

ities. The coordinate ring Ra of Xa has a multiplicity free decomposition
to the irreducible representations of GL given by the formula

Ra =
⊕

α(1),...,α(n),x(1),...,x(n)

n⊗
i=0

S(χ(i)+α(i)
1 ,...,χ(i)+α(i)

ri−1,χ
(i),−χ(i+1),−χ(i+1)−α(i+1)

ri+1−1,...,−χ(i+1)−α(i+1)
1 )Fi.
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Here the notation is as follows. We sum over all n-tuples (α(1), . . . , α(n))
of partitions, with the i-th partition α(i) = (α(i)

1 , . . . α
(i)
ri−1) having at most

ri−1 parts. Here by convention α(n+1) = 0 has no parts and α(0) = (0f0−r1)
has f0 − r1 parts.
We also sum over n-tuples of natural numbers x(1), . . . , x(n) (degrees with

respect to the ai’s). The numbers χ(i) are partial Euler characteristics and
they are

χ(i) =
i∑

j=1
(−1)i−jx(j).

Note that χ(i) +χ(i+1) = x(i+1), so all the weights listed in the formula are
dominant.

The defining relations of the ring Ra are written down explicitly in [16,
Section 1]. The structure of Ra can be described also in a characteristic free
way (replacing K by Z and using filtrations instead of direct sums). This
was done in [16, Section 1] and in [17] where some errors in characteristic
free part of the approach were fixed.
We denote by Fa• the complex Fc• ⊗Rc Ra. This complex has a weaker

universality property, true even in a characteristic free version.

Theorem 6.4. — The complex Fa• is the universal complex of format
(f0, . . . , fn) which is acyclic in codimension 1. This means that for every
pair (S,G) such that S is a Noetherian ring and G is a complex of free
modules of format (f0, . . . , fn) over S which is acyclic of codimension 1
(i.e. the set of points where the complex is not acyclic has a defining ideal
of depth > 2), then there is a unique homomorphism ϕ : Ra −→ S such
that G = Fa• ⊗Ra S.

This has the following consequence (which goes back to Hochster ([9])
and is even true over Z).

Corollary 6.5. — For n = 2 the pair (Ra,Fa•) is a generic acyclic
complex for the format (f0, f1, f2).

In the remainder of this section we look more closely at the homology
modules of the complex Fa•. These modules are possible to analyze thanks
to the multiplicity free structure of the ring Ra.

We look at the module Fj⊗Ra and compare it to the modules Fj+1⊗Ra
and Fj−1⊗Ra. We describe the cancellations that occur between them when
applying the map dj+1 and dj . Looking at the representations Fj⊗Ra and
Fj−1 ⊗ Ra, let us assume that they have common representations coming
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from summands

Fj ⊗

 n⊗
i=0

S(
χ(i)+α(i)

1 ,...,χ(i)+α(i)
ri−1,χ

(i),−χ(i+1),

−χ(i+1)−α(i+1)
ri+1−1,...,−χ

(i+1)−α(i+1)
1

)Fi


and

Fj−1 ⊗

 n⊗
i=0

S(
ψ(i)+β(i)

1 ,...,ψ(i)+β(i)
ri−1,ψ

(i),−ψ(i+1),

−ψ(i+1)−β(i+1)
ri+1−1,...,−ψ

(i+1)−β(i+1)
1

) Fi


We denote the degree of the first (resp. the second) representation with
respect to the structure map ai by x(i) (resp. y(i)).

We note that by Pieri formula we have two possibilities. On the coordi-
nate Fj we can add a box to first rj − 1 entries, or to the rj-th entry.
It is easy to see that when we add a box in Fj ⊗ Ra to one of the

first rj − 1 places, we can always find a corresponding representation in
Fj−1 ⊗Ra, with α(i) = β(i), χ(i) = ψ(i) for i = 1, . . . , n.
Consider the crucial case when we add a box in Fj ⊗ Ra to the rj-th

place, and we add a box in Fj−1 ⊗ Ra in the (rj−1 + 1)’st place. Then
comparing the weights we have:

χ(i) = ψ(i), α(i) = β(i), ∀ i 6= j,

χ(j) + 1 = ψ(j), α
(j)
k = β

(j)
k − 1, ∀ 1 6 k 6 rj − 1.

This translates to x(i) = y(i) ∀ i 6= j, j + 1, and x(j) = y(j) + 1, x(j+1) =
y(j+1) − 1.
This means such cancellation cannot occur when y(j+1) = 0, so the cor-

responding representations stay in Hj−1(Fa•). Notice that this does not
happen for j − 1 = n, n− 1, as there is no y(j+1) in such cases.

Theorem 6.6. — The homology groups Hn(Fa•) = Hn−1(Fa•) = 0. For
1 6 j − 1 6 n− 2 we have

Hj−1(Fa•) = ⊕β(1),...,β(n),y(1),...,y(n),y(j+1)=0

⊗
j−2⊗
i=0

S(ψ(i)+β(i)
1 ,...,ψ(i)+β(i)

ri−1,ψ
(i),ψ(i+1),−ψ(i+1)−β(i+1)

ri+1−1,...,−ψ(i+1)−β(i+1
1 )Fi

⊗ S(ψ(j−1)+β(j−1)
1 ,...,ψ(j−1)+β(j−1)

rj−1−1,ψ
(j−1),1−ψ(j),−ψ(j)−β(j)

rj−1,...,−ψ(j)−β(j)
1 )Fj−1

⊗
n⊗
i=j

S(ψ(i)+β(i)
1 ,...,ψ(i)+β(i)

ri−1,ψ
(i),−ψ(i+1),−ψ(i+1)−β(i+1)

ri+1−1,...,−ψ(i+1)−β(i+1)
1 )Fi.
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In particular the homology group Hj−1(Fa•) is annihilated by the ideal
I(aj+1) generated by the entries of the (j + 1)’st Buchsbaum–Eisenbud
multiplier map.

Proof. — To prove the theorem it is enough to show that the indicated
cancellations indeed occur. This is not difficult since for each i the module
Fi⊗Ra is multiplicity free as a GL(F)-module. Moreover the highest weight
vectors of irreducible representations are not difficult to write down as only
the Pieri formula of multiplying by Fi is involved. We skip the details here
since the result is not used elsewhere. �

Let us look at the generator of Hj−1(Fa•) for n − 2 > j − 1 > 1. It
will be a minimal partition in Hj−1(Fa•). We obtain it by setting β(i) = 0
for i = 1, . . . , n, ψ(i) = 0 for i > j − 1, ψ(i) = (−1)j−1−i for 1 6 i 6
j−1. The resulting representation is (up to maximal exterior powers of Fi)∧rj−1+1

Fj−1. The existence of such cycle q(j−1)
1 means in the generic ring

one will need to add a representation F ∗j ⊗
∧rj−1+1

Fj−1, corresponding to
the map p(j−1)

1 :
∧rj−1+1

Fj−1⊗R −→ Fj⊗R covering this cycle. The maps
p

(j−1)
1 are the same as the maps bj−1 coming from the Second Structure

Theorem of Buchsbaum and Eisenbud ([3, Section 6]).
Finally we note the key property of the lattice of weights of Ra.

Remark 6.7. — Let Λ be the lattice of highest weights of the ring Ra.
Let Λeven (resp. Λodd) be the projection of the weight of GL(F) onto the
weight of GL(Feven) (resp. GL(Fodd)), where

GL(F)even =
∏
i even

GL(Fi),GL(F)odd =
∏
i odd

GL(Fi).

Then the projections Λ −→ Λeven (resp. Λ −→ Λodd) are isomorphisms. In
other words every weight in Ra is uniquely determined by its even and odd
parts.

Let us specialize to the case n = 3. We will use slightly different notation.
The incidence variety Ya giving a modification of variety Xa := SpecRa.
Ya is a subset of Xa ×Grass(r3, F2)×Grass(r2, F1)×Gras(r1, F0) con-

sisting of tuples ((d3, d2, d1, a2, a1), R2, R1, R0) such that
(1) (d3, d2, d1, a2, a1) ∈ Xa,
(2) Im(ai) ⊂

∧ri Ri, Im di ⊂ Ri ⊂ Ker di−1 for i = 0, 1, 2,
(3) For the induced maps d′i : Qi := Fi/Ri −→ Ri−1 and a′i ∈

∧ri Ri,
we have det(d′3) = a′3, det(d′2) = a′3a

′
2, det(d′1) = a′2a

′
1.

One has natural projections pa : Ya −→ Xa, qa : Ya −→ Grass where
Grass := Grass(r3, F2)×Grass(r2, F1)×Gras(r1, F0).
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One gets the decomposition of Ra ([16, Section 1], [18, (10)])

Proposition 6.8. — We have

Ra =
⊕

aaa,bbb,ccc,α,β,γ

S(aaa−bbb+ccc+α1,...,aaa−bbb+ccc+αr3−1,aaa−bbb+ccc)F3

⊗ S(bbb−ccc+β1,...,bbb−ccc+βr2−1,bbb−ccc,−aaa+bbb−ccc,−aaa+bbb−ccc−αr3−1,...,−aaa+bbb−ccc−α1)F2

⊗ S(ccc+γ1,...,ccc+γr1−1,ccc,ccc−bbb,ccc−bbb−βr2−1,...,ccc−bbb−β1)F1

⊗ S(0r0 ,−ccc,−ccc−γr1−1,...,−ccc−γ1)F0

where we sum over all triples of natural numbers aaa,bbb, ccc and triples of par-
titions α, β, γ such that α′1 < r3, β′1 < r2 and γ′1 < r1.

Corollary 6.9. — The ring Ra is a multiplicity free representation for
the action of the group

∏3
i=0GL(Fi), so the variety Xa is spherical.

In the case of n = 3 we have over the ring Ra depth I(d1) = 1,
depth I(d2) = depth I(d3) = 2. In order to get acyclicity of Fa• it is enough
to raise the depth of I(d3) to 3. This can be done by killing the cycles
in Fa•, in the Koszul complex on I(d3) and killing the higher direct image
R1j∗(OUa) where Ua = Xa \ V (I(d3)) and j : Ua −→ Xa is an inclusion.
By the results of section 5 we know that vanishing of first homology groups
of both complexes and of R1j∗(OUa) is equivalent.

We denote

Ka : 0 // ∧0K // ∧1K // ∧2K // ∧3K

the beginning of the Koszul complex on I(d3), the ideal of maximal mi-
nors of d3. Thus K :=

∧r3 F ∗3 ⊗
∧r3 F2 ⊗C Ra. We treat Ka as a complex

concentrated in degrees, 0 to 3 with differential of degree −1.

Proposition 6.10. — We have the following isomorphisms.

(1) H1(Fa•) = Ker
(∧3K ⊗R1j∗(OUa)d3⊗1−→

∧2K ⊗R1j∗(OUa)
)
.

(2) H1(Ka) = Ker
(
F3 ⊗R1j∗(OUa)d3⊗1−→F2 ⊗R1j∗(OUa)

)
, i.e. it is the

set of elements in R1j∗(OUa) annihilated by I(d3).

Let us identify the generator of H1(Ka).
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Proposition 6.11. — The module H1(Ka) is generated by the image
of the map

q1 : F ∗3 ⊗
r1+1∧

F1 −→
2∧( r3∧

F ∗3 ⊗
r3∧
F2

)
⊗Ra

= S2r3F ∗3 ⊗
2∧( r3∧

F2

)
⊗Ra.

There is the only one (up to nonzero scalar) nonzero equivariant map of
this type.
In terms of the formula it is given by

h∗t ⊗ fi1 ∧ · · · ∧ fir1+1 7−→
∑
J,K

uI,J,K gJ ⊗ gK

where the coefficient uI,J,K is given by the formula∑
±〈1, . . . , t̂, . . . , r3|j1 . . . , ĵs, . . . , jr3〉3〈(js, k1, . . . , kr3)′|(i1, . . . , ir1+1)′〉2.

Here I = (i1, . . . , ir1+1), J = (j1, . . . , jr3), K = (k1, . . . , kr3), and J ′ de-
notes the complement of the set J . Also 〈|〉i denotes the minors of di for
i = 2, 3.

Proof. — Let us look at possible equivariant maps q1 as stated in the
Proposition 6.11. Looking at the weight corresponding to GL(F1) we see
that the only way such a map can occur is for the summand in Ra hav-
ing bbb = ccc = 0, γ = 0 and β1 = · · · = βr2−1 = 1. Looking at the
weight of GL(F2) we need a trivial SL(F2) representation in

∧2(
∧r3 F2)⊗

S(1r2−1,02,(−1)r3−1)F2. It can happen only once, choosing the representation
S2r3−1,12)F2 in

∧2(
∧r3 F2). Similar reasoning shows that the representa-

tion F ∗3 ⊗
∧r1+1

F1 cannot occur in
∧r3 F ∗3 ⊗

∧r3 F2 ⊗ Ra. Indeed, look-
ing at the weight of GL(F1) we see again that we need bbb = ccc = γ = 0
and β1 = · · · = βr2−1 = 1. Then looking at the weight of GL(F2) we
get a contradiction. Finally looking at the occurrence of F ∗3 ⊗

∧r1+1
F1 in∧3(

∧r3 F ∗3 ⊗
∧r3 F2)⊗Ra we see it cannot happen, as the representation

S(3r3−1,2,1)F2 does not occur in
∧3(

∧r3 F2).
There is another way to see that there is a cycle q1 of the required form

and that it generates H1(Ka).
We can calculate the higher direct image of OZa with the map a′3 in-

verted. This is done using Bott Theorem, applied to the quadruples of
weights (corresponding respectively to F3, F2, F1, F0):

((aaa− bbb+ ccc+ α1, . . . , aaa− bbb+ ccc+ αr3−1, aaa− bbb+ ccc),
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(bbb− ccc+ β1, . . . , bbb− ccc+ βr2−1, bbb− ccc,−aaa+ bbb− ccc,
−aaa+ bbb− ccc− αr3−1, . . . ,−aaa+ bbb− ccc− α1),

(ccc+ γ1, . . . , ccc+ γr1−1, ccc, ccc− bbb, ccc− bbb− βr2−1, . . . , ccc− bbb− β1),
(0r0 ,−ccc,−ccc− γr1−1, . . . ,−ccc− γ1))

where we sum over all partitions α, β, γ, bbb, ccc ∈ N and aaa ∈ Z, and then
calculate the homology by Bott Theorem. We see that in R1j∗(OUa) we
get the required representation for

aaa = −2, bbb = ccc = γ = 0, β1 = · · · = βr2−1 = 1, α1 = · · · = αr3−1 = 1.

Moreover, if we increase aaa by one to −1, there will be no corresponding
representation in R1j∗(OUa), so our representation is annihilated by I(d3),
so it gives an element in H1(Ka).
The formula giving q1 can be deduced from analyzing the way the equi-

variant map q1 was constructed. Looking at the summand of Ra we used
it is clear it has to involve the products of (r3 − 1)× (r3 − 1) minors of d3
and of (r2 − 1)× (r2 − 1) minors of d2. �

Remark 6.12. — Notice that we used the SL(F2)×SL(F1) equivariance
instead of GL(F2) × GL(F1) equivariance to construct the map q1. It is
caused by the fact that under the exact identification of weights in the Lie
algebra of type Tp,q,r with the weights of GL(F3)×GL(F1) there is a copy
of line bundle which centralizes g0 which acts in a nontrivial way.

Let us compare the elements q(1) and q1 as elements of F3 ⊗R1j∗(OUa)
and R1j∗(OUa) respectively. Representation theory and Bott theorem show
that they are related as follows.
The map q(1) can be expressed as a composition

r1+1∧
F1 ⊗M−1

3 ⊗M2 ⊗M−1
1

tr⊗1−−−→ F3 ⊗ F ∗3 ⊗
r1+1∧

F1 ⊗M−1
3 ⊗M2 ⊗M−1

1

q1⊗1−−−→ F3 ⊗R1j∗(OUa).

Conversely, the map q1 can be expressed in terms of q(1) as follows

F ∗3 ⊗
r1+1∧

F1 ⊗M−1
3 ⊗M2 ⊗M−1

1
1⊗q(1)

−−−−→ F ∗3 ⊗ F3 ⊗R1j∗(OUa)
ev⊗1−−−→ R1j∗(OUa).

This follows from the fact that R1j∗(OUa) is multiplicity free.
We conclude that adding to Ra the entries of the cycle b killing q(1)

and cycle p1 killing q1, and performing the ideal transform with respect to
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I(d3) results in the same ring R1. We denote X1 = Spec(R1) and U1 =
X1\V (I(d3)). Over the open set Ua these rings are isomorphic to OUa with
the variables corresponding to the first defect F ∗3 ⊗

∧r1+1
F1.

7. The structure maps pi

Let F• be an acyclic complex of length three over a ring R. Let L :=
L(r1 + 1, F3, F1) be the corresponding defect algebra. Finally, let

0 // ∧0K // ∧1K // ∧2K // ∧3K

be the beginning of the Koszul complex on I(d3), the ideal of maximal
minors of d3. Thus K :=

∧r3 F ∗3 ⊗
∧r3 F2 ⊗C R.

In Section 6 we constructed the map p1 : L∗1 −→
∧1K covering the cycle

q1. We continue to construct the higher maps pi (i > 2).

Proposition 7.1. — Let F• be an acyclic complex of format (f0, f1,

f2, f3). There exists a structure map p2 making the following diagram com-
mute.

0 // ∧0K // ∧1K // ∧2K // ∧3K

0 // L∗2 //

p2

OO

(
∧2 L1)∗

∧2(p1)

OO

Proof. — Since the upper row is an exact sequence, it is enough to check
that the composition of the Koszul differential with

∧2(p1) restricted to the
image of L∗2 is zero. This calculation is carried out in Theorem 2.9 from [18]
(the map p1 is denoted there by b#). �

The defect of the map p2 is equal to L2. The definition of the defect
algebra allows to introduce the higher maps pi.

Theorem 7.2 ([18]). — Let F• be an acyclic complex of format (f0, f1,

f2, f3). There exists a sequence of structure maps pi : L∗i −→
∧1K satisfy-

ing the following commutative diagram

0 // ∧0K // ∧1K // ∧2K // ∧3K

0 // L∗m+1
//

pm+1

OO

(
∧2 L)∗m+1

//

q2,m+1

OO

(
∧3 L)∗m+1

q3,m+1

OO

where q2,m+1 =
∑

(pi ∧ pj), q3,m+1 =
∑

(pi ∧ pj ∧ pk).
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Proof. — The upper row is an exact complex, and the diagram commutes
by the definition of the Koszul differential and the maps in the lower row.
The result follows by an elementary diagram chase. �

The relation with the defect Lie algebra is that the defect (i.e. non-
uniqueness) of each map pm is equal to Lm. Defect refers to the fact that
pm+1 is a lifting of certain cycles and we can modify pm by the map from
L∗m to R, i.e. by an element of Lm.
The idea of the construction of the generic ring carried out in [18] is to

build it up taking these symmetries into account. More precisely, define
Rm to be the ring we obtain from Ra by adding generically the coefficients
of the maps p1, . . . , pm, and then dividing by the appropriate relations
(those that vanish when specializing to a splitting complex with arbitrary
choice of the maps p1, . . . , pm, compare [18, Lemma 2.4]), and take the ideal
transform with respect to I(d2)I(d3). We get the action of the Lie algebra
L/(
∑
j>m Lj) on such ring Rm ([18, Theorem 2.12]).

Definition 7.3. — We define R̂gen := limmRm, Fgen• = Fa• ⊗Ra R̂gen.

Similarly, for every m we have a diagram

Um := Ym \ p−1
m (D3)

j′m //

p′m
��

Ym
qgen //

pm

��

Grass

Xm \D3
jm // Xm

so finally, after including all pi’s we get a diagram

Ugen := Ygen \ p−1
gen(D3)

j′gen //

p′gen
��

Ygen
qgen //

pgen

��

Grass

Xgen \D3
jgen // Xgen

Our goal is to show that R1(jgen)∗OXgen\D3 = 0 proving that the com-
plex Fgen• := Fa• ⊗Ra OXgen is the generic complex.

Remark 7.4. — Two observations will be useful in the future.
(1) The set Ugen := Ygen \ p−1

gen(D3) has a simple geometric interpreta-
tion. It is isomorphic to U0 := Xa \ p−1

a (D3) × ⊕i>0Li. Indeed, if
the map d3 splits, then each map pi splits into its defect and a map
defined uniquely. Moreover, the affine space ⊕i>0Li is clearly iso-
morphic to the open Schubert cell in the homogeneous space G/P
where G is the Kac–Moody group associated to the graph Tp,q,r and
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P is the parabolic associated to the simple root corresponding to
the vertex z1.

(2) The rings Rm (and therefore the ring Rgen) are domains. Indeed,
by construction the depth of the ideal I(d3) in these rings is > 1
and after inverting an r3 × r3 minor D of d3 we get a polynomial
ring over Ra[D−1].

8. The spectral sequence and the complexes K(α, β, s)•
over U(L)

The next step ([18, Section 3]) is the analysis of the spectral sequence
which allows us to calculate the cohomology of Fgen := qgen∗(OYgen\D3)
(see notation precedeng Remark 7.4). The spectral sequence is equivari-
ant with respect to the group

∏3
i=0GL(Fi). However the representations

occurring in U(L) do not contain the representations of F0 and they con-
tain only the maximal exterior power of F2. Thus the U(L)-module struc-
ture will be preserved on the isotypic components of the group Geven :=
SL(F2)⊗GL(F0). Let us also denote Godd := SL(F3)⊗ SL(F1).

Analyzing the isotypic components of the representations one reaches the
following conclusion. The isotypic component of the cohomology of Fgen is
calculated as a cohomology of a complex K(σ, τ, t) of the form

0 // K0 // K1 // K ′2 ⊕K ′′2

where each term consists of a single irreducible representation of the group
ĜLodd := GL(F3)×GL(F1) tensored with U(L)∗. Dualizing we obtain the
following statement.

Theorem 8.1 ([18, page 26, formula (38)]). — All duals of isotypic
components of the spectral sequence are the complexes of the form

S(σ1+t+u,σ2,...,σr3 )F3

⊗ S(τ1+t+u,...,τr1 +t+u,τr1+1+t,τr1+2+u,τr1+3,...,τr1+r2 )F
∗
1 ⊗ U(L)

⊕ S(σ1+t,σ2+s,σ3,...,σr3 )F3 ⊗ S(τ1+t+s,...,τr1+1+t+s,τr1+2,...,τr1+r2 )F
∗
1 ⊗ U(L)

↓
S(σ1+t,σ2,...,σr3 )F3 ⊗ S(τ1+t,...,τr1+1+t,τr1+2,...,τr1+r2 )F

∗
1 ⊗ U(L)

↓
S(σ1,σ2,...,σr3 )F3 ⊗ S(τ1,...,τr1+1,τr1+2,...,τr1+r2 )F

∗
1 ⊗ U(L).
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Here the numbers u and s are uniquely determined by the triple (σ, τ, t) by
equalities

σ2 + s = σ1 + 1, τr1+2 + u = τr1+1 + 1.

We denote the complex listed in the Theorem by K∗(σ, τ, t).
We have the following crucial consequence.

Corollary 8.2 ([18, Theorem 3.1]). — Assume that all the complexes
K∗(σ, τ, t) are exact at their middle term. Then R1(jgen)∗Fgen = 0 and
therefore

(jgen)∗OXgen\D3 = H0(Grass,Fgen)
and the complex Fgen• is acyclic over (jgen)∗OXgen\D3 , so it is the generic
ring for our format.

In the next section we will see that the complexes are indeed exact at
the middle term by identifying them with the beginning part of certain
parabolic BGG resolution.

9. Main result

In this section we draw the consequences from previous considerations.
The main result is

Theorem 9.1. — For every format (f0, f1, f2, f3) there exists a generic
pair

(R̂gen,Fgen• ) := ((jgen)∗OXgen\D3 ,F
a
• ⊗Ra (jgen)∗OXgen\D3).

The generic ring R̂gen is a general fibre of a flat family where a special
fibre R̂spec has a multiplicity free action of g(Tp,q,r)×gl(F2)×gl(F0), where
f3 = r− 1, f2 = q+ r, f1 = p+ q, r1 = p− 1. If the algebra L(r1 + 1, F3, F1)
is finite dimensional, then the generic ring R̂gen is Noetherian.

Proof. — The complexes K∗(σ, τ, t) from the Corollary 8.2. are identical
to the part of BGG complex identified in Proposition 4.4. The partition
α is just λ restricted to the third arm of the graph. The partition β is λ
restricted to the graph Ap+q−1 we get when we omit the third arm of the
graph Tp,q,r. The number t := λp+q + 1. The differentials are the same
because each component is nonzero and there is (up to a nonzero scalar)
only one possible gl(F3) × gl(F1) map of free U(L)-modules in each case,
so both differentials have to be the same.
Thus the complexes K∗(σ, τ, t) are exact at the middle term so Corol-

lary 8.2 assures that the complex Fgen• is acyclic over R̂gen.
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Let us prove that the pair (R̂gen,Fgen• ) has the universality property. It
was constructed by killing a series of cycles in the Koszul complex of I(d3).
In every realization (S,G•) where S is Noetherian and G• is a resolution
of format (r1, r2, r3) these cycles are boundaries. This and the universal
property of the ideal transform give a homomorphism ϕ : R̂gen −→ S such
that G• = Fgen• ⊗R̂gen S.
This completes the proof that R̂gen is indeed a generic ring.
To prove the part about the deformation, let us decompose the ring R̂gen

to the gl(F2)× gl(F0) isotypic components.

R̂gen = ⊕µR̂gen,µ = ⊕µSϕ(µ)F0 ⊗ Sθ(µ)F2 ⊗ Vλ(σ(µ),τ(µ),aaa).

The cokernel of the complex K∗(σ, τ, t) (i.e. the parabolic BGG complex)
is an irreducible highest weight module for g(Tp,q,r), so the component
R̂gen,µ acquires the structure of an irreducible g(Tp,q,r) × gl(F2) × gl(F0)
lowest weight module. This action on ⊕µR̂gen,µ is obviously multiplicity
free. The problem is that this does not give the structure of the g(Tp,q,r)×
gl(F2)× gl(F0) module on the ring R̂gen because the multiplication might
not be g(Tp,q,r)× gl(F2)× gl(F0) equivariant.

However for every two pieces R̂gen,µ and R̂gen,ν their product goes to
the sum of several graded pieces with the extremal one being R̂gen,µ+ν . We
can deform the multiplication on R̂gen by shrinking the other components
of the product to zero. This gives us a new commutative algebra

R̂spec := ⊕µ∈ΛR̂gen,µ.

The connection between the rings R̂gen and R̂spec was explained in
Grosshans lecture notes [8, Chapter 15]. In its theorem 15.14 Grosshans
showed that there is an algebra D which is a free C[x] module such that
the general fibre of the resulting map

π : SpecD // C

over a point z ∈ C is isomorphic to Spec R̂gen and the fibre over 0 is isomor-
phic to R̂spec. The next point is that the Cartan part of the multiplication
map

R̂gen,µ ⊗ R̂gen,ν // R̂gen,µ+ν

is not only sl(F0)×sl(F2)×g+(Tp,q,r)-equivariant, but also sl(F0)×sl(F2)×
g(Tp,q,r)-equivariant (so an epimorphism). The reason is as follows. It is
well-known (see [12, Chapter X]) that the homogeneous coordinate ring of
the homogeneous space G/P is a direct sum of irreducible representations
⊕λ∈ΛV (λ) of irreducible representations V (λ) of g(Tp,q,r) with Λ consisting
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of all weights of type λ(σ(µ), τ(µ), aaa). The multiplication map in this ring
is just the Cartan multiplication V (λ1) ⊗ V (λ2) −→ V (λ1 + λ2), which is
an epimorphism.
In order to compare the multiplications in the homogeneous coordinate

ring of G/P and the map R̂gen,µ ⊗ R̂gen,ν −→ R̂gen,µ+ν we need one more
fact.
The complexes K(σ, τ, t) we got in [18] as isotypic components of the

spectral sequence, before dualizing to get K∗(σ, τ, t) have another inter-
pretation in terms of Grothendieck–Cousin complex introduced by George
Kempf in [11]. The precise definitions of all the notions using in the re-
mainder of this section can be found in [12, Chapter 9].
The terms of the Grothendieck–Cousin complex are the local cohomology

modules associated to the stratification of the homogeneous space Z :=
G/P where G is the Kac–Moody group corresponding to Tp,q,r and P is the
parabolic subgroup corresponding to the simple root corresponding to the
vertex z1 (see Section 4). The homogeneous space Z has a stratification by
Schubert cells and we denote by Zi the closed subset which is a union of all
Schubert cells of codimension > i. Let V(λ(σ(µ), τ(µ), aaa) be a homogeneous
vector bundle on Z corresponding to the weight λ(σ(µ), τ(µ), aaa).

Proposition 9.2 ([11], [12, section 9.2]). — The isotypic component
K(σ, τ, t) of the spectral sequence is the beginning part of the Grothendieck–
Cousin complex

0 −→ H0
Z0/Z1

(Z,V(λ(σ(µ), τ(µ), aaa)) −→ H1
Z1/Z2

(Z,V(λ(σ(µ), τ(µ), aaa))

−→ H2
Z2/Z3

(Z,V(λ(σ(µ), τ(µ), aaa)).

Now, looking at two weights (λ(σ(µ), τ(µ), aaa) and (λ(σ(ν), τ(ν), aaa′) we
see that both the Cartan part of their multiplication in R̂gen and the multi-
plication of the elements of the kernels of Grothendieck–Cousin complexes
from Proposition 9.2 are the same because they come from multiplication
of sections on the open set Ugen which, as we noted in Remark 7.4, is just
the open Schubert cell, i.e. Z0 \ Z1.
This allows us to prove that if Tp,q,r is a Dynkin diagram, then the rings

R̂gen and R̂spec are Noetherian.
We know that the Lie algebra L(r1 + 1, F3, F1) is finite dimensional if

and only if Tp,q,r is a Dynkin diagram. In such a case all irreducible highest
weight modules for g(Tp,q,r) are finite dimensional. Therefore it is enough
to show that the semigroup of weights occurring in R̂gen is finitely gen-
erated. But this semigroup is the semigroup of the terms in our spectral
sequence which give the contribution toH0. Thus we get the set of sextuples
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(aaa,bbb, ccc, α, β, γ) with aaa ∈ Z, bbb, ccc ∈ N such that all the weights

(aaa− bbb+ ccc+ α1, . . . , aaa− bbb+ ccc+ αr3−1, aaa− bbb+ ccc),
(bbb− ccc+ β1, . . . , bbb− ccc+ βr2−1, bbb− ccc,−aaa+ bbb− ccc,

−aaa+ bbb− ccc− αr3−1, . . . ,−aaa+ bbb− ccc− α1)
(ccc+ γ1, . . . , ccc+ γr1−1, ccc, ccc− bbb, ccc− bbb− βr2−1, . . . , ccc− bbb− β1),

(0f0−r1 ,−ccc,−ccc− γr1−1, . . . ,−ccc− γ1)

are dominant. This translates to the condition that aaa > 0, so our semigroup
is finitely generated. �

Let us summarize the properties of R̂spec.

Proposition 9.3. — We have an gl(F0)× gl(F2)× g(Tp,q,r) decompo-
sition

R̂spec = ⊕µSϕ(µ)F0 ⊗ Sθ(µ)F2 ⊗ Vλ(σ(µ),τ(µ),aaa)

where Vλ is the irreducible lowest weight module of weight λ for g(Tp,q,r).
It is the highest weight representation for the opposite Borel subalgebra.
It is also irreducible. The ring R̂spec is a multiplicity free representation of
gl(F0)× gl(F2)× g(Tp,q,r). Its lattice of weights is saturated.

Remarks 9.4.
(1) The easiest way to identify the module Vλ(σ(µ),τ(µ),aaa) is as follows.

This module has a grading

Vλ(σ(µ),τ(µ),aaa) =
⊕
i>0

V
(i)
λ(σ(µ),τ(µ),aaa)

induced by the grading on g(Tp,q,r). The lowest graded component
V

(0)
λ(σ(µ),τ(µ),aaa) is the representation of GL(F3)×GL(F1) that occurs

in the GL(F2) × GL(F1) isotopic component of Ra correspond-
ing to (σ(µ), τ(µ), aaa). This identification allows also to describe
the correct GL(F3) × GL(F1) structure of higher graded compo-
nents of Vλ(σ(µ),τ(µ),aaa). The multiplication by the first component
F ∗3 ⊗

∧r1+1
F1

F ∗3 ⊗
∧r1+1

F1 ⊗ V (i)
λ(σ(µ),τ(µ),aaa)

// V (i+1)
λ(σ(µ),τ(µ),aaa)

has to be GL(F3)×GL(F1)-equivariant.
(2) I expect that the rings R̂gen are also gl(F0) × gl(F2) × g(Tp.q.r)

equivariant. In fact it is enough to check the quadratic relations
more precisely to see that they really hold in R̂gen. In every example
analyzed below it is true.
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Let us exhibit the decomposition of R̂spec explicitly. For given α, β, t we
define the weight λ(σ, τ, t) of g(Tp,q,r) as follows. We label the vertices of
Tp,q,r on the third arm by the coefficents of fundamental weights in σ, i.e.

λp+q+i = σr−1−i − σr−i
for i = 1, . . . , r − 2. We also label the vertices at the center and the first
two arms by coefficients of fundamental weights in τ , i.e.

λ0 = τp − τp+1,

λi = τp−i − τp−i+1

for 1 6 i 6 p− 1, and
λi = τi − τi+1

for i = p+ 1, . . . , p+ q − 1. Finally, we put

λp+q = aaa.

We also set t := aaa+ 1.
For a sextuple µ = (aaa,bbb, ccc, α, β, γ) with aaa > 0, as in the decomposition

of (qa)∗Fa• we define

σ(µ) := (aaa− bbb+ ccc+ α1, . . . , aaa− bbb+ ccc+ αr3−1, aaa− bbb+ ccc),
τ(µ) := (ccc+ γ1, . . . , ccc+ γr1−1, ccc, ccc− bbb, ccc− bbb− βr2−1, . . . , ccc− bbb− β1),
θ(µ) := (bbb− ccc+ β1, . . . , bbb− ccc+ βr2−1, bbb− ccc,

−aaa+ bbb− ccc,−aaa+ bbb− ccc− αr3−1, . . . ,−aaa+ bbb− ccc− α1),

ϕ(µ) := (0f0−r1 ,−ccc,−ccc− γr1−1, . . . ,−ccc− γ1).

For the formats for which the algebra is not finite dimensional we do not
have a Noetherian generic ring R̂gen. Still the multiplicity free structure of
R̂spec could be useful for applications.

Remark 9.5. — In particular we proved the conjecture from [16] stating
that the generic ring R̂gen constructed there for the format (f0, f1, f2, f3) =
(1, n, n, 1) is Noetherian. However the generators stated in [16] in that case
are not correct. See the next section for more precise analysis of this case.

10. Properties of the rings R̂gen

We start with the description of generators of the semigroup of weights of
representations in R̂spec. This will be useful when identifying the generators
of R̂gen. This semigroup is the same as the semigroup of weights of Ra.
Therefore we have.
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Proposition 10.1. — The generators of the semigroup of weights in
R̂spec are as follows

(1) α = (1i), β = γ = aaa = bbb = ccc = 0, for 1 6 i 6 r3 − 1,
(2) aaa = 1, α = β = γ = bbb = ccc = 0,
(3) β = (1j), α = γ = aaa = bbb = ccc = 0, for 1 6 j 6 r2 − 1,
(4) bbb = 1, α = β = γ = aaa = ccc = 0,
(5) γ = (1k), α = β = aaa = bbb = ccc = 0, for 1 6 k 6 r1 − 1,
(6) ccc = 1, α = β = γ = aaa = bbb = 0.

The multiplicity free property of the ring R̂spec also implies the following.

Theorem 10.2. — Assume that the ring R̂gen constructed above is
Noetherian (i.e. the graph Tp,q,r is Dynkin). Then Spec R̂gen has rational
singularities, in particular it is Cohen–Macaulay.

Proof. — As observed above the semigroup of weights of R̂spec is satu-
rated so the ring R̂spec is normal and therefore its spectrum is an affine
spherical variety. This means that R̂spec has rational singularities, by stan-
dard results on spherical varieties, see [15, Corollary 4.3.15 and the follow-
ing footnote]. Now R̂gen also has rational singularities by the old result of
Elkik [6]. �

Our next goal is to describe the (non-minimal) presentation of the ring
R̂gen. In order to do this let us recall the deformation technique of
Grosshans [8, Chapter 15].
Given an irreducible affine spherical variety X for a reductive group G,

with the coordinate ring

K[X] = ⊕λ∈ΛVλ,

where Λ is some saturated lattice in the lattice of dominant integral weights
for G, he constructed a flat deformation of X with the special fibre X0
where we also have

K[X0] = ⊕λ∈ΛVλ

but the product in K[X0] is given by the Cartan product that multiplies
two representations Vλ and Vµ into their Cartan piece Vλ+µ.
It is then known (Kostant’s theorem, see [12, Section 10.1, especially

Corollary 10.1.11]) that the relations defining K[X0] are quadratic in the
generators.
Applying this result we get

Theorem 10.3. — The ring R̂gen is generated by its subrepresentations
R̂gen,µ corresponding to the generators µ of the semigroup of weights for
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R̂spec given by Proposition 10.1, with the relations that are quadratic in
those generators. This presentation is not minimal.

The way to deal with relations is to use the following result from [18].

Proposition 10.4. — A given
∏3
i=0GL(Fi)-equivariant set W of re-

lations holds in R̂gen if and only if it vanishes when specializing to the
splitting complex G• of the format (f0, f1, f2, f3) with the generic choice
of the structure maps.

We conclude this section with the example of how one can work out the
relations effectively.

Example 10.5. — We analyze the presentation of R̂gen for the format
(1, 4, 4, 1). The graph Tp,q,r is a graph of type D4

x1 u y1

z1

We number the vertices as follows

3 2 1

4

The Lie algebra g(Tp,q,r) is so(F1 ⊕ F ∗1 ).
The weights of Proposition 9.3 are

σ(µ) = (aaa− bbb+ ccc),
τ(µ) = (ccc, ccc− bbb, ccc− bbb− β2, ccc− bbb− β1),

θ(µ) = (bbb− ccc+ β1, bbb− ccc+ β2, bbb− ccc,−aaa+ bbb− ccc),
ϕ(µ) = (−ccc).

The weight λ(σ(µ), τ(µ), aaa) is

bbb β2 β1 β2

aaa

The generators given by the Proposition 10.1. are as follows (the gener-
ators of type (1) and (5) do not exist in this case)

(2) F ∗2 ⊗ V (ω4),
(3) F2 ⊗ V (ω1),

∧2
F2 ⊗ V (ω2),

(4) V (ω3),
(6) C.
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Restricting to F1 ⊕ F ∗1 and using the convention from part (1) of Re-
mark 9.4 we get

(2) F ∗2 ⊗ [F3 ⊕
∧2

F1 ⊕ F ∗3 ⊗
∧4

F1] = (d3, p1, v2),
(3) F2 ⊗ V (ω1) = F2 ⊗ (F ∗1 ⊕F ∗3 ⊗F1) = (d2, c),

∧2
F2 ⊗ V (ω2) do not

give new generators,
(4) V (ω3) = (F1 ⊕ F ∗3 ⊗

∧3
F1) = (a2, p

′
1),

(6) C = (a1).
Here d3, d2, d1 are differentials in F•, a2, a1 are the Buchsbaum–Eisenbud

multipliers, p1 :
∧2

F1 −→ F2 is the second structure map, c : F1 ⊗ F2 −→
F3 and p′1 :

∧3
F1 −→ F3 are graded components of multiplication in F•,

v2 :
∧4

F1 −→ F2 is the structure map coming from the comparison of F•
and the Koszul complex on a2 (see the next section).
We know that the relations are quadratic, so let us look at them in order.

For the remainder of this consideration we skip the powers of representa-
tion F3.

There are four basic representations (the representation of type (6) just
adds the extra variable a1). They are:

F ∗2 ⊗ V (ω4), F2 ⊗ V (ω1), V (ω3) and
2∧
F2 ⊗ V (ω2).

Let us look at the quadratic relations we get.
In degree (2, 0, 0, 0) we have

S2(F ∗2 ⊗ V (ω4)) =
2∧
F ∗2 ⊗ V (ω2)⊕ S2F

∗
2 ⊗ [V (2ω4)⊕ C].

The first summand is the second representation of type (3). In the second
summand the first part is a Cartan piece. The second part gives relation
which is the factorization d3v2 = S2(p1).
The next case of degree (1, 1, 0, 0) will be considered in some detail. We

look at the relations of type F ∗2 ⊗ V (ω4) ⊗ F2 ⊗ V (ω1). We have a tensor
product decomposition V (ω4) ⊗ V (ω1) = V (ω1 + ω4) ⊕ V (ω3). Of course
we also have F ∗2 ⊗ F2 = adj(F2) ⊕ C. Out of four representations in the
tensor product, two (adj(F2)⊗ V (ω1 +ω4) and C⊗ V (ω3)) are in R̂gen (as
a Cartan piece and the generators of type (4)).
The remaining two representations form relations. Indeed we see from

that representations of this type do not occur in R̂gen.
The representation C ⊗ V (ω1 + ω4) consists of relations that can be

described as follows. The representation V (ω1)⊗V (ω4) = (F ∗1 +F1)⊗ (C+∧2
F1 +

∧4
F1), with the subrepresentation V (ω3) = F1 +

∧3
F1. The factor

has four components: F ∗1 (giving relation d2d3 = 0), S1,1,0,−1F1 +S1,0,0,0F1
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(giving relations coming from the factorization d3c = d2p1±x), S2,1,0,0F1 +
S1,1,1,0F1 (giving the relation between d2v2 and cp1), and S2,1,1,1F1 (giving
the relation cv2).
The most interesting are the relations from the representation adj(F2)⊗

V (ω3). They are not readily seen from the relations of Ra.
We use Proposition 10.4. Taking the splitting resolution in the form

d3 =


0
0
0
1

 , d2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , d1 =
[
0 0 0 1

]

and denoting {e1, e2, e3, e4} a basis in F1, {f1, f2, f3, f4} a basis in F2, g
the basis element in F3, the generic multiplication is given by

e1 · e2 = b12f4, e1 · e3 = b13f4, e2 · e3 = b23f4,

e1 · e4 = −f1 + b14f4, e2 · e4 = −f2 + b24f4, e3 · e4 = −f3 + b34f4

where bi,j are variables. One calculates easily that

e1 · f1 = 0, e1 · f2 = −b12g, e1 · f3 = −b13g, e1 · f4 = 0,
e2 · f1 = b12g, e2 · f2 = 0, e2 · f3 = −b23g, e2 · f4 = 0,
e3 · f1 = b13g, e3 · f2 = b23g, e3 · f3 = 0, e3 · f4 = 0,
e4 · f1 = −b14g, e4 · f2 = −b24g, e4 · f3 = −b34g, e4 · f4 = g.

Moreover we have the multiplication e1e2e3 = 0, e1e2e4 = b1,2g, e1e3e4 =
b1,3g, e2e3e4 = b2,3g. Finally we have the components of v2 to be equal to
(v2)1 = b2,3, (v2)2 = −b1,3, (v2)3 = b1,2, (v2)4 = b1,2b3,4−b1,3b2,4 +b1,4b2,3.
The relations corresponding to C⊗ V (ω1 + ω4) involve the polynomials

of the type

(v2)4(d2)1,1 = p4
23c

1
4 − p4

24c
1
3 + p4

34c
1
2

corresponding to the weight vector f∗4 ⊗f1⊗e2∧e3∧e4 in adj(F2)⊗
∧3

F1 ⊂
adj(F2)⊗ V (ω3).
Using Proposition 10.4 we can prove these relations are satisfied. After

specializing we get on both sides b12b34 − b13b24 + b14b23.
Relations of degree (1, 0, 1, 0) form the subrepresentation F ∗2 ⊗ V (ω1)

inside of F ∗2 ⊗ V (ω4) ⊗ V (ω3). The first component F ∗2 ⊗
∧3

F1 contains
the commutativity relations of type p1a2 = p′1d3. The second component
F ∗2 ⊗ S2,1,1,1F1 contains the equalities of type p1p

′
1 = v2a2.
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Relations of degree (1, 0, 0, 1) are a subrepresentation in

F ∗2 ⊗ V (ω4)⊗
2∧
F2 ⊗ V (ω2)

= [S1,0,0,0F2 ⊕ S1,1,0,−1F2]⊗ [V (ω2 + ω4)⊕ V (ω1 + ω3)⊕ V (ω4)].

Only S1,1,0,−1F1⊗V (ω2 +ω4) survives in the ring R̂gen. The relations come
from the relations in degree (1, 1, 0, 0) by multiplying by F2⊗V (ω1). Indeed,
we have that V (ω1 +ω4)⊗V (ω1) maps epimorphically onto V (ω4)⊗V (ω2)
and V (ω3)⊗ V (ω1) maps onto V (ω1 + ω3) + V (ω4).
Relations of degree (0, 2, 0, 0) occur in

S2(F2 ⊗ V (ω1)) = S2,0,0,0F2 ⊗ [V (2ω1) + C]⊕ S1,1,0,0F2 ⊗ V (ω2)

so only the representation S2,0,0,0F2 ⊗ C is a relation. This is a relation of
the form

4∑
i=1

(d2)i,jck,i +
4∑
i=1

(d2)i,kcj,i

which can be checked by restricting to the splitting case.
Relations of degree (0, 1, 1, 0) occur in

F2 ⊗ [V (ω1 + ω3)⊕ V (ω4)]

and only F2⊗V (ω4) give the relations. Three components are F2⊗C (giving
the relation a2d2 = 0), F2⊗

∧2
F1 (giving the relations of type d2p

′
1 + ca2),

and F2 ⊗
∧4

F1 (giving the relation of type cp′1).
Relations of degree (0, 1, 0, 1) occur in

[S2,1,0,0F2 ⊕ S1,1,1,0F2]⊗ [V (ω1 + ω2)⊕ V (ω3 + ω4)⊕ V (ω1)].

The representations surviving in the ring are

S2,1,0,0F2 ⊗ V (ω1 + ω2), S1,1,1,0F2 ⊗ V (ω3 + ω4).

The relations come from the Cauchy formula (as
∧3

V (ω1) = V (ω3 + ω4)
and S2,1V (ω1) = V (ω1 + ω2) + V (ω1)) and from multiplying the relation
of degree (0, 2, 0, 0) by F2 ⊗ V (ω1).
Relations of degree (0, 0, 2, 0) occur in

S2V (ω3) = V (2ω3)⊕ C

and only C gives a relation which is of the type a2p
′
1, checked by restricting

to the splitting case.
Relations of degree (0, 0, 1, 1) occur in

2∧
F2 ⊗ [V (ω2 + ω3)⊕ V (ω1 + ω4)⊕ V (ω3)]
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and two representations are in the relations. They come from multiplying
the relations of degree (0, 1, 1, 0) by F2 ⊗ V (ω1).
Relations of degree (0, 0, 0, 2) occur in

[S2,2,0,0F2 ⊕ S1,1,1,1F2]⊗ [V (2ω2)⊕ V (2ω1)⊕ V (2ω3)⊕ V (2ω4)]
⊕ [S2,1,1,0F2 ⊗ [V (ω1 + ω3 + ω4)⊕ V (ω2)].

The surviving representations are S2,2F2 ⊗ V (2ω2), S2,1,1,0F2 ⊗ V (ω1 +
ω3 + ω4) The relations involving S2,2F2 and S2,1,1F2 come from the re-
lations involving Cauchy formula and the relations of degrees (0, 2, 0, 0)
and (0, 1, 0, 1). The relations involving S1,1,1,1F2 come from the fact that∧4

V (ω1) = V (2ω3) + V (2ω4) and in the ring R̂gen S1,1,1,1F2 occurs only
with V (ω3).

We conclude this example with the comment on the action of gl(F2) ×
gl(F0)×g(Tp,q,r) on R̂gen. The lowering operators for the action of g(Tp,q,r)
are the derivations acting on R̂gen, forming the algebra L. The subring of
constants of these derivations is the ring Ra. In each representation

Sθ(µ)F2 ⊗ Sϕ(µ)F0 ⊗ V (λ(σ(µ), τ(µ), a)

it picks the lowest component with respect to the induced grading on the
module V (λ(σ(µ), τ(µ), a). Let us consider the subring spanned by the
highest graded components. Recall that on the generators we had

(1) F ∗2 ⊗ [F3 ⊕
∧2

F1 ⊕ F ∗3
∧4

F1] = (d3, p1, v2),
(2) F2 ⊗ V (ω1) = F2 ⊗ (F ∗1 ⊕F ∗3 ⊗F1) = (d2, c),

∧2
F2 ⊗ V (ω2) do not

give new generators,
(3) V (ω3) = (F1 ⊕ F ∗3 ⊗

∧3
F1) = (a2, p

′
1),

(4) C = (a1).

So our subring contains v2, c, p
′
1 and a1. Let us look at the sequence of

maps:

∧4
F1 ⊗ R̂gen

v2 // F2 ⊗ R̂gen
c // F ∗1 ⊗ R̂gen =

∧3
F1 ⊗ R̂gen

p′1 // F3 ⊗ R̂gen.

The relations described above show this is a complex. Moreover, the
structure map p1 of this complex is our map p1. So the situation becomes
self-dual. The resulting differential operators give the raising operators for
the action of g(Tp,q,r). This is the simplest way to see that in this case R̂gen
indeed carries the action of gl(F2)× gl(F0)× g(Tp,q,r) in this case.
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We conclude this section with some remarks on the expected generators
of the ring R̂gen. Before we start let us recall certain fact about the rep-
resentations of g(Tp,q,r). Let us use the labeling on vertices by the labels
xi, yj , zk, u. We will use the convention that u = xp = yq = zr. For a given
vertex v we denote V (ωv) the fundamental representation of g(Tp,q,r) cor-
responding to the weight ωv which has label 1 at v and label 0 at all other
vertices.

Proposition 10.6. — For each i (1 6 i 6 p) the representation
V (ωxp−i) occurs in

∧i
V (xp−1). Similar statement is true for vertices yj

and zk.

Proof. — For the root systems of finite type this can be done by LiE
computer algebra system. The general case follows from the fact that the
highest weight in

∧i
V (ωxp−1) is ωxp−i . �

Remark 10.7. — Let us look more closely at the generators of R̂gen
given in Proposition 10.1.

(1) The generators of type (1) for i = 1 (or of type (2) if r3 = 1) give
is F ∗2 ⊗ V (ωzr−1). The first graded component of this representa-
tion (when considered as the representation of g0(Tp,q,r), with the
grading coming from the grading on g(Tp,q,r)), is the map d3. We
denote the others by pi. They are indeed the maps pi, all maps pi
appear there. The later components are also tensors corresponding
to maps pi occurring for the bigger formats (so for our format they
sometimes do not have a defect). This will be clear in the examples.
The maps of type (1) for higher i should not give new generators:
because of the Proposition 10.6 we expect these to be the minors
of the generators of type (1) with i = 1.

(2) The generators of type (2): This is
∧r2 F2 ⊗ V (ωz1). These should

also be the minors of generators of type (1) with i = 1.
(3) The generators of type (3) for j = 1 give is F2⊗V (ωyq−1). The first

graded component of this representation (when considered as the
representation of g0(Tp,q,r), with the grading coming from the grad-
ing on g(Tp,q,r)), is the map d2. We denote the others by w0, w1, . . . .
In the most interesting case of r1 = 1 the tensor w0 is F2⊗F ∗3 ⊗F2
which gives part of the multiplicative structure on the resolution.
For higher j the maps of type (3) should not give new generators:
because of the Proposition 10.6 we expect these to be the minors
of the generators of type (3) with j = 1.
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(4) Here we get the representation V (ωx1). In the most interesting case
r1 = 1 of resolutions of the cyclic modules we get the first compo-
nent to be a2 and the second to be the tensor F ∗3 ⊗

∧3
F1 which is

the map p′1 giving the other part of the multiplicative structure on
the resolution. The other components are denoted u0, u1, . . . , with
u0 = p′1.

(5) Again the generators for higher k should just be the minors in the
generators for k = 1. For k = 1 we get a representation F ∗0 ⊗
V (ωxp−1). these generators do not exist for r1 = 1.

(6) We get the representation
∧r1 F ∗0 ⊗ V (ωx1). In the case r1 = 1 this

is just the map a1. Otherwise this is the first component of our
representation.

11. Examples

This section is devoted to presenting the explicit descriptions of the
generic rings R̂gen in the simplest cases. We do this for the diagrams Tp,q,r
of types A and D.

11.1. The graph Tp,q,r is of type An

Formally there are three such cases: p− 1 = 0 = r1, q − 1 = 0 = r2 − 2,
r− 1 = 0 = r3. The first and third cases are not legitimate, so we consider
the second. This means we have

dimF3 = r3, dimF2 = r3 + 2, dimF1 = r1 + 2, dimF0 = r1.

Before we go further let us make some remarks about the resolutions of
this type.

Consider some free minimal acyclic complex

0 // G3
d3 // G2

d2 // G1
d1 // G0

over some Noetherian ring S, with

dimG3 = r3, dimG2 = r3 + 2, dimG1 = r1 + 2, dimG0 = r1,

rank(d3) = r3, rank(d2) = 2, rank(d1) = r1.

There is a structure map p1 :
∧r1+1

F1 −→ F2 (the second structure map
of Buchsbaum–Eisenbud, called b in [3]) and this map can be extended to
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the comparison map of complexes

0 // G3
d3 // G2

d2 // G1
d1 // G0

0 // ∧r1+2
G1 ⊗G∗0

d∗1 //

p′1

OO

∧r1+1
G1

q1 //

p1

OO

G1
d1 //

1
OO

G0

1
OO

What happens is that after adding the coefficients of p1 to the generic
ring, the coefficients of p′1 are added when taking the ideal transform with
respect to I(d3).

Now we come back to the generic ring we constructed.
The diagram Tp,q,r looks like this

xp−1 xp−2 . . . x1 u

z1

··
·

zr−2

zr−1

with the distinguished root z1.
The algebra g(Tp,q,r) can be identified with sl(F3 ⊕

∧r1+1
F1) =

sl(F3 ⊕ F ∗1 ).
Proposition 9.3 reduces to

R̂gen = ⊕µSϕ(µ)F0 ⊗ Sθ(µ)F2 ⊗ Sλ(σ(µ),τ(µ),aaa)

(
F3 ⊕

r1+1∧
F1

)

where for a sextuple µ = (aaa,bbb, ccc, α, β, γ) with aaa > 0, as in the decomposition
of (qa)∗Fa• we define

σ(µ) := (aaa− bbb+ ccc+ α1, . . . , aaa− bbb+ ccc+ αr3−1, aaa− bbb+ ccc),
τ(µ) := (ccc+ γ1, . . . , ccc+ γr1−1, ccc, ccc− bbb, ccc− bbb− β1),

θ(µ) := (bbb− ccc+ β1, bbb− ccc,−aaa+ bbb− ccc,
−aaa+ bbb− ccc− αr3−1, . . . ,−aaa+ bbb− ccc− α1),

ϕ(µ) := (0f0−r1 ,−ccc,−ccc− γr1−1, . . . ,−ccc− γ1).
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The weight λ(σ(µ), τ(µ), aaa) is the weight which corresponds to labeling
the Dynkin diagram Tp,q,r as follows

τ1 − τ2 τ2 − τ3 . . . τp−1 − τp τp − τp+1

aaa

σr3−1 − σr3

··
·

σ2 − σ3

σ1 − σ2

The generators of the generic ring occur as the representations corre-
sponding to the generators of the semigroup of highest weights of R̂gen.
Some of them might be redundant, as the multiplication in R̂gen is not a
Cartan multiplication.
The representations giving the generators of the generic ring are as fol-

lows. We number them according to Proposition 10.1.
(1) with i = 1, i.e. d3, i.e. F3 ⊗ F ∗2 corresponding to α being the

first fundamental weight, a = 0. But this representation is really
F ∗2 ⊗ (F3⊕

∧r1+1
F1), so it has coordinates (d3, p1). If α is another

fundamental representation, we get just the minors of the entries of
the matrix (d3, p1),

(2) aaa = 1, α = β = γ = 0, this corresponds to r3 × r3 minors of the
matrix (d3, p1).

(3) with j = 1, i.e. β1 = 1, aaa = 0, α = γ = 0. This is the representation
F2⊗

∧r3+1(F3⊕
∧r1+1

F1) which gives the (r3 +1)×(r3 +1) minors
of the matrix (d3, p1),

(4) bbb = 1, aaa = ccc = α = β = γ = 0, this representation is redundant, as
it corresponds to (r3 + 2)× (r3 + 2) minors of (d3, p1),

(5) with k = 1, i.e. aaa = 0, α = β = 0, γ is the first fundamental
representation. We get the representation F ∗0 ⊗ (F1 ⊕ F ∗3 ⊗

∧3
F1).

The first part corresponds to d1 and the second part to the structure
map p′1 : F ∗0 −→ F3 constructed above. The higher fundamental
representations γ will just give the minors of the two block matrix
(d1, p

′
1).

(6) This is just the representation a1.
We proved the following statement.
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Theorem 11.1. — The generic ring R̂gen for the resolution of the for-
mat (r3, r3 + 2, r1 + 2, r1) is generated as an algebra over Ra by the entries
of the structure maps a3, a2, a1 and the structure maps p1, p

′
1.

The defining relations for the generic ring include the relations coming
from Ra and the commutative diagram relating p1 and p′1 given above.
They will be described in detail in a subsequent paper.
A very interesting special case occurs when r1 = 1.

Theorem 11.2. — The generic ring R̂gen for the resolution of the for-
mat (r3, r3 +2, 3, 1) is a polynomial ring on the entries of the map (d3, p1) :
F3 ⊕ F ∗1 −→ F2 and the variable a1.

Proof. — We know by the second structure theorem of Buchsbaum and
Eisenbud that in this case the map q1 = a2 is expressed through d3 and
p1. The only thing to show is to see that the map p′1 is expressed through
d3 and p1. Looking at the diagram defining p′1 is not difficult to see that in
the polynomial ring

Sym((F3 ⊕ F ∗1 )⊗ F2)⊗ Sym(F0)

the entries of the map p′1 will span the representation
r3−1∧

F3 ⊗
r3+2∧

F ∗2 ⊗
3∧
F ∗1 ⊂

r3−1∧
F3 ⊗

r3−1∧
F ∗2 ⊗

3∧
F ∗1 ⊗

3∧
F ∗2

in bidegree (r3 − 1, 3). So the generic ring R̂gen is generated by the entries
of d3 and p1. We thus have

R̂gen = Sym((F3 ⊕ F ∗1 )⊗ F2)⊗ Sym(F0)

as one can see easily that there are no relations satisfied by d3 and p1 that
vanish on any specialization to an acyclic complex. Alternatively one could
just prove using the exactness criterion of Buchsbaum and Eisenbud [2]
that the complex of length 3 with differentials d3, d2, d1 is acyclic over
the polynomial ring. Also, one can identify the decomposition of R̂gen to
the irreducible representations with the one we get for the polynomial ring
using Cauchy formulas.
Just for completeness, let us give the formulas giving the differential d1

in terms of d3, p1. Denoting the matrix of p1 : F ∗1 −→ F2 by

B =


b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
. . . . . . . . .

br3+2,1 br3+2,2 br3+2,3

 .
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Let us also denote

∆ =


0 ∆1,2 ∆1,3 . . . ∆1,r3+2

−∆1,2 0 ∆2,3 . . . ∆2,r3+2
. . . . . . . . . . . . . . .

−∆1,r3+2 −∆2,r3+2 −∆3,r3+2 . . . 0


the skew-symmetric matrix whose entry ∆i,j is the maximal minor of the
matrix of d3 wth the i-th and j-th row omitted. We have

d1 = (a1x1, a1x2, a1x3)

where the entries x1, x2, x3 are given by the matrix equation of skew-
symmetric matrices  0 x3 −x2

−x3 0 x1
x2 −x1 0

 = BT∆B �

Remark 11.3. — The case covered by Theorem 11.2 was already ob-
served by Buchsbaum and Eisenbud in Section 7 of [3]. Notice that the
present approach gives this result and the more general Theorem 11.1 from
our main result just by analyzing the decomposition of R̂gen into irreducible
representations, without any additional considerations.

11.2. The graph Tp,q,r is of type Dn

We have three possible cases.

(a) p = q = 2. These are resolutions of the format (1, 4, r3 + 3, r3). The
graph Tp,q,r looks as follows

x1 u y1

z1

··
·

zr−2

zr−1

with the distinguished root z1. The corresponding Lie algebra is

g(Tp,q,r) = so(2(r3 + 3)).
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The orthogonal space in question is

U := F3 ⊕
2∧
F1 ⊕ F ∗3 .

The generic ring is given by

R̂gen = ⊕µSϕ(µ)F0 ⊗ Sθ(µ)F2 ⊗ Vλ(σ(µ),τ(µ),aaa)

(
F3 ⊕

2∧
F1 ⊕ F ∗3

)
where Vλ denotes the irreducible representation of the special orthogonal
Lie algebra of highest weight λ.

We have

σ(µ) = (aaa− bbb+ ccc+ α1, . . . , (aaa− bbb+ ccc+ αr3−1, (aaa− bbb+ ccc),
τ(µ) = (ccc, ccc− bbb, ccc− bbb− β2, ccc− bbb− β1),

θ(µ) = (bbb− ccc+ β1, bbb− ccc+ β2, bbb− ccc,−aaa+ bbb− ccc,
−aaa+ bbb− ccc− αr3−1, . . . ,−aaa+ bbb− ccc− α1),
ϕ(µ) = (−ccc).

The weight λ(σ(µ), τ(µ), aaa) is given by labeling

b β2 β1 − β2

aaa

σr3−1 − σr3

··
·

σ2 − σ3

σ1 − σ2

We analyze the generators according to Proposition 10.1.
(1) with i = 1, α = (1, 0r3−2). We get the representation F ∗2 ⊗ (F3 ⊕∧2

F1 ⊕ F ∗3 ⊗
∧4

F1). The first component is just d3, the second is
p1, the third one is p2. It comes from the following factorization.
The usual comparison map

0 // G3
d3 // G2

d2 // G1
d1 // R

R =
∧4

G1
δ // ∧3

G1

p′1

OO

δ // ∧2
G1

p1

OO

δ // G1

1

OO

δ // R

1

OO
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gives a cycle p′1δ which can be interpreted as a cycle

0 // G3
d3 // G2

d2 // G1
d1 // R

G∗3

u2

OO

which factorizes to p2 : G∗3 −→ G2 which is the third component of
our representation. Alternatively, the third component is just the
map p2 defined in Section 7.

(2) These representations do not give new generators because all fun-
damental representations of so(2(r3 + 3)) up to the r3-rd one are
the exterior powers of U .

(3) We get (using part (1) of Remark 9.4)

F2 ⊗

⊕
s>0

2s∧
(F ∗3 )⊗

( 4∧
F1

)⊗s
⊗ F ∗1 ⊕

⊕
s>0

2s+1∧
F ∗3 ⊗

4∧
F⊗s1 ⊗ F1

 .
Note that we see there the representation F2⊗F ∗1 corresponding to
d2 and the representation F1 ⊗ F2 ⊗ F ∗3 corresponding to multipli-
cation on the resolution.

(4) This gives another half-spinor representation

C⊗

⊕
s>0

2s∧
(F ∗3 )⊗

( 4∧
F1

)⊗s
⊗ F1 ⊕

⊕
s>0

2s+1∧
F ∗3 ⊗

4∧
F⊗s+1

1 ⊗ F ∗1

 .
(5) These representations do not exist as r1 = 1,
(6) This representation does not give new generators.

We conclude

Theorem 11.4. — The generic ring R̂gen for the format (1, 4, r3 +3, r3)
is generated over Ra by the entries of the representations of types (1),
(3), (4).

(b) p = r = 2. These are resolutions of the format (1, r2 + 1, r2 + 1, 1).
The graph Tp,q,r looks like

x1 u y1 G1 · · · yq−1

z1

with the distinguished root z1.
The Lie algebra

g(Tp,q,r) = so(2(r2 + 1)).
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The orthogonal space in question is

U := F1 ⊕ F ∗1 .

The formulas from Section 9 reduce to

R̂gen = ⊕µSϕ(µ)F0 ⊗ Sθ(µ)F2 ⊗ Vλ(σ(µ),τ(µ),aaa)(F1 ⊕ F ∗1 )

where Vλ denotes the irreducible representation of the special orthogonal
Lie algebra of highest weight λ. Here we have

σ(µ) := (aaa− bbb+ ccc),
τ(µ) := (ccc, ccc− bbb, ccc− bbb− βr2−1, . . . , ccc− bbb− β1),

θ(µ) := (bbb− ccc+ β1, . . . , bbb− ccc+ βr2−1, bbb− ccc,−aaa+ bbb− ccc),
ϕ(µ) := (−ccc).

The weight λ(σ(µ), τ(µ), a) corresponds to the labeling of the graph Tp,q,r
given as follows

τ1 − τ2 τ2 − τ3 τ3 − τ4 · · · τq+1 − τq+2

aaa

We analyze the generators according to Proposition 10.1.

(1) These representations do not exist as r3 = 1,
(2) This is a representation F ∗2 ⊗ V (ωn−1) where V (ωn−1) is half-

spinor representation of so(F1 ⊕ F ∗1 ). V (ωn−1) can be identified
as ⊕s>0F

∗
3
⊗s ⊗

∧2s
F1.

(3) with j = 1, this gives a multiplication c : F1 ⊗ F2 −→ F3 on our
resolution,

(4) This gives another half-spinor representation V (ωn) of so(F1⊕F ∗1 )
which can be identified as ⊕s>0F

∗
3
⊗s ⊗

∧2s+1
F1.

(5) These representations do not exist as r1 = 1,
(6) This representation does not give new generators.

Let us now describe how the representations from 2), 4) can be con-
structed from explicit cycles. This idea goes back to Bruns.

We construct a sequence of structure maps as follows. We identify G3
with R so we drop representations of G3 in the remainder. Let

0 // R
d3 // G2

d2 // G1
d1 // R
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be an acyclic complex over a Noetherian ring R. We have a comparison
map from the Koszul complex

0 // R
d3 // G2

d2 // G1
d1 // R

. . . // ∧4
G1

δ // ∧3
G1

p′1

OO

δ // ∧2
G1

p1

OO

δ // G1

1

OO

δ // R

1

OO

Since d3p
′
1δ = 0 we have p′1δ = 0. This can be interpreted as a relation

between the entries of d1, more precisely, as a cycle u2 in the diagram,
which can be then completed as follows.

0 // R
d3 // G2

d2 // G1
d1 // R

. . . // ∧6
G1

δ // ∧5
G1

v′2

OO

δ // ∧4
G1

v2

OO

u2 // G1

1

OO

δ // R

1

OO

Since d3v
′
2δ = 0 we have v′2δ = 0. This can be interpreted as a relation

between the entries of d1, more precisely, as a cycle u3 in the diagram,
which can be then completed as follows.

0 // R
d3 // G2

d2 // G1
d1 // R

. . . // ∧8
G1

δ // ∧7
G1

v′3

OO

δ // ∧6
G1

v3

OO

u2 // G1

1

OO

δ // R

1

OO

In this way we construct the sequence of structure maps vi :
∧2i

G1 −→
G2 and v′i :

∧2i+1
G1 −→ R.

We define v1 := p1, v′1 := p′1.
We have proved

Theorem 11.5. — The generic ring R̂gen for the format (1, r2 + 1, r2 +
1, 1) is generated over Ra by the entries of the maps c, vi, v′i.

Remarks 11.6.
(1) This case was analyzed in [16, section 4]. In fact we conjectured

there (Conjecture 4.4) that the generic ring for that format is Noe-
therian and we proposed the generators, (which did not include the
v′i’s) at the same time giving the elementary interpretation of vi’s.
In [16] we worked assuming we automatically add to R̂gen the frac-
tions from ideal transforms with respect to I(d3). What happens
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is that adding the map vi automatically implies that in the ideal
transform of the corresponding ring the entries of v′i appear.

(2) The maps vi can be thought of as parts of higher maps pi existing
for higher formats. Indeed, it is a pattern across all formats that
generators called in Proposition 10.1 of type (2) (or of type (1)
if rank of F3 is equal to 1) involve the higher structure maps of
type pi.

(c) q = r = 2. These are resolutions of the format (r1, r1 + 3, 4, 1).

xp−1 xp−2 · · · x1 u y1

z1

with the distinguished root z1. The Lie algebra

g(Tp,q,r) = so(2(r1 + 3)).

The orthogonal space in question is

U := F1 ⊕ F ∗1 .

The generic ring is given by

R̂gen = ⊕µSϕ(µ)F0 ⊗ Sθ(µ)F2 ⊗ Vλ(σ(µ),τ(µ),aaa)(F1 ⊕ F ∗1 )

where Vλ denotes the irreducible representation of the special orthogonal
Lie algebra of highest weight λ.

σ(µ) := (aaa− bbb+ ccc),
τ(µ) := (ccc+ γ1, . . . , ccc+ γr1−1, ccc, ccc− bbb, ccc− bbb− β2, ccc− bbb− β1),

θ(µ) := (bbb− ccc+ β1, bbb− ccc+ β2, bbb− ccc,−aaa+ bbb− ccc),
ϕ(µ) := (−ccc,−ccc− γr1−1, . . . ,−ccc− γ1).

The weight λ(σ(µ), τ(µ), aaa) is given by the labeling

γ1 − γ2 γ2 − γ3 . . . γr1−1 b β2 β1 − β2

aaa

We analyze the generators according to Proposition 10.1.
(1) These representations do not exist as r3 = 1,
(2) This is a representation F ∗2 ⊗ V (ωr1+2) where V (ωr1+2) is half-

spinor representation of so(F1⊕F ∗1 ). V (ωr3+2) can be identified as
⊕s>0F

∗
3
⊗s ⊗

∧2s
F1.
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(3) with j = 1, this gives a representation F2 ⊗ V (ωr3+3), where
V (ωr3+3) is another half-spinor representation of so(U). It can be
identified as ⊕s>0F

∗
3
⊗s ⊗

∧2s+1
F1.

(4) This gives the representation
∧r1−3(F1 ⊕ F ∗1 ).

(5) This, for k = 1, gives a representation F ∗0 ⊗ (F1 ⊕ F ∗1 ). Its first
component is d1.

(6) This representation does not give new generators.

We finish this section with a remark on the resolutions of cyclic mod-
ules. In such cases the traditional approach to analyzing these resolutions
was through an associative, graded commutative multiplicative structure
(proved in [4]). The following result, which can be established by direct
calculation, allows to see the tensors corresponding to this structure in the
generic ring R̂gen.

Proposition 11.7. — Let us restrict to a format (1, f1, f2, f3). In the
ring R̂gen we have three critical representations corresponding to tensors
giving maps d3, d2, a2 in Ra. They are (compare Remark 10.7): F ∗2 ⊗
V (ωzr−1), F2⊗V (ωyq−1) and C⊗V (ωx1 . The initial graded components V (0)

in these representations give (as explained in Remark 9.4) the representa-
tions F ∗2 ⊗ F3, F2 ⊗ F ∗1 and F1 respectively. The next graded components
V (1) give the representations F ∗2 ⊗

∧2
F1, F2 ⊗ F ∗3 ⊗ F1 and F ∗3 ⊗

∧3
F1

respectively, so we see three tensors corresponding to the multiplicative
structure.

12. Applications and symmetries

In this section we look at the possibilities of extending the structure
theorems to perfect ideals of codimension three. First we characterize the
formats (f0, f1, f2, f3) of Euler characteristic zero for which the minimal
complexes of a given format exist over a Noetherian local ring. Throughout
the section (R,m) will denote a local ring satisfying depth(m) > 3.
We start with the perfect complexes resolving cyclic modules. Thus we

want to characterize the pairs (n, l) such that there exist the acyclic com-
plexes

0 // Rn // Rn+l // Rl+1 // R

resolving the cyclic modules R/I with depth(I) = 3.
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Theorem 12.1. — Assume that one of the following conditions is sat-
isfied

(1) l > 3, n > 2,
(2) n = 1, l is even, l > 0.
Then there exists a minimal acyclic complex

0 // Rn // Rn+l // Rl+1 // R

resolving a cyclic module R/I with depth(I) = 3.

Proof. — We recall the basic construction involving linkage. Let

0 // Rn // Rn+l // Rl+1 // R

be an acyclic complex resolving a cyclic module R/I with depth(I) = 3. Let
(x1, x2, x3) be a regular sequence contained in I. We have the comparison
map from the Koszul complex on (x1, x2, x3) to our complex which gives
rise to the diagram

0 // Rn // Rn+l // Rl+1 // R

0 // R //

ϕ3

OO

R3 //

ϕ2

OO

R3 //

ϕ1

OO

R.

1

OO

The dual of the mapping cone of the map ϕ then resolves R/J where
J := I : (x1, x2, x3) is another ideal of depth 3.
We can now make the following construction. Taking x1 to be among the

minimal generators of I, and x2, x3 to be in msI for such large s that x2
and x3 are not among the minimal generators of I and the maps ϕ2 and ϕ3
have matrix entires in m. Then the dual of the mapping cone C(ϕ)• gives
a minimal complex

0 // Rl // Rn+l+2 // Rn+3 // R.

This means that the existence of our complex for the pair (n, l) implies
that similar complex exists for the pair (l, n+ 2).
Now we perform the induction on l + n. Denoting the set of pairs (n, l)

satisfying the conditions a), b) by P, we see that if for a given (n, l) the pair
(l − 2, n) ∈ P then by induction we establish the existence of the complex
in question for the pair (n, l).

Next we notice that if n > 4, l > 4 the pair (l− 2, n) is indeed in P. This
means we need to deal with the remaining cases to provides the base for
the induction.
We next observe that the case l = 3, i.e. the case of an almost complete

intersection is resolved in [4].
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Next we deal with the case n = 3.
We recall from [4] that by using linkage argument and the structure

theorem for Gorenstein ideals of codimension 3 we can construct for any
t > 2 the minimal acyclic complex

0 // Rt // Rt+3 // R4 // R

resolving R/J for a perfect ideal J .
Taking a regular sequence (x1, x2, x3) in J such that x1 is among mini-

mal generators of J and x2, and x3 are not, with the maps ϕ2, ϕ3 in the
comparison map are minimal (this can be achieved by taking x2, x3 ∈ msJ

for large s), we construct the minimal complex

0 // R3 // Rt+5 // Rt+3 // R

satisfying the conditions of theorem for n = 3.
Finally to deal with the case n = 2 we again start with the resolution

0 // Rt // Rt+3 // R4 // R

resolvingR/J for a perfect ideal J . We choose a regular sequence (x1, x2, x3)
in J in such way that the first two elements are among the minimal gener-
ators of J , but the third is in the msJ for large s.

We can also arrange that the Koszul relation between x1, x2 is not a
minimal generator of the syzygy module. This follows from the classification
of the multiplicative structures on the resolutions of length 3 (see [18]).
Then the dual of the mapping cone of the comparison map gives a minimal
complex of the type

0 // R2 // Rt+4 // Rt+3 // R.

This takes care of the case n = 2. The case n = 1 is the result of Buchsbaum
and Eisenbud [4]. �

Corollary 12.2. — Let R be a local ring of depth > 3. Let (f0, f1,

f2, f3) be the format of Euler characteristic zero. Assume that we have
r2 > 1. Then there exists a minimal acyclic free resolution of the format
(f0, f1, f2, f3) over R.

Proof. — Let us handle the case r1 = 1 first. By our assumption and
Theorem 12.1 the required complex exists unless r3 = 1, r2 is odd. This
means we need to construct the minimal acyclic complexes

0 // R // R2t // R2t // R.
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We start with R = Z[X1, . . . , X2t] and we take the ideal J generated by
monomials J = (p1, . . . , p2t) where

p1 = X1 . . . X2t−2, p2 = X2 . . . X2t−1, pi = X1 . . . X2t

Xi−2Xi−1

for 3 6 i,6 2t.
One sees easily (using Buchsbaum–Eisenbud exactness criterion [2]) that

the free resolution of R/J is given by the complex

0 // R(−2t) // R2t(−2t+ 1) // R2t(−2t+ 2) // R

where the differentials are given by the matrices

d3 =


X2t
X1
X2
. . .

X2t−1



d2 =


X2t−1 0 0 . . . 0 −X2t
−X1 X2t 0 . . . 0 0

0 −X2 X1 . . . 0 0
. . .

0 0 0 . . . −X2t−1 X2t−2


d1 = (p1, p2, . . . , p2t).

To specialize to an arbitrary ring R we just need to find a sequence of
elements x1, . . . , x2t in m such that each triple of elements xi, xj , xk forma
a regular sequence, and specialize Xi to xi. The pecialized complex will
still be acyclic by the exactness criterion [2].
To deal with the formats with r1 > 1 we take the complex corresponding

to the triple (r3, r2, 1) and add to it r1 − 1 copies of the complex 0 −→
R

x−→R for some non-zerodivisor x ∈ R. �

Remark 12.3. — The condition r2 > 1 is necessary by the first structure
theorem of Buchsbaum and Eisenbud [3].

Next we explore the symmetries of our construction. We have in mind the
possibility of generalizing the present approach to the structure theorems
to perfect complexes and to see the effect of linkage on our construction.

Let us consider the format of the complex of length 3 with Euler char-
acteristic zero.

Let us take (f0, f1, f2, f3) = (p−1, p+q, q+r, r−1). Thus the sequence of
ranks is (p− 1, q + 1, r− 1). Notice that this is the only format with Euler
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characteristic zero whose associated defect Lie algebra L is a parabolic
corresponding to the graph Tp,q,r with the distinguished root z1.
For the dual complex the ranks will be (r− 1, q+ 1, p− 1), so the corre-

sponding algebra L will be the parabolic associated to the Kac–Moody Lie
algebra corresponding to the same graph Tp,q,r but with the distinguished
root x1.
Consider a perfect complex

G• : 0 // Rp−1 // Rp+q // Rq+r // Rr−1

with ranks (p−1, q+1, r−1) (i.e. such complex for which the dual complex
is also acyclic). We can costruct a perfect complex of another format by
using generalized linkage. More precisely, consider the perfect complex of
length 3 of the format

H• : 0 // Rp−1 // Rp+1 // Rp+1 // Rp−1

by choosing a (p− 1)× (p+ 1) submatrix of the first differential d1 of the
complex G• with the ideal of minors of grade three. This can be always
achieved by prime avoidance techniques. There is an obvious map of com-
plexes H• −→ G• and taking its mapping cone, dualizing and minimalizing
we get a complex of the format

0 // Rq−1 // Rq+r // Rp+r // Rp−1.

The defect Lie algebra L for the complexes of this format is again a par-
abolic for the Kac–Moody Lie algebra corresponding to the same graph
Tp,q,r but with the distinguished root y1.
These symmetries could be viewed as a version of triality for the graphs

Tp,q,r (understood loosely as permuting three arms of the graph). They
give some hope that the approach will generalize to the perfect complexes.
We finish with several important remarks and questions:

Remarks 12.4.
(1) The generic ring R̂gen is a coordinate ring of some deformation of

a homogeneous space for the group g(Tp,q,r) × GL(F2) × GL(F0).
What is the geometric description of this object.

(2) The types of the resolutions that could be related by linkage (in
perfect case) come from the parabolic algebras in the same Kac–
Moody Lie algebra. Can we relate the perfect resolutions to Kac–
Moody Lie algebras? One possibility would be to use two defect
Lie algebras: one related to F1 and F3 and the other (for the dual
complex) built from F ∗2 and F ∗0 .
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(3) What is the relation of higher terms of the spectral sequence with
higher terms of the parabolic BGG complex?

(4) Can we get similar results for modules of codimension 3 with a
selfdual resolution (with an antisymmetric and symmetric middle
matrix)?

(5) Can we get similar results for Gorenstein ideals of codimension 4?
They also are expected to have a manageable structure.

(6) Does the approach generalize to resolutions of length bigger than
3? The depth raising procedure seems to work, we just need more
direct images Rij∗ to be zero. One possibility would be to have two
Kac–Moody Lie algebras: one built from the even terms of F• and
the other from the odd terms of F•.

(7) Can one construct the generic ring over the integers? It seems that
in the cases when Tp,q,r is a Dynkin diagram the ring R̂gen might
be characteristic free as it might have a good filtration.
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