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A GLOBAL DEFINITION OF QUASINORMAL MODES
FOR KERR–ADS BLACK HOLES

by Oran GANNOT (*)

Abstract. — The quasinormal frequencies of massive scalar fields on Kerr–
AdS black holes are identified with poles of a certain meromorphic family of oper-
ators, once boundary conditions are specified at the conformal boundary. Conse-
quently, the quasinormal frequencies form a discrete subset of the complex plane
and the corresponding poles are of finite rank. This result holds for a broad class
of elliptic boundary conditions, with no restrictions on the rotation speed of the
black hole.
Résumé. — Les fréquences quasinormales des champs scalaires massifs sur les

trous noirs Kerr–AdS sont identifiées avec les pôles d’une certaine famille d’opé-
rateurs méromorphes, une fois que les conditions limites sont spécifiées à la limite
conforme. Par conséquent, les fréquences quasinormales forment un sous-ensemble
discret du plan complexe et les pôles correspondants sont de rang fini. Ce résul-
tat réside dans une large classe de conditions aux limites elliptiques, sans aucune
restriction sur la vitesse de rotation du trou noir.

1. Introduction

The study of quasinormal modes (QNMs) has proven useful in under-
standing long-time behavior of linearized perturbations throughout general
relativity. These modes are solutions of the linear wave equation with har-
monic time-dependence, subject to outgoing boundary conditions at event
horizons. Associated to each QNM is a complex quasinormal frequency
(QNF) which determines the time evolution of a QNM: the real part de-
scribes the mode of oscillation, while the imaginary part corresponds to
exponential decay or growth in time.

Keywords: Kerr–AdS black holes, quasinormal modes, scattering theory.
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The QNF spectrum depends on black hole parameters (such as cosmolog-
ical constant, rotation speed, and mass), but not the precise nature of the
perturbation. The distribution of QNFs in the complex plane is expected to
dictate the return to equilibrium for linearized perturbations. This follows
established tradition in scattering theory, where QNFs typically go by the
name of scattering poles or resonances.

In particular, there has been a great deal of interest in the QNMs of
asymptotically anti-de Sitter (AdS) black holes, motivated both by de-
velopments in the AdS/CFT program and by closely related questions in
classical gravitation [29, 41, 52]. Understanding perturbations of such black
holes is a common thread in both the physics and mathematics literature.

According to the proposed holographic correspondence, a black hole in
an AdS background is dual to a thermal state on the conformal bound-
ary. Behavior of perturbations in the bulk therefore yields predictions on
thermalization timescales for the dual gauge theory which are difficult to
calculate within the strongly coupled field theory. It is also important to
note that QNMs have a distinguished interpretation in the AdS/CFT cor-
respondence [13, 39].

Additionally, a major unsolved problem in mathematical general relativ-
ity is the nonlinear instability of global anti-de Sitter space, in the sense
that a generic perturbation of such a metric will grow and form a black
hole [4, 6, 7, 8, 12, 15, 16, 18]. If AdS is indeed unstable, a natural question
is whether the endpoint of instability is a Kerr–AdS black hole. Both of
these subjects have motivated substantial interest in the nonlinear instabil-
ity (or stability) of Kerr–AdS [13, 17, 18, 32, 33, 34, 35, 36]. In particular,
Holzegel–Smulevici established logarithmic decay of massive scalar fields
on Kerr–AdS backgrounds [33] (with Dirichlet conditions imposed at the
conformal boundary), and then demonstrated the optimality of this decay
rate [35] (see also [25] for the Schwarzschild–AdS case). This slow decay
rate led to the conjecture that Kerr–AdS itself is nonlineary unstable.

This paper continues the study of scalar perturbations of Kerr–AdS black
holes. The relevant linear equation to be solved is the Klein–Gordon equa-
tion

(1.1) �gφ+ m2

l2
φ = 0,

where l is related to the negative cosmological constant by l2 = 3/|Λ|. The
purpose of this paper is to provide a robust definition of QNFs for Kerr–
AdS metrics which does not depend on any extra symmetries (separation of
variables), and then show that the QNF spectrum forms a discrete subset
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QUASINORMAL MODES FOR KERR–ADS BLACK HOLES 1127

of the complex plane. This means studying solutions to (1.1) of the form
φ = e−iλt

?

u, where λ ∈ C and u is a stationary function, identified with
its values on the time slice {t? = 0}; here t? is a time coordinate which is
regular across the event horizon. A critical observation is that the outgoing
condition is equivalent to a certain smoothness requirement for u at the
event horizon.
Since the conformal boundary of an asymptotically AdS spacetime is

timelike, there is no reason for the set of QNFs to be discrete unless (1.1)
is augmented by boundary conditions at the conformal boundary. Choos-
ing appropriate boundary conditions is a subtle point depending on m2.
When m2 > −5/4 it suffices to rule out solutions which are not square
integrable. On the other hand, when −9/4 < m2 < −5/4 the problem is
underdetermined and boundary conditions must be imposed.
This paper uses recent advances in the microlocal study of wave equations

on black hole backgrounds due to Vasy [49] to study global Fredholm prop-
erties of the time-independent problem. Upon verifying some dynamical
assumptions on the null-geodesic flow of Kerr–AdS metrics, the approach
of [49] provides certain estimates for the stationary operator corresponding
to (1.1), at least away from the conformal boundary. Compared to recent
work of Warnick [51] on QNFs of AdS black holes, there is no restriction
on the rotation speed of the black hole. See Section 1.2 below for more on
the differences between [51] and this paper.

In Sections 3 and 6.2, a theory of boundary value problems for some sin-
gular elliptic operators, developed in [26], is reviewed. This theory applies
in the Kerr–AdS setting. When the boundary conditions satisfy a type of
Lopatinskǐı condition for −9/4 < m2 < −5/4, the results of [26] provide el-
liptic estimates near the boundary. See Section 6.2 for more details. These
boundary conditions account for the majority of those considered in the
physics literature [1, 5, 10, 11, 19, 40, 53]. This substantially generalizes
the self-adjoint Dirichlet or Robin boundary conditions considered in [51].
In particular, certain time-periodic boundary conditions are admissible.
Combining estimates near the boundary with those in the interior suffices

to prove the Fredholm property for the stationary operator. The inverse
of this operator forms a meromorphic family, and QNFs are then defined
as poles of that family. Having shown that QNFs are well defined spectral
objects, a natural question is how they are distributed in the complex plane.
The companion paper [27] establishes the existence of QNFs converging
exponentially to the real axis, generalizing the results of [25].

TOME 68 (2018), FASCICULE 3



1128 Oran GANNOT

A simplified discussion of Vasy’s method in the slightly less involved
asymptotically hyperbolic setting can found in [23], although the approach
to proving meromorphy there differs from that of this paper.

1.1. Main results

For notation, the reader is referred to Section 4. Let M0 denote the
exterior of a Kerr–AdS spacetime with metric g determined by parameters
(l, a,M). After modifying the original Boyer–Lindquist time slicing, there
always exists an extension of g across the event horizon H+ = {r = r+} to
a larger spacetimeMδ, such that the time slice Xδ = {t? = 0} is spacelike.
In the extended picture g is smooth up to Hδ = {r = r+ − δ} for any
sufficiently small δ > 0.

The stationary Klein–Gordon operator P (λ) is defined on Xδ by replac-
ing Dt? with a spectral parameter −λ ∈ C in the operator r2(�g +m2/l2).
Solutions of P (λ)u = 0 correspond to solutions φ = e−iλt

?

u of (1.1). Even
if one is only interested in P (λ) acting on X0, it is technically important
to consider its extension to Xδ.
The prefactor r2 in the definition of P (λ) appears naturally when formu-

lating energy identities for (1.1) (see [50, Lemma 4.1.1], [36, Section 4], [51,
Sections 2, 3]), and does not affect solutions to the homogeneous Klein–
Gordon equation; it could be replaced by any strictly positive function
growing like r2 at infinity. Finite energy solutions e−iλt?u (as measured by
the energy-momentum tensor) satisfy

(1.2)
∫
Xδ

|u|2 r−1 dSt <∞,

where dSt is the induced measure on Xδ. The space L2(Xδ) of square
integrable functions is defined with respect to the rescaled measure r−1 dSt.
Alternatively, the notation H0(Xδ) = L2(Xδ) will be used at times.
The mass m is required to satisfy the Breitenlohner–Freedman bound

m2 > −9/4.

This restriction has a variety of consequences for the study of massive waves
on asymptotically AdS spaces; in this paper, the bound must be satisfied
in order to apply the results of [26] on certain singular elliptic boundary
value problems. An important related quantity is the effective mass ν > 0
defined by ν2 = m2 + 9/4.

ANNALES DE L’INSTITUT FOURIER
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In order to define the (stationary) energy space, observe that the confor-
mal multiple r−2g extends smoothly up to I = {r−1 = 0}. Then Mδ can
be viewed as the interior of a manifoldMδ with two boundary components,

∂Mδ = I ∪ Hδ.

The set {t? = 0} within Mδ defines a compact spacelike (with respect
to r−2g) hypersurface Xδ with interior Xδ and boundary ∂Xδ = Hδ ∪ Y ,
where

Hδ = Hδ ∩X, Y = I ∩X.

Given ν > 0, let H1(Xδ) denote the space of all u ∈ H0(Xδ) such that the
conjugated derivative rν−3/2d(r3/2−νu) lies in H0(Xδ), where the magni-
tude of a covector is measured by a smooth inner product on T ∗Xδ (by
compactness of Xδ this does not depend on choices).
With a view towards energy estimates, the twisted Sobolev spaceH1(Xδ)

was introduced in [50] to define a finite energy for “Neumann” boundary
conditions (in the sense of [50, Section 1]), extending work of Breitenlohner–
Freedman [10, 11]. See also [50, Section 3] for additional motivation. In the
elliptic setting, boundary value problems on twisted Sobolev spaces were
studied in [26].
Spaces with higher regularity are defined as follows: given s = 0, 1,

let Hs,k(Xδ) denote the space of all u ∈ Hs(Xδ) such that V1 . . . VNu ∈
Hs(Xδ), where V1, . . . , VN is any collection of at most k vector fields on Xδ

which are tangent to Y . Finally, set

X k(Xδ) = {u ∈ H1,k(Xδ) : P (0)u ∈ H0,k(Xδ)}.

All the results in this paper require that H+ is a nonextremal horizon,
meaning that the surface gravity κ associated to the horizon is positive.
Explicitly,

κ = ∆′r(r+)
2(1− α)(r2

+ + a2) .

The first result, valid for ν > 1, allows for the definition of QNFs; it is
stated for P (λ) acting on the exterior time slice X0.

Theorem 1.1. — If ν > 1 and k ∈ N, then

P (λ) : X k(X0)→ H0,k(X0)

is Fredholm for λ in the half-plane {Imλ > −κ(k + 1/2)}. Furthermore,
given any angular sector Λ ⊆ C in the upper half-plane, there exists R > 0
such that P (λ) is invertible for λ ∈ Λ and |λ| > R.

TOME 68 (2018), FASCICULE 3
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By analytic Fredholm theory, the family λ 7→ P (λ)−1 is meromorphic.
QNFs in the half-plane {Imλ > −κ(k + 1/2)} are defined as poles of
P (λ)−1 : H0,k(X0) → X k(X0). These poles are discrete and the corre-
sponding residues are finite rank operators. QNMs are then elements of
the finite dimensional space kerP (λ)|Xk(X0).
Furthermore, any QNM u ∈ X k(X0) is smooth up to H0, provided the

threshold condition Imλ > −κ(k + 1/2) is satisfied; this is demonstrated
during the proof of Theorem 1.1 in Section 7.3. In particular, if k′ > k,
then the poles of

P (λ)−1|H0,k(X0), P (λ)−1|H0,k′ (X0)

in {Imλ > −κ(k + 1/2)} coincide, and at regular points P (λ)−1|H0,k(X0)
is the extension by continuity of P (λ)−1|H0,k′ (X0). In this sense the QNF
spectrum is a well defined subset of C. Finally, QNMs have conormal as-
ymptotic expansions at Y [26, Proposition 4.17].
The analogous statement when 0 < ν < 1 is more involved since bound-

ary conditions (in the sense of Bessel operators, see Section 3.3) must be
imposed at the conformal boundary Y to obtain a Fredholm problem. Fix
a weighted trace T (λ) whose “principal part” is independent of λ and let

P(λ) =
(
P (λ)
T (λ)

)
.

The trace operator T (λ) has an “order” µ (which depends on ν) such that
a priori

T (λ) : X k(X0)→ Hk+1−µ(Y )
is bounded. The operator P(λ) is required to satisfy the parameter-
dependent Lopatinskǐı condition (again in the sense of Bessel operators,
see Section 3.4) with respect to an angular sector Λ ⊆ C in the upper
half-plane.

Theorem 1.2. — If 0 < ν < 1 and k ∈ N, then

P(λ) : {u ∈ X k(X0) : T (0)u ∈ Hk+2−µ(Y )} → H0,k(X0)×Hk+2−µ(Y )

is Fredholm for λ in the half-plane {Imλ > −κ(k + 1/2)}. Furthermore,
given any angular sector Λ ⊆ C in the upper half-plane with respect to
which P(λ) is parameter-elliptic, there exists R > 0 such that P(λ) is
invertible for λ ∈ Λ and |λ| > R.

QNFs in the half-plane {Imλ > −κ(k+ 1/2)} are again defined as poles
of the meromorphic family λ 7→P(λ)−1. The observations following The-
orem 1.1 are also applicable.

ANNALES DE L’INSTITUT FOURIER
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The importance of considering an extended spacetimeMδ is that The-
orems 1.1, 1.2 are established by first demonstrating their validity on Xδ,
with δ > 0 strictly positive:

Theorem 1.3. — Theorems 1.1, 1.2 hold true if X0 is replaced by Xδ,
where δ > 0 is sufficiently small.

In light of Theorem 1.3, it is natural to consider the relationship between
the QNF spectrum (defined here as the poles of P (λ)−1 or P(λ)−1 acting
on X0) and the poles of the extended inverses acting on Xδ with δ > 0. One
implication is clear: QNFs are contained in the set of poles of the extended
inverse, since surjectivity on Xδ implies surjectivity on X0 and the index
of both operators is zero.
The answer to the converse question was suggested to the author by Peter

Hintz; unlike the other results of this paper, it strongly uses axisymmetry
of the exact Kerr–AdS metric to reduce to the case of [31, Lemma 2.2]. To
begin, define the axisymmetric distributions

D′m(Xδ) = {u ∈ D′(Xδ) : (Dφ −m)u = 0}

for m ∈ Z, each of which is invariant under P (λ).

Theorem 1.4. — Fix δ > 0. If ν > 1 and Imλ > −κ(k+ 1/2), then for
each m ∈ Z the restriction map

kerP (λ)|Xk(Xδ)∩D′m(Xδ) → kerP (λ)|Xk(X0)∩D′m(X0)

given by u 7→ u|X0 is a bijection. The same is true for 0 < ν < 1 when
P (λ) is replaced with P(λ), provided T (λ) is axisymmetric in the sense
that T (λ) ◦Dφ = Dφ ◦ T (λ).

1.2. Relation to previous works

The mathematical study of QNMs for AdS black holes began slightly
later than for their nonnegative cosmological constant counterparts.
QNMs of Schwarzschild black holes were rigorously studied by Bachelot [2]
and Bachelot–Motet-Bachelot [3]. Meromorphy of the scattering resolvent
for Schwarzschild–de Sitter black holes was established by Sá Barreto–
Zworski [45], who also described the lattice structure of QNFs. Expansions
of scattered waves in terms of QNMs were established for Schwarzschild–de
Sitter space by Bony–Häfner [9]. Later, Dyatlov constructed a meromor-
phic continuation of the scattering resolvent for Kerr–de Sitter metrics and
analysed the distribution of QNFs [21, 22].

TOME 68 (2018), FASCICULE 3
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All of the aforementioned works used delicate separation of variables
techniques to study QNMs, hence are not stable under perturbations. In
a landmark paper [49], Vasy proved meromorphy of a family of operators
whose poles define QNFs of Kerr–de Sitter metrics. This method depends
only on certain microlocal properties of the geodesic flow, which are stable
under perturbations. Additionally, resolvent estimates, expansions of waves
in terms of QNMs, and wavefront set properties of the resolvent were also
established (not to mention other applications, for instance to asymptoti-
cally hyperbolic spaces).

For non-rotating Schwarzschild–AdS black holes, QNMs were treated
mathematically by the author in [25] using the Regge-Wheeler formal-
ism [28] (separation of variables). The Regge–Wheeler equations at a fixed
angular momentum ` in the nonrotating case fit into the framework of clas-
sical one-dimensional scattering theory. It was shown that the scattering
resolvent exists and its restriction to a fixed space of spherical harmonics
forms a meromorphic family of operators [25, Section 4]. Therefore discrete-
ness of QNFs for ` fixed is solved by identifying them as poles of this resol-
vent. Furthermore, there exist sequences of QNFs converging exponentially
to the real axis, with a precise description of their real parts. In [25], only
Dirichlet boundary conditions were considered at the conformal boundary.
For general black hole backgrounds with asymptotically AdS ends, a

global definition and discreteness of QNFs were studied by Warnick [51].
There, QNFs are defined as eigenvalues of an infinitesimal generator whose
associated semigroup solves a mixed initial boundary value problem for
the linear wave equation. When applied to the special class of Kerr–AdS
metrics, there are two main results:

(1) QNFs at a fixed axial Fourier mode m ∈ Z are discrete. This holds
for all rotation speeds satisfying the regularity condition |a| < l.
More generally, it holds for a more general class of “locally station-
ary” asymptotically AdS black holes, once the notion of a Fourier
mode is appropriately generalized (these spacetimes have some ad-
ditional symmetries).

(2) The set of all QNFs is discrete provided the rotation speed satisfies
the Hawking–Reall bound |a| < min{l, r2

+/l}. These Kerr–AdS met-
rics admit a globally causal Killing field; this remarkable property
is not shared by either the Kerr or Kerr-de Sitter family of metrics
as soon as a 6= 0.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.1. Two plots showing the range of parameters (a, l,M), or
equivalently (a, l, r+), for which meromorphy holds. On the left is a plot
of |a|/l vs. M/l and on the right is a plot of |a|/l vs. r+/l. The orange
region is the regime r2

+ > |a|l for which meromorphy was established
in [51]. The addition of the blue region represents the full range of
admissible parameters.
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Furthermore, self-adjoint boundary conditions of Dirichlet or Robin type
could be imposed at the conformal boundary. As mentioned above, this pa-
per generalizes [51] in two ways: the QNF spectrum is shown to be discrete
for rotation speeds satisfying |a| < l, and when 0 < ν < 1 this discreteness
holds for a broader class of boundary conditions than considered in [51].

2. Preliminaries

2.1. Microlocal preliminaries

The purpose of this section is to fix notation for the necessary microlocal
analysis. For a detailed introduction to this subject, the reader is referred
to [37, Section 18.1], [46, Chapter 1].

If X is a smooth manifold, Ψm(X) will denote the algebra of properly
supported pseudodifferential operators of order m on X. Denote by σm the
principal symbol map, fitting into the usual short exact sequence

0→ Ψm−1(X)→ Ψm(X) σm−−→ Sm(T ∗X)/Sm−1(T ∗X)→ 0,

where Sm(T ∗X) is the space of Kohn–Nirenberg symbols on T ∗X. In ap-
plications, all pseudodifferential operators will be compactly supported,
namely their Schwartz kernels have compact support in X ×X.

Let S∗X = (T ∗X \ 0)/R+ denote the cosphere bundle, where R+ acts
on T ∗X \ 0 by positive dilations in the fibers. Conic subsets of T ∗X \ 0
are in one-to-one correspondence with subsets of S∗X via the canonical
projection

κ : T ∗X \ 0→ S∗X.

If a ∈ Sm(T ∗X) is homogeneous of degree m in the fibers, then the integral
curves of the Hamilton vector field Ha through (x, ξ) and (x, µξ) with
µ > 0 have the same image in S∗X. Furthermore, the vector field Ha is
homogeneous of degree m − 1, so |ξ|1−mHa descends to a vector field on
S∗X, and integral curves of Ha on T ∗X \ 0 are uniquely determined by
those of |ξ|1−mHa on S∗X (up to parametrization); here | · | is a fixed norm
on the fibers of T ∗X.

A symbol a ∈ Sm(T ∗X) is said to be elliptic at (x0, ξ0) ∈ T ∗X \ 0 if
there exists an open conic neighborhood U ⊆ T ∗X \ 0 of (x0, ξ0) such that
|ξ|−m|a| > c > 0 in U , provided |ξ| is sufficiently large. This condition does
not change if a is modified by an element of Sm−1(T ∗X). If a = σm(A),
then ell(A) ⊆ T ∗X \ 0 will denote the set of elliptic points of a. The
characteristic set Σ(A) is the complement in T ∗X \ 0 of ell(A), which is

ANNALES DE L’INSTITUT FOURIER
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thus a closed conic subset of T ∗X \ 0. If a is homogeneous of degree m,
then (x0, ξ0) ∈ Σ(A) if and only if a(x0, ξ0) = 0.

Given a ∈ Sm(T ∗X), say that (x0, ξ0) ∈ T ∗X \ 0 is not in the essential
support of a if there exists an open conic neighborhood U ⊆ T ∗X \ 0 of
(x0, ξ0) such that

|a(x, ξ)| 6 CN 〈ξ〉−N

for each N , uniformly near U . The wavefront set WF(A) of A ∈ Ψm(X) is
defined as the essential support of its full symbol in any local coordinate
chart. Thus A is negligible outside of WF(A) in a precise microlocal sense.
The simplest microlocal estimate controls u in some region of phase space

in terms Pu, provided P is elliptic in a neighborhood of that region. More
precisely, one has the following standard elliptic estimate:

Proposition 2.1 ([37, Theorem 18.1.24′]). — Suppose that P ∈Ψm(X)
is properly supported, A, G ∈ Ψ0(X) are compactly supported, and

WF(A) ⊆ ell(P ) ∩ ell(G).

If u ∈ D′(X) satisfies GPu ∈ Hs−m(X) for some s, then Au ∈ Hs(X).
Moreover, there exists χ ∈ C∞c (X) such that

(2.1) ‖Au‖Hs(X) 6 C
(
‖GPu‖Hs−m(X) + ‖χu‖H−N (X)

)
for each N .

Observe that each of the terms in (2.1) has support in a fixed compact
subset of X, hence there is no ambiguity in the Sobolev norms.
Next is the Duistermaat–Hörmander theorem on propagation of singu-

larities.

Proposition 2.2 ([38, Theorem 26.1.4]). — Suppose that P ∈ Ψm(X)
is properly supported and A, B, G ∈ Ψ0(X) are compactly supported.
Assume that σm(P ) has a real-valued homogeneous representative p, and
that for each (x, ξ) ∈WF(A) there exists T > 0 such that

• exp(THp)(x, ξ) ∈ ell(B),
• exp(tHp)(x, ξ) ∈ ell(G) for each t ∈ [0, T ].

If u ∈ D′(X) satisfies GPu ∈ Hs−m+1(X) and Bu ∈ Hs(X), then Au ∈
Hs(X). Moreover, there exists χ ∈ C∞c (X) such that

‖Au‖Hs(X) 6 C
(
‖GPu‖Hs−m+1(X) + ‖Bu‖Hs(X) + ‖χu‖H−N (X)

)
for each N .

TOME 68 (2018), FASCICULE 3
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2.2. Parameter-dependent differential operators

Recall the class of parameter-dependent differential operators on X:
these are operators P (λ) given in local coordinates by

P (x,Dx, λ) =
∑

j+|α|6m

aj,α(x)λjDα
x ,

where λ ∈ C is a parameter; the order of P (λ) is said to be at most m,
and the set of all such operators is denoted Diffm(λ)(X). The parameter-
dependent principal symbol of P (λ) is given in coordinates by

σ(λ)
m (P (λ)) =

∑
j+|α|=m

aj,α(x)λjξα.

This is a well-defined function on T ∗X×Cλ, which is a homogeneous degree
m polynomial in the fibers. If P (λ) ∈ Diffm(λ)(X) has parameter-dependent
principal symbol p(λ) = p(x, ξ;λ) and Λ ⊆ C is an angular sector, then
P (λ) is said to be parameter-elliptic on an open subset U ⊆ X with respect
to Λ if

p(x, ξ;λ) 6= 0, (x, ξ, λ) ∈ (T ∗UX × Λ) \ 0.
Of course parameter-ellipticity with respect to any Λ also implies ellipticity
in the sense of Section 2.1.
For the corresponding class of parameter-dependent pseudodifferential

operators, see [46, Section 9]. The closely related semiclassical calculus is
treated in [20, Chapter 6], [54], and [23, Appendix E] for example.

2.3. Lorentzian metrics

Let g denote a Lorentzian metric of signature (1, n) on an n+ 1 dimen-
sional manifoldM with a complete Killing field T . Assume there exists a
spacelike hypersurface X ⊆ M such that each integral curve of T inter-
sects X exactly once. Then the parameter along the flow of T defines a
function t : M → R such that X = {t = 0}. Moreover, the flow gives a
diffeomorphismM = Rt ×X. In this product decomposition, T = ∂t.
With respect to the splitting T ∗M = R ·dt⊕T ∗X, the principal symbol

of the wave operator �g (which does not depend on t) is given by

σ2(�g)(x, ξ, τ) = −g−1(ξ · dx+ τ dt, ξ · dx+ τ dt),

where τ ∈ R is the momentum conjugate to t. Let �̂g(λ) denote the op-
erator obtained from �g by replacing Dt with −λ. Thus �̂g(λ) acts on
u ∈ C∞(X) by

�̂g(λ)u = eiλt�ge
−iλtu,
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where u is identified with a T -invariant function onM. This is a parameter-
dependent differential operator of order two in the sense of Section 2.2,
whose parameter-dependent principal symbol is just p(x, ξ;λ) =
σ2(�g)(x, ξ,−λ). In particular,

(2.2)

Re p(x, ξ;λ) = −g−1(ξ · dx− Reλ dt, ξ · dx− Reλ dt)

+ (Imλ)2g−1(dt, dt),

Im p(x, ξ;λ) = 2 (Imλ)g−1(ξ · dx− Reλ dt,dt).

The standard principal symbol of P (λ) is σ2(P (λ))(x, ξ) = p(x, ξ; 0), which
in particular is real-valued and independent of λ.

Lemma 2.3. — The operator �̂g(λ) has the following properties.
(1) If Imλ 6= 0, then p(x, ξ;λ) 6= 0 for ξ ∈ T ∗xX.
(2) If T is timelike at x ∈ X, then p(x, ξ; 0) 6= 0 for ξ ∈ T ∗xX \ 0.

Proof. — (1). Recall that g−1(dt,dt)> 0 sinceX is spacelike. If Im p(λ) =
0 and Imλ 6= 0, then ξ · dx − Reλ dt would be orthogonal to the timelike
vector dt, hence spacelike. This means

g−1(ξ · dx− Reλ dt, ξ · dx− Reλ dt) < 0,

which shows that Re p(λ) 6= 0.
(2). Note that λ = g−1(T [, ξ·dx−λ dt), where T [ is the covector obtained

from T by lowering an index. If λ = 0 and T is timelike, then ξ · dx is
spacelike, so p(x, ξ; 0) is positive definite. �

As a corollary of Lemma 2.3, if T is timelike at x and Λ is an angular
sector disjoint from R \ 0, then �̂g(λ) is parameter-elliptic near x with
respect to Λ.

3. Local theory of Bessel operators

This section reviews some facts about differential operators with inverse
square singularities. General elliptic boundary value problems for this class
of Bessel operators were recently studied in [26]. Here only the local theory
is reviewed, namely on coordinate patches. This is meant to acquaint the
reader with the basic objects. In applications, the results of this section
must be globalized via partition of unity arguments. This is briefly indicated
in Section 6.1; for more details see [26].
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3.1. Basic definitions

Let Rn+ = Rn−1 ×R+. A typical element x ∈ Rn+ is written x = (x′, xn),
where x′ = (x1, . . . , xn−1) ∈ Rn−1 and xn ∈ R+. The space L2(Rn+) of
square integrable functions is defined with respect to Lebesgue measure.
For each ν ∈ R the differential operators

Dν = x1/2−ν
n Dxnx

ν−1/2
n , D∗ν = xν−1/2

n Dxnx
1/2−ν
n

are well defined on Rn+. Note that D∗ν is indeed the formal L2(Rn+) adjoint
of Dν . Formally define

|Dν |2 = D2
xn + (ν2 − 1/4)x−2

n ,

which satisfies |Dν |2 = D∗νDν .
Now assume that ν > 0, and consider a parameter-dependent operator

P (λ) on Rn+ of the form

(3.1) P (x,Dν , Dx′ ;λ) = |Dν |2 +B(x,Dx′ ;λ)Dν +A(x,Dx′ ;λ),

where A(λ), B(λ) are parameter-dependent operators on Rn+ of order two,
one respectively, such that the coefficients of B(λ) vanish at xn = 0. Such
an operator will be referred to as a parameter-dependent Bessel operator
of order ν. It is easy to check that the formal adjoint P (λ)∗ satisfies the
same conditions as P (λ).

3.2. Ellipticity

If A(λ) is defined as in (3.1), let A(λ)◦ denote its principal part:

A(x,Dx′ ;λ)◦ =
∑

j+|α|=2

aα,j(x)λjDα
x′ .

Thus A(x′, 0, η;λ)◦ is a polynomial of degree two in (η, λ) ∈ T ∗x′Rn−1 × C.
Associated with P (λ) is the polynomial function

(3.2) ζ2 +A(x′, 0, η;λ)◦,

indexed by points x′ ∈ Rn−1. If Λ ⊆ C is an angular sector, then P (λ) is said
to be parameter-elliptic with respect to Λ at a boundary point x′ ∈ Rn−1

if (3.2) does not vanish for (ζ, η, λ) ∈ (R× T ∗x′Rn−1 × Λ) \ 0. Ellipticity at
the boundary (in the standard, non-parameter-dependent sense) is defined
by the condition that (3.2) evaluated at λ = 0 does not vanish for (ζ, η) ∈
(R× T ∗x′Rn−1) \ 0.
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If P (λ) is parameter-elliptic at the boundary, then (3.2) (as a function
of ζ) has two non-real roots ±ζ(x′, η;λ) for (η, λ) ∈ (T ∗x′Rn−1 × Λ) \ 0.
By convention Im ζ(x′, η;λ) < 0. Any solution to the ordinary differential
equation

(3.3)
(
|Dν |2 +A(x′, 0, η;λ)◦

)
u = 0

is a linear combination of Bessel functions

u = c+x
1/2
n Iν(iζ(x′, η;λ)xn) + c−x

1/2
n Kν(iζ(x′, η;λ)xn).

Requiring that u is square integrable on R+ near infinity with respect
to ordinary Lebesgue measure implies that c+ = 0; this follows from the
asymptotics of Bessel functions [44, Chapter 7.8]. Furthermore, if ν > 1,
then square integrability near xn = 0 implies also c− = 0. If 0 < ν < 1, then
the space of solutions to (3.3) is one dimensional, and boundary conditions
must be imposed along Rn−1.

3.3. Boundary operators

When 0 < ν < 1, one needs to impose boundary conditions to prove
coercive estimates. Formally define the weighted restrictions

γ−u = xν−1/2
n u|Rn−1 , γ+u = −x1−2ν

n ∂xn(xν−1/2
n u)|Rn−1 .

The boundary operator T (x′, Dx′ ;λ) is written as

T (λ) = T1 + λT0

for T0, T1 of the following forms:

T1 = T+
1 γ+ + T−1 γ−, T0 = T−0 γ−,

where T+
1 , T

−
0 are smooth functions on Rn−1 and T−1 is a first order oper-

ator on Rn−1.
Depending on the value of ν, different terms should be considered as

the “principal part” of T (λ). Fix the smallest µ ∈ {1 − ν, 2 − ν, 1 + ν}
such that the orders of T−1 + λT−0 and T+

1 do not exceed µ − 1 + ν and
µ − 1 − ν, respectively. Here order is taken in the sense of parameter-
dependent differential operators on the boundary. Given µ as above, define
T (λ)◦ = T (x′, Dx′ ;λ)◦ to be the boundary operator which for each (x′, η) ∈
T ∗Rn−1 satisfies

T (x′, η;λ)◦ = σ
(λ)
dµ−1+νe(T

−
1 + λT−0 )γ− + σ

(λ)
dµ−1−νe(T

+
1 )γ+.

This is the principal part of T (λ) (see [26, Section 4] for more details).
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3.4. Lopatinskǐı condition

Let 0 < ν < 1 and suppose that T (λ) is a boundary operator with
principal part T (λ)◦ as in Section 3.3. If P (λ) is parameter-elliptic at the
boundary with respect to Λ, then T (λ) is said to satisfy the Lopatinskǐı
condition with respect to P (λ) if for each (x′, η, λ) ∈

(
T ∗Rn−1 × Λ

)
\ 0 the

only solution to the problem
(
|Dν |2 +A(x′, 0, η;λ)◦

)
u = 0,

T (x′, η;λ)◦u = 0,
u(xn) is bounded as xn →∞

is the trivial solution u = 0. In that case, the operator

P(λ) =
(
P (λ)
T (λ)

)
is said to be parameter-elliptic at the boundary with respect to Λ. Simi-
larly, the Lopatinskǐı condition and ellipticity at Y (in the standard, non-
parameter-dependent sense) are defined by taking λ = 0 above. The basic
consequences of ellipticity in this sense (on a compact manifold with bound-
ary) are proved in [26, Section 4], and exploited in Section 6.2 of this paper.

4. Kerr–AdS spacetime

The Kerr–AdS metric is determined by three parameters:
(1) Λ < 0, the negative cosmological constant,
(2) M > 0, the black hole mass,
(3) a ∈ R, the angular momentum per unit mass.

Given parameters (Λ,M, a), let l2 = 3/|Λ| and introduce the quantities

∆r = (r2 + a2)
(

1 + r2

l2

)
− 2Mr; ∆θ = 1− a2

l2
cos2 θ;

%2 = r2 + a2 cos2 θ; α = a2

l2
.

The following observation concerns the location of roots of ∆r.

Lemma 4.1. — Any real root of ∆r must be nonnegative, and there at
most two real roots. If a = 0, then ∆r always has a unique positive root.
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Proof. — When a = 0 it is clear that ∆r has a unique positive root, and
furthermore ∆′r(r) > 0 for r > 0.
On the other hand, if a 6= 0 then ∆r(0) > 0 and ∆′r(0) < 0. At the same

time, ∆r(r)→∞. Since ∆′′r > 0, when a 6= 0 any real root of ∆r must be
positive, and there are at most two real roots. �

Let r+ denote the largest positive root of ∆r, when it exists. Throughout,
it is assumed that

(i) r+ exists and ∆′r(r+) > 0,
(ii) the rotation speed satisfies the regularity condition |a| < l.

The Kerr–AdS metric determined by (Λ,M, a) is initially defined on

M0 = R× (r+,∞)× S2.

Let t and r denote standard coordinates on R and (r+,∞) respectively.
Away from the north and south poles of S2, let (θ, φ) denote usual spheri-
cal coordinates. Thus θ ∈ (0, π) and φ ∈ R/(2πZ), where these coordinates
degenerate as θ tends to either 0 or π. In terms of Boyer–Lindquist coor-
dinates (t, r, θ, φ), the metric g is given by

g = −%2
(

dr2

∆r
+ dθ2

∆θ

)
− ∆θ sin2 θ

%2(1− α)2

(
a dt− (r2 + a2) dφ

)2
+ ∆r

%2(1− α)2

(
dt− a sin2 θ dφ

)2
.

Introducing Cartesian coordinates near the north and south poles of S2

shows that g extends smoothly to those coordinate singularities. The dual
metric g−1 is given by

(4.1) g−1 = −∆r

%2 ∂
2
r −

∆θ

%2 ∂
2
θ −

(1− α)2

%2∆θ sin2 θ

(
a sin2 θ∂t + ∂φ

)2
+ (1− α)2

%2∆r

(
(r2 + a2)∂t + a∂φ

)2
.

Also observe that the scaling transformations

l 7→ σl, a 7→ σa, M 7→ σM, r 7→ σr, t 7→ σt

induce a conformal transformation g 7→ σ2g. By setting σ = l−1, it is
assumed for the remainder of the paper that l = 1, or equivalently |Λ| = 3.
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4.1. Kerr–AdS as an asymptotically anti-de Sitter spacetime

To analyze the behavior of g for large r, introduce a new radial coordinate
s = r−1. Let

I = {s = 0},
which may be glued toM0 as a boundary component. In particular, s is a
global boundary defining function for I. Noting that

(4.2) %2 = s−2 +O(1), ∆r = s−4 +O(s−2),

it follows that s2g has a smooth extension toM0∪I, which justifies calling
I a conformal boundary forM0. Moreover, s−2g−1(ds, ds)→ −1 as s→ 0,
which shows that the restriction of s2g to TI is a Lorentzian metric on I.
Thus g has an asymptotically anti-de Sitter end at r → ∞ in the sense
of [24].

4.2. Extension across the event horizon

As usual, g appears singular at the event horizon

H+ = {r = r+} = {∆r = 0}.

The metric may be extended smoothly across this hypersurface by making
an appropriate change of variables. Set

(4.3) t? = t+ Ft(r); φ? = φ+ Fφ(r),

where Ft, Fφ are smooth functions on (r+,∞) satisfying the following con-
ditions:

(1) For some smooth function f+(r),

(4.4) F ′t (r) = 1− α
∆r

(r2 + a2) + f+(r), F ′φ(r) = a
1− α
∆r

near r+,
(2) Ft(r) = Fφ(r) = 0 for r sufficiently large.

In the region where (4.4) is valid, the dual metric in (t?, r, θ, φ?) coordinates
reads

(4.5) %2g−1 = −∆r (∂r + f+∂t?)2 −∆θ∂
2
θ

− 2(1− α) (∂r + f+∂t?)
(
(r2 + a2)∂t? + a∂φ?

)
− (1− α)2

∆θ sin2 θ

(
a sin2 θ∂t? + ∂φ?

)2
.
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This expression is smooth up to H+. In fact, given δ > 0 sufficiently small,
let

(4.6) Mδ = R× (r+ − δ,∞)× S2.

If t? is the coordinate on R, then (4.5) defines a dual Lorentzian metric on
Mδ. Geometrically,Mδ is foliated by translations of {t? = 0} along integral
curves of ∂t? , which gives the product decomposition (4.6). Choices of Ft
correspond to foliations ofMδ by different initial hypersurfaces.
Let Xδ = {t? = 0} ⊂ Mδ. For the purposes of this paper, t? must

be chosen so that Xδ is spacelike, or equivalently g−1(dt?,dt?) > 0. To
accomplish this, choose Ft such that F ′t satisfies (4.4) globally, where

(4.7) f+(r) = α− 1
∆r

(r2 + a2)

for r sufficiently large, and

(4.8) ∆rf
2
+ + 2(1− α)(r2 + a2)f+ < −(1− α)2a2.

Since |a| < 1, any function f+(r) ∼ (α−1)r−2 satisfies (4.8) for r sufficiently
large. Interpolating between f+(r) = (α − 1)(1 + r2)−1 near r+ and (4.7)
for large r finishes the construction.

4.3. Surface gravity

The hypersurfaceH+ is a Killing horizon generated by the future-pointing
Killing vector field

(4.9) K = ∂t? + a

r2
+ + a2 ∂φ? .

This means that H+ is a K-invariant null hypersurface and K is normal
to H+. These conditions imply that

(4.10) gradg g(K,K) = −2κK

on H+ for some function κ. Examining the ∂t? component of (4.10) on the
horizon gives the (constant) value

(4.11) κ = ∆′r(r+)
2(1− α)(r2

+ + a2) ,

which is positive under the assumption that ∆′r(r+) > 0.
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4.4. The manifold with boundary

As indicated in Section 1.1, Mδ is profitably viewed as the interior of
the manifold

Mδ =Mδ ∪Hδ ∪ I,
where Hδ = {r = r+ − δ} and I = {s = 0}. The metric g is smooth up to
Hδ, and s2g is smooth up to I. Observe that H+ = H0, and if δ > 0, then
dr is timelike in the region bounded by H+ and Hδ.
In terms of the time slicing, t? extends to a function on Mδ, and the

level set Xδ = {t? = 0} ⊆ Mδ is compact and spacelike with respect to
s2g. The interior of Xδ is identified with Xδ, and ∂Xδ = Hδ ∪ Y , where
Hδ = Hδ ∩Xδ and Y = I ∩Xδ.

4.5. Klein–Gordon equation

The main object of study is the Klein–Gordon equation

(4.12)
(
�g + ν2 − 9/4

)
φ = 0.

The mass term is written as ν2 − 9/4 to emphasize the importance of the
parameter ν, which is required to be strictly positive. By choosing an exten-
sionMδ ofM0 according to Section 4.2, the Klein–Gordon equation (4.12)
continues to make sense onMδ.
Since this paper is ultimately concerned with quasinormal modes (which

solve the homogeneous equation (4.12)), it is more convenient to work with
the operator P (λ) given by

P (λ) = %2(�̂g(λ) + ν2 − 9/4
)
,

where �̂g(λ) is defined in Section 2.3. Up to a multiplicative factor, this
is the spectral family of the Klein–Gordon equation (4.12) acting on Xδ.
Multiplication by a positive prefactor growing like r2 ensures that P (λ) will
be a Fredholm operator between L2 based spaces with the same r-weights.
The particular choice %2 ∼ r2 simplifies some formulae.
If dSt is the measure induced on Xδ by the metric, let L2(Xδ) denote

square integrable functions with respect to %−2A · dSt, where

A = g−1(dt?,dt?)−1/2.

Then the formal adjoint of P (λ) satisfies

P (λ)∗ = P (λ̄).
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This follows from the relationship |det g| = A2 |deth|, where h is the in-
duced metric on Xδ, and the self-adjointness of �g with respect to the
volume form on Mδ. Observe that H0(Xδ) = L2(Xδ) is equivalent as a
Hilbert space to the one defined in Section 1.1, see (1.2) in particular. It
is precisely this space for which finite energy solutions to (4.12) are square
integrable.

5. Microlocal study of P (λ)

The purpose of this section is to understand the microlocal structure of
P (λ). Unless otherwise stated, all the analysis take place on the extended
time slice Xδ with δ > 0 fixed (the only exceptions are Lemmas 5.7, 5.8,
where δ = 0 is allowed). Let p = σ2(P (λ)) denote the homogeneous prin-
cipal symbol of P (λ), which observe is real-valued and independent of λ.
Explicitly,

(5.1) p(x, ξ) = ∆rξ
2
r + 2a(1− α)ξrξφ? + ∆θξθ

2 + (1− α)2

∆θ sin2 θ
ξ2
φ? ,

where (ξr, ξθ, ξφ?) are momenta dual to (r, θ, φ?).

5.1. Characteristic set

Let Σ = {p = 0} \ 0 denote the characteristic set of P (λ). Its image in
S∗Xδ is denoted by

Σ̂ = κ({p = 0} \ 0) ⊆ S∗Xδ.

Observe that ξr 6= 0 on Σ, since from (5.1) the conditions p = 0 and ξr = 0
force ξ = 0. Therefore Σ is the disjoint union

Σ = Σ+ ∪ Σ−, Σ± = Σ ∩ {±ξr > 0}.

Similarly, Σ̂ = Σ̂+ ∪ Σ̂−, where Σ̂± = κ(Σ±). Furthermore Σ̂ does not
intersect the region where ∂t? is timelike by Lemma 2.3. For r > r+, this
condition can be checked in Boyer–Lindquist coordinates, observing that
∂t? = ∂t and the map (t, r, θ, φ) 7→ (t?, r, θ, φ?) does not affect the r variable:
the vector field ∂t is timelike provided

∆r > a2∆θ sin2 θ.

In particular, Σ̂ ⊆ {∆r 6 a2}.
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5.2. Null-bicharacteristic flow

The analysis in this section closely follows [49, Section 6.3], which applies
to the Kerr-de Sitter family of metrics. Let

N∗({r = r+}) \ 0 ⊆ T ∗Xδ \ 0

denote the conormal bundle to {r = r+} ⊆ Xδ, less the zero section. Since
ξr 6= 0 on N∗({r = r+}) \ 0, there is a splitting

N∗({r = r+}) \ 0 = R+ ∪R−,

where
R± = {r = r+, ξθ = ξφ? = 0, ±ξr > 0} ⊂ T ∗Xδ \ 0.

Let L± denote the image of the conic set R± in S∗Xδ, noting that

L± ⊂ Σ̂±.

The crucial observation of [49] is that L+ is a source and L− a sink for the
rescaled Hamilton flow on Σ̂± generated by |ξ|−1Hp (here | · | is some norm
on the fibers of T ∗X). In fact, let

ρ = |ξr|−1,

which is a homogeneous degree −1 function defined near Σ̂. Then Hpρ is
homogeneous of degree zero, hence a function on S∗Xδ. A brief calculation
gives

Hpρ|Σ̂± = ±∆′r(r).

Furthermore, if

p1 = ∆θξθ
2 + (1− α)2

∆θ sin2 θ
ξ2
φ? ,

then Hpp1 = 0. Indeed, p1 is the well known Carter constant [14] (with the
momentum dual to t?, also conserved under the geodesic flow, set to zero).
Therefore

(5.2) ρHp(ρ2p1)|Σ̂± = ±2∆′r(r)ρ2p1.

Finally, observe that the (quadratic, nondegenerate) vanishing of ρ1 = ρ2p1
within Σ̂± defines L±.

Lemma 5.1. — There exists a neighborhood U± of L± in Σ̂± such that
for each (x, ξ) ∈ U±,

exp(∓tρHp)(x, ξ)→ L±

as t→∞.
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Proof. — As noted above, the restriction of ρ1 to Σ̂± vanishes precisely
on L±. It follows from (5.2) that flow lines of ρHp in a small neighborhood of
L± within Σ̂± converge to L± as ∓t→∞, since ∆′r(r) > 0 near r = r+. �
For Lemma 5.1 to be useful, one needs a global nontrapping condition

implying that all integral curves starting at Σ̂± either tend to L± or oth-
erwise reach {r = r+ − δ} in appropriate time directions.

Lemma 5.2. — The integral curves of ρHp satisfy the following.
(1) If (x, ξ) ∈ Σ̂±, then exp(∓tρHp)(x, ξ)→ L± as t→∞.
(2) If (x, ξ) ∈ Σ̂± \ L±, then there exists T > 0 such that

exp(±TρHp)(x, ξ) ∈ {r 6 r+ − δ}.

Proof. — (1). This statement is already implied by (5.2), since ∆′r(r) > 0
is bounded away from zero uniformly for r > r+ − δ.
(2). This follows from the same argument as in [49, Section 6.3]: recall

that Σ̂ is contained in {∆r < (1 + ε)a2}, and arguing as in the latter
reference,

((1 + ε)a2 −∆r) >
ε

1 + ε
ρ1.

Combined with the first part, this shows that eventually r 6 r+ − δ along
the flow. �

Remark 5.3. — In the Kerr–de Sitter case, an additional restriction
must be placed on a to ensure that the appropriate ∆r in that case has
derivative which is bounded away from zero in the region {∆r 6 a2},
see [49, Eq. 6.13]. This is needed to show the above nontrapping condition,
which in turn is crucial to showing discreteness of QNFs. This does not
present a problem for Kerr–AdS spacetimes since ∆′r(r) is always strictly
positive for r > r+ − δ.

Recall from Section 4.5 that P (λ)∗ = P (λ̄) with respect to the measure
%−2A · dSt. With this choice,

ImP (λ) = 1
2i (P (λ)− P (λ)∗) ∈ Ψ1(Xδ).

The homogeneous principal symbol of ImP (λ) is calculated from the metric
by

σ1(ImP (λ))(x, ξ) = 2 (Imλ) %2g−1(ξ · dx, dt?).
Therefore

ρσ1(ImP (λ))|L± = ∓2(1− α)(r2
+ + a2) Imλ = −κ−1(Imλ)(Hpρ)|L± ,

where κ > 0 is the surface gravity. This factorization of the subprincipal
symbol at L± gives a threshold value for Imλ in the radial point estimates of
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Melrose [42], adapted to this setting by Vasy [49]. The following microlocal
result says regularity can be propagated away from R± provided one works
with high regularity Sobolev spaces; recall here that δ > 0.

Proposition 5.4 ([49, Proposition 2.3]). — Given a compactly sup-
ported G ∈ Ψ0(Xδ) such that R± ⊆ ell(G), there exists a compactly sup-
ported A ∈ Ψ0(Xδ) such that R± ⊆ ell(A) with the following properties:
Suppose u ∈ D′(Xδ) and GP (λ)u ∈ Hs−1(Xδ) for s > m, where m >

1/2 − κ−1 Imλ. If there exists A1 ∈ Ψ0(Xδ) with R± ⊆ ell(A1) such that
A1u ∈ Hm(Xδ), then Au ∈ Hs(Xδ). Moreover, there exists χ ∈ C∞c (Xδ)
such that

‖Au‖Hs(Xδ) 6 C
(
‖GP (λ)u‖Hs−1(Xδ) + ‖χu‖H−N (Xδ)

)
for each N .

Similarly, there is a propagation result towards R± provided one works
with sufficiently low regularity Sobolev norms, where again δ > 0.

Proposition 5.5 ([49, Proposition 2.4]). — Given a compactly sup-
ported G ∈ Ψ0(Xδ) such that R± ⊆ ell(G), there exist compactly sup-
ported A,B ∈ Ψ0(Xδ) such that R± ⊆ ell(A) and WF(B) ⊆ ell(G) \ R±,
with the following properties:
Suppose u ∈ D′(Xδ) and GP (λ)u ∈ Hs−1(Xδ), Bu ∈ Hs(Xδ) for s <

1/2−κ−1 Imλ. Then Au ∈ Hs(Xδ), and moreover there exists χ ∈ C∞c (Xδ)
such that

‖Au‖Hs(Xδ) 6 C
(
‖GP (λ)u‖Hs−1(Xδ) + ‖Bu‖Hs(Xδ) + ‖χu‖H−N (Xδ)

)
for each N .

Propositions 5.4, 5.5 can also be applied to P (λ)∗, which switches the
sign of Imλ in the threshold conditions.

5.3. Analysis near Hδ

The next step is to estimate u near the boundary Hδ in terms of P (λ)u.
This may be done by observing that P (λ) is strictly hyperbolic with respect
to the hypersurfaces {r = constant} for r ∈ (r+ − 2δ, r+) and δ > 0
sufficiently small.
Given R1 < R2, let X(R1,R2) = {R1 < r < R2}. Define L2(X(R1,R2))

with respect to any density which is smooth on the closure of X(R1,R2),
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observing that the closure is compact. If k ∈ N, then Hk(X(R1,R2)) will
denote distributions u ∈ L2(X(R1,R2)) such that

V1 . . . VNu ∈ L2(X(R1,R2))

for any collection V1, . . . , VN of at most k smooth vector fields on the closure
of X(R1,R2). Elements of Hk(X(R1,R2)) are extendible in the sense of [37,
Appendix B.2], i.e., in the notation there,

Hk(X(R1,R2)) = H
k(X(R1,R2)).

The next result is a consequence of basic energy estimates for hyperbolic
equations, see [30, Proposition 2.13], [49, Proposition 3.8] in this setting,
as well as [37, Theorem 23.2.1], [47, Section 2.8].

Proposition 5.6. — Fix r+ − 2δ < R0 < R1 < R2 < r+, and let
u ∈ H1(X(R0,R2)). If u ∈ Hk+1(X(R1,R2)) and P (λ)u ∈ Hk(X(R0,R2)) for
some k ∈ N, then u ∈ Hk+1(X(R0,R2)). Furthermore,

‖u‖Hk+1(X(R0,R1)) 6 C
(
‖P (λ)u‖Hk(X(R0,R2)) + ‖u‖Hk+1(X(R1,R2))

)
,

where C > 0 is independent of u.

Observe that regularity can be also be propagated backwards in Propo-
sition 5.6 by considering −P (λ). Proposition 5.6 also applies to P (λ)∗.

5.4. Energy estimates

Energy estimates will also be used to prove that P (λ) is invertible in
the upper half-plane. Let Nt denote the future-pointing unit normal to Xδ

(the time orientation is determined by the timelike covector dt?). In this
subsection it is important to consider δ > 0, but to begin assume that
δ > 0.

Let dSr denote the induced measure on Hδ and Nr be the outward-
pointing unit normal to Hδ. Both Nt, Nr are timelike, and they lie in the
same lightcone over Hδ. Recall that

dg = A · dt? dSt,

where A = g−1(dt?,dt?)−1/2 and dg is the volume measure. Also, if k
denotes the induced (Riemannian) metric on the spacelike hypersurface
Hδ, let Ar = k−1(dt?,dt?)−1/2.
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If V is a C1 vector field onM∪H vanishing near I, then differentiating
the divergence theorem at t? = 0 gives the identity

(5.3) d
dt?

∫
Xδ

g(V,Nt) dSt +
∫
Hδ

g(V,Nr)Ar dSr =
∫
Xδ

(divgV )AdSt.

Now suppose that δ = 0. In that case the hypersurface H0 = H+ is null,
and hence Nr is ill-defined. Nevertheless, setting Nr = K as in (4.9) and
Ar = 1, the equality (5.3) still holds. Note that dSr is always well defined
since Hδ ⊆ Xδ and Xδ is spacelike.
Given a C2 function v on Mδ ∪ Hδ, the stress-energy tensor T = T[v]

associated to the wave equation is

T(Y, Z) = Re (Y v · Zv̄)− 1
2g(Y,Z)g−1(dv,dv̄).

Here Y, Z are real C1 vector fields onMδ∪Hδ. It is well known that T(Y, Z)
is nonnegative if Y, Z are causal (timelike or null) in the same lightcone,
and positive definite in dv if both Y,Z are timelike [37, Lemma 24.1.2].

Let JY = JY [v] be the unique vector field such that g(JY , Z) = T(Y,Z).
If F = (�g + ν2 − 9/4)v, then

(5.4) divg JY = Re (F · Y v̄) +Q,

where Q is a real quadratic form in (v,dv). Apply (5.3) to the vector field
JY , where v vanishes for r sufficiently large. This yields the identity

(5.5) d
dt?

∫
Xδ

T(Y,Nt) dSt +
∫
Hδ

T(Y,Nr)Ar dSr

=
∫
Xδ

(Re (F · Y v̄) +Q)AdSt.

Now suppose that Y,Z are stationary in the sense that L∂t?Y = L∂t?Z =
0. Given a function u on Xδ, let v = e−iλt

?

u, viewed as a function onMδ.
Then, the stress-energy tensor associated to v = e−iλt

?

u satisfies
d

dt?T[v](Y,Z) = 2(Imλ)T[v](Y,Z).

Furthermore, if the stationary function e−2(Imλ)t? T[v](Y,Z) is viewed as
a function on Xδ, then it is a positive definite quadratic form in (du, λu),
where now du is the differential of u on Xδ.

On the other hand, if v = e−iλt
?

u, then for t? = 0 the integrand on the
right hand side of (5.5) can be written as

%−2 Re
(
P (λ)u · Y (λ)u

)
+Q(λ),

whereQ(λ) is a quadratic form in (du, u, λu), and Y (λ)u = eiλt
?

Y (e−iλt?u).
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Lemma 5.7. — Fix δ > 0, R > r+, and let u ∈ C2
c ({r+ − δ 6 r < R}).

There exists C0 > 0 such that

|λ|‖u‖L2(Xδ) + ‖du‖L2(Xδ) 6
C

Imλ
‖P (λ)u‖L2(Xδ)

for Imλ > C0, where C > 0 is independent of λ and u.

Proof. — Apply (5.5) with the multiplier Y = Nt and v = e−iλt
?

u,
recalling that all terms are evaluated at t? = 0. First, observe that the
integral over Hδ is nonnegative, since Nr and Nt are both in the same
lightcone (of course Nr = K is null if δ = 0). With f = P (λ)u,

Imλ
(
|λ|2‖u‖2L2(Xδ) + ‖du‖2L2(Xδ)

)
6 C

∫
Xδ

(
%−2 Re

(
f ·Nt(λ)u

)
+Q(λ)

)
AdSt.

Both A and %−2 are bounded by constants depending on R. Further-
more, the quadratic form Q(λ) can be absorbed into the left hand side
for Imλ > 0 sufficiently large. The integrand involving f is bounded by
Cauchy–Schwarz, yielding

Imλ
(
|λ|2‖u‖2L2(Xδ) + ‖du‖2L2(Xδ)

)
6

C

Imλ
‖f‖2L2(Xδ)

as desired. �

A similar argument applies to P (λ)∗ provided u vanishes along Hδ.

Lemma 5.8. — Fix δ > 0, R > r+, and let u ∈ C2
c ({r+ − δ 6 r < R})

be such that u|Hδ = 0. There exists C0 > 0 such that

|λ|‖u‖L2(Xδ) + ‖du‖L2(Xδ) 6
C

Imλ
‖P (λ)∗u‖L2(Xδ),

for Imλ > C0, where C > 0 is independent of λ and u.

Proof. — Since P (λ)∗ = P (λ̄), apply (5.5) to v = e−iλ̄t
?

u with the mul-
tiplier Y = Nt; the difference is that now the two integrals on the left hand
side of (5.5) have opposite signs for Imλ > 0. However, if u vanishes at
Hδ, then the same argument as in Lemma 5.7 applies. �

6. The anti-de Sitter end

This section concerns the analysis near Y , hence does not depend on any
extension of the metric across the horizon. After a conjugation by r, the
rescaled stationary Klein–Gordon operator P (λ) is a parameter-dependent
Bessel operator in the sense of Section 3:
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Lemma 6.1. — rP (λ)r−1 is a Bessel operator of order ν near Y . Fur-
thermore, rP (λ)r−1 is parameter-elliptic with respect to any angular sector
Λ ⊂ C disjoint from R \ 0.

Proof. — Observe from (4.1) that for r sufficiently large, dr is orthogonal
to the span of {dt?,dθ,dφ?}. Therefore the only term in �g involving r-
derivatives is

%−2Dr (∆rDr) .
The remaining terms in �g are smooth up to I after multiplication by
%2. In the notation in Section 3.1, let x′ be local coordinates on Y and
xn = s. From (4.2) it is verified that rP (λ)r−1 can locally be written in
the form (3.1).
The parameter-ellipticity of rP (λ)r−1 at Y follows from the timelike

nature of ∂t? and dt? at I with respect to the conformal metric s2g, using
the same argument as in Lemma 2.3. �

Conjugation by r−1 corresponds to working with rL2(Xδ) based spaces.
Note that the measure defining rL2(Xδ) is locally equivalent near Y to
ordinary Lebesgue measure, agreeing with the convention in Section 3.1.
Henceforth P (λ) will be considered instead of rP (λ)r−1, making sure to
account for the additional conjugation.
When 0 < ν < 1, the operator P (λ) must be augmented by ellip-

tic boundary conditions as in Section 3.3. Thus assume that T (λ) is a
parameter-dependent boundary operator of the form

T (λ) = (T−1 + λT−0 )γ− + T+
1 γ+,

where the weighted restrictions γ± are given by

γ−u = sν−3/2u|Y , γ+u = −s1−2ν∂s(sν−3/2u)|Y .

Here γ± are redefined from Section 3.3 to account for the conjugation
by r−1. It is assumed that the “principal part” of T (λ) (in the sense of
Section 3.3) is independent of λ. Ellipticity and parameter-ellipticity of the
operator

P(λ) =
(
P (λ)
T (λ)

)
with respect to Λ were defined in Section 3.4.

6.1. Function spaces

Following [26, Section 4], ellipticity is used to prove coercive estimates for
functions supported near Y . These local estimates should be understood
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as comprising part of a global estimate. For this reason, it is useful to state
them on function spaces which are globally defined on Xδ. These spaces
are now described.
Let H1(Xδ) denote the set of all distributions u ∈ L2(Xδ) such that

s3/2−νd(sν−3/2u) ∈ L2(Xδ), where the magnitude of a covector is measured
with respect to a smooth norm on Xδ. Set

‖u‖H1(Xδ) = ‖u‖L2(Xδ) + ‖s3/2−νd(sν−3/2u)‖L2(Xδ).

To define higher order spaces, let Vb(Xδ) denote the space of smooth vector
fields on Xδ which are tangent to Y (but not necessarily to Hδ). Given
k ∈ N and s = 0, 1, let Hs,k(Xδ) denote the set of distributions u such that

V1 . . . VNu ∈ Hs(Xδ)

for any collection V1, . . . , VN of at most k vector fields in Vb(Xδ). These
spaces can be normed in the obvious way by fixing a finite generating set
of vector fields for Vb(Xδ). Over any compact subset of Xδ the norms of
Hs,k(Xδ) and Hs+k(Xδ) are equivalent.
If 0 < ν < 1, let Fν(Xδ) denote the space of u ∈ C∞(Xδ ∪ Hδ) which

near Y have the form

s3/2−νu−(s2, y) + s3/2+νu+(s2, y)

for u± ∈ C∞([0, ε)s × Y ). If ν > 1 then Fν(Xδ) is defined to be C∞c (Xδ ∪
Hδ). In both cases Fν(Xδ) is dense in Hs,k(Xδ) [26, Section 3].

Remark 6.2. — Duality for these spaces is not described here; a detailed
discussion, including everything needed for this paper, can be found in [26,
Sections 3, 4, 5].

6.2. Elliptic estimates

The results in this section follow from [26, Theorems 1, 2, 3]. First assume
that ν > 1. According to Lemma 6.1, P (λ) is elliptic at Y , and parameter-
elliptic at Y with respect to any angular sector Λ ⊂ C disjoint from R \ 0.
If 0 < ν < 1, then ellipticity and parameter-ellipticity must be assumed for
P(λ) with respect to Λ.
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Proposition 6.3 ([26, Theorems 1, 3]). — Let k ∈ N. There exists
ε > 0 such that if ϕ, χ ∈ C∞c ({0 6 s < ε}) satisfy ϕ = 1 near s = 0 and
χ = 1 near suppϕ, then the following hold:

(1) If ν > 1, then there exists C > 0 such that

‖ϕu‖H1,k(Xδ) 6 C
(
‖χP (λ)u‖H0,k(Xδ) + ‖χu‖H0(Xδ)

)
for each u ∈ Fν(Xδ).

(2) If 0 < ν < 1 and P(λ) is elliptic at Y , then there exists C > 0 such
that

‖ϕu‖H1,k(Xδ) 6 C(‖χP(λ)u‖H0,k(Xδ)×Hk+2−µ(Y ) + ‖χu‖H0(Xδ))

for each u ∈ Fν(Xδ).

There is also a regularity statement associated with Proposition 6.3,
namely if u ∈ H0(Xδ) and the right-hand sides are finite, then so are the
left-hand sides. Making sense of this when 0 < ν < 1 is slightly subtle, and
the reader is again referred to [26] for details.
To obtain estimates which are uniform λ, parameter-ellipticity is used.

These estimate are only used with k = 0.

Proposition 6.4 ([26, Theorem 2]). — Fix an angular sector Λ ⊂ C
such that P (λ) and P(λ) are parameter elliptic at Y with respect to Λ.
There exists ε > 0 such that if ϕ, χ ∈ C∞c ({0 6 s < ε}) satisfy ϕ = 1 near
s = 0 and χ = 1 near suppϕ, then the following hold:

(1) If ν > 1, then there exists C > 0 such that

|λ|‖ϕu‖H0(Xδ) + ‖ϕu‖H1(Xδ) 6 C
(
‖χP (λ)u‖H0(Xδ) + ‖χu‖H0(Xδ)

)
for each u ∈ Fν(X) and λ ∈ Λ.

(2) If 0 < ν < 1, then there exists C > 0 such that

|λ|‖ϕu‖H0(Xδ) + ‖ϕu‖H1(Xδ)

6 C(‖χP(λ)u‖H0(Xδ)×H2−µ(Y ) + ‖χu‖H0(Xδ))

for each u ∈ Fν(Xδ) and λ ∈ Λ.

Estimates for the formal adjoint P (λ)∗ if ν > 1, or P(λ)∗ if 0 < ν < 1,
also hold. However, the formal adjoint P(λ)∗ is no longer a scalar oper-
ator. See [26, Section 4] where the formal adjoint is defined (which is en-
tirely analogous to the adjoint in the Boutet de Monvel calculus for smooth
boundary value problems [43]). Furthermore, [26, Theorem 1] only treats
estimates for the formal adjoint when k = 0, although this does not present
a problem here.
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7. Fredholm property and meromorphy

In this section the Fredholm property for P (λ) and meromorphy of
P (λ)−1 are derived from estimates on P (λ), combined with some standard
arguments from functional analysis. Of course P (λ) should be replaced by
P(λ) when 0 < ν < 1. For δ > 0, introduce the space

X k(Xδ) = {u ∈ H1,k(Xδ) : P (0)u ∈ H0,k(Xδ)},

equipped with the norm ‖u‖H1,k(Xδ) + ‖P (0)u‖H0,k(Xδ). This space is com-
plete, and in fact Fν(Xδ) is dense in X k(Xδ) [26, Lemma 5.1].

7.1. The case ν > 1

Fix δ > 0 and consider the simpler case ν > 1 first. Initially, the goal is
to prove that

P (λ) : X k(Xδ)→ H0,k(Xδ)

has closed range and finite dimensional kernel for each k ∈ N, provided λ
lies in an appropriate half-plane.

Proposition 7.1. — If C0 < κ(k+1/2), then there exists ϕ ∈ C∞c (Xδ∪
Y ) and χ ∈ C∞c (Xδ) such that

(7.1) ‖u‖H1,k(Xδ) 6 C
(
‖P (λ)u‖H0,k(Xδ) + ‖χu‖H−N (Xδ) + ‖ϕu‖H0(Xδ)

)
for any N and u ∈ Fν(Xδ), provided Imλ > −C0.

Proof. — Begin by choosing two functions ζ, ψ ∈ C∞(Xδ; [0, 1]) subject
to the following conditions:

(1) suppψ ⊆ {0 6 s < ε} and ψ = 1 near s = 0, where ε > 0 is
sufficiently small.

(2) supp ζ ⊆ {r+ − δ 6 r < r+ − 2δ/3} and ζ = 1 near {r+ − δ 6 r <

r+ − 3δ/4}.
Let u ∈ Fν(Xδ) and f = P (λ)u. It is possible to find a microlocal partition
of unity

1 = ζ + ψ +
J∑
j=1

Aj +R,

where the operators Aj ∈ Ψ0(Xδ), R ∈ Ψ−∞(Xδ) are compactly sup-
ported, and each A ∈ {A1, . . . , AJ} has one of the following properties:
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(1) WF(A) ⊆ ell(P (λ)). By microlocal elliptic regularity (Proposi-
tion 2.1),

‖Au‖Hs+1(Xδ) 6 C‖Gf‖Hs−1(Xδ) + ‖χu‖H−N (Xδ)

for G microlocalized near WF(A) and some χ ∈ C∞c (Xδ).
(2) WF(A) is contained in a small conic neighborhood of R±. In or-

der to apply Proposition 5.4, the imaginary part of λ must satisfy
Imλ > −C0 for some C0 < κ(s− 1/2). In that case,

‖Au‖Hs(Xδ) 6 C
(
‖Gf‖Hs−1(Xδ) + ‖χu‖H−N (Xδ)

)
for some G microlocalized near WF(A) and some χ ∈ C∞c (Xδ).

(3) WF(A) is contained in a conic neighborhood of a point (x0, ξ0) ∈
Σ+ \ R+. Then there is a conic neighborhood U+ ⊇ R+ such that
for each B ∈ Ψ0(Xδ) with WF(B) ⊆ U+ and (x, ξ) ∈WF(A), there
exists T > 0 with

exp(−THp)(x, ξ) ⊆ ell(B).

This follows from Lemma 5.2, shrinking WF(A) if necessary. It
is now possible to combine propagation of singularities ([49, Sec-
tion 2.3]) with the previous item (2). For some G1 microlocalized
near the union of flow lines emanating from WF(A) and G as in (2),

‖Au‖Hs(Xδ) 6 C
(
‖Gf‖Hs−1(Xδ) + ‖G1f‖Hs−1(Xδ) + ‖χu‖H−N (Xδ)

)
for some χ ∈ C∞c (Xδ). The same argument applies if (x0, ξ0) ∈
Σ− \ R−, reversing the direction of propagation.

The estimates on Au are applied with Sobolev index s = 1+k where k ∈ N,
which gives C0 < κ(k + 1/2). The term ψu is then estimated in H1,k(Xδ)
using Proposition 6.3, provided suppψ is sufficiently small. In the region
where r < r+, apply Lemma 5.6:

‖ζu‖Hk+1(Xδ) 6 C
(
‖P (λ)u‖H0,k(Xδ) + ‖ζ ′u‖Hk+1(Xδ)

)
,

where ζ ′ has compact support in {r+ − δ/2 < r < r+}. In particular,

ζ ′ζ = ζ ′ψ = 0,

and hence A1 + · · · + AJ is elliptic on supp ζ ′ (lifted to T ∗Xδ). Therefore
ζ ′u is controlled by the Aju terms handled above. �

Although (7.1) of Proposition 7.1 is stated as an a priori estimate (namely
u is assumed to lie in Fν(Xδ)), the proof also gives the following regularity
result:
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Proposition 7.2. — If Imλ > −κ(k+ 1/2) and u ∈ H1,k(Xδ) satisfies
P (λ)u ∈ H0,k′(Xδ) for k′ > k, then u ∈ X k′(Xδ).

The multiplication maps ϕ : H1,k(Xδ) → H0(Xδ) and χ : H1,k(Xδ) →
H−N (Xδ) are compact provided N is sufficiently large; in the former case,
compactness comes from [26, Lemma 3.21]. Then the a priori estimate (7.1)
shows that P (λ) : X k(Xδ)→ H0,k(Xδ) has closed range and finite-dimen-
sional kernel for Imλ > −κ(k + 1/2).

Lemma 7.3. — Fix an angular sector Λ in the upper half-plane which
is disjoint from R \ 0. Then there exists R > 0 such that P (λ) : X 0(Xδ)→
H0(Xδ) is invertible for λ ∈ Λ and |λ| > R.

Proof. — (1). If Imλ > −κ/2, then u ∈ X 0(Xδ) and P (λ)u = 0 together
imply that u ∈ C∞(Xδ ∪Hδ) (this follows from Proposition 7.2). Next, fix
ϕ ∈ C∞c (Xδ∪Hδ). Since u is smooth and ϕu has support in a fixed compact
set, from Lemma 5.7 there exist C0 > 0

|λ|‖ϕu‖L2(Xδ) + ‖ϕu‖H1(Xδ) 6
C

Imλ
‖P (λ)(ϕu)‖L2(Xδ)

for Imλ > C0, where C > 0 depends only on the support of ϕ. Note that
P (λ)ϕu = [P (λ), ϕ]u, which is therefore estimated by

‖[P (λ), ϕ]u‖L2(Xδ) 6 C
(
‖u‖H1(Xδ) + |λ|‖u‖L2(Xδ)

)
.

On the other hand, if suppϕ is sufficiently large, then from Proposition 6.4,

|λ|‖(1− ϕ)u‖L2(Xδ) + ‖(1− ϕ)u‖H1(Xδ) 6 C‖u‖L2(Xδ)

for λ ∈ Λ. Combining the estimates for ϕu and (1− ϕ)u shows that

|λ|‖u‖L2(Xδ) + ‖u‖H1(Xδ) 6 C
(
|λ|−1 + (Imλ)−1) |λ|‖u‖L2(Xδ)

+ C (Imλ)−1 ‖u‖H1(Xδ)

provided Imλ > C0 and λ ∈ Λ. Since Λ is contained in the upper half-
plane, λ ∈ Λ and |λ| large imply that u = 0. Therefore P (λ) is injective in
this region.
(2). To prove that P (λ) is surjective, it suffices to prove that the formal

adjoint P (λ)∗ is injective on L2(Xδ). For duality purposes, P (λ)∗ acts
on L2(Xδ) in the sense of distributions supported on Xδ ∪ Hδ, see [37,
Appendix B.2]. Therefore P (λ)∗v = 0 means that

(7.2)
∫
Xδ

(
P (λ)φ · v

)
%−2A dSt = 0
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for each φ ∈ Fν(Xδ). Extend v by zero to v1 ∈ L2(X2δ). Now P (λ)∗ is still
defined on X2δ, and P (λ)∗v1 = 0 in the sense of distributions on X2δ since
any φ ∈ C∞c (X2δ) can be restricted to an element of Fν(Xδ). Since

supp v1 ⊆ {r > r+ − δ},

v1 is smooth on {r+− 2δ < r < r+} by Lemma 5.2 and propagation of sin-
gularities. Therefore v1 = 0 on {r+−2δ < r < r+} by Proposition 5.6. The
same argument as in Proposition 7.1 now shows that v ∈ Ck(Xδ ∪Hδ) pro-
vided Imλ > 0 is sufficiently large depending on k. This involves replacing
P (λ) with P (λ)∗ and then using Proposition 5.5 instead of Proposition 5.4.
Furthermore, v ∈ H1,k(Xδ) near Y for arbitrary k ∈ N according to [26,
Theorem 3]. Now the same argument for P (λ) applies to show that P (λ)∗
is injective, using that v vanishes at Hδ in order to use Lemma 5.8. �

It is now possible to prove Theorem 1.3 for the case ν > 1.
Proof of Theorem 1.3 for ν > 1. — Given k ∈ N, write P (k)(λ) for the

operator
P (λ) : X k(Xδ)→ H0,k(Xδ).

Proposition 7.1 shows that P (k)(λ) has closed range and finite dimensional
kernel in the half-plane Imλ > −κ(k+1/2). According to Lemma 7.3, there
exists λ0 with sufficiently large imaginary part so that P (0)(λ0) is invertible.
Clearly injectivity of P (0)(λ0) implies injectivity of P (k)(λ0). Furthermore,
suppose that f ∈ H0,k(Xδ) ⊆ H0(Xδ). If u ∈ X 0(Xδ) denotes the unique
solution to

P (0)(λ0)u = f,

then u ∈ X k(Xδ) since Imλ0 > −κ/2. Thus P (k)(λ) is invertible in the
upper-half plane wherever P (0)(λ) is invertible. Furthermore, P (k)(λ) is
Fredholm of index zero in the half-plane Imλ > −κ(k + 1/2), since the
index of a continuous family of left semi-Fredholm operators (namely those
with closed range and finite dimensional kernel) is constant on connected
components [37, Theorem 19.1.5]. �

7.2. The case 0 < ν < 1

Fix a boundary operator T (λ) as in Section 6 such that

P(λ) =
(
P (λ)
T (λ)

)
is elliptic with respect to an angular sector Λ ⊆ C disjoint from R \ 0.
Assume that the principal part of T (λ) is independent of λ.
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Proof of Theorem 1.3 for 0 < ν < 1. — Proposition 7.1 has a natural
analogue in this setting: the microlocal estimates on Xδ and hyperbolic
estimates near Hδ are unchanged. Near Y apply Proposition 6.3 for the
case 0 < ν < 1, referring to [26, Sections 5.1, 5.2] to see how the condition
T (λ)u ∈ Hk+2−µ(Y ) is used in general. Invertibility of P(λ) for k = 0
follows as in Lemma 7.3; the analysis of the adjoint problem is slightly
more involved, see [26, Section 5.2]. The same argument as in the proof for
ν > 1 handles larger values of k. �

7.3. Passing from Xδ to X0

Equipped with Theorem 1.3, it is now possible to deduce Theorems 1.1,
1.2 as well.

Proof of Theorems 1.1, 1.2. — It suffices to prove Theorem 1.1 (namely
when ν > 1), since the proof of Theorem 1.2 (when 0 < ν < 1) is identical
upon replacing P (λ) with P(λ). Let Imλ > −κ(k + 1/2). Since

P (λ) : X k(Xδ)→ H0,k(Xδ)

has finite codimensional range for δ > 0, so does P (λ)|Xk(X0). To see this,
fix a continuous extension map Ek : H0,k(X0)→ H0,k(Xδ). It is then clear
that ranEk contains a subspace

S = ranEk ∩ ranP (λ)|Xk(Xδ) ⊆ ranP (λ)|Xk(Xδ)

which has finite codimension in ranEk. Now Ek is injective, so E−1
k (S) has

finite codimension in H0,k(X0). But if f ∈ E−1
k (S), then the equation

P (λ)ũ = Ekf

has a solution ũ ∈ X k(Xδ). Restricting ũ to X0 shows that E−1
k (S) is

contained in ranP (λ)|Xk(X0), hence the latter also has finite codimension
in H0,k(X0); as the image of a continuous map, it is also closed. Therefore

P (λ) : X k(X0)→ H0,k(X0)

is an analytic family of right semi-Fredholm operators in Imλ > −κ(k +
1/2).

The same argument shows that surjectivity on X k(Xδ) implies surjectiv-
ity on X k(X0), and indeed surjectivity on X k(Xδ) holds at λ0 for Imλ0 > 0
sufficiently large, as demonstrated in Lemma 7.3 and the proof of Theo-
rem 1.3 above. It then remains to show that P (λ0) is injective on X k(X0),
and it suffices to do so for k = 0. This follows as in the proof of Lemma 7.3,
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using that the crucial Lemma 5.7 also holds for δ = 0. The only sub-
tlety involves the regularity of u necessary for the integration by parts in
Lemma 5.7; this can be handled by approximating φu (in the notation of
Lemma 7.3) as in [23, Lemma E.47]
Since the index of a continuous family of right semi-Fredholm operators

is locally constant and it has just been shown that P (λ0) is invertible
for Imλ0 > 0 sufficiently large, the proof of meromorphy is complete by
analytic Fredholm theory.
The final step is to show that QNMs are in fact smooth up to H0. In

this paragraph P (λ) acts on X k(Xδ) for a fixed δ > 0. Near a pole λ0 of
P (λ)−1 with Imλ0 > −κ(k + 1/2), write

P (λ) = P0 + (λ− λ0)P1 + (λ− λ0)2P2,

P (λ)−1 =
J∑
j=1

(λ− λ0)−jA−j +A0 + (λ− λ0)H(λ),

where H(λ) is holomorphic near λ0. Here the operators A−j are of fi-
nite rank for j = 1, . . . , , J . Analytic continuation gives the identities
P (λ)P (λ)−1 = 1 and P (λ)−1P (λ) = 1, and hence

(7.3)
P0A−J = 0, A0P0 +A−1P1 = 1,

P0A−j + P1A−j−1 = 0 for j = 1, . . . , J − 1.

Restricting A0P0 + A−1P1 = 1 to the kernel of P0 = P (λ0) shows that
kerP (λ0) ⊆ ranA−1.
It is now necessary to distinguish between P (λ) on different spaces: tem-

porarily write Pδ(λ) for P (λ) acting on X k(Xδ), where δ > 0. Fix δ > 0
and let

R : D′(Xδ)→ D′(X0)

be the restriction map. By analytic continuation from Imλ > 0 sufficiently
large,

P0(λ)−1 = R ◦ Pδ(λ)−1 ◦ Ek
in the half-plane Imλ > −κ(k + 1/2). Therefore the residue A0,−1 of
P0(λ)−1 at a pole λ0 with Imλ0 > −κ(k+ 1/2) is given by R ◦Aδ,−1 ◦Ek,
where Aδ,−1 is the residue of Pδ(λ)−1 at λ0. On the other hand, if u ∈
X k(Xδ) satisfies Pδ(λ0)u ∈ C∞(Xδ ∪ Hδ), then u ∈ C∞(Xδ ∪ Hδ) by
Proposition 7.2. This observation combined with (7.3) shows that the Lau-
rent coefficients satisfy

(7.4) ranAδ,−j ⊆ C∞(Xδ ∪Hδ)
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for each j = 1, . . . , J . In particular,

kerP0(λ0) ⊆ ranA0,−1 = ran (R ◦Aδ,−1 ◦ Ek) ,

while
ran (R ◦Aδ,−1 ◦ Ek) ⊆ C∞(X0 ∪H0) by (7.4),

thus finishing the proof. �

8. Proof of Theorem 1.4

Given m ∈ Z, define the space of distributions

D′m = {u ∈ D′ : (Dφ −m)u = 0}.

This definition applies to distributions on any of the spacesMδ, Xδ, or Y .
Furthermore, if T (λ) is axisymmetric, then one has the mapping property

T (λ) : X k(Xδ) ∩ D′m(Xδ)→ Hk+1−µ(Y ) ∩ D′m(Y ).

Because it is assumed that Imλ > −κ(k + 1/2), it is enough to work with
smooth functions (each of the kernels in Theorem 1.4 consists of smooth
functions in that case). Given a fixed δ > 0, let

X− = Xδ \ (X0 ∪H0),

and X− = X− ∪Hδ ∪H0 be its closure.

Proposition 8.1. — Let m ∈ Z. Given f ∈ C∞(Xδ ∪ Hδ) ∩ D′m(Xδ)
such that supp f ⊂ X−, there exists a unique solution to the problem

P (λ)u = f, suppu ⊂ X−,

such that u ∈ C∞(Xδ ∪Hδ) ∩ D′m(Xδ).

Delaying the proof of Proposition 8.1 for a moment, Theorem 1.4 is now
established by precisely the same argument as [31, Lemma 2.2]:

Proof of Theorem 1.4. — First suppose that ν > 1. As in the proof of
Theorem 1.1, write Pδ(λ) for P (λ) acting on X k(Xδ). For injectivity, take
v ∈ kerPδ(λ) ∩ D′m(Xδ). If the restriction of v to X0 is zero, then v is
supported in X−, which implies that v = 0 on X0 according to Proposi-
tion 8.1. For surjectivity, suppose that u ∈ kerP0(λ) ∩ D′m(X0). Extend u
arbitrarily to Xδ as an element ũ ∈ C∞(Xδ ∪Hδ) ∩D′m(Xδ); according to
Proposition 8.1, the equation

Pδ(λ)v = Pδ(λ)ũ
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has a unique solution v ∈ C∞(Xδ ∪Hδ)∩D′m(Xδ) such that supp v ⊂ X−.
Then ũ− v ∈ kerPδ(λ)∩D′m(Xδ) and ũ− v restricts to u on X0. The same
argument applies when 0 < ν < 1 since T (λ) is axisymmetric, replacing
P (λ) with P(λ). �

Although Proposition 8.1 is closely related to the results of [48] on asymp-
totically de Sitter spacetimes, a direct proof is outlined here. See also [55,
Lemma 1] for the same type of result (at least for the uniqueness part).

Define the Riemannian metric

h = 1
∆θ

dθ2 + ∆θ sin2 θ

(1− α)2 dφ2,

which extends smoothly across the poles to S2. The idea is to apply an
energy identity in X−.

Let ρ = r+ − r, which is positive in X−. Given u ∈ C∞(Xδ ∪ Hδ), let
dyu denote the differential of u(ρ, · ) on S2. Then for any N ∈ R,

∂ρ
(
ρN
(
−∆r|∂ρu|2 + h−1(dyu,dyu) + |u|2

))
= 2ρN Re

(
∂ρū (∆rD

2
ρu) + h−1(dy∂ρu,dyū)

)
+NρN−1 (−∆r|∂ρu|2 + |dyu|2h + |u|2

)
+ ρNR,

where R is a smooth quadratic form in (u,du) which is independent of N
(at this stage R = −(∂r∆r)|∂ρu|2 + 2 Re ∂ρu · ū). Given 0 < ε < ρ 6 δ,
integrate over the region [ε, ρ]× S2 and apply Green’s theorem to obtain

ρNE(ρ)− εNE(ε) = 2
∫

[ε,ρ]×S2
ρN1 Re

(
∂ρū

(
∆rD

2
ρu+ ∆hu

))
dρ1 dh

+N

∫ ρ

ε

ρN−1
1 E(ρ1) dρ1 +

∫
[ε,ρ]×S2

ρNR dρ1 dh,

where ∆h is the nonnegative Laplacian for h and

E(ρ) =
∫
S2

(
−∆r|∂ρu|2 + h−1(dyu,dyu) + |u|2

)
dh.

In general, ∆rD
2
ρ + ∆h differs from P (λ) by a second order operator. On

the other hand, after restricting to D′m(Xδ) this difference is of first order
and can be absorbed into R. Thus

(8.1) ρNE(ρ)− εNE(ε) = 2
∫

[ε,ρ]×S2
ρN1 Re (∂ρū P (λ)u) dρ1 dh

+N

∫ ρ

ε

ρN−1
1 E(ρ1) dρ1 +

∫
[ε,ρ]×S2

ρN1 R dρ1 dh
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for each u ∈ C∞(Xδ ∪Hδ) ∩D′m(Xδ), where now R is a quadratic form in
(u,du) which depends on λ and m.
Proof of Proposition 8.1. — To prove uniqueness, suppose that u ∈

C∞(Xδ ∪ Hδ) ∩ D′m(Xδ) satisfies P (λ)u = 0 and suppu ⊂ X−. Observe
that u vanishes to infinite order at H0, and therefore ρNE(ρ)→ 0 as ρ→ 0.
Apply (8.1) with N large and negative. Since ∆r vanishes to first order at
{ρ = 0}, there exists N < 0 such that

NρN−1
1 E(ρ1) + ρN1

∫
S2
R dh 6 0

for each ρ1 ∈ [0, δ]. Letting ε → 0 shows that E(ρ) = 0 for each ρ ∈ [0, δ],
hence u = 0.
For the existence part of the proof, note that ∆rD

2
ρ+∆h is formally self-

adjoint with respect dρdh modulo first order terms, so (8.1) also applies
to P (λ)∗ computed with respect to dρ dh, with a different error R (observe
that this adjoint is different than P (λ)∗ considered in Section 4.5).
Assume that v ∈ C∞(X−) ∩ D′m(X−) satisfies supp v ⊂ {ρ < δ/2}. In

particular, E(δ) = 0. Now take N large and positive. There exists N > 0
and C > 1 such that

NρN−1
1 E(ρ1) + ρN1

∫
S2
R dh > C−1NρN−1

1 E(ρ1)

for ρ1 ∈ [0, δ]. Furthermore εNE(ε)→ 0 as ε→ 0 in light of the εN factor.
Combined with Cauchy–Schwarz, this implies

N

∫ δ

0
ρN−1‖v(ρ, · )‖2H1(S2) dρ 6 C

∫ δ

0
ρN‖P (λ)∗v(ρ, · )‖2H0(S2) dρ

for N > 0 sufficiently large. Furthermore, by commuting with an axially
symmetric elliptic pseudodifferential operator on S2 of negative order and
absorbing the commutator into the left hand side by possibly increasing N ,
(8.2)

N

∫ δ

0
ρN−1‖v(ρ, · )‖2H−s+1(S2) dρ 6 C

∫ δ

0
ρN‖P (λ)∗v(ρ, · )‖2H−s(S2) dρ.

Thus N > 0 depends on λ,m, and s.
Now suppose that f ∈ C∞(X−) ∩ D′m(X−) vanishes to infinite order at

H0, so in particular

f ∈ ρ(N−1)/2L2((0, δ);Hs−1(S2)) ∩ D′m(X−)

for each N > 0 and s ∈ R. Define the form ` mapping

` : P (λ)∗v 7→ 〈f, v〉L2((0,δ)×S2) ,
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where v ∈ C∞(X−) ∩ D′m(X−) and ρ < δ/2 on the support of v. Then
the estimate (8.2) shows that ` is bounded on the set of all such P (λ)∗v
equipped with the ρ−N/2L2((0, δ);H−s(S2)) norm, provided N > 0 is suf-
ficiently large.
By Hahn-Banach and the Riesz representation, there exists

u ∈ ρN/2L2((0, δ);Hs(S2)) ∩ D′m(X−)

such that
〈f, v〉L2((0,δ)×S2) = 〈u, P (λ)∗v〉

for each v as above, where the pairing on the right is duality between

ρN/2L2((0, δ);Hs(S2))∩D′m(X−)⇐⇒ ρ−N/2L2((0, δ);H−s(S2))∩D′m(X−).

and v is as above. In particular P (λ)u = f in D′m({0 < ρ < δ/2}). Of
course one can always choose an arbitrary smooth extension of f from X−
up to ρ = 2δ and then run the previous argument with δ replaced by 2δ,
thus obtaining a distributional solution on all of X−.
Once s > 0 and N > 0 are sufficiently large, Sobolev regularity of u in

the ρ variable follows from the usual “partial hypoellipticity at the bound-
ary” argument (using the high order of vanishing of u and f to account for
the derivatives in the ρ variable which degenerate at H0), see [37, Theo-
rem B.2.9]. Given sufficient regularity and order of vanishing, the solution
u is unique by the energy estimates for P (λ); thus there exists a solution
u which is smooth on X− and vanishes to infinite order at H0. �
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