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RIEMANN–HILBERT CORRESPONDENCE FOR UNIT
F -CRYSTALS ON EMBEDDABLE ALGEBRAIC

VARIETIES

by Sachio OHKAWA

Abstract. — For a separated scheme X of finite type over a perfect field k
of characteristic p > 0 which admits an immersion into a proper smooth scheme
over the truncated Witt ring Wn, we define the bounded derived category of lo-
cally finitely generated unit F -crystals with finite Tor-dimension on X over Wn,
independently of the choice of the immersion. Then we prove the anti-equivalence
of this category with the bounded derived category of constructible étale sheaves
of Z/pnZ-modules with finite Tor-dimension. We also discuss the relationship of
t-structures on these derived categories when n = 1.
Résumé. — Soit X un schéma séparé de type fini sur un corps parfait k de

caractéristique p > 0 et qui admet une immersion vers un schéma propre et lisse
sur l’anneau des vecteurs de Witt tronqué Wn. Nous définissons la catégorie dé-
rivée bornée des F -cristaux unités localement finiment engendrés sur Wn avec
Tor-dimension finie sur X, indépendemment de l’immersion. Nous provons ensuite
que cette catégorie est anti-équivalente à la catégorie dérivée bornée des faisceaux
constructibles étales de Z/pnZ-modules avec Tor-dimension finie. Nous étudions
aussi les relations de t-structures sur ces catégories dérivées lorsque n = 1.

1. Introduction

For a complex manifold X, Kashiwara [9] and Mebkhout [12] indepen-
dently established an anti-equivalence, which is called the Riemann–Hilbert
correspondence, between the triangulated categoryDb

rh(DX) ofDX -modules
with regular holonomic cohomologies and that Db

c(X,C) of sheaves of C-
vector spaces on X with constructible cohomologies. There is a significant
property from the point of view of relative cohomology theories that this
anti-equivalence respects Grothendieck’s six operations f !, f!, f∗, f∗, RHom
and ⊗L defined on Db

rh(DX) and Db
c(X,C).

Keywords: D-modules, Frobenius structure, étale sheaves.
2010 Mathematics Subject Classification: 14F30, 14F10.



1078 Sachio OHKAWA

In [4], Emerton and Kisin studied a positive characteristic analogue of
the Riemann–Hilbert correspondence. Let k be a perfect field of charac-
teristic p > 0. We denote by Wn := Wn(k) the ring of Witt vectors of
length n. For a smooth scheme X over Wn, Emerton and Kisin defined
the sheaf DF,X of OX -algebras by adjoining to OX the differential op-
erators of all orders on X and a “local lift of Frobenius”. By using DF,X ,
they introduced the triangulated categoryDb

lfgu(DF,X) of DX -modules with
Frobenius structures with locally finitely generated unit cohomologies and
proved the anti-equivalence

Db
lfgu(DF,X)◦

∼=−→ Db
ctf(Xét,Z/pnZ)

between the subcategory Db
lfgu(DF,X)◦ of Db

lfgu(DF,X) consisting of com-
plexes of finite Tor dimension over OX and the triangulated category
Db

ctf(Xét,Z/pnZ) of étale sheaves of Z/pnZ-modules with constructible co-
homologies and of finite Tor dimension over Z/pnZ, which they call the
Riemann–Hilbert correspondence for unit F -crystals. They also introduced
three of Grothendieck’s six operations, which are the direct image f+, the
inverse image f ! and the tensor product ⊗L on Db

lfgu(DF,X), and proved
that their Riemann–Hilbert correspondence exchanges these to f!, f−1 and
⊗L on Db

ctf(Xét,Z/pnZ).
Emerton and Kisin established the Riemann–Hilbert correspondence for

unit F -crystals only for smooth schemes X overWn. Since the triangulated
category Db

ctf(Xét,Z/pnZ) depends only on the mod p reduction of X, it is
natural to expect that there exists a definition of the triangulated category
Db

lfgu(DF,X)◦ and the Riemann–Hilbert correspondence depending only on
the mod p reduction of X. Also, there should be the Riemann–Hilbert
correspondence for algebraic varieties over k which are not smoothly liftable
toWn. The purpose of this article is to generalize the Emerton–Kisin theory
to the case of Wn-embeddable algebraic varieties over k. Here we say a
separated k-scheme X of finite type is Wn-embeddable if there exists a
proper smooth Wn-scheme P and an immersion X ↪→ P such that the
diagram

(1.1)

X

��

� � / P

��
Spec k // SpecWn

is commutative. A quasi projective variety over k is a typical example of
Wn-embeddable variety and thus Wn-embeddable varieties form a suffi-
ciently wide class of algebraic varieties in some sense.

ANNALES DE L’INSTITUT FOURIER



RIEMANN–HILBERT CORRESPONDENCE 1079

The first problem is to define a reasonable D-module category for Wn-
embeddable algebraic varieties over k. Our construction is based on Kashi-
wara’s theorem which roughly asserts that, for any closed immersion X ↪→
P of smooth algebraic varieties, the category of D-modules on P supported
on X is naturally equivalent to the category of D-modules on X. Using the
characteristic p > 0 analogue of Kashiwara’s theorem due to Emerton–
Kisin [4, Prop. 15.5.3], we show that, when we are given the diagram (1.1),
the full triangulated subcategory of Db

lfgu(DF,P )◦ consisting of complexes
supported on X does not depend on the choice of immersion X ↪→ P

(Corollary 4.6). We denote this full subcategory by Db
lfgu(X/Wn)◦. Then

we show the Riemann–Hilbert correspondence

Db
lfgu(X/Wn)◦

∼=−→ Db
ctf(Xét,Z/pnZ)

for any Wn-embeddable k-scheme X (Theorem 4.12). As in the case of [4],
we can naturally introduce three of Grothendieck’s six operations, that
is, direct and inverse images and tensor products. We then prove that the
Riemann–Hilbert correspondence respects these operations (Theorem 4.14).
A striking consequence of the Riemann–Hilbert correspondence over com-
plex numbers is that one can introduce an exotic t-structure on the topo-
logical side called the perverse t-structure, which corresponds to the stan-
dard t-structure on the D-module side. For an algebraic variety X over
k, Gabber introduced in [5] the perverse t-structure on Db

c(Xét,Z/pZ),
which we call Gabber’s perverse t-structure. In the case when X is smooth
over k, Emerton and Kisin showed that the standard t-structure on the
D-module side corresponds to Gabber’s perverse t-structure. In this paper,
we generalize it to the case of k-embeddable k-schemes. In the complex
situation, conversely, a t-structure on the D-module side corresponding to
the standard t-structure on the topological side is explicitly described by
Kashiwara in [10]. In this paper, we construct the analogue of Kashiwara’s
t-structure on Db

lfgu(X/k) and discuss the relationship of it and the stan-
dard t-structure on Db

c(Xét,Z/pZ).
The content of each section is as follows: In the second section, we re-

call several notions, terminologies and cohomological operations on DF,P -
modules from [4] which we often use in this paper. We also recall the
statement of the Riemann–Hilbert correspondence for unit F -crystals of
Emerton–Kisin (Theorem 2.3). In the third section, we define the local co-
homology functor RΓZ for DF,P -modules and prove compatibilities with
RΓZ and other operations for DF,P -modules, which are essential tools to
define and study the triangulated category Db

lfgu(X/Wn)◦ for any Wn-
embeddable k-scheme X. In subsection 4.1, we introduce the category

TOME 68 (2018), FASCICULE 3



1080 Sachio OHKAWA

Db
lfgu(X/Wn)◦ for any Wn-embeddable k-scheme X and in subsection 4.2,

we construct three of Grothendieck’s six operations on Db
lfgu(X/Wn)◦. Our

arguments in these subsections are heavily inspired by that of Caro in [2].
In subsection 4.3, we prove the Riemann–Hilbert correspondence for unit
F -crystals on Wn-embeddable k-schemes, which is our main result. In the
fifth section, we discuss several properties onDb

lfgu(X/k) (in the case n = 1)
related to t-structures. In subsection 5.1, we introduce the standard t-
structure on Db

lfgu(X/k) depending on the choice of the immersion X ↪→ P .
We prove that the standard t-structure corresponds to Gabber’s perverse
t-structure via the Riemann–Hilbert correspondence. As a consequence, we
know that the definition of the standard t-structure is independent of the
choice of X ↪→ P (Theorem 5.5). In subsection 5.2, we define the abelian
category µlfgu,X as the heart of the standard t-structure on Db

lfgu(X/k),
and prove that the natural functor Db(µlfgu,X)→ Db

lfgu(X/k) is an equiv-
alence of triangulated categories (Theorem 5.6), which can be regarded as
an analogue of Beilinson’s theorem. In subsection 5.3, depending on the
choice of the immersion X ↪→ P , we introduce the constructible t-structure
on Db

lfgu(X/k) by following the arguments in [10] and prove that it cor-
responds to the standard t-structure on the étale side via the Riemann–
Hilbert correspondence. As a consequence, we see that the constructible
t-structure does not depend on the choice of X ↪→ P (Corollary 5.19).

After writing the first version of this article, the author learned that,
in [13] Schedlmeier also studied on closely related subjects independently
in terms of the notion of Cartier crystals. In particular, he proved that, for
a separated F -finite k-scheme X which admits a closed immersion into a
smooth (but not necessarily proper) k-scheme, there exists an equivalence
of triangulated categories between the bounded derived category of Cartier
crystals on X and Db

c(Xét,Z/pZ).

Acknowledgments. This article is the doctor thesis of the author in the
university of Tokyo. The author would like to express his profound gratitude
to his supervisor Atsushi Shiho for valuable suggestions, discussions and the
careful reading of this paper. He would like to thank Kohei Yahiro for useful
discussions and Manuel Blickle for informing me a result of Schedlmeier
in [13]. He would also like to thank the referee for reading the paper in
detail, pointing out mistakes, and giving valuable comments. This work was
supported by the Program for Leading Graduate Schools, MEXT, Japan,
the Grant-in-Aid for Scientific Research (KAKENHI No. 26-9259), and the
Grant-in-Aid for JSPS fellows.
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Conventions. Throughout this paper, we fix a prime number p and a
perfect base field k of characteristic p. We denote by W the ring of Witt
vectors associated to k and byWn the quotient ringW/(p)n for any natural
number n. For a scheme X, we denote the structure sheaf of X by OX . For
a smooth Wn-scheme X, the dimension of X is a continuous integer valued
function on X defined by

dX : x ∈ X 7→ dimension of the component of X containing x.

For a morphism f : X → Y of smooth Wn-scheme, we denote a function
dX−dY ◦f by dX/Y and a function −dX/Y by dY/X . For an abelian category
C, we denote by D(C) the derived category of C. For a scheme X and an
OX -algebra A, we denote by D(A) the derived category of left A-modules
and by Dqc(A) the full triangulated subcategory of D(A) consisting of
complexes whose cohomology sheaves are quasi-coherent as OX -modules.
For A-modules F and G, we denote by HomA(F ,G) the sheaf of A-linear
homomorphism from F to G. We denote a complex by a single letter such
as M and by Mn the n-th term of M. For an object M in D(A), we
denote by Hi(M) the i-th cohomology ofM and by SuppM the support
ofM, which is defined as the closure of

⋃
i Supp Hi(M).

2. Preliminaries

In this section we recall the notion of locally finitely generated unit DF,X -
modules introduced in [4] and the Riemann–Hilbert correspondence for unit
F -crystals in [4].

2.1. Locally finitely generated unit DF,X-modules

For a smooth Wn-scheme X, we denote by DX the sheaf of differential
operators of X over Wn defined in [6, §16]. For a morphism of smooth Wn-
schemes f : X → Y and a left DY -moduleM, f∗M := OX ⊗f−1OY

f−1M
has a natural structure of left DX -modules. When there exists a lifting
F : X → X of the absolute Frobenius on X ⊗Wn k, the left DX -module
structure on F ∗M is known to be independent of the choice of the lifting F
up to canonical isomorphism by [4, Prop. 13.2.1]. Since the lifting F above
always exists Zariski locally on X, we obtain a functor

F ∗ : (left DX -module)→ (left DX -module)

TOME 68 (2018), FASCICULE 3



1082 Sachio OHKAWA

by glueing for any smooth Wn-scheme X. We set

DF,X :=
⊕
r>0

(F ∗)rDX .

Then DF,X naturally forms a sheaf of associative Wn-algebras such that
the natural embedding DX → DF,X is a Wn-algebra homomorphism by [4,
Cor. 13.3.5]. It is proved in [4, Prop. 13.3.7] that giving a left DF,X -module
M is equivalent to giving a DX -moduleM together with a morphism ψM :
F ∗M → M of left DX -modules, which we call the structural morphism
ofM.
Next let us recall the notion of locally finitely generated unit DF,X -

modules. We say that a left DF,X -moduleM is unit if it is quasi-coherent
as an OX -module and the structural morphism ψM : F ∗M → M is an
isomorphism. We say that a DF,X -module M is locally finitely generated
unit if it is unit and Zariski locally on X, there exists a coherent OX -
submoduleM ⊂M such that the natural morphism DF,X⊗OX

M →M is
surjective. Then the locally finitely generated unit left DF,X -modules form
a thick subcategory of the category of quasi-coherent left DF,X -modules [4,
Prop. 15.3.4]. We say that a locally finitely generated unit DF,X -module
M is an F -crystal ifM is locally free of finite rank as an OX -module.

Finally we introduce some notations on triangulated categories. We de-
note by D(DF,X) the derived category of the abelian category of left DF,X -
modules and by Dqc(DF,X) (resp. Dlfgu(DF,X)) the full triangulated sub-
category of D(DF,X) consisting of those complexes whose cohomology
sheaves are quasi-coherent as OX -modules (resp. are locally finitely gen-
erated unit left DF,X -modules). If • is one of ∅, −, +, b, we denote by
D•(DF,X) the full triangulated subcategories of D(DF,X) consisting of
those complexes satisfying the appropriate boundedness condition. We use
the notations D•qc(DF,X) and D•lfgu(DF,X) in a similar manner. We denote
byDb

lfgu(DF,X)◦ the full triangulated subcategory ofDb
lfgu(DF,X) consisting

of those complexes which are of finite Tor dimension as OX -modules.

2.2. Cohomological operations for left DF,X-modules

For a morphism f :X→ Y of smoothWn-schemes, f∗DF,Y :=OX⊗f−1OY

f−1DF,Y has a natural structure of left DF,X -module by [4, Cor. 14.2.2]. It
also forms a right f−1DF,Y -module via the right multiplication on f−1DF,Y .
So f∗DF,Y has a structure of

(
DF,X , f−1DF,Y

)
-bimodule, which we denote

by DF,X→Y . For a DF,Y -module M, we define a left DF,X -module f∗M

ANNALES DE L’INSTITUT FOURIER
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by DF,X→Y ⊗f−1DF,Y
f−1M. Note that f∗M∼= OX ⊗f−1OY

f−1M as an
OX -module. We then define a functor

Lf∗ : D−(DF,Y )→ D−(DF,X)

to be the left derived functor of f∗. One has Lf∗M∼= OX ⊗L
f−1OY

M as a
complex of OX -modules. We also define a functor

f ! : D−(DF,Y )→ D−(DF,X)

by f !M := Lf∗M[dX/Y ]. For the definition of the shift functor (−)[dX/Y ]
by the function dX/Y , we refer the reader to [4, §0]. The second inverse
image functor is appropriate to formulate the compatibility with the
Riemann–Hilbert correspondence (see Theorem 2.3 (2) bellow). Let ? be
one of qc or lfgu and ∗ one of ◦ or ∅. Then the functor f ! restricts to a
functor

f ! : Db
?(DF,Y )∗ → Db

?(DF,X)∗

by [4, Prop. 14.2.6 and Prop. 15.5.1].
Next let us define the direct image functor f+ for DF,X -modules for a

morphism f : X → Y of smooth Wn-schemes. First of all, we recall the
definition of the direct image functor

fB+ : D−(DX)→ D−(DY )

for DX -modules. For a smoothWn-scheme Y , we denote by ωY the canoni-
cal bundle of Y overWn. Then DY ⊗OY

ω−1
Y has two natural left DY -module

structures. The first one is the tensor product of left DY -modules DY and
ω−1
Y (cf. [1, 1.2.7.(b)]). On the other hand, using the right DY -module

structure on DY defined by the multiplication of DY on the right, one has
the second left DY -module structure on DY ⊗OY

ω−1
Y by [1, 1.2.7.(b)]. So

DY ⊗OY
ω−1
Y naturally forms a left (DY ,DY )-bimodule. For a morphism

f : X → Y of smooth Wn-schemes, by pulling DY ⊗OY
ω−1
Y back with

respect to the second DY -module structure, one has a left (f−1DY ,DX)-
module f∗d

(
DY ⊗OY

ωY
−1). Here, in order to avoid confusion we use the

notation f∗d instead of f∗. By tensoring ωX on the right, one obtains an
(f−1DY ,DX)-bimodule

DY←X := f∗d
(
DY ⊗OY

ω−1
Y

)
⊗OX

ωX .

On the other hand, one has a left (DX , f−1DY )-module f∗g
(
DY ⊗OY

ω−1
Y

)
by pulling back DY ⊗OY

ω−1
Y with respect to the first DY -module structure.

By tensoring ωX on the left, we obtain an (f−1DY ,DX)-bimodule

DY←X ′ := ωX ⊗OX
f∗g
(
DY ⊗OY

ω−1
Y

)
.

TOME 68 (2018), FASCICULE 3



1084 Sachio OHKAWA

Then there exists the natural isomorphism of (f−1DY ,DX)-bimodules

DY←X
∼=−→ DY←X ′.

For more details see [1, 3.4.1]. We define a functor fB+ : D−(DX) →
D−(DY ) by

fB+M := Rf∗
(
DY←X ⊗L

DX
M
)
.

Let us go back to the situation of DF,X -modules. We define DF,Y←X by

DF,Y←X := ωX ⊗OX
f∗
(
DF,Y ⊗OY

ω−1
Y

)
.

Then DF,Y←X has a natural (f−1DF,Y ,DF,X)-bimodule structure (see [4,
§14.3]). We remark that DF,Y←X has finite Tor dimension as a right DF,X -
module by [4, Prop. 14.3.5] and, since Y is a noetherian topological space,
Rf∗ has finite cohomological amplitude. We define a functor

f+ : D−(DF,X)→ D−(DF,Y )

by
f+M := Rf∗

(
DF,Y←X ⊗L

DF,X
M
)
.

Let ? be one of qc or lfgu and ∗ one of ◦ or ∅. The functor f+ restricts to
a functor

f+ : Db
?(DF,X)∗ → Db

?(DF,Y )∗

by [4, Prop. 14.3.9 and Prop. 15.5.1].

Remark 2.1. — Let f : X → Y be a morphism of smooth Wn-schemes.
The natural inclusion of (DY ,DY )-bimodules DY → DF,Y induces an in-
clusion of (f−1DY ,DX)-bimodules ι : DY←X → DF,Y←X . We then obtain
morphisms in the derived category of (f−1DY ,DF,X)-bimodules

DY←X ⊗L
DX
DF,X → DY←X ⊗DX

DF,X
D1⊗D2 7→ι(D1)D2−−−−−−−−−−−−→ DF,Y←X .

For an objectM in D−(DF,X), applying the functor Rf∗(−⊗L
DF,X

M) to
the composite of the above morphisms, we obtain a DY -linear morphism

fB+M→ f+M .

It is proved in [4, §14.3.10] that the morphism fB+M→ f+M is an isomor-
phism.

Let X be a smooth Wn-scheme. Let M and N be DF,X -modules with
structural morphisms ψM and ψN . ThenM⊗OX

N has a natural structure
of left DX -modules. We define the structural morphism on M⊗OX

N to
be the composite of DX -linear morphisms

F ∗ (M⊗OX
N )∼=F ∗M⊗OX

F ∗N ψM⊗ψN−−−−−−→M⊗OX
N .

ANNALES DE L’INSTITUT FOURIER
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Here the first isomorphism follows from [1, 2.3.1] and its proof. We thus
obtain the DF,X -module structure onM⊗OX

N and define a bi-functor

D−(DF,X)×D−(DF,X)→ D−(DF,X)

by (M,N ) 7→ M⊗L
OX
N . This functor restricts to a bi-functor

Db
lfgu(DF,X)×Db

lfgu(DF,X)◦ → Db
lfgu(DF,X)

by [4, Prop. 15.5.1].

Proposition 2.2. — Let f : X → Y be a morphism of smooth Wn-
schemes. If M and N are objects in D−(DF,Y ), then there are natural
isomorphisms

Lf∗M⊗L
OX

Lf∗N
∼=−→ Lf∗

(
M⊗L

OY
N
)

and
f !M⊗L

OX
f !N [dY/X ]

∼=−→ f ! (M⊗L
OY
N
)
.

Proof. — The second isomorphism follows from the first one. Let P →M

(resp. Q → N) be a resolution of M (resp. N ) by flat DF,Y -modules.
Note that P and Q are complexes of flat OY -modules. So P ⊗OY

Q →
M⊗L

OY
N gives a resolution of M⊗L

OY
N by flat DF,Y -modules (cf. [7,

Lem. 4.1]) and f∗P is a complex of flat OX -modules. By the universal
mapping property of the tensor product, one has a natural DF,X -linear
morphism f∗P ⊗OX

f∗Q → f∗ (P ⊗OY
Q). Evidently it is an isomorphism

as a morphism in D(OX) and hence it is the desired isomorphism. �

2.3. Riemann–Hilbert correspondence for unit F -crystals

Let X be a smooth Wn-scheme. We denote by Db(Xét,Z/pnZ) the
bounded derived category of complexes of Z/pnZ-modules on the étale
site Xét. We let Db

ctf(Xét,Z/pnZ) denote the full triangulated subcategory
of Db

ctf(Xét,Z/pnZ) consisting of complexes whose cohomology sheaves are
constructible and which have finite Tor dimension over Z/pnZ.
For a morphism f : X → Y of smooth Wn-schemes, the inverse image

f−1 : Db
ctf(Yét,Z/pnZ)→ Db

ctf(Xét,Z/pnZ)

and the direct image with proper support

f! : Db
ctf(Xét,Z/pnZ)→ Db

ctf(Yét,Z/pnZ)

are defined. For a review of constructions of these functors, we refer the
reader to [4, §8].

TOME 68 (2018), FASCICULE 3
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Let X be a smoothWn-scheme. We denote by πX : Xét → X the natural
morphism of sites, where X means the Zariski site of X. Then DF,Xét :=
π∗XDF,X naturally forms a sheaf of associative Wn-algebras on Xét. By
étale descent, we have an equivalence of triangulated categories (cf. [4, §7
and 16.1.1])

π∗X : Db
qc(DF,X)→ Db

qc(DF,Xét)

with quasi-inverse πX∗. ForM∈ Db
lfgu(DF,X)◦, we set

SolX(M) = RHomDF,Xét
(π∗X(M),OXét)[dX ] .

Then this correspondence defines a contravariant functor

SolX : Db
lfgu(DF,X)◦ → Db

ctf(Xét,Z/pnZ)

by [4, Prop. 16.1.7]. Conversely, for L ∈ Db
ctf(Xét,Z/pnZ), we set

MX(L) = πX∗RHomZ/pnZ(L,OXét)[dX ] .

Then this correspondence defines a contravariant functor

MX : Db
ctf(Xét,Z/pnZ)→ D+(DF,X) .

Now we may state one of the main results in [4].

Theorem 2.3. — For a smooth Wn-scheme X, the functor SolX is
an anti-equivalence of triangulated categories between Db

lfgu(DF,X)◦ and
Db

ctf(Xét,Z/pnZ) with quasi-inverse MX . Furthermore SolX and MX sat-
isfy the following properties:

(1) If f : X → Y is a morphism of smooth Wn-schemes, then SolX and
MX interchange f ! and f−1.

(2) Let f be a morphism of smooth Wn-schemes such that f can be
factored as f = g◦h, where g is an immersion of smoothWn-schemes
and h is a proper smooth morphism of smooth Wn-schemes. Then
SolX and MX interchange f+ and f!.

(3) SolX and MX interchange the functors ⊗L
OX

and ⊗L
Z/pnZ up to shift.

More precisely, for objectsM and N in Db
lfgu(DF,X)◦, there exists

a canonical isomorphism

SolX(M)⊗L
Z/pnZ SolX(N )

∼=−→ SolX
(
M⊗L

OX
N
)

[dX ] .

Proof. — See [4, Prop. 16.1.10 and Cor. 16.2.6]. �
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2.4. Remark in the case n = 1

Let X be a smooth k-scheme and assume that n = 1 in this subsection.
Let OF,X denote a sheaf of the non-commutative polynomial ring OX [F ] in
a formal variable F , which satisfies the relation Fa = apF for a ∈ OX . One
can naturally regard OF,X as a subring of DF,X . Giving an OF,X -module
M is equivalent to giving an OX -module M with a structural morphism
F ∗M → M, where F denotes the absolute Frobenius on X. We say an
OF,X -module M is unit if it is quasi-coherent as an OX -module and the
structural morphism F ∗M → M is an isomorphism. We say an OF,X -
moduleM is locally finitely generated unit if it is unit and locally finitely
generated as an OF,X -module. Similar to the case of DF,X -modules, the lo-
cally finitely generated unit OF,X -modules form a thick subcategory of the
category of quasi-coherent OF,X -modules. So one can consider the bounded
derived category Db

lfgu(OF,X) of complexes of OF,X -modules whose coho-
mology sheaves are locally finitely generated unit. Similar to the case of
DF,X -modules, one can define the inverse and direct image functors for a
morphism of smooth k-schemes (see [4, §2 and §3]) and the derived tensor
product on Db

lfgu(OF,X). Then Emerton and Kisin proved that the natural
functor

Db
lfgu(DF,X)→ Db

lfgu(OF,X)
induces an equivalence of categories with quasi inverse DF,X ⊗L

OF,X
(−),

which is compatible with the functors f+, f ! and ⊗L
OX

, where f is a mor-
phism of smooth k-schemes [4, Prop. 15.4.3].

Remark 2.4. — In [4], Emerton and Kisin firstly established the theory
of OF,X -modules for smooth k-schemes. They proved many properties of
DF,X -modules for smooth Wn-schemes including Theorem 2.3 by reducing
them to the corresponding properties of OF,X⊗Wnk

-modules.

3. Local cohomology functor

Let P be a smoothWn-scheme. Let Z be a closed subset of P and jZ the
canonical open immersion P \ Z ↪→ P . For a sheaf F of abelian groups on
P , we set ΓZF := Ker(F → jZ∗j

−1
Z F). If M is a left DF,P -module, then

ΓZM naturally forms a left DF,P -module. We have a left exact functor ΓZ
from the category of left DF,P -modules to itself. Then the local cohomology
functor

RΓZ : D+(DF,P )→ D+(DF,P )
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is defined to be the right derived functor of ΓZ . By definition, we have a
distinguished triangle

(3.1) RΓZM→M→ RjZ∗j−1
Z M

+−→

for M ∈ D+(DF,P ). Note that RjZ∗ = jZ+ and j−1
Z = j!

Z . We can also
define the local cohomology functor

RΓZ : D+(OP )→ D+(OP )

on the level of OP -modules. Then the forgetful functor D+(DF,P ) →
D+(OP ) commutes with RΓZ . It is proved by Grothendieck that RΓZ has
finite cohomological amplitude.

Lemma 3.1. — Let P be a smooth Wn-scheme and Z a closed subset
of P . Denote by jZ the open immersion P \ Z ↪→ P . Then the following
conditions are equivalent forM∈ D(OP ).

(1) RΓZM
∼=−→M,

(2) RjZ∗j−1
Z M = 0,

(3) SuppM is contained in Z.

Proof. — The equivalence of (1) and (2) follows from (3.1). Assuming
that SuppM ⊂ Z, one has j−1

Z M = 0. This shows (3) ⇒ (2). Finally
(1)⇒ (3) is evident. �

Lemma 3.2. — Let P be a smooth Wn-scheme and Z a closed subset
of P . There exists a natural OP -linear isomorphism

(3.2) RΓZ (M)⊗L
OP
N
∼=−→ RΓZ

(
M⊗L

OP
N
)

for any M ∈ D−(OP ) and N ∈ D−qc(OP ). Furthermore for any M ∈
D−(DP ) (resp.M∈ D−(DF,P )) and N ∈ D−qc(DP ) (resp. N ∈ D−qc(DF,P ))
(3.2) is a DP -linear (resp. DF,P -linear) isomorphism.

Proof. — Note first that both sides are well-defined. Let us construct a
natural morphism in the Lemma. LetM be an object of D−(OP ) and N
an object of D−qc(OP ). One has RΓZ (M)⊗L

OP
N →M⊗L

OP
N . Then since

RΓZ (M)⊗L
OP
N is supported on Z, we have RΓZ

(
RΓZ (M)⊗L

OP
N
) ∼=−→

RΓZ (M)⊗L
OP
N by Lemma 3.1. So RΓZ (M)⊗L

OP
N →M⊗L

OP
N uniquely

factors as

RΓZ (M)⊗L
OP
N → RΓZ

(
M⊗L

OP
N
)
→M⊗L

OP
N

and we get the desired morphism. Note that ifM is an object of D−(DP )
(resp. D−(DF,P )) and N is an object of D−qc(DP ) (resp. D−qc(DF,P )) then
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(3.2) is DP -linear (resp. DF,P -linear). Let us prove that (3.2) is an iso-
morphism. It suffices to show that this is an isomorphism in D(OP ). The
assertion is Zariski local on P and so we may assume that P is affine. Note
that the source is a way-out left functor in N . Also, since RΓZ is finite co-
homological amplitude, the target is also a way-out left functor in N . Using
the lemma on way-out functors (cf. [7, Chap. I, Prop. 7.1]), we reduce to
the case where N is a single quasi-coherent OP -module. Furthermore since
any quasi-coherent OP -module is a quotient of a free OP -module (because
P is affine), we may assume that N is a single free OP -module. Now since
RΓZ commutes with infinite direct sums, we reduce the assertion to prove
the case when N = OP . Then both sides are equal to RΓZM and we are
done. �

Proposition 3.3. — Let P be a smooth Wn-scheme and Z a closed
subset of P . The local cohomology functor induces a functor

RΓZ : Db
lfgu(DF,P )◦ → Db

lfgu(DF,P )◦.

Proof. — Let us first show that, for any M ∈ Db
lfgu(DF,P ), RΓZM has

locally finitely generated cohomology sheaves. Let jZ denote the open im-
mersion P \ Z ↪→ P . Then there exists a distinguished triangle

RΓZM→M→ RjZ∗j−1
Z M

+−→ .

Since M and RjZ∗j−1
Z M are objects of Db

lfgu(DF,P ) by [4, Prop. 15.5.1],
RΓZM is also an object of Db

lfgu(DF,P ) by [4, Prop. 15.3.4]. Next we show
that, for anyM∈ Db

lfgu(DF,P )◦, RΓZM is of finite Tor dimension over OP .
According to [8, I, Prop. 5.1], it is enough to show that RΓZ(M)⊗L

OP
N is

a bounded complex for any OP -module N . First of all, suppose that N is
a quasi-coherent OP -module. Then, by Lemma 3.2, we have RΓZ(M)⊗L

OP

N
∼=−→ RΓZ(M⊗L

OP
N ). Since M is of finite Tor dimension, M⊗L

OP
N

is a bounded complex of OP -modules. So we know that RΓZ(M) ⊗L
OP
N

is bounded since RΓZ is finite cohomological amplitude. Now if N is an
arbitrary OP -module, then the stalks of RΓZ(M) ⊗L

OP
N are uniformly

bounded, hence so is RΓZ(M)⊗L
OP
N because P is quasi-compact. �

Lemma 3.4. — Let f : P → Q be a morphism of smooth Wn-schemes
and ZQ a closed subset of Q. We denote by ZP the inverse image of ZQ.
There exists a natural isomorphism in D−(DF,P )

Lf∗ ◦ RΓZQ
(OQ)

∼=−→ RΓZP
(OP ) .

Proof. — One has natural morphisms

(3.3) Lf∗RΓZQ
(OQ)→ Lf∗OQ → OP .

TOME 68 (2018), FASCICULE 3



1090 Sachio OHKAWA

Let us denote by jZQ
(resp. jZP

) the open immersion Q \ ZQ ↪→ Q (resp.
P \ ZP ↪→ P ) and by f ′ the restriction of f to P \ ZP . Then one has

j−1
ZP

Lf∗RΓZQ
(OQ) ∼= Lf ′∗j−1

ZQ
RΓZQ

(OQ) ∼= 0 .

Hence, we know that Lf∗RΓZQ
(OQ) is supported on ZP and the mor-

phism (3.3) uniquely factors as

Lf∗RΓZQ
OQ

a−→ RΓZP
(OP )→ OP .

It suffices to prove that a is an isomorphism inD(OP ). One has a morphism
of distinguished triangles

Lf∗RΓZQ
OQ //

a

��

Lf∗OQ

b

��

// Lf∗RjZQ∗j
−1
ZQ
OQ

c

��

+ //

RΓZP
(OP ) // OP // RjZP ∗j

−1
ZP
OP

+ // .

Here c is defined to be the composite of morphisms

Lf∗RjZQ∗j
−1
ZQ
OQ → RjZP ∗j

−1
ZP

Lf∗RjZQ∗j
−1
ZQ
OQ

∼= RjZP ∗Lf ′∗j
−1
ZQ

RjZQ∗j
−1
ZQ
OQ

∼=−→ RjZP ∗Lf ′∗j
−1
ZQ
OQ

∼= RjZP ∗j
−1
ZP

Lf∗OQ
→ RjZP ∗j

−1
ZP
OP ,

where the first morphism and the third one are induced from the adjunction
morphisms id → RjZP ∗j

−1
ZP

and j−1
ZQ

RjZQ∗
∼=−→ id respectively. Then b is

evidently an isomorphism and c is an isomorphism by [14, Lem. 35.18.3].
So a is an isomorphism. �

Proposition 3.5. — Let f : P → Q be a morphism of smooth Wn-
schemes and ZQ a closed subset of Q. We denote by ZP the inverse image
of ZQ. Then, for anyM∈ D−qc(DF,Q), there exists a natural isomorphism

Lf∗ ◦ RΓZQ
M

∼=−→ RΓZP
◦ Lf∗M

and also a natural isomorphism

f ! ◦ RΓZQ
M

∼=−→ RΓZP
◦ f !M .

Proof. — The second isomorphism follows by applying the shift operator
to the first one. By using Proposition 2.2, Lemma 3.2 and Lemma 3.4, we
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obtain

Lf∗RΓZQ
(M)

∼=←− Lf∗
(
RΓZQ

(OQ)⊗L
OQ
M
)

∼=−→ Lf∗RΓZQ
(OQ)⊗L

OP
Lf∗M

∼=−→ RΓZP
(OP )⊗L

OP
Lf∗M = RΓZP

(Lf∗M) . �

Next we show the compatibility of the local cohomology functor and the
direct image. We begin with the corresponding result for usual DP -modules
(without Frobenius structures).

Proposition 3.6. — Let f : P → Q be a morphism of smooth Wn-
schemes and ZQ a closed subset of Q. We denote by ZP the inverse image
of ZQ. Let M be an object in Db

qc(DP ). Then there exists a natural iso-
morphism of functors

RΓZQ
◦ fB+(M)→ fB+ ◦ RΓZP

(M) .

We need some lemmas.

Proposition 3.7. — Let f : P → Q be a morphism of smooth Wn-
schemes. IfM is an object in D−qc(DQ) and N is an object in D−(f−1DQ),
then there exists a natural isomorphism

M⊗L
OP

Rf∗N
∼=−→ Rf∗

(
f−1M⊗L

f−1OQ
N
)
.

in D−(DQ).

Proof. — Note first that both sides are defined. Let us take an f∗-acyclic
resolution I of N and a DQ-flat resolution P ofM. Then we have a natural
DQ-linear morphism

M⊗L
OP

Rf∗N := P ⊗OP
f∗I → f∗

(
f−1P ⊗f−1OQ

I
)

→ Rf∗
(
f−1P ⊗f−1OY

I
)

= Rf∗
(
f−1M⊗L

f−1OY
N
)
.

It is enough to prove that this is an isomorphism in D(OQ). Then this
follows from [7, II, Prop. 5.6]. �

Lemma 3.8. — Let f : P → Q be a morphism of smooth Wn-schemes.
For an object E in D−(DQ) and an object F in D−(DP ), there exists an
isomorphism(

f−1E ⊗L
f−1OQ

DQ←P
)
⊗L
DP
F
∼=−→ DQ←P ⊗L

DP

(
Lf∗E ⊗L

OP
F
)

in Db(f−1DQ).
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Proof. — The proof is the same as that of the corresponding proposition
for D-modules of higher level proved in [2, Prop. 1.2.25]. �

Let us prove Proposition 3.6.
Proof. — Applying Proposition 3.7 to the case with M = RΓZQ

(OQ)
and N = DQ←P ⊗L

DP
M, we obtain

RΓZQ
(OQ)⊗L

OQ
Rf∗

(
DQ←P ⊗L

DP
M
)

∼=−→ Rf∗
(
f−1 (RΓZQ

(OQ)
)
⊗L
f−1OQ

(
DQ←P ⊗L

DP
M
))
.

The left hand side is isomorphic to RΓZQ
◦ fB+(M) by Lemma 3.2. On the

other hand, by Lemma 3.8, we have

f−1RΓZQ
(OQ)⊗L

f−1OQ
DQ←P ⊗L

DP
M

∼= (f−1RΓZQ
(OQ)⊗L

f−1OQ
DQ←P )⊗L

DP
M

∼= DQ←P ⊗L
DP

(
Lf∗RΓZQ

(OQ)⊗L
OP
M
)
.

Lemma 3.2 and Proposition 3.5 imply that

DQ←P ⊗L
DP

(
Lf∗RΓZQ

(OQ)⊗L
OP
M
)

∼=−→ DQ←P ⊗L
DP

(
RΓZP

(OP )⊗L
OP
M
)

∼=−→ DQ←P ⊗L
DP

RΓZP
(M) .

Therefore the right hand side of the first isomorphism is isomorphic to

Rf∗
(
DQ←P ⊗L

DP
RΓZP

(M)
)

= fB+ ◦ RΓZP
(M) . �

Proposition 3.9. — Let f : P → Q be a morphism of smooth Wn-
schemes and ZQ a closed subset of Q. We denote by ZP the inverse image
of ZQ. Let M be an object in Db

qc(DF,P ). Then there exists a natural
isomorphism

RΓZQ
◦ f+(M)→ f+ ◦ RΓZP

(M) .
in Db(DF,Q)

Proof. — Let us construct a natural transformation RΓZQ
◦ f+ → f+ ◦

RΓZP
. For an objectM in Db(DF,P ), the natural morphism RΓZP

M→M
induces a morphism RΓZQ

f+RΓZP
M→ RΓZQ

f+M. Since, by Remark 2.1
and Proposition 3.6, f+RΓZP

M∼= fB+RΓZP
M∼= RΓZQ

fB+M as a complex
of DQ-module, we know that f+RΓZP

M is supported on ZQ. Therefore we
have a natural morphism

f+RΓZP
M

∼=←− RΓZQ
f+RΓZP

M→ RΓZQ
f+M .

Again by Proposition 3.6 we conclude that it is an isomorphism. �
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4. Riemann–Hilbert correspondence for unit F -crystals

4.1. Category Db
lfgu(X/Wn)◦

Definition 4.1. — Let P be a smooth Wn-scheme and let Z and T be
closed subsets of P . We define the category CP,Z,T to be the full triangulated
subcategory of Db

lfgu(DF,P )◦ consisting of complexesM satisfying

(4.1) RΓZM
∼=−→M and RΓTM = 0 .

Lemma 4.2. — Let P be a smooth Wn-scheme. Let Z, Z ′, T and T ′ be
closed subsets of P satisfying Z \ T = Z ′ \ T ′. Then we have the equality

CP,Z,T = CP,Z′,T ′ .

Proof. — First we prove the equality in the case Z = Z ′. One has Z∩T =
Z ∩ T ′. Then an isomorphism RΓZM

∼=−→M induces

RΓTM
∼=←− RΓZ∩TM = RΓZ∩T ′M

∼=−→ RΓT ′M .

Next we consider the case T = T ′. We have to show that RΓZM
∼=−→ M

if and only if RΓZ′M
∼=−→ M under the assumption RΓTM = 0. For a

closed subset C of P , let us denote by jC the canonical open immersion
P \C ↪→ P . Then the condition RΓZM

∼=−→M is equivalent to the condition
RjZ∗j−1

Z M = 0. One always has RΓTRjZ∗j−1
Z M ∼= RjZ∗j−1

Z RΓTM = 0
by Proposition 3.5 and Proposition 3.9. By the distinguished triangle

RΓTRjZ∗j−1
Z M→ RjZ∗j−1

Z M→ RjT∗j−1
T RjZ∗j−1

Z M
+−→ ,

we see that the condition RjZ∗j−1
Z M = 0 is equivalent to the condition

RjT∗j−1
T RjZ∗j−1

Z M = 0. Let us denote by j the open immersion (P \ T ) \
(Z \ T ) = (P \ T ) \ (Z ′ \ T ) ↪→ P \ T and by j′ the open immersion
(P \ T ) \ (Z \ T ) ↪→ P . We have the following cartesian diagram:

(P \ T ) \ (Z \ T )

��

� � j / P \ T� _
jT

�
P \ Z �

� jZ / P .

Applying the flat base change theorem to the complex j−1
Z M of OP\Z-

modules, we obtain

j−1
T RjZ∗j−1

Z M∼= Rj∗j′−1M∼= j−1
T RjZ′∗j−1

Z′M .

Hence RjT∗j−1
T RjZ∗j−1

Z M = 0 if and only if RjT∗j−1
T RjZ′∗j−1

Z′M = 0. The
general case follows from these two cases. �
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Proposition 4.3. — Let P be a smooth Wn-scheme and X a locally
closed subset of P . Let j : U ↪→ P be an open immersion of smooth Wn-
schemes such that an immersion X ↪→ P factors as a closed immersion
X ↪→ U and the open immersion U ↪→ P . Let Z be a closed subset of P
such that Z ∩ U = X. We set T := (P \ U) ∩ Z. Then the direct image
functor Rj∗(= j+) induces an equivalence of triangulated categories

Rj∗ : CU,X,∅ → CP,Z,T
with quasi-inverse j−1(= j!).

Proof. — Firstly we shall see that the functors Rj∗ and j−1 are well-
defined. Let M be an object in CU,X,∅. By Proposition 3.9, we have
RΓZ(Rj∗M) ∼= Rj∗RΓZ∩UM = Rj∗RΓXM

∼=−→ Rj∗M. We also have
RΓT (Rj∗M) = 0 as T ∩ U = ∅ and thus know that Rj∗ restricts to a
functor CU,X,∅ → CP,Z,T . Conversely, let N be an object in CP,Z,T . Apply-
ing the functor j−1 to RΓZN

∼=−→ N we obtain RΓXj−1N
∼=−→ j−1N . There

exist natural adjunction morphisms (cf. [4, Lem. 4.3.1])

j−1Rj∗M→M and N → Rj∗j−1N .

One has j−1Rj∗M
∼=−→ M for any M ∈ CU,X,∅. Let us prove that the ad-

junction morphism N → Rj∗j−1N is an isomorphism for any N ∈ CP,Z,T .
One has a distinguished triangle

RΓP\UN → N → Rj∗j−1N +1−−→ .

We need to show that RΓP\UN is quasi-isomorphic to zero. Let us consider
a distinguished triangle

(4.2) RΓZRΓP\UN → RΓP\UN → RjZ∗j−1
Z RΓP\UN

+1−−→ ,

where jZ denotes the open immersion P \Z ↪→ P . One has RΓZRΓP\UN =
RΓTN = 0. On the other hand, we obtain

RjZ∗j−1
Z RΓP\UN = RΓP\URjZ∗j−1

Z N = 0 .

So the assertion follows from (4.2). �

Recall that a Wn-embeddable k-scheme is a separated k-scheme X of
finite type such that there exists a proper smooth Wn-scheme P and an
immersion X ↪→ P which fits in the following commutative diagram:

X

��

� � / P

��
Spec k // SpecWn .
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Definition 4.4. — Let X be a Wn-embeddable k-scheme with an im-
mersion X ↪→ P into a proper smooth Wn-scheme P . We define the cate-
gory CP,X to be CP,Z,T for some closed subsets Z and T of P withX = Z\T .
This definition is well-defined by Lemma 4.2.

Theorem 4.5. — Let f : P → Q be a proper smooth morphism of
smooth Wn-schemes. Suppose that we are given closed immersions i1 :
X ↪→ P and i2 : X ↪→ Q such that f ◦ i1 = i2. Then f+ induces an
equivalence of categories

(4.3) f+ : CP,X,∅
∼=−→ CQ,X,∅

with a quasi-inverse RΓX ◦ f !.

Proof. — Since the definition of the category CP,X,∅ depends only on the
underlying topological space of X by Lemma 4.2, we may assume that X
is reduced. First of all, we note that the functors f+ and RΓX ◦ f ! are
well-defined. Indeed, forM∈ CP,X,∅, by Proposition 3.9, we have

RΓXf+M
∼=−→ f+RΓf−1(X)M
∼=←− f+RΓf−1(X)RΓXM
∼=−→ f+RΓXM
∼=−→ f+M .

We also have RΓX
(
RΓXf !N

) ∼=−→ RΓXf !N for any N ∈ CQ,X,∅. Next let
us construct a natural transformation from f+ to RΓX ◦ f ! and its inverse.
By [4, Cor. 14.5.15], there are canonical adjunction morphisms

(4.4) f+f
!N → N andM→ f+f

!M .

We thus obtain natural transformations of functors

(4.5) f+RΓXf !N → f+f
!N → N

and

(4.6) M
∼=←− RΓXM→ RΓXf !f+M .

Let us prove that these morphisms are isomorphisms by induction on n.
We begin with the case n = 1. Then P and Q are smooth k-schemes. Let
us firstly consider the case when X is smooth over k. Then [4, Cor. 15.5.4
and Prop. 15.5.3] imply that

f+RΓXf !N
∼=−→ f+i1+i

!
1f

!N
∼=−→ i2+i

!
2N

∼=−→ N .
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This shows that (4.5) is an isomorphism. In order to see that (4.6) is an
isomorphism, we claim that the natural morphism i!1M→ i!1f

!f+M is an
isomorphism. Indeed, since M ∈ CP,X,∅ is supported on X, there exists
M′ ∈ Db

lfgu(DF,X) such that i1+M′ ∼= M by [4, Cor. 15.5.4]. Then we
have i!1M ∼= i!1i1+M′ ∼= M′ and i!1f !f+M ∼= i!1f

!f+i1+M′ ∼= i!2i2+M′ ∼=
M′, hence we see the claim. Applying the functor i1+ to the isomorphism
i!1M

∼=−→ i!1f
!f+M we see that ΓXM → RΓXf !f+M is an isomorphism

by [4, Prop. 15.5.3].
Next let us prove the case n = 1 for general X by induction on the

dimension d of X. If d = 0, then X is étale over k and the assertion follows
from the smooth case. Let X0 be a d-dimensional smooth open subscheme
of X such that H := X \ X0 is of dimension < d. Let us consider the
following diagram:

X \H //

))

P \ f−1(H)

�f ′

��

j′ // P

f

��
Q \H

j // Q.

Let us consider the following morphism of distinguished triangles

RΓf−1(H)M //

��

M

��

// Rj′∗j
′−1M

��

+ //

RΓXf !f+RΓf−1(H)M // RΓXf !f+M // RΓXf !f+Rj′∗j
′−1M + // .

In the left term, we have RΓf−1(H)M
∼=←− RΓf−1(H)RΓXM

∼=−→ RΓHM
and we also calculate

RΓXf !f+RΓf−1(H)M∼= RΓXf !f+RΓf−1(H)RΓHM∼= RΓHf !f+RΓHM
by Proposition 3.9 and Proposition 3.5. Hence the induction hypothesis
implies that the left vertical arrow is an isomorphism. Similarly, by the
smooth case, one can see that the right vertical arrow is an isomorphism.
As a consequence, we see thatM→ RΓXf !f+M is an isomorphism. Next
let us consider the following morphism of distinguished triangles

f+RΓXf !RΓHN //

��

f+RΓXf !Rj∗j
−1N

��

// f+RΓXf !Rj∗j
−1N

��

+ //

RΓHN // N // Rj∗j
−1N + // .

In the left term, we have f+RΓXf !RΓHN ∼= f+RΓHf !RΓHN by Proposition 3.5.
Hence the left vertical arrow is an isomorphism by the induction hypothesis. In
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the right term, we can calculate as

f+RΓXf !Rj∗
(
j−1N

) ∼= f+RΓXRj′∗f
′! (j−1N

) ∼= f+Rj′∗RΓX\Hf ′!
(
j−1N

)
∼= Rj∗f

′
+RΓX\Hf ′!

(
j−1N

)
by Proposition 3.9. So the right vertical arrow is an isomorphism by the smooth
case and hence the middle arrow is also an isomorphism. This finishes the proof
in the case n = 1. Now let us consider a distinguished triangle

M⊗L
Z/pnZ Z/pZ→M→M⊗L

Z/pnZ Z/pn−1Z +−→ .

Then the induction hypothesis, Lemma 3.2 and [4, Prop. 14.8.1] reduce us to the
case n = 1 and we are done. �

Corollary 4.6. — Let f : P → Q be a proper smooth morphism of
proper smooth Wn-schemes. Suppose that we are given immersions i1 :
X ↪→ P and i2 : X ↪→ Q such that f ◦ i1 = i2. Then f+ induces an
equivalence of categories

(4.7) f+ : CP,X
∼=−→ CQ,X

with a quasi-inverse RΓX̄P
◦ f !. Here X̄P denotes the closure of X in P .

Proof. — Let us prove that f+ restricts to a functor CP,X → CQ,X . Let
V be an open subset of P such that i2 factors as a closed immersion
X ↪→ V and the open immersion j2 : V ↪→ Q. Denote by U the open
subset f−1(V ) of Q. Then i1 factors as a closed immersion X ↪→ U and
the open immersion j1 : U ↪→ P . For an object M in CP,X , by Propo-
sition 4.3, there exists M′ ∈ CU,X,∅ satisfying Rj1∗M′ ∼= M. We have
f+M ∼= f+Rj1∗M′ ∼= Rj2∗f|U+M′. In the course of the proof of Theo-
rem 4.5, we saw that f|U+M′ is in CV,X,∅. Hence we know that f+M ∼=
Rj2∗f|U+M′ is in CQ,X by Proposition 4.3.

Next let us prove that RΓX̄P
◦f ! restricts to a functor CQ,X → CP,X . Let

TQ be a closed subset of Q such that X̄Q \TQ = X in Q, where X̄Q denotes
the closure of X in Q. We denote by X̄P the closure of X in P . Let T be a
closed subset of P such that X̄P \ T = X and we set TP := T ∩ f−1(TQ).
Then TP is a closed subset of P such that X̄P \ TP = X and we have
CP,X = CP,X̄P ,TP

and CQ,X = CQ,X̄Q,TQ
. For an object M in CQ,X̄Q,TQ

,
one has RΓX̄P

(RΓX̄P
f !M)

∼=−→ RΓX̄P
f !M. Also by assumption, one has

RΓTQ
M = 0. Applying the functor RΓX̄P

f ! to this equality we have 0 =
RΓX̄P

f !RΓTQ
M ∼= RΓX̄P∩f−1(TQ)f

!M. Then we have RΓTP
RΓX̄P

f !M ∼=
RΓTP

RΓX̄P∩f−1(TQ)f
!M = 0.

There are natural adjunction morphisms

Ψ : f+RΓX̄P
f !N → N and Φ :M→ RΓX̄P

f !f+M .

TOME 68 (2018), FASCICULE 3



1098 Sachio OHKAWA

By Proposition 4.3, Ψ is an isomorphism if and only if so is Ψ|V = j−1
2 Ψ.

Now we can calculate as

j−1
2 f+RΓX̄P

f !N ∼= f|U+j
−1
1 RΓX̄P

f !N ∼= f|U+RΓXj−1
1 f !N

∼= f|U+RΓXf !
|U j
−1
2 N .

Hence we see that j−1
2 Ψ : f|U+RΓXf !

|U j
−1
2 N → j−1

2 N is an isomorphism
by Theorem 4.5. One can prove that Φ is an isomorphism in a similar
manner. �

Definition 4.7. — Let X be a Wn-embeddable scheme. Let us take an
immersion X ↪→ P into a proper smooth Wn-scheme. We define the trian-
gulated category Db

lfgu(X/Wn)◦ by CP,X . This definition is independent of
the choice of embeddingX ↪→ P up to natural equivalence by Corollary 4.6.

4.2. Cohomological operations on Db
lfgu(X/Wn)◦

Let f : X → Y be a morphism of Wn-embeddable schemes. Let us first
define a functor

f ! : Db
lfgu(Y/Wn)◦ → Db

lfgu(X/Wn)◦.

Let us take immersions i1 : X ↪→ P and i2 : Y ↪→ Q, where P and Q

are proper smooth Wn-schemes. Then an immersion i : X ↪→ P ×Wn
Q

is defined by the composition X id×f−−−→ X ×k Y
i1×i2
↪−−−→ P ×Wn Q. One has

p2 ◦ i = i2 ◦ f , where p2 is the second projection P ×Wn
Q→ Q. Hence, for

a morphism f : X → Y of Wn-embeddable schemes, we can always obtain
the following commutative diagram:

(4.8)
X

f

��

� � i1 / P

g

��
Y �
� i2 / Q.

Here P and Q are proper smooth Wn-schemes, i1 and i2 are immersions
and g is a proper smooth morphism of Wn-schemes.

Lemma 4.8. — Let f : X → Y be a morphism of Wn-embeddable
schemes. Suppose that we are given the diagram (4.8). Let j : U ↪→ P be
an open immersion of smooth Wn-schemes such that i1 factors as a closed
immersion X ↪→ U and j. Then the functor

Rj∗RΓXg!
|U : CQ,Y → CP,X

does not depend on the choice of the open immersion j : U ↪→ P .
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Proof. — Assume that we are given an open subset V of U such that
X ↪→ U factors as a closed immersion X ↪→ V and the open immersion
j′ : V ↪→ U . Put j′′ := j′ ◦ j. Then one has

Rj′′∗RΓXg!
|V
∼= Rj∗Rj′∗RΓXj′−1g!

|U
∼= Rj∗Rj′∗j′−1RΓXg!

|U
∼= Rj∗RΓXg!

|U .

This completes the proof. �

Next let us suppose that we are given the following commutative diagram:

(4.9)

X

��

� p

 

� u

(
Y � p

 

� u

(

P1
h2

//

g1

��

P2

g2

��
Q1

h1

// Q2 .

Here P1, P2, Q1 and Q2 are proper smooth Wn-schemes, and g1, g2, h1
and h2 are proper smooth morphisms over Wn, and all slanting allows are
immersions. Let us denote by X̄P1 (resp. ȲQ1) the closure of X (resp. Y )
in P1 (resp. Q1). Take an open immersion j2 : U ↪→ P2 such that the
immersion X ↪→ P2 factors as a closed immersion X ↪→ U and j2. We set
V = h−1

2 (U) and h′2 = h2|V : V → U . Denote by j1 the open immersion
V ↪→ P1. Then we have the following functors:

CP1,X CP2,X

RΓX̄P1
◦h!

2
oo

CQ1,Y

Rj1∗RΓXg
!
1|V

OO

CQ2,Y .RΓȲQ1
◦h!

1

oo

Rj2∗RΓX◦g!
2|U

OO

This diagram is commutative up to natural isomorphism since we have

RΓX̄P1
h!

2 ◦ Rj2∗RΓXg!
2|U
∼= RΓX̄P1

Rj1∗h′2
!RΓXg!

2|U

∼= Rj1∗RΓXRΓh′2−1(X)h
′
2
!
g!

2|U
∼= Rj1∗RΓXh′2

!
g!

2|U

(where the first isomorphism follows from the flat base change theorem)
and

Rj1∗RΓXg!
1|V ◦ RΓȲQ1

h!
1
∼= Rj1∗RΓXΓg−1

1|V (ȲQ1)g
!
1|V h

!
1
∼= Rj1∗RΓXg!

1|V h
!
1 .

For a morphism f : X → Y of Wn-embeddable schemes, we take a
diagram as in (4.8) and an open immersion j : U ↪→ P as in Lemma 4.8.
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We then define the inverse image functor

f ! : Db
lfgu(Y/Wn)◦ → Db

lfgu(X/Wn)◦

by f ! = Rj∗RΓXg!
|U . The above argument shows that this definition is

independent of the choice of diagram (4.8) up to natural isomorphism.
Next let us define the direct image functor f+ : Db

lfgu(X/Wn)◦ →
Db

lfgu(Y/Wn)◦.

Lemma 4.9. — Let f : X → Y be a morphism of Wn-embeddable
schemes. Suppose that we are given a diagram as in (4.8). Then the functor
g+ restricts to a functor

g+ : CP,X → CQ,Y .

Proof. — Take an open subset V of Q such that i2 : Y ↪→ Q factors as a
closed immersion Y ↪→ V and the open immersion j2 : V ↪→ Q. There exists
an open subset U of g−1(V ) such that the immersion X ↪→ g−1(V ) factors
as a closed immersion X ↪→ U and the open immersion U ↪→ g−1(V ). We
denote by j1 the open immersion U ↪→ P . Let M be an object in CP,X .
Then, by Proposition 4.3, there exists N ∈ CU,X,∅ satisfying Rj1∗N ∼=M.
We have g+M ∼= g+Rj1∗N ∼= Rj2∗g|U+N . In the course of the proof of
Theorem 4.5, we saw that g|U+N is in CV,Y,∅. By Proposition 4.3, we know
that g+M∼= Rj2∗g|U+N is in CQ,Y . �

Let us assume that we are given a diagram as in (4.9). Then we have a
natural isomorphism of functors h1+ ◦ g1+ ∼= h2+ ◦ g2+. For a morphism
f : X → Y of Wn-embeddable schemes, we take a diagram as in (4.8) and
define the direct image functor

f+ : Db
lfgu(X/Wn)◦ → Db

lfgu(Y/Wn)◦

by f+ := g+.
Finally let us take an immersion i : X ↪→ P into a proper smooth Wn-

scheme and Z and T closed subsets P such that X = Z \T as a set. ForM
and N ∈ CP,Z,T = CP,X we consider M⊗L

OP
N [−dP ] in Db

lfgu(DF,P ). By
Lemma 3.2, we have RΓZ

(
M⊗L

OP
N
) ∼= (RΓZM)⊗L

OP
N
∼=−→M⊗L

OP
N .

We also have RΓT
(
M⊗L

OP
N
) ∼= (RΓTM) ⊗L

OP
N = 0. Hence M⊗L

OP

N [−dP ] is an object in CP,Z,T . Assume that we are given another immersion
i′ : X ↪→ Q into a proper smooth Wn-scheme and a proper smooth Wn-
morphism f : P → Q with f ◦ i = i′. There exists an equivalence RΓX̄f ! :
CQ,X

∼=−→ CP,X by Theorem 4.5, where X̄ denotes the closure of X in P . For
objectsM and N in CQ,X , applying the functor RΓX̄f ! toM⊗L

OQ
N [−dQ],
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we compute that

RΓX̄f !
(
M⊗L

OQ
N [−dQ]

)
∼= RΓX̄

(
f !M⊗L

OP
f !N

)
[−dP ]

by Proposition 2.2. On the other hand, there exist isomorphisms

RΓX̄f !M⊗L
OP

RΓX̄f !N [−dP ] ∼= RΓX̄
(
f !M⊗L

OP
RΓX̄f !N

)
[−dP ]

∼= RΓX̄
(
f !M⊗L

OP
f !N

)
[−dP ]

by Lemma 3.2. Therefore we can define a bi-functor

(−)⊗L (−) : Db
lfgu(X/Wn)◦ ×Db

lfgu(X/Wn)◦ → Db
lfgu(X/Wn)◦

to be M⊗L N := M⊗L
OP
N [−dP ] for some immersion X ↪→ P into a

proper smooth Wn-scheme P .

4.3. Riemann–Hilbert correspondence for unit F -crystals

Let X be a Wn-embeddable scheme with an immersion i from X into a
proper smoothWn-scheme P . We define a functor SolX to be the composite
of the functors

Db
lfgu(X/Wn)◦ = CP,X ⊂ Db

lfgu(DF,P ) SolP−−−→ Db
ctf(Pét,Z/pnZ)

i−1

−−→ Db
ctf(Xét,Z/pnZ),

where the first functor is the natural embedding.

Lemma 4.10. — This definition is independent of the choice of embed-
ding i : X ↪→ P up to natural isomorphism.

Proof. — Let us first suppose that we are given an open immersion j :
U ↪→ P such that i factors as an closed immersion i′ : X ↪→ U and j.
Then j−1 induces an equivalence CU,X,∅

∼=−→ CP,X by Proposition 4.3. Let
us consider a functor i′−1 ◦ SolU : CU,X,∅ → Db

ctf(Xét,Z/pnZ). Then one
has

(4.10) i′−1 SolU j!M∼= i′−1j−1 SolPM∼= i′−1 SolPM

for any M ∈ CP,X . Next let us suppose that we are given a closed im-
mersion i′′ : X ↪→ Q into a smooth Wn-scheme Q and a proper smooth
Wn-morphism U → Q with f ◦ i′ = i′′. Then f+ induces an equivalence
CU,X,∅

∼=−→ CQ,X,∅ by Theorem 4.5. Note that, because SolU is compati-
ble with the inverse image functor by Theorem 2.3, we know that SolUM
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is supported on X for any M ∈ CU,X,∅. Then, for M ∈ CU,X,∅, we can
compute that

i′′−1 SolQ f+M∼= i′′−1f! SolUM∼= i′′−1f!i
′
!i
′−1 SolUM∼= i′−1 SolUM .

We can prove the lemma by combining two claims proved above. �

Next let us define a functor MX : Db
ctf(Xét,Z/pnZ) → Db

lfgu(X/Wn)◦.
We define MX to be the composite of the functors

Db
ctf(Xét,Z/pnZ) i∗−→ Db

ctf(Pét,Z/pnZ) MP−−→ Db
lfgu(DF,P )◦ .

Lemma 4.11. — The essential image of MX is contained in CP,X .

Proof. — Let us take an open subscheme U of P such that i factors as
a closed immersion i′ : X ↪→ U and an open immersion j : U ↪→ P . Then
by [4, Cor. 16.2.8] MX is naturally isomorphic to the composition

Db
ctf(Xét,Z/pnZ) i′∗−→ Db

ctf(Uét,Z/pnZ) MU−−→ Db
lfgu(DF,U )◦

Rj∗−−→ Db
lfgu(DF,P )◦ .

So we reduce to the case when X is closed in P by Proposition 4.3. Now
since MP is compatible with the inverse image functor by Theorem 2.3,
F ∈ Db

ctf(Pét,Z/pnZ) is supported on X if and only if so is MP (F). �

One can prove that this functor is independent of the choice of X ↪→ P

as in Lemma 4.10. By Lemma 4.11, we obtain a functor

MX : Db
ctf(Xét,Z/pnZ)→ Db

lfgu(X/Wn)◦ .

We now state our main result.

Theorem 4.12. — Let X be a Wn-embeddable k-scheme. Then SolX
induces an equivalence of triangulated categories

(4.11) SolX : Db
lfgu(X/Wn)◦

∼=−→ Db
ctf(Xét,Z/pnZ)

with quasi-inverse MX .

In order to prove Theorem 4.12 we need the following lemma.

Lemma 4.13. — Let X be a Wn-embeddable k-scheme with a closed
immersion i from X into a smooth Wn-scheme P . Let us denote by
Db

ctf,X(Pét,Z/pnZ) the full triangulated subcategory of Db
ctf(Pét,Z/pnZ)

consisting of complexes supported on X. Then SolP : Db
lfgu(DF,P )◦ →

Db
ctf(Pét,Z/pnZ) restricts an equivalence

CP,X,∅
∼=−→ Db

ctf,X(Pét,Z/pnZ) .
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Proof. — By Lemma 3.1, we can write as

CP,X,∅ =
{
M∈ Db

lfgu(DF,P )◦ | SuppM⊂ X
}
.

Denote by j the open immersion P \X ↪→ P . For an objectM in CP,X,∅, the
condition SuppM⊂ X is equivalent to the condition j−1M = 0. Applying
the functor SolP to j−1M = 0, by Theorem 2.3, one has j−1 (SolPM) ∼=
SolP\X j−1M = 0. Hence we know that SolP restricts to a functor

SolP : CP,X,∅ → Db
ctf,X(Pét,Z/pnZ) .

Similarly, MP restricts to a functor MP : Db
ctf,X(Pét,Z/pnZ)→ CP,X,∅ and

we are done. �

Let us prove Theorem 4.12.
Proof. — We may assume that there exists a proper smooth Wn-scheme

P , an open subset U of P together with a closed immersion i : X ↪→ U .
Then SolP is compatible with SolU and SolU induces an equivalence of
triangulated categories

CU,X,∅
∼=−→ Db

ctf,X(Uét,Z/pnZ)

with quasi-inverse MU by Lemma 4.13. Also, i−1 : Db
ctf,X(Pét,Z/pnZ) →

Db
ctf(Xét,Z/pnZ) is an equivalence of triangulated categories with quasi-

inverse i∗. This finishes the proof. �

Theorem 4.14. — Let f : X → Y be a morphism of Wn-embeddable
schemes. Then there exist natural isomorphisms of functors

SolY ◦f+ ∼= f! ◦ SolX : Db
lfgu(X/Wn)◦ → Db

ctf(Yét,Z/pnZ) ,

f−1 ◦ SolY
∼=−→ SolX ◦ f ! : Db

lfgu(Y/Wn)◦ → Db
ctf(Xét,Z/pnZ)

and a functorial isomorphism

SolX(M)⊗L
Z/pnZ SolX(N )

∼=−→ SolX
(
M⊗L N

)
for objectsM and N in Db

lfgu(X/Wn)◦.

Proof. — We may assume that there exists a commutative diagram

X

f

��

� � i1 / P

g

��
Y �
� i2 / Q

such that P is a smoothWn-scheme which is an open subscheme of a proper
smooth Wn-scheme P̃ , Q is a proper smooth Wn-scheme, i1 is a closed
immersion, i2 is an immersion, and g is the composite of an immersion and a
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proper smooth morphism. Also, we can identify the categoriesDb
lfgu(X/Wn)

and Db
lfgu(Y/Wn) in the statement with the categories CP,X,∅ = CP̃ ,X and

CQ,Y respectively. Via this identification, SolX is identified with i−1
1 ◦ SolP

on CP,X,∅ by (4.10). For any objectM in CP,X,∅, SolP (M) is supported on
X. So we can compute that

(4.12) SolY ◦f+ := i−1
2 SolQ g+ ∼= i−1

2 g! SolP ∼= i−1
2 g!i1∗i

−1
1 SolP ∼= f!◦SolX .

Let us prove the second isomorphism. Recall that f ! := RΓXg! : CQ,Y →
CP,X,∅. We define a natural transformation f−1 ◦ SolY → SolX ◦ f ! to be
the composite of natural transformations

f−1 ◦ SolY ∼= i−1
1 g−1 SolQ ∼= i−1

1 SolP g! → i−1
1 SolP RΓXg! = SolX ◦ f !.

Let us prove that it is an isomorphism. The usual dévissage argument re-
duces the proof to the case n = 1. First of all, suppose thatX is smooth over
k. Then using [4, Cor. 15.5.4] and Theorem 2.3, we obtain isomorphisms

f−1 ◦ SolY = f−1i−1
2 SolQ ∼= i−1

1 i1∗i
−1
1 g−1 SolQ ∼= i−1

1 SolP ◦
(
i1+i

!
1g

!)
∼= i−1

1 SolP ◦
(
RΓXg!) ∼= SolX ◦ f !.

In general case, we shall prove by the induction on the dimension d ofX. Let
X0 be a d-dimensional smooth open subscheme of X such that H := X \X0
is of dimension < d. Let a denote the open immersion P \H ↪→ P andM
an object in CQ,Y . We have a distinguished triangle in Db

c(Pét,Z/pZ)

(4.13) SolP RΓXa+a
!g!M→ SolP RΓXg!M→ SolP RΓHg!M +−→ .

Let us denote by iH the closed immersion H ↪→ P . For any object F in
Db

c(Pét,Z/pZ), there exists a distinguished triangle in Db
c(Pét,Z/pZ)

(4.14) a!a
−1F → F → iH!i

−1
H F

+−→ .

Applying (4.14) to F = g−1 SolQM, one has a distinguished triangle

(4.15) a!a
−1g−1 SolQM→ g−1 SolQM→ iH!i

−1
H g−1 SolQM

+−→ .

There are natural morphisms

ψ : a!a
−1g−1 SolQM∼= SolP a+a

!g!M→ SolP RΓXa+a
!g!M

and

φ : iH!i
−1
H g−1 SolQM

∼=−→ iH!i
−1
H SolP g!M→ iH!i

−1
H SolP RΓHg!M
∼= SolP RΓHg!M.
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Here the last isomorphism follows since SolP RΓHg!M is supported on H.
Hence we obtain a morphism of distinguished triangle from (4.15) to (4.13).
We then claim that i−1

1 ψ is an isomorphism. We can calculate as

SolP RΓXa+a
!g!M∼= SolP a+RΓX\Ha!g!M

∼= a! SolP\H RΓX\Ha!g!M .

So i−1
1 a!a

−1g−1 SolQM and i−1
1 SolP RΓXa+a

!g!M are supported on X \
H. Hence i−1

1 ψ is an isomorphism if and only if so is a′−1i−1
1 ψ, where

a′ denotes the open immersion X \ H ↪→ X. We denote by i′1 the closed
immersionX\H ↪→ P\H. Applying the functor a′−1i−1

1 to the isomorphism
SolP RΓXa+a

!g!M∼= a! SolP\H RΓX\Ha!g!M, we have

a′−1i−1
1 SolP RΓXa+a

!g!M∼= a′−1i−1
1 a! SolP\H RΓX\Ha!g!M

∼= i′
−1
1 a−1a! SolP\H f !

|X\HM
∼= i′

−1
1 SolP\H f !

|X\HM∼= SolX\H f !
|X\HM .

We can also calculate as

a′−1i−1
1 a!a

−1g−1 SolQM∼= i′
−1
1 a−1a!a

−1g−1 SolQM
∼= i′

−1
1 a−1g−1 SolQM

∼= a′−1f−1i2
−1 SolQM∼= f−1

|X\H SolY M .

Hence a′−1i−1
1 ψ is identified with the morphism

f−1
|X\H SolY M→ SolX\H f !

|X\HM

and it is an isomorphism by the smooth case. On the other hand, since
SolP RΓHg!M and iH!i

−1
H g−1 SolQM are supported on H, φ is an iso-

morphism if and only if so is i−1
H φ. Let us denote by f|H the compos-

ite of morphisms H ↪→ X
f−→ Y . Applying i−1

H to SolP RΓHg!M and
iH!i

−1
H g−1 SolQM, one has

i−1
H SolP RΓHg!M∼= SolH f !

|HM

and i−1
H iH!i

−1
H g−1 SolQM∼= f−1

|H SolHM

respectively. So i−1
H φ is identified with the morphism f−1

|H SolHM →
SolH f !

|HM and it is an isomorphism by the induction hypothesis. Now
we know that the morphism of distinguished triangle from (4.15) to (4.13)
is an isomorphism after we apply the functor i−1

1 to it. As a consequence,
we obtain the desired isomorphism f−1 SolY

∼=−→ SolX f !.
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Finally let us prove the last isomorphism. For objects M and N of
Db

lfgu(X/Wn) = CP,X,∅, there exists a natural isomorphism

SolPM⊗L
Z/pnZ SolP N

∼=−→ SolP
(
M⊗L

OP
N
)

[dP ]

by Theorem 2.3. Recall that M⊗L N is defined to be M⊗L
OP
N [−dP ].

Applying the functor SolX := i−1 SolP to it, one has

SolX
(
M⊗L N

) ∼= i−1 SolP
(
M⊗L

OP
N [−dP ]

)
∼= i−1 SolP

(
M⊗L

OP
N
)

[dP ]

∼= i−1
(

SolPM⊗L
Z/pnZ SolP N

)
∼= SolX(M)⊗L

Z/pnZ SolX(N ) .

This finishes the proof. �

5. t-structures on Db
lfgu(X/k)

In this section, we study several t-structures on Db
lfgu(X/k) for a k-

embeddable k-scheme X. Note that, for a smooth k-scheme P , one has
Db

lfgu(DF,P )◦ = Db
lfgu(DF,P ) and Db

lfgu(DF,P )◦ is naturally equivalent to
Db

lfgu(OF,P ) (see the subsection 2.4).

5.1. The standard t-structure on Db
lfgu(X/k)

For a smooth k-scheme P , we set

D6nlfgu(DF,P ) =
{
M∈ Db

lfgu(DF,P ) |Hk(M) = 0 for k > n
}

and

D>nlfgu(DF,P ) =
{
M∈ Db

lfgu(DF,P ) |Hk(M) = 0 for k < n
}
.

Let X be a k-scheme of finite type. The middle perversity is the function
p : X → Z defined by

p(x) = −dim{x} .
For x ∈ X, we denote by ix the canonical inclusion {x} ↪→ X. We then
define a full subcategory pD60

c (Xét,Z/pZ) (resp. pD>0
c (Xét,Z/pZ)) of

Db
c(Xét,Z/pZ) by the condition: F is in pD60

c (Xét,Z/pZ) if and only if
Hk(i−1

x F) = 0 for any x ∈ X and k > p(x) (resp. F is in pD>0
c (Xét,Z/pZ)

if and only if Hk(i!xF) = 0 for any x ∈ X and k < p(x)).
Gabber proved that

(pD60
c (Xét,Z/pZ), pD>0

c (Xét,Z/pZ)
)

forms a t-
structure on Db

c(Xét,Z/pZ), which we call Gabber’s perverse t-structure,
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in [5, Theorem 10.3]. Emerton and Kisin gave another proof of it in the case
when X is smooth over k based on the Riemann–Hilbert correspondence [4,
Theorem 11.5.4]: Indeed, they proved that D60

lfgu(X/k) (resp. D>0
lfgu(X/k))

is equivalent to pD>0
c (Xét,Z/pZ) (resp. pD60

c (Xét,Z/pZ)) via SolX . We
generalize [4, Theorem 11.5.4] to the case of k-embeddable k-schemes.

Definition 5.1. — Let P be a smooth k-scheme with a closed subset
X of P . We set

C60
P,X,∅ =

{
M∈ CP,X,∅ |Hk(M) = 0 for k > 0

}
and

C>0
P,X,∅ =

{
M∈ CP,X,∅ |Hk(M) = 0 for k < 0

}
.

Then (C60
P,X,∅, C

>0
P,X,∅) defines a t-structure on CP,X,∅, which we call the

standard t-structure on CP,X,∅. For a k-embeddable k-scheme X with an
immersion X ↪→ P into a proper smooth k-scheme P , we take an open
immersion j : U ↪→ P such that the immersion X ↪→ P factors as a closed
immersion X ↪→ U and j. We define the standard t-structure (C60

P,X , C
>0
P,X)

on CP,X by the essential image of (C60
U,X,∅, C

>0
U,X,∅) under the equivalence

Rj∗. This definition is independent of the choice of U ↪→ P by the following
lemma.

Lemma 5.2. — Let j : U ↪→ V be an open immersion of smooth k-
schemes. For any closed subset X of U which is also closed in V , the
functor

Rj∗ : CU,X,∅ → CV,X,∅
induces an equivalence of triangulated categories, which is t-exact with
respect to the standard t-structure.

Proof. — We can prove that Rj∗ is an equivalence of triangulated cate-
gories with quasi-inverse j−1 in the same way as in the proof of Proposi-
tion 4.3. Then it is enough to prove that Rj∗ and its quasi-inverse j−1 are
left t-exact (cf. [11, Cor. 10.1.18]). These claims are evident. �

We need the following lemma.

Lemma 5.3. — Let P be a smooth Wn-scheme and i : X ↪→ P a
closed immersion. For • ∈ {6 0,> 0}, we denote by Db

c,X(Pét,Z/pZ) (resp.
pD•c,X(Pét,Z/pZ)) the full triangulated subcategory ofDb

c(Pét,Z/pZ) (resp.
pD•c (Pét,Z/pZ)) consisting of complexes supported on X. Then the equiv-
alence i∗ : Db

c(Xét,Z/pZ)
∼=−→ Db

c,X(Pét,Z/pZ) restricts to an equivalence
pD•c (Xét,Z/pZ)

∼=−→ pD•c,X(Pét,Z/pZ)

with quasi-inverse i−1.
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Proof. — For an object L in pD60
c (Xét,Z/pZ), one obviously has i∗L ∈

pD60
c,X(Pét,Z/pZ). Let L be an object of pD>0

c (Xét,Z/pZ) and x an element
of X ⊂ P . Denote by ix (resp. i′x) the canonical inclusion {x} ↪→ X (resp.
{x} ↪→ P ). One has i′!xi∗L ∼= i!xi

!i∗L ∼= i!xL. So we have Hk
(
i′!xi∗L

)
= 0 for

any k < p(x). If x ∈ P \X, one has Hk
(
i′!xi∗L

)
= 0 for any k. Hence we see

i∗L ∈ pD>0
c,X(Pét,Z/pZ). Conversely, for an object L in pD60

c,X(Pét,Z/pZ),
one obviously has i−1L ∈ pD60

c (Xét,Z/pZ). Finally let L be an object of
pD>0

c,X(Pét,Z/pZ). Then, since L is supported on X, we have i!L
∼=−→ i−1L

and hence we have i−1L ∈ pD>0
c (Xét,Z/pZ). �

Corollary 5.4. — Let X be a k-embeddable k-scheme with a closed
immersion i : X ↪→ P into a smooth k-scheme P . Then SolX = i−1 SolP :
CP,X,∅

∼=−→ Db
c(Xét,Z/pZ) sends C60

P,X,∅ (resp. C>0
P,X,∅) to pD>0

c (Xét,Z/pZ)
(resp. pD60

c (Xét,Z/pZ)).

Proof. — By Lemma 4.13, SolP restricts to an equivalence of triangu-
lated categories

CP,X,∅
∼=−→ Db

c,X(Pét,Z/pZ).
We know that SolP sends C60

P,X,∅ to pD>0
c,X(Pét,Z/pZ) and C>0

P,X,∅ to
pD60

c,X(Pét,Z/pZ) by [4, Theorem 11.5.4]. By Lemma 5.3, we see that i−1

sends pD•c,X(Pét,Z/pZ) to pD•c (Xét,Z/pZ) if • ∈ {6 0,> 0}. This finishes
the proof. �

By Lemma 5.2 and Corollary 5.4, one has the following theorem.

Theorem 5.5. — Let X be a k-embeddable k-scheme with an immer-
sion X ↪→ P into a proper smooth k-scheme P . We set

(5.1) D60
lfgu(X/k) = C60

P,X and D>0
lfgu(X/k) = C>0

P,X .

Then the t-structure (D60
lfgu(X/k), D>0

lfgu(X/k)) is independent of the choice
of X ↪→ P , which we call the standard t-structure on Db

lfgu(X/k). Fur-
thermore, (D60

lfgu(X/k), D>0
lfgu(X/k)) corresponds to Gabber’s perverse t-

structure via SolX .

5.2. Beilinson’s theorem

In this subsection, we prove an analogue of Beilinson’s theorem (The-
orem 5.6), which is a generalization of [4, Cor. 17.2.5] to the case of k-
embeddable k-schemes. In the rest of this subsection, we fix a k-embeddable
k-scheme X, an immersion ĩ : X ↪→ P̃ into a proper smooth k-scheme
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and an open subscheme P of P̃ such that ĩ factors as a closed immersion
i : X ↪→ P and the open immersion P ↪→ P̃ . Denote by µu (resp. µlfgu) the
category of unit DF,P -modules (resp. locally finitely generated unit DF,P -
modules). We also denote by µu,X (resp. µlfgu,X) the full subcategory of
µu (resp. µlfgu) consisting of objects supported on X. Note that µlfgu,X is
the heart of the standard t-structure on Db

lfgu(X/k) = CP̃ ,X = CP,X,∅ and
hence it is independent of the choice of X ↪→ P̃ and P by Theorem 5.5.
The following theorem is the main theorem in this subsection.

Theorem 5.6. — The natural functor

Db(µlfgu,X)→ Db
lfgu(X/k)

is an equivalence of triangulated categories.

The proof of Theorem 5.6 is divided into two parts. First of all, we prove
the following theorem.

Theorem 5.7. — The natural functor

Db(µlfgu,X)→ Db
lfgu(X/k)

is essentially surjective and, for any objects M and N in Db(µlfgu,X) the
map

HomDb(µlfgu,X)(M,N )→ HomDb
lfgu(X/k)(M,N )

is surjective.

We need the following lemma.

Lemma 5.8. — Let Ind-µlfgu,X be the full subcategory of µu,X consisting
of objects which are direct limits of objects in µlfgu,X . Then the natural
functor

Db(µlfgu,X)→ Db
lfgu(Ind-µlfgu,X)

is an equivalence of triangulated categories.

Proof. — For an objectM in Db
lfgu(Ind-µlfgu,X), there exists a subcom-

plex M′ of M such that the canonical inclusion M′ → M is a quasi-
isomorphism and the terms ofM′ are locally finitely generated unit. Since
M is supported on X, so is M′. Hence Db(µlfgu,X) → Db

lfgu(Ind-µlfgu,X)
is essentially surjective. Let us prove the full faithfulness of the functor.
We denote by Kb(µlfgu,X) (resp. Kb(Ind-µlfgu,X)) the (bounded) homo-
topy category of µlfgu,X (resp. Ind-µlfgu,X) and suppose that we are given
a quasi-isomorphism M → N in Kb(Ind-µlfgu,X) with N ∈ Kb(µlfgu,X).
Then all cohomology sheaves ofM are locally finitely generated unit and
so there exists a subcomplex M′ of M such that the canonical inclusion
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M′ →M is a quasi-isomorphism and the terms ofM′ are locally finitely
generated unit. Hence, by [11, Prop. 1.6.5], Db(µlfgu,X)→ Db(Ind-µlfgu,X)
is fully faithful and the assertion follows. �

Let us prove the Theorem 5.7.
Proof. — The proof is a refinement of the proof of [4, Cor. 17.1.2]. For

a k-scheme Y of finite type, we denote by CY the category of constructible
étale sheaves of Z/pZ-modules on Yét. By using the results in [3, p. 94], we
know that the natural functor Db(CY )→ Db

c(Yét,Z/pZ) is essentially sur-
jective and induces a surjection on Hom’s. Let E denote the residual com-
plex of injective quasi-coherent OPét -modules resolving OPét . It is proved
in [4, Prop. 17.1.1] that E naturally forms a complex of unit DF,Pét -modules
and the terms of E are in Ind-µlfgu. Then, as in the proof of [4, Cor. 17.1.2],
MX may be computed as πP∗HomZ/pZ(−, E)◦ i∗ and we have the following
commutative diagram of categories:

Db(CX)

i∗
��

// Db
c(Xét,Z/pZ)

i∗
��

Db(CP )

πP∗HomZ/pZ(−,E)
��

// Db
c(Pét,Z/pZ)

MP

��
Db

lfgu(Ind-µlfgu) // Db
lfgu(DF,P ) .

The composite of the functors

Db(CX)→ Db
c(Xét,Z/pZ)→ Db

c(Pét,Z/pZ)→ Db
lfgu(DF,P )

induces a functor Db(CX)→ Db
lfgu(X/k) which is essentially surjective and

induces a surjection on Hom’s by Theorem 4.12. On the other hand, the
essential image of the composite of the functors Db(CX) → Db(CP ) →
Db

lfgu(Ind-µlfgu) is contained in Db
lfgu(Ind-µlfgu,X) because for an object G

in Db(CX), we have the natural isomorphism

πP∗HomZ/pZ(i∗G, E) ∼= πP∗i∗HomZ/pZ(G, i!E|X) .

Hence we know that the functor Db
lfgu(Ind-µlfgu,X)→ Db

lfgu(X/k) is essen-
tially surjective. So, by using Theorem 4.12 and Lemma 5.8, we see that
the functor induces a surjection on Hom’s. Now the assertion follows from
Lemma 5.8. �

In order to prove the full faithfulness of the functor Db(µlfgu,X) →
Db

lfgu(X/k), we need some preparation.

Lemma 5.9. — The category µu,X has enough injectives.
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Proof. — For an objectM in µu,X , we can take an injectionM→ I into
an injective object I in µu by [4, Cor. 15.1.6]. Applying ΓX to the injection
M → I, one has an injection M = ΓXM → ΓXI. Hence it is enough to
prove that ΓXI is an injective object in µu,X . Suppose that we are given
an injection i : N ′ → N and a morphism f : N ′ → ΓXI in µu,X . Let us
denote by g the natural morphism ΓXI → I. Since I is an injective object,
there exists a morphism h : N → I satisfying h ◦ i = g ◦ f . Then one has
ΓXh◦ΓX i = ΓXg◦ΓXf . Since ΓX i is equal to i : N ′ = ΓXN ′ → ΓXN = N

and ΓXg ◦ ΓXf : N ′ = ΓXN ′ → ΓXΓXI → ΓXI is equal to f , we know
the equality ΓXh ◦ i = f . Hence ΓXI is an injective object in µu,X . �

For an objectM in µu,X , there exists a unique maximal subobject L(M)
of M which lies in Ind-µlfgu by [4, Lem. 17.2.1(i)]. Then L(M) belongs
to Ind-µlfgu,X and it is a unique maximal subobject of M which lies in
Ind-µlfgu,X . By [4, Lem. 17.2.1(ii)], the correspondenceM 7→ L(M) defines
a left exact functor

L : µu,X → Ind-µlfgu,X

which is right adjoint to the natural functor µlfgu,X → µu,X . Since µu,X
has enough injectives by Lemma 5.9, we obtain the right derived functor

RL : D+(µu,X)→ D+(Ind-µlfgu,X).

By using Theorem 5.7, one can prove the following lemma in the same way
as [4, Lem. 17.2.2].

Lemma 5.10. — Objects in µlfgu,X are acyclic for RL.

Proof. — For an object M in µlfgu,X , one can choose an injective reso-
lution M → I in µu,X by Lemma 5.9. For a natural number n > 0, we
denote by En the image of the differential In → In+1. In order to prove
thatM is RL-acyclic, it is enough to prove that the map L(In)→ L(En)
is surjective. We denote by I6n the complex defined by

(
I6n

)i = Ii for
i 6 n and by

(
I6n

)i = 0 for i > n. Then one has an (n+ 1)-extension

0→M→ I0 → I1 → · · · → In → En → 0

of En byM and denotes by c the class of this extension in Extn+1
µu,X

(In,M).
For a locally finitely generated unit DF,P -submodule F of En, we denote
by cF the image of c under the map

Extn+1
µu,X

(En,M)→ Extn+1
µu,X

(F ,M) = HomDb(µu,X)(F [−n],M)
α−→ HomDb

qc(DF,P )(F [−n],M) .
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Note that α is an isomorphism: Indeed we have the diagram of functors

Db(µu,X)→ Db(µu)→ Db(µqc)→ Db
qc(DF,P )

(where µqc denotes the category of OP -quasi-coherent DF,P -modules)
in which the first (resp. the second, the third) functor is fully faithful
by Lemma 5.12 below (resp. [4, Lem. 17.2.3(iii)], Bernstein’s theorem [4,
Cor. 17.2.4]). Hence we can regard cF also as an element in Extn+1

µu,X
(F ,M).

By Theorem 5.7, there exists an (n+1)-extension in µlfgu,X which is sent
to cF by the map

HomDb(µlfgu,X)(F [−n],M)→ HomDb
lfgu(X/k)(F [−n],M)

= HomDb
qc(DF,P )(F [−n],M) .

Let us denote this (n+ 1)-extension by

0→M→N → F → 0 ,

whereN is a complex of locally finitely generated unit DF,P -modules whose
terms are supported on X and are 0 outside [0, n] and such that Hi(N ) =
M if i = 0, Hi(N ) = F if i = n and Hi(N ) = 0 otherwise. Since I is a
complex of injective objects in µu,X there exists a map of extensions

0 //M // I6n // En // 0

0 //M //

id

OO

N //

φ

OO

F //

ψ

OO

0 .
Let us consider the exact sequence

Homµu,X
(F , In)→ Homµu,X

(F , En) δ−→ Extn+1
µu,X

(F ,M)→ 0 .

By construction of cF one has δ(ψ) = cF . If we denote by ψ′ the natural
inclusion F → En, then we also have δ(ψ′) = cF . Thus ψ − ψ′ lifts to
a map ψ̃ − ψ′ : F → In. Let us also denote by ψ̃ − ψ′ the composite of

morphisms Nn → F ψ̃−ψ′−−−→ In. Then we have a locally finitely generated
unit DF,P -submodule (φn − ψ̃ − ψ′)(Nn) of In which surjects on ψ′(F).
This finishes the proof. �

Lemma 5.11. — Let µL-ac,X denote the full subcategory of µu,X
consisting of L-acyclic objects. Then the natural functors Db(µlfgu,X) →
D+(µL-ac,X) and D+(µL-ac,X) → D+(µu,X) are fully faithful. As a conse-
quence, the natural functor

Db(µlfgu,X)→ Db(µu,X)
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is fully faithful.

Proof. — The strategy of the proof is the same as that of [4, Lem. 17.2.3]
but we slightly modify their proof. Let us suppose that we are given a
quasi-isomorphism N → M in K+(µL-ac,X) with M ∈ Kb(µlfgu,X). Then
the adjunction morphism L(N ) → N is a quasi-isomorphism since the
terms of N and its cohomology sheaves are acyclic for L by Lemma 5.10.
Now since the terms of L(N ) are in Ind-µlfgu,X and cohomology sheaves
of it are in µlfgu,X , there exists a bounded subcomplex L(N )′ of L(N )
such that L(N )′ → L(N ) is a quasi-isomorphism and L(N )′ belongs to
Kb(µlfgu,X). Hence the first functor is fully faithful by [11, Prop. 1.6.5]. Next
suppose that we are given a quasi-isomorphism N → M in K+(µL-ac,X)
with N ∈ K+(µu,X). Then, by Lemma 5.9, one has an injective resolution
I of M in K+(µu,X). So the full faithfulness of the second functor also
follows from [11, Prop. 1.6.5]. �

Let us consider the following commutative diagram of categories:

Db(µlfgu,X)

��

// Db(µlfgu)

��
Db(µu,X)

��

// Db(µu)

��
Db

lfgu(X/k) // Db
lfgu(DF,P ) .

In order to prove the full faithfulness of the functor Db(µlfgu,X) →
Db

lfgu(X/k), by Lemma 5.11 and [4, Cor. 17.2.4], it suffices to prove the
following lemma.

Lemma 5.12. — The natural functorDb(µu,X)→Db(µu) is fully faithful.

In order to prove Lemma 5.12, we define a functor

R′ΓX : D+(µu)→ D+(µu,X)

to be the right derived functor of the left exact functor ΓX : µu → µu,X .
Here we use the notation R′ΓX instead of RΓX : Db

qc(DF,P )→ Db
qc(DF,P )

to avoid confusion. We have the following lemma.

Lemma 5.13. — Objects in µu,X are acyclic for R′ΓX .

Proof. — For an objectM in µu,X , take an injective resolutionM→ I

in µu. Since M is supported on X, we have Hi(RΓXM) = 0 for i > 0.
On the other hand, each In is injective in µu by definition and it is known
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by [4, Cor. 15.1.6] that such an object is always injective in the category of
OP -quasi-coherent DF,P -modules. So we have Hi(RΓXIn) = 0 for i > 0.
By considering the long exact sequence for RΓX , we deduce that 0→M =
ΓXM→ ΓXI is exact. HenceM is acyclic for R′ΓX . �

Let us prove Lemma 5.12.

Proof. — Let us denote by µΓX -ac the full subcategory of µu,X consisting
of R′ΓX -acyclic objects. It is enough to prove that the natural functors
Db(µu,X)→ D+(µΓX -ac) and D+(µΓX -ac)→ D+(µu) are fully faithful. Let
us suppose that we are given a quasi-isomorphism N →M in K+(µΓX -ac)
with M ∈ Kb(µu,X). Then the natural morphism ΓXN → N is a quasi-
isomorphism since the terms ofN and its cohomology sheaves are acyclic for
R′ΓX by Lemma 5.13. Moreover, since ΓXN is cohomologically bounded,
there exists a bounded subcomplex ΓXN ′ of ΓXN such that ΓXN ′ → ΓXN
is a quasi-isomorphism and ΓXN ′ belongs to Kb(µu,X). Hence, by [11,
Prop. 1.6.5], we know that the first functor is fully faithful. For the second
assertion, let us take a quasi-isomorphism N → M in K+(µΓX -ac) with
N ∈ K+(µu). ThenM is quasi-isomorphic to its injective resolution I in
K+(µu). Hence the second functor is fully faithful by [11, Prop. 1.6.5]. �

By Theorem 5.7 and Lemma 5.12, we finish the proof of Theorem 5.6.

5.3. The constructible t-structure on Db
lfgu(X/k)

Let P be a smooth k-scheme. Let A be a sheaf of OP -algebra which is
quasi-coherent as a left OP -module and left noetherian. Let us first recall
a t-structure on Db

qc(A) introduced by Kashiwara in [10]. For more detail,
we refer the reader to [10, §3]. We define a support datum S = {Sn} by

Sn := {Z |Z is a closed subset of P of codimension > n}.

Then Sn has the structure of an ordered set by the natural inclusion. For
a sheaf F of A-modules, we define ΓSn(F) := lim−→Z∈Sn

ΓZ(F). Then ΓSn

defines a left exact functor from the category of A-modules to itself and we
obtain the right derived functor RΓSn : Db

qc(A)→ Db
qc(A).

We define a full subcategory SD6kqc (A) (resp. SD>kqc (A)) of Db
qc(A) by

the condition:M is in SD6kqc (A) if and only if RΓSn−k Hn (M)
∼=−→ Hn (M)

for any n (resp.M is in SD>kqc (A) if and only if RΓZM ∈ D>n+k
qc (A) for

any n and Z ∈ Sn).
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Kashiwara proved that
(
SD60

qc (A),SD>0
qc (A)

)
forms a t-structure on

Db
qc(A). We call this t-structure the constructible t-structure. In partic-

ular, we have a t-structure
(
SD60

qc (OF,P ),SD>0
qc (OF,P )

)
on Db

qc(OF,P ).
Moreover, we have the following theorem.

Theorem 5.14. — Let P be a smooth separated k-scheme. We set
SD60

lfgu(OF,P ) := SD60
qc (OF,P ) ∩Db

lfgu(OF,P ) and
SD>0

lfgu(OF,P ) := SD>0
qc (OF,P ) ∩Db

lfgu(OF,P ) .

Then (SD60
lfgu(OF,P ),SD>0

lfgu(OF,P )) defines a t-structure on Db
lfgu(OF,P ).

Proof. — It suffices to show that for anyM ∈ Db
lfgu(OF,P ), there exists

a distinguished triangle

M′ →M →M ′′
+−→

such that M′ ∈ SD<0
lfgu(OF,P ) and M′′ ∈ SD>0

lfgu(OF,P ). We show it by
induction on the codimension d of S := Supp(M). Let us consider a dis-
tinguish triangle

(5.2) τ<dM→M→ τ>dM +−→ ,

where τ denotes the truncation functor with respect to the standard t-
structure. Evidently, one has RΓSk+1

(
Hk
(
τ<dM

)) ∼=−→ Hk
(
τ<dM

)
for

any k > d. For any k < d, one has S ∈ Sk+1 and

RΓSk+1
(
Hk
(
τ<dM

)) ∼=−→ Hk
(
τ<dM

)
.

Hence we have τ<dM∈ SD<0
lfgu(OF,P ). By using [10, Lem. 2.1] with (5.2),

we are reduced to the case whereM is an object in D>dlfgu(OF,P ). Let S0 be
a d-codimensional smooth open subscheme of S such that H := S \ S0 is
of codimension > d. We set U := X \H. Then we have a closed immersion
i : S0 ↪→ U and the open immersion j : U ↪→ P . Since M|U is supported
on S0, by [4, Cor. 5.11.3], there exists an object N ∈ Db

lfgu(OF,S0) such
that i+N ∼=M|U . Note that, by [4, Cor. 3.3.6], i+ is t-exact with respect
to the standard t-structure. So N belongs to D>dlfgu(OF,S0). Applying [4,
Prop. 6.9.6], by shrinking S0 if necessary, we may assume that all coho-
mology sheaves of N are unit F -crystals. In particular, these are locally
free of finite rank. Then we claim that i+N belongs to SD>0

lfgu(OF,U ). In
order to see this claim, by the induction on the cohomological length of N ,
we may assume that N is a single unit F -crystal supported on degree > d.
Then for any n-codimensional closed subset Z of U , we have RΓZ∩S0(N ) ∼=
RΓZ∩S0(OS0) ⊗ N ∈ D>nlfgu(OF,S0). Then since i+ is left t-exact with re-
spect to the standard t-structure, we have RΓZi+N ∼= i+RΓZ∩S0N ∈
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D>nlfgu(OF,U ) as desired. Because Rj∗ is left t-exact with respect to the
constructible t-structure by [10, Lem. 3.7], one has Rj∗i+N∼=Rj∗j−1M ∈
SD>0

lfgu(OF,P ). Let us consider a distinguished triangle

RΓHM→M→ Rj∗j−1M +−→ .

Since the codimension of Supp (RΓHM) is greater than d, then the induc-
tion proceeds by [10, Lem. 2.1]. �

Corollary 5.15. — For a smooth separated k-scheme P with closed
subsets Z and T of P , we set

SC60
P,Z,T := SD60

qc (OF,P ) ∩ CP,Z,T and
SC>0

P,Z,T := SD>0
qc (OF,P ) ∩ CP,Z,T .

Then (SC60
P,Z,T ,

SC>0
P,Z,T ) defines a t-structure on CP,Z,T , which we call the

constructible t-structure on CP,Z,T .

Proof. — Denote by j the open immersion P \ T ↪→ P . For an object
M∈ CP,Z,T ⊂ Db

lfgu(OF,P ). there exists a distinguished triangle

M′ →M →M ′′
+−→

such that M′ ∈ SD<0
lfgu(OF,P ) and M′′ ∈ SD>0

lfgu(OF,P ). Since RΓZ , Rj∗
and j−1 are t-exact with respect to the constructible t-structure by [10,
Prop. 4.1, Prop. 4.2 and Lem. 3.7] respectively, we have a desired distin-
guished triangle

Rj∗j−1RΓZM′ →M→ Rj∗j−1RΓZM′′
+−→

such that Rj∗j−1RΓZM′ ∈ SC<0
P,Z,T and Rj∗j−1RΓZM′′ ∈ SC>0

P,Z,T . This
finishes the proof. �

For a k-embeddable k-schemeX with an immersionX ↪→ P into a proper
smooth k-scheme P , we define by

SC60
P,X := SC60

P,Z,T and SC>0
P,X := SC>0

P,Z,T

for some closed subsets Z and T of P satisfying X = Z \ T . Then this
definition is independent of the choice of Z and T by Lemma 4.2 and(
SC60

P,X ,
SC>0

P,X

)
defines a t-structure on CP,X , which we call the con-

structible t-structure on CP,X . By [10, Prop. 4.2 and Lem. 3.7], one im-
mediately obtains the following lemma.

Lemma 5.16. — Let X be a k-embeddable k-scheme with an immersion
X ↪→ P into a proper smooth k-scheme P . Let U be an open subscheme of P
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such that the immersion X ↪→ P factors as a closed immersion X ↪→ U and
the open immersion j : U ↪→ X. Then the equivalence in Proposition 4.3

Rj∗ : CU,X,∅
∼=−→ CP,X

is t-exact with respect to the constructible t-structure.

Theorem 5.17. — Let X be a k-embeddable k-scheme with a closed
immersion i into a smooth separated k-scheme P . We set

D60
c (Xét) =

{
F ∈ Db

c(Xét,Z/pZ) |Hk(F) = 0 for k > 0
}

and

D>0
c (Xét) =

{
F ∈ Db

c(Xét,Z/pZ) |Hk(F) = 0 for k < 0
}
.

Then the equivalence of triangulated categories

SolX = i−1 SolP : CP,X,∅
∼=−→ Db

c(Xét,Z/pZ)

sends
(
SC6−dP

P,X,∅ ,
SC>−dP

P,X,∅

)
to
(
D60

c (Xét), D>0
c (Xét)

)
.

In order to prove Theorem 5.17 we need the following lemma.

Lemma 5.18. — Let P be a smooth k-scheme of dimension dP andM
a complex in Db

lfgu(OF,P ). The following conditions are equivalent.
(1) M∈ SD>−dP

lfgu (OF,P ).
(2) M is quasi-isomorphic to a bounded complex N of flat OP -modules

such that Nn = 0 for any n < −dP .
(3) Hk

(
i!xM

)
= 0 for any k < 0 and any closed point x of P , where ix

denotes the canonical closed immersion {x} ↪→ P .

Proof. — The equivalence of 1 and 2 follows from [10, Prop. 4.6]. Let
us prove that the condition 2 implies the condition 3. Suppose that M is
quasi-isomorphic to a bounded complex N of flat OP -modules such that
Nn = 0 for any n < −dP . Let us denote by κ(x) the residue field at x.
Then, as a complex of κ(x)-modules, we can calculate as

i!xM∼= κ(x)⊗L
i−1

x OX
i−1
x M[−dP ]

= κ(x)⊗i−1
x OX

i−1
x N [−dP ] .

We have the condition 3 from this description. Next we show the condition 3
implies the condition 1. Suppose thatM satisfies the condition 3. We prove
that M belongs to SD>−dP

lfgu (OF,P ) by the induction on the codimension
d of S := Supp(M). Let S0 be a d-codimensional smooth open subscheme
of S such that H := S \ S0 is of codimension > d. Then we have a closed
immersion i : S0 ↪→ U := P \H and the open immersion j : U ↪→ P . Since
M|U is supported on U , by [4, Cor. 5.11.3], there exists N ∈ Db

lfgu(OF,S0)
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such that i+N ∼=M|U . By shrinking S0 if necessary, we may assume that
all cohomology sheaves of N are unit F -crystals. We fix a closed point
x ∈ S0 and denote by ix (resp. i′x) the closed immersion {x} ↪→ P (resp.
{x} ↪→ S0). By pulling back the isomorphism i+N ∼=M|U to {x}, we have
i′!xN ∼= i!xM. Let us take a flat resolution F → N as OS0 -modules. One has
κ(x)⊗ i′−1

x F ∼= i!xM[dS0 ]. By this description combined with the condition
3, we know

N ∈ D>−dS0
lfgu (OF,S0).

By a similar argument in the proof of Theorem 5.14, one has i+N ∈
SD>−dP

lfgu (OF,U ). Since Rj∗ is left t-exact with respect to the constructible
t-structure by [10, Lem. 3.7], we have Rj∗i+N ∈ SD>−dP

lfgu (OF,P ). Let us
consider a distinguished triangle

i!xRΓHM→ i!xM→ i!xj+j
−1M +−→ .

By taking the long exact sequence, we see Hk
(
i!xRΓHM

)
= 0 for any k < 0.

Hence the induction hypothesis implies RΓHM ∈ SD>−dP

lfgu (OF,P ) and we
obtainM∈ SD>−dP

lfgu (OF,P ). �

Now we may start to prove Theorem 5.17.

Proof. — First of all, we shall prove that the equivalence

SolP : Db
lfgu(OF,P )

∼=−→ Db
c(Pét,Z/pZ)

sends (SD6−dP

lfgu (OF,P ),SD>−dP

lfgu (OF,P )) to (D60
c (Pét), D>0

c (Pét)). Since
SolP is an equivalence of triangulated categories, it suffices to show
that SD>−dP

lfgu (OF,P ) corresponds to D60
c (Pét,Z/pZ) via SolP (cf. [11,

Cor. 10.1.18]). Let us first suppose thatM is an object in SD>−dP

lfgu (OF,P ).
Let x be a point in P . Denote by {x} the closure of {x} in P . For an open
subset U of {x}, we denote by iU the canonical immersion U ↪→ P . By
Lemma 5.18, there exists an OP -flat resolution N ofM such that Nn = 0
for any n < −dP . We then calculate

i!UM∼= OU ⊗L
i−1

U
OP

i−1
U M[dU/P ]

= OU ⊗i−1
U
OP

i−1
U N [dU/P ].

By this description, we have Hk
(
i!UM

)
= 0 for any k < −dU . By shrinking

U if necessary, we may assume that all cohomology sheaves of i!UM are
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unit F -crystals. Then, by [4, Prop. 9.3.2], i!UM is HomOF,Uét
(π∗U (−),OUét)-

acyclic. Hence we can calculate as

i−1
U SolP (M) ∼= SolU

(
i!UM

)
= HomOF,Uét

(π∗U (i!UM),OUét)[dU ].

By this description, for any n > 0 the equality Hn
(
i−1
U SolP (M)

)
= 0

holds. So we have SolP (M) ∈ D60
c (Pét,Z/pZ). Conversely, suppose that

we are given an object F in D60
c (Pét,Z/pZ). By [3, p. 94, Lem. 4.7], we

may assume that F is a bounded complex of constructible Z/pZ-modules.
For any closed point x, we can calculate as

i!xMP (F) ∼= M{x}
(
i−1
x F

)
= RHomZ/pZ(i−1

x F , κ(x))

= HomZ/pZ(i−1
x F , κ(x)) .

By this description, we see the condition 3 in Lemma 5.18 for MP (F) and
thus MP (F) ∈ SD>−dP

lfgu (OF,P ).
Now let X be a k-embeddable k-scheme with a closed immersion i :

X ↪→ P . Let Db
c,X(Pét,Z/pZ) denote the full triangulated subcategory of

Db
c(Pét,Z/pZ) consisting of complexes supported on X. By Lemma 4.13,

SolP restricts to an equivalence of triangulated categories

SolP : CP,X,∅
∼=−→ Db

c,X(Pét,Z/pZ).

Then SC>−dP

P,X,∅ corresponds to D60
c,X(Pét) := D60

c (Pét) ∩ Db
c,X(Pét,Z/pZ)

via SolP . Moreover, since the equivalence

i−1 : Db
c,X(Pét,Z/pZ)

∼=−→ Db
c(Xét,Z/pZ)

is t-exact with respect to the standard t-structure, we see that D60
c,X(Pét)

corresponds to D60
c (Xét) via i−1. As a consequence, we know that M ∈

SC>−dP

P,X,∅ if and only if SolX(M) ∈ D60
c (Xét). �

Corollary 5.19. — Let X be a k-embeddable k-scheme with an im-
mersion from X into a proper smooth k-scheme P . We set

(5.3) SD60
lfgu(X/k) := SC6−dP

P,X and SD>0
lfgu(X/k) := SC>−dP

P,X .

Then the t-structure
(
SD60

lfgu(X/k),SD>0
lfgu(X/k)

)
is independent of the

choice of X ↪→ P , which we call the constructible t-structure. Moreover,
the constructible t-structure corresponds to the standard t-structure on
Db

c(Xét,Z/pZ) via SolX .
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