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RESOLVENT AND SPECTRAL MEASURE ON
NON-TRAPPING ASYMPTOTICALLY HYPERBOLIC

MANIFOLDS II:
SPECTRAL MEASURE, RESTRICTION THEOREM,

SPECTRAL MULTIPLIERS

by Xi CHEN & Andrew HASSELL (*)

Abstract. — We consider the Laplacian ∆ on an asymptotically hyperbolic
manifold X, as defined by Mazzeo and Melrose. We give pointwise bounds on the
Schwartz kernel of the spectral measure for the operator (∆ − n2/4)1/2

+ on such
manifolds, under the assumptions that X is nontrapping and there is no resonance
at the bottom of the spectrum. This uses the construction of the resolvent given
by Mazzeo and Melrose, Melrose, Sá Barreto and Vasy, the present authors, and
Wang.

We give two applications of the spectral measure estimates. The first, following
work due to Guillarmou and Sikora with the second author in the asymptotically
conic case, is a restriction theorem, that is, a Lp(X) → Lp′ (X) operator norm
bound on the spectral measure. The second is a spectral multiplier result under
the additional assumption that X has negative curvature everywhere, that is, a
bound on functions of the Laplacian of the form F ((∆ − n2/4)1/2

+ ), in terms of
norms of the function F . Compared to the asymptotically conic case, our spectral
multiplier result is weaker, but the restriction estimate is stronger.
Résumé. — Nous considérons le Laplacien ∆ sur une variété asymptotiquement

hyperbolique X au sens de Mazzeo et Melrose. Nous donnons des estimations
ponctuelles sur le noyau de Schwartz de la mesure spectrale pour l’opérateur (∆−
n2/4)1/2

+ sur ces variétés, sous l’hypothèse qu’il n’y ni trajectoires captées dans X,

ni résonance au bas du spectre. Nous utilisons la construction de la résolvante par
Mazzeo et Melrose, Sá Barreto et Vasy, Wang, et nous-mêmes.

Nous donnons deux applications des estimations de la mesure spectrale. La pre-
mière, qui prolonge l’étude de Guillarmou et Sikora avec le deuxième auteur dans
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le cas asymptotiquement conique, est un théorème de restriction: c’est-à-dire une
borne sur la norme d’opérateur Lp(X) → Lp′ (X) de la mesure spectrale. La se-
conde est un résultat de type multiplicateur spectral sous l’hypothèse additionnelle
que X est à courbure strictement négative partout. Plus précisément, nous don-
nons une estimation sur les fonctions du laplacien de la forme F ((∆ − n2/4)1/2

+ )
en termes de normes de la fonction F . Par rapport au cas asymptotiquement co-
nique, notre résultat de multiplicateur spectral est plus faible, mais l’estimation de
restriction est plus forte.

1. Introduction

This paper, following [10], is the second in a series of three devoted to
the analysis of the resolvent family and spectral measure for the Laplacian
on an asymptotically hyperbolic, nontrapping manifold. The third paper,
by the first author alone, will establish global-in-time Strichartz estimates
on such a manifold.

Let (X◦, g) be an asymptotically hyperbolic manifold of dimension n+ 1
(see Section 1.5 for the precise definition of “asymptotically hyperbolic”).
Let ∆ be the positive Laplacian on (X◦, g), which is essentially self-adjoint
on C∞c (X◦). It is well known that the spectrum of ∆ is absolutely con-
tinuous on [n2/4,∞) [26] with possibly finitely many eigenvalues (of finite
multiplicity) in (0, n2/4). We write P for the operator

(1.1) P = (∆− n2/4)1/2
+ ,

where the subscript + indicates positive part. Thus, P vanishes on the pure
point eigenspaces. In this paper, we analyze the spectral measure dEP (λ) of
the operator P , under the assumption that (X◦, g) is nontrapping (that is,
every geodesic reaches infinity both forward and backward) and that there
is no resonance at the bottom of the continuous spectrum, n2/4. To do this,
we express the spectral measure dEP (λ) in terms of the boundary values of
the resolvent (∆−n2/4−(λ±ı0)2)−1 just “above” and “below” the spectrum
in C. We then use the construction of the resolvent given by Mazzeo and
Melrose [27] (valid when the spectral parameter lies in a compact set),
Melrose, Sá Barreto and Vasy [29] (high energy estimates for a perturbation
of the hyperbolic metric) and the present authors [10] (and, independently,
[38]) in the general high-energy case to get precise information about the
Schwartz kernel of the spectral measure. In particular, following the work
of the second author with Guillarmou and Sikora [17] in the asymptotically
conic setting, this will allow us to obtain precise pointwise bounds on the
Schwartz kernel, when (micro)localized near the diagonal in a certain sense.

ANNALES DE L’INSTITUT FOURIER



HYPERBOLIC RESOLVENT AND SPECTRAL MEASURE II 1013

We then apply these pointwise kernel bounds to prove operator norm es-
timates on the spectral measure dEP (λ), and on general functions F (P ) of
the operator P , again following the general strategy of [17]. However, there
are key differences in the results we prove here compared to the asymp-
totically conic case, which can be traced to the exponential, as opposed to
polynomial, growth of the volume of large balls in the present setting. In
the case of the restriction theorem, that is, an Lp → Lp

′ bound on the spec-
tral measure, we prove more: we obtain an estimate for all p ∈ [1, 2), while
in the asymptotically conic case, it is well known that such an estimate
fails for p > 2(d+ 1)/(d+ 3), where d is the dimension. In the case of the
spectral multiplier result, that is, boundedness of F (P ), where we assume
only a finite amount of Sobolev regularity on F , boundedness on Lp(X)
spaces fails for p 6= 2 due to results of Clerc–Stein [11] and Taylor [35].
Instead, we obtain boundedness on Lp(X) +L2(X) for p ∈ [1, 2), provided
X is negatively curved.

1.1. The spectral measure

Consider functions of an abstract (unbounded) self-adjoint operator L on
a Hilbert spaceH. These are defined by the spectral theorem for unbounded
self-adjoint operators (for example, see [31, p. 263]). One standard version
of this theorem says that there is a one-to-one correspondence between self-
adjoint operators L and increasing, right-continuous families of projections
E(λ), λ ∈ R, having the property that the strong limit of E(λ) as λ→ −∞
is the zero operator and as λ→ +∞ is the identity. The correspondence is
given by

L =
∫ ∞
−∞

λ dE(λ) ;

if g( · ) is a real-valued Borel function on R, then

g(L) =
∫ ∞
−∞

g(λ) dE(λ)

with domain {
ψ :
∫ ∞
−∞
|g(λ)|2 d〈ψ,E(λ)ψ〉 <∞

}
is self-adjoint. Here the formula means

〈g(L)ψ,ψ〉 =
∫ ∞
−∞

g(λ) d〈E(λ)ψ,ψ〉 ,

TOME 68 (2018), FASCICULE 3



1014 Xi CHEN & Andrew HASSELL

which can be interpreted as a Stieltjes integral since 〈E(λ)ψ,ψ〉 is a non-
decreasing function of λ. We call dE(λ) the spectral measure associated
with the operator L.
In particular we can apply this when L = P and H = L2(X, g). We then

write dEP (λ) for the spectral measure of P . Since P is a positive operator,
we only need to integrate over λ ∈ [0,∞) in this case.
Returning to the abstract operator L, the resolvent family (L−λ)−1 is a

holomorphic family of bounded operators onH for Im λ 6= 0. In many cases,
including in the present setting, the resolvent family extends continuously
to the real axis as a bounded operator in a weaker sense, e.g. between
weighted L2 spaces, and is then differentiable in λ up to the real axis. In
that case, we find that E(λ) is differentiable in λ and we have Stone’s
formula

(1.2) d
dλ

E(λ) = 1
2πı

(
(L− (λ + ı0))−1 − (L− (λ− ı0))−1

)
.

In this case we write (abusing notation somewhat) dE(λ) for the deriv-
ative of E(λ) with respect to λ. Stone’s formula gives a mechanism for
analyzing the spectral measure, namely we need to analyze the limit of
the resolvent (L − λ)−1 on the real axis. In the case of P , we notice that
the spectral measure dEP (λ) for P is 2λ times the spectral measure at
n2/4 + λ2 for ∆. This gives us the distributional formula

(1.3) dEP (λ) = λ

πı

(
(∆−(n2/4+λ2 + ı0))−1−(∆−(n2/4+λ2− ı0))−1

)
.

1.2. Restriction theorem via spectral measure

Stein [34] and Tomas [37] proved estimates for the restriction of the
Fourier transform of an Lp function to the sphere Sd−1 ⊂ Rd:∫

Sd−1
|f̂ |2 dσ 6 C‖f‖2Lp(Rd) , p ∈ [1, 2(d+ 1)/(d+ 3)] .

Alternatively, we may formulate the estimate in terms of the restriction
operator R to the hypersphere,

R(f)(ξ) =
∫
Rd
e−ıx·ξf(x) dx, |ξ| = 1 .

The Stein–Tomas theorem is equivalent to the boundedness of

R : Lp(Rd) −→ L2(Sd−1) ,

which in turn is equivalent to the boundedness of

R∗R : Lp(Rd) −→ Lp
′
(Rd) .

ANNALES DE L’INSTITUT FOURIER



HYPERBOLIC RESOLVENT AND SPECTRAL MEASURE II 1015

The Schwartz kernel of R∗R,∫
|ξ|=1

eı(x−y)·ξ dξ ,

is (2π)d times the spectral measure dE√∆(1) for the square root of the
flat Laplacian on Rd, since the spectral projection E√∆(λ) of

√
∆ can

be written as F−1(χB(0,λ))F . Therefore, one may rewrite the restriction
theorem as the following estimate:

(1.4) ‖dE√∆(λ)‖Lp→Lp′ ( = λd(2/p−1)−1‖dE√∆(1)‖Lp→Lp′ )

6 Cλd(2/p−1)−1 ,

provided p ∈ [1, 2(d+ 1)/(d+ 3)]. This naturally leads to the question: for
which Riemannian manifolds (N, g) does the spectral measure for

√
∆N,g

map Lp(N, g) to Lp
′(N, g) for some p ∈ [1, 2), and how does the norm

depend in the spectral parameter? We refer to such an estimate as a “re-
striction estimate” or a “restriction theorem”. Such a result is a contin-
uous spectral analogue of the well-known discrete restriction theorem of
Sogge [32, Chapter 5].

1.3. Results on asymptotically conic spaces

As the present paper is inspired by work by the second author with
Guillarmou and Sikora [17] on asymptotically conic spaces, we review the
results of [17] here.

Asymptotically conic spaces M , of dimension m, are modelled on spaces
that at infinity look like the “large end of a cone”; that is, have one end
diffeomorphic to (r0,∞) × Y , where Y is a closed manifold of dimension
m− 1, with a metric of the form

dr2 + r2g0(y,dy) +O

(
1
r

)
, r →∞ ,

where g0 a metric on Y . Such spaces are Euclidean-like at infinity, in the
sense that the volume of balls of radius ρ are uniformly bounded above
and below by multiples of ρm, and in the sense that the curvature tends to
zero, and the local injectivity radius tends to infinity, at infinity. If we add
the condition that the manifold be nontrapping, then such spaces are also
dynamically similar to Euclidean space (although they may have conjugate
points). Consequently, the spectral analysis of such spaces behaves in many

TOME 68 (2018), FASCICULE 3
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ways like Euclidean space. This is illustrated by the results from [17]. On
Rm, the spectral measure satisfies pointwise kernel bounds of the form

(1.5)
∣∣∣∣( d

dλ

)j
dE√∆(λ)(x, y)

∣∣∣∣ 6 Cλm−1−j(1 + λ|x− y|)−(m−1)/2+j ,

with j ∈ N, and this estimate is essentially optimal, in the sense that
neither exponent can be improved. In [17] it was shown that, if M is an
asymptotically conic nontrapping manifold, and ∆ its Laplacian, then there
is a partition of unity Id =

∑N
j=0Qi(λ), depending on λ, and δ > 0 such

that

(1.6)
∣∣∣∣Qi(σ)

(( d
dλ

)j
dE√∆(λ)

)
Q∗i (σ)(x, y)

∣∣∣∣
6 Cλm−1−j(1 + λd(x, y))−(m−1)/2+j ,

with j ∈ N, for σ ∈ [(1 − δ)λ, (1 + δ)λ], where d(x, y) is the Riemannian
distance(1) . The Qi(λ) are semiclassical pseudodifferential operators (with
semiclassical parameter h = λ−1) with small microsupport. Therefore, the
operators Qi(σ)dE√∆(λ)Q∗i (σ) can be considered to be the kernel of the
spectral measure (micro)localized near the diagonal. Moreover, in the case
where there are no conjugate points, then the estimate above is valid with-
out the partition of unity.
This estimate (1.6) was shown to imply a global restriction estimate,

that is, an Lp(M) → Lp
′(M) operator norm bound on dE√∆(λ). In fact,

this was proved at an abstract level:

Theorem 1.1 ([17, 9](2) ). — Let (X, d, µ) be a metric measure space,
and L an abstract positive self-adjoint operator on L2(X,µ). Suppose that
the spectral measure dE√L(λ) has a Schwartz kernel satisfying (1.5) (with
|x−y| replaced by d(x, y)) for j = 0, as well as for j = m/2−1 and j = m/2
if m is even, or j = m/2 − 3/2 and j = m/2 + 1/2 if m is odd. Then the
operator norm estimate

(1.7)
∥∥dE√L(λ)

∥∥
Lp(M)→Lp′ (M) 6 Cλm(1/p−1/p′)−1 , 1 6 p 6 2(m+ 1)

m+ 3 ,

holds for all λ > 0. Moreover, if the kernel estimates above hold for some
range of λ, then (1.7) holds for λ in the same range.

(1)This was only claimed for λ = σ in [17], but in [16] it was observed that the same
construction gives the more general estimates in (1.6).
(2)This theorem was formulated and partially proved in [17]. See [9] for a complete
proof.

ANNALES DE L’INSTITUT FOURIER
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Finally, it was shown in [17] that, at an abstract level, such a restriction
estimate implies spectral multiplier estimates:

Theorem 1.2 ([17]). — Let (X, d, µ) be a metric measure space, such
that the volume of each ball of radius ρ is comparable to ρm. Suppose L is a
positive self-adjoint operator such that cos t

√
L satisfies finite propagation

speed on L2(X), and the restriction theorem

‖dE√L(λ)‖Lp→Lp′ 6 Cλm(1/p−1/p′)−1

holds uniformly with respect to λ > 0 for 1 6 p 6 2(m+ 1)/(m+ 3). Then
there is a uniform operator norm bound on spectral multipliers on Lp(X)
of the form

(1.8) sup
α>0
‖F (α

√
L)‖Lp→Lp 6 C‖F‖Hs ,

where F ∈ Hs(R) is an even function supported in [−1, 1], and s > m(1/p−
1/2).

In particular, one concludes (1.7) and (1.8) when X is an asymptotically
conic nontrapping manifold of dimension d.

1.4. Hyperbolic space

We next consider existing results on hyperbolic space. We return to our
convention where the dimension is n + 1. Using explicit formulae for the
Schwartz kernel of functions of the operator P = (∆−n2/4)1/2

+ , we deduce
pointwise bounds

(1.9) |dEP (λ)(z, z′)|

6

{
Cλ2, for d(z, z′) 6 1
Cλ2d(z, z′)(1 + λd(z, z′))−1e−nd(z,z′)/2, for d(z, z′) > 1

for λ 6 1, and derivative estimates(3)

(1.10)

∣∣∣∣∣
(

d
dλ

)j
dEP (λ)(z, z′)

∣∣∣∣∣
6

{
Cλn−j(1 + d(z, z′)λ)−n/2+j , for d(z, z′) 6 1
Cλn/2d(z, z′)je−nd(z,z′)/2, for d(z, z′) > 1 ,

(3)We can obtain derivative estimates for λ 6 1 also, but we do not need such estimates
in the low energy case.

TOME 68 (2018), FASCICULE 3
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when λ > 1. Closely related pointwise bounds for the wave kernels cos tP
and P−1 sin tP , the heat kernel e−tP 2 and the Schrödinger propagator eıtP 2

on hyperbolic space have been exploited in various works; see for exam-
ple [1, 5, 6, 12].
To the authors’ knowledge, the recent paper [21] by Huang and Sogge is

the only previous paper in which restriction estimates for hyperbolic space
have been considered. Huang and Sogge proved restriction estimates for p
in the same range [1, 2(d + 1)/(d + 3)] as for Euclidean space, using the
exact expression for the hyperbolic resolvent, and complex interpolation,
in the manner of Stein’s original proof of the Stein–Tomas restriction the-
orem [37] (this argument was presented in an abstract formulation in [17]).
In fact, on hyperbolic space (and, as we shall show, asymptotically hyper-
bolic nontrapping spaces), restriction estimates are valid for all p ∈ [1, 2)
(see Section 2 for a very simple proof on H3.)

Spectral multiplier estimates on hyperbolic and asymptotically hyper-
bolic spaces on Lp spaces (much more general than those considered here)
have been well studied. It was pointed out by Clerc and Stein [11] for sym-
metric spaces and Taylor [35] for spaces with exponential volume growth
and C∞ bounded geometry that a necessary condition for F (P ) to be
bounded is that F admit an analytic continuation to a strip in the com-
plex plane. Cheeger, Gromov and Taylor [7], and Taylor [35] showed that if
M has C∞ bounded geometry and injectivity radius bounded from below,
then F (

√
P ) maps Lp(M) into itself for 1 < p < ∞, provided that F is

holomorphic and even on the strip {z ∈ C : |Imz| < W} for some W and
satisfies symbol estimates |F (j)(z)| 6 Cj〈z〉k−j on the strip.
By constrast, we want to consider the mapping properties of F (P ) where

F has only finite Sobolev regularity. This is motivated by typical applica-
tions of spectral multipliers in harmonic analysis, such as Riesz means, and
in PDE, in which one often wants to restrict to a dyadic frequency inter-
val, that is, to the range of a spectral projector of the form 1[2j ,2j+1](P ),
or a smoothed version of this. Clearly, such a spectral multiplier cannot
have an analytic continuation to a strip. On the other hand, the work of
Clerc–Stein and Taylor shows that boundedness on Lp, p 6= 2, cannot be
expected. This motivates us to search for replacements for Lp spaces, on
which spectral multipliers are bounded.

1.5. Asymptotically hyperbolic manifolds

The geometric setting in the present paper is that of asymptotically hy-
perbolic manifolds. An asymptotically hyperbolic manifold (X◦, g) is the

ANNALES DE L’INSTITUT FOURIER
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interior of a compact manifold X with boundary, such that the Riemannian
metric g takes a specific degenerate form near the boundary of X. Specifi-
cally, near each boundary point, there are local coordinates (x, y), where x
is a boundary defining function and y restrict to local coordinates on ∂X,
such that g takes the form

(1.11) g = dx2 + g0(x, y,dy)
x2 ,

where g0(x, y, dy) is a family of metrics on ∂X, smoothly parametrized by
x. Under the metric g, the interior X◦ of X is a complete Riemannian
manifold.
As is well known, n+ 1-dimensional hyperbolic space takes this form in

the Poincaré ball model. Indeed, Hn+1 is given by the interior of the unit
ball in Rn+1, with the metric

(1.12) g = 4dz2

(1− |z|2)2 ,

where z = (z1, . . . , zn+1) are the standard coordinates on Rn+1. Other ex-
amples include all convex co-compact hyperbolic manifolds, and compactly
supported metric perturbations of these.
Such spaces are termed asymptotically hyperbolic spaces as the sectional

curvatures tend to −1 at infinity [27]. Analytically, they have many similar-
ities to hyperbolic spaces. Consider the resolvent R(ζ) := (∆−ζ(n−ζ))−1

on Hn+1, which is well-defined as a bounded operator on L2(Hn+1) for
Re ζ > n/2. Notice that the axis Re ζ = n/2 corresponds to the spectrum
of ∆, and the point ζ = n/2 ± ıλ corresponds to the point |λ| in the
spectrum of P = (∆−n2/4)1/2

+ . On Hn+1, the resolvent R(ζ) extends to a
holomorphic function of ζ ∈ C when n is even, and a meromorphic function
with poles at {0,−1,−2, . . .} when n is odd.
For asymptotically hyperbolic spaces, it is known from works of Mazzeo–

Melrose [27] and Guillarmou [14] that the resolvent (∆−ζ(n−ζ))−1 extends
to be a meromorphic function of ζ on C \ {(n− 1)/2− k | k = 1, 2, 3, . . .},
and extends to be meromorphic on the whole of C provided that g is even
in x, that is, a smooth function of x2. In addition, it is holomorphic in
a neighbourhood of the spectral axis Re ζ = n/2 except possibly at the
point n/2 itself, corresponding to the bottom of the continuous spectrum,
which could be a simple pole [4]. In the present article, we shall assume
that the resolvent is holomorphic at ζ = n/2 as well. We point out that
our estimates will certainly fail in the case of a resonance at the bottom
of the spectrum, but weaker estimates will remain valid; see [15, 23] for an
analysis of zero-resonances in the asymptotically Euclidean case.

TOME 68 (2018), FASCICULE 3
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1.6. Main results

1.6.1. Pointwise estimates on the spectral measure

Our first main result, analogous to (1.6), is that there is a partition of
the identity, Id =

∑N
j=0Qi(λ) on L2(X) such that the diagonal terms in

the two-sided decomposition of dEP (λ) satisfy the same type of pointwise
bounds as are valid on hyperbolic space. In fact, following [19], we prove a
slightly stronger result, in which we retain information about the oscillatory
nature of the kernel as λ→∞.

Before stating the result, we refer to Section 3 for the definition of the
double space X2

0 , the blow-up of X2 at the boundary of the diagonal; see
Figure 3.1. This space has 3 boundary hypersurfaces: the lift to X2

0 of the
left and right boundaries in X2, denoted FL and FR, respectively, and the
“front face” FF created by blowup. We denote boundary defining functions
for these boundary hypersurfaces by ρL, ρR and ρF respectively.

Theorem 1.3. — Let (X◦, g) be an asymptotically hyperbolic nontrap-
ping manifold with no resonance at the bottom of the spectrum, and let P
be given by (1.1). Then for low energies, λ 6 1, the Schwartz kernel of the
spectral measure dEP (λ) takes the form

(1.13) dEP (λ)(z, z′)

= λ
(

(ρLρR)n/2+ıλa(λ, z, z′)− (ρLρR)n/2−ıλa(−λ, z, z′)
)
,

where a ∈ C∞([−1, 1]λ ×X2
0 ).

For high energies, λ > 1, one can choose a finite pseudodifferential op-
erator partition of the identity operator,

Id =
N∑
k=0

Qk(λ) ,

such that the Qj are bounded on Lp, uniformly in λ, for each p ∈ (1,∞),
and such that the microlocalized spectral measure, that is, any of the com-
positions Qk(λ)dEP (λ)Q∗k(λ), 0 6 k 6 N , takes the form

(1.14) Qk(λ)dEP (λ)Q∗k(λ)(z, z′)

= λn
(∑
±
e±ıλd(z,z′)b±(λ, z, z′)

)
+ (ρLρR)n/2+ıλ a+ + (ρLρR)n/2−ıλa−
+ (xx′)n/2+ıλ ã+ + (xx′)n/2−ıλ ã−

ANNALES DE L’INSTITUT FOURIER
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where a± is in
λ−∞C∞([0, 1]λ−1 ×X2

0 )
and ã± is in

λ−∞C∞([0, 1]λ−1 ×X2) ,
and the functions b± satisfy the following. For small distance, d(z, z′) 6 1,
we have

(1.15)
∣∣∣ dj

dλj
b±(λ, z, z′)

∣∣∣ 6 Cλ−j
(
1 + λd(z, z′)

)−n/2
.

For d(z, z′) > 1, b± is λ−n/2 times a smooth function of λ−1, decaying
to order n/2 at FL and FR:

(1.16) b±(λ, z, z′) ∈ λ−n/2(ρLρR)n/2C∞([0, 1]λ−1 ×X2
0 ) .

Moreover, if (X◦, g) is in addition simply connected with nonpositive sec-
tional curvatures, then the estimates above are true for the spectral meaure
without microlocalization, i.e. in this case we can take {Qi(λ)} to be the
trivial partition of unity.
Remark 1.4. — We can split the continuous spectrum of P at any point

λ ∈ (0,∞) to differentiate high and low energies.
Using this structure theorem, we prove pointwise bounds on the microlo-

calized spectral measure:
Theorem 1.5. — Let (X◦, g) be as above. Then for low energies, λ 6 1,

we have pointwise estimates on the spectral measure of the form

(1.17) |dEP (λ)(z, z′)|

6

{
Cλ2, for d(z, z′) 6 1
Cλ2d(z, z′)(1 + λd(z, z′))−1e−nd(z,z′)/2, for d(z, z′) > 1.

For high energies, λ > 1, one has, for sufficiently small δ > 0 and σ ∈
[(1− δ)λ, (1 + δ)λ]

(1.18)

∣∣∣∣∣Qk(σ)
((

d
dλ

)j
dEP (λ)

)
Q∗k(σ)(z, z′)

∣∣∣∣∣
6

{
Cλn−j(1 + d(z, z′)λ)−n/2+j , for d(z, z′) 6 1
Cλn/2d(z, z′)je−nd(z,z′)/2, for d(z, z′) > 1.

As before, if (X◦, g) is in addition simply connected with nonpositive sec-
tional curvatures, then the estimates above are true for the spectral meaure
without microlocalization, i.e. in this case we can take {Qi(λ)} to be the
trivial partition of unity.
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1.6.2. Restriction theorem

Using Theorem 1.5, we prove

Theorem 1.6. — Suppose (X, g) is an n+ 1-dimensional non-trapping
asymptotically hyperbolic manifold with no resonance at the bottom of
the continuous spectrum. Then for some constant C = C(p) we have the
following estimate for λ 6 1:

(1.19) ‖dEP (λ)‖Lp→Lp′ 6 Cλ2 , 1 6 p < 2 .

For λ > 1, we have the estimate

(1.20) ‖dEP (λ)‖Lp→Lp′ 6
{
Cλ(n+1)(1/p−1/p′)−1, 1 6 p 6 2(n+2)

n+4 ,

Cλn(1/p−1/2), 2(n+2)
n+4 6 p < 2 .

Remark 1.7. — The range of exponents p is greater for a hyperbolic
space than for a conic (Euclidean) space. Indeed, it includes all p < 2,
while on Euclidean space Rd, the well-known Knapp example shows that
the restriction estimate cannot hold for p > 2(d+ 1)/(d+ 3). (The Knapp
example does not apply to hyperbolic space as it relies on the dilation
symmetry of Rd.) For high energies, λ > 1, the exponent is the same as on
Rd for the range 1 6 p 6 2(d + 1)/(d + 3) but again we get the full range
of p up to p = 2. Naturally, the constant C blows up as p→ 2.

This surprising result is closely tied to a non-Euclidean feature of hyper-
bolic space related to the Kunze–Stein phenomenon [25]. The Kunze–Stein
phenomenon for semisimple Lie groups is that there is a much larger set of
exponents p, q, r for which one has

Lp ∗ Lq ⊂ Lr,

compared to Euclidean space. Since Hn+1 can be viewed as

SO(n+ 1, 1)/SO(n+ 1) ,

this has consequences for convolution on Hn+1. Anker and Pierfelice [1], [2,
Section 4] showed that convolution with a radial kernel κ(r) satisfies

(1.21) ‖f ∗ κ‖Lq(Hn+1)

6 Cq‖f‖Lq′ (Hn+1)

(∫ ∞
0

(sinh r)n(1 + r)e−nr/2|κ(r)|q/2 dr
)2/q

,

with q > 2. From this we see that if κ(r) is smooth and decays as e−nr/2,
then convolution with κ maps Lp to Lp′ for all p ∈ [1, 2). Additionally, this
non-Euclidean feature also affects the range of valid Strichartz estimates
on (asymptotically) hyperbolic manifolds (see [1, 8, 22]).
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1.6.3. Spectral multipliers

Our result for spectral multipliers is restricted to the case where the man-
ifold is, in addition, a Cartan–Hadamard manifold, i.e. simply connected
with nonpositive sectional curvatures.

Theorem 1.8. — Suppose (X, g) is an n+ 1-dimensional non-trapping
asymptotically hyperbolic manifold with no resonance at the bottom of
spectrum. Suppose in addition that X is simply connected with nonpositive
sectional curvatures. Then for any F ∈ Hs(R) supported in [−1, 1] with
s > (n + 1)/2, and for all p ∈ [1, 2), F (αP ) is a bounded operator on
Lp +L2 uniformly with respect to parameter α for 0 < α < 1, in the sense

sup
α∈(0,1]

∥∥F (αP )
∥∥
Lp(X)+L2(X)−→Lp(X)+L2(X) <∞ .

This is weaker than Theorem 1.2, both because the function space is
Lp+L2 rather than Lp, but also because we have strengthened the Sobolev
condition to s > (n + 1)/2 for all p. From the perspective of harmonic
analysis, it would be interesting to find a “better” function space, that is,
more closely associated to the Laplacian, to accommodate the boundedness
of the spectral multiplier. Modern harmonic analysis (Calderón–Zygmund
theory) is generally built on spaces with a doubling measure, which acti-
vates some kind of covering lemma and gives a simple structure of cube
nets. Though some authors have investigated non-doubling spaces, the ad-
vances are mainly restricted to spaces of polynomial growth, which are
“semi-doubling”. In any case, the harmonic analysis on space of exponen-
tial growth is barely explored. One recent work along these lines is due
to Bouclet [3], where it is shown that semiclassical spectral multipliers are
bounded on appropriate weighted Lp spaces in a setting with exponential
volume growth. The authors plan to pursue this question in future publi-
cations.

1.7. Strichartz estimates on asymptotically hyperbolic manifolds

In the third paper in this series, [8], the first author will prove global-
in-time Strichartz type estimates without loss on non-trapping asymptot-
ically hyperbolic manifolds. Namely, for solutions of the inhomogeneous
Schrödinger equation, {

ı ∂∂tu+ ∆u = F (t, z)
u(0, z) = f(z)
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with f and F orthogonal to eigenfunctions of ∆ on an n + 1-dimensional
asymptotically hyperbolic manifold X, one has the estimate

‖u‖Lp(R,Lq(X)) 6 C‖f‖L2(X) + ‖F‖Lp̃′ (R,Lq̃′ (X))

provided the pairs (q, r) and (q̃, r̃) are hyperbolic Schrödinger admissible
pairs of exponents.

1.8. Outline of the paper

The paper is organized as follows. In Section 2, we show how the main
results in Section 1.6 follow in the simple case of hyperbolic 3-space H3. In
Section 3, we review the geometry and analysis of asymptotically hyperbolic
manifolds, recalling the main results of [27] and [10]. In Section 4 we prove
the restriction estimate, Theorem 1.6, for low energy, which exploits, in
some sense, the Kunze–Stein phenomenon on Hn+1.
In Section 5, in preparation for the high-energy estimates, we show how

the microlocal support of the spectral measure may be localized by pre-
and post-composition by pseudodifferential operators. In Section 6 we prove
Theorem 1.3. This uses, in a crucial way, the semiclassical Lagrangian struc-
ture of the high-energy spectral measure proved in [10] and [38]. Next we
establish a factorization of spectral measure in Section 7. It is used in Sec-
tion 8 for the proof of Theorem 1.6 at high energies. Finally, in Section 9,
we prove the spectral multiplier result, Theorem 1.8.

2. The model space H3

In this section we illustrate the results of Theorems 1.5, 1.6 and 1.8 in
the simple case of hyperbolic space. We focus on the case of H3, in which
the formulae are particularly simple.
Hyperbolic space can be defined in terms of the half space model

Hn+1 = {(x, y) ∈ R× Rn | x > 0} ,

equipped with the metric
dx2 + dy2

x2 ,

or in terms of the Poincaré disc model, as in (1.12). For odd dimensions,
that is, when n = 2k is even, the Schwartz kernel of g(P ) is given by the
explicit formula

(2.1) 1√
2π

(
− 1

2π
1

sinh(r)
∂

∂r

)k
ĝ(r) ,
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where P = (∆ − n2/4)1/2 as before, and r is geodesic distance on Hn+1.
See [36, p. 105] for proof.

2.1. Kernel bounds for the spectral measure

In particular, (∆− n2/4− λ2)−1 = (P 2 − λ2)−1 for Im λ > 0 is

(2.2)
− 1

2ıλ

(
− 1

2π
1

sinh(r)
∂

∂r

)k
eıλr, Im λ > 0 ,

− 1
2ıλ

(
− 1

2π
1

sinh(r)
∂

∂r

)k
e−ıλr, Im λ < 0 .

Setting now k = 1, and applying Stone’s formula (1.3), we find that on H3,

(2.3) dEP (λ) = λ

2π
sin(λr)
sinh r .

2.2. Restriction estimate

Next, we deduce Theorem 1.6 for H3. The estimate for low energy follows
immediately from (2.3) and (1.21). The estimate for high energy and p ∈
[1, 4/3] can be deduced from Theorem 1.1:

Proposition 2.1. — dEP (λ) maps Lp(H3) to Lp′(H3) with a bound
Cλ3(1/p−1/p′)−1 for all λ > 0, provided 1 6 p 6 4/3.

Proof. — We assert the kernel estimates of Theorem 1.1 hold for this
spectral measure, that is,∣∣dEP (λ)

∣∣ 6 C λ2

1 + λd(z, z′) and
∣∣∣∣( d

dλ

)2
dEP (λ)

∣∣∣∣ 6 C(1 + λd(z, z′)
)
.

In fact, one may see∣∣∣dEP (λ)
∣∣∣ =

∣∣∣∣λ sin
(
λd(z, z′)

)
sinh

(
d(z, z′)

) ∣∣∣∣ 6 C λ

d(z, z′) 6 C
λ2

1 + λd(z, z′) ,

when λd(z, z′) > 1;∣∣∣dEP (λ)
∣∣∣ =

∣∣∣∣λ sin
(
λd(z, z′)

)
sinh

(
d(z, z′)

) ∣∣∣∣ 6 Cλ2 6 C
λ2

1 + λd(z, z′) ,
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when λd(z, z′) < 1. On the other hand, it is clear that∣∣∣∣( d
dλ

)2
dEP (λ)

∣∣∣∣ =
∣∣∣∣2d(z, z′) cos

(
λd(z, z′)

)
sinh

(
d(z, z′)

) −
λd(z, z′)2 sin

(
λd(z, z′)

)
sinh

(
d(z, z′)

) ∣∣∣∣
6 C

(
1 + λd(z, z′)

)
.

Then applying Theorem 1.1 proves the proposition. �

In the range p ∈ [4/3, 2) and for high energy, we again use complex
interpolation, but rather than applying Theorem 1.1 as a black box, we
need to modify the proof slightly. We observe that the spectral measure on
H3 satisfies

(2.4)

∣∣∣∣∣
(

d
dλ

)j
dEP (λ)

∣∣∣∣∣ 6 λ for all j > 1.

We substitute this estimate in place of the kernel bounds of Theorem 1.1,
and run the proof of [17, Section 3]. As in that proof, we consider the
analytic family of operators χa+(λ− P ). The proof works just the same;(4)

in place of equation (3-7) of [17, Section 3] and the previous equation, we
obtain

(2.5)
∥∥χıs+(λ− P )

∥∥
L2→L2 6 Ce

π|s|/2

on the line Re a = 0, and

(2.6)
∥∥χ−b+ıs+ (λ− P )

∥∥
L1→L∞ 6 C(1 + |s|)eπ|s|/2λ

on the line Re a = −b, for any b > 1. Let p ∈ (4/3, 2), and choose b =
p/(2 − p). Using the fact that the spectral measure is χ−1

+ (λ − P ), and
applying complex interpolation, we find that

(2.7)
∥∥dEP (λ)

∥∥
Lp→Lp′ 6 Cλ(2−p)/p .

2.3. Spectral multiplier estimate

The hyperbolic space H3 is a non-doubling space but rather has expo-
nential volume growth, i.e. the volume of a ball with radius r satisfies
|B(r)| ∼ (sinh r)2. The lack of doubling means that we cannot apply The-
orem 1.2 directly. Nevertheless, we can decompose the kernel of a spectral
multiplier F (P ) into two parts, using a cutoff function χd(z,z′)61, say, the
characteristic function of {(z, z′) ∈ H3 × H3 | d(z, z′) 6 1}. We write the

(4)We refer the reader to Section 8 for more details.
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operator whose kernel is the kernel of F (P ) multiplied by χd(z,z′)61 by
F (P )χd(z,z′)61.

Then the proof of Theorem 1.2 applies to F (P )χd(z,z′)61, since all that
is required for this proof to work is that doubling is valid for all balls of
radius 6 1, which is certainly true. We obtain

Lemma 2.2. — For every even function F ∈ Hs(R) supported in [−1, 1]
with s > 3(1/p − 1/2), F (αP )χd(z,z′)61 maps Lp(H3) to itself with a uni-
form bound

sup
α>0
‖F (αP )χd(z,z′)61‖Lp(H3)→Lp(H3) 6 C‖F‖Hs ,

provided 1 6 p 6 4/3, where χd(z,z′)61 is the characteristic function of the
set {(z, z′) : d(z, z′) 6 1}.

In particular, if s > 3/2, then this is valid for p = 1, and thus by
interpolation and duality for all p ∈ [1,∞].
For the other part, supported where d(z, z′) > 1, we show boundedness

from Lp(H3) → L2(H3). By interpolation, it is enough to treat the case
p = 1, since boundedness L2 → L2 follows immediately from the bounded-
ness of F .

The L1 → L2 operator norm of an integral operator K(z1, z2) is bounded
by

sup
z2

(∫ ∣∣K(z1, z2)
∣∣2 dµ1

)1/2
.

We express the kernel of F (P )χd(z,z′)>1 using (2.2). So we need to estimate∫
S2×[1,∞)

∣∣∣∣ 1
(2π)3/2

1
sinh(r)

∂

∂r
F̂ (r)

∣∣∣∣2 sinh2(r) drdω 6 C
∫ ∞

1

∣∣∣∣ ∂∂r F̂ (r)
∣∣∣∣2 dr .

Write Fα(λ) = F (αλ). For any α > 0, we get the estimate for Fα:∫
S2×[1,∞)

∣∣∣∣ ∂∂r F̂α(r)
∣∣∣∣2 drdω = C

∫ ∞
1

∣∣∣∣ ∂∂r F̂ (r/α)
α

∣∣∣∣2 dr

6 C
1
α3

∫ ∞
1/α

∣∣∣∣ ∂∂r F̂ (r)
∣∣∣∣2 dr

6 C
∫ ∞

1/α
r3
∣∣∣∣ ∂∂r F̂ (r)

∣∣∣∣2 dr

6 C
∥∥λF (λ)

∥∥2
H3/2 6 C

∥∥F∥∥2
H3/2

using the compact support of F . Combining this estimate with Lemma 2.2,
we have proved Theorem 1.8 in the case of H3.
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3. The geometry and analysis of asymptotically hyperbolic
manifolds

3.1. 0-structure

Suppose (X◦, g) is an (n+1)-dimensional asymptotically hyperbolic man-
ifold. Let X be the compactification. We write x for a boundary defin-
ing function, and use local coordinates (x, y1, . . . , yn) near a boundary
point of X, where y = (y1, . . . , yn) restrict to coordinates on ∂X, or
z = (z1, . . . , zn+1) in the interior of X.

Consider the space of smooth vector fields on the compactification, X,
that are of uniformly finite length. Due to the factor x−2 in the metric,
such vector fields take the form xV , where V is a smooth vector field on
X. Such vector fields are called 0-vector fields, spanned over C∞(X) near
the boundary by the vector fields x∂x and x∂yi , 1 6 i 6 n. As observed by
Mazzeo–Melrose, they are the space of sections of a vector bundle, known
as the 0-tangent bundle, 0TX.

The dual bundle, known as the 0-cotangent bundle and denoted 0T ∗X,
is spanned by local sections dx/x and dyi/x near the boundary. It follows
that, near the boundary of X, we can write points q ∈ 0T ∗X in the form

(3.1) q = λ
dx
x

+
n∑
j=1

µj
dyj
x

;

this defines linear coordinates (λ, µ) on each fibre of 0T ∗X (near the bound-
ary), depending on the coordinate system (x, y).
The Laplacian ∆ on X is built out of an elliptic combination of 0-vector

fields. In fact, in local coordinates (x, y) near the boundary of X, with g

taking the form (1.11), it takes the form

(xDx)2 + ınxDx + (xDyi)hij(xDyj ) modulo x 0Diff1(X) ,

where we use 0Diffk(X) to denote differential operators of order k generated
over C∞(X) by 0-vector fields.

3.2. The 0-double space

We would like to understand the nature of the Schwartz kernel of the
resolvent (∆−ζ(n−ζ))−1, on X◦×X◦. Following Mazzeo–Melrose, we use
a compactification of the double space X◦×X◦ that reflects the geometry
of (X◦, g), particularly near the diagonal. This is important as we want
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Figure 3.1. The 0-blown-up double space X ×0 X

to view the resolvent as some sort of pseudodifferential operator, which
means that we need a precise notion of what it means for a distribution to
be conormal to the diagonal, uniformly out to infinity.
Compactifying X◦ to X, we can initially view the resolvent kernel on

X2. However, on this space, the diagonal is not a p-submanifold where it
meets the boundary. That is, near the boundary of the diagonal in X2,
there are no local coordinates of the form (x, x′, w) where x, resp. x′ is a
boundary defining function for the left, resp. right, copy of X and w are the
remaining coordinates, such that the diagonal is given by the vanishing of
a subset of these coordinates. To give a workable definition of conormality
to a submanifold, we require it to be a p-submanifold. To remedy this,
we blow up (in the real sense) the boundary of the diagonal. This creates
a manifold with corners, denoted X2

0 , the “0-double space”, with three
boundary hypersurfaces: the two original ones, FL “left face” and FR “right
face”, corresponding to {x = 0} and {x′ = 0} in X2, and the new face
FF, the “front face”, created by blowup (see Figure 3.1). We denote a
generic boundary defining function for FL,FR or FF by ρFL, ρFR and ρFF,
respectively.
As in [10], we write down coordinate systems in various regions of X2

0 ,
in terms of coordinates (x, y) = (x, y1, . . . , yn) near the boundary of X, or
z = (z1, . . . , zn+1) in the interior of X. The unprimed coordinates always
indicate those lifted from the left factor of X, while primed coordinates
indicate those lifted from the right factor. We label these different regions
as follows:

• Region 1: In the interior of X2
0 . Here we use coordinates

(z, z′) = (z1, . . . , zn+1, z
′
1, . . . , z

′
n+1) .

TOME 68 (2018), FASCICULE 3



1030 Xi CHEN & Andrew HASSELL

• Region 2a: Near FL and away from FF and FR. In this region, we
use (x, y, z′).

• Region 2b: Near FR and away from FF and FL. Symmetrically, we
use (z, x′, y′).

• Region 3: Near FL∩FR and away from FF. Here we use (x, y, x′, y′).
• Region 4a: Near FF and away from FR. This is near the blowup.
In this region we can use s = x/x′ for a boundary defining function
for FF. We use coordinate system

s = x

x′
, x′, y , Y = y′ − y

x′
.

• Region 4b: Near FF and away from FL. Symmetrically, we use

s′ = x′

x
, x, y′, Y ′ = y − y′

x
.

• Region 5: Near the triple corner FL∩FF∩FR. In this case, a
boundary defining function for FF is |y′ − y|. By rotating the y
coordinates, we can assume that |y′1 − y1| > c|y′ − y| in a neigh-
bourhood of any given point in the triple corner. Assuming this, we
use coordinates

s1 = x

y′1 − y1
, s2 = x′

y′1 − y1
, t = y′1 − y1 , Zj =

y′j − yj
y′1 − y1

(j > 1) .

On X2
0 , the lift of the diagonal, denoted diag0, meets the boundary in

the interior of the front face FF. It has several good geometric properties:
• diag0 ⊂ X2

0 is a p-submanifold disjoint from FL and FR;
• the 0-vector fields x∂x, x∂yi lift from the left and right factors of X

to be vector fields on X2
0 that are non-tangential to diag0, uniformly

down to the boundary of diag0. Moreover, these vector fields span
the normal bundle of diag0, again uniformly down to the boundary.

• The distance function d(z, z′) is smooth in a deleted neighbourhood
of diag0, and its square is a quadratic defining function for the lifted
diagonal, i.e. it is smooth and vanishes to precisely second order at
diag0.

3.3. Resolvent kernel

Taking advantage of the first and second geometric properties listed
above, Mazzeo and Melrose “microlocalized” the space of 0-differential op-
erators to a calculus of 0-pseudodifferential operators on X. The set of
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pseudodifferential operators of order m on X, denoted Ψm
0 (X), is, by def-

inition, the set of operators on half-densities, whose Schwartz kernels are
conormal of order m to diag0, and vanish to infinite order at FL and FR.
Mazzeo and Melrose [27] showed that the resolvent

R(λ) =
(
∆− n2/4− λ2)−1

, Im λ < 0 ,

takes the form

(3.2) R(λ) ∈ Ψ−2
0 (X) + ρ

n/2+ıλ
L ρ

n/2+ıλ
R C∞(X ×0 X) .

For low energy, this description is precise enough to deduce kernel es-
timates for the spectral measure, restriction estimates, and spectral mul-
tiplier theorems. However, as λ → ∞, we need a uniform description of
the resolvent, and in particular we need to understand its oscillatory na-
ture. For this, we use the description by Melrose–Sá Barreto–Vasy [29] [38]
and the present authors [10] (in the first paper of this series) of the high-
energy resolvent as a semiclassical Lagrangian distribution. This is associ-
ated to the bicharacteristic relation on X◦ ×X◦, that is, the submanifold
of T ∗X◦ × T ∗X◦ given by

BR =
{

(z, ζ; z′,−ζ ′)

∣∣∣∣∣ |ζ|g = |ζ ′|g = 1,
(z, ζ) and (z′, ζ ′) lie on the same bicharacteristic

}
,

which is a smooth Lagrangian submanifold provided that X is nontrapping.
By “bicharacteristic” we mean here the integral curves of the symbol of ∆
on the set where σ(∆) = 1. In this case these are precisely geodesics, viewed
as living in the cotangent bundle.
The bicharacteristic relation splits into the forward and backward bichar-

acteristic relations, BR+ and BR−, which(5) consist of those points

(z, ζ; z′,−ζ ′) ∈ BR

for which (z, ζ) is on the forward/backward half of the bicharacteristic
relative to (z′, ζ ′). These two halves meet at BR∩N∗ diag, where N∗ diag
denotes the conormal bundle of the diagonal,

N∗ diag = {(z, ζ, z′,−ζ)} .

We wish to understand the way in which BR compactifies when viewed as
living over the double space X2

0 . We consider the bundle ΦT ∗X2
0 , obtained

by pulling back the bundle (0T ∗X)2 to X2
0 by the blowdown map β : X2

0 →
X2. We denote the bundle projection maps by Φπ : ΦT ∗X2

0 → X2
0 . Then,

(5)The forward bicharacteristic relation BR+ was denoted FBR in [10].
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as explained in [10, Section 3], it is convenient to “shift” BR by the map
T± defined by

(3.3) T±(q) = q ∓ d(log ρL)∓ d(log ρR) , q ∈ ΦT ∗X2
0 ,

for some choice of boundary defining functions ρL for FL and ρR for FR;
that is, we consider T−1

− (BR−)∪T−1
+ (BR+). It is convenient here to assume

that ρL and ρR are both constant near diag0, so that these two shifted
Lagrangians join smoothly at N∗ diag0.
In [10] we showed(6)

Proposition 3.1. — The bicharacteristic relation BR can be expressed
as the union of two relatively open subsets BRnd ∪BR∗, having the follow-
ing properties.

• BRnd contains a neighbourhood of the intersection BR∩N∗ diag in
BR, that is, the points (z, ζ, z,−ζ) ∈ BR.

• Let Λnd denote the lift of BRnd to ΦT ∗X2
0 , together with its limit

points lying over FF, FL and FR. Let Λnd± = Λnd∩BR± denote the
two halves of this submanifold, meeting at N∗ diag0. Then Λnd± are
manifolds with codimension three corners, with the property that
the interior of Λnd+ is the graph of the differential of the distance
function on some deleted neighbourhood V of (diag0 ∪FF) ⊂ X2

0 ,
and the interior of Λnd− is the graph of minus the differential of the
distance function on V . Thus the projection Φπ : Λnd → X2

0 has
full rank restricted to Λnd, except at Λnd ∩N∗ diag0 = Λnd+ ∩ Λnd− ,
where the rank of the projection Φπ : Λnd → X2

0 drops by n. The
boundary hypersurfaces of Λnd are ∂FFΛnd, lying over FF, ∂FLΛnd,
lying over FL and ∂FRΛnd, lying over FR.

• The image Λ̃nd of Λnd under the shift (3.3) is a smooth Lagrangian
submanifold of T ∗X2

0 (NB: the standard cotangent bundle, not
ΦT ∗X2

0 ) with codimension three corners. The projection

π : T ∗X2
0 → X2

0

restricts to a map Λ̃nd → X2
0 with full rank, except at Λ̃nd ∩

N∗ diag0 = Λ̃nd+ ∩ Λ̃nd− , where the rank of the projection Φπ : Λ̃nd →
X2

0 drops by n.
• Let B̃R∗ denote the image of BR∗ under the shift (3.3), and let Λ̃∗

denote the closure of B̃R∗ in T ∗X2. Then Λ̃∗ is a smooth Lagrangian

(6)This was shown for the forward bicharacteristic relation in [10], but the statements
in Proposition 3.1 follow immediately.
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submanifold of T ∗X2 (NB: the standard cotangent bundle, not the
0-cotangent bundle) with codimension two corners.

In terms of these Lagrangian submanifolds we determined the semiclas-
sical nature of the resolvent kernel in [10, Theorem 38]. In view of Stone’s
formula, (1.2), this has immediate consequences for the spectral measure.
We first define (semiclassical) Lagrangian distributions associated to Λnd
and Λ∗, respectively, following [10]. These are given in terms of Lagrangian
distributions associated to Λ̃nd and Λ̃∗:

Definition 3.2. — We define the space Ik(X2
0 ,Λnd; 0Ω1/2) as follows:

we have u ∈ Ik(X2
0 ,Λnd; 0Ω1/2) if and only if u = u0 + u− + u+, where

• u0 is in ρ
−(n+1)/2
F Ik(X2

0 , Λ̃nd; Ω1/2) and microsupported close to
N∗ diag0, where “close” means that the shift operation T is the
identity on the microsupport of u0 (due to our assumption that
ρL = ρR = 1 in a neighbourhood of ∂ diag0);

• u± are in ρ
−(n+1)/2
F (ρLρR)−(n+1)/2∓ı/hIk(X2

0 , Λ̃nd± ; Ω1/2), and are
microsupported away from N∗ diag0.

We also define Ik(X2,Λ∗; 0Ω1/2) as follows: we say u ∈ Ik(X2,Λ∗; 0Ω1/2)
if and only if u = u+ +u−, where u± ∈ (xx′)−(n+1)/2∓ı/hIk(X2, Λ̃∗±; Ω1/2).
Here Λ̃∗± are the connected components of Λ̃∗, arising from points in BR±.

In terms of these spaces, we have

Theorem 3.3. — Let (X◦, g) be an asymptotically hyperbolic non-
trapping manifold, with no resonance at the bottom of the continuous
spectrum. Then the spectral measure dEP (λ) with λ = 1/h can be ex-
pressed as a sum of the following terms:

(1) A semiclassical Lagrangian distribution in

(ρLρR)n/2I−1/2(X2
0 ,Λnd; 0Ω1/2) ;

(2) a semiclassical Lagrangian distribution in

(xx′)n/2I−1/2(X2,Λ∗; 0Ω1/2) ;

(3) an element of

(ρLρR)n/2−ı/hh∞C∞(X2
0 × [0, h0]; 0Ω1/2)

+ (ρLρR)n/2+ı/hh∞C∞(X2
0 × [0, h0]; 0Ω1/2) ,

which can be regarded as an element of type (1) of order −∞;
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(4) an element of

(xx′)n/2−ı/hh∞C∞(X2 × [0, h0]; 0Ω1/2)

+ (xx′)n/2+ı/hh∞C∞(X2 × [0, h0]; 0Ω1/2) ,

which can be regarded as an element of type (2) of order −∞.

Proof. — We first remark that the change in order from +1/2 for the
resolvent in [10, Theorem 38] to −1/2 for the spectral measure is simply
due to the fact that the semiclassical resolvent in [10] is h−2 times the
resolvent in (1.3), together with the factor of λ = h−1 in (1.3).
In [10, Theorem 38] it was shown that the resolvent kernel has a similar,

but slightly more complicated structure: in place of the first term above,
it consists of a semiclassical pseudodifferential operator, together with a
semiclassical intersecting Lagrangian distribution associated to N∗ diag0
together with the forward/backward half of the bicharacteristic relation
(for the outgoing/incoming resolvent). We claim that when the incoming
resolvent is subtracted from the outgoing, the pseudodifferential part can-
cels, and what is left is a Lagrangian distribution associated to the full
bicharacteristic relation. This follows since the spectral measure satisfies
an elliptic equation

(h2∆− h2n2/4− 1)dEP (λ) = 0 , h = λ−1 .

Therefore, the spectral measure can have no semiclassical wavefront set out-
side the zero set of the symbol of h2∆−1. This excludes all of N∗ diag0 ex-
cept for that part contained in BR. In addition, propagation of Lagrangian
regularity(7) shows that the spectral measure is a Lagrangian distribu-
tion across N∗ diag0 (given that we already know that it is Lagrangian
on both sides of N∗ diag0 corresponding to forward and backward flowout,
and given that the Hamilton vector field of the symbol does not vanish at
BR∩N∗ diag0). This concludes the proof. �

3.4. The distance function on X2
0

The distance function on X2
0 satisfies

(7)Propagation of Lagrangian regularity is the statement that, if P is an operator of
real principal type, P u = O(h∞), and u is a Lagrangian distribution microlocally in
some region V of phase space, then u is also Lagrangian along the bicharacteristics
passing through V . It follows from the parametrix construction for Lagrangian solutions
of operators of real principal type, and the propagation of singularities theorem.
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Proposition 3.4. — On X2
0 , the Riemannian distance function d(z, z′)

is given by

d(z, z′) = − log(ρLρR) + b(z, z′) ,

where b(z, z′) is uniformly bounded on X2
0 .

Remark 3.5. — The result in the case that (X◦, g) is a small pertur-
bation of (Hn+1, ghyp) was shown by Melrose, Sá Barreto and Vasy [29,
Section 2].

Proof. — Consider two points p, p′ ∈ X◦. When (p, p′) are in a suf-
ficiently small neighbourhood U of the front face FF, say p = (x, y),
p′ = (x′, y′) with x, x′ < ε and d(y, y′) < 4ε (taken with respect to the
metric h(0) at the boundary), then the distance function parametrizes the
Lagrangian Λnd, and it follows from [10, Proposition 20] that this takes the
form − log(ρLρR) + C∞(X2

0 ) in a neighbourhood of FF.
Define K ⊂ X◦ to be the compact set {x > ε}. Let M be the diameter

of K, that is, the maximum distance between two points of K.
Now suppose that (p, p′) /∈ U . In the complement of U , we can take

ρL = x and ρR = x′.
If both p and p′ lie in K, then the distance between p and p′ is at most

M , hence |d(p, p′) + log(ρLρR)| 6M + 2 maxK | log x| = O(1).
If one point, say p, lies in K and p′ is not in K, then a lower bound

on d(p, p′) is the distance from p′ to the boundary of K, which is exactly
log ε − log x = − log(ρLρR) + O(1). On the other hand, an upper bound
is the length of the path from p′ to the closest point p′′ on ∂K, plus the
distance from p′′ to p. This is at most log ε−log x+M = − log(ρLρR)+O(1).

If neither point lies in K, then write p = (x, y) and p′ = (x′, y′). Due
to the definition of U , we must have d(y, y′) > 4ε. We claim that any
geodesic between p and p′ must enter K. It follows from this claim that a
lower bound on the distance between p and p′ is the distance from p to ∂K
plus the distance between p′ to ∂K, which is − log x− log x′ + 2 log ε, that
is, − log(ρLρR) + O(1). Also, an upper bound on the distance is clearly
− log x − log x′ + 2 log ε + M which is also − log(ρLρR) + O(1). Thus, to
complete the proof, it remains to establish the claim above.
Consider any geodesic that lies wholly within the region x 6 ε. Param-

etrize the geodesic with arc length, such that the value of x is maximal
at t = 0, say, equal to xmax 6 ε. We recall the geodesic equations for
(x, y, λ, µ) where these are the 0-cotangent variables as described in [10,
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Section 2]:

(3.4)



ẋ = xλ

ẏi = xhijµj

λ̇ = −
(
hij + 1

2x∂xh
ij

)
µiµj

µ̇i =
(
λµi −

1
2(x∂yihjk)µjµk

)
.

We also recall that λ2 + |µ|2 = 1 along the geodesic, where

|µ|2 = hij(x, y)µiµj .

We see that

λ̇ = −|µ|2(1 +O(x)) = −(1− λ2)(1 +O(x)) .

Thus, we have

(3.5) λ̇ 6 −α(1− λ2) , λ(0) = 0 .

for some α ∼ 1 + O(ε) slightly less than 1, which can be taken as close as
desired to 1 by choosing ε sufficiently small. The initial condition λ(0) = 0
arises as ẋ = 0 at t = 0.
We can integrate the differential inequality (3.5) to obtain

1
2

∫ ( 1
1 + λ

+ 1
1− λ

)
dλ 6 −α

∫
dt ,

which yields

λ(t) 6 −1− e−2αt

1 + e−2αt .

Plugging this into the equation for x, we find that

ẋ 6 −x1− e−2αt

1 + e−2αt .

Integrating this, we find that

log x 6 −
∫ 1− e−2αt

1 + e2αt e
2αt dt ,

and with the help of the substitution v = e2αt, we obtain

x 6 xmax

(
2eαt

1 + e2αt

)1/α
.

Finally we turn to the equation for y. We have

|ẏ| = x|µ| = x
√

1− λ2 6 xmax

(
2eαt

1 + e2αt

)1+1/α
.
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Integrating the RHS from 0 to ∞ at the value α = 1 gives xmax. We get
the same result for negative time, so that means that, along this geodesic,
the maximum distance that y can travel, with respect to the h(0) metric,
is

2xmax
∫ ∞

0

(
2eαt

1 + e2αt

)1+1/α
dt .

This is equal to 2xmax when α = 1, and depends continuously on α, hence
is close to 2xmax for α close to 1, that is, when ε is sufficiently small(8) . It
follows that if d(y, y′) > 4ε, the geodesic between p and p′ must enter the
region {x > ε} (provided ε is sufficiently small). This completes the proof
of the proposition. �

4. Low energy behaviour of the spectral measure

Pointwise bounds on the spectral measure, and restriction estimates, are
readily deduced from the regularity statement (3.2) for the low energy
resolvent.

4.1. Pointwise bounds on the spectral measure

The regularity statement (3.2) for the resolvent, together with Stones’s
formula (1.3), implies that the Schwartz kernel of the low energy spectral
measure dEP (λ) takes the form

(4.1) λ
(

(ρLρR)n/2+ıλa(λ)− (ρLρR)n/2−ıλa(−λ)
)
,

where a(λ) is a C∞ function on X2
0 depending holomorphically on λ for

small λ. Here we use our assumption that the resolvent is holomorphic in a
neighbourhood of n2/4, the bottom of the essential spectrum; on the other
hand, the nontrapping assumption is irrelevant here.
We write the RHS as

λ
(

(ρLρR)n/2+ıλ − (ρLρR)n/2−ıλ
)
a(0)(4.2)

+ λ
(

(ρLρR)n/2+ıλ(a(λ)− a(0)
)
− (ρLρR)n/2−ıλ

(
a(−λ)− a(0)

))
,

(8)As a check, we note that for the hyperbolic metric on the upper half space, where
the geodesics are great circles on planes perpendicular to the boundary and centred on
the boundary, the maximum distance is indeed 2xmax.
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which implies that the kernel is bounded pointwise by

Cλ(ρLρR)n/2
∣∣ sin(λ log(ρLρR))

∣∣+ C ′λ2(ρLρR)n/2 .

Using Proposition 3.4 we may write | log(ρLρR)| = d(z, z′) + O(1). Then
estimating the sine factor by | sin s | 6 |s|(1 + |s|)−1, we obtain the low
energy (λ 6 1) estimate in Theorem 1.5.

4.2. Restriction estimate

We have just seen that the spectral measure for low energy, λ 6 1, is
bounded pointwise by λ2 times − log(ρLρR)(ρLρR)n/2. Thus, to prove the
low energy restriction estimate, it suffices to show that an integral operator,
say A(z, z′), with kernel bounded pointwise by − log(ρLρR)(ρLρR)n/2 maps
Lp(X) to Lp′(X) for all p ∈ [1, 2).

To do this, we break up the kernel A(z, z′) into pieces. Let U be a
neighbourhood of the front face FF in X2

0 . We consider A(z, z′)1U and
A(z, z′)1X2

0\U separately.
First consider A(z, z′)1X2

0\U . In this region, we may take ρL = x and
ρR = x′. This part of the kernel is therefore bounded by

C(− log x)xn/2(− log x′)x′n/2 .

Thus, it is easy to check that A(z, z′)1X2
0\U is in Lp′(X×X), for any p′ > 2.

It therefore maps Lp(X) to Lp′(X) for all p ∈ [1, 2).
Now consider the remainder of the kernel, A(z, z′)1U . We may further

decompose the set U into subsets Ui, where on each Ui, we have x 6 ε, x′ 6 ε
and d(y, yi), d(y′, yi) 6 ε for some yi ∈ ∂X (where the distance is measured
with respect to the metric h(0) on ∂X). Choose local coordinates (x, y) on
X, centred at (0, yi) ∈ ∂X, covering the set Vi = {x 6 ε, d(y, yi) 6 ε}, and
use these local coordinates to define a map φi from Vi to a neighbourhood
V ′i of (0, 0) in hyperbolic space Hn+1 using the upper half-space model
(such that the map is the identity in the given coordinates).
The map φi induces a diffeomorphism Φi from Ui ⊂ X2

0 to a subset
of (Bn+1)2

0, the double space for Hn+1, covering the set x 6 ε, x′ 6 ε,
|y|, |y′| 6 ε in this space. Clearly, this map identifies ρL and ρR on Ui with
corresponding boundary defining functions for the left face and right face
on (Bn+1)2

0. We now consider the kernel

(4.3) φi ◦A1Ui ◦ φ−1
i

as an integral operator on (Bn+1)2
0. This kernel is bounded by (1+r)e−nr/2,

where r is the geodesic distance on Hn+1, since (1 + r) is comparable to
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− log(ρLρR) on (Bn+1)2
0. Therefore, using (1.21), (4.3) is bounded from

Lp(Hn+1) to Lp′(Hn+1) for every p ∈ [1, 2). It is clear that φi are bounded,
invertible maps from Lp(Vi) to Lp(V ′i ). This shows that the kernel A1Ui is
bounded from Lp(Vi) to Lp′(Vi) for all p ∈ [1, 2). This completes the proof
of Theorem 1.6 in the case of low energy, λ 6 1.

5. Pseudodifferential operator microlocalization

According to Theorem 3.3, the spectral measure is a Lagrangian distri-
bution associated to the Lagrangian submanifold Λnd (on ΦT ∗X2

0 ) and to
the Lagrangian submanifold Λ∗ (on 0T ∗X2). We next define the notion of
microlocal support, which is a closed subset of ΦT ∗X2

0 giving the essen-
tial support “in phase space”, for such distributions. It is a special case
of the notion of semiclassical wavefront set, defined for example in [39,
Section 8.4].

Definition 5.1. — Let u ∈ Ik(X2
0 ,Λnd; 0Ω1/2). We decompose u =

u0 + u+ + u− as in Definition 3.2. We define the semiclassical wavefront
set, or microlocal support, WFh(u), of u by

(5.1) WFh(u0) ∪ T+

(
WFh((ρLρR)ı/hu+)

)
∪ T−

(
WFh((ρLρR)−ı/hu−)

)
.

Similarly, for u = u+ + u− ∈ Ik(X2,Λ∗; 0Ω1/2) as in Definition 3.2, we
define

(5.2) WFh(u) = T+

(
WFh

(
(xx′)ı/hu+

))
∪ T−

(
WFh

(
(xx′)−ı/hu−

))
.

Here T± are the shift operators defined in (3.3).

Remark 5.2. — We note that in (5.1),

(ρLρR)±ı/hu± ∈ Ik(X2
0 , Λ̃nd; Ω1/2) ,

so these wavefront sets are defined in the usual way [39, Section 8.4]. They
may also be defined directly via an oscillatory integral representation for
(ρLρR)±ı/hu±, that is, an expression of the form

(5.3) h−m−(n+1)/2−k/2
∫
eıφ(Z,v)/ha(Z, v, h) dv +O(h∞) ,

where v ∈ Rk, with a smooth, and we use Z for local coordinates on X2
0 ,

as described explicitly in Regions 1–5 in Section 3. This requires that φ
locally parametrizes Λ̃nd (nondegenerately), i.e. the map ι from Cφ,

Cφ = {(Z, v) | dvφ(Z, v) = 0}
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to Λ̃nd, given by

Cφ 3 (Z, v) 7→ ι(Z, v) := (Z, dZφ(Z, v)) ∈ Λ̃nd ,

is a local diffeomorphism. The wavefront set (5.3) is then given by{
q ∈ Λ̃nd

∣∣∣∣∣ a(Z, v, h) is not O(h∞) in a neighbourhood of
(Z, v, 0), where ι(Z, v) = q

}
.

This wavefront set is a closed subset of Λ̃nd; hence, WFh(u) in (5.1) is a
closed subset of Λnd. A similar remark can be made for (5.2).
We also remark that, strictly speaking, we should use a different notation

such as 0 WFh(u) in (5.1), (5.2), to indicate that the wavefront set lies in
a different bundle, e.g. in ΦT ∗X2

0 instead of T ∗X2
0 in (5.1). However, to

avoid cumbersome notation, we use the simpler WFh(u).

We recall that the Schwartz kernel of a semiclassical 0-pseudodifferential
operator of order (0, k) (the first index is the semiclassical order, the second
the differential order) takes the form

(5.4) h−(n+1)
∫
eı(z−z

′)·ζ/ha(z, ζ, h) dζ

(where a is a symbol of order k in ζ, uniformly in h) near the diagonal and
away from the boundary of X2

0 , and

(5.5) A = h−(n+1)
∫
Rn+1

eı
(

(x−x′)λ+(y−y′)·µ
)
/(hx′)a(x, y, λ, µ, h) dλ dµ

(where a is a symbol of order k in (λ, µ), uniformly in h) near the boundary
of the diagonal in X2

0 ; away from the diagonal, the kernel is smooth and
O(h∞ρ∞L ρ∞R ).

We wish to show that by composing with pseudodifferential operators
acting on X, we can localize the microlocal support of u ∈ Im(Λ). More
precisely, we shall establish

Proposition 5.3.
(1) Suppose that U ∈ Im(Λnd) and A ∈ 0Ψ0,0(X). Then AU ∈ Im(Λnd)

and we have

(5.6)
WFh(AU) ⊂ π−1

L

(
WFh(A)

)
∩WFh(U) ,

WFh(UA) ⊂ π−1
R

(
WFh(A)

)
∩WFh(U) .

Here πL, πR is the left, resp. right projection from ΦT ∗X2
0 → 0T ∗X,

that is, the composite map

(5.7) ΦT ∗X2
0 →

(0T ∗X)2 → 0T ∗X
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where the first map is induced by the blow-down map β : X2
0 → X2,

and the second is the left, resp. right projection.
(2) Similarly, suppose that U∗ ∈ Im(Λ∗) and A ∈ 0Ψ0,0(X). Then

AU∗ ∈ Im(Λ∗) and we have

(5.8)
WFh(AU∗) ⊂ π−1

L

(
WFh(A)

)
∩WFh(U∗) ,

WFh(U∗A) ⊂ π−1
R

(
WFh(A)

)
∩WFh(U∗) .

In this case, πL, πR denote the left, resp. right projection from
(0T ∗X)2 → 0T ∗X, that is, the second arrow in (5.7).

Proof. — The proofs of (5.6) and (5.8) are very similar, but (5.6) is more
complicated due to the blowup. Because of this, we only prove (5.6).

The second statement in (5.6) follows from the first by switching the left
and right variables. So we only prove the first. To do this, we write down
local parametrizations of U , and check the statement (5.6) on each. We use
local coordinates valid in Regions 1–5 as described in Section 3.

Region 1. — In this region, U has a local representation

U = h−m−k/2−(n+1)/2
∫
Rk
eıφ(z,z′,v)/hb(z, z′, v, h) dv ,

and A has a representation (5.4). The composition is given by an oscillatory
integral

h−m−k/2−3(n+1)/2
∫
eı((z−z

′′)·ζ+φ(z′′,z′,v))/ha(z, ζ, h)b(z′′, z′, v, h) dvdζ dz′′.

We perform stationary phase in the variables (z′′, ζ). We note that the Hes-
sian in these variables is non-degenerate, as the matrix of second derivatives
takes the form (

∗ Id
Id 0

)
which has nonzero determinant, irrespective of the top left entry. The sta-
tionary phase expansion then shows that this expression can be simplified
to

h−m−k/2−(n+1)/2
∫
eıφ(z,z′,v)/hc(z, z′, v, h) dv +O(h∞) ,

where c has an expansion

c(z, z′, v, h) =
∞∑
j=0

hjQj
(
a(z, ζ, h)b(z′′, z′, v, h)

)∣∣∣
z′′=z,ζ=−dzφ(z,z′,v)

where Qj is a differential operator in the (z′′, ζ) variables of degree 2j. This
shows that AU ∈ Im(Λ) and has microlocal support contained in WFh(U)
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(since the amplitude c is O(h∞) wherever b = O(h∞)). The microlocal
support is also contained in the set

{(z, z′, v, h) | (z, dzφ(z, z′, v)) ∈WFh(A)} ,

which is to say that the microlocal support is contained in WFh(U) ∩
π−1
L WFh(A).

Region 2a. — In this region, U has a local representation

U = h−m−k/2−(n+1)/2
∫
eı(φ(x,y,z′,v)±log x)/hb(x, y, z′, v, h) dv ,

and A has a representation (5.5). The composition is given by an oscillatory
integral

h−m−k/2−3(n+1)/2
∫
eı
(

(x−x′′)λ/x+(y−y′′)·µ/x+φ(x′′,y′′,z′,v)±log x′′
)
/h

× a(x, y, λ, µ, h)b(x′′, y′′, z′, v, h) dv dx′′ dy′′

x′′n+1 dλ dµ.

We change to coordinates s′′ = x′′/x and Y ′′ = (y − y′′)/x. In these coor-
dinates we have

h−m−k/2−3(n+1)/2
∫
eı
(

(1−s′′)λ+Y ′′·µ+φ(xs′′,y−xY ′′,z′,v)±log(xs′′)
)
/h

× a(xy, λ, µ, h)b(xs′′, y − xY ′′, z′, v, h) dv ds′′ dY ′′

s′′n+1 dλ dµ.

We then perform stationary phase in the variables (s, λ, Y, µ). There is a
stationary point at

(5.9) s′′ = 1 , Y ′′ = 0 , λ = xdxφ± 1 , µ = xdyφ.

We check that the Hessian in these variables is non-degenerate at this
critical point. The matrix of second derivatives takes the form

∗ Id O(x) 0
Id 0 0 0
O(x) 0 ∗ Id

0 0 Id 0


which has nonzero determinant when x is small, irrespective of the starred
entries. The stationary phase expansion then shows that this expression
can be simplified to

h−m−k/2−(n+1)/2
∫
eı(φ(x,y,z′,v)±log x)/hc(x, y, z′, v, h) dv +O(h∞) ,

ANNALES DE L’INSTITUT FOURIER



HYPERBOLIC RESOLVENT AND SPECTRAL MEASURE II 1043

where c(x, y, z′, v, h) has an expansion
∞∑
j=0

hjQj
(
a(x, y, λ, µ, h)b(x′s′′, y−xY ′′, z′, v, h)

)∣∣∣
x′′=x,y′′=y,λ=xdxφ±1,µ=xdyφ

where Qj is a differential operator in (s′′, λ, Y ′′, µ) of degree 2j. This shows
that AU ∈ Im(Λ), and has microlocal support contained in WFh(U) (since
c = O(h∞) wherever b = O(h∞)). The microlocal support is also contained
in{

(x, y, z′, v, h)
∣∣∣ (x, y,±1 + xdxφ(x, y, z′, v), xdyφ(x, y, z′, v)) ∈WFh(A)

}
,

which (comparing with (5.9)) shows that the microlocal support of AU is
also contained in π−1

L WFh(A).

Region 2b. — In this region, the calculation is similar to Region 1, so
we omit the details.

Region 3. — In this region, the calculation is similar to Region 2a, so
again we omit the details.

Region 4a. — Here we use the coordinates

s = x

x′
, x′, y , Y = y′ − y

x′
.

In this region, U has a local representation

U = h∗
∫
eı(φ(s,x′,y,Y,v)±log s)/hb(s, x′, y, Y, v, h) dv ,

and A has a representation (5.5). The composition is given by an oscillatory
integral

h−m−k/2−3(n+1)/2

×
∫
eı
(

(x−x′′)λ/x+(y−y′′)·µ/x+φ(x′′/x′,x′,y′,(y′−y′′)/x′,v)±log(x′′/x′)
)
/h

× a(x, y, λ, µ, h)b(x′′/x′, x′, y′′, (y′ − y′′)/x′, v, h) dv dx′′ dy′′

x′′n+1 dλdµ.

We introduce coordinates Y ′′ = (y − y′′)/x, s′′ = x′′/x. The integral be-
comes

h−m−k/2−3(n+1)/2
∫
eı
(

(1−s′′)λ+Y ′′·µ+φ(s′′s,x′,y′′,sY ′′+Y,v)±log(s′′s)
)
/h

× a(x, y, λ, µ, h)b(s′′s, x′, y′′, sY ′′ + Y, v, h) dv ds′′dY ′′

s′′n+1 dλdµ.
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We perform stationary phase in the variables (s′′, Y ′′, λ, µ). It is straight-
forward to check that the Hessian in these variables is nondegenerate at
the stationary point

(5.10) s′′ = 1, Y ′′ = 0, λ = sdsφ± 1, µ = xdyφ− dY φ.

We then get a stationary phase expansion, as in the previous regions, lead-
ing to the conclusion that AU has an expression

U = h−m−k/2−(n+1)/2
∫
eı(φ(s,x′,y,Y,v)±log s)/hc(s, x′, y, Y, v, h) dv+O(h∞) ,

such that c is given in terms of a and b by a stationary phase expansion
as in Regions 1 or 2a above. Thus, AU is a Lagrangian distribution in
Im(Λ), and c is O(h∞) wherever b = O(h∞), and is supported where
(x, y, λ, µ) ∈WFh(A). It follows (using (5.10)) that WFh(AU) is contained
in WFh(U) ∩ π−1

L (WFh(A)).

Region 4b. — This is given by a rather similar calculation to Region 4a,
which we omit.

Region 5. — Here we use the coordinates

s1 = x

y′1 − y1
, s2 = x′

y′1 − y1
, t = y′1 − y1 , y

′, Zj =
y′j − yj
y′1 − y1

, j > 2 .

In this region, U has a local representation

U = h−m−k/2−(n+1)/2
∫
eı(φ(s1,s2,t,y

′,Z,v)±log(s1s2))/hb(s, x′, y, Y, v, h) dv .

Writing s′′ = x/x′′ and Y ′′ = (y−y′′)/x as before, the composition is given
by an oscillatory integral

h−m−
k
2−

3(n+1)
2

∫
exp

{
ı

h

(
(1− s′′)λ+ Y ′′ · µ

+ φ

(
s1s
′′t

t− xY ′′1
,

s2t

t− xY ′′1
, t− xY ′′1 , y′,

tZj + xY ′′j
t− xY ′′1

, v

)
± log s1s2s

′′t2

(t− xY ′′1 )2

)}
× a(x, y, λ, µ, h)b

(
s1s
′′t

t− xY ′′1
,

s2t

t− xY ′′1
, t− xY ′′1 , y′,

tZj + xY ′′j
t− xY ′′1

, v, h

)
dv ds′′ dY ′′

s′′n+1 dλdµ.
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We perform stationary phase in the variables (s′′, Y ′′, λ, µ). There is a crit-
ical point at

s′′ = 1 , Y ′′ = 0 , λ = s1ds1φ,

µ = s1

(
ss1φ+ s2ds2φ+ Z · dZφ− tdtφ− s1dZ1φ

)
,

µj = −s1dZjφ, j > 2 .

(5.11)

It is straightforward to check that the Hessian in these variables is non-
degenerate. We then get a stationary phase expansion, as in the previous
regions, leading to the conclusion that AU has an expression

U = h−m−k/2−(n+1)/2
∫
eı(φ(s1,s2,t,y

′,Z,v)±log(s1s2))/h

c(s1, s2, t, y
′, Z, v, h) dv +O(h∞) ,

such that c is given in terms of a and b by a stationary phase expansion.
Thus, AU ∈ Im(Λ), and using the same reasoning as above, its microlocal
support is contained in WFh(U) ∩ π−1

L WFh(A). �

6. The spectral measure at high energy

In this section, we prove Theorem 1.3 for high energies, λ > 1, which
immediately implies also Theorem 1.5. Our first task is to choose an appro-
priate partition of the identity operator. This is done in exactly the same
way as was done in [17] in the asymptotically conic case.
Before getting into the details we explain the advantage of using a par-

tition of the identity. It is to microlocalize the spectral measure (taking
advantage of the microlocal support estimate, Proposition 5.3) so that only
the Lagrangian Λnd is relevant, while the other part, Λ∗, disappears. This is
important in our pointwise estimate, as the Lagrangian Λnd locally projects
diffeomorphically to the base manifold except at where it meets N∗ diag0,
i.e. the projection Φπ, restricted to Λnd has maximal rank except at the
intersection with N∗ diag0, which leads to the most favourable L∞ esti-
mates. (The drop in rank at the diagonal leads to the different form of the
estimates for small d(z, z′) in Theorem 1.5.) By contrast, we cannot control
the rank of the projection from Λ∗ to the base (except by making additional
geometric assumptions, such as nonpositive curvature of X◦, which we do
in Sections 8 and 9).
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6.1. Partition of the identity

Our operators Qi(λ) will be semiclassical 0-pseudodifferential operators
of order (0, 0), where the first index denotes the semiclassical order and the
second, the differential order, and the semiclassical parameter is h = λ−1.
In fact, all but Q0(λ) will have differential order −∞.

First of all, we will choose Q0 of order (0, 0) microlocally supported away
from the characteristic variety of h2∆ − 1, say in the region {σ(h2∆) ∈
[0, 3/4] ∪ [5/4,∞)}, and microlocally equal to the identity in a smaller re-
gion, say {σ(h2∆) ∈ [0, 1/2]∪ [3/2,∞)}. In light of the disjointness of semi-
classical wavefront sets, the termQ0(λ)dEP (λ)Q0(λ) has empty microlocal
support, and is therefore O(h∞). Taking into account the behaviour at the
boundary, we find that

(6.1) Q0(λ)dEP (λ)Q0(λ) ∈ h∞(ρLρR)n/2−ı/hC∞(X2
0 × [0, h0])

+ h∞(ρLρR)n/2+ı/hC∞(X2
0 × [0, h0]) .

This clearly satisfies Theorem 1.3.
We next choose a cutoff function χ(x), equal to 1 for x 6 ε and 0 for

x > 2ε. We decompose the remainder Id−Q0(λ) into (Id−Q0(λ))χ(x)
and (Id−Q0(λ))(1− χ(x)), and further decompose these two pieces in the
following way.
We divide the interval [−3/2, 3/2] into a union of intervals Bi with

overlapping interiors, and with diameter 6 β. We then decompose
(Id−Q0(λ))χ(x) into operators

Qi(λ), . . . , QN1(λ)

such that each operator Qi(λ) has wavefront set contained in {λ(λ2 +
hijµiµj)−1/2 ⊂ Bi}.

Next, we decompose (Id−Q0(λ))(1 − χ(x)). The idea is still to decom-
pose this operator into pieces, so that on each piece the microlocal sup-
port is small. Let d( · , · ) be the Sasaki distance on T ∗X◦. We break up
(Id−Q0(λ))(1− χ(x)) into a finite number of operators

QN1+1(λ), . . . , QN1+N2(λ) ,

each of which is such that the microlocal support has diameter 6 η with
respect to the Sasaki distance on T ∗X◦. This is possible since the microlocal
support of (Id−Q0(λ))(1−χ(x)) is compact in T ∗X◦. We choose η < ι/4,
where ι is the injectivity radius of (X◦, g).
We now prove a key property about the microlocal support of

Qi(σ)dEP (λ)Qi(σ)∗,
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when ε, β and η are sufficiently small.

Proposition 6.1. — Suppose that ε, β and η are sufficiently small.
Then, provided that σ and λ satisfy σ ∈ [(1− δ)λ, (1 + δ)λ] for sufficiently
small δ, the microlocal support of Qi(σ)dEP (λ)Qi(σ)∗, i > 0, is a subset
of Λnd.

Remark 6.2. — In the composition Qi(σ)dEP (λ)Qi(σ)∗, we view all
operators as semiclassical operators with parameter h = λ−1. To do this
for Qi(σ), we need to scale the fibre variables in the symbol by a factor of
λ/σ. This is of little consequence as λ/σ is close to 1 by assumption.

Proof. — Recall that Λnd consists of a neighbourhood U1 of ∂FFΛ in Λ,
together with a neighbourhood U2 of Λ ∩N∗ diag0 in Λ.
First suppose that i = 0. By Proposition 5.3, the microlocal support of

Q0(σ)dEP (λ)Q0(σ)∗ is empty for sufficiently small δ, so the conclusion of
Proposition 6.1 trivially holds.
Next suppose that 1 6 i 6 N1. We claim that if ε, β and δ are sufficiently

small, then the microsupport of Qi(σ)dEP (λ)Qi(σ)∗ is contained in U1.
Let U ′1 = U1 \ ∂FFΛ, i.e. a deleted neighbourhood of ∂FFΛ. Since the

microlocal support is always a closed set it suffices to show that

WFh
(
Qi(σ)dEP (λ)Qi(σ)∗

)
\ {ρF = 0} is contained in U ′1 .

By Proposition 5.3, this wavefront set is contained in{
(z, ζ; z′,−ζ ′)

∣∣∣∣∣ (z, ζ) and (z′, ζ ′) lie on the same geodesic,

|ζ|g = |ζ ′|g = 1, (z, λ
σ ζ), (z′, λ

σ ζ
′) ∈WFh(Qi(σ))

}
.

We prove the claim by contradiction. Suppose that the claim were false.
Choose sequences βk, δk and εk tending to zero as k →∞, and for each k, a
partition of the identity Q(k)

i satisfying the conditions above relative to βk,
δk and εk. Then, if the claim is false for all Q(k)

i , there are sequences of pairs
of points (xk, yk, λk, µk), (x′k, y′k, λ′k, µ′k) in WFh(Q(k)

i ), lying on the same
geodesic γk, with xk, x′k 6 εk, |λk−λ′k| 6 βk(1−δk)−1, but the correspond-
ing point (xk, yk, λk, µk;x′k, y′k,−λ′k,−µ′k) not in U ′1. By compactness we
can take a convergent subsequence, with xk → 0, x′k → 0, yk → y0, y′k → y′0,
λk, λ

′
k → λ0, µk → µ0, µ′k → µ′0. Consider the limiting behaviour of the

geodesic γk connecting (xk, yk, λk, µk) and (x′k, y′k,−λ′k,−µ′k). If λ0 6= ±1
then γk converges to a boundary bicharacteristic, that is, an integral curve
of (3.4) contained in {x = 0}, and therefore takes the form

x(τ) = 0 , y(τ) = y∗, λ(τ) = cos τ , µ(τ) = sin τµ∗, where dτ
dt = sin τ .
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(It is straightforward to check that this satisfies the geodesic equations (3.4)
in the parameter t.) Therefore, (y0, λ0, µ0) = (y∗, cos τ, sin τµ∗) and
(y′0, λ′0, µ′0) = (y∗, cos τ ′, sin τ ′µ∗) for some τ and τ ′. Since |λk − λ′k| → 0,
we have τ = τ ′, and it then follows that µ0 = µ′0. This shows that the
limiting point lies on ∂FFΛ, in fact over the fibre Fy∗ of FF lying over y∗
(over which point on this fibre depends on the limiting values of x/x′ and
(y′−y)/x′). Hence the sequence converging to it eventually lies in U ′1, which
is our desired contradiction.
If λ0 = ±1 then the limiting geodesic could be an interior bicharacteristic.

In this case we must have λ0, λ
′
0 ∈ {±1}, i.e the points (x0, y0, λ0, µ0)

and (x′0, y′0,−λ′0, µ′0) are both an endpoint of this bicharacteristic. However
the condition that the difference |λ − λ′| → 0 along the sequence means
that either both λ0, λ

′
0 are +1 or both are −1. Thus, the limiting points

(x0, y0, λ0, µ0) and (x′0, y′0,−λ′0, µ′0) are again equal in this case, with x0 =
x′0 = 0, µ0 = µ′0 = 0, which shows that the limiting point lies on ∂FFΛ,
hence the sequence converging to it eventually lies in U ′1, again producing
a contradiction.
We next claim that if N1 + 1 6 i 6 N1 + N2, then for η sufficiently

small, the wavefront set of Qi(σ)dEP (λ)Qi(σ)∗ is contained in U2. The
argument is similar. Choose a sequence ηk tending to zero as k →∞, and
for each k, a partition of the identity Q(k)

i satisfying the conditions above
relative to ηk. Then, if the claim is false for all Q(k)

i , then we could find
a sequence (zk, ζk), (z′k, ζ ′k) on the same geodesic, with (zk, ζk), (z′k, ζ ′k) ∈
WFh(Qi), with each (zk, ζk; z′k,−ζ ′k) not in U2. Using compactness we can
extract a convergent subsequence from the (zk, ζk), converging to (z0, ζ0).
Since ηk → 0 the sequence (z′k, ζ ′k) also converges to (z0, ζ0). But the point
(z0, ζ0, z0,−ζ0) is in N∗ diag0, and U2 is a neighbourhood of N∗ diag0 in
Λ, so this gives us the contradiction. �

We now assume that ε, δ, η have been chosen small enough that the con-
clusion of Proposition 6.1 is valid.

6.2. Pointwise estimates for microlocalized spectral measure
near the diagonal

In this section we show that an element U of I−1/2(X2
0 ,Λnd; 0Ω1/2) sat-

isfies (1.14) and (1.15) in the region d(z, z′) 6 1.
We divide this into the case where we work away from the boundary of

diag0, and near a point on the boundary of the diagonal. The first case,
localizing away from the boundary of the diagonal, has been treated in [19,
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Proposition 1.3] (this was done in the context of asymptotically conic man-
ifolds, but away from the boundary, one “cannot tell” whether one is on
an asymptotically conic or asymptotically hyperbolic manifold, so the ar-
gument applies directly).(9)

Thus, it remains to deal with the case where dEP (λ) is microlocalized
to a neighbourhood of a point q ∈ ∂FFN

∗ diag0 ∩Λnd. In this case, any
parametrization of the Lagrangian Λnd must have at least n integrated
variables, since the rank of the projection from Λnd to the base X2

0 drops
by n at N∗ diag0.

The following result is essentially taken from [19].

Proposition 6.3. — Let q be a point in ∂FFN
∗ diag0 ∩Λnd± , and let

U ∈ I−1/2(X2
0 ,Λnd; 0Ω1/2). Then microlocally near q, U can be represented

as an oscillatory integral of the form

(6.2) h−n
∫
Rn
eıΨ(x′,y,r,w,v)/ha(x′, y, r, w, v, h) dv ,

where the coordinates (r, w), w = (w1, . . . , wn) define the boundary, that
is, diag0 = {r = 0, w = 0} and the differentials dr and dwi are linearly
independent. Here also, v = (v1, . . . , vn) ∈ Rn, and a is smooth and com-
pactly supported in all variables. Moreover, we may assume that Ψ has the
properties

(6.3)


(a) dvjΨ = wj +O(r) ,
(b) Ψ =

∑n
j=1 vj∂vjΨ +O(r) ,

(c) d2
vjvk

Ψ = rAjk, where A is a smooth, nondegenerate matrix
(d) dvΨ = 0 =⇒ Ψ = ±d(z, z′) .

Proof. — In this region, (x′, y, s = x/x′, Y = (y′ − y)/x′) furnish lo-
cal coordinates on X2

0 . In these coordinates, the diagonal is defined by
s = 1, Y = 0. We will write (r, w) for a suitable rotation of the coordi-
nates (s− 1, Y ). Let (ξ′, η, ρ, κ) be the dual coordinates to (x′, y, r, w). We
claim that, for some rotation (r, w) of the (s − 1, Y ) coordinates, we have
dρ|N∗ diag0 ∩Λnd = 0 at q. This follows from the fact that N∗ diag0 ∩Λnd
projects to diag0 with n-dimensional fibres (in fact N∗ diag0 ∩Λnd is an
Sn-bundle over diag0), so the n + 1 differentials dρ, dκ1, . . . ,dκn span an
n-dimensional space in Tq(N∗ diag0 ∩Λnd) for each q ∈ N∗ diag0 ∩Λnd.
Secondly, we claim dr|Λnd 6= 0 at q. To see this, we observe that there

must be a vector V ∈ TqΛnd tangent to Λnd but not tangent to N∗ diag0.

(9)Notice that the dimension was denoted n in [19], instead of n + 1, as here, when
comparing [19, (1.13)] with (1.14).
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Therefore, V must have a non-zero ∂wj or ∂r component. Also, the vectors
∂κi are tangent to Λnd at q, since Tq(N∗ diag0 ∩Λnd) is the codimension 1
subspace of Tq(N∗ diag0) given by the vectors annihilated by dρ. Thus, as
Λnd is Lagrangian, we have

ω(V, ∂κi) =
(

dy ∧ dη + dr ∧ dρ+ dw ∧ dκ+ dx′ ∧ dξ′
)

(V, ∂κi) = 0 .

This implies that dwj(V ) = 0 for each j, which implies V has a non-zero
∂r component, as claimed.

This shows that (x′, y, r, κ) furnish coordinates on Λnd locally near q.
Thus, we can express the remaining coordinates, restricted to Λnd, as
smooth functions of these:

(6.4)
w = W (x′, y, r, κ) , ρ = R(x′, y, r, κ) ,
ξ′ = Ξ′(x′, y, r, κ) , η = H(x′, y, r, κ) .

Also, using the fact that Λnd is Lagrangian, the form

(6.5) d

(
ξ′dx′ + η · dy + ρdr +

∑
j

κjdwj
)

= 0 on Λnd .

It follows that there is a function f(x′, y, r, κ) on Λnd, defined near q, such
that

(6.6) Ξ′dx′ +H · dy +Rdr +
∑
j

κjdWj = df .

Notice that Λnd ∩ {r = 0} = Λnd ∩ N∗ diag0, and at N∗ diag0 we have
ξ′ = 0, η = 0, w = 0. Therefore, at r = 0, we have

∂f

∂x′
= 0 , ∂f

∂y
= 0 , ∂f

∂κ
= 0 .

It follows that f is constant when r = 0. Since f is undetermined up to a
constant, we may assume that f = 0 when r = 0; that is, f(x′, y, r, κ) =
rf̃(x′, y, r, κ).
We claim that the function

Ψ =
n∑
j=1

(
wi −Wi(x′, y, r, v)

)
vi + f(x′, y, r, v)

locally parametrizes the Lagrangian Λnd near q, and satisfies properties (a)–
(d) above.
To check that Ψ parametrizes Λnd, we set dvΨ = 0. This implies that

(6.7) wi −Wi(x′, y, r, v) =
∑
i

vj
∂Wj

∂vi
− ∂f

∂vi
.
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On the other hand, the 1-form identity (6.6) shows that the functions
W,R,Ξ′, H and f satisfy the identities

(6.8)

Ξ′(x′, y, r, v) = −
∑
j

vj
∂Wj

∂x′
(x′, y, r, v) + ∂f

∂x′
(x′, y, r, v) = ∂Ψ

∂x′
,

Hk = −
∑
j

vj
∂Wj

∂yk
+ ∂f

∂yk
= ∂Ψ
∂yk

,

R = −
∑
j

vj
∂Wj

∂r
+ ∂f

∂r
= ∂Ψ

∂r
,

∑
j

vj
∂Wj

∂vi
= ∂f

∂vi
.

The last of these identities shows that the RHS of (6.7) vanishes. We there-
fore find that the Lagrangian parametrized by Ψ is

(6.9)
{

(x′, y, r, w; ξ′, η, ρ, κ)
∣∣∣ ξ′ = dx′Ψ, η = dyΨ, ρ = drΨ, κ = dwΨ

}
=
{

(x′, y, r, w; ξ′, η, ρ, κ)
∣∣∣ ξ′ = Ξ′, η = H ′, ρ = R, w = W

}
= Λnd .

It follows that, microlocally near q, the spectral measure may be written
as an oscillatory integral with phase function Ψ, as in (6.2), where the
power of h is given by −m−N/4−k/2 = −n where m = −1/2 is the order
of the Lagrangian distribution, N = 2(n+ 1) is the spatial dimension and
k = n is the number of integrated variables.
Conditions (a) and (b) are easily verified, using the fact that W and f

are O(r). To check condition (c), we write

d2
vvΨ = rA+O(r2),

where A is an n × n matrix function of (r, x′, y, v). We claim that A is
invertible at q. It suffices to check det d2

vvΨ > crn for some c > 0 near q. On
one hand, since Ψ is a phase function parametrizing Λnd nondegenerately
in a neighbourhood of q, then we have a local diffeomorphism

{(r, x′, y, v)} −→ {(r, x′, y,Ψ′r,Ψ′x′ ,Ψ′y,Ψ′v)}.

The determinant of the differential of the map

(6.10) {(r, x′, y,Ψ′r,Ψ′x′ ,Ψ′y,Ψ′v)} −→ {(r, x′, y,Ψ′v)}

is thus equal to the determinant of the differential of the map

{(r, x′, y, v)} −→ {(r, x′, y,Ψ′v)} ,
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which is simply det d2
vvΨ. On the other hand, it is obvious that the de-

terminant of the differential of map (6.10) equals the determinant of the
projection map

π : {(r, x′, y,Ψ′r,Ψ′x′ ,Ψ′y) : Ψ′v = 0} −→ {(r, x′, y)}

from Λnd to X2
0 . Since det dπ > crn near q [10, Proposition 19], we get

det d2
vvΨ > crn near q ,

which implies A is invertible.
To check (d), we notice that if r = 0 and dvΨ = 0, then Ψ = 0. Also,

Λnd ∩{r = 0} = Λnd ∩N∗ diag0, so this is at the diagonal, i.e. d(z, z′) = 0,
so this agrees with (d). On the other hand, if r 6= 0, then condition (c)
says that d2

vvΨ is nondegenerate. In this case we can eliminate the extra
v variables, and reduce to a function of (x′, y, r, w) that parametrizes the
Lagrangian Λnd locally. (This is an analytic reflection of the geometric fact
that the projection π : ΦT ∗X2

0 → X2
0 has full rank restricted to Λnd, for

r 6= 0.) But then [10, Proposition 16] implies that the value of Ψ, when
dvΨ = 0, is equal to d(z, z′) + c on the forward half of Λnd (with respect to
geodesic flow), and −d(z, z′)+c′ on the backward half of Λnd. Condition (b)
implies that c = c′ = 0. This completes the proof of Proposition 6.3. �

Using this we now show

Proposition 6.4. — Suppose U ∈ I−1/2(X2
0 ,Λnd; 0Ω1/2). Then, U can

be written in the form (1.14) with the amplitude functions b± satisfy-
ing (1.15) in the region d(z, z′) 6 1.

Proof. — We estimate the integral (6.2) by dividing into three cases,
depending on the relative size of r, |w| and h.

Case 1. |r| 6 h. — Since r = 0 at Λnd ∩N∗ diag0, and dr 6= 0 there, |r|
is comparable to d(z, z′). So in this case, we have d(z, z′) = O(h). Thus,
we need to show (comparing to (6.2))(

h
d

dh

)j(
e∓ıd(z,z′)/h

∫
Rn
eıΨ(x′,y,r,w,v)/ha(x′, y, r, w, v, h) dv

)
= O(1) .

For j = 0 this is trivial. Consider j = 1. We claim that this is alsoO(1). This
differential operator is certainly harmless when applied to the amplitude, a.
When applied to the exponential, it brings down a factor ı(±d(z, z′)+Ψ)/h,
which using (b) and r, d(z, z′) = O(h), we write ıh−1viΨvi+O(1). The term
ıh−1viΨvi times the exponential eıΨ/h is equal to vidvieıΨ/h. We integrate
by parts, shifting the vi derivative to the amplitude a. In this way we see
that the result of applying h∂h to the expression is still O(1). A similar
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argument applies to repeated applications of h∂h. Thus this term takes the
form (1.14).

Case 2. |r| 6 c|w| for some small constant c. — In this case, there
must be some wj such that |r| 6 c|wj |. Then dvjφ = wj + O(r) 6= 0 in a
neighbourhood of q, provided c is sufficiently small. We can then integrate
by parts arbitrarily many times in vj , obtaining infinite order vanishing
in h. The same is true for any number of h∂h derivatives applied to (6.2).
Thus this term satisfies (1.14).

Case 3. |r| > h and |r| > c|w|, with c as in Case 2. — The idea for
this region is to use a stationary phase estimate, as in [19, Section 4].
We follow this proof almost verbatim; the changes required here are mostly
notational. In this case, we show a representation of the form (1.14), (1.15).
Notice that if dvΨ = 0 and |r| > h then locally there are two sheets Λnd± of
Λnd above X2

0 (see Proposition 3.1). On Λnd± we divide by e±id(z,z′)/h and
show an estimate of the form (1.15). The argument for each is the same, so
we only describe the argument for Λnd+ . Thus, we define, with d = d(z, z′),

(6.11) b(x′, y, r, w, h) = e−id/hh−n
∫
eıΨ(x′,y,r,w,v)/ha(x′, y, r, w, v, h) dv ,

and seek to prove the estimate

(6.12)
∣∣∣(h∂h)αb

∣∣∣ 6 C(1 + |r|
h

)−n/2
,

since in Case 3, we have |r| ∼ |(r, w)| ∼ d.
Define

(6.13) Ψ̃(x′, y, r, w, v) = r−1(Ψ(x′, y, r, w, v)− d(z, z′)
)
,

and let λ̃ = r/h. Notice that this function Ψ̃ is C∞ in v, and (6.3) implies
that all v-derivatives (of all orders) are uniformly bounded in the region
|r| > h and |r| > c|w|. Then the LHS of (6.12) is

hα∂αh b(x′, y, r, w, v, h)

=
∑

β+γ=α

α!
β!γ! λ̃

β
∫
eıλ̃Ψ̃(x′,y,r,w,v)Ψ̃β

(
hγ∂γha

)
(x′, y, r, w, v, h) dv .

Therefore, we need to show that, for any β, we have

(6.14)
∣∣∣∣ ∫ eıλ̃Ψ̃(x′,y,r,w,v)(λ̃Ψ̃)βa(x′, y, r, w, v, h) dv

∣∣∣∣ 6 Cλ̃
−n2 .

We now fix (x′, y, r, w) with r > h. We use a cutoff function Υ to divide
the v integral into two parts: one on the support of Υ, in which |dvΨ̃| > ε̃/2,
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and the other on the support of 1−Υ, in which |dvΨ̃| 6 ε̃. On the support
of Υ, we integrate by parts in v and gain any power of λ̃

−1, proving (6.14).
On the support of 1−Υ, we make a change of variable to θ coordinates:

(6.15) (v1, . . . , vn)→ (θ1, . . . , θn) , θi = dviΨ̃, i = 1, . . . , n.

By property (c) of Proposition 6.3,
∂θj
∂vk

= d2
vjvk

Ψ̃ = ±Ajk ,

where Ajk is nondegenerate. This shows that this change of variables is
locally nonsingular, provided ε̃ is sufficiently small. Thus, for each point v
in the support of 1−Υ, there is a neighbourhood in which we can make this
change of variables. Using the compactness of the support of a in (6.11),
there are a finite number of neighbourhoods covering supp Υ and the v-
support of a.
On each such neighbourhood U , we define Bδ :=

{
θ : |θ| 6 δ

}
. Choose a

C∞ function χBδ(θ) which is equal to 1 when on the set Bδ and 0 outside
B2δ, and with derivatives bounded by∣∣∇(j)

θ χBδ(θ)
∣∣ 6 Cδ−j .

Here δ is a parameter which we will eventually choose to be λ̃
−1/2; however,

for now we leave its value free. Consider the integral (6.14) after changing
variables and with the cutoff function χBδ(θ) inserted (where we stipulate
δ 6 ε̃/2, which means that 1−Υ = 1 on suppχBδ(θ)):∣∣∣∣ ∫ eıλ̃Ψ̃(x′,y,r,w,θ)(λ̃Ψ̃

)β
a(x′, y, r, w, θ, h)χBδ(θ)

dθ
|A−1(x′, y, r, w, θ)|

∣∣∣∣ .
Using property (d) of Proposition 6.3, we see that Ψ̃ = 0 when θ = 0. Also,
from (6.15), we have dθΨ̃ = 0 when θ = 0. Hence Ψ̃ = O(|θ|2). Hence

(6.16)
∣∣∣∣λ̃β ∫ eıλ̃Ψ̃(x′,y,r,w,θ)Ψ̃βa(x′, y, r, w, θ, h)χBδ(θ)

dθ
|A−1(x′, y, w, θ)|

∣∣∣∣
6 C(λ̃δ2)βδn .

It remains to treat the integral with the cutoff (1− χBδ(θ)). Notice that
|dθΨ̃| is comparable to |θ| since dθΨ̃ = 0 when θ = 0, and

d2
θiθj Ψ̃ =

∑
k,l

(A−1)il(A−1)jkd2
vkvl

Ψ̃

is nondegenerate when θ = 0. We define the differential operator L by

L = −idθΨ̃ · ∂θ
λ̃
∣∣dθΨ̃∣∣2 .
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Then the adjoint operator tL is given by

tL = −L+ ı

λ̃

(
∆θΨ̃
|dθΨ̃|2

− 2
d2
θjθk

Ψ̃ dθj Ψ̃ dθkΨ̃

|dθΨ̃|4

)
.

We have chosen L such that Leıλ̃Ψ̃ = eıλ̃Ψ̃. So we introduce N factors of L
applied to the exponential eıλ̃Ψ̃ and integrate by parts N times to obtain∣∣∣∣ ∫ eıλ̃Ψ̃(x′,y,r,w,θ)(λ̃Ψ̃)βa(x′, y, r, w, θ, h)(1− χBδ(θ))(1−Υ) dθ

∣∣∣∣
6 C

∫ ∣∣∣(tL)N
(
(λ̃Ψ̃)βa(x′, y, r, w, θ, h)(1− χBδ(θ))(1−Υ)

)∣∣∣dθ .
Inductively we find, using |dθΨ̃| ∼ |θ|, that∣∣(tL)N

(
(λ̃Ψ̃)βa(1−χBδ)(1−Υ)

)∣∣ 6 Cλ̃
−N+β max{|θ|2β−2N , |θ|2β−Nδ−N} .

Choosing N large enough, we get

(6.17)
∣∣∣∣ ∫ eıλ̃Ψ̃(x′,y,r,w,θ)(λ̃Ψ̃)βa(x′, y, r, w, θ, h)(1− χBδ)(1−Υ) dθ

∣∣∣∣
6 λ̃

−N+β
∫
|θ|>δ

(
|θ|2β−2N + |θ|2β−Nδ−N

)
dθ

6 Cλ̃
−N+β

δ2β−2Nδn.

We choose δ = λ̃
−1/2 to balance the two estimates (6.16) and (6.17). We

finally obtain∣∣∣∣ ∫ eıλ̃Ψ̃(x′,y,r,w,θ)(λ̃Ψ̃)βa(x′, y, r, w, θ, h)(1−Υ) dθ
∣∣∣∣ 6 Cλ̃

−n/2
,

which proves (6.14) as desired. �

Proof of Theorem 1.3 for high energies, λ > 1. — We express the spec-
tral measure as a sum of 4 types of terms, (1)–(4), as in Theorem 3.3.
Then, using Proposition 6.1, we see that the microlocalized spectral mea-
sure Qi(λ)dEP (λ)Qi(λ)∗ has microsupport contained in Λnd, so the terms
of type (3) can be disregarded. Clearly, terms of type (2) and (4) satisfy
the conclusion of Theorem 1.3, so it is only necessary to consider the terms
of type (1).
For terms of type (1), Proposition 6.4 shows that Theorem 1.3 is satisfied.

On the other hand, for large distance, we know from Proposition 3.1 that
Λnd+ and Λnd− both project diffeomorphically to an open set V ⊂ X2

0 \diag0
under Φπ, and therefore, according to [10, Proposition 20], the Lagrangian
submanifolds Λnd± are parametrized by the distance function, ±d(z, z′). The
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amplitude has a classical expansion in powers of h = λ−1, as shown by the
construction of [10, Section 4], and the leading power of h is h1/2−(n+1)/2 =
h−n/2, as claimed. �

Corollary 6.5. — Let δ be a small positive number. For high energies,
λ > 1, one has∣∣∣∣Qk(λ)

((
d

dσ

)j
dEP (σ)

)
Q∗k(λ)(z, z′)

∣∣∣∣
6

{
Cλn−j(1 + d(z, z′)λ)−n/2+j , for d(z, z′) 6 1
Cλn/2d(z, z′)je−nd(z,z′)/2 , for d(z, z′) > 1

provided σ is in [(1− δ)λ, (1 + δ)λ].

7. Factorization of Spectral Measure

We shall prove high energy restriction theorem by our microlocalized
spectral measure estimates obtained above. To do so we need a factorization
of spectral measure in terms of Poisson operator.

First of all, we review the Poisson operator. Melrose [28, p. 103], follow-
ing [26, 27], determined the structure of the generalized eigenfunctions
of Laplacian with respect to 0-metric: for any λ ∈ R \ {0} and each
f ∈ C∞(∂M) there is a unique solution of (∆ − n2/4 − λ2)u = 0 of the
form

u = xıλxn/2f + x−ıλxn/2f− + u′,

where f− ∈ C∞(∂M) and u′ ∈ L2(M). The Poisson operators, investigated
by Melrose and Zworski [30], Hassell and Vasy [18] in the case of scattering
metrics, and Joshi and Sá Barreto [24], Graham and Zworski [13], Guillar-
mou [14] in the case of 0-metrics, are maps from boundary data to gen-
eralized eigenfunctions. More precisely, Graham and Zworski showed that,
given a choice of boundary defining function x on X, there is a unique
family of operators P(ζ) satisfying

• For {Re ζ > n/2}\{ζ = n/2}, the Poisson operator is meromorphic
for Re ζ > n/2 and continues up to {Re ζ = n/2} \ {ζ = n/2};

• P(ζ) : C∞(∂M) −→ C∞(M \ ∂M),
• (∆− ζ(n− ζ))P(ζ) ≡ 0,
• P(ζ)f = xn−ζf + o(xn−ζ), if Re ζ > n

2 ,

• P(ζ)f = xn−ζf + xζf− +O(xn/2+1) if Re ζ = n/2, s 6= n/2, where
f− ∈ C∞(∂M).
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Like the scattering counterpart in [18, Lemma 5.2], we show

Proposition 7.1. — For any λ ∈ [n2/4,∞), the spectral measure
dEP (λ) on an asymptotically hyperbolic manifold X of dimension n + 1
can be factorized in terms of the Poisson operator as

(7.1) dEP (λ) = − 1
2πP

(
n/2− λı

)
P∗
(
n/2− λı

)
.

Proof. — It suffices to show that the operators on the LHS and RHS
of (7.1) agree acting on an arbitrary f ∈ C∞c (X◦).

Stone’s formula gives

(7.2) dEP (λ)f = λ

πı

(
R
(
n/2 + ıλ

)
−R

(
n/2− ıλ

))
f .

The resolvent expression (3.2) yields

R
(
n/2± ıλ

)
f = xn/2±ıλf± ,

where f± ∈ C∞(X). Let v± = f±|∂X be the restriction to the boundary of
f±. Then, from the properties of the Poisson operator listed above, we see
that

dEP (λ)f = λ

πı
P(n/2− ıλ)(v+) .

Thus, to finish the proof, we must show that v+ = (2ıλ)−1P(n/2− ıλ)∗f .
This is equivalent to showing that

(7.3) 2ıλ〈v+, w〉L2(∂X) = 〈f,P(n/2− ıλ)w〉L2(X)

for all w ∈ C∞(∂X). To do this, we use the pairing formula from [13]:

Proposition 7.2 (Pairing formula). — For Re ζ = n/2 and u1, u2 in
the form of

uj = xn−ζvj + xζvj,− +O(xn/2+1) , with vj , vj,− ∈ C∞(∂M)

such that
(∆− ζ(n− ζ))uj = rj ∈ C∞c (M) ,

we have

(2ζ − n)
∫
∂M

(v1v̄2 − v1,−v̄2,−) dh =
∫
M

(u1r̄2 − r1ū2) dg .

We apply the pairing formula to

u1 = R
(n

2 + ıλ
)
f and u2 = P

(n
2 − ıλ

)
w, ζ = n

2 + ıλ

with r1 = f and r2 = 0 and obtain (7.3), as required. �

TOME 68 (2018), FASCICULE 3



1058 Xi CHEN & Andrew HASSELL

8. Restriction theorem at high energy

We now prove the restriction theorem, Theorem 1.6, at high energies,
λ > 1.

The first step, following [17, Section 3], is to reduce the restriction the-
orem (1.20) to

(8.1) ‖Qi(λ)dEP (λ)Q∗i (λ)‖Lp→Lp′

6

{
Cλ(n+1)(1/p−1/p′)−1, 1 6 p 6 2(n+2)

n+4 ,

Cλn(1/p−1/2), 2(n+2)
n+4 6 p < 2 .

In fact, given (8.1), the factorization (7.1) and the TT ∗ trick yields

‖Qi(λ)P(n/2− ıλ)‖L2→Lp′ 6

{
Cλ(n+1)(1/2−1/p′)−1/2, 1 6 p 6 2(n+2)

n+4 ,

Cλn(1/p−1/2)/2, 2(n+2)
n+4 6 p < 2 ,

for all λ. We sum them up over i and deduce the global estimates

‖P(n/2− ıλ)‖L2→Lp′ 6

{
Cλ(n+1)(1/2−1/p′)−1/2, 1 6 p 6 2(n+2)

n+4 ,

Cλn(1/p−1/2)/2, 2(n+2)
n+4 6 p < 2 ,

for all λ. Then, using the TT ∗ trick again but in reverse, we find that

‖P(n/2− ıλ)P∗(n/2− ıλ)‖Lp→Lp′

6

{
Cλ(n+1)(1/p−1/p′)−1, 1 6 p 6 2(n+2)

n+4 ,

Cλn(1/p−1/2), 2(n+2)
n+4 6 p < 2 ,

which, by (7.1), is precisely Theorem 1.6.
To prove (8.1), we follow the argument in [17] and [9], and apply complex

interpolation to the analytic (in the parameter a ∈ C) family of operators

φ(P/λ)χa+(λ− P ) .

Here φ is a smooth function supported on (1 − δ, 1 + δ) and equal to 1
on (1 − δ/2, 1 + δ/2) for some positive δ, and χa+ is an entire family of
distributions, defined for Re a > −1 by

χa+ =
xa+

Γ(a+ 1) with xa+ =
{
xa if x > 0 ,
0 if x < 0 ,

Re a > −1 .

When Re a > 0, we have
d

dxχ
a
+ = χa−1

+ ,
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and using this identity, we extend χa+ to the entire complex a-plane. Since
χ0

+ = H(x), we have χ−1
+ = δ0, and more generally χ−k+ = δ

(k−1)
0 . There-

fore,

(8.2) χ0
+(λ− P ) = EP

(
(0,λ]

)
and χ−k+ (λ− P ) =

( d
dλ

)k−1
dEP (λ) .

Moreover, for any µ, ν ∈ C, it is shown in [20, p. 86] that

χµ+ ∗ χν+ = χµ+ν+1
+ .

Using this identity, and the fact that the λ-derivatives of the spectral mea-
sure are well-defined and obey kernel estimates as in Theorem 1.5, we de-
fine, following [17], operators χa+(λ−P ). For k ∈ N and−(k+1) < Re a < 0,
we define

χa+(λ− P ) = χk+a
+ ∗ χ−(k+1)

+ (λ− P )

=
∫ λ

0

σk+a

Γ(k + a+ 1)

(
d

dλ

)k
dEP (λ− σ) dσ .

A standard application of Stein’s complex interpolation theorem [33]
yields

Proposition 8.1. — Suppose that, for s ∈ R, we have∥∥Qi(λ)φ(P/λ)χıs+(λ− P )Q∗i (λ)
∥∥
L2(X)→L2(X) 6 C1e

C(1+|s|) ,

and for some β > 0,∥∥Qi(λ)φ(P/λ)χ−β+ıs
+ (λ− P )Q∗i (λ)

∥∥
L1(X)→L∞(X) 6 C2e

C(1+|s|) .

Then, the spectral measure dEP (λ) = χ−1
+ (λ− P ) is bounded from

Lp(X)→ Lp
′
(X) , for p = 2β/(β + 1) ,

with an operator norm bound

(8.3)
∥∥dEP (λ)

∥∥
Lp(X)→Lp′ (X) 6 C

′(C)C(β−1)/β
1 C

1/β
2 .

Therefore, to prove (8.1), for λ > 1, we need to establish the estimates

(8.4)
∥∥Qi(λ)φ(P/λ)χıs+(λ− P )Q∗i (λ)

∥∥
L2→L2 6 C1e

C(1+|s|) ,

and for p ∈ [1, 2(n+ 2)/(n+ 4)], we require

(8.5)
∥∥Qi(λ)φ(P/λ)χ−n/2−1+ıs

+ (λ−P )Q∗i (λ)
∥∥
L1→L∞ 6 C2λn/2eC(1+|s|) ,

while for p ∈ [2(n+ 2)/(n+ 4), 2), we require

(8.6)
∥∥Qi(λ)φ(P/λ)χ−j−1+ıs

+ (λ− P )Q∗i (λ)
∥∥
L1→L∞ 6 C2λn/2eC(1+|s|) ,

for all j ∈ Z, j > n
2 .
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Estimate (8.4) follows immediately from the sup bound on the multi-
plier χıs+ :

|χıs+(t)| 6
∣∣ 1
Γ(ıs)

∣∣ 6 eπ|s|/2 .
For the remaining two estimates, we invoke [17, Lemma 3.3], which we

repeat here:

Lemma 8.2. — Suppose that k ∈ N, that −k < a < b < c and that
b = θa + (1 − θ)c. Then there exists a constant C such that for any Ck−1

function f : R→ C with compact support, one has

‖χb+ıs+ ∗ f‖∞ 6 C(1 + |s|)eπ|s|/2‖χa+ ∗ f‖θ∞‖χc+ ∗ f‖1−θ∞
for all s ∈ R.

Before proving (8.5) and (8.6), we first rewrite φ(P/λ)χβ+ıs
+ (λ − P ) as

a convolution.

φ(P/λ)χβ+ıs
+ (λ− P )

=
∫
φ(σ/λ)χβ+ıs+k−1

+ ∗ χ−k+ (λ− σ)dEP (σ)dσ

=
∫∫

φ(σ/λ)χβ+ıs+k−1
+ (α)χ−k+ (λ− σ − α)dEP (σ) dσdα

= λβ+ıs+1
∫∫

φ(σ)χβ+ıs+k−1
+ (α)χ−k+ (1− σ − α)dEP (λσ) dσdα

= λβ+ıs+1
∫
χβ+ıs+k−1

+ (α) dk−1

dσk−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=1−α

dσdα

= λβ+ıs+1
(
χβ+ıs+k−1

+ ∗
(
φ( · )dEP (λ · )

)(k−1)
)

(1) .

We now break the proof up into two cases, n even and n odd (and remind
the reader that the dimension of X is n+1). We write n = 2k in the former
case, and n = 2k + 1 in the second, with k ∈ N in both cases.
First we take the case n = 2k is even. In this case, we take β = −n/2−1 =

−k − 1 above, and apply microlocalizing operators on the left and the
right. In the following calculations, the operators (that is, their Schwartz
kernels) are evaluated at the point (z, z′), which we do not always indicate
in notation; also we write Q(λ) for Qi(λ), where i is arbitrary. We obtain

(8.7) Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

= λ−k+ıs
(
χ−2+ıs

+ ( · ) ∗Q(λ) dk−1

dσk−1

(
φ( · )dEP (λ · )

)
Q∗(λ)

)
(1) .
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We now apply Lemma 8.2 with b = −2, a = −3, c = −1 and obtain∣∣∣∣Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

∣∣∣∣
. λ−k sup

Λ

∣∣∣∣ ∫ χ−1
+ (α)Q(λ) dk−1

dσk−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ−α

Q∗(λ) dα
∣∣∣∣1/2

× sup
Λ

∣∣∣∣ ∫ χ−3
+ (α)Q(λ) dk−1

dσk−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ−α

Q∗(λ) dα
∣∣∣∣1/2

. λ−k sup
Λ

∣∣∣∣Q(λ) dk−1

dσk−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ

Q∗(λ)
∣∣∣∣1/2

× sup
Λ

∣∣∣∣Q(λ) dk+1

dσk+1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ

Q∗(λ)
∣∣∣∣1/2.

We now plug in Corollary 6.5 and get

∣∣∣∣(Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

)
(z, z′)

∣∣∣∣
. λ−n/2 sup

Λ∈λ suppφ

(
k−1∑
l=0

Λn−l(1 + λΛd(z, z′))−n/2+l

)1/2

× sup
Λ∈λ suppφ

(
k+1∑
l=0

Λn−l(1 + λΛd(z, z′))−n/2+l

)1/2

. λn/2 ,

provided d(z, z′) is small. On the other hand, if d(z, z′) is large, Corol-
lary 6.5 gives

∣∣∣∣(Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

)
(z, z′)

∣∣∣∣
. λ−n/2 sup

Λ∈λ suppφ

∣∣∣∣∣
k−1∑
l=0

Λn/2d(z, z′)le−nd(z,z′)

∣∣∣∣∣
1/2

× sup
Λ∈λ suppφ

∣∣∣∣∣
k+1∑
l=0

Λn/2d(z, z′)le−nd(z,z′)

∣∣∣∣∣
1/2

. 1 .

In all these estimates, the dependence of the implicit constant on s is as in
Lemma 8.2, consistent with the dependence claimed in (8.5).
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When n = 2k + 1, the proof is almost identical. Instead of (8.7) we use
the identity

Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

= λ−k+ıs
(
χ
−3/2+ıs
+ ( · ) ∗Q(λ) dk−1

dσk−1

(
φ( · )dEP (λ · )

)
Q∗(λ)

)
(1) .

We then apply Lemma 8.2 with b = −3/2, a = −2, c = −1 and obtain

∣∣∣∣Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

∣∣∣∣
=
∣∣∣∣λ−n/2+ıs

∫
χ
−3/2+ıs
+ (α)

Q(λ) dk−1

dσk−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=1−α

Q∗(λ) dα
∣∣∣∣

. λ−n/2 sup
Λ

∣∣∣∣Q(λ) dk−1

dσk−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ

Q∗(λ)
∣∣∣∣1/2

× sup
Λ

∣∣∣∣Q(λ) dk

dσk

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ

Q∗(λ)
∣∣∣∣1/2.

We then follow the same argument as before to show that

∣∣∣∣(Q(λ)φ(P/λ)χ−n/2−1+ıs
+ (λ− P )Q∗(λ)

)
(z, z′)

∣∣∣∣ . λn/2 .

To prove (8.6), we use the identity

Q(λ)φ(P/λ)χ−j−1+ıs
+ (λ− P )Q∗(λ)

= λ−j+ıs
(
χ−2+ıs

+ ( · ) ∗Q(λ) dj−1

dσj−1

(
φ( · )dEP (λ · )

)
Q∗(λ)

)
(1) .
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We then apply Lemma 8.2 with b = −2, a = −3, c = −1 and obtain, as
before,

λj
∣∣∣∣Q(λ)φ(P/λ)χ−j−1+ıs

+ (λ− P )Q∗(λ)
∣∣∣∣

. sup
Λ

∣∣∣∣ ∫ χ−1
+ (α)Q(λ) dj−1

dσj−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ−α

Q∗(λ) dα
∣∣∣∣1/2

sup
Λ

∣∣∣∣ ∫ χ−3
+ (α)Q(λ) dj−1

dσj−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ−α

Q∗(λ) dα
∣∣∣∣1/2

. sup
Λ

∣∣∣∣Q(λ) dj−1

dσj−1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ

Q∗(λ)
∣∣∣∣1/2

× sup
Λ

∣∣∣∣Q(λ) dj+1

dσj+1

(
φ(σ)dEP (λσ)

)∣∣∣∣
σ=Λ

Q∗(λ)
∣∣∣∣1/2 .

As in the first case, the spectral measure estimates give∣∣∣∣(Q(λ)φ(P/λ)χ−j−1+ıs
+ (λ− P )Q∗(λ)

)
(z, z′)

∣∣∣∣
. λ−j sup

Λ∈λ suppφ

∣∣∣∣∣
j−1∑
l=0

Λn−l(1 + λΛd(z, z′))−n/2+l

∣∣∣∣∣
1/2

× sup
Λ∈λ suppφ

∣∣∣∣∣
j+1∑
l=0

Λn−l(1 + λΛd(z, z′))−n/2+l

∣∣∣∣∣
1/2

. λn−j ,

provided d(z, z′) is small. On the other hand, if d(z, z′) is large,∣∣∣∣(Q(λ)φ(P/λ)χ−j−1+ıs
+ (λ− P )Q∗(λ)

)
(z, z′)

∣∣∣∣
. λ−j sup

Λ∈λ suppφ

∣∣∣∣∣
j−1∑
l=0

Λn/2d(z, z′)le−nd(z,z′)

∣∣∣∣∣
1/2

∣∣∣∣∣ sup
Λ∈λ suppφ

j+1∑
l=0

Λn/2d(z, z′)le−nd(z,z′)

∣∣∣∣∣
1/2

. λn/2−j .

Remark 8.3. — Notice that it is here that we gain an advantage by
working on an asymptotically hyperbolic rather than conic space: the ex-
ponential decay e−nd/2 in the large distance estimate kills the polynomial
growth dj caused by j differentiations of the phase function e±ıλd, so there
is no limit to the number of differentiations that we can consider. This is
what allows us to obtain a result for p in the range 2(n+2)/(n+4) < p < 2.
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On an asymptotically conic manifold, by contrast, if we differentiate more
than (dimX−1)/2 times, we get a growing kernel as d(z, z′)→∞, and no
L1 → L∞ estimate is possible.

9. Spectral multipliers

In this section we prove Theorem 1.8, assuming that (X◦, g) is a Cartan–
Hadamard manifold, as well as being asymptotically hyperbolic and non-
trapping, with no resonance at the bottom of the continuous spectrum.

9.1. A geometric lemma

In order to adapt the proof from Section 2, we need to establish com-
parability between the Riemannian measure on hyperbolic space, and the
Riemannian measure on (X◦, g), as expressed in polar coordinates. Recall
that on a Cartan–Hadamard manifold, the exponential map from TpX,
p ∈ X to X is a diffeomorphism from TpX to X. Thus, the metric on X
can be expressed globally in polar normal coordinates based at p. Let r be
the distance, and ω ∈ Sn, be polar normal coordinates based at p.

Lemma 9.1. — Suppose X is an asymptotically hyperbolic Cartan–
Hadamard manifold, and let p ∈ X be any point. The Riemannian measure
on X can be expressed in the form

mp(r, ω)(sinh r)ndrdω ,

where mp(r, ω) is uniformly bounded on X × X (that is, uniform in p as
well as in (r, ω)).

Proof. — This result can be extracted from the resolvent construction
in [10]. Recall that in that paper, the outgoing resolvent (h2∆− h2n2/4−
(1− ı0))−1 was shown to be a sum of terms, the principal one of which is
a semiclassical intersecting Lagrangian distribution

I1/2(X2
0 , (N∗ diag0,Λ+); 0Ω1/2).

Here Λ+ = Λnd+ ∪Λ∗+ is the closure of the forward bicharacteristic relation, in
a certain sense. In the case of a Cartan–Hadamard manifold, the projection
Φπ : ΦT ∗X2

0 → X2
0 restricts to a diffeomorphism from Λ+ \ N∗ diag0 to

X2
0 \diag0; that is, except over the diagonal, Λ+ projects diffeomorphically

to the base X2
0 . We also point out that there is no need to decompose Λ+
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into pieces Λnd+ ∪Λ∗+ as was done in [10] to deal with geodesics that might
“return” to the front face FF; this is not possible for Cartan–Hadamard
manifolds.
The Lagrangian Λ+ can be given coordinates as follows: first, we use

coordinates (z′, ω) for Λ+ ∩N∗ diag0, where z′ is a coordinate in X◦ (cor-
responding to the right variable in X2

0 ) and ω ∈ Sn is a coordinate on
the unit tangent bundle in Tz′X◦, with respect to the metric g. Then by
definition Λ+ is the flowout from Λ+ ∩ N∗ diag0 by bicharacteristic flow,
which coincides with geodesic flow in this case. Let r denote the function
on Λ+ equal to the time taken to flow to that point from Λ+ ∩N∗ diag0 by
the left geodesic flow. This gives us (z′, r, ω) as coordinates on Λ+. Then,
using the projection Φπ to the base, (r, ω) may be identified with polar
normal coordinates based at z′.

Now consider the principal symbol at Λ+. By [10], if we use coordinates
(z, z′) arising from X ×X on Λ+ (away from N∗ diag0), then the principal
symbol is ∼ (ρLρR)n/2 times |dg(z)dg′(z′)|1/2, where dg (dg′) indicate the
Riemannian measure in the left (right) variables, and we use the notation
a ∼ b to mean that C−1b 6 a 6 Cb for some uniform C. Next we recall from
Proposition 3.4 that the distance r on X2

0 is such that e−nr/2 ∼ (ρLρR)n/2
for r > 1. It follows that the principal symbol is comparable to

(9.1) e−nr/2|dgdg′|1/2

on Λ+, for r > 1.
On the other hand, the principal symbol a satisfies the transport equation

L∂ra = 0 ,

in the coordinates (z′, r, ω). Since a is a half-density, it must take the form∣∣∣b(z′, ω)dz′drdω
∣∣∣1/2 .

We can compute b(z′, ω) by comparing with the symbol of the resolvent
at N∗ diag. Using coordinates (z′, ω, τ), where τ is the norm on T ∗z′X with
respect to the metric g (that is, (ω, τ) are polar coordinates in T ∗z′X),
this symbol is (τ2 − 1)−1|dg′τndτdω|1/2. A simple calculation shows that
{τ, r} = 1. Using [10, (B.2)], we find that

(9.2) a = c
∣∣∣dg′drdω∣∣∣1/2 , c > 0 constant.

Comparing (9.1) and (9.2), we find that

dg ∼ enrdrdω for r > 1 ,

which completes the proof. �
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So, let F ∈ Hs([−1, 1]), s > (n + 1)/2, be an even function. We con-
sider the operator F (αP ), where α ∈ (0, 1]. To analyze this operator, we
break the Schwartz kernel into two pieces using the characteristic function
χd(z,z′)61. The near-diagonal piece F (αP )χd(z,z′)61 can be treated using
the methods from [17]; this operator essentially satisfies Theorem 1.2. The
far-from-diagonal piece, F (αP )(1 − χd(z,z′)61), can be treated rather like
the case of hyperbolic space studied in Section 2.

9.2. Near diagonal part of F (αP )

Theorem 1.2 does not apply directly in the current setting, since the
volume of balls of radius ρ are not comparable to ρn+1 for large ρ on
asymptotically hyperbolic manifolds; instead, the volume grows as enρ as
ρ → ∞. However, it is certainly the case that the volume of balls of ra-
dius ρ 6 1 is comparable to ρn+1. This follows from the Bishop–Gromov
inequality: if the sectional curvatures are between 0 and −κ, say, then the
volume of any ball of radius ρ is bounded by the volume in Euclidean space,
and the volume on a simply connected space of constant curvature −κ.
The place where this volume comparability was used in [17] was in the

proof of the following Lemma, which we modify so as to apply to our near-
diagonal operator.

Lemma 9.2 ([17, Lemma 2.7]). — Suppose that (X, d, µ) is a metric
measure space, with metric d and measure µ, such that the balls of radius
ρ 6 1 have measure comparable to ρn+1. Assume that S is an integral
operator, bounded from Lp(X) to Lq(X) for some 1 6 p < q 6 ∞. Let
Sχd(z,z′)6s, be the integral operator given by the integral kernel of S times
the characteristic function of {(z, z′) | d(z, z′) 6 s}, for some s 6 1. Then

‖Sχd(z,z′)6s‖Lp→Lp 6 Cs(n+1)(1/p−1/q)‖S‖Lp→Lq .

Proof. — We omit the proof, which is a trivial modification of the proof
of [17, Lemma 2.7]. �

Using this lemma we prove a modified version of Theorem 1.2 in an
abstract setting.

Proposition 9.3. — Let (X, d, µ) be as in Lemma 9.2. Suppose L is
a positive self-adjoint operator with finite propagation speed on L2(X). If
the restriction estimate

(9.3) ‖dE√L(λ)‖Lp→Lp′ 6
{
C when λ is small,
Cλ(n+1)(1/p−1/p′)−1 when λ is large

ANNALES DE L’INSTITUT FOURIER



HYPERBOLIC RESOLVENT AND SPECTRAL MEASURE II 1067

holds for 1 6 p 6 2(n+ 2)/(n+ 4), then spectral multipliers localized near
the diagonal are uniformly bounded in 0 < α < 1, in the sense

sup
0<α<1

‖F (α
√
L)χd(z,z′)61‖Lp→Lp 6 C‖F‖Hs ,

where F ∈ Hs(R) is an even function with s > (n+1)(1/p−1/2) supported
in [−1, 1].

Remark 9.4. — Note that asymptotically hyperbolic spaces satisfy the
measure property in Lemma 9.2. This enables Proposition 9.3 to be applied
to the Laplacian on such spaces.

Proof. — We follow the proof of [17, Section 2]. Suppose η is an even
smooth function compactly supported on (−4, 4), satisfying∑

l∈Z
η(2−lt) = 1 for all t 6= 0.

Thus we take a partition of unity for F (λ), say F (λ) = F0 +
∑
l>0 Fl(λ),

where

F0(λ) = 1
2π

∫ ∞
−∞

∑
l60

η(2−lt)F̂ (t) cos(tλ) dt

Fl(λ) = 1
2π

∫ ∞
−∞

η(2−lt)F̂ (t) cos(tλ) dt for l > 0 .

By virtue of finite speed of propagation of cos(tP ) [7], i.e.

supp cos(tP ) ⊂ {d(z, z′) 6 |t|} ,

the kernel of Fl(αP )χd(z,z′)61 is supported on

{d(z, z′) 6 2l+2α}

as η(2−lt) is supported on (−2l+2, 2l+2).
By Lemma 9.2,

(9.4) ‖F (αP )χd(z,z′)61‖Lp→Lp 6
∑
l>0
‖Fl(αP )χd(z,z′)61‖Lp→Lp

6 C
∑
l>0

(2lα)(n+1)(1/p−1/2)‖Fl(αP )‖Lp→L2 .

We take a further decomposition

Fl(αP ) = ψFl(αP ) + (1− ψ)Fl(αP )

by a cutoff function ψ supported on (−4, 4) such that ψ(λ) = 1 for λ ∈
(−2, 2).
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Then a T ∗T argument reduces ‖ψFl(αP )‖Lp→L2 to the restriction esti-
mates.

‖ψFl(αP )‖2Lp→L2

= ‖|ψFl|2(αP )‖Lp→Lp′

6
∫ 4/α

0
|ψFl(αλ)|2‖dEP (λ)‖Lp→Lp′ dλ

6
C

α

∫ 4

0
|ψFl(λ)|2‖dEP (λ/α)‖Lp→Lp′ dλ

6
C

α

∫ α

0
|ψFl(λ)|2 dλ + C

α

∫ 4

α

|ψFl(λ)|2
(

λ

α

)(n+1)(1/p−1/p′)−1
dλ ,

where we used (9.3) in the last line. So

‖ψFl(αP )‖Lp→L2 6 Cα−((n+1)/2)(1/p−1/p′)‖ψFl‖2
= Cα−(n+1)(1/p−1/2)‖ψFl‖2 .

We obtain

(9.5)
∑
l>0

(2lα)(n+1)(1/p−1/2)‖ψFl(αP )‖Lp→L2

6
∑
l>0

2l(n+1)(1/p−1/2)‖ψFl‖2 6 C‖F‖B(n+1)(1/p−1/2)
1,2

6 C‖F‖Hs

for s > (n+ 1)(1/p− 1/2).
We next treat the terms involving (1−ψ)Fl. This works exactly as in [17,

Section 2].
Using restriction estimates as above, we have∥∥(1− ψ)Fl(αP )

∥∥2
Lp→L2

=
∥∥ |(1− ψ)Fl|2(αP )

∥∥
Lp→Lp′

6
C

α

∫ ∞
2

∣∣∣(1− ψ)(λ)Fl(λ)
∣∣∣2(λ

α

)(n+1)(1/p−1/p′)−1
dλ

where we used the fact that λ > 2 on the support of 1− ψ. Note that

(9.6) (1− ψ(λ))Fl(λ) = 1− ψ(λ)
2π

∫
R

∫ 1

0
eıt(λ−λ′)η(2−lt)F (λ′) dλ′dt

and

eıt(λ−λ′) = 1
ıN (λ− λ′)N

dN

dtN e
ıt(λ−λ′) ,
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where λ−λ′ > λ/2 for λ ∈ supp 1−ψ and λ′ ∈ suppF . Using this identity
in (9.6) and integrating by parts in t yields∣∣∣((1− ψ)Fl

)
(λ)
∣∣∣ 6 Cλ−N2−N(l−1)‖F‖2

for any N ∈ Z+. Taking N sufficiently large, we obtain

(9.7)
∑
l

(2lα)(n+1)(1/p−1/2)∥∥((1− ψ)Fl
)
(αP )

∥∥
Lp→L2

6 C‖F‖L2 6 C‖F‖Hs .

Combining (9.5) and (9.7) yields∑
l

(2lα)(n+1)(1/p−1/2)∥∥Fl(αP )
∥∥
Lp→L2 6 C‖F‖Hs ,

and together with (9.4) this proves the Proposition. �

9.3. Away from the diagonal on asymptotically hyperbolic
manifolds

It remains to treat the kernel F (αP )χd(z,z′)>1. We will show that

F (αP )χd(z,z′)>1 maps Lp + L2 to L2,

with an operator norm uniform in α ∈ (0, 1]. It suffices to show that
F (αP )χd(z,z′)>1 maps L2 → L2, and L1 → L2, with operator norms uni-
form in α. The first statement follows from the fact that F ∈ H(n+1)/2 =⇒
F ∈ L∞, together with the result of Section 9.2. In fact, we have proved

sup
0<α<1

‖F (α
√
L)χd(z,z′)61‖Lp→Lp 6 C‖F‖H(n+1)/2

provided 1 6 p 6 2(n + 2)/(n + 4). Noting the spectral multiplier is sym-
metric, we conclude that this operator is Lp bounded for 1 < p < ∞.
Consequently, F (α

√
L)χd(z,z′)>1 is L2 bounded. So in the remainder of

this subsection, we show boundedness from L1 to L2, with an operator
norm uniform in α.

Let Kα(z, z′) be the Schwartz kernel of F (αP )χd(z,z′)>1. By Minkowski’s
inequality, the L1 → L2 operator norm is bounded by

sup
z′

(∫ ∣∣Kα(z, z′)
∣∣2 dµz

)1/2
.

Using the spectral theorem we have

K(z, z′) =
∫ ∞

0
F (λ)dEP (λ)(z, z′) · χ{d(z,z′)>1}(z, z′) .
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We use coordinates (z′, r, ω) as in Section 9.1. Using Lemma 9.1, we may
estimate the Riemannian measure by Cenrdrdω. Therefore, it suffices to
bound ∫

{r>1}

∣∣∣∣ ∫ ∞
0

F (αλ)dEP (λ)(r, ω, z′) dλ

∣∣∣∣2enr drdω .

Using (1.14), we expand the kernel of the spectral measure as follows:

dEP (λ)(z, z′)(9.8)

=
∑
±
e±ıλr

( [n/2]∑
j=0

λn/2−jb±,j(z′, r, ω)e−nr/2 + c(λ, z′, r, ω)e−nr/2
)

+ (ρLρR)n/2+ıλ a+ + (ρLρR)n/2−ıλ a−
+ (xx′)n/2+ıλ ã+ + (xx′)n/2−ıλ ã−

where b±,j and c are bounded, and where a±, ã± are as in Theorem 1.3.
Here, c is smooth in λ at λ = 0 (due to our assumption that the resol-
vent kernel is holomorphic at the bottom of the spectrum), and decays as
O(λ−1/2) as λ→∞ for n odd, or O(λ−1) as λ→∞ for n even. Moreover,
c obeys symbolic estimates as λ → ∞, so |dλc| = O(λ−3/2) as λ → ∞
when n is odd, or O(λ−2) when n is even.
We now consider a single term b±,j in (9.8). Thus, we need to estimate

(9.9)
∫
{r>1}

∣∣∣∣ ∫ ∞
0

F (αλ)e±ıλrλn/2−jb±,j(r, ω, z′)e−nr/2 dλ

∣∣∣∣2enr drdω

uniformly in α and z′. Arbitrarily choosing the sign +, using the uniform
boundedness of bj,±, and simplifying, it is enough to uniformly bound

(9.10)
∫
{r>1}

∣∣∣∣ ∫ ∞
0

F (αλ)eıλrλn/2−j dλ

∣∣∣∣2 dr .

To estimate this, we prove the following lemma.

Lemma 9.5. — Suppose that F ∈ H(n+1)/2(R) and

G(λ) = θ(λ)λmφ(λ) ,

where φ ∈ C∞c (R), θ is the Heaviside function, and where 0 < m 6 n/2.
Then F̂ ∗ Ĝ satisfies

(9.11)
∫
r>R

∣∣(F̂ ∗ Ĝ)(r)
∣∣2 dr = O(R−(2m+1)) .

Proof. — We first observe that |Ĝ(r)| 6 〈r〉−m−1. Indeed, since the func-
tion θ(λ)λm is homogeneous of degree m, the Fourier transform is homo-
geneous of degree −1−m, and hence is O(〈r〉−1−m) as r →∞. The Fourier
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transform Ĝ is therefore this homogeneous function convolved with φ̂. As
φ̂ ∈ S(R), Ĝ is L∞, and still decays as O(〈r〉−1−m) as r →∞.
It therefore suffices to show that∫

r>R

∣∣∣∣ ∫ |F̂ (r − s)|〈s〉−m−1 ds
∣∣∣∣2 dr = O(R−(2m+1)) .

We break the RHS into

(9.12)
∫
r>R

∣∣∣∣ ∫
|s|6r/2

|F̂ (r − s)|〈s〉−m−1 ds

+
∫
|s|>r/2

|F̂ (r − s)|〈s〉−m−1 ds
∣∣∣∣2 dr .

Using the inequality (a+ b)2 6 2(a2 + b2), we estimate this by

(9.13) 2
∫
r>R

∣∣∣∣ ∫
|s|6r/2

|F̂ (r − s)|〈s〉−m−1 ds
∣∣∣∣2 dr

+ 2
∫
r>R

∣∣∣∣ ∫
|s|>r/2

|F̂ (r − s)|〈s〉−m−1 ds
∣∣∣∣2 dr .

The first of these terms we treat as follows. We apply Cauchy–Schwarz to
the inner integral, obtaining

(9.14) 2
∫
r>R

(∫
|s|6r/2

〈s〉−m−1 ds
)

(∫
|s′|6r/2

|F̂ (r − s′)|2〈s′〉−m−1 ds′
)

dr.

The s integral just gives a constant. In the second integral, we change
variable to r′ = r − s′, and note that r′ > r − r/2 > R/2. The s′ integral
again gives a constant, and we get an upper bound of the form

(9.15) 2C
∫
r′>R/2

|F̂ (r′)|2 dr′.

We can insert a factor (2R)−(2m+1)〈r′〉n+1, since r′ > 2R and n + 1 >
2m + 1. This finally gives an estimate of the form CR−(2m+1)‖F‖2

H(n+1)/2

for the first term of (9.13).
For the second term of (9.13), we estimate 〈s〉−m−1 6 C〈r〉−m−1. This

allows us to estimate this term by

(9.16) 2‖F̂‖2L1

∫
r>R
〈r〉−2m−2 dr 6 C‖F‖2H1/2+εR

−(2m+1) for any ε > 0 .

This completes the proof. �

TOME 68 (2018), FASCICULE 3



1072 Xi CHEN & Andrew HASSELL

We return to (9.10), which we write in the form

(9.17) α−n+2j
∫
{r>1}

∣∣∣∣ ∫ ∞
0

F (αλ)eıλr(αλ)n/2−j dλ

∣∣∣∣2 dr .

We change variables to λ′ = αλ and r′ = r/α. We also choose φ ∈ C∞c (R)
to be identically 1 on the support of F , and write

G(λ′) = θ(λ′)λ′n/2−jφ(λ′) .

The integral becomes

(9.18) α−n−1+2j
∫
{r′>1/α}

∣∣∣∣ ∫ ∞
−∞

F (λ′)G(λ′)eıλ
′r′ dλ′

∣∣∣∣2 dr′.

The λ′ integral gives us (F̂ ∗Ĝ)(r′). Applying Lemma 9.5 with m = n/2−j
and R = α−1, we see that (9.18) is bounded uniformly in α, as required.
We next consider the terms involving c, a±, and ã±. The argument for

all these terms is similar, so just consider c. In this case, we need a uniform
bound on

(9.19)
∫
r>1

∣∣∣∣ ∫ ∞
0

F (αλ)e±ıλrc(λ, z′, r, ω) dλ

∣∣∣∣2 dr .

We use the identity

e±ıλr = ± 1
ir

d
dλ

e±ıλr.

We integrate by parts. This gives us

(9.20)
∫
r>1

∣∣∣∣ ∫ ∞
0

e±ıλr
d

dλ

(
F (αλ)c(λ, z′, r, ω)

)
dλ

∣∣∣∣2 1
r2 dr .

When the derivative falls on F , we get αF ′(αλ). Since F ∈ H1(R), with
compact support, the function αF ′(αλ) is L1, with L1 norm uniformly
bounded in λ. Since c is uniformly bounded, this gives us a uniform bound
on the λ integral in (9.20). When the derivative falls on c, using the symbol
estimates, we find that dλc is integrable in λ, and then we can use the fact
that F ∈ L∞(R) to see that in this case also, the λ integral in (9.20) is
uniformly bounded. Finally, the r integral is convergent, so that establishes
the uniform bound on (9.19).
Using the inequalities

(9.21) xx′ 6 CρLρR 6 C
′e−r,

(where the second inequality follows from Proposition 3.4), the same argu-
ment works for the a± and ã± terms.

This completes the proof of Theorem 1.8.
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