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ON THE LOCAL-GLOBAL DIVISIBILITY OVER
ABELIAN VARIETIES

by Florence GILLIBERT & Gabriele RANIERI (*)

Abstract. — Let p > 2 be a prime number and let k be a number field. Let
A be an abelian variety defined over k. We prove that if Gal(k(A[p])/k) contains
an element g of order dividing p− 1 not fixing any non-trivial element of A[p] and
H1(Gal(k(A[p])/k),A[p]) is trivial, then the local-global divisibility by pn holds for
A(k) for every n ∈ N. Moreover, we prove a similar result without the hypothesis
on the triviality of H1(Gal(k(A[p])/k),A[p]), in the particular case where A is a
principally polarized abelian variety. Then, we get a more precise result in the case
when A has dimension 2. Finally, we show that the hypothesis over the order of g
is necessary, by providing a counterexample.

In the Appendix, we explain how our results are related to a question of Cassels
on the divisibility of the Tate–Shafarevich group, studied by Ciperiani and Stix
and Creutz.
Résumé. — Soit p 6= 2 un nombre premier et k un corps de nombres. Soit A une

variété abélienne définie sur k. Dans cet article nous prouvons le résultat suivant : si
Gal(k(A[p])/k) contient un élément g d’ordre divisant p−1 ne fixant aucun élément
non nul de A[p] et que H1(Gal(k(A[p])/k),A[p]) est trivial, alors A(k) satisfait le
principe de divisibilité locale globale par pn pour tout n ∈ N. En outre nous
démontrons un résultat similaire sans la condition H1(Gal(k(A[p])/k),A[p]) = 0,
dans le cas particulier où A est une variété abélienne principalement polarisée.
Ensuite nous obtenons un résultat plus précis lorsque A est de dimension 2. Enfin
nous démontrons que l’hypothèse sur l’ordre de g est nécessaire par un contre-
exemple.

Dans l’Appendice, nous expliquons le lien entre nos résultats et une question de
Cassels sur la divisibilité du groupe de Tate–Shafarevich, qui fut également étudiée
par Ciperiani et Stix ainsi que Creutz.
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1. Introduction

Let k be a number field and let A be a commutative algebraic group
defined over k. Several papers have been written on the following classical
question, known as the Local-Global Divisibility Problem.

Problem. — Let P ∈ A(k). Assume that for all but finitely many val-
uations v of k, there exists a Dv ∈ A(kv) such that P = qDv, where q is a
positive integer. Is it possible to conclude that there exists D ∈ A(k) such
that P = qD?

By Bézout’s identity, to get answers for a general integer it is sufficient
to solve it for powers pn of a prime. In the classical case of A = Gm and
k = Q, the answer is positive for p odd and q dividing 4, and negative for
q = 2m for every integer m > 3 (see for example [1, 22]).

For general commutative algebraic groups, Dvornicich and Zannier gave
a cohomological interpretation of the problem (see [8, 10]) that we shall
explain. Let Γ be a group and let M be a Γ-module. We say that a cocycle
Z : Γ → M satisfies the local conditions if for every γ ∈ Γ there exists
mγ ∈ M such that Zγ = γ(mγ) −mγ . The set of the class of cocycles in
H1(Γ,M) that satisfy the local conditions is a subgroup of H1(Γ,M). We
call it the first local cohomology group H1

loc(Γ,M). Equivalently,

H1
loc(Γ,M) = ∩C6Γ ker(H1(Γ,M)→ H1(C,M)),

where C varies among the cyclic subgroups of Γ and the above maps are
the restrictions. Dvornicich and Zannier [8, Proposition 2.1] proved the
following result.

Proposition 1.1. — Let p be a prime number, let n be a positive
integer, let k be a number field and let A be a commutative algebraic
group defined over k. If H1

loc(Gal(k(A[pn])/k),A[pn]) = 0, then local-global
divisibility by pn over A(k) holds.

The converse of Proposition 1.1 is not true. However, in the case when the
group H1

loc(Gal(k(A[pn])/k),A[pn]) is not trivial, we can find an extension
L of k, k-linearly disjoint with k(A[pn]), in which the local-global divisibility
by pn over A(L) does not hold (see [10, Theorem 3] for the details).

From now on let p be a prime number, let k be a number field and
let E be an elliptic curve defined over k. Dvornicich and Zannier (see [10,
Theorem 1]) found a geometric criterion for the validity of the local-global
divisibility principle by a power of p over E(k). In [17] and [18] Paladino,
Viada and the second author refined this criterion. Ciperiani and Stix [3,

ANNALES DE L’INSTITUT FOURIER



LOCAL-GLOBAL DIVISIBILITY OVER ABELIAN VARIETIES 849

Theorems A and B] also proved a similar criterion to give an answer to a
question of Cassels on elliptic curves (see the Appendix). Moreover, very
recently, Lawson and Wuthrich [12] obtained a very strong criterion for the
vanishing of the first cohomology group of the Galois module of the torsion
points of an elliptic curve defined over Q that allowed them to find a simpler
proof of the main result of [18]. Creutz [5] found a counterexample to the
local-global divisibility by 3n for an elliptic curve defined over Q, for every
integer n > 2. From this result, the examples of Dvornicich and Zannier [9]
and Paladino [15, 16] and the main result of [18], it follows that the set of
prime numbers l for which there exists an elliptic curve E ′ defined over Q
and n ∈ N such that the local-global divisibility by ln does not hold over
E ′(Q) is just {2, 3}.
Let us now consider an arbitrary abelian variety. To our knowledge the

unique known geometric criterion for the validity of the local-global divis-
ibility principle by a power of p for an abelian variety of dimension > 1
over a number field was proved by Ciperiani and Stix (see [3, Theorem D]).
For a connection with this result and the local-global divisibility problem
see [3, Remark 20] and the Appendix.
The results on elliptic curves and this last result gave a motivation to look

for other geometric criteria for the local-global divisibility principle, over
the family of abelian varieties. From now on, let A be an abelian variety
defined over k of dimension d ∈ N∗. Moreover, for every positive integer n,
we set Kn = k(A[pn]) and Gn = Gal(Kn/k). We prove the following result.

Theorem 1.2. — Suppose that G1 contains an element g whose order
divides p−1 and not fixing any non-trivial element of A[p]. Moreover, sup-
pose that H1(G1,A[p]) = 0. Then H1

loc(Gn,A[pn]) = 0 for every positive
integer n. Hence, local-global divisibility by pn holds for A(k).

Let us now fix a polarization on A over k and let us suppose that p
does not divide the degree of the polarization. We prove the following re-
sult, in which there is no hypothesis on H1(G1,A[p]). However, we need a
hypothesis on the field k.

Theorem 1.3. — Let A be a polarized abelian variety of dimension d
defined over k and let p be a prime not dividing the degree of the polar-
ization. Suppose that k ∩ Q(ζp) = Q. Set i = ((2d)!, p − 1) and ki the
subfield of k(ζp) of degree i over k. If for every non-zero P ∈ A[p] the field
k(P )∩k(ζp) strictly contains ki, then for every positive integer n, the group
H1

loc(Gn,A[pn]) = 0. Hence, local-global divisibility by pn holds for A(k).

TOME 68 (2018), FASCICULE 2
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Suppose now that A has dimension 2. By using Theorems 1.2, 1.3 and
the results of Sections 2 and 3, we shall give a much more precise criterion,
which is a weak generalization to abelian surfaces of the main result of [17]
on elliptic curves.

Theorem 1.4. — Let A be a polarized abelian surface defined over
k. For every prime number p > 3 840 such that k ∩ Q(ζp) = Q and not
dividing the degree of the polarization, if there exists n ∈ N such that
H1

loc(Gn,A[pn]) 6= 0, then there exists a finite extension k̃ of k of degree
6 24 such that A is k̃-isogenous to an abelian surface with a torsion point
of order p defined over k̃.

Merel [14] made the following conjecture on the torsion of abelian vari-
eties over a number field and proved it in the case of dimension 1.

Conjecture 1.5 (Merel’s Conjecture). — Let d and m be positive in-
tegers. There exists a positive constant C(d,m), only depending on d and
m, such that for every abelian variety of dimension d defined on a number
field k of degree m, and for every prime number p > C(d,m), A does not
admit any point of order p defined over k.

Then, we have the following Corollary of Theorem 1.4.

Corollary 1.6. — If Merel’s Conjecture is true, then for every positive
integer m, there exists a constant C(m), only depending on m, such that
for every principally polarized abelian surface A defined over a number
field k of degree m over Q and for every prime number p > C(m), for every
positive integer n the local-global divisibility by pn holds for A(k).

Here is the plan of this paper. In Section 2 we prove some algebraic results
necessary for the proof of Theorem 1.2, Theorem 1.3 and Theorem 1.4.
Moreover we prove Theorem 1.2.

For every prime number p not dividing the degree of the polarization of
a polarized abelian variety, the image of the absolute Galois group on the
group of the automorphism of the p-torsion is contained in the group of
the symplectic similitudes for the Weil-pairing. In Section 3 we describe
such a group and we prove Theorem 1.3. For the proof of Theorem 1.4 is
necessary a very precise study of the properties of the group GSp4(Fp). We
do this in Section 4 and then we finish such section by proving Theorem 1.4.
In Section 5 we give an example that shows that the hypothesis on the
order of g in Theorem 1.2 is necessary. Finally we explain in the Appendix
the connection with the local-global divisibility problem and a question of
Cassels studied in particular by Ciperiani and Stix [3] and Creutz [4, 5].
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2. Algebraic preliminaries

2.1. Coprime groups and cohomology

Classical Frattini’s theory (see for instance [2]) is very useful to prove the
following Proposition, which is the first step to prove Theorem 1.2. First,
let us give a Definition.

Definition 2.1. — Let H be a p-group. The Frattini subgroup φ(H)
of H (see [2, p. 105]), is the intersection of all maximal subgroups of H.

Proposition 2.2. — Let p be a prime number and let G be a finite
group such that G = 〈g,H〉, where g has order dividing p − 1 and H is
a p-group, which is normal in G. There exists r ∈ N and a generator set
{h1, h2, . . . , hr} of H such that, for every 1 6 i 6 r, there exists λi ∈ Z
such that

ghig
−1 = hλi

i .

Proof. — Suppose |H| = pm with m ∈ N. The proof is by induction on
m.
If m = 1 we have that H is cyclic generated by an element h1. Since H

is normal in G, we have gh1g
−1 = hλ1

1 for a λ1 ∈ Z and there is nothing to
prove.
Suppose that the assumption is true for every natural number j < m. The

Frattini subgroup φ(H) (see Definition 2.1) is normal in H and H/φ(H) is
elementary abelian (i.e. is isomorphic to a finite product of groups isomor-
phic to Z/pZ, see [2, p. 105] for the details).
Let us show that φ(H) is normal in G. Let M be a maximal subgroup

of H. We have gMg−1 ⊆ H because H is normal. Then the action by
conjugation of g permutes the maximal subgroups of H. Then, since φ(H)
is the intersection of every maximal subgroup of H, it is normal in G.

We use the following well-known result.

Theorem 2.3 (Burnside basis theorem). — Let H be a finite p-group.
A subset of H is a set of generators for H if and only if its image in H/φ(H)
is a set of generators for H/φ(H).

Consider H/φ(H). Since φ(H) is normal in G and H/φ(H) is abelian,
the function

f : H/φ(H)→ H/φ(H)
that sends hφ(H) to ghg−1φ(H) is well-defined and it is actually a Z/pZ-
linear isomorphism. Since g has order dividing p − 1, also the order of f

TOME 68 (2018), FASCICULE 2
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divides p− 1 and so f is diagonalizable on the Z/pZ-vector space H/φ(H).
Then there exist v1, v2, . . . , vk ∈ H such that {viφ(H) : 1 6 i 6 k} is a
Z/pZ-basis of H/φ(H) and there exist λi ∈ Z such that gvig−1φ(H) =
vλi
i φ(H).
Suppose that k = 1. Then H/φ(H) has a unique generator v1φ(H). By

Burnside basis theorem, H is then generated by v1 and it is cyclic. Since H
is normal in G, we have that gv1g

−1 = vλ1 for a λ ∈ Z, which is the thesis.
Suppose k > 1. Consider the two groups H1, H2 ⊆ H, such that

H1 = 〈v1, φ(H)〉, H2 = 〈v2, v3, . . . , vk, φ(H)〉.

Then set Γ1 the subgroup of G generated by g and H1 and Γ2 the subgroup
of G generated by g and H2. We remark that H1 is normal in Γ1 and H2
is normal in Γ2. In fact, as H1/φ(H) is generated by v1, all element of H1
is in va1φ(H) for some integer a. In the same way we can prove that H2 is
normal in Γ2.
We now prove that Γ1 and Γ2 are not G. SinceH1 andH2 are respectively

normal over Γ1 and Γ2 and Γ1 and Γ2 are generated by such groups and
an element of order not divisible by p, H1 is the unique p-Sylow subgroup
of Γ1 and H2 is the unique p-Sylow subgroup of Γ2. Since H1 and H2 are
properly contained in H, we have that Γ1 and Γ2 are properly contained
in G.
Then we can apply the inductive hypothesis to Γ1 and Γ2. Since H is

generated by H1 and H2, a union of a set of generators of H1 with a set
of generators of H2 gives a set of generators of H. This concludes the
proof. �

The following Corollary relates Proposition 2.2 with the vanishing of the
first local cohomology group.

Corollary 2.4. — Let Vn,d be the group (Z/pnZ)2d and let G be a
subgroup of GL2d(Z/pnZ) acting on Vn,d in the usual way. Suppose that
the normalizer of a p-Sylow subgroup H of G contains an element g of order
dividing p− 1 such that g − Id is bijective. Then H1

loc(G,Vn,d) = 0.

Proof. — Consider the two restrictions

H1(G,Vn,d)→ H1(〈g,H〉, Vn,d)→ H1(H,Vn,d).

Notice H1(G,Vn,d)→ H1(H,Vn,d) is injective since Vn,d is a p-group, and
H a p-Sylow subgroup ofG. We deduce thatH1(G,Vn,d)→H1(〈g,H〉, Vn,d)
is also injective. Moreover such maps induce maps on the first local co-
homology group. Then the restriction H1

loc(G,Vn,d) → H1
loc(〈g,H〉, Vn,d)

is injective and so, to prove the Corollary, it is sufficient to prove that
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H1
loc(〈g,H〉, Vn,d) = 0. Apply Proposition 2.2 to 〈g,H〉. Then there exists

r ∈ N and generators h1, h2, . . . , hr of H such that, for every 1 6 i 6 r,
ghig

−1 is a power of hi. For every i between 1 and r, set Γi = 〈g, hi〉 and Hi

the cyclic group generated by hi. For every 1 6 i 6 r,Hi is the p-Sylow sub-
group of Γi. Then we have that H1

loc(Γi, Vn,d)→ H1
loc(Hi, Vn,d) is injective.

Moreover, since Hi is cyclic, H1
loc(Hi, Vn,d) = 0, and so H1

loc(Γi, Vn,d) = 0.
Then, if Z is a cocycle of 〈g,H〉 satisfying the local conditions, for every
i between 1 and r, it is a coboundary over Γi and so, for every γi ∈ Γi,
there exists vi ∈ Vn,d such that Zγi

= γi(vi) − vi. Since g ∈ Γi for every
1 6 i 6 r, for every i, j we have g(vi)− vi = g(vj)− vj . The injectivity of
g − Id implies that for every i, j, vi = vj . Since g, h1, h2, . . . , hr generate
〈g,H〉 we get that Z is a coboundary over 〈g,H〉. �

Remark 2.5. — Let N be the normal subgroup of G consisting of the
elements congruent to the identity modulo p (here we use the notation of
Corollary 2.4). We shall prove (see Lemma 2.6) that if there exists g̃ in
G1 = G/N such that g̃ is in the normalizer of a p-Sylow subgroup of G1, g̃
has order dividing p− 1 and g̃ − Id is bijective, then there exists g ∈ G in
the normalizer of a p-Sylow subgroup of G, such that g has order dividing
p− 1 and g − Id is bijective.

The existence of an element h ∈ G such that hg̃−1 ∈ N , and h in the
normalizer of a p-Sylow of G, comes from the Lemma 2.6 below. By raising
h to an adequate power of p we find an element g fulfilling the conditions.

Lemma 2.6. — Let G be a group, let N be a normal subgroup of G and
let H be a p-Sylow subgroup of G. Let g be an element of G such that its
class in G/N is in the normalizer of the p-Sylow subgroup HN/N of G/N .
Then there exists an element of the class gN , which is in the normalizer
of H.
In particular, if the p-Sylow subgroup H is contained in a normal sub-

group N of G, then for every class of G/N , there exists an element of the
class which is in the normalizer of H.

Proof. — Let g̃ be the class of g modulo N . By hypothesis
g̃(HN/N)g̃−1 = HN/N . We deduce that gHNg−1/N = HN/N , then
gHg−1N = HN . So gHg−1 and H are two p-Sylow subgroups of HN .
Then they are conjugate by some element x of HN . There exists h ∈ H
and n ∈ N such that x = nh. So gHg−1 = nhH(nh)−1, from which we
deduce that n−1g is in the class gN and in the normalizer of H. �

Lemma 2.6 does not give precise information on the order of the ele-
ments of the normalizer of H. Neverthless, if H is contained in a normal
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subgroup N such that |N | and |G/N | are coprime, we have a coprime ac-
tion (see [2, Chapter 8]) and so there exists a subgroup of G isomorphic
to G/N with trivial intersection with N . Then in this case the normalizer
contains a group isomorphic to G/N . The next Corollary treats the case
when (|G/N |, |N |) is small (a sort of near coprime action) and it is crucial
for proving Theorem 1.3.

Corollary 2.7. — Let Vd be the group (Z/pZ)2d and let G be a sub-
group of the group GL(2d,Z/pZ) acting on Vd in the usual way. Let H be
a p-Sylow subgroup of G. Suppose that there exists a normal subgroup N
of G such that G/N is isomorphic to Z/(p − 1)Z. Let i be ((2d)!, p − 1).
Then the normalizer of H contains an element of order p− 1, whose class
modulo N has order divisible by (p− 1)/i.

Proof. — Since |G/N | is not divisible by p, it is clear that H ⊆ N . Let
g be in G such that the class of g modulo N is a generator of G/N . By
Lemma 2.6 there exists an element in the class of g modulo N (we call it
g by abuse of notation) such that g is in the normalizer of H. Since the
class of g has order p − 1 in G/N , the order of g is (p − 1)r, where r is
a positive integer. Then gr is in the normalizer of H, has order p − 1 and
the order of its class in G/N is (p − 1)/(p − 1, r). Then it is sufficient to
prove that (p−1, r) divides i. Since p does not divide p−1 we can suppose
that r is not divisible by p. Then the action of g is semisimple and so there
exists c ∈ N such that a matrix associated to g can be decomposed in c

blocks of matrices lj × lj acting irreducibly over a sub-space of Vd, such
that

∑
j=1 lj = 2d and the order of the jth block divides plj − 1. Then the

order of g is the least common multiple of the order of the blocks and so r
divides the least common multiple of the (plj − 1)/(p− 1). Observe that

plj − 1
p− 1 = plj−1 + plj−2 + · · ·+ 1.

We have

plj−1 + plj−2 + · · ·+ 1− (p− 1)(plj−2 + 2plj−3 + · · ·+ (lj − 1)) = lj .

Then (plj − 1)/(p− 1), (p− 1)) = (lj , p− 1). Since, for every j, lj 6 2d, the
least common multiple of the (lj , (p − 1)) divides (2d)!, which proves the
lemma. �

2.2. Cocycles satisfying the local conditions and cohomology of
the p-torsion

For every r between 1 and n, let Vr,d be the group (Z/prZ)d.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.8. — Let G be a subgroup of GL2d(Z/pnZ) acting on Vn,d in
the usual way. Suppose that G contains an element δ such that δ − Id is a
bijective automorphism of Vn,d. Then the homomorphismH1(G,Vn,d[p])→
H1(G,Vn,d) induced by the exact sequence of G-modules

0→ Vn,d[p]→ Vn,d
p→ Vn,d[pn−1]→ 0,

is injective and its image is H1(G,Vn,d)[p]. In other words it induces an
isomorphism between H1(G,Vn,d[p]) and H1(G,Vn,d)[p].

Proof. — The following exact sequence of G-modules

0→ Vn,d[p]→ Vn,d
p→ Vn,d[pn−1]→ 0

(here the first map is inclusion and the second map is multiplication by p)
induces a long exact sequence of cohomology groups:

. . .→ H0(G,Vn,d[pn−1])→ H1(G,Vn,d[p])→ H1(G,Vn,d)

→ H1(G,Vn,d[pn−1]).

Since G contains an element δ such that δ − Id is bijective over Vn,d, then
H0(G,Vn,d[pn−1]) = 0. Hence we have the exact sequence

(2.1) 0→ H1(G,Vn,d[p])→ H1(G,Vn,d)→ H1(G,Vn,d[pn−1]).

In particular H1(G,Vn,d[p])→ H1(G,Vn,d) is injective.
Let Z be a cocycle from G to Vn,d, representing a class [Z] in H1(G,Vn,d)

of order p. Then there exists v ∈ Vn,d such that pZσ = σ(v) − v for
every σ ∈ G. Since there exists δ ∈ G such that δ − Id is bijective
over Vn,d and pZδ = δ(v) − v ∈ Vn,d[pn−1], we get that v ∈ Vn,d[pn−1].
Then the cocycle from G to Vn,d[pn−1] sending σ to pZσ for every σ ∈
G is a coboundary and so the image of [Z] over H1(G,Vn,d[pn−1]) is
0. Then there exists [W ] ∈ H1(G,Vn,d[p]) such that the image of [W ]
by H1(G,Vn,d[p]) → H1(G,Vn,d) is [Z] (see the sequence (2.1)). This
proves that H1(G,Vn,d[p]) → H1(G,Vn,d)[p] is surjective and concludes
the proof. �

The next Lemma gives the key step to prove Therorem 1.2 and it will be
very useful to study the local-global divisibility problem on abelian surfaces.

Lemma 2.9. — Let G be a subgroup of GL2d(Z/pnZ) acting on Vn,d
in the usual way and let H be the normal subgroup of G of the elements
acting like the identity over Vn,d[p]. Suppose that G contains an element δ
such that δ − Id is a bijective automorphism of Vn,d. Let Z : G → Vn,d be
a cocycle whose restriction to H is a coboundary. If H1(G/H, Vn,d[p]) = 0,
then Z is a coboundary.
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Proof. — Consider the following commutative diagram:

0 → H1(G,Vn,d[p]) → H1(G,Vn,d)[p] → 0
↓ ↓

0 → H1(〈δ,H〉, Vn,d[p]) → H1(〈δ,H〉, Vn,d)[p] → 0,

where the isomorphisms on the lines are the functions of Lemma 2.8,
and the functions on the columns are the restrictions. Since the restric-
tion H1(〈δ,H〉, Vn,d) → H1(H,Vn,d) is injective, if ker(H1(G,Vn,d) →
H1(H,Vn,d) is not trivial, then there exists a non-trivial [W ] ∈
H1(G,Vn,d[p]), which is the kernel of the restriction toH1(H,Vn,d[p]). Since
H is normal in G, we have the inflation-restriction sequence

0→ H1(G/H, Vn,d[p])→ H1(G,Vn,d[p])→ H1(H,Vn,d[p]).

Then [W ] is the image by the inflation of a non-trivial element of
H1(G/H, Vn,d[p]). Since H1(G/H, Vn,d[p]) = 0, we get a contradiction.
Then H1(G,Vn,d)→ H1(H,Vn,d) is injective. �

Theorem 2.10 (Theorem 1.2). — Suppose that G1 contains an element
g whose order divides p− 1 and not fixing any non-trivial element of A[p].
Moreover suppose that H1(G1,A[p]) = 0. Then H1

loc(Gn,A[pn]) = 0 for
every positive integer n. Hence, local-global divisibility by pn holds for
A(k).

Proof. — Let n be a positive integer and consider H1
loc(Gn,A[pn]). Let

g̃ ∈ Gn be such that the restriction of g̃ toK1 is g. By applying Corollary 2.4
with g̃ in the place of g, Gal(Kn/K1) in the place of H and 〈g̃, H〉 in
the place of G, we get that H1

loc(〈g̃, H〉,A[pn]) = 0. Then for any [Z] ∈
H1

loc(Gn,A[pn]) = 0, [Z] is in the kernel of the restriction to H1(H,A[pn]).
We conclude the proof by applying Lemma 2.9. �

Remark 2.11. — We would like to remove the hypothesis on the trivi-
ality of H1(G1,A[p]) in Theorem 1.2. Observe that to do that, by Corol-
lary 2.4 and Remark 2.5, it would be sufficient to prove the following fact:
let p be a prime number, let d be a positive integer and G be a subgroup
of GL2d(Z/pZ). Then there exists a p-Sylow subgroup of G such that g is
in its normalizer.

In [3], Ciperiani and Stix found an interesting relation between the ir-
reducible subquotients of End(A[p]) and A[p] as Galois modules and the
triviality of a certain Tate–Shafarevich group (see [3, Theorem 4] and the
Appendix for the details). To study the local-global divisibility problem we
need a similar result in which we replace the group studied by Ciperiani
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and Stix with the first local-cohomology group. We do this in the following
Proposition, that is also inspired by Section 6 of [12].

Proposition 2.12. — Let G be a subgroup of GL2d(Z/pnZ) acting on
Vn,d in the usual way. Let H be the normal subgroup of G of the elements
acting like the identity on Vn,d[p]. Suppose that G contains an element
δ such that δ − Id is a bijective automorphism of Vn,d and let δ be its
class in G/H. If H1(G/H, Vn,d[p]) = 0, and both Vn,d[p] and End(Vn,d[p])
have no common irreducible Z/pZ[〈δ〉]-submodules (the action of δ over
End(Vn,d[p]) is induced by the conjugation), then H1(G,Vn,d) = 0.

Proof. — Consider the inflation-restriction sequence

0→ H1(G/H, Vn,d[p])→ H1(G,Vn,d[p])→ H1(H,Vn,d[p])G/H .

Since H1(G/H, Vn,d[p]) = 0, H1(G,Vn,d[p]) is isomorphic to a subgroup
of H1(H,Vn,d[p])G/H . Let φ(H) be the Frattini sub-group of H (see Def-
inition 2.1). In particular recall (or see [2, p. 105]) that H/φ(H) is an
elementary p-abelian group. Since H acts like the identity over Vn,d[p]
and Vn,d[p] is a commutative group with exponent p, H1(H,Vn,d[p])G/H =
HomZ/pZ[G/H]{H/φ(H), Vn,d[p]} where G/H has an action induced by co-
niugacy over H/φ(H). We shall prove that HomZ/pZ[δ]{H/φ(H), Vn,d[p]},
and so HomZ/pZ[G/H]{H/φ(H), Vn,d[p]} is trivial.
By possibly replacing δ with its p-power, we can suppose that p does not

divide the order of δ. Then the action of 〈δ〉 is semisimple and H/φ(H) is
isomorphic to a direct sum of irreducible 〈δ〉-modules.
Take W an irreducible Z/pZ[〈δ〉]-submodule of H/φ(H). For every non-

zero w ∈W , let iw ∈ N be the largest integer such that there exists h ∈ H
such that hφ(H) = w and h ≡ Id mod (piw ). Then h 6≡ Id mod (piw+1).
Since W is irreducible, every non-zero element of W is a generator of W .
Then observe that iw is the same for every w 6= 0. Thus W is isomorphic
to a Z/pZ[〈δ〉]-submodule of

Miw+1 = {Id +piw+1M |M ∈ Mat2d(Z/pnZ)}

/{Id +piw+2M ′ |M ′ ∈ Mat2d(Z/pnZ)}.

Since Miw+1 is isomorphic, as Z/pZ[〈δ〉]-module, to End(Vn,d[p]), W is
isomorphic to a submodule of End(Vn,d[p]). Since, by hypothesis, Vn,d[p]
and End(Vn,d[p]) have no common irreducible Z/pZ[〈δ〉]-submodules, then
HomZ/pZ[δ]{H/φ(H), Vn,d[p]} = 0. Hence,

HomZ/pZ[G/H]{H/φ(H), Vn,d[p]} = 0.
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ThusH1(G,Vn,d[p]) = 0. Since the groupsH1(G,Vn,d[p]) andH1(G,Vn,d)[p]
are isomorphic (see Lemma 2.8), we get H1(G,Vn,d)[p] = 0, which implies
H1(G,Vn,d) = 0. �

The following Lemma gives a useful criterion to see if an element δ of G
satisfies the hypothesis of Proposition 2.12.

Lemma 2.13. — Let δ ∈ GL2d(Z/pZ) be with order not divisible by
p and let λ1, λ2, . . . , λ2d the eigenvalues of δ. Suppose that for every i, j

between 1 and 2d, λi/λj is not an eigenvalue of δ. Then V1,d and End(V1,d)
have no common irreducible Z/pZ[〈δ〉]-submodules.

Proof. — Observe that the Lemma is evident if δ is diagonalizable over
Fp. Since p does not divide the order of δ, δ is diagonalizable in a finite
extension Fq of Fp. Since the irreducible Z/pZ[〈δ〉]-modules are direct sums
of irreducible Fq[〈δ〉]-modules, the result follows. �

3. The group of the symplectic similitudes and proof of
Theorem 3

We start by a description of the Galois action over the p-torsion of a
polarized abelian variety A of dimension d ∈ N. The referencies that we
use for that are [13, Section 2] and [7].
Let A be an abelian variety admitting a polarization with degree not

divisible by p. The Tate module Tp(A) has a skew-symmetric, bilinear,
Galois-equivariant form (called Weil pairing)

〈 , 〉 : Tp(A)× Tp(A)→ Zp(1),

where Zp(1) is the 1-dimensional Galois module, in which the action is given
by the cyclotomic character χp : Gal(k/k) → Z∗p. This is not degenerate
over A[p] because p does not divide the degree of the polarization. The
fact that the Weil pairing is not degenerate means that the Galois group
over k of the field generated by all the torsion points of order a power of
p is a subgroup of the group of the symplectic similitudes of Tp(A), with
respect to the Weil pairing GSp(Tp(A), 〈 , 〉). Choosing a basis of A[p]
we can consider G1 (recall that G1 = Gal(k(A[p])/k)) as a subgroup of
GSp2d(Fp).
For every σ ∈ G1, we define the multiplier of σ as the element ν(σ) ∈ F∗p

such that, for every P1, P2 in A[p], 〈σ(P1), σ(P2)〉 = ν(σ)〈P1, P2〉. Then
ν(σ) = χp(σ) and the determinant of σ is just ν(σ)d = χp(σ)d.
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Theorem 3.1 (Theorem 1.3). — Let A be a polarized abelian variety
of dimension d defined over k and let p be a prime not dividing the degree
of the polarization. Suppose that k ∩Q(ζp) = Q. Set i = ((2d)!, p− 1) and
ki the subfield of k(ζp) of degree i over k. If for every non-zero P ∈ A[p]
the field k(P )∩ k(ζp) strictly contains ki, then for every positive integer n,
the group H1

loc(Gn,A[pn]) = 0. Hence, local-global divisibility by pn holds
for A(k).

Proof. — Since A is a polarized abelian variety and p does not divide
the degree of the polarization, k(ζp) ⊆ K1. Moreover since by hypothesis
k ∩ Q(ζp) = Q, we have that Gal(k(ζp)/k) is isomorphic to Z/(p − 1)Z.
Let N be the group Gal(K1/k(ζp)). By elementary Galois theory, then
N is a normal subgroup of G1, containing all p-Sylow subgroups of G1
because [G1 : N ] = p − 1, which is not divisible by p. Let H be a p-
Sylow subgroup of G1. Let i be ((2d)!, p−1). By Corollary 2.7, there exists
g ∈ G1 of order (p− 1) such that its restriction to k(ζp) has order divisible
by (p− 1)/i. By hypothesis, for every point P of order p of A we have that
k(P )∩ k(ζp) strictly contains the subfield of degree i over k, which is fixed
by the restriction of g to k(ζp). Then g does not fix any point of order p
and so g − Id is bijective as endomorphism of A[p]. We conclude the proof
by applying Corollary 2.4. �

4. Proof of Theorem 1.4

The proof of Theorem 1.4 requires the study of some properties of
GSp4(Fp). We do this in the next subsection.

4.1. Some properties of the group GSp4(Fp)

In the next Lemma we list some well-known properties of the group
GSp4(Fp).

Lemma 4.1. — Let p > 3 be a prime number.
(1) The order of GSp4(Fp) is p4(p− 1)3(p+ 1)2(p2 + 1);
(2) Let B be an element of GSp4(Fp). The eigenvalues of B can be

written as λ1, λ2, ν(B)λ−1
1 , ν(B)λ−1

2 , where ν is the multiplier (see
Section 3).
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Proof. — (1) is well-known.
For (2), we can use that everyM ∈ Sp4(Fp) has eigenvalues α, β, α−1, β−1

(see [6] or [7, Lemma 2.2]), and the exact sequence

1→ Sp4(Fp)→ GSp4(Fp)→ (Z/pZ)∗ → 1,

where the last map is ν : GSp4(Fp)→ (Z/pZ)∗. �

The next Theorem, proved by Lombardo (see [13, Section 3.1]), gives
a very precise list of the maximal subgroups of GSp4(Fp) not containing
Sp4(Fp) and it is one of the main ingredients of our proof.

Theorem 4.2. — Let p > 7 be a prime number. Let G be a proper
subgroup of GSp4(Fp) not containing Sp4(Fp). Then G is contained in a
maximal proper subgroup Γ of GSp4(Fp)) such that one of the following
holds:

(1) Γ stabilizes a subspace;
(2) There exist 2-dimensional subspaces V1, V2 of F4

p such that F4
p =

V1
⊕
V2 and

Γ = {A ∈ GSp4(Fp) | ∃ γ ∈ S2 | AVi ⊆ Vγ(i) i = 1, 2};

(3) There exists an Fp2-structure on F4
p such that

Γ = {A ∈ GSp4(Fp) | ∃ ρ ∈ Gal(Fp2/Fp)

| ∀ λ ∈ Fp2 ,∀ v ∈ F4
p A(λ ∗ v) = ρ(λ) ∗A(v)},

where ∗ is the multiplication map Fp2 × F4
p → F4

p. In this case, the
set

{A ∈ GSp4(Fp) | ∀ λ ∈ Fp2 ,∀ v ∈ F4
p A(λ ∗ v) = λ ∗A(v)},

is a subgroup of Γ of index 2;
(4) Γ contains a group H isomorphic to GL2(Fp) such that the projec-

tive image of Γ is identical to the projective image of H. More-
over, for every σ ∈ H, the eigenvalues of σ can be written as
λ3

1, λ
2
1λ2, λ1λ

2
2, λ

3
2, with λ1 and λ2 roots of a second degree poly-

nomial with coefficients in Fp. Here λ1 and λ2 are the eigenvalues
of the element of GL2(Fp) corresponding to σ;

(5) The projective image of Γ has order at most 3 840.

Proof. — See [13, Definitions 3.1 and 3.2, Theorem 3.3, Lemma 3.4]. �
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4.2. Subgroups of PGL2(Fq) and SL2(Fq)

Let q be a power of p. To prove Theorem 1.4, in many cases we can
reduce to study a group isomorphic to a subgroup of PGL2(Fq) (see the
next subsection), or to a subgroup of SL2(Fq). Then we recall the well-
known classification of subgroups of PGL2(Fq) and SL2(Fq) that we often
use in the next subsection.

Proposition 4.3. — Let G be a subgroup of PGL2(Fq) of order not
divisible by p. If G is neither cyclic nor dihedral, then G is isomorphic to
either A4, S4 or A5.

Proof. — See [20, Proposition 16]. �

Proposition 4.4. — Let G be a subgroup of SL2(Fq) and suppose that
p > 5 and p divides the order of G. Then either there exists r > 1 such
that G contains SL2(Fpr ) or G has a unique abelian p-Sylow subgroup H
such that G/H is cyclic of order dividing q − 1.

Proof. — See [21, Chapter 3.6, Theorem 6.17]. �

The following Corollary of Propositions 4.3 and 4.4 will be often used in
the next subsection.

Corollary 4.5. — Let p > 5 be a prime number and let G be a sub-
group of GL2(Fp) such that G contains an element σ of order > 2 and
dividing p+ 1, and such that the image of the determinant of G in F∗p has
order i. Then G contains a scalar matrix of order i/(i, 60).

Proof. — Suppose first that p divides the order of G. Since by hypothesis
σ has order not dividing p− 1 and not divisible by p, by Proposition 4.4 G
contains SL2(Fp). Since the image of the determinant of G in F∗p has order
i, then G contains a scalar matrix of order at least i/(i, 2).
Suppose that p does not divide the order of G. Let δ ∈ G be such that its

determinant has order i. Then, since i divides p− 1 and (p− 1, p+ 1) = 2,
by possibly considering a suitable power g of δ, we can suppose that g is
diagonalizable and it has determinant of order divisible by i/(i, 2). Let PG
denote the image of G by the projection over PGL2(Fp) and g, respectively
σ, the images of g respectively σ in PG. By Proposition 4.3 either PG is
cyclic, or PG is dihedral or PG is a group with exponent dividing 60.

Suppose that PG is cyclic. Then g and σ commute. Hence gσg−1σ−1 is
a scalar matrix with determinant 1. Since g is diagonalizable and σ is not
diagonalizable because its order does not divide p− 1, a simple calculation
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shows that g2 is a scalar matrix. Then G contains a scalar matrix of order
i/(i, 4).

Suppose that PG is dihedral. We call a rotation a power of the element
of largest order in PG and a symmetry any element of order 2 that anti-
commutes with the rotations. If g and σ commute, then like in the previous
case, we prove that g2 is a scalar matrix. Moreover, if g is a symmetry, then
it has order 2 and so g2 is a scalar matrix. Then G contains a scalar matrix
of order i/(i, 4). Thus it only remains the case where σ is a symmetry and
g is a rotation. In this case σgσ−1 = g−1 and so σgσ−1g is a scalar matrix
µ Id with µ ∈ F∗p. Observe that the determinant of µ Id is equal to the
square of the determinant of g. Then also in this case G contains a scalar
matrix of order i/(i, 4).
It is well-knwown that A4 has exponent 6, S4 has exponent 12 and A5

has exponent 30. Since (30, 12) = 60, and 4 divides 60, in particular G
contains a scalar matrix of order i/(i, 60). �

4.3. End of the proof

We first recall the statement of Theorem 1.4.

Theorem 4.6 (Theorem 1.4). — Let A be a polarized abelian surface
defined over k. For every prime number p > 3840 such that k ∩Q(ζp) = k

and not dividing the degree of the polarization, if there exists n ∈ N such
that H1

loc(Gn,A[pn]) 6= 0, then there exists a finite extension k̃ of k of
degree 6 24 such that A is k̃-isogenous to an abelian surface with a torsion
point of order p defined over k̃.

Proof. — Suppose that there exists n ∈ N such thatH1
loc(Gn,A[pn]) 6= 0.

The proof is divided in some distinct steps. The first is the following simple
lemma.

Lemma 4.7. — The group G1 is isomorphic to its projective image to
PGL4(Fp). Moreover the function ν from G1 to (Z/pZ)∗ sending σ ∈ G1
to its multiplier ν(σ) is surjective and G1 contains an element g of order
p− 1 and multiplier divisible by (p− 1)/2.

Proof. — If G1 is not isomorphic to its projective image, then it contains
a scalar matrix whose eigenvalue is distinct of 1. Then, by Theorem 1.2,
H1

loc(Gn,A[pn]) = 0 for every positive integer n (actually H1(Gn,A[pn]) =
0 for every positive integer n, see for instance [10, p. 29]).
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Since by hypothesis k∩Q(ζp) = Q and k(ζp) is the subfield of K1 fixed by
the kernel of the multiplier ν (see Section 3), we have G1/ ker(ν) isomorphic
to Gal(k(ζp)/k) isomorphic to (Z/pZ)∗.

Finally, since G1/ ker(ν) is a cyclic group of order (p− 1), every element
of G1 whose class generates G1/ ker(ν) has order divisible by (p− 1). �

The following Proposition shows that a large subgroup of G1 has a stable
proper subspace of A[p].

Proposition 4.8. — There exists a subgroup Γ of G1 of index at most
4 and a proper subspace V of A[p] such that σ(V ) = V for every σ ∈ Γ.

Proof. — By Lemma 4.7, G1 is isomorphic to its projective image and
so it does not contain Sp4(Fp), because − Id ∈ Sp4(Fp). Moreover, see
Lemma 4.7, G1 has order at least p− 1 and recall that p > 3840. Then, by
Theorem 4.2, eitherG1 stabilizes a proper subspace of F4

p, orG1 is contained
in a maximal subgroup of type 2., 3., or 4. in the list of Theorem 4.2.
Suppose that G1 is contained in a subgroup of type 2. Then, there exists

V1 and V2 subspaces of A[p] of dimension 2 such that, for every σ ∈ G1,
either σ permutes V1 and V2 or σ stabilizes V1 and V2. Let Γ be the subgroup
of G1 that stabilizes V1 and V2. Observe that it is a normal subgroup of
index at most 2. Then Γ stabilizes two proper subspaces.

Suppose that G1 is contained in a subgroup of type 3. Then G1 has a
subgroup Γ of index at most 2 such that there exists a Fp2 -structure on F4

p

such that Γ is contained in the group

{A ∈ GSp4(Fp) | ∀ λ ∈ Fp2 ,∀ v ∈ F4
p A(λ ∗ v) = λ ∗A(v)},

where ∗ is the multiplication map Fp2 × F4
p → F4

p. Then, by choosing a F2
p-

basis of F4
p, we get an injective homomorphism of φ : Γ → GL2(Fp2). Also

observe that for every σ ∈ Γ, φ(σ) has the same eigenvalues of σ (with
multiplicity divided by 2). Then φ(Γ) is contained in PGL2(Fp2). Suppose
first that p does not divide the order of Γ. Then, by Proposition 4.3 and the
fact that p−1 divides the order of G1, either Γ is cyclic or Γ is dihedral. If Γ
is cyclic, then, since the generator of Γ has two eigenvalues with multiplicity
2, it stabilizes two subspaces of dimension 2. If Γ is dihedral, then it contains
a normal cyclic subgroup Γ′ of index 2. Thus, by replacing Γ with Γ′, we
reduce to the previous case. Also observe that [G1 : Γ′] divides 4. Suppose
now that p divides the order of Γ. Then, by Proposition 4.4 and the fact
that φ(Γ) is isomorphic to its projective image, φ(Γ)∩SL2(Fp2) is contained
in a Borel subgroup. Since the p-Sylow subgroup is normal, actually φ(Γ) is
contained in a Borel subgroup and so Γ stabilizes a subspace of dimension 2.
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Suppose that G1 is contained in a maximal subgroup of type 4. Then,
since G1 is isomorphic to its projective image, G1 is isomorphic to a sub-
group of GL2(Fp). Observe that (see Theorem 4.2) the isomorphism sends
the projective image of G1 to PGL2(Fp) and so actually G1 is isomorphic
to a subgroup of PGL2(Fp). If p does not divide the order of G1, then by
Proposition 4.3 and since p − 1 divides the order of G1, we get that G1
is either cyclic or dihedral. If G1 is cyclic and since PGL2(Fp) has order
p(p−1)(p+1), we get that G1 stabilizes a subspace. If G1 is dihedral, then
G1 has a normal cyclic subgroup Γ of index 2 and so, by replacing G1 with
Γ, we get the same result. Suppose that p divides the order of G1. In this
case, by Proposion 4.4, G1 has a unique non-trivial p-Sylow subgroup and
so it stabilizes a subspace. �

From the next Proposition and a deep result of Katz (see Theorem 4.11)
it will easily follow Theorem 1.4.

Proposition 4.9. — There exists a subgroup Γ of G1 of index 6 24
such that every γ ∈ Γ has at least an eigenvalue equal to 1.

Proof. — By Proposition 4.8, by possibly replacing G1 with a subgroup
Γ of index 2 or 4, there exists V a proper subspace of A[p] stable by the
action of Γ. Then, by Lemma 4.7, Γ contains a diagonal element g with
order dividing p−1 and multiplier with order divisible by (p−1)/(p−1, 8).
By abuse of notation, from now on we set G1 = Γ. Let V ⊥ be the subspace
of A[p] of the w ∈ A[p] such that, for every v ∈ V , we have 〈v, w〉 = 0.
Then, since the Weil pairing 〈 , 〉 is Galois-equivariant, also V ⊥ is stable
by the action of G1. Suppose first that V has dimension 1. Then V ⊆ V ⊥

and V ⊥ has dimension 3. On the other hand, if V has dimension 3, then
V ⊥ has dimension 1 and V ⊥ ⊆ V . By possibly replacing V with V ⊥, we
have two cases: either V has dimension 3 or V has dimension 2.
The case when V has dimension 3. — Suppose that V has dimension 3

and so V ⊥ has dimension 1 and it is contained in V . Then we have the
following G1-modules: V ⊥ ⊆ V ⊆ A[p] of dimension 1, V ⊆ A[p] of di-
mension 3, V/V ⊥ of dimension 2 and A[p]/V of dimension 1. In particular,
observe that the exponent of G1 is coprime with (p2 + 1)/2. Let H be a
p-Sylow subgroup of G1. Then H is the identity over V ⊥ and over A[p]/V .
Then, for every τ ∈ G1, if the projection of τ over V/V ⊥ is in the normal-
izer of the projection of H, then τ is in the normalizer of H. Since V/V ⊥
has dimension 2 and for every subgroup ∆ of GL2(Fp), every element of
order dividing p− 1 is in the normalizer of a p-Sylow subgroup of ∆, every
element of G1 of order dividing p − 1 is in the normalizer of a p-Sylow
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subgroup of G1. Then, see Corollary 2.4 and Remark 2.5, every element of
order dividing p − 1 has at least an eigenvalue equal to 1. Let σ be in G1
such that σ has all the eigenvalues distinct from 1. Then, since σ stabilizes
V ⊥ and A[p]/V , the unique possibility is that the automorphism of V/V ⊥
induced by σ has order divisible by a divisor of (p+ 1) not dividing (p−1).
On the other hand choose v and w in V such that {v, w} is sent by the
projection to a basis of V/V ⊥. Let us remark that v is not orthogonal to
w. In fact, if v were orthogonal to w, then 〈v〉⊥ would be equal to V , and
so V ⊥ would be 〈v〉. But v 6∈ V ⊥. Then we have a contradiction. Thus,
for every τ ∈ G1, the determinant of the projection of τ over V/V ⊥ is
equal to the multiplier of τ and so, by Corollary 4.5 and the fact that the
image of the multiplier has index dividing 4 over F∗p, we have that there
exists δ ∈ G1 such that the projection of δ over V/V ⊥ is a scalar matrix
λ Id with λ of order (p− 1)/(p− 1, 60). Then, since the order of δ divides
p − 1, one of its eigenvalues is 1. Then the eigenvalues of δ are 1, λ, λ, λ2.
Observe that the eigenvalues distinct from λ are one the eigenvalue of the
restriction of δ to V ⊥, and the other the eigenvalue of the projection of δ to
A[p]/V . Suppose that δ is the identity over V ⊥ (the other case is identical).
Let γ ∈ G1 be any element of order dividing p − 1 and suppose that the
eigenvalues of γ are λ1, λ2, λ3, λ4. Then observe that since the projection of
δ to V/V ⊥ is in the center of the projection of G1, by possibly permuting
the eigenvalues of γ, for every integer i we have that the eigenvalues of δig
are λ1, λ

iλ2, λ
iλ3, λ

2iλ4. Moreover, δiγ has order dividing (p − 1)pr for a
certain integer r. But raising a power of p of an element does not change
the eigenvalues and so we can suppose that δiγ has order dividing p − 1.
Since λ has order p− 1 and p > 3840, if λ1 6= 1, then we can choose i such
that δiγ has all the eigenvalues distinct from 1. But this is not possible and
so every element of order dividing p− 1 is the identity over V ⊥. Let again
σ be an element with all eigenvalues distinct from 1 and so such that σ has
order divisible by a divisor of (p + 1) not dividing (p − 1). Since we can
suppose that p does not divide the order of σ, then σp+1 has order dividing
(p−1). Thus σp+1 is the identity over V ⊥. But (p+1, p−1) = 2 and so the
restriction of σ to V ⊥ is either the identity or − Id. Thus the subgroup Γ
of G1 that fixes V ⊥ has index 2. This concludes the proof in the case that
V has dimention 3.

The case when V has dimension 2 and V ∩V ⊥ = {0}. — Since V ∩V ⊥ =
{0}, then A[p] is isomorphic as G1-module to the direct sum of V and V ⊥.
Moreover, we can suppose that V and V ⊥ are irreducible because, if not,
A[p] has G1-submodule of dimension 1 and we are in the previous case.
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Suppose that the order of G1 is coprime with (p + 1)/2. Then G1 has a
unique p-Sylow subgroup and, by Corollary 2.4 and Remark 2.5, we have
that every element of G1 of order dividing p− 1 has at least an eigenvalue
equal to 1. Since G1 has order coprime with (p+ 1)/2 and it stabilizes two
spaces of dimension 2, G1 has exponent dividing (p− 1)p2. Since, for every
τ ∈ G1, τ and τp have the same eigenvalues, all the elements of G1 have at
least an eigenvalue equal to 1. Then we can suppose that there exists σ ∈ G1
of order dividing p+1 and not dividing (p−1). In particular the restriction
of σ to either V or V ⊥ should have the same property and so suppose that
this is the case for the restriction to V (the other case is identical). Since
V ∩ V ⊥ = {0}, for every τ ∈ G1 the determinant of the restriction of τ
to V is the multiplier of τ . Since the multiplier has index dividing 4 over
F∗p, by Corollary 4.5 there exists δ ∈ G1 such that the restriction of δ to
V is a scalar matrix λ Id with λ of order (p − 1)/(p − 1, 60). By possibly
replacing δ with its power, since (p− 1, p+ 1) = 2, we can suppose that δ
has order dividing p−1, but then we have just that λ has order divisible by
(p−1)/(p−1, 120). In particular observe that since the restriction of δ to V
is a scalar matrix, δ is diagonalizable over V ⊥ and V ⊥ has dimension 2, then
δ is in the normalizer of a p-Sylow subgroup of G1. Hence, by Corollary 2.4
and Remark 2.5, the eigenvalues of the restriction of δ to V ⊥ are 1 and
λ2. Consider now the restriction G1,⊥ of G1 to V ⊥. If there exists τ ∈ G1
whose restriction to V ⊥ has order dividing p+ 1 and not divisible by p−1,
then by Corollary 4.5 there exists δ′ ∈ G1, which is a scalar matrix over
V ⊥ with order dividing (p− 1)/(p− 1, 120). Then δ′ commutes with δ and
by taking the product of suitable powers of δ and δ′, we get an element
of G1 of order dividing p − 1, with all the eigenvalues distinct from 1.
Moreover, since V and V ⊥ have dimension 2, such an element is in the
normalizer of a p-Sylow subgroup and so H1

loc(Gn,A[pn]) = 0 for every
positive integer n, by Corollary 2.4 and Remark 2.5. Then the restriction
of G1,⊥ has order dividing 2p(p − 1)2. If p divides the order of G1,⊥, by
Proposition 4.4 either G1,⊥ contains SL2(Fp) (and so p+1 divides the order
of G1,⊥) or G1,⊥ has a unique p-Sylow subgroup of order p. But in the last
case V ⊥ is reducible and then we get a contradiction. Hence G1,⊥ has order
dividing 2(p − 1)2. Since V ⊥ is irreducible, the unique possibility is that
G1,⊥ has a commutative normal subgroup ∆ of index 2 with order dividing
(p− 1)2. Take Γ the subgroup of G1 of the elements whose restrictions to
V ⊥ are in ∆. Then G1 has index 2 over Γ and Γ stabilizes a subspace of
dimension 1 and its orthogonal (then a space of dimension 3). Then we are
in the previous case already studied: the case when V has dimension 3.
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The case when V = V ⊥. — First observe that if V is not irreducible, then
we are in the case when V has dimension 3 (or 1) and so we suppose that V
is an irreducible G1-module. Let W be the G1-module A[p]/V . Let us call
IV , respectively IW , the normal subgroup of G1 fixing all the elements of
V , respectively W . Suppose that p divides the order of G1/IV . Then there
is σ ∈ G1 of order p and a basis {v1, v2} of V such that σ(v1) = v1 and
σ(v2) = v1 + v2. Let w1, w2 be in A[p], such that wi is not orthogonal to vi
and wi is orthogonal to vj for i 6= j and i, j ∈ {1, 2}. Then {v1, v2, w1, w2}
is a basis of A[p]. Moreover, let w1 and w2 be the class (modulo V ) of w1,
respectively w2. Then {w1, w2} is a basis of W . Let us show that the class
of σ in G1/IW has order p. If the class of σ were not of order p, it would
be the identity. Then, there would exist v ∈ V such that σ(w1) should be
equal to w1 + v. Thus

〈σ(v2), σ(w1)〉 = 〈v1 + v2, w1〉 = 〈v1, w1〉.

But 〈σ(v2), σ(w1)〉 = 〈v2, w1〉, which is distinct from 〈v1, w1〉 because v1
and w1 are not orthogonal and v2, w1 are orthogonal. In the same way we
can prove that if p divides G1/IW , then there exists σ ∈ G1 of order p such
that the restriction of σ to V has order p. Since V and W are irreducible,
if their p-Sylow subgroup is not the identity, then their p-Sylow subgroup
cannot be normal and so, by Proposition 4.4,G1/IV andG1/IW contain the
group SL2(Fp). Then, observe that there exists τ1 ∈ G1 whose restriction
over V is − Id and τ2 ∈ G1 whose projection overW is − Id. By Lemma 4.1,
then the other eigenvalues of τ1 are identical and so a p power of τ1 is a
diagonal matrix with two eigenvalues equal to −1 and the others equal to
a λ ∈ F∗p. In the same way we can prove that a p-power of τ2 is a diagonal
matrix with two eigenvalues equal to −1 and the others equal to µ for a
certain µ ∈ F∗p. Then either τ1, τ2 or τ1τ2 has order dividing p−1, has all the
eigenvalues distinct from 1 and is in the normalizer of a p-Sylow subgroup
because is a scalar matrix over V and over W . Then, by Corollary 2.4 and
Remark 2.5, for every positive integer n we have H1

loc(Gn,A[pn]) = 0. Thus
G1/IV and G1/IW have orders not divisible by p and so G1 has a normal
p-Sylow subgroup N such that N ⊆ IV and N ⊆ IW . Thus, if G1 has order
coprime with (p+1)/2, by Corollary 2.4 and Remark 2.5, for every positive
integer n we have H1

loc(Gn,A[pn]) = 0. Then, there exists σ ∈ G1 with
order dividing p + 1 and not dividing p − 1. Since (p − 1, p + 1) = 2, by
Lemma 4.1 we can suppose that the eigenvalues of σ are either µ, µp (both
with multiplicity 2) or µ, µp, −µ, −µp. The following Lemma, whose proof
is similar to the proof of Proposition 2.12, gives a strong restriction to the
order of σ.

TOME 68 (2018), FASCICULE 2



868 Florence GILLIBERT & Gabriele RANIERI

Lemma 4.10. — If there exists n ∈ N such that H1
loc(Gn,A[pn]) 6= 0,

then σ has order dividing 6.

Proof. — First observe that σ− Id is bijective as endomorphism of A[p]
because µ 6∈ Fp. Moreover, by using Lemma 2.13, we can prove that A[p]
and End(A[p]) have a common Z/pZ[〈σ〉]-module only if σ has order di-
viding 6. Then by Proposition 2.12, if H1(G1,A[p]) = 0, we immediately
get the result. Then let us prove that H1(G1,A[p]) = 0 (actually the proof
is similar to the proof of Proposition 2.12). Consider the exact sequence of
G1-modules:

0→ V → A[p]→W → 0,
where the first map is the inclusion and the second is the projection. Since
δ − Id is bijective over A[p], we have H0(G1,W ) = 0 and so we get the
following cohomology exact sequence

0→ H1(G1, V )→ H1(G1,A[p])→ H1(G1,W ).

Then, to prove the triviality of H1(G1,A[p]), it is sufficient to prove the
triviality of H1(G1, V ) and H1(G1,W ). Let us prove the triviality of
H1(G1, V ) (the proof of the triviality of H1(G1,W ) is identical). Recall
that N is the p-Sylow subgroup of G1 and N fixes V and W . Then we have
the following inflation-restriction sequence:

0→ H1(G1/N, V )→ H1(G1, V )→ H1(N,V )G1/N .

Since p does not divide the order of G1/N , we haveH1(G1/N, V ) = 0. Since
N fixes V , we get thatH1(N,V )G1/N is isomorphic to HomZ/pZ[G1/N ](N,V )
where G1 acts over N by conjugation (recall that since N fixes V andW , N
is an abelian group with exponent dividing p). By Lemma 2.13, the action of
δ by conjugation over N is given by an automorphism with eigenvalues con-
tained in the set either {1, µp−1, µ1−p} or {1,−1, µp−1,−µp−1, µ1−p,−µ1−p}.
On the other hand, over V the element δ has eigenvalues either {µ, µp} or
{µ,−µ, µp,−µp}. But {1,−1, µp−1,−µp−1, µ1−p,−µ1−p}∩{µ,−µ, µp,−µp}
is not empty only if µ has order dividing 6. Hence, if σ does not have order
dividing 6, then H1(G1,A[p]) = 0. �

Observe that if σ has order 3 or 6, then σ2 has order 3 and it has
eigenvalues λ, λp (both with multiplicity 2) and λ of order 3. Now recall
that G1 contains an element g of order dividing p−1 and multiplier divisible
by (p− 1)/(p− 1, 8). By Corollary 2.4 and Remark 2.5, G1 has at least an
eigenvalue equal to 1. Suppose that the corresponding eigenvector is in V
(the case when it is in W is identical). By Proposition 4.3, since p does not
divide the order of G1/IV , the projective image of G1/IV is either cyclic,

ANNALES DE L’INSTITUT FOURIER



LOCAL-GLOBAL DIVISIBILITY OVER ABELIAN VARIETIES 869

dihedral or isomorphic to an exceptional subgroup (either A4, S4, or A5).
If this last case is verified, then G1/IV contains an element τ which act like
− Id over V . By Corollary 2.4 and Remark 2.5, it acts like the identity over
W . Then a suitable p-power of τ commutes with g and by choosing i = 1
or 2, giτ has all the eigenvalues distinct from 1, because g has multiplier
divided by (p − 1)/(p − 1, 8) and p > 3840. Thus either the projective
image of G1/IV is cyclic of order 3 or it is dihedral of order 6 (in the two
cases generated by the class of σ2 of order 3 and the class of g that can
have order 1 or 2). Since g has an eigenvalue equal to 1 over V the unique
possibility is that g is either the identity or it has order 2 over V . Then
G1/IV is generated by σ2, g and possibly δ ∈ G1, which is a scalar matrix
over V . But in this case take a suitable power of g2 multiplied by δ and
get a matrix with order dividing p− 1 and all eigenvalues distinct from 1.
Then G1 has either index 3 or index 6 over IV . Hence, KIV

1 is an extension
of degree dividing 6 of k in which all the elements of IV fix all the elements
of a subspace of V of dimension 2. �

The last result we need to finish the proof is the following deep result of
Katz.

Theorem 4.11. — Let B be an abelian surface defined over a number
field F . If for all but finitely many prime numbers r, we have that a prime
number q divides the order of B(Fr), then there exists an abelian surface B′
defined over F and F -isogenous to B such that B′ admits a point of order
q over F .

Proof. — See [11, Introduction]. �

Observe that if all elements of G1 have at least an eigenvalue equal to
1, then, by Chebotarev density Theorem, for all but finitely many prime
numbers q, we have that p divides the order of A(Fq). By Proposition 4.9,
there exists an extension L of k of degree 6 24 such that every element of
Gal(K1/L) fixes at least a non-trivial element of A[p]. By applying Theo-
rem 4.11, we conlude the proof. �

5. The counterexample

Let p be a prime number such that p ≡ 2 mod (3). Consider the follow-
ing subgroups of GL2(Z/p2Z):

H2 =
{
h(a, b) =

(
1 + p(a− 2b) 3p(b− a)
−pb 1− p(a− 2b)

)
a, b ∈ Z/p2Z

}

TOME 68 (2018), FASCICULE 2



870 Florence GILLIBERT & Gabriele RANIERI

and

G2 =
〈
g =

(
1 −3
1 −2

)
, H2

〉
.

A simple calculation gives that g has order 3, which does not divide p− 1.
A simple verification gives that for every a, b, we have

gh(a, b)g−1 = h(−b, a− b), g2h(a, b)g−2 = h(b− a,−a).

Then H2 is a normal abelian subgroup of G2.
We shall prove that H1

loc(G2, (Z/p2Z)2) 6= 0, by explicitly costructing a
cocycle from G2 to (Z/p2Z)2 that satisfies the local conditions, but it is not
a coboundary. Observe that H2 is a Z/pZ[〈g〉]-module, with g that acts by
conjugation. Let Z be a cocycle from G2 to (pZ/p2Z)2. By cocycle relations
and the fact that H2 acts like the identity over (pZ/p2Z)2, we have that
Z is a homomorphism of Z/pZ[〈g〉]-modules from H2 to (pZ/p2Z)2. Using
that gh(a, b)g−1 = h(−b, a− b), a simple calculation shows that the group
of homomorphisms of Z/pZ[〈g〉]-modules from H2 to (pZ/p2Z) is cyclic
generated by Z : H2 → (pZ/p2Z)2, with Zh(a,b) = (p(a − 2b), p(a − b)).
Then, extending Z to G2 by sending g to (0, 0) and using the properties of
cocycles, we have a cocycle from G2 to (Z/p2Z)2.
Let us show that Z satisfies the local conditions. In other words we shall

prove that for every (a, b) the system h(a, b) − Id(x, y) = Zh(a,b) has a
solution. Observe that, by definition of h(a, b), it is sufficient to prove that
if a 6= 0 or b 6= 0, then (

a− 2b 3(b− a)
−b 2b− a

)
has determinant distinct from 0 in Z/pZ. A simple calculation shows that
the determinant is ∆((a, b)) = a2 +b2−ab. Since ∆((a, b)) is a homogenous
polynomial in a and in b and a and b are symmetric, if it has a non-zero
solution, it has a solution of the form (−1, β). Then β2 + β + 1 = 0 that
gives that β has order 3 in (Z/pZ)∗. This is not possible because p ≡ 2
mod (3). Then Z satisfies the local conditions.
We show that Z is not a coboundary. Observe that (h(1, 1)− Id)(x, y) =

Zh(1,1) if and only if (x, y) = (1, 1). Moreover (h(2, 1)− Id)(x, y) = Zh(2,1)
if and only if (x, y) = (−1, 0). Then Z is not a coboundary.
Let k be a number field and let E be a not CM elliptic curve de-

fined over k. By the main result of [20], for every large enough prime
number l, the representation of Gal(k/k) over the group of the automor-
phisms on the Tate l-module of E is surjective. Choose a large enough
prime p ≡ 2 mod (3). Then Gal(k(E [p2])/k) = GL2(Z/p2Z). Let L be the
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field contained in k(E [p2]) fixed by G2. Then Gal(L(E [p2])/L) = G2 and
H1

loc(Gal(L(E [p2])/L), E [p2]) is not trivial. Then by [10, Theorem 3], by pos-
sibly replacing L with a field L′ such that L ⊆ L′ and L(E [p2])∩L′ = L, we
get a counterexample to local-global divisibility by p2 over E(L′). Observe
that Gal(L′(E [p])/L′) is generated by an element of order 3, then of order
not dividing p− 1. Moreover H1(Gal(L′(E [p])/L′), E [p]) = 0 because p and
3 are distinct.

6. Appendix

Ciperiani and Stix [3] and Creutz [4] studied the following question of
Cassels, which is related to the local-global divisibility problem: let k be
a number field and let A be an abelian variety defined over k. For every
prime number q we say that the Tate–Shafarevich group X(A/k) is q-
divisible in H1(k,A) if X(A/k) ⊆ ∩n∈N∗qnH1(k,A). What is the set of
prime numbers q such that X(A/k) is q-divisible ?

We explain the criterion found by Ciperiani and Stix to answer to this
question. Define

X1(k,A[pn]) = ∩v∈Mk
ker(H1(Gal(k/k),A[pn])

→ H1(Gal(kv/kv),A[pn])).

Let At be the dual variety of A. Ciperiani and Stix (see [3, Proposition 13])
proved the following result.

Theorem 6.1. — If X1(k,At[pn]) is trivial for every positive integer
n, then X(A/k) is p-divisible over H1(k,A).

Then, in their paper found very interesting criteria for the triviality of
X1(k,At[pn]) (see [3, Theorems A, B, C, D]). We applied some of their
ideas in this paper, in particular in the second subsection of Section 2.
We now explain the relation with Cassels question and the local-global

divisibility problem (observe that Ciperiani and Stix [3, Remark 20] al-
ready substantially observed the connection. Here we just want to make it
precise). Let Σ be a subset of the set of places Mk of k. By following [19,
p. 15] with G = A[pn], we define

X1
Σ(k,A[pn]) = ∩v 6∈Σ ker(H1(Gal(k/k),A[pn])→ H1(Gal(kv/kv),A[pn])),

X1
ω(k,A[pn]) = ∪Σ finiteX1

Σ(k,A[pn]).

Observe that X1(k,A[pn]) = X1
∅(k,A[pn]) and obviously X1(k,A[pn]) ⊆

X1
ω(k,A[pn]). The Lemma [19, Lemme 1.2] applied with B = A[pn] implies
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that X1
ω(k,A[pn]) is isomorphic to H1

loc(Gn,A[pn]). Then if the group
H1

loc(Gn,A[pn]) = 0, we have X1(k,A[pn]) = 0. By Theorem 6.1 we then
get the following Corollaries of Theorem 1.2, Theorem 1.3 and Theorem 1.4
respectively.

Corollary 6.2. — Suppose that Gal(k(At[p])/k) contains an element
g whose order divides p− 1 and not fixing any non-trivial element of A[p].
Moreover suppose that H1(Gal(k(A[p])/k),A[p]) = 0. Then X(A/k) is
p-divisible in H1(k,A).

Corollary 6.3. — Let A be a principally polarized abelian variety
of dimension d defined over k and suppose that k ∩ Q(ζp) = Q. Set i =
((2d)!, p − 1) and ki the subfield of k(ζp) of degree i over k. If for every
P ∈ A[p] of order p the field k(P )∩k(ζp) strictly contains ki, then X(A/k)
is p-divisible in H1(k,A),

Corollary 6.4. — Let A be a principally polarized abelian surface
defined over k. For every prime number p > 3840 such that k ∩ Q(ζp) =
Q, if X1(A, k) is not p-divisible over H1(k,A), then there exists a finite
extension k̃ of k of degree 6 24 such that A is k̃-isogenous to an abelian
surface with a torsion point of order p defined over k̃
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