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SUBHARMONICITY OF CONIC MABUCHI’S
FUNCTIONAL, I

by Long LI

Abstract. — The purpose of this paper is to prove the convexity of Mabuchi’s
functional along a geodesic in the conic setting. We first establish a scheme to study
conic constant scalar curvature Kähler (cscK) metrics, and then the conic Mabuchi
functional is introduced in such a way that conic cscK metrics are its critical points.
Finally we prove that the conic Mabuchi functional is convex and continuous along
a conic geodesic.
Résumé. — Le but de cet article est de démontrer la convexité de la fonction-

nelle de Mabuchi le long d’une géodésique dans le cadre conique. Nous considérons
d’abord les métriques de Kähler de courbure scalaire constante (cscK) et ensuite
nous introduisons la fonctionnelle de Mabuchi de sorte que les métriques coniques
cscK soient ses points critiques. Par la suite nous démontrons le résultat principal.

1. Introduction

Let H be the space of all Kähler metrics in a fixed cohomology class.
Mabuchi [14] introduced the so called “K-energy map” (Mabuchi’s func-
tional) on this space, whose Euler–Lagrange equations are constant scalar
curvature Kähler (cscK) metrics. In the same time, he observed that the
complex Hessian of the K energy map is semi-positive on H. In 1987, he
introduced an L2 norm (Mabuchi’s L2 norm) [15] on the tagent space of H,
such that H becomes an infinite dimensional Riemannian manifold. Then
many people studied the geometry of this infinite dimensional Riemannian
manifold including S. Semmes, S.K. Donaldson, and so on.

Two decades later, X. Chen [5] proved that there exists a unique C1,1̄ geo-
desic connecting any two points inH. Mabuchi’s observation combined with
this result becomes very important in the study of uniqueness of canonical

Keywords: Mabuchi’s functional, variational method, cscK metrics.
2010 Mathematics Subject Classification: 32U05, 53C55, 35J35.
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metrics. In fact, it was conjectured by X. Chen that Mabuchi’s functional
is a convex and continuous function along geodesics. However, the lack of
regularities on the geodesic obstructed many attempts.
The breakthrough is a recent work by Berman and Berndtsson [1]. They

first proved that Mabuchi’s functional is weakly convex (without continu-
ity) along any C1,1̄ geodesic. Their beautiful idea is based on the Bergman
kernel approximation and the subharmonicity of log-Bergman kernels first
due to Yamaguchi. Later they improved this work and proved the continu-
ity.
In a joint work with X. Chen and Mihai Păun [6], we gave an independent

proof of this conjecture from a different point of view. Our proof is based
on a new approximation of geodesics, inspired by Păun’s previous work on
positivity of relative canonical bundles [16].

The aim of this paper is to study this convexity property of Mabuchi’s
functional under conic setting. However, the set up of conic cscK metrics
is not completely clear before. For example, we can consider the following
equation as a candidate:

(1.1) Ric(ωβ) ∧ ωn−1
β = ωnβ + (1− β)[D] ∧ ωn−1

β .

However, the wedge product [D] ∧ ωnβ has no meaning in the usual sense.
Fortunately, we can still utilize the non-pluripolar product [3] (charges no
mass on D) or the Bedford–Talyor–Demailly product [8] (charges mass on
D) to study this wedge product. We discussed three different new notions
(weak conic cscK, conic cscK, strong conic cscK metrics) in Section 2, and
each of them has some independent interests.
Based on this new definition of conic cscK metrics, Section 3 is devoted

to study the corresponding conic energies. The Euler–Lagrange equation of
conic Mabuchi’s functional is expected to be the conic cscK metrics. The
integral form of this energy is first given in this section, and we proved that
conic cscK metrics are indeed critical points of conic Mabuchi’s functional.

Our main result is proved in Section 4. And the precise statement is as
follows.

Theorem 4.13. — Suppose there exists a conic C1,1̄
β geodesic G con-

necting two conic Kähler potential ϕ0 and ϕ1. Then the conic Mabuchi’s
functional Mc(t) restricted on G is a convex continuous function on the
closed interval [0, 1].

ANNALES DE L’INSTITUT FOURIER
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The idea of the proof is very similar to our previous work [6], but dif-
ficulties arise in the “a priori estimates” for a family of Monge–Ampère
equations. Especially, there is no control on the lower bound of the cur-
vature when the angle β > 1/2. Guenancia and Păun developed a new
technique [11] on C2 estimate of conic Kähler–Einstein metrics for full an-
gles. However, we can not incorporate their work directly into our picture.
The approximation (indexed as ε, δ and ε′) to the conic Kähler metric as
a solution of the homogeneous complex Monge–Ampère equation (HCMA)
are much more complicated. The new trick here is to balance the growth
rate of the two sides of the HCMA, to make them always comparable.
This is done by a careful investigation of the smoothing geodesics. And
it is based on a new technique on the regularization of (conic) geodesics,
inspired by the work of Blocki–Kolodziej [2].
Combined with the existence result of conic C1,1̄

β geodesic [4], we imme-
diately proved that the conic Mabuchi’s functional is a convex function
between any two points in the space C2,α,β . However, here we need to as-
sume the angle β is smaller than 1/2. When the angle β ∈ [1/2, 1), the
existence of such geodesics is not clear up to this stage.
Finally we want to point out that we only consider simple smooth divisor

D as the set where conic singularity develops in this paper. And also we
assumed the line bundle LD induced from this divisor is semi-positive in
the sense that there exists some smooth psh metric on it. However, we
believe that our method can be generalized to the smooth klt setting, and
the smoothness of the psh metric on the line bundle can be removed. These
results will come from sequel papers.

Acknowledgement. The author is very grateful to Prof. Xiuxiong
Chen, for his generous help and continuous encouragement. And the au-
thor would like to show his great thanks to Prof. Mihai Păun, for lots of
useful discussion and valuable suggestions. The author also wants to thank
Prof. Ian Hambleton and Prof. McKenzie Wang for their supports from
many aspects.
Part of this paper was completed during the author’s visit to SNU, from

a kind invitation by Prof. Dano Kim. And the author also wants to thank
Prof. S. Kolodziej and Dr. N.C. Nguyen for useful discussion on pluripoten-
tial theory. Finally, the author wants to thank Prof. Song Sun, Prof. Kai
Zheng and Dr. Chengjian Yao for their kind help on reading the draft of
this paper and giving advices.
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2. Conic canonical metrics

Let X be a compact complex n-dimensional Kähler manifold with Kähler
form ω. Suppose D is a simple smooth divisor on the manifold X, and we
assume the associated line bundle LD > 0 is semi-positive, in the sense
that there exist a smooth psh metric ψ on it. And we also assume D is
induced by some smooth section s ∈ H0(X,LD).

When the first Chern class c1(X) of the manifold X has a definite sign
(positive, zero or negative), the most interesting canonical metrics are
Kähler–Einstein metrics. We can define a Kähler–Einstein metric ωϕ by
the following equation:

(2.1) Ric(ωϕ) = λωϕ ,

where the constant λ equals to 1(0, or − 1), corresponding to the case
c1(X) > 0(= 0, or < 0). However, when we investigate more general Kähler
manifolds, this is just a special case of the so called cscK metric (constant
scalar curvature Kähler metric). A Kähler metric ωϕ is a cscK metric if it
satisfies the following equation on X:

(2.2) Rϕ = nR,

where the constant R is a topological invariant by Stokes’ theorem, and it
can be calculated as follows:

R = [c1(X)] · [ω]n−1

[ω]n .

Notice that this is a 4th. order, fully non-linear partial differential equation,
and it is equivalent to the following family of equations:

(2.3)
{

Ric(ωϕ) = Rωϕ + θ

θ ∧ ωn−1
ϕ = 0 ,

for some smooth closed (1, 1) form θ, on where the metric ωϕ is non-
degenerate. After wedging ωn−1

ϕ on both sides of the first equation in (2.3),
we get another equivalent equation of cscK metrics as follows:

(2.4) Ric(ωϕ) ∧ ωn−1
ϕ = Rωnϕ .

Equations (2.2), (2.3) and (2.4) indeed give three different notions of cscK
metrics. When the metric is smooth, they are all equivalent. However, under
the setting of conic Kähler metrics, the situation becomes more subtle as
we will see later.

ANNALES DE L’INSTITUT FOURIER
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2.1. Conic metrics in Hölder spaces

Let’s consider all Kähler metrics on X in a given cohomology class. This
is equivalent to the space of all Kähler potentials as

H := {ϕ ∈ C∞(X) |ωϕ := ω + ddcϕ > 0} .

Now we want to put some singularity to these metrics along the divisor D.
The simplest case is when X is the Euclidean space Cn, and the divisor
is defined by {z1 = 0}. Then we define a model conic Kähler metric with
cone angle β along D as

ωβ := 1
|z1|2−2β dz1 ∧ dz̄1 +

n∑
j=2

dzj ∧ dz̄j .

Back to general Kähler manifolds, we can also consider this kind of singular
metrics by comparing it with the model metric locally near a point p on
the divisor.

Definition 2.1. — A conic Kähler metric ωϕ on X with cone angle β
along the divisor D is a Kähler current on X, smooth outside of D, such
that it is quasi-isometric to the model metric ωβ in a neighborhood of any
point p ∈ D.

Take a point p ∈ D, there is an open coordinate chart U 3 (z1, z2, . . . , zn)
centered at p, such that the divisor is defined locally as D := {z1 = 0}.
Then the quasi-isometric condition in Definition 2.1 can be read as

C−1ωβ 6 ωϕ 6 Cωβ ,

for some constant C on U .
According to Donaldson [9], we can introduce some Hölder norms to

this space of conic Kähler metrics. Let’s consider in the local coordinate
chart U 3 p first. Writing in polar coordinate z1 = ρeiθ, we can put w =
reiθ, where r = ρβ . Hence w1 = w and wj = zj for j > 1 give another
coordinate around p, and we call it as w-coordinate (notice that this change
of coordinates is not holomorphic). Then the natural cone metric in the new
coordinate can be found as

(2.5)

g = dr2 + β2r2dθ2 +
∑
j>1

(ds2
j + dt2j )

= β2ρ2β−2dρ2 + β2ρ2βdθ2 +
∑
j>1

(ds2
j + dt2j )

where zj = sj+
√
−1tj . Although it appears to be singular in the original co-

ordinate, this cone metric preserves the finite distance near p. Moreover, the

TOME 68 (2018), FASCICULE 2
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metric g is exactly the induced Riemannian metric by the skew-symmetric
bilinear form ωβ . Hence we introduce a 1 form as

(2.6)
ε := eiθ(dr +

√
−1βrdθ) = βρβ−1dz1

= 1 + β

2 dw + 1− β
2 e2iθdw̄ ,

and
ε ∧ ε = β2ρ2β−2dz1 ∧ dz̄1 = βdw ∧ dw̄ .

Notice that in w-coordinate, the cone metric g is quasi-isometric to the
Euclidean metric. Then according to Donaldson, for α < β−1− 1, we make
the following definitions.

Definition 2.2. — A real-valued function f is in C0,α,β , if f is a Cα
Hölder continuous function in w-coordinate.

A (1, 0) form ξ on X (in the original coordinate chart) locally can be
written as

ξ = fε+
∑
j>1

gjdzj .

Then we can introduce another Hölder space for (1, 0) forms as

Definition 2.3. — A (1, 0) form ξ is in C,α,β if f, g ∈ C0,α,β and the
limit of f vanishes when it approaches the divisor. And a function f ∈ C1,α,β

means f ∈ C0,α,β and ∂f ∈ C,α,β .

It is equivalent to the following conditions in w-coordinate:

C1,α,β =
{
f ∈ C1,α,

∂f

∂w
(0, w′) = 0, ∂f

∂w̄
(0, w′) = 0

}
.

This is a Banach space inherited from the usual C1,α norm in w-coordinates.
Now for a (1, 1) form τ on U , we have

τ = fε ∧ ε+
∑
j>1

(g1jε ∧ dz̄j + gj1dzj ∧ ε) +
∑
j,k>1

gjkdzj ∧ dz̄k .

Then let’s define a new Hölder space as follows.

Definition 2.4. — A (1, 1) form τ is in C,α,β , if f, gjk ∈ C0,α,β for all
j, k, and g1j , gj1 converge to zero when they approach the divisor. And a
function f ∈ C2,α,β if f ∈ C0,α,β , ∂f ∈ C,α,β and ∂∂̄f ∈ C,α,β .

Again this is a Banach space by restricted C2,α norm from w-coordinates.
Finally, we can further define a higher regularity class [4] as follows

C3,β :=
{
f ∈ C2,α,β ∣∣ all the third derivatives of f is bounded w.r.t ωβ

}
.

ANNALES DE L’INSTITUT FOURIER
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According to Calamai and Zheng [4], this higher regularity space C3,β

is useful, when we consider the existence of geodesics connecting points in
the space of conic Kähler metrics. And we will give further details when
this result is mentioned later.

2.2. Conic cscK metrics

Our goal is to give a proper notion of cscK metric under the conic setting.
The cheapest way is to forget about the singular part of the manifold, and
define it as the usual cscK metric on the regular part.

Definition 2.5. — A weak conic cscK metric is a conic Kähler metric
ωϕ with cone angle β along the divisor D, satisfying the following equation
on X −D:

(2.7) Rϕ = c ,

where c is a proper constant.

This constant c should only depend on the Kähler class([ω], [ω|D]), the
first Chern class(c1(X), c1(D)), and the class of the divisor D. However,
this is difficult to know, even if ϕ ∈ C2,α,β . In general, Stokes’ theorem
(integration by parts) fails to be applied to the LHS of equation of (2.4)
without further regularity assumptions.
In order to overcome this difficulty, we are going to invoke some pluripo-

tential theory from the work of Boucksom–Eyssidieux–Guedj–Zeriahi ([3]).
Recall that two quasi-psh functions ϕ and ψ have the same singular type
if ϕ = ψ+O(1). And the singular type of a positive closed (1, 1) current is
determined by its potential.

Lemma 2.6. — Let ωϕ be a conic Kähler metric, and Ω be another conic
Kähler metrics with C2,α,β potentials. Assume that on X −D, we have

Ric(ωϕ) > −CΩ ,

for some large constant C, such that Ric(ω)+Cω > 0. Then we can extend
the (1, 1) form

Ric(ωϕ) + CΩ

as a positive closed current on X. Moreover, the function φric :=
− log(ωnϕ/ωn) determines the singularity type of this positive current.

TOME 68 (2018), FASCICULE 2
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Proof. — Write Ω = ω+ ddcψ, for some ψ ∈ C2,α,β . We can re-write the
positivity condition Ric(ωϕ) + CΩ > 0 as

(2.8) Γ + ddc(− log
ωnϕ
ωn

+ Cψ) > 0 ,

where Γ = Ric(ω) + Cω > 0. Notice that the potential ψ is continuous on
X, and we claim that the function φric is bounded from above near the
divisor. Hence the new defined function Ψ := ψ + φric can be extended as
a Γ-psh function across the divisor. Writing φric = Ψ − ψ, we can extend
φric across the divisor as the difference of two quasi-psh functions, and it is
uniformly bounded from above since ψ is a bounded function on X. Finally
the singularity type of Ψ is determined by φric for the same reason.

Now we are going to prove the claim. It’s enough to consider the upper
bound of φric in a local coordinate chart of a point p on the divisor D. Then
by the local isometric property of conic Kähler metric, we can compare ωϕ
to the model metric ωβ in this neighborhood. That is, there exist a constant
C, such that

C−1ωnβ 6 ω
n
ϕ 6 Cω

n
β .

But in the local coordinate chart, we have

− log
ωnβ
ωn
∼ (1− β) log |z1|2 +O(1) ,

which is obvious bounded from above. Therefore, the claim follows. �

From now on, we can consider the space of all conic Kähler metrics with
Ricci curvature bounded from below.

Definition 2.7. — A conic Kähler metric ωϕ is in the family R if there
exists some (may depend on ωϕ) conic Kähler metric Ω with C2,α,β potential
such that

(2.9) Ric(ωϕ) > −CΩ

for some large constant C.

This extra positivity imposing on the Ricci curvature is equivalent to
say that the Ricci potential φric is a quasi-psh function on X. Moreover,
observe that the Ricci potential φric and the Kähler potential ϕ for a C2,α,β

conic metric ωϕ both have small unbounded locus [3], since the smooth di-
visor D is a complete pluripolar closed subset of X. Then we can invoke the
integration by parts formula (Theorem 1.14, [3]) to compute the topological
constant.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.8. — Let ωϕ1 , ωϕ2 ∈ R are two conic Kähler metrics
with C2,α,β potentials. Then we have the following equation:

(2.10)
∫
X−D

Ric(ωϕ1) ∧ ωn−1
ϕ1

=
∫
X−D

Ric(ωϕ2) ∧ ωn−1
ϕ2

.

Proof. — Notice that for two conic Kähler metrics ωϕ1 and ωϕ2 , the
following is always true: there exists some constant K > 0, such that the
difference of their Ricci potentials is globally bounded by K, i.e.

(2.11) |φ1,ric − φ2,ric| =
∣∣∣∣log

(
ωnϕ1

ωnϕ2

)∣∣∣∣ < K ,

on X. This is true because these two Ricci potentials have the same sin-
gularity type near the divisor according to Lemma 2.6. In fact, in a local
coordinate chart U near a point p ∈ D, we can compare the two conic met-
rics with the model metric ωβ in this neighborhood. That is, there exists a
constant C, such that

C−1ωnβ 6 ω
n
ϕi 6 Cω

n
β ,

where i = 1, 2. Write

u = φric,1 − φric,2 = (logωnϕ1
− logωnβ )− (logωnϕ2

− logωnβ ) ,

we can see |u| 6 2C on U , and hence bounded by some constant K on X.
Then we will illustrate the idea in the case when n = 2, and the general

case follows similarly. Let’s first claim that the following integration by
parts equation holds:

(2.12)
∫
X−D

(Ric(ωϕ1)− Ric(ωϕ2)) ∧ ωϕi = 0 ,

where i = 1, 2. Let’s define two new positive currents as Ti = Ric(ωϕi) +
CΩ. Here we can always assume the constant C is big enough such that
Ric(ω) +Cω > 0. Writing T1 = θ+ ddcψ1 and T2 = θ+ ddcψ2, where θ is a
smooth closed (1, 1) form in the class −c1(X)+C[Ω]. Then equation (2.12)
is reduced to show ∫

X−D
(ddcψ1 − ddcψ2) ∧ ωϕi = 0 .

Notice that ψ1 and ψ2 are two quasi-psh functions on X, which are smooth
on X −D. And their difference u = ψ1 − ψ2 is uniformly bounded on X,
because their currents have the same singularity type thanks to Lemma 2.6
and equation (2.11). Then equation (2.12) follows from Theorem 1.14 of [3].
Next the following equation follows from a similar argument:

(2.13)
∫
X−D

Ric(ωϕi) ∧ (ωϕ1 − ωϕ2) = 0 ,

TOME 68 (2018), FASCICULE 2
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for i = 1, 2. Combine equations (2.12) and (2.13) together, and we proved
equation (2.10) when n = 2. �

Based on this integration by parts, we can introduce the following defi-
nition.

Definition 2.9. — A conic cscK metric with cone angle β along the
divisor D is a conic Kähler metric ωϕ with C2,α,β potential, such that
ωϕ ∈ R, and

Rϕ = c(β) ,
on X −D.

Corollary 2.10. — The constant c(β) in the definition of conic cscK
metrics is a topological invariant.

Proof. — Suppose ωϕ1 and ωϕ2 are two conic cscK metrics with cone
angle β along D. They are both in the family R. Then it’s enough to prove
equation (2.10) since the constant can be written as

ci(β) =
∫
X−D Ric(ωϕ) ∧ ωn−1

ϕ∫
X−D ω

n
ϕ

,

for i = 1, 2. But this is true thanks to Proposition 2.8. �

This definition is a kind of generalization of equation (2.2) from smooth
cscK metrics, but we can also generalize it from equation (2.3).

Definition 2.11. — A strong conic cscK metric with cone angle β along
the divisor D is a conic Kähler metric ωϕ with C2,α,β potential, such that
it satisfies the following family of equations in the sense of currents

(2.14)
{

Ric(ωϕ) = c(β)ωϕ + Θ + (1− β)[D]

Θ ∧ ωn−1
ϕ = 0 ,

where Θ is a closed (1, 1) current, such that

Θ = θ + ddcu,

where θ is a smooth closed (1, 1) form on X in the same cohomology class,
and u ∈ C2,α,β .

Corollary 2.12. — The constant c(β) in the definition of strong conic
cscK metrics is a topological invariant.

Proof. — It’s enough to prove that ωϕ1 and ωϕ2 are both in the family
R. This is because we can estimate the lower bound of their Ricci currents
as

Ric(ωϕi) > ci(β)ωϕi + Θi > −CΩ ,

ANNALES DE L’INSTITUT FOURIER
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where Ω = (ωϕ1 + ωϕ2)/2 is a conic Kähler metric with C2,α,β potential,
and C is a large constant. This implies that ωϕi belongs to the family R
for each i. Then the result follows from Proposition 2.8 again. �

Notice that the first equation in (2.14) is in fact a twisted conic Kähler–
Einstein equation, so it is equivalent to the following Monge–Ampère equa-
tion:

(2.15) (ω + ddcϕ)n = eh−c(β)ϕωn

(|s|2e−ψ)1−β ,

with normalization condition∫
X

eh−c(β)ϕωn

(|s|2e−ψ)1−β = 1 .

Here ψ is a smooth psh metric for the line bundle LD, and the function
h = hω,Θ ∈ C2,α,β solves the following equation:

(2.16) Ric(ω)− c(β)ω = (1− β)ddcψ + Θ + ddchω,Θ .

Remark 2.13. — Strong conic cscK metrics are certainly conic cscK
metrics. However, it is interesting to know if a conic cscK metric is strong
conic cscK.

2.3. Distributional view

Another attempt is motivated by the definition of conic Kähler–Einstein
metrics. A conic Kähler–Einstein metric with cone angle β along the divisor
D is a conic Kähler metric ωϕβ with C2,α,β potential, satisfying the following
equation on X in the sense of currents:

(2.17) Ric(ωϕβ ) = c(β)ωϕβ + (1− β)[D] ,

where [D] is the integration current of the divisor D, and the constant c(β)
is determined by the correct cohomology condition. Now we can wedge a
positive (n− 1, n− 1) form ωn−1

ϕβ
on both sides of equation (2.17):

(2.18) Ric(ωϕβ ) ∧ ωn−1
ϕβ

= c(β)ωnϕβ + (1− β)[D] ∧ ωn−1
ϕβ

.

This equation is a natural generalization of conic Kähler–Einstein equa-
tion. However, it is not clear that the wedge product

[D] ∧ ωn−1
ϕ

is well defined a priori.
Recall that the non-pluripolar product for unbounded psh functions is

defined in [3]. Generally speaking, we can take the trivial extension of the

TOME 68 (2018), FASCICULE 2
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usual wedge product across the pluripolar set, provided it always has local
finite mass near the pluripolar set.

Lemma 2.14. — The non-pluripolar product 〈[D]∧ωn−1
ϕ 〉 is well defined

for any conic Kähler metric ωϕ with C2,α,β potential. In particular, the non-
pluripolar product is a zero current on X.

Proof. — The divisorD is a (locally) complete pluripolar closed subset of
X. According to [3], the potential of the current [D] is a quasi-psh function
with small unbounded locus. And ϕ ∈ C2,α,β is bounded on X. Then it’s
enough to prove the Bedford–Talyor product [D] ∧ ωn−1

ϕ defined on the
open subset X −D has locally finite mass near each point of the divisor.
By Poincaré-Lelong formula, the integration current [D] is equal to

ddc log |s|2, where s is its defining section. In a local coordinate (z1, . . . , zn)
near a point p ∈ U on D, we can assume that the divisor D coincides with
the set {z1 = 0}, and the integration current can be written down as

[D] = ddc log |z1|2 ,

in this local coordinate. Define vε = log(|z1|2 +ε) in the open neighborhood
U . Then {vε} forms a sequence of psh functions decreasing to log |z1|2
locally. And notice that

(2.19) ∂∂̄vε = εdz1 ∧ dz̄1

(|z1|2 + ε)2

is a positive current on X −D. Hence we can compute the integral as

∫
U−D

ddcvε ∧ ωn−1
ϕ =

∫
U−D

ddcvε ∧Π(ωn−1
ϕ )

=
∫
U−D

ddcvε ∧ (Πωϕ)n−1,(2.20)

where the operator Π is to project any (p, p) form to parallel direction of
the divisor (delete all forms involving dz1 or dz̄1). This is because the (1, 1)
form ddcvε already occupies all the normal directions (dz1 and dz̄1) of the
hypersurface D of X. Now notice that the (n− 1, n− 1) current (Πωϕ)n−1

is uniformly bounded on X. Therefore, by Fubini’s theorem, the integral
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in equation (2.20) can be estimated as

(2.21)
(

2πε
∫ 1

0

rdr
(r2 + ε)2

)(∫
|z2|2+···+|zn|261

dz2 ∧ dz̄2 . . . dzn ∧ dz̄n

)

6
−εC

2(r2 + ε)

∣∣∣∣1
0

= C

2(1 + ε) ,

where |z1| = r and C is some uniform constant. Finally, our integral is
bounded by Bedford–Talyor’s approximation theorem:∫

U−D
[D] ∧ ωn−1

ϕ = lim
ε

∫
U−D

ddcvε ∧ ωn−1
ϕ < +∞ .

Finally, the non-pluripolar product 〈[D] ∧ ωn−1
ϕ 〉 charges zero mass on

the divisor, since D is a pluripolar set in X. On the other hand, its sup-
port is in the divisor. In fact, it’s the trivial extension of the zero current
[D] ∧ ωnϕ

∣∣
X−D to X. �

Remark 2.15. — There is another way to define this wedge product by
Demailly’s generalization of Bedford–Talyor product, but this product is
no longer trivial on the divisor.

Now the non-pluripolar product 〈[D] ∧ ωn−1
ϕ 〉 is a closed positive (n, n)

current on X. That is, its coefficient is a positive measure on the manifold.
Then equation (2.18) can hold in the sense of measures, and this naturally
implies the wedge product between the Ricci curvature and ωn−1

ϕ is well
defined.

Proposition 2.16. — Suppose the conic Kähler metric ωϕ is in the
family R. Then the non-pluripolar product Ric(ωϕ)∧ωn−1

ϕ is well defined.

Proof. — Write Ric(ωϕ) = Γ+ddcΨ−CΩ, and the Ricci potential φric =
Ψ − ψ as in Lemma 2.6. Then it’s enough to prove the non-pluripolar
product (Γ + ddcΨ) ∧ ωn−1

ϕ is well defined. In a local coordinate chart
U near a point p on the divisor D, we can write ddcΨ̃ = Γ + ddcΨ for
some psh function Ψ̃ in U . Notice that Ψ̃ has the same singularity type
with the local function (1 − β) log |s|2. Hence the new defined function
Φ = Ψ̃ − (1 − β) log |s|2 is uniformly bounded on X. Now let χ > 0 be a
smooth function on U with compact support, and we can estimate their
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local mass as

(2.22)
∫
U−D

χddcΨ̃ ∧ ωn−1
ϕ

=
∫
U−D

χddcΦ ∧ ωn−1
ϕ + (1− β)

∫
U−D

χ[D] ∧ ωn−1
ϕ .

Notice that the first term of the RHS of equation (2.22) is bounded from
integration by parts:∫

U−D
χddcΦ ∧ ωn−1

ϕ =
∫
U−D

Φddcχ ∧ ωn−1
ϕ .

This is true thanks to Theorem 1.14 of [3] again. And the second term of
the RHS of equation (2.22) is also bounded because of Lemma 2.14. Then
the result follows. �

3. Conic energies

In the space of smooth Kähler potentials (metrics) H, we can define the
following energy functionals for any ϕ ∈ H:

(3.1) E(ϕ) := 1
n+ 1

∫
X

n∑
j=0

ϕωn−jϕ ∧ ωj ,

and

(3.2) Eα(ϕ) :=
∫
X

n−1∑
j=0

ϕωn−1−j
ϕ ∧ ωj ∧ α,

where α is any closed smooth (1, 1) form on X. Let ϕt be a curve in the
space H, we can take the first variation of the two energies as

(3.3) d
dtE(ϕt) =

∫
X

ϕ′tω
n
ϕt ; d

dtE
α(ϕt) = n

∫
X

ϕ′tω
n−1
ϕ ∧ α.

And on the product space X ×Σ, we can compute their complex Hessians
as

(3.4)
dτdcτE(ϕτ ) =

∫
X

(π∗ω + ddcΦ)n+1 ;

dτdcτEα(ϕτ ) =
∫
X

(π∗ω + ddcΦ)n ∧ π∗α.

In general, the first energy E is an affine function along geodesics, and both
energies E and Eα are continuous with respect to weak topology. Now, the
so called Mabuchi’s functional is defined as

M := E +H ,
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where E = RE−ERicω is called the energy part ofM, and H is the entropy
part, which is defined as

(3.5) H(ϕ) :=
∫
X

log
ωnϕ
ωn

ωnϕ .

Moreover, the first variation of Mabuchi functional can be computed as

(3.6) d
dtM(ϕt) = n

∫
X

ϕ′t(Rωϕ − Ricωϕ) ∧ ωn−1
ϕ .

Our next goal is to generalize these energy functionals to conic setting.
But before doing that, let’s discuss a bit about conic geodesics in the space
of conic Kähler metrics.

3.1. Conic geodesics

Donaldson [9] defines a global model metric with cone angle β as

(3.7) ω̃β := ω + ddcϕβ > 0 ,

where ϕβ = C−1ddc|s|2βψ with a large constant C. This global model metric
is equivalent to conic Kähler metrics up to quasi-isometry.

Definition 3.1. — Let ωϕ be a possibly degenerate Kähler current.
Then we say its potential ϕ has bounded conic Laplacian if ∆ω̃βϕ is an L∞
function on X. And we can write ϕ ∈ H∆,β .

Thanks to the Lp estimates and embedding theorems established for
conic Kähler metrics [7], the potential ϕ ∈ H∆,β is a C1,α function in
w-coordinate.
Now given two conic Kähler metrics (potentials) ϕ0 and ϕ1, we can

consider a curve ϕt connecting them. Instead of the real variable t, it’s
better to introduce another irrelevant real variable to make it as a complex
variable

τ := et+is .

Hence our domain under consideration becomes a product manifold X×Σ,
where Σ is an annulus in C.

On the product manifold X × Σ, we call a metric G to be conic C1,1̄
β if

0 6 G 6 CGβ ,

where C is a fixed constant, and Gβ := π∗ω̃β+
√
−1dt∧dt̄. Hence G|X×{t} ∈

H∆,β for each t ∈ Σ.
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Definition 3.2. — A conic C1,1̄
β geodesic G (under Mabuchi’s L2 norm

metric) connecting ϕ0 and ϕ1 is a closed positive (1, 1) current on X × Σ
with C1,1̄

β regularity, satisfying the following conditions:

(3.8)
Gn+1 = 0

G|X×{0},{1} = ωϕ0,1 .

In order to establish conic geodesics, we need to introduce more regu-
larities on the boundary of X × Σ. According to [4], we denote HC by the
space of all Kähler potentials ϕ ∈ C3,β such that ω ∈ R, for β ∈ (0, 1

2 ).
Then we have the following existence theorem for conic geodesics.

Theorem 3.3 (Calamai–Zheng). — Assume two Kähler potentials
ϕ0, ϕ1 are in the space HC . Then there exists a conic C1,1̄

β geodesic G
connecting them.

When the angle β > 1/2, the unboundedness of curvature causes troubles
in the proof of such existence theorem. However, it is still conjectured that
such conic geodesic exists for every angle β ∈ (0, 1), and for all points in
the space of C2,α,β conic Kähler potentials.

3.2. Conic Mabuchi’s functional

Now we can try to generalize our energy functionals to the space of
conic metrics with C2,α,β potentials. The goal is to find the Euler–Lagrange
equation for conic cscK metrics.
First notice that for C2,α,β potentials, the energies E and Eα are well

defined thanks to the Bedford–Taylor product. And we can compute their
first variation formula as follows.

Lemma 3.4. — Suppose ϕt is a C1 curve in the space of conic Kähler
potentials with C2,α,β Hölder norm. Then equation (3.3) holds.

Proof. — First note that the Bedford–Talyor product ωn−jϕ ∧ωj doesn’t
charge mass on any pluripolar set, and ϕ is a continuous function on X.
Hence we can write the energy integration as∫

X

ϕωn−jϕ ∧ ωj =
∫
X−D

ϕωn−jϕ ∧ ωj .

Now it’s enough to prove the following claim:

(3.9)
∫
X−D

ϕddcϕ′ ∧ ωn−j−1
ϕ ∧ ωj =

∫
X−D

ϕ′ddcϕ ∧ ωn−j−1
ϕ ∧ ωj .
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The time derivative ϕ′ ∈ C2,α,β is in the tangent space of all C2,α,β conic
Kähler potentials, and it satisfies the following convergence condition:

(3.10)
∣∣∣∣1t (ϕt − ϕ− tϕ′)

∣∣∣∣
C2,α,β

→ 0 .

Then by dominated convergence theorem, we can write the RHS of equa-
tion (3.9) as

(3.11)
∫
X−D

ϕ′ddcϕ ∧ ωn−j−1
ϕ ∧ ωj

= lim
t→0

1
t

∫
X−D

(ϕt − ϕ)ddcϕ ∧ ωn−j−1
ϕ ∧ ωj .

Next, we can normalize our potential ϕ > 0, since it is a continuous function
X. By equation (3.10), there exists a sequence of real numbers ε(ti) > 0
converging to zero as ti → 0, such that

−ε(ti)ω̃β 6 ddc
{

1
ti

(ϕti − ϕ)− ϕ′
}
6 ε(ti)ω̃β ,

and the LHS of equation (3.9) can be estimated as

(3.12)
∣∣∣∣∫
X−D

ϕddc
{

1
t
(ϕt − ϕ)− ϕ′

}
∧ ωn−j−1

ϕ ∧ ωj
∣∣∣∣

6 ε(t)
∫
X−D

|ϕ|ω̃β ∧ ωn−j−1
ϕ ∧ ωj

6 ε(t)C ,

for some uniform constant C. Finally we can do integration by parts as

(3.13)
∫
X−D

(ϕt − ϕ)ddcϕ ∧ ωn−j−1
ϕ ∧ ωj

=
∫
X−D

ϕddc(ϕt − ϕ) ∧ ωn−j−1
ϕ ∧ ωj ,

by Theorem 1.14 of [3] again, and the claim follows. �

Remark 3.5. — If α is a fixed conic closed (1, 1) current in the definition
of Eα, then Lemma 3.4 still holds. This is because we can always write α as
the difference of two conic Kähler metrics (maybe in different cohomology
class) with C2,α,β potentials.

Next, let’s consider how to define the conic entropy functional, and here
we will use a slightly different formula: for a conic Kähler potential ϕ ∈
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C2,α,β , put

(3.14) Hc(ϕ) :=
∫
X

log
ωnϕ

ωn/|s|2−2β
ψ

ωnϕ ,

where ψ is a smooth psh metric on the line bundle LD. Note that the func-
tion ωnϕ|s|

2−2β
ψ

ωn is uniformly bounded on X by the local isometric property of
conic metrics. Therefore, the functional Hc is well defined. When the curve
ωϕt is in the family R, we can compute its first variation:

d
dtHc(ϕt)(3.15)

=
∫
X−D

∆ϕϕ
′ωnϕ +

∫
X−D

log
ωnϕ

e−(1−β) log |s|2
ψωn

∆ϕϕ
′ωnϕ

= n

∫
X−D

ddcϕ′ ∧ ωn−1
ϕ + n

∫
X−D

log
ωnϕ

ωn/|s|2−2β
ψ

ddcϕ′ ∧ ωn−1
ϕ

= n

∫
X−D

ϕ′ddc log
ωnϕ|s|

2−2β
ψ

ωn
∧ ωn−1

ϕ

= n

∫
X−D

ϕ′(Ricω − Ricωϕ + (1− β)[D]− ddcψ) ∧ ωn−1
ϕ

= n

∫
X−D

ϕ′(Ricω − Ricωϕ) ∧ ωn−1
ϕ − n

∫
X−D

ϕ′ddcψ ∧ ωn−1
ϕ .

Here we need to justify the equality from the second line to the third
line in equation (3.15). The integration by parts formula can be applied to
the first term

∫
X−D ddcϕ′ ∧ωn−1

ϕ for the same reason as in equation (3.9).
For the second term of line two, the bounded function in the integrant can
be written as

log
ωnϕ|s|

2−2β
ψ

ωn
= (1− β) log |s|2ψ − φric ,

where (1−β) log |s|2ψ is a quasi-psh function on X, and the Ricci potential
can be decomposed into φric = Ψ− χ as in Lemma 2.6. Then the term in
line three follows from Theorem 1.14 of [3].
Finally we can define the conic Mabuchi functional as follows:

Definition 3.6. — The conic Mabuchi functional Mc acting on the
space of all C2,α,β conic Kähler potentials is defined as

(3.16) Mc := c(β)E − ERicω−ddcψ̃ +Hc ,

where ψ̃ := (1− β)ψ is a metric on the R-line bundle (1− β)LD.
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Corollary 3.7. — Suppose ϕt is a C1 curve in the space of C2,α,β

conic Kähler potentials, and assume ωϕt ∈ R. Then the first variation of
the conic Mabuchi functional can be computed as follows:

(3.17) d
dtMc(ϕt) = n

∫
X−D

ϕ′t(c(β)ωϕ − Ricωϕ) ∧ ωn−1
ϕ .

Hence conic cscK metrics are critical points ofMc.

Proof. — Combine Lemma 3.4 and equation (3.15), and the result fol-
lows. �

Notice that we can extend the domain of our conic entropy functional
to the space H∆,β . Consider the function x = log ωnϕ|s|

2−2β
ψ

ωn . Then x log x
is bounded from above and below on X for any ϕ ∈ H∆,β . And the conic
entropy can be written as

Hc(ϕ) =
∫
X

(x log x) dµ0 ,

where the measure dµ0 = ωn/|s|2−2β
ψ has finite mass on X. Hence it is

well defined. Finally, we can also extend the domain of conic Mabuchi’s
functional to this larger space, since the energy part is always well defined
once the potential is a bounded quasi-psh function thanks to the Bedford–
Talyor product. Therefore, we infer the following.

Corollary 3.8. — For any ϕ ∈ H∆,β , the conic Mabuchi functional
Mc(ϕ) is well defined. In particular, we can restrict Mc to any C1,1̄

β

geodesic G.

3.3. Complex Hessian of conic energies

In order to prove the convexity (subharmonicity) of the conic Mabuchi
functional, we will investigate its second order derivative in this section.
First, we claim that the energy part still behaves very well on the conic
geodesics.

Lemma 3.9. — Let ϕτ = Φ(τ, · ) be the Kähler potentials of a geodesic
connecting two conic Kähler metric. Then the complex Hessian of the en-
ergy functionals can be computed as

(3.18)
dτdcτE(ϕτ ) =

∫
X

(π∗ω + ddcΦ)n+1 ;

dτdcτEα(ϕτ ) =
∫
X

(π∗ω + ddcΦ)n ∧ π∗α.

TOME 68 (2018), FASCICULE 2



824 Long LI

Proof. — Notice that Φ|X×{τ} ∈ H∆,β , for each τ ∈ Σ, and then E(ϕτ )
and Eα(ϕτ ) are well defined as discussed before. Since ϕ are Hölder con-
tinuous functions on X×Σ, there exists a smooth approximation sequence
ϕε decreasing to ϕ uniformly on any open domain of X × Σ [2].
Let χ(τ) be a smooth compactly supported testing function on Σ, and

by equation (3.4) we have∫
Σ

(dτdcτχ)E(ϕε) =
∫
X×Σ

χ(π∗ω + ddcΦε)n+1 .

Thanks to the Bedford–Talyor approximation theorem, we can pass to lim-
its on the RHS side∫

X×Σ
χ(π∗ω + ddcΦε)n+1 →

∫
X×Σ

χ(π∗ω + ddcΦ)n+1 .

Moreover, we have∫
Σ

(dτdcτχ)E(ϕε) =
∫

Σ
E(ϕε)ddcχ→

∫
Σ
E(ϕ)ddcχ,

by dominated convergence theorem, and our result follows. �

Now on the conic geodesic G, let’s try to take the complex Hessian of the
conic Mabuchi functional in the current sense as follows.

(3.19)
∫

Σ
χdτdcτMc(ϕτ ) = −

∫
X×Σ

χ(Ricω − ddcX ψ̃) ∧ Gn

+
∫
X×Σ

χddct,X log
ωnϕ

ωn/|s|2−2β
ψ

∧ Gn,

where ωϕ = G|X×{t}, and the operator dt,X means taking derivatives on
both fiber and time directions. In order to prove convexity, it is enough to
show the following inequality among currents:

(3.20) ddct,X log
ωnϕ

ωn/|s|2−2β
ψ

∧ Gn > (Ricω − ddcX ψ̃) ∧ Gn.

4. Convexity of conic Mabuchi’s functional

In this section, we will generalize our previous work [6] to the conic
setting. The basic idea is to construct a new approximation of the volume
element of the geodesic G, by means of solving a family of Monge–Ampère
equations. And readers are encouraged to read our previous work, because
the idea used here is very similar to [6].
Let’s explain some notations for the use of later calculation.
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(1) we will abuse the notation ωβ for local model conic metric and the
global one ω̃β (equation (3.7)). So we have ωβ = ω + ddcϕβ .

(2) since all energies only depend on the real part of the complex vari-
able τ ∈ Σ, it is reasonable to abuse τ and its real part t.

(3) we write dX or ∂X as for taking derivatives on the fiber X×{t} for
some t, and dt,X or ∂t,X as for taking derivatives on the product
manifold X × Σ. If there is no confusion, then we just use d or ∂.

(4) the constant C, C ′... might be different from line to line, and we
hope its self-explanation is clear enough.

(5) we will use Θ(L) to denote the curvature form of the line bundle
L associated to a metric ψ. When the line bundle and its metric is
clear, we will briefly write Θ.

4.1. Regularization

Let ωϕi , i = 1, 2 be two conic Kähler metrics, with ϕi ∈ C2,α,β . Suppose
there exists a conic C1,1̄

β geodesic G connecting these two points. First, it
can be approximated by taking the convolution with respect to mollifiers.
Take Σ′ to be a relatively compact open subset of the annulus Σ.

Lemma 4.1. — On a slight smaller open domain X ×Σ′ in the product
manifold X ×Σ, there exists a sequence Gδ to approximate the geodesic G
satisfying:

(1) the (1, 1) form Gδ are non-singular, and there is a uniform constant
C, such that we have:

Gδ > −2Cδ(ω +
√
−1dt ∧ dt̄) ,

on X × Σ′.
(2) the coefficients (gδ,αβ̄ , gδ,αt̄, gδ,tβ̄ , gδ,tt̄) of Gδ are uniformly bounded

in the sense of conic Kähler metrics. That is, in a local coordinate
(z1, . . . , zn) near a point p on the divisor, we have

(4.1)
∑
α,β>1

|gδ,αβ̄ |+ |gδ,tt̄|+ 2|z1|1−β(|gδ,1t̄|+
∑
β>1
|gδ,1β̄ |)

+ |z1|2−2β |gδ,11̄|+ 2
∑
β>1
|gδ,tβ̄ | < C ,

where the uniform constant C doesn’t depend on the point p, or
the index δ.
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(3) the coefficients satisfy the following convergence property on each
fiber X × {t}:
gδ,αβ̄ → gαβ̄ for α, β > 1, in Lp for any p > 1;
gδ,11̄ → g11̄ in Lp for 1 < p < 1

1−β ;
gδ,1β̄ → g1β̄ for β > 1, and gδ,1t̄ → g1t̄ in Lp for 1 < p < 2

1−β ;
gδ,tt̄ → gtt̄ and gδ,tβ̄ → gtβ̄ for β > 1 in Lp for any p > 1.
And all the convergences are uniform with respect to t ∈ Σ′.

(4) for potentials, we have

sup
t∈Σ′
||ϕδ − ϕ||C1,α,β(X×{t}) → 0 ,

as δ → 0.

Proof. — The geodesic can be written as G = ω+ddct,Xϕ, for a conic C1,1̄
β

potential ϕ. Then we can construct a smooth approximation sequence Gδ as
in Theorem 2 of [2]. On each coordinate chart Uα, we can take convolution
of ϕ with respect to a local smoothing kernel ρδ [2]. And then glue each piece
together to get ϕδ, by using regularized-maximum function (see Section 5).
If we take

Gδ := ω + ddct,Xϕδ ,
then from the basic properties of convolution and the fact 0 6 G 6 Gβ , we
have

Gδ > −Cδ(ω +
√
−1dt ∧ dt̄) ,

Point (2) follows from the property of convolution on psh functions
(Proposition 5.2), and then (3) and (4) follow from (2) and the conic em-
bedding theorem in [7]. �

In fact, we can take a closer look at the convolution process, and have
a better growth control for the coefficients of the smoothing geodesics as
follows.

Lemma 4.2. — In a fixed small neighborhood U of the divisor D, the
coefficients of Gδ|X×{t} grow as:

(1) for points x ∈ U such that dist(x,D) < 3δ, we have

0 6 gδ,11̄ 6 Cδ
2β−2, |gδ,1β̄ | 6 Cδ

β−1 ,

where C is a uniform constant independent of δ and t ∈ Σ′.
(2) for points x ∈ U such that dist(x,D) > 3δ, we have

0 6 gδ,11̄ 6
C

(|s|2 + δ2)1−β ; |gδ,1β̄ |
2 6

C

(|s|2 + δ2)1−β ,

for some uniform constant C.
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Proof. — As before, let p be a point on the divisor D, and BR is a
coordinate ball centered at p with radius R, such that locally D is given
by {z1 = 0}. And we will prove the growths control of the coefficients of
Gδ uniformly in this ball BR.

First notice that it’s enough to prove 0 6 gδ,11̄ 6 Cδ2β−2, and then the
growth of |gδ,1β̄ | is given by the positivity of Gδ as

gδ,11̄gδ,ββ̄ > |gδ,1β̄ |
2.

Now only normal direction to the divisor is under consideration, and we
can restrict our attention to this one dimensional disk by Fubini’s theorem.
Writing u = g11̄ > 0, we have by convolution

gδ,11̄ = uδ =
∫
u(z − δw)ρ(w) dV (w) ,

for δ < R/10, and ρ(w) is standard mollifier with support on the unit ball.
Then there are three cases to discuss:

(1) z = 0;
(2) |z| > 3δ;
(3) 0 < |z| < 3δ.

For (1), we can compute as

(4.2)

uδ(0) =
∫
u(−δw)ρ(w) dw ∧ dw̄

6
C

δ2−2β

∫
|w|<1

1
|w|2−2β dw ∧ dw̄

6 Cδ2β−2 .

For (3), notice that the ball Bδ(z) is contained in B4δ(0) for all |z| < 3δ.
After enlarging the integration domain, we have uδ 6 C(4δ)2β−2 by the
same computation as in equation (4.2).
For (2), notice that |z−δw|2 > |z/3|2 +(δ/3)2 for all |z| > 3δ. Therefore,

we have

(4.3)

∫
u(z − δw)ρ(w)dw ∧ dw̄ 6 32β−2C

(|z1|2 + δ2)1−β

∫
ρ(w)dw ∧ dw̄

6
C ′

(|s|2 + δ2)1−β .

Next we claim that the first derivative in the normal direction of ϕδ is
controlled as |∂ϕδ/∂z1|2 (x) 6 Cδ2β−2, for dist(x,D) < 3δ; and

|∂ϕδ/∂z1|2 (x) 6 C

(|s|2 + δ2)1−β ,
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for dist(x,D) > 3δ. This is because the geodesic potential ϕ belongs to the
Hölder space C1,α in w-coordinates, due to the C1,1̄

β regularity. Hence we
have the growth control |∂ϕ/∂z1|2 < C|z1|2β−2 near the divisor, and the
claim follows from a similar argument as above.
Finally, we need to take regularized maximum for different coordinate

charts. For simplicity, let’s consider a point x contained only in two charts
Uα and Uβ . Assume ϕα and ϕβ are local trivializations of ϕ on Uα and
Uβ near x. Take convolutions as ϕδ,α = ϕα ∗ ρδ and ϕδ,β = ϕβ ∗ ρδ. Put
MX to be the regularized maximum operator for two variables. Notice that
the value, the first and second order derivatives of MX only depend on
the geometry of X (see Section 5, Proposition 5.3). Therefore, we have the
same growth rates on its derivatives with the previous estimates of local
convolutions �

In order to find a better approximation, we will introduce a triple of index
η := (ε, δ, ε′), for small positive real numbers ε, δ and ε′, and a priori, they
are independent of each other. Define a semi-positive (1, 1) form as

G′δ := Gδ + 2Cδ(ω +
√
−1dt ∧ dt̄) > 0 .

Put
∆η := G′δ/ε,

and then the class c1(X) + {∆η}|X×{t} is Kähler on each fiber for all ε
small enough (independent of δ and ε′). Then we can solve the following
family of Monge–Ampère equations by the famous result of Yau [17] as

(4.4) (†η) : (Θω(KX + D̃) + ∆η + ddcφt,η)n = ε−neφt,η
ωn

(|s|2ψ + ε′)1−β ,

on each fiber X × {t}, and D̃ := (1 − β)D is the corresponding R-line
bundle. Then the solution φt,η satisfies the positivity condition:

(Θω(KX + D̃) + ∆η + ddcφt,η)
∣∣
X×{t} > 0 .

According to Theorem 4.1 of [6], we infer that

(4.5) Ξ := Θω(KX + D̃) + ∆η + ddcφt,η > 0 ,

as a smooth closed positive (1, 1) form on the product manifold X × Σ′.
Notice that the Ricci curvature of the Kähler form Ξ|Xt is bounded below
by −1 for each fixed t. And the claim follows from the same argument as
in [16] with the following calculation

(4.6) ddc log(|s|2 + ε′eψ) > 0 ,

for any positively curved smooth metric ψ on the line bundle D.
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4.2. C0 estimate and equicontinuity

We will prove the C0 estimate for the family of equations (†η). And the
claim is as follows.

Lemma 4.3. — Let φt,η be the solution of equation (†η). Then there
exits a proper choice of ε′ = ε′(δ), where ε′ → 0 if δ → 0, such that on each
fiber X × {t} we have:

sup
X
φε,δ,ε′ 6 C , −ε inf

X
φε,δ,ε′ 6 C ,

for a uniform constant C independent of η and t ∈ Σ′.

Proof. — We are going to apply maximum principle on the fiber X×{t}.
Rewrite the Monge–Ampère equation as

(4.7) (εΘ + G′δ + εddcφt,η)n = eφt,ηωn

(|s|2ψ + ε′)1−β .

Let the point p ∈ X be as φt,η(p) = maxX φt,η, and then ddcφt,η(p) 6 0
by maximum principle. This implies (εΘ + G′δ)(p) > 0, and we have

φt,η 6 φt,η(p) 6 log (εΘ + G′δ)n

dµβ,ε′
(p) ,

where dµβ,ε′ = ωn/(|s|2ψ + ε′)1−β . Now consider the following function

f(δ, ε′) :=
(I + G′δ)n(|s|2ψ + ε′)1−β

ωn
(p) ,

where I is the identity matrix, and we can always assume εΘ 6 I.
The sequence of volume forms (I+G′δ)n is a smooth approximation of the

singular volume form (I + G)n, which is uniformly bounded by a constant
C ′ times ωn/|s|2−2β

ψ . Thanks to Lemma 4.2, we can find ε′(δ) as function
of δ decreasing fast enough such that

(I + G′δ)n 6
C ′k(δ)

(|s|2ψ + ε′(δ))1−β ω
n ,

where ε′(δ) → 0 and k(δ) → 1 as δ → 0. In fact, put ε′ = δ2, and then
Lemma 4.2(2) implies that

(I + G′δ)n(|s|2 + δ2)1−β/ωn 6 102−2βC ,

for points x ∈ U such that dist(x,D) < 3δ. And also Lemma 4.2(2) directly
implies

(I + G′δ)n(|s|2 + δ2)1−β/ωn 6 C ,
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for points x ∈ U , such that dist(x,D) > 3δ. Hence we conclude that
f(δ, ε′(δ)) 6 2C ′ for all δ small enough, and the upper bound follows since
φt,η 6 f(δ).
In order to find the lower bound, we need to rewrite equation (4.4) again.

First let ϕβ,ε′ be the solution of the following Monge–Ampère equation

(4.8) (ω + ddcϕβ,ε′)n = dµβ,ε′ .

The solution exists because of Yau’s result [17] again, and by Kolodziej [12],
the Hölder norm |ϕβ,ε′ |Cα is uniformly bounded independent of ε′. Now put

Ωβ,ε′ := ω + 2Cδ(ω +
√
−1dt ∧ dt̄) + 1

2ddcϕβ,ε′ ,

and
τη := εφt,η + ϕδ −

1
2ϕβ,ε

′ .

Then equation (4.4) can be rewritten as

(4.9) (εΘ + Ωβ,ε′ + ddcτη)n = exp
{

1
ε

(
τη − ϕδ + 1

2ϕβ,ε
′

)}
dµβ,ε′ .

By the minimum principle, on the point q ∈ X where τη(q) = minX τ , we
have

τη > τη(q) > ε log (εΘ + Ωβ,ε′)n

dµβ,ε′
(q) + ϕδ(q)−

1
2ϕβ,ε

′(q) ,

where ε is small enough such that εΘ + ω/2 > 0. Therefore, we have

(εΘ + Ωβ,ε′)n > 2−n(ωβ,ε′)n > 2−ndµβ,ε′ ,

and the lower bound of εφt,η follows since ϕδ and ϕβ,ε′ are all uniformly
bounded. �

Lemma 4.4. — For each ε, the family φt,η obtained by piecing together
fiber-wise solutions is equicontinuous.

Proof. — The proof is very similar to what we did before in Theorem 4.2
of [6], and we recall it here for the convenience of readers. For fixed ε, put
Ψt,η := εΞ|X×{t}, and then we can compare equation (4.4) at t0 and t1 for
the same index δ and ε′:

(4.10) (Ψt0,η + ddc(ξη(t1)− ξη(t0)))n

= exp
{

1
ε

(ξη(t1)− ξη(t0)− ϕδ(t1) + ϕδ(t0))
}

(Ψt0,η)n ,
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where ξη(t) = εφt,η + ϕδ. By maximum principle and property (iv) of
Lemma 4.1, we claim that the difference of εφt,η can be estimated as

sup
X
|φt0,η(x)− φt1,η(x)| 6 ε−1C|t0 − t1| .

This is because for fixed x, we have
∣∣ ∂
∂tϕ(t, x)

∣∣ < C for some uniform con-
stant C independent of x and t. Therefore, we infer the following estimate:

|ϕδ(t0, x)− ϕδ(t1, x)| 6 C|t0 − t1| ,

for some uniform constant on X × Σ′, and proved the claim.
Then apply maximum principle on the fiber X×{t} in a similar manner,

and we have

|φt0,η(x0)− φt1,η(x1)| 6 ε−1C(|t0 − t1|+ d(x0, x1)α
′
) ,

where C is a uniform constant independent of η, and d(x0, x1) is the dis-
tance between the two points measured by the model cone metric. �

4.3. C2 estimate

Guenancia and Păun generalized a priori C2 estimate for Kähler–Einstein
equation to conic case in their work [11]. Here we will invoke this method
again.

Proposition 4.5 (Guenancia, Păun). — Let ωϕ = ω+ddcϕ be a Kähler
metric satisfying

(4.11) (ω + ddcϕ)n = eψ+−ψ−ωn ,

for some smooth function ψ±. Suppose there exists a uniform constant
C > 0, and a smooth function Ψ such that

(4.12) Cω + ddcΨ > 0 ,

and

(4.13) iΘω(TX) > −(Cω + ddcΨ)⊗ Id .

Then we have

(4.14) ∆ωϕ(log trωωϕ + Ψ−Aϕ) > ∆ωf

trωωϕ
− Ctrωϕω − nA+A(trωϕω) ,

where f = ψ+ − ψ−.
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Although equation (4.14) is in a global form, it is in fact computed in
a local normal coordinate near a point p ∈ X. So Proposition 4.5 applies
even if the Monge–Ampère equation (4.11) holds locally. In order to apply
this inequality, we prefer to write our family of Monge–Ampère equations
in the form

(ωε′ + ddcϕε′)n = eµϕε′+Fε′ωnε′ ,

with

Fε′ := − log (|s|2 + ε′)1−βωnε′

dV .

Here ωε′ := ω + ddcϕε′ is constructed in the paper of Guenancia and
Păun [11]. It is uniformly quasi-isometric to the metric

ω + ddc(|s|2ψ + ε′)β .

But the growth rates of curvatures of ωε′ have better controls. Now, we
have some extra terms in the Monge–Ampère operator in equation (†η)
like εΘω(KX + D̃) and so on. Hence our goal is prove these perturbations
won’t really affect the estimate. First, put

τ ′η := εφη + ϕδ − ϕε′

and define locally
ζη := τ ′η + εψθ ,

where ψθ is the local potential of the (1, 1) form Θω(KX + D̃). Then we
can re-write equation (4.4) locally as

(4.15) (ωε′ + ddcζη)n = exp
(

1
ε

(ζη − ϕδ + ϕε′ − εψθ) + Fε′

)
ωnε′ .

Here we forgot about the positive (1, 1) form 2Cδ(ω +
√
−1dt ∧ dt̄)|X×{t},

since the metric ωε′ + 2Cδ(ω+
√
−1dt∧dt̄) is a small smooth perturbation

(only depends on the index δ!) of the non-degenerate metric ωε′ . In fact, the
growth of the curvature of the perturbed metric is completely determined
by ωε′ itself near the divisor.
Take ωζη = ωε′ + ddcζη and f = 1

εuη + Fε′ , where

uη := ζη − ϕδ + ϕε′ = ε(φη + ψθ) .

Although uη is not globally defined, ∆ωuη is globally well define with
respect to any Kähler form ω. Hence ∆ωf is also globally defined. Applying
Proposition 4.5 to equation (4.15) under the curvature assumption (4.12)
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and (4.13), we get

(4.16) ∆ωζ (log trωε′ωζ + Ψε′ −Aτ ′η)

> Aε∆ωζψθ −
∆ωε′ψθ

trωε′ωζ
+

∆ωε′ f

trωε′ωζ
+ (A− C)trωζωε′ − nA

> (εA− 1)
∆ωε′ψθ

trωε′ωζ
+

∆ωε′ f

trωε′ωζ
+ (A− C)trωζωε′ − nA

>
∆ωε′ f

trωε′ωζ
+ (A− C − C ′|εA− 1|)trωζωε′ − nA,

for εA < 1, and C and C ′ are some uniform constants. For the second
inequality in equation (4.16), we assumed Θ = ddcψθ > 0, since on the
point where ddcψθ < 0, we have an even better lower bound.

Now the two sides of inequality (4.16) become globally defined, and we
can apply maximum principle to it as in [11].

Lemma 4.6. — Let φt,η be the solution of equation (†η). Then there
exits a proper choice of ε′ = ε′(δ), where ε′ → 0 if δ → 0, such that we
have:

−Cωε′ 6 εddcφε,δ,ε′ 6 Cωε′

for a uniform constant C independent of η.

Proof. — According to Section 4 of [11], a very useful auxiliary function
Ψ is constructed as

Ψε′,ρ := Cχρ(|s|2ψ + ε′) ,
where χρ is a kind of cut-off function defined on [ε′,+∞[ to R such that

i∂∂̄Ψε′,ρ > C(|s|2ψ + ε′)ρ−1√−1〈∂ψs, ∂ψs〉 − Cωε′ .

In particular, this implies

Cωε′ + ddcΨε′ > 0 .

As also proved in [11], for any fixed 0 < ρ < min{β, 1− β}, the function
Ψε′ = Ψε′,ρ is uniformly bounded, and we have the following two important
inequalities:

(4.17) iΘωε′ (TX) > −(Cωε′ + ddcΨε′)⊗ Id ;

and

(4.18) ddcFε′ > −(Cωε′ + ddcΨε′)

where C is a constant independent of ε′.
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Now equation (4.17) allows us to use Proposition 4.5, and we infer from
equation (4.18) as

∆ωε′Fε′ > −nC −∆ωε′Ψε′ ,

and then by equation (4.16) we have

∆ωζΨε′ > −
∆ωε′Fε′

trωε′ωζ
− Ctrωζωε′ .

Hence we can re-write equation (4.12) as

(4.19) ∆ωζ (log trωε′ωζ + 2Ψε′ −Aτ ′η)

>
∆ωε′ (

1
εuη)

trωε′ωζ
+ (A− 2C − C ′|εA− 1|)trωζωε′ − nA

>
∆ωε′ (

1
εuη)

trωε′ωζ
+ (A− 2C − C ′)trωζωε′ − nA

>
∆ωε′ (

1
εuη)

trωε′ωζ
− nA.

The second line works for ε small enough such that ε(2C + C ′ + 1) < 1,
under the assumption A < 2C +C ′+ 1. And in the third line, we just take
A = 2C + C ′. Observe that ddcuη = ωζ − G′δ, and then at the maximum
point p, we have

(1− εnA)(trωε′ωζ)(p) 6 trωε′G
′
δ(p) .

Finally, as we did in the proof of the upper bound of C0 estimate, take
ε′(δ) decreasing fast enough such that

G′δ 6 Cωε′(δ) ,

for some uniform constant C, when δ → 0. This is possible thanks to
Lemma 4.2. Then for ε small enough, we have

trωε′ωζ(p) 6
C

1− εnA ,

and the C2 estimate follows. �

4.4. Approximation of the conic geodesic

Based on our previous C0 and C2 estimate (Lemma 4.3 and 4.6), we
conclude as follows.
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Lemma 4.7. — For each fixed ε > 0, we can extract a limit

lim
δ→0

φε,δ,ε′(δ) = φε ,

strongly in C0. And the restriction of φε to the fiber X ×{t} is the unique
C1,1̄
β solution of the degenerate Monge–Ampère equation

(4.20) (Θω(KX + D̃) + ε−1G + ddcφt,ε)n = ε−neφt,ε
ωn

|s|2−2β
ψ

.

Moreover we have

Θω(KX + D̃) + ε−1G + ddcφε > 0 ,

as a current in the product manifold X × Σ′.

Proof. — The last statement is because of the equi-continuity proved
in Lemma 4.4. In fact, the limit φε := limδ→0 φε,δ,ε′(δ) is continuous in
the interior of X ×Σ, and the global positivity from equation (4.5) passes
down to

Θω(KX + D̃) + ε−1G + ddcφε > 0 . �

Next, we need a lemma to investigate the behavior of the solution φε
when ε → 0. The method is used in Theorem 4.3 of [6] before, and we
recall it here.

Lemma 4.8. — The sequence of measures

eφt,εωn/|s|2−2β
ψ

converges to Gn|X×{t} weakly in Lp, for any 1 < p < 1
1−β .

Proof. — First we re-write equation (4.20) as

(4.21) (ω + εΘω(KX + D̃) + ddcτε)n = e
1
ε (τε−ϕ) ωn

|s|2−2β
ψ

,

where τε := εφt,ε+ϕ. Now thanks to the C0 and C2 estimates, there exists
some conic C1,1̄ function ρ 6 0 such that

εφε → ρ,

in C1,α,β , when ε→ 0. Hence the limit τ = ρ+ ϕ is smaller than ϕ.
In the same time, we have the following convergence for Monge–Ampère

masses thanks to Lemma 4.1(3):

(ω + εΘ + ddcτε)n → (ω + ddcτ)n ,

in sense of weak Lp for any 1 < p < 1/(1− β).
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Put Uδ := {τ < ϕ− δ} (an open set of X). By comparison principle [13],
[10], we have ∫

Uδ

Gn 6
∫
Uδ

(ω + ddcτ)n .

However, on the set Uδ, the inequality τε − ϕ < −δ/2 holds for ε small
enough. Hence by equation (4.21), we infer∫

Uδ

(ω + ddcτ)n = 0 .

Next, we claim that Gn|U = 0, where U is the closure of the open set
{τ < ϕ}. This is because the set U − U has measure zero, and the density
ωn/|s|2−2β

ψ is in L1. Hence we have Gn = (ω + ddcτ) as currents on X.
Finally we invoke the uniqueness result in [13] to prove ρ = 0, and our
lemma follows. �

4.5. Interior convexity

In order to enhance the weak convergence to strong convergence, we
invoke the Banach–Saks theorem here as in [6]. Choose ti ∈ (0, 1) with
i = 0, 1, 2 be three arbitrary points, and then we fix them. By Lemma 4.8
and the Banach–Saks, one can find a sequence εk as k → +∞ such that

1
k

k∑
j=1

exp(φti,εj )
ωn

|s|2−2β
ψ

→ Gn|X×{ti} ,

strongly in Lp with some p > 1, for i = 0, 1, 2. A priori, the sequence εk
does depend on ti, but it becomes harmless by the following lemma.

Lemma 4.9. — Let fi ∈ Lp converges weakly to a function h in Lp, and
gi ∈ Lp converges weakly to a function k in Lp. Then there is a convex
combination F , consisting of composition with picking up subsequence and
taking average, such that

F({fi})→ h, F({gi})→ k ,

simultaneously in strong Lp sense.

Proof. — For the sequence {f1, f2, . . .}, we can pick up a subsequence
{fj} such that the first convex combination

F1({fi}) = 1
k

k∑
j=1

fj → h
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strongly thanks to Banach–Saks. If apply this convex combination to an-
other sequence, then it still converges weakly as

F1({gi}) 99K k .

Now use Banach–Saks again on the new sequence F1({gi}), and we have
another convex combination F2 such that

F2 ◦ F1({gi})→ k ,

strongly in Lp. Notice that F2 acting on a strongly converging sequence
is still strongly converging. Therefore, put F := F2 ◦ F1, and we have
F({fi})→ h strongly in the same time. �

By repeating Lemma 4.9, we can find a convex combination Fφε such
that

F0,1,2

({
exp(φti,ε)ωn/|s|

2−2β
ψ

})
→ Gn|X×{ti}

strongly in Lp, for i = 0, 1, 2 simultaneously. Hence we can define the
following volume element as

ωnt,k := F (k)
0,1,2

({
exp(φt,ε)ωn/|s|2−2β

ψ

})
where F (k) means the kth term in the convex combination as a sequence.
LetMk be the conic Mabuchi functional evaluated on the conic geodesic

G, with the entropy modified by the volume element ωnt,k as

(4.22) Mk(t) := c(β)E(ϕt)− ERicω−ddcψ̃(ϕt) +
∫
X

log
ωnt,k

ωn/|s|2−2β
ψ

Gn .

The new sequenceMk is an approximation toMc at least at these three
points t0, t1 and t2. And we claim that it is a convex function along the
conic geodesic.

Lemma 4.10. — For each k > 1, the functional Mk is a continuous
convex function on [0, 1].

Proof. — The functional Mk(t) is continuous, thanks to the regularity
we got from C0 and C2 estimates for each φt,ε. Then it is enough to show
thatMk is convex in the weak sense. And this boils down to the inequality

ddc log
ωnt,k

ωn/|s|2−2β
ψ

∧ Gn > (Ricω − ddcψ̃) ∧ Gn .

For each k, writing the convex combination as

ωnt,k =
k∑
j=1

λkj exp(φt,εj )ωn/|s|
2−2β
ψ ,
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where
∑k
j=1 λ

k
j = 1. Then we have

ddc log

 k∑
j=1

λkj exp(φεj )

 > k∑
j=1

λkj exp(φεj )∑k
l=1 λ

k
l exp(φεl)

ddcφεj ,

by direct computation. Based on the positivity in Lemma 4.7, we have

−Ric(ω) + ddcψ̃ + ε−1
j G + ddcφεj > 0 .

Finally, we obtain

ddc log

 k∑
j=1

λkj exp(φεj )

∧Gn > k∑
j=1

λkj exp(φεj )∑k
l=1 λ

k
l exp(φεl)

(Ricω−ddcψ̃)∧Gn ,

which proves the lemma. �

Corollary 4.11. — The conic Mabuchi functionalMc(t) on the conic
geodesic is a convex function on the interval (0, 1).

4.6. Continuity at the boundary

The entropy function Hc(t) evaluated on the conic geodesic is lower semi-
continuous up to the boundary. In fact, we invoke the following lemma from
our previous paper [6].

Lemma 4.12 (Chen–Li–Păun). — Suppose f, fi are uniformly bounded
non-negative functions, such that fi → f weakly in L1, and assume µ is a
positive locally finite measure. Then

lim
i

∫
X

(fi log fi − f log f) dµ > 0 .

Base on this semi-continuity lemma, we conclude our theorem as follows.

Theorem 4.13. — Suppose two conic Kähler potential ϕ0 and ϕ1 can
be connected by a conic C1,1̄

β geodesic G. Then the conic Mabuchi func-
tionalMc(t) restricted to G is a convex continuous function on the closed
interval [0, 1].

Invoking the existence theorem in [4], we immediately get the following
convexity theorem.

Corollary 4.14. — If two conic Kähler potentials ϕ0, ϕ1 are in the
space HC , then the conic Mabuchi functional Mc(t) restricted to G is a
convex continuous function on the closed interval [0, 1].
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5. A new regularization of (conic) geodesics

5.1. Blocki–Kolodziej regularization

Let ϕ be a ω-psh functions on a complex Kähler manifold X, and ω is its
Kähler form. Suppose the Lelong number ν(ϕ) of ϕ is everywhere zero on
X. Then Blocki–Kolodziej [2] constructed a sequence of smooth (1 + εj)ω-
psh functions ϕj on an open subset M ⊂ X, decreasing to ϕ at every point
when εj ↘ 0. And we will recall the last step of their proof here.
Take ρ(z) to be the standard mollifier on Cn, and put ρδ = δ−2nρ(z/δ)

for δ > 0. Then we denote by ϕδ the convolution of u by ρδ

uδ(z) := u ∗ ρδ(z) =
∫
Cn
u(z − δw)ρ(w) dλ(w) .

Let {Vα}, α ∈ A be a finite number of coordinate charts coveringM , and
Vα ⊂ Uα. Suppose fα is the local potential of the Kähler form ω on the
chart Uα, i.e.

ddcfα := ω|Uα .
Then uα := ϕ + fα has the local regularization uα,δ in the chart Uα.

Then they can prove

(5.1) uα,δ − uβ,δ → fα − fβ

locally uniformly in Uα ∩Uβ . Let ηα + 1 be a smooth compactly supported
function in Uα such that ηα = 0 on Vα. Then there exists a uniform constant
C such that ddcηα > −Cω, and we can take

ϕδ := max
α
{φα,δ} ,

where
φα,δ := uα,δ − fα + εηα/C .

Notice that the constant C does not depend on ε in our case, since the
background metric ω is a smooth Kähler form here.
Moreover, near the boundary of Uα, the local function φα,δ does not

contribute to the maximum since ηα = −1 there. Hence we can take the
so called regularized Maximum operator Mτ instead of taking maximum.
Here τ := (τα) is a collection of real positive numbers {τα} (depending on
ε) for each α ∈ A. Therefore, we have a family of smooth (1 + ε)ω-psh
functions

Φτ,δ := Mτ{φα,δ}
such that Φτ,δ decreases to ϕ by a diagonal argument of δ and ε.
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5.2. Derivatives of regularized maximum

Recall the definition of the regularized maximum operator first. Let
θ ∈ C∞(R,R) be a non-negative function supported on (−1, 1), such that∫
R θ(h)dh = 1 and

∫
R hθ(h)dh = 0. For arbitrary τ = (τ1, . . . , τp) ∈

(0,+∞)p, we denote by Mτ the regularized maximum operator

(5.2) Mτ (t1, . . . , tp) := 1∏
16j6p τj

∫
Rp

max{t1 + h1, . . . , tp + hp}

×
∏

16j6p
θ

(
hj
τj

)
dh1 . . . dhp .

Note that Mτ is non-decreasing for each variable tj , 1 6 j 6 p, and it is
a smooth and convex function on Rp [8].
Next, we want to investigate the behaviors of derivatives of this operator.

For simplicity, we take p = 2, and (x, y) ∈ R2 is the Euclidean coordinate.
Now make the following change of variables

(5.3) z := (x+ y)/2 , w := (x− y)/2 ,

Lemma 5.1. — Assume τ = τ1 = τ2, and then we have

(5.4) |∂zMτ |+ |∂wMτ |+ |∂z∂zMτ |+ |∂z∂wMτ | < C ,

Moreover,

(5.5) |∂w∂wMτ | 6 Cτ−1 ,

for some uniform constant C, not depending on τ and (x, y) ∈ R2.

Proof. — There exists another smooth approximation of maximum op-
erator

max{x, y} = lim
r→+∞

fr(x, y) ,

where
fr(x, y) := 1

r
log(erx + ery) .

Take derivatives inside of the integral (max(x, y) is continuous) in equa-
tion (5.2), and we have

∂zfr = 1 , ∂wfr = erx − ery

erx + ery
, ∂z∂zfr = 0 , ∂w∂zfr = 0 .

Then equation (5.4) follows by taking r → +∞. On the other hand, observe
that it is enough to estimate ∂w∂wMτ on the diagonal {(x, x) ∈ R2} since
Mτ is a convex function. But we have

∂w∂w max{z + w, z − w} = δ{w=0}

ANNALES DE L’INSTITUT FOURIER
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in the distributional sense, where δ{w=0} represents the delta function at
{w = 0}.

Now if we put
θ(x/τ)θ(y/τ) = ρ(z, w, τ) ,

then ρ(z, w, τ) is a smooth bounded function supported in the unit rectan-
gle.

(5.6)

∂w∂wMτ (z, 0) = 1
τ2

∫ +∞

−∞
dz
∫ +∞

−∞
δ{w=0}ρ(z, w, τ)dw

= 1
τ2

∫ +∞

−∞
ρ(z, 0, τ)dz

6 Cτ−1 .

The last line follows from the fact that the function

ρ(z, 0, τ) = θ(x/τ)2 = ρ̃(z/τ)

is another mollifier on z coordinate. �

5.3. Regularization of C1,1̄(C1,1̄
β ) metrics

let G denote by a C1,1̄ metric on X. That is to say, G is a positive closed
(1, 1) current such that

0 6 G 6 Cω .
Writing G := ω + ddcϕ, the ω-psh function ϕ has bounded Laplacian on
X. Hence the C1,α Hölder norm of ϕ is uniformly bounded.
Now suppose Vα ⊂ Uα forms a finite cover of an open subset M ⊂ X,

and locally we have
G|Uα = ddcuα ,

for a family of psh function uα on each Uα. Put uα,δ as the local regular-
ization of uα by the standard mollifier on Cn. For each small ε > 0, we also
take

φα,δ := uα,δ − fα + εηα ,

as we did in Blocki–Kolodziej regularization (here we assume that the con-
stant C is 1).
Now the observation is that for each ε fixed, the gap between the bound-

ary value φα,δ(z), z ∈ ∂Uα and interior values φβ,δ(z) for all β such that
z ∈ Vβ is larger than ε/2 for all δ small enough. That is to say, for each
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point z ∈ ∂Ωα and all α ∈ A, we can choose τ = ε/4 such that the following
inequality holds

(5.7) φα,δ(z) + ε/4 < max
z∈Vβ
{φβ,δ(z)− ε/4} 6 max

z∈Uβ
{φβ,δ(z)− ε/4} ,

for all δ small enough. Then thanks to the glueing principle ([8, Corol-
lary 5.19]), the regularized maximum

Φε/4,δ = Mε/4{φα,δ}

is well defined for all δ small enough.

Proposition 5.2. — For each ε > 0, there exists a small δ > 0, such
that we have

|∂∂Φε/4,δ| 6 C ,

for a uniform constant C. Moreover, we have

∂∂Φε/4,δ − ∂∂ϕ→ 0 ,

in Lp sense, for any p > 1.

Proof. — For simplicity, we assume that there are only two coordinate
charts Vα ⊂ Uα and Vβ ⊂ Uβ intersecting with each other near a point p,
and the general case follows in a similar way. Then the regularized maxi-
mum operator is a function on (x, y) ∈ R2, and we introduce the change of
variables (z, w) ∈ R2 by equation (5.3). That is to say, if take

z = (φα,δ + φβ,δ)/2 , w = (φα,δ − φβ,δ)/2 ,

then thanks to Lemma 5.1, we have

(5.8) ∂k∂l̄Mε/4{z(φα,δ, φβ,δ), w(φα,δ, φβ,δ)}
= ∂k∂l̄z + ∂wMε/4 · ∂k∂l̄w + ∂w∂wMε/4 · ∂kw∂l̄w.

It is easy to see that ∂wMε/4 converges to zero when w → 0. But for the
last term, we need a more carful investigation. Take

vα,β,δ := (uα,δ − uβ,δ)− (fα − fβ) ,

and
ηα,β := ηα − ηβ ,

on Uα ∩ Uβ . Note that we have

∂vα,β,δ → 0 ,
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in some Cγ Hölder space when δ converges to zero. On the other hand, we
have

(5.9)

ε−1∂kw∂l̄w = ε−1∂(vα,β,δ + εηα,β) · ∂(vα,β,δ + εηα,β)

= ε−1∂vα,β,δ∂vα,β,δ + ∂vα,β,δ∂ηα,β

+ ∂ηα,β∂vα,β,δ + ε∂ηα,β∂ηα,β .

Now for each ε > 0, we pick up a δ (depending on ε), such that

|∂vα,β,δ|2 6 Cε2 ,

for some uniform constant C. Thanks to Lemma 5.1, for such a pair (ε, δ),
there exists a function δ := δ(ε) such that we have

|∂w∂wMε/4 · ∂kw∂l̄w| → 0 ,

as ε converges to zero, and the results follow. �

Now let G be a C1,1̄
β metric. That is to say, G has bounded Laplacian

with respect to a Kähler metric ωβ on X with cone singularity of angle
2πβ along a smooth divisor D. It is enough to estimate the approximation
near the divisor, since everything is the same as in Proposition 5.2 outside
a tubular neighborhood of D. Without losing any generality, we assume
that a point on the divisor belongs to at almost two open coordinate charts
Vµ and Vν .
Take this point p ∈ D, and an open neighborhood U with coordinate

{ζ, z2, . . . , zn} such that D := {ζ = 0} in U . Applying the Blocki–Kolodziej
regularization to G, we obtain the following estimates in the normal direc-
tion near the divisor (tangential directions and mixed directions can be
estimated in an easier way).

Proposition 5.3. — For each ε > 0, there exists a small δ > 0, such
that we have

|∂ζ∂ζ̄Φε/4,δ| 6 Cδ2β−2

Proof. — The only issue here is to understand the convergence of ∂vα,β,δ
in conic case. But this is determined by the difference between the convo-
lution ϕα,δ and ϕ|Uα . Thanks to Fubini’s theorem, we can restrict our
calculation in the normal direction. Note that ∂ϕ ∈ C,α,β . That is to say, if
we write ∂ϕ(ζ) = f̃(|ζ|β−1ζ), then f̃ is Cα Hölder continuous. Therefore,
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we have

(5.10)

∂(ϕα,δ − ϕ)(p) = {(∂ϕ)δ − ∂ϕ}(p)

=
∫
C
(∂ϕ(δζ)− ∂ϕ(0))ρ(ζ)dλ(ζ)

6 Cδαβ+β−1
∫
C
|ζ|αβ+β−1ρ(ζ)dλ(ζ)

6 C ′δαβ+β−1 .

Moreover, for points z in the small tubular neighborhood of D, we have
the same the growth estimate with equation (5.10) by a similar argument.
Hence we have

|δ|2−2β |∂w∂wMε/4 · ∂ζw∂ζ̄w| → 0 ,
when ε converges to zero, and the result follows. �

BIBLIOGRAPHY

[1] R. J. Berman & B. Berndtsson, “Convexity of the K-energy on the space of
Kähler metrics and uniqueness of extremal metrics”, J. Am. Math. Soc. 30 (2017),
no. 4, p. 1165-1196.

[2] Z. Blocki & S. Kolodziej, “On regularization of plurisubharmonic functions on
manifolds”, Proc. Am. Math. Soc. 135 (2007), no. 7, p. 2089-2093.

[3] S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi, “Monge-Ampère equations
in big cohomology classes”, Acta Math. 205 (2010), no. 2, p. 199-262 (English).

[4] S. Calamai & K. Zheng, “Geodesics in the space of Kähler cone metrics I”, Am.
J. Math. 137 (2015), no. 5, p. 1149-1208 (English).

[5] X. Chen, “The space of Kähler metrics”, J. Differ. Geom. 56 (2000), no. 2, p. 189-
234 (English).

[6] X. Chen, L. Li & M. Paun, “Approximation of weak geodesics and subharmonicity
of Mabuchi energy”, https://arxiv.org/abs/1409.7896, 2014.

[7] X. Chen & Y. Wang, “On the regularity problem of complex Monge-Ampere equa-
tions with conical singularities”, https://arxiv.org/abs/1405.1021, 2014.

[8] J.-P. Demailly, “Complex analytic and differential geometry”, https://
www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 1997.

[9] S. K. Donaldson, “Kähler metrics with cone singularities along a divisor”, in Es-
says in mathematics and its applications. In honor of Stephen Smale’s 80th birthday,
Springer, 2012, p. 49-79 (English).

[10] V. Guedj & A. Zeriahi, “The weighted Monge-Ampère energy of quasiplurisub-
harmonic functions”, J. Funct. Anal. 250 (2007), no. 2, p. 442-482 (English).

[11] H. Guenancia & M. Paun, “Conic singularities metrics with prescribed Ricci cur-
vature: general cone angles along normal crossing divisors”, J. Differ. Geom. 103
(2016), no. 1, p. 15-57 (English).

[12] S. Kołodziej, “The complex Monge-Ampère equation”, Acta Math. 180 (1998),
no. 1, p. 69-117 (English).

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1409.7896
https://arxiv.org/abs/1405.1021
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf


CONIC MABUCHI’S FUNCTIONAL 845

[13] S. Kołodziej, “Hölder continuity of solutions to the complex Monge-Ampère equa-
tion with the right-hand side in Lp: the case of compact Kähler manifolds”, Math.
Ann. 342 (2008), no. 2, p. 379-386 (English).

[14] T. Mabuchi, “K-energy maps integrating Futaki invariants”, Tohoku Math. J. 38
(1986), no. 1-2, p. 575-593 (English).

[15] ———, “Some symplectic geometry on compact Kähler manifolds. I”, Osaka J.
Math. 24 (1987), p. 227-252 (English).

[16] M. Păun, “Relative adjoint transcendental classes and Albanese maps of compact
Kaehler manifolds with nef Ricci curvature”, https://arxiv.org/abs/1209.2195,
2012.

[17] S.-T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex
Monge-Ampere equation, I”, Commun. Pure Appl. Math. 31 (1978), p. 339-411.

Manuscrit reçu le 29 mars 2016,
révisé le 18 juin 2016,
accepté le 12 août 2016.

Long LI
Department of Mathematics and Statistics
McMaster University
1280 Main Street West
Hamilton, ON L8S 4K1 (Canada)
lilong@math.mcmaster.ca
Current address:
Institut Joseph Fourier
100 rue des maths
38610 Gières (France)
Long.Li1@univ-grenoble-alpes.fr

TOME 68 (2018), FASCICULE 2

https://arxiv.org/abs/1209.2195
mailto:lilong@math.mcmaster.ca
mailto:Long.Li1@univ-grenoble-alpes.fr

	1. Introduction
	2. Conic canonical metrics
	2.1. Conic metrics in Hölder spaces
	2.2. Conic cscK metrics
	2.3. Distributional view

	3. Conic energies
	3.1. Conic geodesics
	3.2. Conic Mabuchi's functional
	3.3. Complex Hessian of conic energies

	4. Convexity of conic Mabuchi's functional
	4.1. Regularization
	4.2. C0 estimate and equicontinuity
	4.3. C2 estimate
	4.4. Approximation of the conic geodesic
	4.5. Interior convexity
	4.6. Continuity at the boundary

	5. A new regularization of (conic) geodesics
	5.1. Blocki–Kolodziej regularization
	5.2. Derivatives of regularized maximum
	5.3. Regularization of C1,1 (C1,1 beta) metrics

	Bibliography

