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ON THE VALUES OF LOGARITHMIC RESIDUES
ALONG CURVES

by Delphine POL

Abstract. — We consider the germ of a reduced curve, possibly reducible.
F. Delgado de la Mata proved that such a curve is Gorenstein if and only if its
semigroup of values is symmetrical. We extend here this symmetry property to any
fractional ideal of a Gorenstein curve. We then focus on the set of values of the
module of logarithmic residues along plane curves or complete intersection curves,
which determines and is determined by the values of the Jacobian ideal thanks to
our symmetry theorem. Moreover, we give the relation with Kähler differentials,
which are used in the analytic classification of plane branches. We also study the
behaviour of logarithmic residues in an equisingular deformation of a plane curve.
Résumé. — On considère un germe de courbe réduit, éventuellement réduc-

tible. F. Delgado de la Mata a montré qu’une telle courbe est Gorenstein si et
seulement si son semigroupe des multi-valuations est symétrique. Nous étendons
ici cette propriété de symétrie à tout idéal fractionnaire d’une courbe Gorenstein.
Nous nous intéressons ensuite à l’ensemble des multi-valuations du module des ré-
sidus logarithmiques d’une courbe plane ou intersection complète, qui détermine et
est déterminé par les multi-valuations de l’idéal jacobien grâce à notre théorème de
symétrie. De plus, nous donnons la relation avec les différentielles de Kähler, qui
sont utilisées dans la classification analytique des branches planes. Nous étudions
aussi le comportement des résidus logarithmiques dans une déformation équisingu-
lière de courbe plane.

1. Introduction

Let D be the germ of a reduced hypersurface in (Cn, 0) defined by f ∈
C{x} := C {x1, . . . , xn} and with ring OD = C{x}/(f). In his fundamental
paper [28], K. Saito introduces the notions of logarithmic vector fields,
logarithmic differential forms and their residues. A logarithmic differential
form is a meromorphic form on a neighbourhood of the origin in Cn which

Keywords: logarithmic residues, duality, Gorenstein curves, values, equisingular
deformations.
2010 Mathematics Subject Classification: 14H20, 14B07, 32A27.



726 Delphine POL

has simple poles along D and such that its differential also has simple poles
along D. A logarithmic q-form ω satisfies:

gω = df
f
∧ ξ + η ,

where g ∈ C{x} does not induce a zero divisor in OD, ξ is a holomorphic
(q − 1)-form and η is a holomorphic q-form. Then, the logarithmic residue
resq(ω) of ω is defined as the coefficient of df

f , that is to say:

resq(ω) =
(
ξ

g

)
D

∈ Ωq−1
D ⊗OD

Q(OD) ,

with Ωq−1
D the module of Kähler differentials on D and Q(OD) the total

ring of fractions of OD. We denote by RD the OD-module of logarithmic
residues of logarithmic 1-forms.
In [12], M. Granger and M. Schulze prove that the OD-dual of the Jaco-

bian ideal of D is RD. If in addition D is free, that is to say, if the mod-
ule of logarithmic differential 1-forms is a free C{x}-module, the converse
also holds: the dual of RD is the Jacobian ideal. They use this duality to
prove a characterization of normal crossing divisors in terms of logarithmic
residues: if the module RD is equal to the module of weakly holomorphic
functions on D then D is normal crossing in codimension 1. The converse
implication was already proved in [28].
The purpose of this paper is to investigate more deeply the module of

logarithmic residues. We focus on the case of plane curves or complete
intersection curves. Plane curves are always free divisors, and they are the
only singular free divisors with isolated singularities. The notion of multi-
residues along complete intersections was introduced by A. G. Aleksandrov
and A. Tsikh in [1].

In order to describe the module of residues, or more generally, any frac-
tional ideal, we will consider the set of values, which is defined as follows.
Let D = D1∪· · ·∪Dp be the germ of a reduced complex analytic curve with
p irreducible components. The normalization of the local ring OD induces
a map val : Q(OD) → (Z ∪ {∞})p called the value map, which associates
with a fraction g ∈ Q(OD) the p-uple of the valuations of g along each
irreducible component of D. Given a fractional ideal I ⊂ Q(OD) (see Def-
inition 2.2), we denote by val(I) the set of values of the non zero divisors
of I, and I∨ := {g ∈ Q(OD); g · I ⊆ OD} the dual of I.

Let us explain the content of Section 2. We prove that the values of a
fractional ideal and the values of its dual determine each other, and we
give explicitly the relation between them. We then apply this result to the
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LOGARITHMIC RESIDUES ALONG CURVES 727

case of RD and of the Jacobian ideal of D, denoted by JD, in Sections 3
and 4. This relation is in fact a generalization of the following well-known
theorem of Kunz in the case of irreducible curves:

Theorem 1.1 ([19]). — If D is irreducible, OD is Gorenstein if and only
if the following property, which is called a symmetry property, is satisfied:
for all v ∈ Z,

v ∈ val(OD) ⇐⇒ γ − v − 1 /∈ val(OD) ,

where γ is the conductor of D, that is to say,

γ = min {α ∈ N;α+ N ⊆ val(OD)}.

In [21, Theorem 2.8], F. Delgado de la Mata generalizes the former result
to the case of reducible curves. He proves that a curve is Gorenstein if and
only if val(OD) satisfies a symmetry property described below.

We prove here that Delgado’s symmetry has an analogue which links the
values of a fractional ideal and the values of its dual. Whereas the sym-
metry is immediate for irreducible curves, the proof of this generalization
of Delgado’s theorem is much more subtle. It leads to the main result of
this section, namely Theorem 1.2, which generalizes Theorem 2.4 of [25] to
any Gorenstein curve and any fractional ideal. To give the statement of our
symmetry theorem, we introduce the following notation for i ∈ {1, . . . , p},
v ∈ Zp and I a fractional ideal (see Notation 2.13):

∆i(v, val(I)) := {α ∈ val(I);αi = vi,∀ j 6= i, αj > vj},

and ∆(v, val(I)) =
⋃p
i=1 ∆i(v, val(I)). We consider the product order on

Zp, that is to say, for α, β ∈ Zp, α 6 β means that for all i ∈ {1, . . . , p} , αi 6
βi. The conductor of D is: γ := inf {α ∈ Np;α+ Np ⊆ val(OD)}. We set
1 = (1, . . . , 1). The statement of our main theorem is:

Theorem 1.2. — Let D be the germ of a reduced analytic curve with
p irreducible components. Then, the ring OD of the curve is a Gorenstein
ring if and only if for all fractional ideals I ⊂ Q(OD) the following property
is satisfied for all v ∈ Zp:

(1.1) v ∈ val(I∨) ⇐⇒ ∆(γ − v − 1, val(I)) = ∅ .

Delgado’s theorem concerns the case I = OD (see Theorem 2.14). A
similar symmetry was recently proved in [18] using combinatorial methods
which involve canonical modules.
In Sections 3 and 4, we use Theorem 1.2 to study the module of logarith-

mic residues along complete intersection curves, with a particular attention
to the case of plane curves.

TOME 68 (2018), FASCICULE 2



728 Delphine POL

In Subsection 3.2, we give some properties of the set of values of the
module of logarithmic residues and of the Jacobian ideal for plane curves.
We investigate the zero divisors of RD and JD, which are described in
Propositions 3.15 and 3.18. Thanks to our symmetry theorem, we then de-
termine the conductor of RD, which is −(m(1), . . . ,m(p))+1, where m(i) is
the multiplicity of the branchDi. We also mention the relation between log-
arithmic differential forms and the torsion of Kähler differentials. Thanks
to this relation, we recover the result of O. Zariski on the dimension of the
torsion of Kähler differentials, which is equal to the Tjurina number.
In Subsection 3.3, we recall the theory of multi-logarithmic differential

forms and multi-residues along a reduced complete intersection developed
by A. G. Aleksandrov and A. Tsikh in [1]. Since our symmetry theorem is
true for any Gorenstein curve, it is in particular true for complete intersec-
tion curves. As in the hypersurface case, we again have a duality between
multi-residues and the Jacobian ideal, so that their sets of values deter-
mine each other. Moreover, we prove here the following proposition (see
Proposition 3.31 for a more precise statement):

Proposition 1.3. — Let Ω1
C be the module of Kähler differentials along

a reduced complete intersection curve C. The values of JC and the values
of Ω1

C satisfy:
val(JC) = γ + val(Ω1

C)− 1 .

The set of values of Kähler differentials is a major ingredient used in [15]
and [16] to study the problem of the analytic classification of plane curves
with one or two branches.

The last section is devoted to the study of the behaviour of logarithmic
residues in an equisingular deformation of a plane curve. In particular, we
define a stratification by the values of the logarithmic residues, which is the
same as the stratification by Kähler differentials thanks to Subsection 3.3.
We prove that this stratification is finer than the stratification by the Tju-
rina number. We give an example in which the stratification by logarithmic
residues is strictly finer than the stratification by the Tjurina number (see
Example 4.16). We show that the stratification by logarithmic residues is
finite and constructible (see Propositions 4.14 and 4.15). We also give an
example in which the frontier condition is not satisfied (see Example 4.19).

Acknowledgments. The author is grateful to Michel Granger for many
helpful discussions on the subject and his suggestion to use the result of
Ragni Piene in the proof of Proposition 3.31, and to Pedro González-Pérez
and Patrick Popescu-Pampu for pointing out the papers of A. Hefez and
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M. E. Hernandes on the analytic classification of plane curves. The au-
thor also thanks Philipp Korell, Laura Tozzo and Patrick Popescu-Pampu
for their careful reading of the previous version of this paper. The author
thanks the anonymous referee for their helpful comments and careful read-
ing.

2. The symmetry of values

This section is devoted to the main Theorem 1.2, which is a generalization
of the symmetry Theorem 2.8 of [21].

We first recall several properties of fractional ideals and the notion of
conductor of a curve. We then introduce some definitions and notations
inspired by [21] which appear in the statement of the main Theorem 1.2. We
give in Subsection 2.2 a detailed proof of this theorem, and then a property
of the Poincaré series associated with a fractional ideal of a Gorenstein
curve (see Proposition 2.34).

2.1. Properties of fractional ideals

We recall some basic results on the fractional ideals of a curve. In par-
ticular, we give several properties of the set of values of a fractional ideal,
and we define its dual.

Let D be the germ of a reduced complex analytic curve, with p irre-
ducible components D1, . . . , Dp. The ring ODi of the branch Di is a one-
dimensional integral domain, so that its normalization O

D̃i
is isomorphic

to C {ti} (see for example [17, Corollary 4.4.10]). By the splitting of nor-
malization (see [17, Theorem 1.5.20]), the ring O

D̃
of the normalization of

D is O
D̃

=
⊕p

i=1 C {ti}. Moreover, the total rings of fractions Q(OD) of
OD and Q(O

D̃
) of O

D̃
are equal (see [17, Exercise 4.4.16]). We then have :

Q(O
D̃

) = Q(OD) =
p⊕
i=1

Q(C {ti}) .

Definition 2.1. — Let g ∈ Q(OD). We define the valuation of g along
the branch Di as the order of ti of the image of g by the surjection map
Q(OD) → Q(C {ti}). We denote the valuation of g along Di by vali(g) ∈
Z ∪ {∞}, with the convention vali(0) =∞.

We then define the value of g by val(g) := (val1(g), . . . , valp(g)) ∈
(Z ∪ {∞})p.

TOME 68 (2018), FASCICULE 2
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Definition 2.2. — Let I ⊂ Q(OD) be an OD-module. We call I a
fractional ideal if I is of finite type over OD and if I contains a non zero
divisor of Q(OD). We set:

val(I) := {val(g); g ∈ I non zero divisor } ⊂ Zp

and
val(I) := {val(g); g ∈ I} ⊂ (Z ∪ {∞})p .

Remark 2.3. — We will prove in Section 3 that for a fractional ideal I,
the set val(I) determines the set val(I) (see Proposition 3.11).

Definition 2.4. — Let I⊂Q(OD) be a fractional ideal. The dual of I is:

I∨ := HomOD
(I,OD) .

Remark 2.5. — We also have I∨ ' {g ∈ Q(OD); gI ⊆ OD} (see for ex-
ample [17, Proof of Lemma 1.5.14]).

Lemma 2.6. — The dual I∨ of a fractional ideal I is also a fractional
ideal. Moreover, if I, J are two fractional ideals satisfying J ⊆ I, then
J∨ ⊇ I∨.

Definition 2.7. — The conductor ideal of the curve D is CD := O∨
D̃
.

For α ∈ Zp, we set tα := (tα1
1 , . . . , t

αp
p ) ∈ Q(OD). The conductor ideal

CD is a fractional ideal of OD, and it is also an ideal in O
D̃
. It implies the

following property:

Lemma 2.8. — There exists γ ∈ Np such that CD = tγO
D̃
. This element

γ is called the conductor of the curve D.

We consider the product order on Zp we defined in the introduction. In
particular, for α, β ∈ Zp, inf(α, β) =

(
min(α1, β1), . . . ,min(αp, βp)

)
.

The conductor γ satisfies:

(2.1) γ = inf {α ∈ Np;α+ Np ⊆ val(OD)}.

We will need the following properties, which should be compared with [21,
1.1.2, 1.1.3]:

Proposition 2.9. — For a fractional ideal I ⊂ Q(OD), if v ∈ val(I)
and v′ ∈ val(I), then inf(v, v′) ∈ val(I).

Similarly, if v, v′ ∈ val(I), then inf(v, v′) ∈ val(I).

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.10. — Let v 6= v′ ∈ val(I). If there exists i ∈ {1, . . . , p}
such that vi = v′i, then there exists v′′ ∈ val(I) such that:

(1) v′′i > vi,
(2) for all j ∈ {1, . . . , p}, v′′j > min(vj , v′j),
(3) for all j ∈ {1, . . . , p} such that vj 6= v′j , we have v′′j = min(vj , v′j).

Proposition 2.9 is a consequence of the fact that the value of a general
linear combination of two elements is equal to the minimum for the product
order of the values of these two elements. Proposition 2.10 comes from the
fact that a convenient linear combination will increase the valuation on the
component Di, but we cannot say what happens on the other components
where the equality holds.

From the definition of a fractional ideal, we have the following inclusions,
which will be useful in Subsection 2.2:

Lemma 2.11. — Let I be a fractional ideal. Then there exist ν and λ
in Zp such that

(2.2) tνO
D̃
⊆ I ⊆ tλO

D̃
.

In particular, it implies that ν + Np ⊆ val(I) ⊆ λ + Np. Moreover, if
λ′ 6 λ and ν′ > ν, we can replace in (2.2) λ by λ′ and ν by ν′.

By dualizing (2.2), we obtain, since O∨
D̃

= CD = tγO
D̃
:

(2.3) tγ−λO
D̃
⊆ I∨ ⊆ tγ−νO

D̃
.

The following proposition is a key ingredient for the proof of Theorem 1.2
in the Gorenstein case.

Proposition 2.12 ([10, Theorem 21.21], [17, Lemma 5.2.8]). — Let
I ⊂ Q(OD) be a fractional ideal of a Gorenstein curve. Then:

• we have: I∨∨ = I,
• if I ⊂ J are fractional ideals, dimC J/I = dimC I

∨/J∨.

We end this subsection with the following notations, which are analogous
to the notations of [21].

Notation 2.13. — Let us consider an arbitrary subset E of Zp and v ∈
Zp. For i ∈ {1, . . . , p}, we define:

∆i(v,E ) = {α ∈ E ; αi = vi and ∀ j 6= i, αj > vj},

and ∆(v,E ) =
⋃p
i=1 ∆i(v,E ). For a fractional ideal I ⊂ Q(OD), we write

∆(v, I) instead of ∆(v, val(I)).

TOME 68 (2018), FASCICULE 2



732 Delphine POL

The following picture illustrates the case p = 2. Let us consider the subset
E of Z2 defined by all the crosses. The grey crosses correspond to the ele-
ments of ∆(v,E ), that is to say, ∆(v,E ) = {(3, 1), (4, 1), (2, 3), (2, 4), (2, 5)}.

val1

val2

v

0 5

5

Figure 2.1. ∆(v,E ) for p = 2

We recall here the statement of Delgado’s theorem:

Theorem 2.14 ([21, Theorem 2.8]). — Let D be the germ of a reduced
curve with p irreducible components. Then, the ring OD of the curve is a
Gorenstein ring if and only if for all v ∈ Zp,

(2.4) v ∈ val(OD) ⇐⇒ ∆(γ − v − 1,OD) = ∅ .

2.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is developed in several steps. We first mention
the implications which are easy consequences of [21] (see Lemma 2.15 and
Proposition 2.18). The remain of this subsection is then devoted to the
missing implication, which needs much more work (see Subsections 2.2.2
and 2.2.3).

The following lemma is a direct consequence of Theorem 2.14. Indeed, if
the condition (1.1) is satisfied for all fractional ideals I, it is in particular
satisfied by OD.

Lemma 2.15. — Let D be a reduced curve. If (1.1) is satisfied for all
fractional ideals I ⊂ Q(OD), then OD is Gorenstein.

Remark 2.16. — It is not sufficient to check if (1.1) is satisfied for one
fractional ideal I to prove that the curve is Gorenstein. Indeed, by defi-
nition, for every curve, the equivalence (1.1) is satisfied by I = O

D̃
and

I∨ = CD.

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC RESIDUES ALONG CURVES 733

Our purpose now is to prove that for a Gorenstein curve and a fractional
ideal I ⊂ Q(OD), property (1.1) is satisfied. Nevertheless, some of the
properties we will prove or mentioned are also satisfied by non Gorenstein
curves, so that we first consider an arbitrary reduced curve D.
Let I ⊂ Q(OD) be a fractional ideal. To prove the implication⇒ of (1.1),

we need the following result:
Proposition 2.17 ([21, Corollary 1.9]). — Let D be a reduced curve.

Then:
∆(γ − 1,OD) = ∅ .

Proposition 2.18. — Let D be a reduced curve. Let v ∈ Zp and I ⊂
Q(OD) be a fractional ideal. Then:

v ∈ val(I∨)⇒ ∆(γ − v − 1, I) = ∅ .
Proof. — Let v = (v1, . . . , vp) ∈ val(I∨), and g ∈ I∨ with v = val(g).

We assume ∆(γ − v − 1, I) 6= ∅. For the sake of simplicity, we may assume
that ∆1(γ − v − 1, I) 6= ∅. It means that there exists h ∈ I with val(h) =
(γ1 − v1 − 1, w2, . . . , wp) ∈ val(I) such that for all j > 2, wj > γj − vj − 1.
Since gh ∈ OD, we have (γ1 − 1, w2 + v2, . . . , wp + vp) ∈ val(OD), with
wj + vj > γj . Therefore, ∆1(γ − 1,OD) 6= ∅.
Nevertheless, by Proposition 2.17, ∆(γ − 1,OD) = ∅, which leads to a

contradiction. Therefore, ∆(γ − v − 1, I) = ∅. �

Notation 2.19. — We set V = {v ∈ Zp; ∆(γ − v − 1, I) = ∅}.
Proposition 2.18 tells us that the set V contains the values of I∨, but

a priori it may be bigger. In particular, it is not obvious that V is the set
of values of an OD-module. Our purpose here is to prove that V is indeed
equal to val(I∨) when D is Gorenstein.
Proposition 2.20. — Let D be an irreducible Gorenstein curve. The

statement of Theorem 1.2 can be rephrased as follows: for all v ∈ Z, v ∈
val(I∨) if and only if γ − v − 1 /∈ val(I).

Proof. — This proposition is a generalization of Kunz’s theorem 1.1. We
have:

dimC I
∨/tγ−λC {t} = Card (val(I∨) ∩ (γ − λ+ N)c)

dimC t
λC {t} /I = Card

(
(λ+ N) ∩ (val(I))c

)
.

Since by Proposition 2.12, dimC I
ν/tγ−λC {t} = dimC t

λC {t} /I, we have
the result. �

The proof for a reducible Gorenstein curve is based on a more intricate
dimension argument.

TOME 68 (2018), FASCICULE 2
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2.2.1. Dimension and values

As we have seen in Proposition 2.20, it is easy to compute dimensions
from the set of values in the irreducible case. The purpose of this subsection
is to give a combinatorial method to compute some dimensions from the
set of values.

Let v ∈ Zp. We set Iv = {g ∈ I; val(g) > v} and `(v, I) = dimC I/Iv.
Since OD is one-dimensional, we have `(v, I) <∞.
We denote by (e1, . . . , ep) the canonical basis of Zp. For E ⊆ Zp and

v ∈ Zp, let
Λi(v,E ) = {α ∈ E ; αi = vi and α > v} .

We have the following inclusion: ∆i(v,E ) ⊆ Λi(v,E ). We then have
(see [21, Proposition 1.11]):

Proposition 2.21. — For all v ∈ Zp,

`(v + ei, I)− `(v, I) = dimC Iv/Iv+ei ∈ {0, 1}

and moreover

`(v + ei, I) = `(v, I) + 1 if and only if Λi(v, val(I)) 6= ∅ .

Thanks to this proposition we can compute some dimensions from the
set of values:

Corollary 2.22. — Let ν, λ ∈ Zp be such that ν+Np ⊆ val(I) ⊆ λ+Np
(see Lemma 2.11). Let (α(j))06j6M+1 be a finite sequence of elements of
Zp with M = −1 +

∑p
i=1(νi − λi), which satisfies:

• α(0) = λ and α(M+1) = ν,
• for all j ∈ {0, . . . ,M}, there exists i(j) ∈ {1, . . . , p} such that
α(j+1) = α(j) + ei(j).

Then:

(2.5) dimC I/t
νO

D̃
= `(ν, I)

= Card
{
j ∈ {0, . . . ,M}; Λi(j)(α(j), val(I)) 6= ∅

}
.

Example 2.23. — The following example illustrates Corollary 2.22 for
p = 2. We consider the plane curveD defined by f(x, y) = (x2−y3)(x4−y3).
A parametrization of this plane curve is given by x = (t31, t32), y = (t21, t42).
We consider the Jacobian ideal I = JD of D. In particular, val

(
∂f
∂x

)
=

(9, 15) and val
(
∂f
∂y

)
= (10, 14). Therefore, by Proposition 2.9, we have

(9, 14) ∈ val(JD). We represent by crosses the elements of I.

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC RESIDUES ALONG CURVES 735

We can choose for example λ = (8, 13) and ν = (13, 21). We consider the
sequence α defined by the grey circles on Figure 2.2. In particular, α(0) = λ

and α(13) = ν. The sets Λi(j)(α(j), val(I)) for j ∈ {0, . . . , 12} corresponds
to the crosses which are on the thick black lines. By the corollary, for this
example, we have: dimC I/t

νO
D̃

= 7.

val1

val2

ν

λ

10 15

15

20

Figure 2.2. Illustration of Corollary 2.22

2.2.2. Preliminary steps

We recall that V = {v ∈ Zp; ∆(γ − v − 1, I) = ∅}, and this set con-
tains val(I∨). The purpose of this section is to show that if the inclusion
val(I∨) ⊆ V is strict, then it has some combinatorial and numerical con-
sequences (see Lemma 2.26 and Proposition 2.27). We then prove in Sub-
section 2.2.3 that these criteria lead to a contradiction in the Gorenstein
case, which finishes the proof of Theorem 1.2.

First step. — We first show that if V 6= val(I∨), then there is an element
w ∈ V \ val(I∨) which satisfies some properties which will be used in the
next steps.
Let us assume that V 6= val(I∨), and let w(0) ∈ V \ val(I∨) be “an

intruder”. By Lemma 2.11, there exist λ, ν ∈ Zp satisfying ν+Np ⊆ val(I) ⊆
λ + Np and γ − ν 6 w(0) 6 γ − λ. For the remainder of the proof, we fix
such λ, ν.
The following proposition gives an essential property of w(0):

TOME 68 (2018), FASCICULE 2
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Proposition 2.24. — There exists j ∈ {1, . . . , p} such that Λj(w(0),

val(I∨)) = ∅. Moreover, the corresponding coordinate satisfies w(0)
j <

γj − λj .

Proof. — If for all i ∈ {1, . . . , p}, Λi(w(0), val(I∨)) 6= ∅, then for all i ∈
{1, . . . , p} there exists α(i) ∈ val(I∨) such that α(i)

i = w
(0)
i and α(i)

j > w
(0)
j .

As a consequence, by Proposition 2.9, inf(α(1), . . . , α(p)) = w(0) ∈ val(I∨),
which is a contradiction. It gives the existence of a j ∈ {1, . . . , p} such
that Λj(w(0), val(I∨)) = ∅. It is immediate to see that w(0)

j < γj − λj since
if w(0)

j = γj − λj , then γ − λ ∈ Λj(w(0), val(I∨)), which contradicts the
emptiness. �

Second step. — For the sake of simplicity, we assume that Λp(w(0),

val(I∨)) = ∅. Corollary 2.22 together with a convenient finite sequence α
can be used to compute the dimension of the quotient I∨/tγ−λO

D̃
. We com-

pare it with the number ` = Card
{
j ∈ {0, . . . , n0 − 1}; Λi(j)(α(j),V ) 6= ∅

}
,

which may a priori depend on the chosen sequence α.
In order to compute dimC I

∨ / tγ−λO
D̃
, we consider a sequence

(α(j))06j6n0 with n0 =
∑p
i=1 (νi − λi) satisfying:

• α(0) = γ − ν and α(n0) = γ − λ,
• for all j ∈ {0, . . . , n0 − 1}, there exists i(j) ∈ {1, . . . , p} such that
α(j+1) = α(j) + ei(j),

• there exists j0 ∈{0, . . . , n0 − 1} such that α(j0) =w(0) and α(j0+1) =
w(0) + ep.

The existence of such a sequence follows from Proposition 2.24. Moreover,
this sequence satisfies the required properties of Corollary 2.22.

Let us consider again the plane curve defined by f(x, y) = (x2 − y3) ×
(x4 − y3) and the ideal I = JD of Example 2.23. By computing val(OD),
one can see that the conductor γ satisfies val(γ) = (8, 12). The black crosses
on Figure 2.3 represent the elements of V =

{
w ∈ Z2,∆(γ − v − 1, I) = ∅

}
.

Let us assume for example that w(0) = (−2,−4) /∈ val(I∨). Then we can
for instance consider the sequence α defined by the grey circles, where
α(0) = γ − ν = (−5,−9) and α(n0) = α(13) = γ − λ = (0,−1).

Remark 2.25. — In [25] we choose a sort of “canonical” sequence, but
it is in fact unnecessary and the presentation here is simpler.

From Corollary 2.22, we have:

(2.6) dimC I
∨/tγ−λO

D̃

= Card
{
j ∈ {0, . . . , n0 − 1} ; Λi(j)(α(j), val(I∨)) 6= ∅

}
.
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val1

val2

w(0)

−5

−5

−10

0

Figure 2.3.

We want to compare this dimension with the following number `:

(2.7) ` = Card
{
j ∈ {0, . . . , n0 − 1} ; Λi(j)(α(j),V ) 6= ∅

}
.

Lemma 2.26. — For the sequence α defined above, we have:

(2.8) ` > 1 + dimC I
∨/tγ−λO

D̃
.

Proof. — It is clear that Λi(j)(α(j), val(I∨)) 6= ∅ ⇒ Λi(j)(α(j),V ) 6=
∅. Moreover, since there exists j0 such that α(j0) = w(0) and α(j0+1) =
α(j0) + ep, Λp(α(j0),V ) 6= ∅, but the assumptions on w(0) implies Λp(α(j0),

val(I∨)) = ∅. Hence the inequality. �

From now on, our sequence α is fixed.
Third step. — The purpose of this third step is to compare this number

` to dimC I/t
νO

D̃
.

For i ∈ {0, . . . , n0} we set β(i) = γ − α(n0−i). The sequence β satisfies
the properties of Corollary 2.22, so that it can be used to compute the
dimension dimC I/t

νO
D̃
.

We continue with the same example as before. For the sequence α of
Figure 2.3, we represent the corresponding sequence β on the following
diagram. The sequence β is defined for i ∈ {0, . . . , 13} by β(i) = γ−α(13−i).
In particular, β(0) = λ and β(13) = ν. The elements of β are represented
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by grey circles and the elements of I by black crosses. In particular, β(0) =
λ = (8, 13) and β(13) = ν = (13, 21).

val1

val2

λ

ν

10 15

15

20

Figure 2.4.

The following proposition gives a relation between ` and dimC I/t
νO

D̃
:

Proposition 2.27. — With the above notations we have:

` 6
p∑
i=1

(νi − λi)− dimC I/t
νO

D̃
.

To prove this proposition, we need the following lemma:

Lemma 2.28. — Let w ∈ Zp and i ∈ {1, . . . , p}. Then:

Λi(w,V ) 6= ∅ ⇒ Λi(γ − w − ei, val(I)) = ∅ .

Proof. — Let w′ ∈ Λi(w,V ). By the definition of V , we have ∆(γ −
w′ − 1, val(I)) = ∅. Moreover, (γ − w′ − ei)i = γi − wi − 1 and for j 6= i,
(γ − w′ − ei)j = γj − w′j 6 γj − wj . Thus Λi(γ − w − ei, val(I)) = ∆i(γ −
w′ − 1, val(I)) = ∅, since w′ ∈ V . �

Proof of Proposition 2.27. — We first notice that the two sequences α
and β have the same number of terms, namely n0 +1 =

∑p
i=1(νi−λi) +1.

By Corollary 2.22, we have:

(2.9) dimC I/t
νO

D̃

= Card
{
j ∈ {0, . . . , n0 − 1} ; Λi(n0−j−1)(β(j), val(I)) 6= ∅

}
.
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We notice that for all j ∈ {0, . . . , n0 − 1}, γ−α(j)− ei(j) = γ−α(j+1) =
β(n0−(j+1)).
Therefore, by the previous lemma, if Λi(α(j),V ) 6= ∅ then Λi

(
β(n0−(j+1)),

val(I)
)

= ∅. We then obtain the result by comparing (2.9) and (2.7). �

2.2.3. End of the proof of Theorem 1.2

We are now able to finish the proof of Theorem 1.2.
We assume now that D is Gorenstein. The inclusion val(I∨) ⊆ V holds

by Proposition 2.18. It remains to prove that this inclusion cannot be strict.
Since

∑p
i=1(νi−λi) = dimC t

λO
D̃
/tνO

D̃
= dimC t

λO
D̃
/I+dimC I/t

νO
D̃
,

we have by Proposition 2.12:

dimC I
∨/tγ−λO

D̃
=

p∑
i=1

(νi − λi) − dimC I/t
νO

D̃
.

Thanks to Proposition 2.27, we obtain:

(2.10) ` 6 dimC I
∨/tγ−λO

D̃
.

However, by Lemma 2.26, if V 6= val(I∨), then ` > 1 + dimC I
∨/tγ−λO

D̃
,

which contradicts (2.10). �

Another consequence of the equality V = val(I∨) is that the number
` is equal to the dimension of I∨/tγ−λO

D̃
. Therefore, the inequality in

Proposition 2.27 is in fact an equality. Moreover, since for all w ∈ Zp,
there exist λ′, ν′ ∈ Zp such that γ − λ′ + Np ⊆ val(I∨) ⊆ γ − ν′ + Np and
γ − ν′ 6 w 6 γ − λ′, it also has the following consequence:

Corollary 2.29. — Let D be a Gorenstein curve, I ⊂ Q(OD) be a
fractional ideal and w ∈ Zp. Then:

(2.11) Λi(w, val(I∨)) 6= ∅ ⇐⇒ Λi(γ − w − ei, val(I)) = ∅ .

Corollary 2.30. — Let I, J be fractional ideals and ν ∈ Np be such
that ν+Np⊆ J . We assume val(J)⊆ val(I). If dimC I/t

νO
D̃

= dimC J/t
νO

D̃
then val(J) = val(I).

Proof. — If val(I) 6= val(J), then as in Proposition 2.24, there exists
w ∈ val(I)\ val(J) and j ∈ {1, . . . , p} such that Λj(w, val(J)) = ∅. The
same argument as in the second step of the proof of Theorem 1.2 shows
that dimC I/t

νO
D̃
> dimC J/t

νO
D̃
. Hence the result. �
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2.3. Poincaré series of a fractional ideal

This section follows a suggestion of Antonio Campillo. Let (D = D1∪· · ·∪
Dp, 0) be the germ of a reduced reducible Gorenstein curve, and I ⊂ Q(OD)
be a fractional ideal.
The following definitions are inspired by [8]. We recall that Iv = {g ∈ I;

val(g) > v}.
We consider the set of formal Laurent series L = Z[[t−1

1 , ..., t−1
p , t1, ..., tp]]

as in [8]. This set is not a ring, it is only a set of formal infinite sums indexed
by Zp, with a structure of Z[t−1

1 , . . . , t−1
p , t1, . . . , tp]-module.

We set:

(2.12) LI(t1, . . . , tp) =
∑
v∈Zp

cI(v)tv

with cI(v) = dimC Iv/Iv+1 and

(2.13) PI(t) = LI(t)
p∏
i=1

(ti − 1) .

Remark 2.31. — In [8], the authors study the case I = OD with D a
plane curve. They prove that POD

(t) is in fact a polynomial, and for plane
curves with at least two components, POD

(t)
t1...tp−1 is the Alexander polynomial

of the curve (see [8, Theorem 1]).

Our purpose here is to deduce from Theorem 1.2 a relation between PI(t)
and PI∨(t).

The following lemma is a direct consequence of the definition of PI :

Lemma 2.32. — We define for v ∈ Zp,

(2.14) aI(v) =
∑

J⊆{1,...,p}

(−1)Card(Jc)cI(v − eJ)

where we denote for J = {j1, . . . , jk}, eJ = ej1 + · · · + ejk
and Jc the

complement of J in {1, . . . , p}. Then

PI(t) =
∑
v∈Zp

aI(v)tv .

We use the previous lemma to prove the following property:

Lemma 2.33. — The formal Laurent series PI(t) is a polynomial.
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Proof. — Let λ, ν ∈ Zp be such that ν + Np ⊆ val(I) ⊆ λ + Np. The
only possibly non-zero aI(v) are those such that λ 6 v 6 ν. Indeed, let us
assume for example that vp < λp or vp > νp. We can then prove thanks to
Corollary 2.22 that for all J ⊂ {1, . . . , p} such that p /∈ J , cI(v− eJ∪{p}) =
cI(v − eJ). By definition (2.14), this gives us the result. �

The symmetry of Theorem 1.2 has the following consequence:

Proposition 2.34. — With the same notations,

(2.15) PI∨(t) = (−1)p+1 tγ PI

(
1
t1
, . . . ,

1
tp

)
.

Proof. — The property (2.15) is in fact equivalent to the following prop-
erty:

(2.16) ∀ v ∈ Zp, aI∨(v) = (−1)p+1aI(γ − v) .

This property is obvious if v /∈ {ω ∈ Zp; γ − ν 6 w 6 γ − λ} since both
aI∨(v) and aI(γ − v) are zero.
By (2.14), it is sufficient to prove that for all v ∈ Zp, cI∨(v) = p− cI(γ−

v − 1). We have:

cI∨(v) = Card{i ∈ {1, . . . , p} ; Λi(v + e1 + · · ·+ ei−1, val(I∨)) 6= ∅} ,
cI(γ− v− 1) = Card{i ∈ {1, ..., p} ; Λi(γ− v− e1−···− ei, val(I)) 6= ∅} .

The result follows from the equivalence (2.11). �

3. On the structure of the set of values of logarithmic
residues

In this part we give several properties of the module of logarithmic
residues along plane curves or complete intersection curves. We first re-
call some definitions from [28]. We then focus on the module of logarithmic
residues along plane curves. We study the set of its zero divisors and we
also give its conductor thanks to Theorem 1.2. We then recall definitions
from [1] and [4] for complete intersections. We prove that the values of
multi-residues are in relation with the values of Kähler differentials.

3.1. Preliminaries on logarithmic residues

We recall here some definitions and results about logarithmic vector
fields, logarithmic differential forms and their residues, which can be found
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in [28]. In this subsection, we consider hypersurfaces, and we will focus on
the case of plane curves in Subsection 3.2.
Let us consider a reduced hypersurface germ D ⊂ (Cn, 0) defined by

f ∈ C {x1, . . . , xn}. We denote by Θn the module of germs of holomorphic
vector fields on (Cn, 0) and C{x} = C {x1, . . . , xn}. We set ΩqCn , or Ωq for
short, the module of holomorphic differential q-forms.

Definition 3.1. — A germ of vector field δ ∈ Θn is called logarithmic
along D if δ(f) = αf with α ∈ C{x}. We denote by Der(− logD) the
C{x}-module of logarithmic vector fields along D.

A germ of meromorphic q-form ω ∈ 1
fΩq with simple poles along D

is called logarithmic if fdω is holomorphic. We denote by Ωq(logD) the
C{x}-module of logarithmic q-forms on D.

Lemma 3.2 ([28, Lemma 1.6]). — The two modules Ω1(logD) and
Der(− logD) are reflexive and each is the dual C{x}-module of the other.

Definition 3.3. — If Der(− logD) (or equivalently Ω1(logD)) is a free
C{x}-module, we call D a germ of free divisor.

In particular, plane curves are free divisors (see [28, 1.7]).

Proposition 3.4 (Saito criterion, [28, 1.8]). — The germ D is free if
and only if there exists (δ1, . . . , δn) in Der(− logD) such that δj =

∑
aij∂xi

with det ((aij)16i,j6n) = uf , where u is invertible in C{x}.

In order to define the notion of logarithmic residues, we need the following
characterization of logarithmic differential forms:

Proposition 3.5 ([28, 1.1]). — A meromorphic q-form ω with simple
poles along D is logarithmic if and only if there exist g ∈ C{x}, which does
not induce a zero divisor in OD = C{x}/(f), a holomorphic (q− 1)-form ξ

and a holomorphic q-form η such that:

(3.1) gω = df
f
∧ ξ + η .

Definition 3.6. — The residue resq(ω) of ω ∈ Ωq(logD) is defined by

resq(ω) := ξ

g

∣∣∣
D
∈ Q(OD)⊗OD

Ωq−1
D ,

where ξ and g are given by (3.1), and Ωq−1
D = Ωq−1

Cn

df∧Ωq−2
Cn +fΩq−1

Cn D
is the

module of Kähler differentials on D.

If q = 1, we write res(ω) instead of res1(ω).
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Definition 3.7. — We define

RD :=
{

res(ω);ω ∈ Ω1(logD)
}
⊆ Q(OD) .

We call RD the module of logarithmic residues of D.

In particular, RD is a finite type OD-module. Moreover, it satisfies the
following property:

Lemma 3.8 ([28, Lemma 2.8]). — We have the inclusion O
D̃
⊆ RD.

Notation 3.9. — We denote by JD ⊆ OD the Jacobian ideal of D, that
is to say the ideal of OD generated by the partial derivatives of f .

The following result gives the relation between the module of logarithmic
residues and the Jacobian ideal:

Proposition 3.10 ([12, Proposition 3.4]). — Let D be the germ of a
reduced divisor. Then J ∨

D = RD. If moreover D is free, R∨D = JD.

3.2. Logarithmic residues along plane curves

We give here several properties of the set of values of logarithmic residues
RD of a plane curve D. We first determine the zero divisors included in
RD, see Proposition 3.15. We also relate the conductor of RD to the multi-
plicities of the branches of D (see Proposition 3.21). We end this subsection
with the relation between logarithmic residues and the torsion of Kähler
differentials.
Since plane curves are free divisors, the module Ω1(logD) is a free

C{x, y}-module of rank 2. Let us assume that ωi = αidx+βidy

f , i = 1, 2
is a basis of Ω1(logD).
If for c1, c2 ∈ C, g = c1 · f ′x + c2 · f ′y induces a non zero divisor in

OD, then the module of residues is generated by res(ω1) = c1·α1+c2·β1
g and

res(ω2) = c1·α2+c2·β2
g . Thus, the module of logarithmic residues can be

generated by two elements.

3.2.1. Zero divisors

Let D = D1 ∪ · · · ∪Dp be the germ of a reduced plane curve defined by
f = f1 . . . fp where for all i ∈ {1, . . . , p}, fi is irreducible.

We first want to prove that the negative values of RD determine all the
values of RD. It comes from a general property of fractional ideals.
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We recall that for g ∈ Q(OD), vali(g) =∞ means that the restriction of
g on Di is zero.
The following proposition shows that the values of the zero divisors are

determined by the faces of the negative quadrant with origin ν.

Proposition 3.11. — Let I ⊂ Q(OD) be a fractional ideal and let
ν ∈ Zp be any element satisfying tνO

D̃
⊆ I. Let α ∈ (Z ∪ {∞})p. Then

α ∈ val(I) if and only if either α ∈ val(I), or the element w defined by
wi = αi if αi ∈ N and wi = νi if αi =∞ satisfies w ∈ val(I).

Proof. — Let α ∈ val(I) be such that α /∈ val(I). Let α′ ∈ ν+Np ⊆ val(I)
be such that if αi ∈ N, then α′i > αi, and if αi = ∞, α′i = νi. Then, by
Proposition 2.9, inf(α, α′) = w ∈ val(I) with wi = αi if αi ∈ N and wi = νi
if αi =∞.
Conversely, let w ∈ val(I). Let us assume that there exists j ∈ {1, . . . , p}

such that wj = νj . Let J be a set of indices such that for all j ∈ J , wj = νj .
Let us show that the element α defined by αi = wi if i /∈ J and αi = ∞
if i ∈ J satisfies α ∈ val(I). Let h ∈ I be such that val(h) = w. Since
tνO

D̃
⊆ I, there exists g ∈ I such that for all j ∈ J , g|Dj = h|Dj and for

all j /∈ J , valj(g) > wj . Then h − g is a zero divisor of I whose value α
satisfies for all j ∈ J , αj =∞ and for all j /∈ J , αj = wj . �

We will use the notation MI = {w ∈ val(I) ; Card{j ∈ {1, . . . , p} ; wj =
νj} > 1}. This set determines the value of the zero divisors in I.

Corollary 3.12. — Let I ⊂ Q(OD) be a fractional ideal and ν ∈ Zp
be such that ν + Np ⊆ val(I). Let w ∈ Zp. Then

w ∈ val(I) ⇐⇒ inf(w, ν) ∈ val(I) .

In particular, it means that the set

val(I) ∩ {w ∈ Zp;w 6 ν}

determines the set val(I).

Proof. — The implication ⇒ comes from Proposition 2.9. For the im-
plication ⇐, let w ∈ Zp be such that inf(w, ν) ∈ val(I). If w 6 ν,
then w = inf(w, ν) ∈ val(I). If there exists j such that wj > νj , then
inf(w, ν) ∈ MI where MI is defined after Proposition 3.11. By Proposi-
tion 3.11, there exists a zero divisor g ∈ I such that valj(g) =∞ if wj > νj
and valj(g) = wj if wj < νj . Let v = max(w, ν). Since ν + Np ⊆ val(I), we
have v ∈ val(I) and w = inf(v, val(g)) ∈ val(I). �

Remark 3.13. — By Proposition 3.11 and Corollary 3.12, the set val(I)∩
{w ∈ Zp;w 6 ν} also determines val(I).
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The inclusion O
D̃
⊆ RD gives the following corollary:

Corollary 3.14. — The set of values of RD is determined by the set

{v ∈ val(RD); v 6 0}.

More precisely, we have:

val(RD) = {v ∈ val(RD); v 6 0} ∪ {v ∈ Zp; inf(v, 0) ∈ val(RD)}.

Let us determine the values of RD which come from the branches or
union of branches.

Proposition 3.15. — Let ∅ 6= J ⊆ {1, . . . , p} and D′ =
⋃
j∈J Dj . Then

Ω1(logD′) ⊆ Ω1(logD).
Renumbering the branches, we may assume that J = {1, . . . , q} with

q 6 p. Then:

RD ∩
(
Q(OD1)⊕ · · · ⊕Q(ODq )⊕ {0}p−q

)
= RD′ .

Proof. — For the first part of the statement, we set F1 the equation
of D′. Let ω be a logarithmic 1-form along D′. Then, F1ω and F1dω are
holomorphic, so that fω and fdω are holomorphic.

For the second part of the statement, let us notice the following property.
Let ω ∈ Ω1(logD). Then ω ∈ Ω1(logD′) if and only if for all j /∈ J ,
valj(res(ω)) =∞. The second part of the statement then follows from this
remark and Proposition 3.11. �

In particular, the logarithmic residues of the irreducible components sat-
isfy the following property:

Corollary 3.16. — We have the following inclusion:

RD1 ⊕ · · · ⊕RDp
↪→ RD .

Therefore, val1(RD1)× · · · × valp(RDp
) ⊆ val(RD).

Remark 3.17. — IfD = D1∪D2 is a plane curve satisfying RD = RD1⊕
RD2 , then by [29], it is a splayed divisor, and in fact it is even a normal
crossing plane curve. We refer to [11, Definition 2.3] for the definition of a
splayed divisor.

We now study the set of values of the dual of RD, namely, the Jaco-
bian ideal JD. We show that the modules of logarithmic vector fields
Der(− logDi) for i ∈ {1, . . . , p} give information on the structure of the set
of values of the Jacobian ideal.
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Proposition 3.18. — Let ∅ 6= J ⊆ {1, . . . , p} and D′ =
⋃
j∈J Dj .

Renumbering the branches, we may assume that J = {1, . . . , q} with q 6 p.
Then:

JD ∩ ({0}q ⊕ C {tq+1} ⊕ · · · ⊕ C {tp}) = {δ(h) ; δ ∈ Der(− logD′)}.

In particular, the set of zero divisors of JD is determined by the family of
modules {

Der
(
− log(∪j∈JDj)

)}
J⊂{1,...,p},J 6=∅ .

Proof. — We first notice that for all g ∈ JD, there exists δ ∈ Θ2 such
that δ(f) = g in OD, where Θ2 is the module of holomorphic vector fields
on (C2, 0). Moreover, δ(f) induces in O

D̃
=
∏p
i=1 O

D̃i
the element:

δ(f) = (f2 . . . fpδ(f1), . . . , f1 . . . fp−1δ(fp)) .

By Proposition 3.11, v ∈MJD
if and only if there are ∅ 6= J ⊆ {1, . . . , p}

and δ ∈ Θ2 such that for all j ∈ J , valj(δ(f)) = ∞ and for all j /∈ J ,
valj(δ(f)) = vj . This condition is equivalent to the condition: for all j ∈ J ,
δ(fj) ∈ (fj) and for all j /∈ J , valj(δ(fj)) = vj −

∑
i 6=j valj(fi). �

3.2.2. Conductor of the module of residues

We compute here the conductor of RD, that is to say, the minimal ν ∈ Zp
such that ν + Np ⊆ val(RD).
We need the following results:

Proposition 3.19 ([20, Theorem 2.7]). — Let f = f1 . . . fp be a re-
duced equation of a plane curve germ. We assume that for all i ∈ {1, . . . , p},
fi is irreducible. We denote by ci the conductor of the branch defined by
fi. The conductor of D is given by

γ =
(
c1 +

p∑
i=2

val1(fi), . . . , cp +
p−1∑
i=1

valp(fi)
)
.

We then have:

Lemma 3.20. — Let f ∈ C{x, y} be a reduced equation of a plane curve
germ. Then:

val(f ′x) = γ + val(y)− 1
val(f ′y) = γ + val(x)− 1 .
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Proof. — If f is irreducible, it is exactly the statement of Teissier’s
lemma (see [9, Lemma 2.3]). If f is reducible, we prove the result for f ′x.
We have the following equality:

valj (f ′x) =
∑
i6=j

valj(fi) + valj
(
∂fj
∂x

)
.

By Teissier’s lemma, valj (f ′x) = cj + valj(y)− 1. Theorem 3.19 then gives
the result. �

Proposition 3.21. — The conductor of RD is −(m(1), . . . ,m(p)) + 1,
where m(j) = inf(valj(x), valj(y)) is the multiplicity of the component Dj

of D.

Proof. — By Lemma 3.20, inf(val(JD)) = γ + inf(val(x), val(y)) − 1.
Therefore,

sup {α ∈ Zp ;∀ β 6 α,∆(β,JD) = ∅} = γ + inf(val(x), val(y))− 2 .

By Theorem 1.2, the conductor of RD is ν = − inf(val(x), val(y)) + 1. �

3.2.3. Relation with the torsion of Kähler differentials

We mention here the relation between logarithmic forms and the torsion
of Kähler differentials for a plane curve D. It leads to a determination of
the dimension of the torsion of Ω1

D as a C-vector space when D is a plane
curve which is slightly different from the proofs of O. Zariski (see [32]) and
R. Michler (see [22]).
We first assume that D is the germ of a reduced hypersurface in (Cn, 0).

The following property was proved by A. G. Aleksandrov:

Proposition 3.22 ([3, 3.1]). — For all 1 6 q 6 n, the following map:

Ωq(logD)
df
f ∧ Ωq−1

Cn + ΩqCn

→ Tors(ΩqD)

[ω] 7→ [fω]

is an isomorphism of OD-modules.

Proof. — It is a consequence of the characterization (3.1) of logarithmic
forms. �

Corollary 3.23. — The map resq induces an isomorphism of OD-
modules:

resq(Ωq(logD))
Ωq−1
D

' Tors(ΩqD) .
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Proof. — We have the following exact sequences:

0→ ΩqCn → Ωq(logD)→ resq (Ωq(logD))→ 0 ,

0→ ΩqCn →
df
f
∧ Ωq−1

Cn + ΩqCn

resq

−−→ Ωq−1
D → 0 .

Therefore, resq(Ωq(logD)) ' Ωq(logD)
Ωq

Cn
and Ωq−1

D '
df
f ∧Ωq−1Cn+Ωq

Cn

Ωq
Cn

, so that

by a classical isomorphism theorem, we have resq(Ωq(logD))
Ωq−1

D

' Ωq(logD)
df
f ∧Ωq−1

Cn +Ωq
Cn

,
and we conclude with Proposition 3.22. �

Corollary 3.24. — Let D ⊆ (C2, 0) be a plane curve germ. We denote
by τ = dimC OD/JD the Tjurina number. Then RD

OD
' Tors(Ω1

D) and
dimC Tors(Ω1

D) = τ .

Proof. — We use Propositions 2.12 and 3.10 to prove that

dimC RD/OD = dimC OD/JD = τ . �

3.3. Complete intersection curves and the relation with Kähler
differentials

This section is devoted to the study of complete intersection curves,
which are a particular case of Gorenstein curves.

We begin with the definition of multi-logarithmic forms along a reduced
complete intersection given in [4]. We then focus on the case of complete
intersection curves for which we give the relation between the values of
multi-residues and the values of Kähler differentials.

Let C ⊂ (Cm, 0) be the germ of a reduced complete intersection de-
fined by a regular sequence (h1, . . . , hk). For j ∈ {1, . . . , k}, we set ĥj =
h1 . . . hj−1 · hj+1 . . . hk.

Definition 3.25 ([4]). — Let ω ∈ 1
h1...hk

Ωq with q ∈ N. Then ω is called
a multi-logarithmic differential q-form along the complete intersection C if

∀ i ∈ {1, . . . , k} , dhi ∧ ω ∈
k∑
j=1

1
ĥj

Ωq+1.

We denote by Ωq(logC) the C{x}-module of multi-logarithmic q-forms
along C.

To simplify the notations, we set Ω̃q :=
∑k
j=1

1
ĥj

Ωq.
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If k = 1, the definition of multi-logarithmic forms coincides with the
definition of logarithmic forms 3.1.
Then we have the following characterization which should be compared

with Proposition 3.5:

Theorem 3.26 ([4, §3, Theorem 1]). — Let ω ∈ 1
h1...hk

Ωq, with q > k.
Then ω ∈ Ωq(logC) if and only if there exist a holomorphic function g ∈
C{x} which does not induce a zero divisor in OC , a holomorphic differential
form ξ ∈ Ωq−k and a meromorphic q-form η ∈ Ω̃q such that:

(3.2) gω = dh1 ∧ · · · ∧ dhk
h1 . . . hk

∧ ξ + η .

We set for q > 0 :

ΩqC = Ωq

(h1, . . . , hk)Ωq + dh1 ∧ Ωq−1 + · · ·+ dhk ∧ Ωq−1

∣∣∣
C
.

Definition 3.27. — Let ω ∈ Ωq(logC), q > k. Let us assume that
g, ξ, η satisfy the properties of Theorem 3.26. Then the multi-residue of ω
is:

resqC(ω) := ξ

g

∣∣∣
C
∈ Q(OC)⊗OC

Ωq−kC = Q(O
C̃

)⊗O
C̃

Ωq−k
C̃

.

We define Rq−k
C := resqC(Ωq(logC)). In particular, if q = k, reskC(ω) ∈

Q(OC), and we denote RC := reskC
(
Ωk(logC)

)
.

It is proved in [4] that for ω ∈ Ωq(logC) the multi-residue resqC(ω) is
well-defined with respect to the choices of ξ, g and η in (3.2).

Proposition 3.28 ([29, Lemma 5.4]). — Let JC ⊆ OC be the Jaco-
bian ideal, that is to say the ideal of OC generated by the k × k minors of
the Jacobian matrix. Then:

J ∨
C = RC .

Remark 3.29. — In [26], we give a more direct proof of this duality,
which is not based on the isomorphism between the module of multi-
residues and the module of regular meromorphic forms given in [1, Theo-
rem 3.1].

From now on, we assume that C = C1 ∪ · · · ∪ Cp is a reduced complete
intersection curve defined by a regular sequence (h1, . . . , hm−1). We de-
note by ϕi(ti) = (xi,1(ti), . . . , xi,m(ti)) a parametrization of the branch Ci,
which is induced by a normalization of C.
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Definition 3.30. — Let ω =
∑m
j=1 ajdxj ∈ Ω1

C . We set x′i,j for the de-
rivative of xi,j with respect to ti and ϕ∗i (ω) =

(∑m
j=1 aj ◦ ϕi(ti)x′i,j(ti)

)
dti.

Then:

vali(ω) = vali(ϕ∗i (ω)) = 1 + vali

 m∑
j=1

(aj ◦ ϕi)(ti) · x′i,j(ti)

.
We recall that CC denotes the conductor ideal of C. We set ϕ∗(Ω1

C)
dt ⊂

O
C̃

=
⊕p

i=1 C {ti} the fractional ideal generated by
(
(x′1,1(t1), . . . , x′p,1(tp)

)
,

. . . ,
(
(x′m,1(t1), . . . , x′m,p(tp)

)
. We then have val(Ω1

C) = val
(
ϕ∗(Ω1

C)
dt

)
+ 1.

Proposition 3.31. — Let C = C1 ∪ · · · ∪ Cp ⊂ Cm be a reduced com-
plete intersection curve defined by a regular sequence (h1, . . . , hm−1). Then
there exists g ∈ CC with val(g) = γ such that JC = g · ϕ

∗(Ω1
C)

dt . In partic-
ular,

(3.3) val(JC) = γ + val(Ω1
C)− 1 .

Proof. — Let i ∈ {1, . . . , p}. Let Jac(h1, . . . , hm−1) be the Jacobian ma-
trix of (h1, . . . , hk). Let Ji denote the k × k minor of Jac(h1, . . . , hm−1)
obtained by removing the column i. Then, for all j ∈ {1, . . . ,m − 1} we
have hj ◦ ϕi(ti) = 0, thus:(

Jac(h1, . . . , hk) ◦ ϕi(ti)
)(
x′i,1(ti), . . . , x′i,m(ti)

)t =
(
0, . . . , 0

)t
.

Wemultiply on the left by the adjoint of the matrix obtained by removing
the last column of Jac(h1, . . . , hk)◦ϕi(ti), which gives the needed relations:
for all j ∈ {1, . . . ,m− 1},(

Jm ◦ ϕi(ti)
)
· x′i,j(ti) + (−1)m−(j−1)(Jj ◦ ϕi(ti)) · x′i,m(ti) = 0 .

We assume for example that x′i,m(ti) 6= 0.
By setting gi(ti) = Jm◦ϕi(ti)

x′
i,m

(ti) one obtains for all ` ∈ {1, . . . ,m},

(3.4) gi(ti) · x′i,`(ti) = (−1)m−`J` ◦ ϕi(ti) .

It remains to prove that vali(g) = γi.
Let us denote by ΠC the ramification ideal of the curve C, which is the

O
C̃
-module generated by(

x′i,1(t1), . . . , x′i,p(tp)
)

16i6m .

By [24, Corollary 1, Proposition 1], one has:

CCΠC = JCO
C̃
.
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Thus, we have the equality inf(val(ΠC)) + γ = inf(val(JC)).
The equalities (3.4) imply that for all i ∈ {1, . . . , p}, and j ∈ {1, . . . ,m}

we have vali(Jj) = inf(vali(JC)) if and only if vali(x′i,j) = inf(vali(ΠC)).
Therefore, if j is such that vali(Jj) = inf(vali(JC)), then vali(Jj) =

γi + vali(x′i,j), which gives us vali(gi) = γi. �

Corollary 3.32. — Let C ⊂ Cm be a reduced complete intersection
curve. With the notation of Section 2, for all v ∈ Zp, we have the following
equivalence:

v ∈ val(RC) ⇐⇒ ∆(−v, val(Ω1
C)) = ∅

and RC = 1
g ·
(
ϕ∗(Ω1

C)
dt

)∨
, where g is given by Proposition 3.31.

Proof. — It is a consequence of the symmetry Theorem 1.2 together with
Proposition 3.28, and Proposition 3.31 �

Remark 3.33. — The latter corollary gives also the relation between
meromorphic regular forms as defined in [5] and Kähler differentials. In-
deed, by [1, Théorème 2.4], the module RC of multi-residues is isomorphic
to the module of regular meromorphic forms ωC , which can be defined as
ωC = Extm−1

OCm
(OC ,ΩmCm). In particular, ωC ' 1

g ·
(
ϕ∗(Ω1

C)
dt

)∨
.

Remark 3.34. — Another consequence of Proposition 3.31 is the follow-
ing inclusion:

γ +
(

val(OC)\{0}
)
− 1 ⊆ val(JC) .

Indeed, if h ∈ m, with m the maximal ideal of OC , then val(dh) = val(h),
which gives us the inclusion val(OC)\ {0} ⊆ val(Ω1

C).

4. Equisingular deformations of plane curves and the
stratification by logarithmic residues

The purpose of this last section is to study the behaviour of the values of
logarithmic residues in an equisingular deformation of a plane curve. The
base space of this deformation is denoted by S in forthcoming Definition 4.5.
Each s ∈ S is associated with a germ of plane curve Ds, and val(ODs

) does
not depend on s. By the results of Section 3, partitioning S by the values
of logarithmic residues is the same as by the values of Kähler differentials.
This partition is an essential ingredient of the analytic classification of plane
curves described in [15] and [16] respectively for irreducible curves and for
reducible curves with two branches.
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We first recall some results on equisingular and admissible deformations.
We then prove that the stratification by the values of logarithmic residues
is finite and constructible, and it refines the stratification by the Tjurina
number (see Propositions 4.14 and 4.15). We end this section with several
algorithms which can be used to compute the set of values of RD, inspired
by [7] and [14].

Definition 4.1 ([17, Definition 10.1.1]). — Let D be a plane curve
defined in a neighbourhood U of the origin of C2 by a reduced equation
f ∈ OC2(U). Let k ∈ N and (S, 0) = (Ck, 0). A deformation F of f with
base space S is a function F (x, y, s) ∈ OC2⊗̂OS which satisfies F (x, y, 0) =
f(x, y).

For the remainder of this section, we set:

Notation 4.2. — Let X = U×S, OX = OC2⊗̂OS ,W = F−1(0) ⊆ U×S.
We assume F (0, 0, s) = 0 for all s. For s ∈ S, we set Ds = W ∩

(
C2 × {s}

)
and mS,s the maximal ideal of OS,s, and Fs = F (., s). In particular,D0 = D

and F0 = f .

4.1. Equisingular and admissible deformations of plane curves

The following numbers are classical invariants of plane curves:

Definition 4.3. — Let D be a reduced plane curve defined by f ∈
C{x, y}.

• The Milnor number of f is µ(f) = dimC C{x, y}/(f ′x, f ′y)
• The Tjurina number of f is τ(f) = dimC C{x, y}/(f ′x, f ′y, f)
• The delta-invariant of f is δ(f) = dimC O

D̃
/OD

The following proposition gives the relation between µ and δ:

Proposition 4.4 ([23]). — We have the following relation:

µ(f) = 2 · δ(f)− p+ 1 ,

where p is the number of irreducible components of D.

Definition 4.5. — Let F be a deformation of f with base space S. We
say that F is an equisingular deformation of f if for all s ∈ S, µ(Fs) = µ(f).

From the equisingularity theorem for plane curves (see [30, §3.7]), for an
equisingular deformation of a plane curve, a parametrization ϕ of D gives
rise to a deformation ϕs of the parametrization. We denote by valDs(g) the
value of g ∈ Q(ODs

) along Ds. Another consequence of the equisingularity
theorem for plane curves is:
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Corollary 4.6. — With the same notations, if F is an equisingular
deformation of f :

(1) All fibers Ds have the same conductor γ.
(2) Let x(t, s) = (x1(t1, s), ..., xp(tp, s)), y(t, s) = (y1(t1, s), ..., yp(tp, s))

be a parametrization of Ds. For all s ∈ S,

inf
(

valDs
(x(t, s)), valDs

(y(t, s))
)

= inf
(

valD(x(t, 0)), valD(y(t, 0))
)

= (m(1), . . . ,m(p)) ,

where m(j) is the multiplicity of the component Dj of D.

Proof.
(1) By the equisingularity theorem (see [30, §3.7, (10)]), the intersection

multiplicity of any couple of branches, and the characteristic expo-
nents of each branch, do not depend on s. Thus, the semigroup and
therefore the conductor of each branch are also independent from s.
Theorem 3.19 then gives the result.

(2) For all j ∈ {1, . . . , p}, inf
(

valDs,j
(xj(tj , s)), valDs,j

(yj(tj , s))
)
is the

multiplicity of Ds,j , which does not depend on s by the equisingu-
larity theorem. �

The following proposition will be used in the next subsection, since it
gives a common denominator for the logarithmic residues with interesting
properties.

Proposition 4.7. — There exists α, β ∈ C such that for all s in a
neighbourhood of 0, val(αF ′x(s) + βF ′y(s)) = γ +

(
m(1), . . . ,m(p)) − 1. In

particular, αF ′x(s) + βF ′y(s) induces a non zero divisor in OD whose value
does not depend on s.

Proof. — Thanks to the equisingularity theorem, one can prove that
there exists a linear change of coordinates (u, v) such that for all s in a
neighbourhood of 0 ∈ S, valDs(u) =

(
m(1), . . . ,m(p)). The conclusion fol-

lows from Corollary 4.6 and Lemma 3.20. �

We want now to understand the behaviour of a generating family of the
module of residues.

We recall that plane curves are free divisors. Moreover, they are the only
free divisors with isolated singularities, since by [2], the singular locus of
a free divisor is of codimension one in the hypersurface. The equisingular-
ity assumption is not sufficient to obtain a deformation (ρ1(s), ρ2(s)) of a
generating family of RD such that (ρ1(s), ρ2(s)) generate RDs : equisingu-
larity is not the “good” functor of deformation for free divisors. A functor
of deformation adapted to free divisors is suggested by M. Torielli in [31].
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The following definition is equivalent to the definition of M. Torielli
(see [31, Definition 3.1]) thanks to both [31, Proposition 3.7] and [13, The-
orem 1.91]:

Definition 4.8. — Let D be a free divisor defined in a neighbour-
hood of 0 ∈ Cn by a reduced equation f . An admissible deformation
X of D with base space S is a deformation of D such that the module
OCn×S,0/(F, F ′x, F ′y) is a flat OS,0-module.

The following proposition describes an admissible deformation of a plane
curve thanks to the Tjurina number.

Proposition 4.9. — Let F be a deformation of f ∈ OC2(U) with base
space S such that for all s ∈ S,

∑
xj∈Sing(Ds) τxj

= τ0 where τ0 is the
Tjurina number of D0. Such a deformation is an admissible deformation.

Proof. — We denote by p the restriction of the canonical epimorphism
C2×S → S to the relative singular locus, which is a finite morphism. We set
F = p∗

(
OC2×S/

(
F, ∂F∂x ,

∂F
∂y

))
. Then Fs/mS,sFs = OC2/

(
Fs,

∂Fs

∂x ,
∂Fs

∂y

)
,

which is by assumption a complex vector space of dimension τ0. The propo-
sition is then a direct consequence of [13, Theorem 1.81]. �

Proposition 4.10 ([31, Lemma 3.22]). — Let F (x, y, s) be an equi-
singular and admissible deformation of the plane curve defined by f with
base space S. Let (δ1, δ2) be a basis of the module of logarithmic vector
fields along D. Then δ1, δ2 induce relations between f, f ′x, f ′y. By flatness,
we can extend them to obtain relative logarithmic vector fields δ̃1, δ̃2 ∈
(ΘU×S/S)/(mSΘU×S/S) of F . Then, for s in a neighbourhood of 0 ∈ S,(
δ̃1(s), δ̃2(s)

)
is a basis of Der(− logDs).

Corollary 4.11. — Let δ̃i = Ai(s)∂x + Bi(s)∂y, i = 1, 2 be as in
Proposition 4.10. Thanks to the duality between the modules Der(− logDs)
and Ω1(logDs), the following elements generate the module of residues for
all s in a neighbourhood of 0 ∈ S:

ρ1(s) = −βA2(s) + αB2(s)
αF ′x(s) + βF ′y(s)

ρ2(s) = βA1(s)− αB1(s)
αF ′x(s) + βF ′y(s)

where α, β ∈ C are given by Proposition 4.7.
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4.2. Properties of the stratification by logarithmic residues

We consider an equisingular deformation F of f with base space (S, 0) '
(Ck, 0) for a k ∈ N. We denote by Rs the module of logarithmic residues
of Ds.

The purpose of this section is to study the stratification by the values of
logarithmic residues defined in Definition 4.12. We prove that this strati-
fication is finite, finer than the stratification by the Tjurina number and
constructible (see Propositions 4.14 and 4.15). We end with two examples,
the first one shows that the stratification by logarithmic residues may be
strictly finer than the stratification by the Tjurina number (see Exam-
ple 4.16). The stratification by logarithmic residues of Example 4.19 does
not satisfy the frontier condition.

Definition 4.12. — Let F (x, y, s) be an equisingular deformation of
a reduced plane curve D with p branches defined by f ∈ C{x, y}, with
base space S. The stratification by logarithmic residues is the partition
S =

⋃
V ⊆Zp SV where s ∈ SV if and only if val(Rs) = V .

An example of a stratification by the values of logarithmic residues is
given in Example 4.16.

Let us compare the stratification by logarithmic residues with the strat-
ification by the Tjurina number. The stratification by the Tjurina number
is the partition S =

⋃
n∈N Sn where s ∈ Sn if and only if τ(Fs) = n. This

stratification is finite since the Tjurina number is bounded by the Milnor
number, which is constant on S by the equisingularity condition.

Proposition 4.13. — Let D be a plane curve germ. Then:

(4.1) dimC RD/OD̃ = τ − δ .

Proof. — Thanks to Propositions 2.12 and 3.10 we have:

dimC RD/OD̃ = dimC RD/OD − dimC O
D̃
/OD = dimC O∨D/R

∨
D − δ

= dimC OD/JD − δ
= τ − δ . �

Proposition 4.14. — The stratification by logarithmic residues satis-
fies the following properties:

(1) the stratification by logarithmic residues is finer than the stratifi-
cation by the Tjurina number,

(2) the stratification by logarithmic residues is finite.
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Proof. — The first claim is a direct consequence of Proposition 4.13,
since the equisingularity condition ensures that δ(Fs) does not depend on s,
and the dimension of the quotient Rs/OD̃s

can be computed from the values
of Rs by Corollary 2.22. The second claim comes from both Proposition 4.7,
which gives a lower bound u of the set of values of logarithmic residues
which do not depend on s, and Corollary 3.14. As a consequence, the values
of Rs are determined by the values v of Rs satisfying u 6 v 6 0. �

Proposition 4.15. — Each stratum SV of the stratification by loga-
rithmic residues is constructible. If moreover D is irreducible, then each
stratum is locally closed.

The hypothesis of D being irreducible was forgotten in the corresponding
statement [25, Proposition 4.2].

Proof. — By the appendix by Teissier in [33], the strata of the stratifi-
cation by the Tjurina number are locally analytic and locally closed. It is
therefore sufficient to consider the behaviour of logarithmic residues in a
τ -constant stratum Sτ . For the sake of simplicity, we denote S = Sτ .
By Corollary 4.11, for all s, the OS-module Rs is generated by

ρ1(s) = −βA2(s) + αB2(s)
αF ′x(s) + βF ′y(s)

ρ2(s) = βA1(s)− αB1(s)
αF ′x(s) + βF ′y(s)

where α, β ∈ C are given by Proposition 4.7. The value of the common
denominator αF ′x(s) + βF ′y(s) does not depend on s, so that it is sufficient
to consider the values of the numerators.
We denote by N1 and N2 the numerators of ρ1(s) and ρ2(s). We recall

that the values v of Rs satisfying v 6 0 are sufficient to determine val(Rs),
so that it is sufficient to consider the set of all elements xiyjNk with i, j ∈
N, k ∈ {1, 2} such that val(xiyjNk) 6 u, where u = val(αF ′x(s) + βF ′y(s)).
We set {X1, . . . , Xq} :=

{
xiyjNk; val(xiyjNk) 6 u

}
, where the elements

are numbered in an arbitrary order, and q is the number of elements in this
set.
For all i∈{1, ..., q}, we haveXi=

(∑
j>0 ai,j,1(s)tj1, ...,

∑
j>0 ai,j,p(s)tjp

)
∈

O
D̃s

.
For v ∈ Zp and k ∈ {1, . . . , p} we setXv

i,k(s) = (ai,0,k(s), . . . , ai,vk,k(s)) ∈
Ovk+1
S . For v ∈ Zp we define the following matrix Av(s) ∈Mq,`v

(OS) with
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`v =
∑p
j=1(vj + 1):

Av(s) =

(Xv
1,1(s)) . . . (Xv

1,p(s))
...

...
(Xv

q,1(s)) . . . (Xv
q,p(s))

 .

The ith row of this matrix encodes the respective Taylor developments
of Xi along the branch Dk for k = 1, . . . , p up to order vk.

We set (e1, . . . , ep) the canonical basis of Zp. We use the rank of the
matrices Av(s) to characterize the property v ∈ val(Rs) for s ∈ S:

v ∈ val(Rs) ⇐⇒ ∀ k ∈ {1, . . . , p} , rank
(
Av−1(s)

)
< rank

(
Av−1+ek

(s)
)
.

Indeed, if the conditions of the right-hand side are satisfied, then for all
k ∈ {1, . . . , p}, there exists a linear combinationMk =

∑q
i=1 λi,kXi(s) with

λi,k ∈ C such that val(Mk) > v and valk(Mk) = vk. We use Proposition 2.9
to conclude.
Therefore, for a given V ⊆ Zp for which SV ∩S 6= ∅ and V := (V + u)∩

{w ∈ Zp; 0 6 w 6 u}:

s ∈ SV

⇐⇒ s∈
⋂
v∈V

 ⋃
16r6M

V (Fr

(
Av−1(s)

)
) ∩

⋂
16k6p

(V (Fr(Av−1+ek
(s))c)

,
where Fr(A) denotes the ideal generated by the r× r minors of the matrix
A and M = min(q, `v + 1). We notice that the elements v /∈ V can not
be reached since otherwise, by Corollary 2.30, the dimension of Rs/ODs

would be strictly greater than τ − δ.
Hence the result for reducible curves.
Let us assume now that D is irreducible. In this case, the rank of the

matrix Av(s) increases exactly by 1 when a valuation is reached. We set
V = {v1 < · · · < vL} = (V + u) ∩ {0, . . . , u}. Then:

s ∈ SV ⇐⇒ s ∈
L⋂
`=1

v`−1⋂
j=v`−1+1

(
V (F`(Aj(s)) ∩ (V (F`(Av`

)c
)
.

Therefore the stratum SV is locally closed. �

We recall here the examples of [25] with more details. The first example
shows that the stratification by logarithmic residues may be strictly finer
than the stratification by the Tjurina number, whereas the second shows
that the stratification by logarithmic residues does not satisfy the frontier
condition defined below.
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Example 4.16. — We consider f(x, y) = x5 − y6 and the equisingular
deformation of f given by F (x, y, s1, s2, s3) = x5 − y6 + s1x

2y4 + s2x
3y3 +

s3x
3y4. The stratification by τ is composed of three strata, S20 = {0},

S19 = {(0, 0, s3), s3 6= 0} and S18 = {(s1, s2, s3), (s1, s2) 6= (0, 0)}, where
the index indicates the value of τ . The computation of the values of JDs is
quite easy in this case and gives thanks to Theorem 1.2 the values of RDs

.
The stratification of C3 by the values of RDs

is then C3 = S20tS19tS′18t
S′′18 where S′18 = {(s1, s2, s3), s1 6= 0} and S′′18 = {(0, s2, s3), s2 6= 0}. The
stratum S18 splits up into the two strata S′18 and S′′18 for stratification by
the values of RDs , and the other strata of the stratification by the Tjurina
number are the same as by the values of logarithmic residues. Therefore, the
stratification by logarithmic residues is strictly finer than the stratification
by τ . The corresponding values are:

Stratum dimC RDs /O
D̃s

negative values of RDs

S20 10 −1, −2, −3, −4, −7, −8, −9, −13, −14, −19
S19 9 −1, −2, −3, −4, −7, −8, −9, −13, −14
S′18 8 −1, −2, −3, −4, −7, −8, −9, −14
S′′18 8 −1, −2, −3, −4, −7, −8, −9, −13

Example 4.19 below shows that the stratification by logarithmic residues
do not necessarily satisfy the frontier condition defined below.

Definition 4.17. — A stratification S =
⋃
α Sα satisfies the frontier

condition if for α 6= β, Sα ∩ Sβ 6= ∅ implies Sα ⊆ Sβ , with Sβ the closure
of Sβ .

We first prove the following property:

Lemma 4.18. — Let D be a quasi-homogeneous plane curve germ with
conductor γ. Then:

γ − 1 + (val(OD)\{0}) = val(JD) .

Proof. — Let p be the number of branches. The inclusion ⊆ is given by
Remark 3.34. For the other inclusion, we notice that Remark 3.34 implies
t2γ−1O

D̃
⊆JD ⊆ CD. We have the following equality:

dimC CD/t
2γ−1O

D̃
= dimC CD/JD + dimC JD/t

2γ−1O
D̃
.

By Propositions 4.13 and 2.12, we have dimC CD/JD = τ − δ. Since
D is quasi-homogeneous, we have τ = µ so that by Proposition 4.4 we
have dimC CD/JD = δ − p + 1. Moreover, since δ = dimC O

D̃
/OD, and
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since C is Gorenstein, dimC OD/CD = δ, we have dimC O
D̃
/CD = 2δ, thus

dimC CD/t2γ−1O
D̃

= 2δ − p. Therefore:

dimC JD/t
2γ−1O

D̃
= δ − 1 .

Let m be the maximal ideal of OD. Then val(m) = val(OD)\{0} and the
quotient m/CD has dimension δ−1. Therefore, dimC t

γ−1m/t2γ−1O
D̃

= δ−
1. Since val(tγ−1m) ⊆ val(JD), by Corollary 2.30, the equality follows. �

Example 4.19. — Let us consider the deformation F (x, y, s1, s2) = x10+
y8 + s1x

5y4 + s2x
3y6 for s1, s2 in a neighbourhood of 0 so that the defor-

mation is equisingular. It is given in [6], as an example of the stratification
by the b-function not satisfying the frontier condition.

Contrary to the previous example, this curve is not irreducible.
We notice that F (x, y, s1, 0) is quasi-homogeneous. Therefore, the pre-

vious lemma shows that the values of the Jacobian ideal along the quasi-
homogeneous stratum does not change. Therefore, the quasi-homogeneous
stratum is a stratum of the stratification by logarithmic residues.
Moreover, one can check that there are three strata for the stratification

by the Tjurina number: the quasi-homogeneous stratum S1 defined by s2 =
0 for which τ = 63, a stratum S2 defined by s1 = 0 and s2 6= 0 for which τ =
54 and a stratum S3 defined by s1s2 6= 0 for which τ = 53. Therefore, the
stratification by logarithmic residues does not satisfy the frontier condition.
Indeed, the stratification by logarithmic residues is finite and constructible
so that there is a stratum of the stratification by logarithmic residues which
is an open dense subset of S2, which therefore contains the origin in its
closure, but not the whole quasi-homogeneous stratum.

4.3. Algorithms to compute the logarithmic residues along
plane curves with one or two components

We suggest here several methods which can be used to compute the
values of logarithmic residues.

Thanks to the symmetry Theorem 1.2, computing the values of JD is
equivalent to the computation of the values of RD.

4.3.1. Irreducible semi-quasi homogeneous polynomials

This algorithm is used to study the equisingular deformation of a quasi-
homogeneous polynomial of the form xa − yb, with gcd(a, b) = 1. It is
inspired by [7].

TOME 68 (2018), FASCICULE 2



760 Delphine POL

We consider the following equation of an irreducible curve, with sij ∈ C
and gcd(a, b) = 1:

(4.2) F (x, y) = xa − yb +
∑

16i<a−1
16j<b−1
ib+ja>ab

sijx
iyj .

A parametrization of the curve is given by x(t) = tb + g(t), y(t) = ta +h(t)
where g, h ∈ C{t} with val(g) > b, val(h) > a.

We set for i, j ∈ N2, ρ(i, j) = ib + ja. We define a monomial or-
dering by: (i, j) < (i′, j′) if and only if ρ(i, j) < ρ(i′, j′) or

(
ρ(i, j) =

ρ(i′, j′) and i < i′
)
. If H =

∑
i,j ai,jx

iyj ∈ C{x, y} is non zero, we set
exp(H) = min ((i, j), ai,j 6= 0) and ρ(H) := ρ(exp(H)).
Polynomials of the form (4.2) are studied in [7]. The authors give an

algorithm to compute the “escalier” of the curve, which is by definition the
complement in N2 of the set

E = {exp(g); g ∈ (F, F ′x, F ′y) ⊆ C{x, y}} .

More precisely, they give the explicit computation of a finite family
(Aj)−16j6K of points of N2 such that E =

⋃K
j=−1Aj + N2, and none

of the Aj ’s can be removed. Then it is possible to prove:

Proposition 4.20. — We have the following equality:

val(JD) =
K⋃

i=−1

(
ρ(Aj) + val(OD)

)
.

4.3.2. Irreducible plane curve

In [14], an algorithm is proposed to compute the set of values of Kähler
differentials of an irreducible plane curve. By Proposition 3.32, it gives also
the values of RD. In fact, one can see that the algorithm of [7] corresponds
to the algorithm of [14] by Proposition 3.31.
Moreover, if a generating family of RD is known, the algorithm of [14,

Theorem 2.4] can be used directly on this family to compute a standard
basis (H,G) for RD (see [14, Definition 2.1]). In particular, G is a standard
basis of OD and H ⊆ RD. In order to determine val(RD) from H and G,
we need the following notion:

Definition 4.21 ([14]). — A G-product is an element of the form∏q
i=1 g

αi
i with q ∈ N, αj ∈ N and gi ∈ G.
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A standard basis G of OD is characterized by the fact that for all h ∈ OD,
there exists a G-product g such that val(h) = val(g) (see [14]).

Example 4.22. — Let D be the irreducible plane curve parametrized by
x(t) = t4 and y(t) = t6 + t7. By [17, Example 5.2.13], the semigroup of D is
generated by 4, 6, 13 so that a standard basis of OD is G =

{
x, y, y2 − x3}.

The G-products are then the elements xiyj(y2 − x3)k for i, j, k ∈ N.

For any irreducible curve D, if (H,G) is a standard basis of RD, then:

val(RD) = {val(h) + val(g);h ∈ H, g a G-product}.

4.3.3. Plane curves with two branches

Let D = D1∪D2 be a plane curve germ with two irreducible components.
We suggest here an algorithm to compute the set of negative values of RD.
It is more technical than in the irreducible case, and cannot be generalized
to plane curves with three or more branches. It can be compared to the
fact that the analytic classification proposed in [16] for two branches is
also more complicated than in the irreducible case, and can not be easily
extended to plane curves with three or more branches.
Example 4.24 illustrates the algorithm for two branches which is sug-

gested below.

Remark 4.23. — The algorithm in [14] is given for irreducible curves,
for which the set of valuations is totally ordered, so that we cannot apply it
directly to reducible plane curves. Nevertheless, we can use it if we consider
only one of the components. More precisely, if we consider an ideal I =
(h1, . . . , hq) in OD, we associate with it a C {x1(t1), y1(t1)}-module I =(
h1, . . . , hq

)
⊂ C {t1}, where hi is the image of hi in C {ti}. The algorithm

of [14, Theorem 2.4] applied to I gives a standard basis (H1, G1) for I. This
algorithm is based on the notion of S-process (see [14, Definition 2.2]), so
that we can simultaneously compute a family (H1, G1) in OD such that the
image of G1 in C {t1} is G1, and the image of H1 in C {t1} is H1.

We denote for p ∈ {1, 2}, Zp60 = {v ∈ Zp; v 6 0}.
First step. — First of all, we set g ∈ (f ′x, f ′y) a non zero divisor of OD,

and we fix it as the common denominator of all residues of D1, D2 and D,
so that we can consider only the numerators to compute the set of values
in each case.
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Let i ∈ {1, 2}. We consider only the branch Di. Thanks to the algorithm
of [14, Theorem 2.4] and Remark 4.23, we compute (thanks to the numera-
tors) a family (Ri, Gi) in Q(OD) such that its image in C {ti} is a standard
basis of RDi Di

.
To determine entirely val(RD) ∩ Z2

60, we first compute the projection
val1(RD) of val(RD). To do this, we apply again [14, Theorem 2.4] and
Remark 4.23 to obtain a family (R,G1) in Q(OD) such that its image in
C {t1} is a standard basis of RD D1 . Therefore, for all v1 ∈ val1(RD) ∩
(val1(RD1))c, there exists ρ ∈ R such that val1(ρ) = v1.
Second step. — We set M0 = {(0, v2); v2 ∈ val2(RD2) ∩ Z60} and H0 =

R2. By Proposition 3.15, it gives all the values of val(RD) ∩
(
{0} × Z60

)
.

Let us assume that for a k ∈ N∗ we have constructed sets Mk−1 and
Hk−1 ⊆ RD such that

Mk−1 = {(v1, v2) ∈ val(RD);−k + 1 6 v1 6 0 and v2 6 0} ,

and for all v2 ∈ val2(Mk−1), there exists ρ ∈ Hk−1 and a G2-product h
with val2(h · ρ) = v2 and val1(h · ρ) > −k + 1.
Let us compute Mk and Hk. If −k /∈ val1(RD), Mk = Mk−1 and Hk =

Hk−1. Otherwise, there are several cases to consider.
First case: −k ∈ val1(RD) ∩ val1(RD1). — It means that (−k,∞) ∈

val(RD), which is by Proposition 3.11 equivalent to (−k, 0) ∈ val(RD). By
Proposition 2.9, one can see that

(4.3) Mk ⊇Mk−1 ∪ {(−k, v2), v2 ∈ val2(Mk−1)} .

Moreover, by Proposition 2.10, if (−k, v2) ∈ val(RD) with v2 6 0, then
v2 ∈ val2(Mk−1). Therefore the inclusion in (4.3) is an equality and Hk =
Hk−1.
Second case: −k ∈ val1(RD) but −k /∈ val1(RD1). — There exists

ρ0 ∈ R such that val1(ρ0) = −k. Let w2 = val2(ρ0). We may assume
by Proposition 2.9 that w2 6 0 since 0 ∈ val(RD).

First sub-case: w2 /∈ val2(Mk−1). — Then:

(4.4) Mk = Mk−1∪{(−k,w2)}∪{(−k, v2); v2 ∈ val2(Mk−1) and v26w2}

and Hk = Hk−1∪{ρ0}. Indeed, the inclusion ⊇ of (4.4) comes from Propo-
sition 2.9. By Proposition 2.10 and an argument similar to the argument
of the first case, one can prove the equality in (4.4).
Second sub-case: w2 ∈ val2(Mk−1). — Thanks to Propositions 2.9

and 2.10, one can check that by a convenient linear combination of ρ0
and elements of form h · ρ with h a G2-product and ρ ∈ Hk−1, there exists
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ρ′0 ∈ RD with val(ρ′0) = (−k,w′2) and w′2 /∈ val2(Mk−1). We then recognize
the previous sub-case, and we have Hk = Hk−1 ∪ {ρ′0}.
We can stop when the minimal value −q of val1(RD) is reached. Then,

by Proposition 3.14:

val(RD) = Mq ∪ {v ∈ Zp; inf(v, 0) ∈Mq} . �

Example 4.24. — Let us consider the plane curve D defined by f = f1f2
with f1 = y3−x5 and f2 = y5−x3. We denote by D1 the curve defined by
f1, and D2 the curve defined by f2. A parametrization of the curve D is
x = (t31, t52), y = (t51, t32). Computations show that generators of the module
of logarithmic residues RD are (see [27, §6.2.4]): ρ1 = − 15(x3y4−xy2)

f ′y
and

ρ2 = −9x3+25x5y2−16y5

f ′y
. As elements of Q(OD) = Q(OD1) ⊕ Q(OD2), they

give: ρ1 =
(
−5
t61
, 3
t10

2

)
and ρ2 =

(
3
t10

1
, −5
t62

)
.

Since the branches are quasi-homogeneous, one can see with Saito cri-
terion (see [28]) that df1

f1
and 5ydx−3xdy

f1
is a basis of Ω1(logD1), and df2

f2

and 3ydx−5xdy
f2

is a basis of Ω1(logD2). Therefore, the generators of RD1

are ρ11 = 1 and ρ12 = −3x
∂yf1

, where ∂yf1 = ∂f1
∂y , and the generators of RD2

are ρ21 = 1 and ρ22 = −5x
∂yf2

.
We use the previous algorithm to compute the set of values of RD. It

will give us Figure 4.1.

First step. —

• We set g = f ′y, which induces a non zero divisor in OD. Since
f ′y D1

= f2
∂f1
∂y and f ′y D2

= f1
∂f2
∂y , one can find an expression of

the residues along D1 and D2 with denominator f ′y.
• We check that ({ρ11, ρ12} , {x, y}) is a standard basis of RD1 as an

OD1 -module. In particular, we have val1(RD1) = {−7,−4,−2,−1}∪
N.

• Similarly, ({ρ21, ρ22} , {x, y}) is a standard basis of RD2 as an OD2-
module. We then have val2(RD2) = {−7,−4,−2,−1} ∪ N.

• From the restrictions of ρ1 and ρ2 to the first branch and the fact
that (x = t31, y = t51) is a standard basis of OD1 , we deduce that:
val1(RD) = {−10,−7,−6,−5,−4,−3,−2,−1} ∪ N.
In particular, ({ρ1, ρ2} , {x, y}) is a standard basis of the OD1-

module RD D1 .

Second step. — We set M0 = {(0,−7), (0,−4), (0,−2), (0,−1), (0, 0)}
and H0 = {ρ21, ρ22}.
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• Since −1 ∈ val1(RD1), we have M1 = M0∪{(−1, v); v ∈ val2(M0)}
et H1 = H0.

• Similarly, M2 = M1 ∪ {(−2, v) ; v ∈ val2(M1)} and H2 = H1.
• We have −3 ∈ val1(RD) but −3 /∈ val1(RD1). We have val(xρ1) =

(−3,−5). Since −5 /∈ val2(M2), we have: M3 = M−2∪{(−3,−5)}∪
{(−3,−7)} et H3 = H2 ∪ {xρ1}.

By iterating the method, we obtain:
• M−4 = M−3 ∪ {(−4, v2) ; v2 ∈ val2(M−3)} and H4 = H3
• M−5 = M−4 ∪ {(−5,−3)} ∪ {(−5,−4)} ∪ {(−5,−5)} ∪ {(−5,−7)}
and H5 = H4 ∪ {yρ2}

• M−6 = M−5 ∪ {(−6,−10)} and H6 = H5 ∪ {ρ1}
• M−7 = M−6 ∪ {(−7, v2) ; v2 ∈ val2(M−6)} and H7 = H6
• M−8 = M−7 and H8 = H7
• M−9 = M−8 and H9 = H8
• M−10 = M−9 ∪ {(−10,−6)} ∪ {(−10,−7)} ∪ {(−10,−10)} and
H10 = H9 ∪ {ρ2}.

val1

val2−10 −5

−5

−10

0

Figure 4.1. Values of RD
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