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FROM MAPS BETWEEN COLOURED OPERADS TO
SWISS-CHEESE ALGEBRAS

by Julien DUCOULOMBIER

Abstract. — In the present work, we extract pairs of topological spaces from
maps between coloured operads. We prove that those pairs are weakly equivalent
to explicit algebras over the one dimensional Swiss-Cheese operad SC1. Thereafter,
we show that the pair formed by the space of long embeddings and the manifold
calculus limit of (l)-immersions from Rd to Rn is an SCd+1-algebra.
Résumé. — A partir d’un morphisme d’opérades colorées, on introduit un

couple d’espaces topologiques que l’on identifie explicitement à une algèbre sous
l’opérade Swiss-Cheese de dimension 1. Nous sommes alors en mesure d’identifier
le couple formé des plongements longs et de l’approximation polynomiale des (l)-
immersions de Rd vers Rn à une algèbre sous l’opérade Swiss-Cheese de dimension
d + 1.

Introduction

A multiplicative operad O is a non-symmetric operad under the associa-
tive operad As. In [22], McClure and Smith build a cosimplicial space O•
from a multiplicative operad O and they show that, under technical con-
ditions, its homotopy totalization has the homotopy type of a double loop
space. Dwyer and Hess in [10] and independently Turchin in [25] identify the
double loop space by proving that, under the assumption O(0) ' O(1) ' ∗,
the following weak equivalences hold:

hoTot(O•) ' Ω2 Operadhns(As;O) ' Ω2 Operadhns(As>0;O) ,

where Operadhns(As;O) is the derived mapping space of non-symmetric
operads and As>0 is the non-unital version of the associative operad. In [7],
we extend this result to the coloured case by using the Swiss-Cheese operad

Keywords: coloured operads, loop spaces, space of knots, model category.
2010 Mathematics Subject Classification: 18D50, 55P35, 57Q45.



662 Julien DUCOULOMBIER

SC2 which is a relative version of the little cubes operad C2. In that case,
a typical example of SC2-algebra is a pair of topological spaces of the form(

Ω2X; Ω2(X;Y ) := Ω(hofib(f : Y → X))
)
,

where f : Y → X is a continuous map between pointed spaces. In order to
identify typical SC2-algebras, we introduce a two-coloured operad Act =
π0(SC1) whose algebras are pairs of spaces (A;B) with A a topological
monoid and B a left A-module. From a pointed operad O (i.e. a two-
coloured operad O endowed with a map η : Act → O), a pair (Oc;Oo) of
cosimplicial spaces is built and the pair (hoTot(Oc); hoTot(Oo)) is proved
to be weakly equivalent to the explicit SC2-algebra using the identifications

(0.1)
hoTot(Oc) ' Ω2 Operadhns(As>0;Oc) ,

hoTot(Oo) ' Ω2(Operadhns(As>0;Oc); Operadhns(Act>0;O)
)
,

where Act>0 is the non-unital version of the operad Act.
Pointed operads are helpful in understanding cosimplicial spaces. How-

ever, it requires a significant amount of work to identify topological spaces
with the homotopy totalization of cosimplicial spaces (coming from multi-
plicative operads). In many cases, the relations are satisfied up to homo-
topy. For instance, as soon as d > 1, we don’t know a cosimplicial model for
the space of long embeddings compactly supported in higher dimensions

Embc(Rd;Rn) := hofib
(
Embc(Rd;Rn) −→ Immc(Rd;Rn)

)
.

However, in the context of symmetric operads, Arone and Turchin develop
in [1] a machinery to identify spaces of embeddings with derived mapping
space of infinitesimal bimodules. In particular, for n − d > 2, the two
authors in [1] and simultaneously Turchin in [24] prove that there is a weak
equivalence

(0.2) Embc(Rd;Rn) ' IbimodhCd
(Cd; Cn) .

Since the homotopy totalization can be expressed as the derived mapping
space of non-symmetric infinitesimal bimodules over As, it is natural to
expect that derived mapping spaces of infinitesimal bimodules over Cd are
weakly equivalent to (d+ 1)-iterated loop spaces. For this purpose, we use
the category BimodO of bimodules over an operad O which is an interme-
diate notion between infinitesimal bimodule and operad in the sense that
any operad is a bimodule over itself and any bimodule with a based point
in arity 1 is also an infinitesimal bimodule. So, the Dwyer–Hess’ conjecture
asserts that if η : Cd → O is a map of symmetric operads, then the following
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weak equivalences hold under the assumption O(0) ' O(1) ' ∗:

IbimodhCd
(Cd;O) ' Ωd BimodhCd

(Cd;O) ' Ωd+1 Operadh(Cd;O) .

This conjecture is proved by Boavida de Brito and Weiss [5] for the operad
O = Cn. Recently, the conjecture has been proved for any operad O by
Turchin and the author in [8, 9]. In particular, we show that if η : O → O′

is a map of operads such that O is a well pointed Σ-cofibrant operad and the
spaces O(1) and O′(1) are contractible, then the following weak equivalence
holds:

(0.3) BimodhO(O;O′) ' Ω Operadh(O;O′) .

In the present work, we prove a relative version of the Dwyer–Hess’ con-
jecture by extending the weak equivalences (0.1) and (0.3) to pairs of topo-
logical spaces which don’t necessarily arise from homotopy totalizations.
For this purpose, we consider the category of (P -Q) bimodules, denoted by
BimodP -Q, where P and Q are two well pointed coloured operads. Then,
we introduce a model category structure on BimodP -Q and we adapt the
Boardman–Vogt resolution (well known for operads, see [3] and [4]) to ob-
tain cofibrant replacements. In order to recognize typical SC1-algebras, we
introduce a Quillen adjunction between the category of (P -Q) bimodules
and a subcategory of coloured operads (with set of colours S = {o; c})
denoted by Op[P ;Q]:

(0.4) L : BimodP -Q � Op[P ;Q] : R .

By using explicit cofibrant resolutions, we prove the main theorem of the
paper:

Theorem 3.20. — Let O be a well pointed Σ-cofibrant operad. Let
η : L(O) → O′ be a map in Op[O;O] and O′c be the restriction of the
operad O′ to the colour c. If the spaces O(1) and O′c(1) are contractible,
then the pair of topological spaces(

BimodhO(O;O′c); BimodhO(O;R(O′))
)

is weakly equivalent to the explicit SC1-algebra(
Ω Operadh(O;O′c); Ω

(
Operadh(O;O′c); Op[O; ∅]h(L(O);O′)

))
.

As a consequence of the above theorem together with the Dwyer–Hess’
conjecture, we are able to recognize SCd+1-algebras. In order to do that, we
consider the two-coloured operad CCd := L(Cd) in the category Op[Cd; Cd]
where Cd is the d-dimensional little cubes operad. According to the notation
of Theorem 3.20, O is the operad Cd and one has the following statement:

TOME 68 (2018), FASCICULE 2



664 Julien DUCOULOMBIER

Theorem 3.28. — Let η : CCd → O′ be a map in Op[Cd; Cd] such that
O′c(0), O′c(1) and R(O′)(0) are contractible. The pair of topological spaces(

IbimodhCd
(Cd;O′c); IbimodhCd

(Cd;R(O′))
)

is weakly equivalent to the explicit SCd+1-algebra(
Ωd+1 Operadh(Cd ; O′c); Ωd+1

(
Operadh(Cd ; O′c) ; Op[Cd ; ∅]h(CCd ; O′)

))
.

Furthermore, the method used in this paper produces relative deloopings
for truncated infinitesimal bimodules. Roughly speaking, Tk IbimodO is the
restriction of infinitesimal bimodules to operations with at most k inputs
(see Section 1.3). The restriction functors Tk IbimodO → Tk−1 IbimodO
give rise to a tower which plays an important role in understanding the man-
ifold calculus tower associated to the space of embeddings. Under the con-
ditions of Theorem 3.28, if TkOperad denotes the category of k-truncated
operads, then the truncated version of the Dwyer–Hess’ conjecture (studied
by Turchin and the author in [9])

Tk IbimodhCd
(Tk(Cd);Tk(O′c)) ' Ωd+1

(
Tk Operadh(Tk(Cd);Tk(O′c))

)
,

admits a generalization to the relative case in which the space
Tk IbimodhCd

(Tk(Cd) ; Tk(R(O′))) is identified to the relative loop space

Ωd+1
(
Tk Operadh(Tk(Cd);Tk(O′c));Tk Op[Cd; ∅]h(Tk(CCd);Tk(O′))

)
.

An application of the previous results concerns the spaces of long em-
beddings. Due to the weak equivalence (0.2), we know that the space of
long embeddings is related to the map of operads η1 : Cd → Cn. In a sim-
ilar way, Dobrinskaya and Turchin show in [6] that the manifold calculus
limit of (l)-immersions is related to the Cn-bimodule C(l)

n , called the non-
(l)-overlapping little cubes bimodule. More precisely, one has the following
weak equivalences:

Tk Imm(l)
c (Rd;Rn) ' Tk IbimodhCd

(Tk(Cd);Tk(C(l)
n ))

and T∞ Imm(l)
c (Rd;Rn) ' IbimodhCd

(Cd; C(l)
n ) ,

where Tk Imm(l)
c (Rd;Rn) is the k-th polynomial approximation of the space

of (l)-immersions (see Section 4). This bimodule doesn’t arise from an op-
erad under the little cubes operad. However, there is a map of Cn-bimodules
η2 : Cn → C(l)

n induced by the inclusion. From the maps η1 and η2, we build
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a two-coloured operad Θ under CCd such that Θc = Cn and R(Θ) = C(l)
n .

As a consequence of the main theorem of the paper, the pairs of spaces

(0.5)
(
TkEmbc(Rd;Rn);Tk Imm(l)

c (Rd;Rn)
)

and
(

Embc(Rd;Rn);T∞ Imm(l)
c (Rd;Rn)

)
are proved to be weakly equivalent to explicit SCd+1-algebras.

Organization of the paper

The paper is divided into 4 sections. Section 1 gives an introduction
on coloured operads and (infinitesimal) bimodules over coloured operads
as well as the truncated versions of these notions. In particular, the little
cubes operad, the Swiss-Cheese operad and the non-(l)-overlapping little
cubes bimodule are defined.
In Section 2, we give a presentation of the left adjoint functor to the

forgetful functor from the category of (P -Q) bimodules to the category
of S-sequences. This presentation is used to endow BimodP -Q with a cofi-
brantly generated model category structure. Thereafter, we prove that a
Boardman–Vogt type resolution yields explicit and functorial cofibrant re-
placements in the model category of (P -Q) bimodules. We also show that
similar statements hold true for truncated bimodules.
Section 3 is devoted to the proof of the main theorem 3.20. For this pur-

pose, we give a presentation of the functor L and prove that the adjunc-
tion (0.4) is a Quillen adjunction. Then we change slightly the Boardman–
Vogt resolution introduced in Section 2 in order to obtain explicit cofibrant
replacements in the category Op[O; ∅]. Finally, by using Theorem 3.20 and
the Dwyer–Hess’ conjecture, we identify SCd+1-algebras from maps of op-
erads η : CCd → O′.

In Section 4 we give an application of our results to the space of long em-
beddings in higher dimension. We introduce quickly the Goodwillie calculus
as well as the relation between the manifold calculus tower and the map-
ping space of infinitesimal bimodules. Then we show that the pairs (0.5)
are weakly equivalent to explicit typical SCd+1-algebras.

Convention

By a space we mean a compactly generated Hausdorff space and by abuse
of notation we denote by Top this category (see e.g. [18, Section 2.4]). If
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666 Julien DUCOULOMBIER

X, Y and Z are spaces, then Top(X;Y ) is equipped with the compact-
open topology in order to have a homeomorphism Top(X; Top(Y ;Z)) ∼=
Top(X×Y ;Z). By using the Serre fibrations, the category Top is endowed
with a cofibrantly generated monoidal model structure. In the paper the
categories considered are enriched over Top.

1. Bimodules and Ibimodules over coloured operads

In what follows, we cover the notion of operad with the example of the
little cubes operad and the notion of (infinitesimal) bimodule together with
their truncated versions. For more details about these objects, we refer
the reader to [1] and [21]. For our purpose, we focus on the operads with
two colours S = {o; c}. In particular, we recall the definition of the d-
dimensional Swiss-Cheese operad SCd introduced by Voronov in [27] (see
also [20]).

1.1. Topological coloured operads

Definition 1.1. — Let S be a set called the set of colours. An S-
sequence is a family of topological spaces

M := {M(s1, . . . , sn; sn+1)} with si ∈ S and n ∈ N ,

endowed with an action of the symmetric group: for each configuration of
n + 1 elements in S and each permutation σ ∈ Σn, there is a continuous
map

(1.1)
σ∗ : M(s1, . . . , sn; sn+1) −→ M(sσ(1), . . . , sσ(n); sn+1) ;

x 7−→ x · σ

satisfying the relation (x · σ) · τ = x · (στ) with τ ∈ Σn. A map between
two S-sequences is given by a family of continuous maps compatible with
the action of the symmetric group. In the rest of the paper, we denote
by Seq(S) the category of S-sequences. Given an integer k > 1, we also
consider the category of k-truncated S-sequences Tk Seq(S). The objects
are family of topological spaces

M := {M(s1, . . . , sn; sn+1)} with si ∈ S and n 6 k ,

endowed an action of the symmetric group (1.1) with n6 k. A (k-truncated)
S-sequence is said to be pointed if there are distinguished elements {∗s ∈
O(s; s)}s∈S called units.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.2. — An S-operad is a pointed S-sequence O together
with operations called operadic compositions

(1.2) ◦i : O(s1, . . . , sn; sn+1)×O(s′1, . . . , s′m; si)
−→ O(s1, . . . , si−1, s

′
1, . . . , s

′
m, si+1, . . . , sn; sn+1),

with sj , s′j ∈ S and 1 6 i 6 n, satisfying compatibility with the action of
the symmetric group, associativity and unit axioms. A map between two
coloured operads should respect the operadic compositions. We denote by
OperadS the categories of S-operads. Given an integer k > 1, we also con-
sider the category of k-truncated S-operads Tk OperadS . The objects are
pointed k-truncated S-sequences endowed with operadic compositions (1.2)
with n+m− 1 6 k and n 6 k. One has an obvious functor

Tk(−) : OperadS −→ Tk OperadS .

Notation 1.3. — If the set of colours S has only one element, then an S-
operad O is said to be uncoloured. In this case, O is a family of topological
spaces {O(n)}n>0 together with a symmetric group action and operadic
compositions

◦i : O(n)×O(m) −→ O(n+m− 1) , with 1 6 i 6 n.

Let Operad and Tk Operad be the categories of uncoloured operads and k-
truncated uncoloured operads respectively. On the other hand, if S = {o; c},
then the “open” colour o will be represented in red whereas the “closed”
colour c will be represented in black in the rest of the paper.

Example 1.4 (The uncoloured operad C∞d ). — A d-dimensional little
cube is a continuous map c : [0, 1]d → [0, 1]d arising from an affine embed-
ding preserving the direction of the axes. The operad C∞d is the sequence
{C∞d (n)} whose n-th component is given by n little cubes, that is, n-tuples
〈c1, . . . , cn〉 with ci a d-dimensional little cube. The distinguished point
in C∞d (1) is the identity little cube id : [0, 1]d → [0, 1]d whereas σ ∈ Σn
permutes the indexation:

σ∗ : C∞d (n) −→ C∞d (n); 〈c1, . . . , cn〉 7−→ 〈cσ(1), . . . , cσ(n)〉 .

The operadic compositions are given by the formula

◦i : C∞d (n)× C∞d (m) −→ C∞d (n+m− 1) ;
〈c1, ..., cn〉; 〈c′1, ..., c′m〉 7−→ 〈c1, ..., ci−1, ci ◦ c′1, ..., ci ◦ c′m, ci+1, ..., cn〉 .

By convention C∞d (0) is the one point topological space and the operadic
composition ◦i with this point consists in forgetting the i-th little cube.

TOME 68 (2018), FASCICULE 2



668 Julien DUCOULOMBIER

Definition 1.5. — Let S be a set and O be an S-operad. An algebra
over the operad O, or O-algebra, is given by a family of topological spaces
X := {Xs}s∈S endowed with operations

µ : O(s1, . . . , sn; sn+1)×Xs1 × · · · ×Xsn
−→ Xsn+1 ,

compatible with the operadic compositions and the action of the symmetric
group.

Example 1.6 (The little cubes operad Cd). — The d-dimensional little
cubes operad Cd is the sub-operad of C∞d whose n-th component is the
configuration space of n little cubes with disjoint interiors. In other words,
Cd(n) is the subspace of C∞d (n) formed by configurations 〈c1, . . . , cn〉 satis-
fying the relation

(1.3) Int(Im(ci)) ∩ Int(Im(cj)) = ∅ , ∀i 6= j .

The operadic compositions and the action of the symmetric group arise
from the operad C∞d . Furthermore, if (X; ∗) is a pointed topological space,
then the d-iterated loop space ΩdX is an example of Cd-algebra.

Figure 1.1. The operadic composition ◦2 : C2(3)× C2(2)→ C2(4).

Example 1.7 (The Swiss-Cheese operad SCd). — The d-dimensional
Swiss-Cheese operad SCd, considered in this paper, is the alternative ver-
sion introduced by Kontsevich in [20]. Its restriction to the colour c coin-
cides with the little cubes operad Cd:

SCd(c, . . . , c︸ ︷︷ ︸
n

; c) =
{
Cd(n) if n > 1,
∗ if n = 0.

The space SCd(s1, . . . , sn; o) is a subspace of C∞d (n) formed by configu-
rations of n little cubes 〈c1, . . . , cn〉 satisfying the relation (1.3) and the
following condition:

si = o⇒ ci(F1) ⊂ F1 with F1 := {(t1, . . . , td) ∈ [0, 1]d|t1 = 1}.
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By convention the spaces SCd(; o) is the one point topological space. Fur-
thermore, if there is an integer i so that si = o, then SCd(s1, . . . , sn; c) = ∅.
The operadic compositions and the action of the symmetric group arise
from the operad C∞d .

Figure 1.2. The operadic composition ◦3 :SC2(c,c,o;o)×SC2(o,o,c;o)→
SC2(c, c, o, o, c; o).

If f : (Y ; ∗) → (X; ∗) is a continuous map between pointed spaces,
then the pair (ΩdX; Ωd(X;Y )) is an example of SCd-algebra. Contrary
to the little cubes operad, there is no recognition principle for the Swiss-
Cheese operad. The conjecture saying that the algebras over SCd are weakly
equivalent to pairs of the form (ΩdX; Ωd(X;Y )) is only proved in the case
d = 1 by Hoefel, Livernet and Stasheff in [17]. By Ωd(X;Y ) we mean the
d-iterated relative loop space defined as follows:

Ωd(X;A) := hofib
(
Ωd−1f : Ωd−1A −→ Ωd−1X

)
,

:= Ωd−1 (hofib(f : A −→ X)) .

1.2. Bimodules over coloured operads

Definition 1.8. — Let P and Q be two S-operads. A (P -Q) bimodule
is an S-sequence M together with operations

γr : M(s1, ..., sn; sn+1)×
∏

16i6k
Q(si1, . . . , simi

; si) −→M(s1
1, ..., s

n
mn

; sn+1) ,

γl : P (s1, ..., sn; sn+1)×
∏

16i6k
M(si1, . . . , simi

; si) −→M(s1
1, ..., s

n
mn

; sn+1) ,

satisfying compatibility with the action of the symmetric group, associa-
tivity and unity axioms. In particular, for each s ∈ S there is a map
γs : P (; s) −→ M(; s). A map between (P -Q) bimodules should respect
the operations. We denote by BimodP -Q the category of (P -Q) bimodules.

TOME 68 (2018), FASCICULE 2
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Given an integer k > 1, we also consider the category of k-truncated
bimodules Tk BimodP -Q. An object is a k-truncated S-sequence endowed
with a bimodule structure form1+· · ·+mn 6 k (and n 6 k for γr). To sim-
plify the notation, the categories BimodP -P and Tk BimodP -P are denoted
by BimodP and Tk BimodP respectively. One has an obvious functor

Tk(−) : BimodP -Q −→ Tk BimodP -Q .

Notation 1.9. — Thanks to the distinguished points in Q(s; s), the right
operations γr can equivalently be defined as a family of continuous maps

◦i : M(s1, ..., sn; sn+1)×Q(s′1, ..., s′m; si)
−→M(s1, ..., si−1, s

′
1, ..., s

′
m, si+1, ..., sn; sn+1) , with 1 6 i 6 n.

Furthermore, we use the following notation:

x ◦i y = ◦i(x; y)
for x ∈M(s1, . . . , sn; sn+1) and y ∈ Q(s′1, . . . , s′m; si) ,

x(y1, . . . , yn) = γl(x; y1; . . . ; yn)

for x ∈ P (s1, . . . , sn; sn+1) and yi ∈M(si1, . . . , simi
; si) .

Example 1.10. — Let η : O1 → O2 be a map of S-operads. In that case,
the map η is also a bimodule map over O1 and the bimodule structure on
O2 is defined as follows:

γr : O2(s1, . . . , sn; sn+1)×
∏

16i6k
O1(si1, . . . , simi

; si)

−→ O2(s1
1, . . . , s

n
mn

; sn+1) ;
(x; y1, . . . , yn) 7−→ (. . . (x ◦n η(yn)) . . . ) ◦1 η(y1)) ,

γl : O1(s1, . . . , sn; sn+1)×
∏

16i6k
O2(si1, . . . , simi

; si)

−→ O2(s1
1, . . . , s

n
mn

; sn+1) ;
(x; y1, . . . , yn) 7−→ (. . . (η(x) ◦n yn) . . . ) ◦1 y1 .

Example 1.11 (The non-(l)-overlapping little cubes bimodule C(l)
d ). —

The d-dimensional non-(l)-overlapping little cubes bimodule C(l)
d has been

introduced by Dobrinskaya and Turchin in [6]. The space C(l)
d (n) is the

subspace of C∞d (n) formed by configurations of n little cubes 〈c1, . . . , cn〉
satisfying the following relation:

(1.4) ∀i1 < · · · < il ∈ {1, . . . , n},
⋂

16j6l
Int(Im(cij )) = ∅.
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In particular, C(2)
d coincides with the little cubes operad Cd. The action

of the symmetric group and the bimodule structure over the little cubes
operad Cd arise from the operadic structure of C∞d .

Figure 1.3. The right module structure ◦2 : C(3)
2 (4)× C2(2)→ C(3)

2 (5).

1.3. Infinitesimal bimodules over a coloured operad

Definition 1.12. — Let O be an S-operad. An infinitesimal bimodule
over the operad O, or O-Ibimodule, is an S-sequence N endowed with
operations
◦i : O(s1, ..., sn; sn+1)×N(s′1, ..., s′m; si)

→ N(s1, ..., si−1, s
′
1, ..., s

′
m, si+1, ..., sn; sn+1),

◦i : N(s1, ..., sm; sm+1)×O(s′1, ..., s′n; si)
→ N(s1, ..., si−1, s

′
1, ..., s

′
n, si+1, ..., sm; sm+1),

for 1 6 i 6 n, satisfying compatibility with the action of the symmet-
ric group, associativity, commutativity and unit relations. A map between
O-Ibimodules should respect the operations. We denote by IbimodO the
category of infinitesimal bimodules over O. By convention, ◦i and ◦i are
called the left and the right infinitesimal operations respectively.
Given an integer k > 1, we also consider the category of k-truncated

infinitesimal bimodules Tk IbimodO. An object is a k-truncated S-sequence
endowed with an infinitesimal bimodule structure for n + m − 1 6 k and
m 6 k. One has an obvious functor

Tk(−) : IbimodO −→ Tk IbimodO .

Notation 1.13. — We will use the following notation:

x ◦i y = ◦i(x; y) for x ∈ O(s1, . . . , sn; sn+1) and y ∈ N(s′1, . . . , s′m; si),

x ◦i y = ◦i(x; y) for x ∈ N(s1, . . . , sn; sn+1) and y ∈ O(s′1, . . . , s′m; si).
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Example 1.14. — Let O be an S-operad and η : O → M be a map of
O-bimodules. In that case, the map η is also an infinitesimal bimodule map
over O. The right operations and the right infinitesimal operations are the
same. So, the left infinitesimal operations on M are defined as follows:

◦i : O(s1, ..., sn; sn+1)×M(s′1, ..., s′m; si)
−→M(s1, ..., si−1, s

′
1, ..., s

′
m, si+1, . . . , sn; sn+1);

(x; y) 7−→ γl(x; η(∗s1), ..., η(∗si−1), y, η(∗si+1), ..., η(∗sn)).

2. The Boardman–Vogt resolution for (P -Q) bimodules

In [7], we introduce a model category structure for bimodules over a non-
symmetric S-operad O satisfying the condition O(; s) = ∅ for any s ∈ S.
For this purpose, we give a presentation of the left adjoint to the forgetful
functor from bimodules to the category of non-symmetric S-sequences. In
the present work, we extend this result to the category of (P -Q) bimodules
and the category of k-truncated bimodules. Contrary to [7], we have to take
into account the action of the symmetric group as well as the continuous
maps γs in arity 0. For this reason, we consider the following categories:

Definition 2.1. — Let P be an S-operad and k > 0 be an integer.
We denote by Seq(S)P0 and Tk Seq(S)P0 the categories of S-sequences and
k-truncated S-sequences M endowed with continuous maps γs : P (; s) →
M(; s). In other words, if P0 is the S-sequence given by P0(; s) = P (; s),
for s ∈ S, and the empty set otherwise, then

Seq(S)P0 := P0 ↓ Seq(S) and Tk Seq(S)P0 := Tk(P0) ↓ Tk Seq(S).

The categories Seq(S) and Tk Seq(S) have a model category structure
in which a map is a fibration (resp. a weak equivalence) if each of its
components is a Serre fibration (resp. a weak homotopy equivalence). This
model category structure is cofibrantly generated and each object is fibrant
(see [2] or [7, Section 3]). As a consequence, Seq(S)P0 and Tk Seq(S)P0

inherit a model category structure with the same properties. By using the
following adjunctions:

(2.1)
FB : Seq(S)P0 � BimodP -Q : U

TkFB : Tk Seq(S)P0 � Tk BimodP -Q : U ,
we are able to define a model category structure on BimodP -Q and
Tk BimodP -Q. The following theorem is a consequence of the transfer the-
orem [2, Section 2.5]. Its proof is similar to [7, Application 3.5].
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Theorem 2.2. — Let P and Q be two S-operads. The categories
BimodP -Q and Tk BimodP -Q have a cofibrantly generated model category
structure in which every object is fibrant. In particular, a map f in
BimodP -Q or Tk BimodP -Q is a fibration (resp. weak equivalence) if and
only if the map U(f) is a fibration (resp. weak equivalence) in Seq(S) or
Tk Seq(S).

Remark 2.3. — It is important to mention that the model category
structure on BimodP -Q and Tk BimodP -Q that one gets is the same as one
would get from the classical adjunction between Seq(S) and BimodP -Q
which is the usual model structure on BimodP -Q. Essentially because the
classical adjunction can be factorized as follows:

Seq(S)� Seq(S)P0 � BimodP -Q .

In this section, we give a presentation of the left adjoint functors (2.1).
Thereafter, we adapt the Boardman–Vogt resolution in the context of (k-
truncated) bimodules to obtain functorial cofibrant replacements. As did
Vogt in [4] for operads (see also [2] and [26]), we use the language of trees
in order to obtain such resolutions. For this reason, we fix some notation.

Definition 2.4. — A planar tree T is a finite planar tree with one out-
put edge on the bottom and input edges on the top. The vertex connected
to the output edge, called the root of T , is denoted by r. Such an element
is endowed with an orientation from top to bottom. According to the ori-
entation of the tree, if e is an edge, then its vertex t(e) towards the trunk is
called the target vertex whereas the other vertex s(e) is called the source
vertex. By convention, the input and output edges are half-open: the in-
puts edges do not have source vertices while the output edge do not have
a target vertex. Furthermore, we fix the following notation:

• The set of its vertices and the set of its edges are denoted by
V (T ) and E(T ) respectively. The set of its internal edges Eint(T )
is formed by the edges connecting two vertices. Each edge is joined
to the trunk by a unique path composed of edges.

• The set of input edges, also called the set of leaves, is ordered from
left to right. Let in(T ) := {l1, . . . , l|T |} denote the ordered set of
leaves with |T | the number of leaves.

• The set of incoming edges of a vertex v is ordered from left to
right. This set is denoted by in(v) := {e1(v), . . . , e|v|(v)} with |v|
the number of incoming edges. Moreover, the unique output edge
of v is denoted by e0(v).

TOME 68 (2018), FASCICULE 2



674 Julien DUCOULOMBIER

• The vertices with no incoming edge are called univalent vertices
whereas the vertices with only one input are called bivalent vertices.

Let S be a set. A planar S-tree is a pair (T ; f) where T is a planar tree and
f : E(T ) → S is a map indexing the edges of T by elements in S. If there
is no ambiguity about f , we will denote by ei(v) the element in S indexing
the edge ei(v).

Figure 2.1. Example of a planar S-tree with S = {o; c}.

The automorphism group Aut(T ), associated to a planar S-tree T , can
be described by induction on the number of vertices. If |V (T )| = 1, then
Aut(T ) is the group Σ|T |. Otherwise, up to non-planar isomorphism, T is
of the form

(2.2) T = tn(T 1
1 , . . . , T

1
n1
, T 2

1 , . . . , T
2
n2
, . . . , T l1, . . . , T

l
nl

),

where tn is a n-corolla, the uncoloured trees induced by T i1, . . . , T ini
are the

same tree T i and T i is not isomorphic to T j if i 6= j. Since Σni acts on the
product Aut(T i)×ni by permuting the factors, the automorphism group of
T is a semi-direct product:

(2.3) Aut(T ) ∼=
(
Aut(T 1)×n1 × · · · ×Aut(T l)×nl

)
o
(
Σn1 × . . .Σnl

)
:= ΓT o ΣT .

An S-tree is a triplet (T ; f ;σ) where (T ; f) is a planar S-tree and σ :
{1, . . . , |T |} → in(T ) is a bijection labelling the leaves of T . Such an element
will be denoted by T if there is no ambiguity about the indexation f and
the bijection σ. We denote by S-stree the set of S-trees. The bijection σ

can be interpreted as an element in the symmetric group Σ|T |.
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2.1. The free (P -Q) bimodule functor

Definition 2.5. — In the following we introduce the set of trees used
to build the free bimodule functor:

• The join j(v1; v2) of two vertices v1 and v2 is the first common
vertex shared by the two paths joining v1 and v2 to the trunk. If
j(v1; v2) = r, then v1 and v2 are said to be connected to the root and
if j(v1; v2) ∈ {v1; v2}, then they are said to be vertically connected.
In Figure 2.2 the vertices v1 and p1 are connected whereas the
vertices v1 and p3 are connected to the root.

• Let d : V (T ) × V (T ) → N be the distance defined as follows. The
integer d(v1; v2) is the number of edges connecting v1 to v2 if they
are vertically connected, otherwise d(v1; v2) = d(v1; v3) + d(v3; v2)
with v3 = j(v1; v2). In Figure 2.2, d(v1; r) = 2, d(v1; v2) = 4 and
d(v1; p1) = 1.

• A reduced S-tree with section is a pair (T, V p(T )) with T in S-
tree and V p(T ) a subset of V (T ), called the set of pearls, such
that each path connecting a leaf or a univalent vertex to the trunk
passes through a unique pearl. Furthermore, there is the following
condition on the set of pearls:

(2.4) ∀v ∈ V (T ) \ V p(T ),∀p ∈ V p(T ), j(v; p) ∈ {v; p} ⇒ d(v; p) = 1.

The set of reduced S-trees with section is denoted by S-rstree. By definition,
the set of pearls forms a section cutting the tree into two parts. We denote
by V u(T ) the set of vertices above the section and by V d(T ) the one below
the section. Given an integer k > 1, S-rstree[k] is the set of reduced S-trees
with section having at most k leaves and such that each pearl has at most
k incoming edges. For instance, the reduced S-tree with section below is
an element in the set S-rstree[8].

Figure 2.2. A reduced S-tree with section with S = {o; c}.
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Construction 2.6. — From an S-sequence M ∈ Seq(S)P0 , we build
the (P -Q) bimodule FB(M). The points are equivalence classes of pairs
[T ; {av}] with T ∈ S-rstree and {av} a family of points labelling the ver-
tices of T . The pearls are labelled by points in M , the vertices in V u(T )
are labelled by points in Q and the vertices in V d(T ) are labelled by points
in the operad P . More precisely, FB(M) is given by the coproduct∐

T∈S-rstree

∏
v∈V d(T )

P (e1(v), . . . , e|v|(v); e0(v))

×
∏

v∈V p(T )

M(e1(v), . . . , e|v|(v); e0(v))

×
∏

v∈V u(T )

Q(e1(v), . . . , e|v|(v); e0(v))
/
∼

where ∼ is the equivalence relation generated by the following axioms:
(1) If a vertex is indexed by a distinguished point ∗s in P or Q, then

(2) If a vertex is indexed by a · σ, with σ ∈ Σ|v|, then

(3) If a univalent pearl is indexed by a point of the form γs(x), with x ∈
P (; s), then we contract its output edge by using the operadic struc-
ture of P . In particular, if all the pearls are of the form γsv

(xei(r)),
then the point is identified with γs(ar(xe1(r), . . . , xe|r|(r))) where
ar ∈ P (e1(r), . . . , e|r|(r); s) labels the root.

Figure 2.3. Examples of the relation (3) for S = {o; c}.
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A point a ∈ Q(s1, . . . , sn; s′i) is interpreted as an n-corolla (without pearl)
whose incoming edges are indexed by s1, . . . , sn respectively, the output
by s′i and the vertex is labelled by the point a. If [T ; {av}] is a point in
FB(M)(s′1, . . . , s′m; sm+1), then the composition [T ; {av}] ◦i a consists in
grafting the corolla labelled by a to the i-th incoming edge of T . Then, we
contract the inner edge so obtained if its target is not a pearl by using the
operadic structure of Q.

Figure 2.4. The right module structure over Q.

Let b ∈ P (s1, . . . , sn; sn+1) and [Ti; {aiv}] be a family of points in
FB(M)(si1, . . . , simi

; si). The left module operations over P is defined as
follows: each tree of the family is grafted to a leaf of the n-corolla from left
to right. The inner edges obtained are contracted if their source are not
pearl by using the operadic structure of P . Moreover, there is a morphism
in the category Seq(S)P0 ,

i : M −→ FB(M),

sending m ∈M(s1, . . . , sn; sn+1) to the point [T ; {m}] where T is the pearl
n-corolla labelled by m whose leaves are indexed by the colours s1, . . . , sn
respectively and the trunk by sn+1.

Remark 2.7. — Given an integer k>1, the functor TkFB from Tk Seq(S)
to the category of (k)-truncated bimodules is defined in the same way as
the functor FB . We only have to consider the set S-rstree[k] instead of the
set of reduced trees with section in Construction 2.6.

Proposition 2.8. — The functors FB and TkFB are left adjoints to
the forgetful functor U :

FB : Seq(S)P0 � BimodP -Q : U
TkFB : Tk Seq(S)P0 � Tk BimodP -Q : U .

Proof. — Let M ′ be a (P -Q) bimodule and f : M →M ′ be a morphism
in the category Seq(S)P0 . We have to prove that there exists a unique map
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of (P -Q) bimodules f̃ : FB(M) → M ′ such that the following diagram
commutes:

(2.5)

M
f //

i

��

M ′

FB(M)
∃!f̃

;;

We define the map f̃ by induction on the cardinal of the set nb(T ) =
V (T )\V p(T ). Let [(T ;σ); {av}] be a point in FB(M) such that |nb(T )| = 0
and σ is the permutation indexing the leaves of T . By construction, T is
necessarily a pearl corolla with only one vertex labelled by ar ∈ M . In
order to have the commutative diagram (2.5), the following equality has to
be satisfied:

f̃([(T ;σ); {av}]) = f(ar) · σ.
Let [(T ;σ); {av}] be a point in FB(M) where T has only one vertex v

which is not a pearl. There are two cases to consider. If v is the root of the
tree T , then the root is labelled by a point av ∈ P and [(T ; id); {av}] has
a decomposition of the form av([(T1; id); {a1}], . . . , [(T|v|; id); {a|v|}]) where
Ti is a pearl corolla labelled by ai ∈M . Since f̃ has to be a (P -Q) bimodule
map, there is the equality

f̃([(T ;σ); {av}]) = av
(
f(a1), . . . , f(a|v|)

)
· σ.

If the root is a pearl, then there exists a unique inner edge e such that
s(e) = v and t(e) = r. So, the point [(T ; id); {av}] has a decomposition on
the form [(T1; id); {at(e)}]◦i as(e) with as(e) ∈ Q and at(e) ∈M . Since f̃ has
to be a (P -Q) bimodule map, there is the equality

f̃([(T ;σ); {av}]) =
(
f(at(e)) ◦i as(e)

)
· σ.

Assume f̃ has been defined for |nb(T )| 6 n. Let [(T ;σ); {av}] be a point
in FB(M) such that |nb(T )| = n + 1. By definition, there is an inner
edge e whose target vertex is a pearl. So, the point [(T ; id); {av}] has a
decomposition of the form [(T1; id); {av} \ {as(e)}] ◦i as(e) where T1 is a
planar S-tree with section such that |nb(T1)| = n. Since f̃ has to be a
(P -Q) bimodule map, there is the equality

f̃([(T ;σ); {av}]) =
(
f̃([(T1; id); {av} \ {as(e)}]) ◦i as(e)

)
· σ.

Due to the (P -Q) bimodule axioms, f̃ does not depend on the choice of
the decomposition and f̃ is a (P -Q) bimodule map. The uniqueness follows
from the construction. Similarly, we can prove that the functor TkFB is the
left adjoint to the forgetful functor. �
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2.2. The Boardman–Vogt resolution for bimodules

By convention, if C is a model category enriched over Top, then the
derived mapping space Ch(A;B) is the space C(Ac;Bf ) with Ac a cofibrant
replacement of A and Bf a fibrant replacement of B. Since every object
is fibrant in BimodP -Q, it is sufficient to determine cofibrant replacements
in order to compute derived mapping spaces. In this section, we give a
functorial way to obtain such cofibrant replacements.

Definition 2.9. — Let S-rstree be the set of pairs (T ;V p(T )) where
T is an S-tree and V p(T ) is a subset of V (T ), called the set of pearls.
Similarly to Definition 2.5, each path connecting a leaf or univalent vertex
to the trunk passes through a unique pearl. However, a tree in S-rstree
doesn’t necessarily satisfy Condition (2.4). The set of pearls forms a sec-
tion cutting the tree T into two parts. We denote by V u(T ) and V d(T )
the set of vertices above and below the section respectively. Elements in
S-rstree are called S-trees with section. Analogously to Definition 2.4, one
can talk about non-planar isomorphism for S-trees with section and more
particularly about the automorphism group Aut(T ;V p(T )) associated to
an element (T ;V p(T )).

Figure 2.5. An S-tree with section with S = {o; c}.

Construction 2.10. — Let P and Q be two S-operads. From a (P -Q)
bimodule M , we build the (P -Q) bimodule B(M). The points are equiva-
lence classes [T ; {tv}; {av}] with T ∈ S-rstree and {av}v∈V (T ) is a family
of points labelling the vertices of T . The pearls are labelled by points in M
whereas the vertices in V u(T ) (resp. the vertices in V d(T )) are labelled by
points in the operadQ (resp. the operad P ). Furthermore, {tv}v∈V (T )\V p(T )
is a family of real numbers in the interval [0, 1] indexing the vertices which
are not pearls. If e is an inner edge above the section, then ts(e) > tt(e).
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Similarly, if e is an inner edge below the section, then ts(e) 6 tt(e). In other
words, B(M) is given by the quotient of the sub-S-sequence∐
S-rstree

∏
v∈V d(T )

[
P (e1(v), .., e|v|(v); e0(v))× I

]
×

∏
v∈V p(T )

M(e1(v), .., e|v|(v); e0(v))×

∏
v∈V u(T )

[
Q(e1(v), .., e|v|(v); e0(v))× I

]/
∼

coming from the restrictions on the families {tv}. The equivalence relation
is generated by the following:

(1) If a vertex is labelled by a distinguished point ∗s in P or Q, then

(2) If a vertex is labelled by a · σ, with σ ∈ Σ|v|, then

(3) If an univalent pearl is indexed by a point of the form γs(x), with
x ∈ P (; s), then we contract its output edge by using the operadic
structure of P . In particular, if all the pearls connected to a vertex
v are univalent and of the form γsv

(xv), then the vertex is identified
to the pearl corolla with no input.

Figure 2.6. Example of the relation (3) for S = {o; c}.
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(4) If two consecutive vertices, connected by an edge e, are indexed by
the same real number t ∈ [0, 1], then e is contracted by using the
operadic structures. The vertex so obtained is indexed by the real
number t.

Figure 2.7. Examples of the relation (4).

(5) If a vertex above the section is indexed by 0, then its output edge
is contracted by using the right module structures. Similarly, if a
vertex below the section is indexed by 0 then all its incoming edges
are contracted by using the left module structure.

Figure 2.8. Examples of the relation (5).

Let us describe the (P -Q) bimodule structure. Let a ∈ Q(s1, . . . , sn; s′i)
and [T ; {tv}; {av}] be a point in B(M)(s′1, . . . , s′m; sm+1). The composition
[T ; {tv}; {av}] ◦i a consists in grafting the n-corolla labelled by a to the
i-th incoming edge of T and indexing the new vertex by 1. Similarly, let
b ∈ P (s1, . . . , sn; sn+1) and [T i; {tiv}; {aiv}] be a family of points in the
spaces B(M)(si1, . . . , sini

; si). The left module structure over P is defined as
follows: each tree of the family is grafted to a leaf of the n-corolla labelled
by b from left to right. The new vertex, arising from the n-corolla, is indexed
by 1.

Let us recall that the free (P -Q) bimodule FB(M) is the space of equiv-
alence classes [T ; {av}] with T ∈ S-rstree. Since S-rstree is a subset of
S-rstree, there is a map

(2.6) τ : FB(M)→ B(M); [T ; {av}] 7→ [T ; {1v}; {av}],
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Figure 2.9. Illustration of the left module structure.

indexing the vertices in V u(T ) and V d(T ) by 1. Due to axioms (3) and (4)
of Construction 2.10, τ is a (P -Q) bimodule map. Furthermore, one has
the map

(2.7) µ : B(M)→M ; [T ; {tv}; {av}] 7→ [T ; {0v}; {av}],

sending the real numbers indexing the vertices to 0. The element so ob-
tained is a pearl corolla labelled by a point inM . Due to axioms (4) and (5)
of Construction 2.10, µ is a (P -Q) bimodule map.

Remark 2.11. — There is a general way to get cofibrant replacement
from a bimodule M without the assumption that the maps γs : P (; s) →
M(; s) are cofibrations. In that general case, one has to consider pearled
trees with univalent vertices below the section as well as the following
relation: if a univalent vertex v below the section is indexed by (a; 0), with
a ∈ P (; s), then v is identified with a pearl labelled by γs(a). Nevertheless,
in this paper one essentially needs the case P = Q = M for which the maps
γs are identity maps and thus cofibrant.

2.3. Cofibrant replacements for k-truncated bimodules

In this section, P and Q are two S-operads whereas M is a (P -Q) bi-
module. In order to show that the Boardman–Vogt resolution B(M) is a
cofibrant replacement ofM , we introduce a filtration according to the num-
ber of geometrical inputs which is the number of leaves plus the number
of univalent vertices above the section. As we will see, this filtration also
produces cofibrant replacements for the truncated bimodules Tk(M) with
k > 1.
A point in the bimodule B(M) is said to be prime if the real numbers

labelling its vertices are strictly smaller 1. Besides, a point is said to be
composite if one of its vertex is labelled by 1. A composite point can be
decomposed into prime components as shows the picture below. More pre-
cisely, the prime components of a point indexing by a planar S-tree with
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section are obtained by forgetting the vertices indexing by 1. Otherwise,
the prime components of a point of the form [(T ;σ); {tv}; {av}] coincide
with the prime components of [(T ; id); {tv}; {av}].

Figure 2.10. A composite point and its prime components.

A prime point is in the k-th filtration term Bk(M) if there are at most
k geometrical inputs. Similarly, a composite point is in the k-th filtration
term if all its prime components are in the k-th filtration term. For instance,
the composite point in Figure 2.10 is in the 6-th filtration term. For each
k > 0, Bk(M) is a (P -Q) bimodule and they produce the following filtration
of B(M):

(2.8) P0 −→ B0(M) −→ B1(M) −→ · · ·
· · · −→ Bk−1(M) −→ Bk(M) −→ · · · −→ B(M)

Notation 2.12. — A pointed S-sequence M is said to be well pointed
if the maps ∗s → M(s; s) are cofibrations. Furthermore, a bimodule or
operadic map f is said to be Σ-cofibrant if U(f) is cofibrant in the category
of S-sequences. We also recall that the category of spaces together with a
right action of a group G, denoted by G-Top, is endowed with a model
category structure coming from the adjunction G[−] : Top � G-Top :
U where G[−] sends the space X to G[X] =

∐
GX. By convention, a

map in G-Top is called a G-equivariant map whereas a G-cofibration is a
cofibration in G-Top.

Theorem 2.13. — Assume that the maps γs are cofibrations, the S-
sequences M , P and Q are Σ-cofibrant and the operads P and Q are well
pointed. Then, the objects B(M) and Tk(Bk(M)) are cofibrant replacement
ofM and Tk(M) in the categories BimodP -Q and Tk BimodP -Q respectively.

In the first version of the paper, we show that the maps (2.6) and (2.7)
are respectively a cofibration and a weak equivalence in the category of
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(P -Q) bimodules, under the assumptions of the theorem. Nevertheless, we
give an alternative proof since we need to show that the filtration (2.8)
is composed of cofibrations in the category of (P -Q) bimodules. In what
follows, the method used is based on the paper of Turchin [25, Section 11]
as well as the paper of Berger and Moerdijk [3]. In particular, we use the
following two statements which are special cases of [3, Lemma 2.5.3] and [3,
Lemma 2.5.2] respectively.
Lemma 2.14. — Let 1 → G1 → G1 o G2 → G2 → 1 be a short exact

sequence of groups. Let A→ B be a G2-cofibration and X → Y be a G1 o
G2-equivariant G1-cofibration. The pushout product map (A × Y ) ∪A×X
(B ×X)→ B × Y is a G1 oG2-cofibration.
Lemma 2.15. — Let G be a group. Let A → B and X → Y be two

maps in G-Top which are cofibrations as continuous map. If one of them is
cofibrant in G-Top then the pushout product map (A×Y )∪A×X (B×X)→
B × Y is a cofibration in G-Top. Moreover the latter is acyclic if A → B

or X → Y is.
Proof of Theorem 2.13. — First, we show that the map µ : B(M) →

M , which sends the real numbers indexing the vertices to 0, is a weak
equivalence in the category of (P -Q) bimodules. Indeed, the map µ is a
homotopy equivalence in the category of S-sequences where the homotopy
consists in bringing the parameters to 0. Unfortunately, we cannot do the
same for the map µk : Tk(Bk(M)) → Tk(M) since the previous homotopy
doesn’t necessarily preserve the number of geometrical inputs. For instance,
the composite point [T ; {tv}; {av}] in Figure 2.10 is in the 6-th filtration
term whereas the point [T ; {ttv}; {av}], with t ∈]0, 1[, is in the 9-th filtration
term. To solve this problem, we start by contracting the output edge of
univalent vertices. For this, we use the homotopy

Ck : Tk(Bk(M))× [0, 1] −→ Tk(Bk(M));
[T ; {tv}; {av}]; t 7−→ [T ; {ttD(v) + (1− t)tv}; {av}],

where D(v) = v for v /∈ V u(T ). Otherwise, D(v) is the first vertex in
the path joining v to its pearl such that D(v) is connected to a leaf. By
convention, if such a vertex doesn’t exist, then D(v) is the pearl and tD(v) is
fixed to 0. So, the k-truncated S-sequence Tk(Bk(M)) is weakly equivalent
to the sub-object formed by points without univalent vertices above the
section. Then, we use the homotopy bringing the parameters to 0 in order
to conclude that µk is a weak equivalence.

In order to show that the map from Bk−1(M) to Bk(M) is a cofibration,
we introduce another filtration according to the number of vertices. A prime
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point is said to be in Bk(M)[l] if it has at most k− 1 geometrical inputs or
if it has exactly k geometrical inputs and at most l vertices. A composite
point is said to be in Bk(M)[l] if all its prime components are in Bk(M)[l].
Thus, we get a family of (P -Q) bimodule maps

Bk−1(M) −→ Bk(M)[1] −→ · · · −→ Bk(M)[l − 1]
−→ Bk(M)[l] −→ · · · −→ Bk(M).

In particular, the map P0 → B0(M)[1] is a cofibration. Indeed, let M0 be
the S-sequence given by M0(; s) = M(; s), for s ∈ S, and the empty set
otherwise. Due to the axiom (3) of Construction 2.10, P0 and B0(M)[1] are
the free (P -Q) bimodules FB(P0) and FB(M0) respectively. Consequently,
the map from P0 to B0(M)[1] coincides with FB({γs}) : FB(P0)→ FB(M0)
which is a cofibration in the category of (P -Q) bimodules since the maps
γs are cofibrations in the category of topological spaces.
In the general case, in order to prove that the map from Bk(M)[l− 1] to

Bk(M)[l] is a cofibration in the category of (P -Q) bimodules, we consider
the set S-rstree[k; l] of S-trees with section having exactly k geometrical
inputs and l vertices. Let Xk[l] be the quotient of the sub-S-sequence∐
S-rstree[k;l]

∏
v∈V d(T )

[
P (e1(v), .., e|v|(v); e0(v))× I

]
×

∏
v∈V p(T )

M(e1(v), .., e|v|(v); e0(v))

×
∏

v∈V u(T )

[
Q(e1(v), .., e|v|(v); e0(v))× I

]/
∼

obtained by taking the restriction on the set of real numbers indexing the
vertices. The equivalence relation is generated by the axiom (2) of Con-
struction 2.10. Similarly, ∂Xk[l] is the S-sequence formed by points in Xk[l]
satisfying one of the following conditions called the boundary conditions:

(1) there is a vertex indexed by 0 or 1,
(2) there are two consecutive vertices indexed by the same real number,
(3) there is a bivalent vertex labelled by a distinguished points in P

or Q,
(4) there is a univalent pearl labelled by a point of the form γs(x), with

x ∈ P (; s).
The S-sequences Xk[l] and ∂Xk[l] are not objects in the category Seq(S)P0 .
To solve this problem, we consider the following S-sequences which are
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obviously endowed with maps from P0:

X̃k[l](s1, . . . , sn; sn+1) :=
{
Xk[l](; sn+1) t P (; sn+1) if n = 0,
Xk[l](s1, . . . , sn; sn+1) otherwise,

∂X̃k[l](s1, . . . , sn; sn+1) :=
{
∂Xk[l](; sn+1) t P (; sn+1) if n = 0,
∂Xk[l](s1, . . . , sn; sn+1) otherwise.

Furthermore, there is the pushout diagram

(2.9)

FB(∂X̃k[l]) //

��

FB(X̃k[l])

��
Bk(M)[l − 1] // Bk(M)[l]

where the left vertical map consists in: contracting the output edge (resp.
incoming edges) of vertices above the section (resp. below the section) in-
dexed by 0 ; contracting the inner edges connecting vertices indexed by the
same real number ; forgetting the bivalent vertices labelled by distinguished
points ; contracting the output edge of univalent pearl labelled by γs(x)
with x ∈ P0 ; taking the inclusion for points having a vertex indexed by 1.
Since the functor FB and the pushout diagrams preserve the cofibrations,
Bk−1(M) → Bk(M) is a cofibration in the category of (P -Q) bimodules if
the inclusion from ∂Xk[l] to Xk[l] is a Σ-cofibration.

Let S-rstreep[k; l] be the set of planar S-trees with section having k

geometrical inputs and l vertices (by planar we mean without the bijec-
tion labelling the leaves). If T ∈ S-rstreep[k; l], then H(T ) is the space
of parametrizations of the set V (T ) \ V p(T ) by real numbers in the in-
ternal [0, 1] satisfying the restriction of Construction 2.10. So, H(T ) is
a sub-polytope of [0, 1]m, with m = |V (T ) \ V p(T )|, arising from a glu-
ing of simplices. For instance, if T has only bivalent vertices, then H(T ) =
∆|V u(T )|×∆|V d(T )|. We denote byH−(T ) the sub-polytope ofH(T ) formed
by points satisfying the axioms (1) or (2) of the boundary conditions. In
other words,H−(T ) is formed by faces of the polytopeH(T ). Consequently,
the inclusion (2.10) is a cofibration in the category of spaces and preserves
the action of the automorphism group Aut(T ;V p(T )):

(2.10) H−(T ) −→ H(T ).

Similarly, let M(T ) be the space of indexations of V (T ) by points in P ,
Q and M satisfying the relation of Construction 2.10. Since the objects P ,
Q and M are Σ-cofibrant, the space M(T ) is Aut(T ;V p(T ))-cofibrant. To
show that, we adapt the proof introduced by Berger and Moerdijk in [3] for

ANNALES DE L’INSTITUT FOURIER



IDENTIFICATION OF SWISS-CHEESE ALGEBRAS 687

operads. We prove the result by induction on the set of vertices. Assume
that T is of the form (2.2), then there are two cases to consider. If the root
is a pearl, then the trees T i are elements in the set S-rstree and M(T i)
is the space of indexations of V (T i) by points in the operad Q. In [3], the
authors show that M(T i) is Aut(T i)-cofibrant. Consequently, M(T 1)×k1 ×
· · ·×M(T j)×kj is ΓT -cofibrant and is equipped with an action of ΓT oΣT .
Since M(tn) = P (e1(r), . . . , e|r|(r); e0(r)) is ΣT -cofibrant, Lemma 2.14,
applied to the short exact sequence 1→ ΓT → ΓT oΣT → ΣT → 1, shows
that M(T ) is Aut(T ;V p(T ))-cofibrant.
In the second case, the root is not a pearl and the trees T i are S-trees with

section. By induction, M(T i) is Aut(T i;V p(T i))-cofibrant. Consequently,
M(T 1)×k1×· · ·×M(T j)×kj is ΓT -cofibrant and is equipped with an action
of ΓT o ΣT . Since M(tn) = M(e1(r), . . . , e|r|(r); e0(r)) is ΣT -cofibrant,
Lemma 2.14, applied to the short exact sequence 1 → ΓT → ΓT o ΣT →
ΣT → 1, shows that M(T ) is also Aut(T ;V p(T ))-cofibrant.
The space M−(T ) is the subspace of M(T ) formed by points satisfying

the axioms (3) or (4) of the boundary conditions. An invariant form of the
pushout product lemma 2.14 together with an induction on trees shows that
the inclusion from M−(T ) to M(T ) is an Aut(T ;V p(T ))-cofibration since
the operads P and Q are well pointed and the maps γs are cofibrations.
From now on, we denote by (H ×M)−(T ) the pushout product

(H−(T )×M(T ))
∐

H−(T )×M−(T )

(H(T )×M−(T )).

Lemma 2.15 implies that the inclusion from (H × M)−(T ) to H(T ) ×
M(T ) is an Aut(T ;V p(T ))-cofibration. An element in Aut(T ;V p(T )) can
be associated to a permutation of the leaves of the tree T . Thus, the group
Aut(T ;V p(T )) acts on Σ|T |. Consequently, the following map is a Σ|T |-
cofibration:

(2.11) (H ×M)−(T ) ×
Aut(T ;V p(T ))

Σ′|T | −→ (H(T )×M(T )) ×
Aut(T ;V p(T ))

Σ|T |.

Hence, the horizontal maps of the following diagram are Σ-cofibrations:∐
[T ;V p(T )]

(H×M)−(T ) ×
Aut(T ;V p(T ))

Σ|T | // ∐
[T ;V p(T )]

(H(T )×M(T )) ×
Aut(T ;V p(T ))

Σ|T |

∂Xk[l] // Xk[l]

where the disjoint union is along the isomorphism classes of planar S-trees
with section in S-rstreep[k; l]. Finally, the map Bk−1(M) → Bk(M) is a
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cofibration in the category of (P -Q) bimodules. In the same way, we can
check that the truncated bimodule Tk(Bk(M)) is cofibrant using the functor
TkFB instead of FB in the above arguments. �

Remark 2.16. — The Boardman–Vogt resolution induces an endofunc-
tor in the category BimodP -Q or Tk BimodP -Q. Note that this construction
is also functorial in the operads P and Q. Indeed, let fp : P1 → P2 and
fq : Q1 → Q2 be two maps of S-operads. If f is a map from a (P1-Q1)
bimodule M1 to a (P2-Q2) bimodule M2 such that the following diagrams
commute:

P1 ×M1
1 × · · · ×Mk

1
γl //

fp×f×···×f
��

M1

f

��
P2 ×M1

2 × · · · ×Mk
2 γl

// M2

M1 ×Q1
◦i

//

f×fq

��

M1

f

��
M2 ×Q2

◦i

// M2

then f induces a map of (P1-Q1) bimodules f̃ : B(M1) → B(M2) where
B(M1) and B(M2) are the Boardman–Vogt resolutions in the categories
BimodP1-Q1 and BimodP2-Q2 respectively:

f̃([T ; {tv}; {av}]) = [T ; {tv}; {a′v}] with a′v :=


fq(av) if v ∈ V u(T ),
f(av) if v ∈ V p(T ),
fp(av) if v ∈ V d(T ).

Remark 2.17. — From a k-truncated bimodule Mk, we consider the k-
free bimodule FkB(Mk) whose k first components coincide with Mk. The
functor FkB , from truncated bimodules to bimodules, can be described using
the set of reduced trees with section in which the sum of the incoming inputs
of any two consecutive vertices is bigger than k+ 2. We can check that FkB
is the left adjoint to the truncated functor Tk:

FkB : Tk BimodP -Q � BimodP -Q : Tk.

In particular, one has FkB(Tk(Bk(M))) = Bk(M) since Bk(M) is defined as
the sub-bimodule of B(M) generated its k first components. As a conse-
quence of this adjunction together with Theorem 2.13, one has the following
identifications:

Tk BimodhO(Tk(M);Tk(O′)) ∼= Tk BimodO(Tk(Bk(M));Tk(O′))
∼= BimodO(Bk(M);O′).
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2.4. The Boardman–Vogt resolution for coloured operads

In this section, we recall the Boardman–Vogt resolution for topological
operads and we introduce the notation needed for the proof of the main
theorem of the paper. Since this construction is similar to the Boardman–
Vogt resolution considered in the previous subsections, we skip some details
and we refer the reader to [3, 4] for a complete description.

Construction 2.18. — From an S-operad O, we build the S-operad
BV(O). The points are equivalence classes [T ; {te}; {av}] where T is an
S-tree, {av}v∈V (T ) is a family of points in O labelling the vertices of T and
{te}e∈V int(T ) is a family of real numbers in the interval [0, 1] indexing the
inner edges. In other words, BV(O) is the quotient of the coproduct∐

T∈S-tree

∏
v∈V (T )

O(e1(v), . . . , e|v|(v); e0(v))×
∏

e∈Eint(T )

[0, 1]
/
∼ .

The equivalence relation is generated by the following axioms:
(1) If a vertex is labelled by a distinguished point ∗s ∈ O(s; s), then

(2) If a vertex is labelled by a · σ, with σ ∈ Σ|v|, then

(3) If an inner edge is indexed by 0, then we contract it by using the
operadic structure of O.

Figure 2.11. Illustration of the relation (3).
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Let [T ; {te}; {av}] be a point in BV(O)(s1, ..., sn; sn+1) and [T ′; {t′e}; {a′v}]
be a point in BV(O)(s′1, . . . , s′m; si). The operadic composition

[T ; {te}; {av}] ◦i [T ′; {t′e}; {a′v}]

consists in grafting T ′ to the i-th incoming edge of T and indexing the new
inner edge by 1. Furthermore, there is a map of pointed S-sequences,

(2.12) ι : O −→ BV(O); a 7−→ [t|a|; ∅; {a}],

sending a point a to the corolla labelled by a. There is also a map of operads
sending the real numbers indexing the inner edges to 0,

(2.13) µ : BV(O)→ O; [T ; {te}; {av}] 7→ [T ; {0e}; {av}].

From now on, we introduce a filtration of the resolution BV(O) according
to the number of geometrical inputs which is the number of leaves plus the
number of univalent vertices. Similarly to the bimodule case, a point in
BV(O) is said to be prime if the real numbers indexing the set of inner
edges are strictly smaller than 1. Besides, a point is said to be composite if
one of its inner edges is indexed by 1 and such a point can be decomposed
into prime components. More precisely, the prime components of a point
indexed by a planar tree are obtained by cutting the inner edges indexed
by 1 as illustrated in Figure 2.12. Otherwise, the prime components of a
point of the form [(T ;σ); {te}; {av}], with σ 6= id, coincide with the prime
components of [(T ; id); {te}; {av}].

Figure 2.12. Illustration of a composite point together with its prime
components.

A prime point is in the k-th filtration term BVk(O) if it has at most k
geometrical inputs. Then, a composite point is in the k-th filtration term
if its prime components are in BVk(O). For instance, the composite point
in Figure 2.12 is an element in the filtration term BV4(O). By convention,
BV0(O) is the initial object in the category of S-operads. For each k > 0,
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BVk(O) is an S-operad and the family {BVk(O)} gives rise to a filtration
of BV(O),

BV0(O) −→ BV1(O) −→ · · ·
· · · −→ BVk−1(O) −→ BVk(O) −→ · · · −→ BV(O).

Theorem 2.19 ([2, 26]). — Assume that O is a well pointed Σ-cofibrant
S-operad. The objects BV(O) and Tk(BVk(O)) are cofibrant replacements
of O and Tk(O) in the categories OperadS and Tk OperadS respectively. In
particular, the map (2.13) is a weak equivalence.

Proof. — In what follows, we recall only the proof that the inclusion from
BVk−1(O) to BVk(O) is a cofibration in the category of S-operads. For this
purpose, we consider another filtration according to the number of vertices.
Let S-rstree[k; l] be the set of S-trees having exactly k geometrical inputs
and l vertices. Then, the S-sequence Yk[l] is the quotient of the coproduct∐

T∈S-rstree[k;l]

∏
v∈V (T )

O(e1(v), . . . , e|v|(v); e0(v))×
∏

e∈Eint(T )

[0, 1]
/
∼

where the equivalence relation is generated by the axiom (2) of Construc-
tion 2.18. The S-sequence ∂Yk[l] is formed by points in Yk[l] having a bi-
valent vertex labelled by the unit of the operad O or having an inner edge
indexed by 0 or 1. For (k; l) 6= (1; 1), the S-sequences Yk[l] and ∂Yk[l] are not
pointed. In order to use the operad functor F from pointed S-sequences to
S-operads, we consider the S-sequences Ỹk[l] and ∂Ỹk[l] obtained by adding
based points in arity 1:

Ỹk[l](s1, ..., sn; sn+1) :=
{
Yk[l](s; s) t ∗s if n= 1 and s1 = s2 = s,

Yk[l](s1, ..., sn; sn+1) otherwise,

∂Ỹk[l](s1, ..., sn ; sn+1) :=
{
∂Yk[l](s; s) t ∗s if n= 1 and s1 = s2 = s,

∂Yk[l](s1, ..., sn ; sn+1) otherwise.

Then, we consider the following pushout diagrams:

F(BV0(O)) // F(Y1[1])

BV0(O) // BV1(O)[1]

and

F(∂Ỹk[l]) //

��

F(Ỹk[l])

��
BVk(O)[l − 1] // BVk(O)[l]

Similarly to the proof of Theorem 2.13, we can show that the inclusion from
∂Yk[l] to Yk[l] is a Σ-cofibration. As a consequence, the horizontal maps
of the above diagrams are cofibrations in the category of S-operads. Since

TOME 68 (2018), FASCICULE 2



692 Julien DUCOULOMBIER

limlBVk(O)[l] is the bimodule BVk(O), the inclusion from BVk−1(O) to
BVk(O) is also a cofibrations in the category of S-operads. �

Remark 2.20. — Analogously to the bimodule case, from a k-truncated
operad Ok, we consider the k-free operad Fk(Ok) whose k first components
coincide with Ok. The functor Fk, from truncated operads to operads, can
be described using the set of trees in which the sum of the incoming inputs
of any two consecutive vertices is bigger than k+ 2. We can check that Fk
is the left adjoint to the truncated functor Tk:

Fk : Tk Operadh � Operadh : Tk.

In particular, one has Fk(Tk(BVk(O))) = BVk(O) since BVk(O) is defined
as the sub-operad of BV(O) generated its k first components. As a conse-
quence of this adjunction together with Theorem 2.19, one has the following
identifications:

Tk Operadh(Tk(O);Tk(O′)) ∼= Tk Operad(Tk(BVk(O));Tk(O′))
∼= Operad(BVk(O);O′).

3. SC1-algebra arising from a map of two-coloured operads

From a map of operads η : O → O′, we prove in [8] that the derived map-
ping space of bimodules BimodhO(O;O′) is an algebra over the operad C1.
Furthermore, we have been able to identify the corresponding loop space
using an explicit cofibrant replacement of the operad O in the model cate-
gory BimodO which differs from the cofibrant resolution introduced in this
paper. More precisely, one has the theorem below which is a generalization
of results obtained by Dwyer–Hess [10] and independently by Turchin [25]
in the context of non-symmetric operads and when the source object is the
associative operad As.

Theorem 3.1 ([8, Theorem 3.1]). — LetO be a well pointed Σ-cofibrant
operad and η : O → O′ be a map of operads. If the spaces O(1) and O′(1)
are contractible, then there are explicit weak equivalences of C1-algebras:

ξ : Ω Operadh(O;O′) −→ BimodhO(O;O′),

ξk : Ω
(
Tk Operadh(Tk(O);Tk(O′))

)
−→ Tk BimodhO(Tk(O);Tk(O′)).

In what follows, we give a similar statement in the relative case using the
language of coloured operads with set of colours S = {o; c}. In particular,
for η1 : O → O′ an operadic map and η2 : O′ → M a bimodule map over
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O′, we prove that the pair of spaces (BimodhO(O;O′); BimodhO(O;M)) is
weakly equivalent to an explicit SC1-algebra. For this purpose, we consider
an adjunction between the category of (P -Q) bimodules and a subcategory
of two-coloured operads described below.

Notation 3.2. — Let O be an {o; c}-operad. We denote by Oc and Oo
the operads coming from the restriction to the colour c and o respectively.
In other words, Oc and Oo are defined as follows:

Oc(n) = O(c, . . . , c︸ ︷︷ ︸
n

; c) for n > 0

and Oo(n) = O(o, . . . , o︸ ︷︷ ︸
n

; o) for n > 0.

Conversely, from two operads P and Q, we build the {o; c}-operad P ⊕Q
given by

P ⊕Q(c, . . . , c︸ ︷︷ ︸
n

; c) = Q(n) for n > 0,

P ⊕Q(o, . . . , o︸ ︷︷ ︸
n

; o) = P (n) for n > 0,

and the empty set otherwise. Consequently, a map of two-coloured operads
f : P ⊕ Q → O is equivalent to a pair of operadic maps fc : Q → Oc and
fo : P → Oo.

Definition 3.3. — Let P and Q be two operads. We consider the cat-
egory of {o; c}-operads under P ⊕Q

Op[P ;Q] := (P ⊕Q) ↓ Operad{o;c} .

An object (O; τO) is given by an {o; c}-operad O together with an {o; c}-
operadic map τO : P ⊕ Q → O. A morphism f : (O; τO) → (O′; τO′) is an
{o; c}-operadic map f : O → O′ such that the following diagram commutes:

P ⊕Q
τO

ww

τO′

''
O

f
// O′

There is an obvious functor from the category of operads under P ⊕Q to
the category of (P -Q) bimodules. Given (O; τO) ∈ Op[P ;Q], the sequence
R(O; τO) (also denoted by R(O) if there is no ambiguity on the maps τO)
is defined as follows:

R(O)(n) := O(c, . . . , c︸ ︷︷ ︸
n

; o)for n > 0.
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By definition, R(O) is endowed with an (Oo-Oc) bimodule structure in
which the map γ : Oo(0) → R(O)(0) is the identity map. Due to the
{o; c}-operadic map τO, R(O) is also a (P -Q) bimodule. Thus, one has a
functors

R : Op[P ;Q] −→ BimodP -Q .

In Section 3.1, we give a presentation of the left adjoint L to the functor
R. We also prove that the pair of functors so obtained is a Quillen ad-
junction.As a consequence, L preserves cofibrations and Construction 2.10,
composed with the functor L, produces cofibrant objects in the category
Op[P ;Q] in the particular case P = Q = O. Then, in Section 3.2, we mod-
ify slightly Construction 2.10 in order to get cofibrant replacements in the
category Op[O; ∅] in which ∅ is the initial object in the category of oper-
ads. Section 3.3 is devoted to the proof of the main theorem which is the
following one:

Theorem 3.4. — Let O be a well pointed operad and η : L(O) → O′

be a map in the category Op[O;O]. If O is Σ-cofibrant, then the following
weak equivalence holds:

(3.1) BimodhO(O ; R(O′)) ' Ω
(

Operadh(O ; O′c) ; Op[O ; ∅]h(L(O) ; O′)
)
.

Proof. — It is a direct consequence of Theorem 3.11 together with Propo-
sitions 3.16, 3.18 and 3.19. �

In Section 3.4, we prove a truncated version of the above theorem. Finally,
the last subsection introduces the two-coloured operad CCd and we identify
explicit SCd+1-algebras from maps of coloured operads η : CCd → O using
the Dwyer–Hess’ conjecture.

3.1. The left adjoint to the functors R

LetM be an {o; c}-sequence and Ic, Io be a partition of the set {1, . . . , n}.
In order to simplify the notation, we denote by M(Ic, Io; sn+1) the space

M(s1, . . . , sn; sn+1) in which
{
si = c if i ∈ Ic,
si = o if i ∈ Io.

Construction 3.5. — Let P and Q be two operads. From a (P -Q) bi-
module M , we build the {o; c}-operad L(M ;P ;Q) as follows:

L(M ;P ;Q)(c, . . . , c; c) = Q(n) for n > 0
L(M ;P ;Q)(c, . . . , c; o) = M(n) for n > 0.
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In order to describe the spaces L(M ;P ;Q)(Ic, Io; o), with |Ic| > 0 and
|Io| > 1, we introduce the set Ψ(Ic; Io) formed by {o; c}-trees whose trunk
has the colour o, the leaves indexed by the set Ic have colour c and the leaves
indexed by the set Io have colour o. Moreover, the elements in Ψ(Ic; Io) are
two-levels trees (i.e each path connecting a leaf or a univalent vertex to
the trunk passes through at most two vertices) and satisfy the following
conditions:

• the incoming edges of the vertices distinct from the root are indexed
by c,

• the incoming edges of the root are indexed by the colour o,
• the root has at least one incoming leaf.

Figure 3.1. Elements in Ψ({1, 3, 4, 5, 6}; {2}) and Ψ({1, 2}; {3, 4}) re-
spectively.

To define the {o; c}-sequence L(M ;P ;Q), we label the root by a point
in the operad P whereas the other vertices are labelled by points in the
bimodule M . In other words, one has

(3.2) L(M ;P ;Q)(Ic, Io; o) :=
∐

T∈Ψ(Ic,Io)

P (|r|)×
∏
v 6=r

M(|v|)

/ ∼ .

The equivalence relation ∼ is generated by the compatibility with the sym-
metric group action (axiom (2) of Construction 2.6), the contraction of
edges the source of which are of the form γ(x) with x ∈ P (0) (axiom (3)
of Construction 2.6) as well as the relation defined as follows: if a vertex of
a tree T ∈ Ψ(Ic, Io) other than the root is labelled by a point of the form
a(m1, . . . ,mn), with a ∈ P and mi ∈M , then one has the identification

Figure 3.2. Illustration of the additional relation.
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By convention, a point a ∈ L(M ;P ;Q)(c, . . . , c; c) is interpreted as a
corolla whose edges are coloured by c and the vertex is labelled by a ∈ Q(n).
Similarly, a point a ∈ L(M ;P ;Q)(c, . . . , c; o) is interpreted as a corolla
whose leaves have colour c, the trunk has colour o and the vertex is labelled
by a ∈ P (n). We denote by [T ; {av}] a point in L(M ;P ;Q).

From now on, we describe the (P -Q) bimodule structure of L(M ;P ;Q).
Let [T ; {av}] be a point in L(M ;P ;Q)(Ic, Io; o) and a be a point in Q(n) =
L(M ;P ;Q)(c, . . . , c; c). The operadic composition [T ; {av}]◦ia, with i ∈ Ic,
consists in grafting the corolla labelled by a to the i-th incoming edge of
T and contracting the inner edge so obtained by using the right Q-module
structure of M .

Figure 3.3. Illustration of the operadic composition.

Let [T ; {av}] be a point in L(M ;P ;Q)(Ic, Io; o) and [T ′; {a′v}] be a point
in L(M ;P ;Q)(I ′c, I ′o; o). The operadic composition [T ; {av}] ◦i [T ′; {a′v}],
with i ∈ Io, consists in grafting T ′ to the i-th incoming edge of T and
contracting the inner edges connecting two vertices indexed by points in
P using its operadic structure. If all the incoming edges of the new root
are inner edges, then we contract all of them by using the left P -module
structure of M .

Figure 3.4. Illustration of the operadic composition.

By construction, L(M ;P ;Q) is an {o; c}-operad, denoted by L(M) if
there is no ambiguity about the operads P and Q. Furthermore, there is
an {o; c}-operadic map,

τM : P ⊕Q→ L(M ;P ;Q),
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induced by the identity map (τO)c : Q→ L(M ;P ;Q)c = Q. The morphism
(τO)o : P → L(M ;P ;Q)o assigns a point a ∈ P (0) to γo(a) ∈ M(0) and a
point a ∈ P (n), with n > 0, to the corolla labelled by a. Consequently, the
pair (L(M ;P ;Q); τM ) is an object in the category Op[P ;Q]. Finally, one
has a functor

L(−;P ;Q) : BimodP -Q −→ Op[P ;Q].

Remark 3.6. — This construction is functorial with respect to the oper-
ads P and Q. Let fp : P → P ′ and fq : Q→ Q′ be two operadic maps and
fm : M →M ′ be a map from a (P -Q) bimodule M to a (P ′-Q′) bimodule
M ′ such that the following diagrams commute:

(3.3)

P (n)×M(m1)× · · · ×M(mn)
γl //

fp×fm×···×fm

��

M(m1 + . . .mn)

fm

��
P ′(n)×M ′(m1)× · · · ×M ′(mn)

γl // M ′(m1 + . . .mn)

M(n)×Q(m) ◦i

//

fm×fq

��

M(n+m− 1)

fm

��
M ′(n)×Q′(m) ◦i

// M ′(n+m− 1)

Then, there is a map of {o; c}-operads

f : L(M ;P ;Q) −→ L(M ′;P ′;Q′);
[T ; {a′v}] 7−→ [T ; {a′v}],

with a′v =


fp(av) if av ∈ P,
fm(av) if av ∈M,

fq(av) if av ∈ Q.

Proposition 3.7. — The pair of functors (L;R) form an adjoint pair.

Proof. — Let (O; τO) be an object in the category Op[P ;Q] and let f :
M → R(O) be a (P -Q) bimodule map. If the map of {o; c}-operads f̃ :
L(M ;P ;Q)→ O extends f and satisfy the relation f̃ ◦ τM = τO, then the
folloing conditions hold:

(1) f̃ : L(M ;P ;Q)c(n) = Q(n) → Oc(n) coincides with the map τO :
Q(n)→ Oc(n),

(2) the restriction of f̃ : L(M ;P ;Q)o(n) → Oo(n) to P (n) coincides
with τO : P (n)→ Oo(n),

(3) f̃ : L(M ;P ;Q)(c, . . . , c; o) = M(n) → R(O)(n) coincides with the
map f .

We define the map f̃ on the spaces L(M ;P ;Q)(Ic, Io; o) by induction on
the number of vertices of the trees T ∈ Ψ(Ic, Io). Let [T ; {av}] be a point
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in L(M ;P ;Q)(Ic, Io; o). If T has only one vertex, then |Ic| = 0 or |Io| = 0
since all adjacent edges (i.e edges with the same target vertex) have the
same colour. In these cases, the map f̃ is defined by the conditions (2)
and (3) above.
Assume the map f̃ has been defined for the trees having at most k >

1 vertices. Let [(T ;σ); {av}] be a point in L(M ;P ;Q)(Ic, Io; o) where T
has k + 1 vertices and σ is the permutation indexing the leaves of T . By
construction, [(T ; id); {av}] has a decomposition on the form [(T1; id); {av}\
{a0}] ◦i [(T2; id); a0] where T2 is the corolla whose leaves have colour c and
the vertex is labelled by a0 ∈ M . Since f̃ has to preserve the operadic
structure, then one has

f̃ ([(T ;σ); {av}]) =
(
f̃ ([(T1; id); {av} \ {a0}]) ◦i f(a0)

)
· σ,

where T1 is a tree with k vertices. Due to the operadic and the bimodule
axioms, the map f̃ doesn’t depend on the choice of the decomposition and
the uniqueness follows from the construction. �

The categories BimodP -Q has a cofibrantly generated model structure
whereas Op[P ;Q] inherits a model category structure from the category of
coloured operads. A map f : (O; τo)→ (O′; τO′) is a weak equivalence (resp.
fibration or cofibration) if the operadic map f : O → O′ is a weak equiva-
lence (resp. fibration or cofibration). In both cases, every object is fibrant.
The following proposition claims that the adjunction has good properties
with respect to the model category structures.

Proposition 3.8. — The pair (L;R) is a Quillen adjunction.

Proof. — It is sufficient to show that R preserves fibrations and acyclic
fibrations. Let f : (O; τO) → (O′; τO′) be a fibration in the category
Op[P ;Q], that is, f : O → O′ is a fibration in the category of {o; c}-
operads. We recall that the model category structure on Operad{o;c} is
obtained from the adjunction

F : Seq({o; c})� Operad{o;c} : U ,

where U is the forgetful functor and F is the free operad functor from
pointed {o; c}-sequences (see [2] or [7] for more details). As a consequence,
the operad map f : O → O′ is a fibration if and only if U(f) is a fibration.
In particular, the map fM := {R(O)(n) = O(c, . . . , c; o) → R(O′)(n) =
O′(c, . . . , c; o)} is a fibration in the category of sequences. Furthermore,
the model category structure on (P -Q) bimodules is obtained from the
adjunction

FB : SeqP0 � BimodP -Q : U ,

ANNALES DE L’INSTITUT FOURIER



IDENTIFICATION OF SWISS-CHEESE ALGEBRAS 699

where FB is the free bimodule functor. So, a map in BimodP -Q is a fibration
if and only if it is a fibration in the category of sequences. Consequently,
R(f) = fM is a fibration. �

Remark 3.9. — Let O be an operad. Contrary to the general case,
L(O;O;O) = L(O) has a simple description. Let us recall that, in Con-
struction 3.5, we contract the output edges of univalent vertices other than
the root labelled by points of the form γs(a). Since γ : O(0)→ O(0) is the
identity map, there is no univalent vertices other than the root in L(O).
Furthermore, the O-bimodule O has a distinguished point ∗O ∈ O(1). So,
each point x ∈ O(n), with n > 1, can be expressed as follows:

(3.4) x = γl(x; ∗O, . . . , ∗O).

As a consequence of the relation illustrated in Figure 3.2, L(O) is the two-
coloured operad given by

L(O)(Ic, Io; o) ∼= L(O)(|Ic|+ |Io|; c) ∼= O(|Ic|+ |Io|).

Lemma 3.10. — Let O be an operad. Let ι′ : O → B(O) be the map
of sequences sending x ∈ O(n) to [T ; 1; {av}] where T has a root indexed
by the pair (x; 1) whereas the other vertices are bivalent pearl labelled by
∗O ∈ O(1). Then, the map ι′ is a deformation retract and we denote by µ′
the homotopy inverse.

Proof. — We start by bringing the parameters above the section to 0. By
using the identification (3.4), we deduce that B(O) is homotopy equivalent
to the sub-sequence formed by points without vertices above the section
and such that the pearls are labelled by ∗O ∈ O(1). Thereafter, we bring
the parameters below the section to 1. �

Figure 3.5. Illustration of the homotopy.

Theorem 3.11. — Let O be a well pointed operad and O′ be an object
in the category Op[O;O]. If O is Σ-cofibrant, then L(B(O);O;O) is a cofi-
brant replacement of L(O;O;O) in the category Op[O;O]. Furthermore,
the following weak equivalence holds:

(3.5) BimodhO (O;R(O′)) ' Op[O;O]h (L(O;O;O);O′).
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Proof. — Theorem 2.13 implies that B(O) is a cofibrant replacement
of O in the category BimodO. Moreover, L is a left adjoint functor in a
Quillen adjunction, hence L preserves cofibrations and cofibrant objects.
As a consequence, L(B(O);O;O) is cofibrant in the category Op[O;O].

Moreover, a point [T ; {av}] in L(B(O);O;O)(Ic, Io; o) is given by a tree
T ∈ Ψ(Ic; Io) such that ar ∈ O(|r|) and av ∈ B(O)(|v|) for v 6= r. So, the
map µ′ introduced in Lemma 3.10 together with axiom (3) of Construc-
tion 2.6 induce a weak equivalence of {o; c}-operads

L(B(O);O;O) −→ L(O;O;O).

Finally, L(B(O);O;O) is a cofibrant replacement of L(O;O;O) in Op[O;O].
Since every object is fibrant in the categories considered, there are the
following weak equivalences:

BimodhO(O;R(O′)) ' BimodO(B(O);R(O′)),

Op[O;O]h(L(O;O;O);O′) ' Op[O;O](L(B(O);O;O);O′).

The weak equivalence (3.5) arises from the adjunction (L;R) which induces
a homeomorphism (see [19])

BimodO (B(O);R(O′)) ∼= Op[O;O] (L(B(O);O;O);O′). �

3.2. Cofibrant replacement in the category Op[O; ∅]

The category Op[O; ∅] is a special case of Definition 3.3. The objects
are pairs (O′; fo) in which O′ is an {o; c}-operad and fo : O → O′o is a
map of operads. Consequently, the objects (O′; τO′) in Op[O;O] can be
seen in the category Op[O; ∅] by taking the restriction (τO′)o : O → O′o.
In particular L(O;O;O) and L(B(O);O;O) are objects in Op[O; ∅]. How-
ever, L(B(O);O;O) is not necessarily cofibrant in Op[O; ∅] since O is not
necessarily cofibrant as an operad. To solve this issue, we introduce an
alternative cofibrant replacement of O as a (P -BV(Q)) bimodule. For this
purpose we change slightly Construction 2.10 by using the Boardman–Vogt
resolution introduced in Section 2.4.

Construction 3.12. — Let P and Q be two operads. From a (P -Q)
bimodule M , we build the (P -BV(Q)) bimodule B∅(M). The points are
equivalence classes [T ; {tu}; {av}] in which T ∈ stree and {av} is a family
of points labelling the vertices in the same way as in Construction 2.10.
The family {tu} of real numbers in the interval [0, 1] indexes the vertices
below the section and the inner edges above the section, with the condition
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ts(e) 6 tt(e) for e an inner edge below the section. In other words, B∅(M)
is the quotient of the sub-sequence∐
T∈stree

∏
v∈V d(T )

[
P (|v|)×I

]
×

∏
v∈V p(T )

M(|v|)×
∏

v∈V u(T )

[
Q(|v|)×I

]/
∼,

coming from the restriction on the families {tu}. The equivalence relation
is generated by axioms (2), (3), (4.b) and (5.b) of Construction 2.10 as well
as the following relations:

(1′) If a vertex is labelled by a distinguished point ∗P ∈ P (1) or ∗Q ∈
Q(1), then

(5) If an inner edge above the section indexed by 0, then we contract it
using the operadic structure of Q or the right Q-bimodule structure
of M :

Figure 3.6. Illustration of the relation (5).

The left P -bimodule structure on B∅(M) is similar to Construction 2.10.
Let [T ; {tu}; {av}] be a point in B∅(M)(n) and [T ′; {t′e}; {a′v}] be a point
in BV(Q)(m). The composition [T ; {tu}; {av}] ◦i [T ′; {t′e}; {a′v}] consists in
grafting T ′ to the i-th incoming edge of T and indexing the new inner edge
by 1.

From now on, we introduce a filtration of the resolution B∅(M). Similarly
to the bimodule case (see Section 2.3), a point in B∅(M) is said to be prime
if the real numbers indexing the set of inner edges above the section and
the vertices below the section are strictly smaller than 1. Besides, a point
is said to be composite if one of its parameters is 1 and such a point can be
decomposed into prime components. A prime point is in the k-th filtration
term B∅(M)k if it has at most k geometrical inputs (which is the number
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of leaves plus the number of univalent vertices above the section). Then, a
composite point is in the k-th filtration term if its prime components are in
B∅(M)k. For each k > 0, B∅(M)k is a (P -BV(Q)) bimodule and the family
{B∅(M)k} gives rise a filtration of B∅(M),

(3.6) P0 −→ B∅(M)0 −→ B∅(M)1 −→ · · ·
· · · −→ B∅(M)k−1 −→ B∅(M)k −→ · · · −→ B∅(M).

Lemma 3.13. — Let P and Q be two well pointed operads. Let M be
a (P -Q) bimodule such that the map γ : P (0) → M(0) is a cofibration.
If P , Q and M are Σ-cofibrant, then B∅(M) and Tk(B∅(M)k) are cofi-
brant replacements of M and Tk(M) in the category of BimodP -BV(Q) and
Tk BimodP -BV(Q) respectively.

Proof. — The proof is similar to the one of Theorem 2.13. In order to fix
the notation and to introduce the tower of fibrations associated to the space
BimodP -BV(Q)(B∅(M);M ′), we show that the filtration (3.6) is composed
of cofibrations. For this purpose, we consider another filtration according to
the number of vertices. We recall that stree[k; l] is the set trees with section
having exactly k geometrical inputs and l vertices. Then, the sequenceWk[l]
is the quotient of the sub-sequence

(3.7)
∐

T∈stree[k;l]

∏
v∈V d(T )

[
P (|v|)× I

]
×

∏
v∈V p(T )

M(|v|)

×
∏

v∈V u(T )

[
Q(|v|)× I

]/
∼,

coming from the restriction on the real numbers indexing the vertices below
the section. The equivalence relation is generated by the compatibility with
the symmetric group axioms of Construction 2.10. The sequence ∂Wk[l] is
formed by points in Wk[l] satisfying one of the following conditions:

• there is a vertex below the section indexed by 0 or 1,
• there are two consecutive vertices below the section indexed by the
same real number,

• there is an inner edge above the section indexed by 0 or 1,
• there is a univalent pearl labelled by a point on the form γ(x) with
x ∈ P (0),

• there is a bivalent vertex labelled by a distinguished point ∗P ∈
P (1) or ∗Q ∈ Q(1).

For (k; l) 6= (0; 0), the sequences Wk[l] and ∂Wk[l] are not objects in the
category SeqP0 . So, we denote by W̃k[l] and ∂W̃k[l] the sequences obtained
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as follows:

W̃k[l](n) :=
{
Wk[l](0) t P (0) if n = 0,
Wk[l](n) otherwise,

and ∂W̃k[l](n) :=
{
∂Wk[l](0) t P (0) if n = 0,
∂Wk[l](n) otherwise.

Then, we consider the following pushout diagrams:

FB(P0) // FB(W̃0[1])

P0 // B∅(M)0[1]

FB(∂W̃k[l]) //

��

FB(W̃k[l])

��
B∅(M)k[l − 1] // B∅(M)k[l]

Similarly to the proof of Theorem 2.13, we can show that the inclusion
from ∂Wk[l] to Wk[l] is a Σ-cofibration. Since the pushout diagrams pre-
serve the cofibrations, the map B∅(M)k[l− 1]→ B∅(M)k[l] is a cofibration
in the category of (P -BV(Q)) bimodules. Furthermore, the limit of the se-
quences B∅(M)k[l] is B∅(M)k. Thus, the inclusion B∅(M)k−1 → B∅(M)k is
a cofibration in the category of (P -BV(Q)) bimodules. As a consequence,
for (k; l) 6= (0; 0), the vertical maps of the following pullback diagrams are
fibrations:

BimodP -BV(Q)(B∅(M)k[l];M ′) //

��

Seq(Wk[l];O′)

��
BimodP -BV(Q)(B∅(M)k[l − 1];M ′) // Seq(∂Wk[l];O′)

Furthermore, if g ∈ BimodP -BV(Q)(B∅(M)k[l − 1];M ′), then the fiber over
g is homeomorphic to the mapping space from Wk[l] to M ′ such that the
restriction to ∂Wk[l] coincides with the map induced by g:

�(3.8) Seqg ((Wk[l], ∂Wk[l]);M ′).

Notation 3.14. — Let O be an operad. We denote by BV∅(O) the {o; c}-
sequence

BV∅(O) := L(B∅(O);O;BV(O)).

Lemma 3.15. — Let O be an operad. Let ι′′ : O → B∅(O) be the map
of sequences sending x ∈ O(n) to [T ; 1; {av}] where T has a root indexed
by the pair (x; 1) whereas the other vertices are bivalent pearl labelled by
∗O ∈ O(1). Then, the map ι′′ is a deformation retract and we denote by
µ′′ the homotopy inverse.

Proof. — The proof is similar to the one’s of Lemma 3.10. �
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Proposition 3.16. — Let O be a well pointed operad. If O is Σ-
cofibrant, then BV∅(O) is a cofibrant replacement of L(O;O;O) in the
category Op[O; ∅].

Proof. — From Lemma 3.13, B∅(O) is a cofibrant replacement of O in the
category of (O-BV(O)) bimodules. Since the functor L preserves cofibrant
objects, BV∅(O) is cofibrant in the category Op[O;BV(O)]. Consequently,
BV∅(O) is also cofibrant in Op[O; ∅] because the following maps are cofi-
brations:

O ⊕ ∅ −→ O ⊕ BV(O) −→ BV∅(O).
A point in BV∅(O) is given by a tree in Ψ vertices of which are indexed by
points in BV(O), B∅(O) or O. So, the homotopy retracts µ′′ (introduced in
Lemma 3.15) and µ : BV(O) → O (see (2.13)) induce a weak equivalence
from BV∅(O) to L(O;O;O). �

3.3. Relative delooping between operad and bimodule mapping
spaces

As shown in the previous section, the {o; c}-sequence BV∅(O) is an ob-
ject in the category Op[O; ∅]. Its restriction to the colour c coincides with
the operad BV(O). Hence, one has a continuous map coming from the
restriction to the colour c,

(3.9) h : Op[O; ∅] (BV∅(O);O′) −→ Operad (BV(O);O′c).

A model for the relative loop spaces (3.1) is given by the homotopy fiber of
the maps (3.9) over the composite (τO′)c◦µ : BV(Q)→ O′c. In the following
definition, we give an explicit description of the homotopy fiber.

Definition 3.17. — A point in the homotopy fiber of (3.9) over (τO′)c◦
µ is a family of continuous maps:

f [n; c] :BV(O)(n)×[0, 1] −→O′(c, ..., c; c), for n > 0,
f [Ic, Io; o] :BV∅(O)(Ic, Io; o)×{1}−→O′(Ic, Io; o), for |Ic|>0 and |Io|>0,
satisfying relations coming from the operadic structure:

• f [n + m − 1; c](x ◦i y; t) = f [n; c](x; t) ◦i f [m; c](y; t), for x ∈
BV(O)(n), and y ∈ BV(O)(m),

• f [I ′′c , I ′′o ; o](x ◦i y; 1) = f [Ic, Io; o](x; 1) ◦i f [I ′c, I ′o; o](y; 1), for x ∈
BV∅(O)(Ic, Io; o) and y ∈ BV∅(O)(I ′c, I ′o; o),

• f [I ′′c , I ′′o ; o](x ◦i y; 1) = f [Ic, Io; o](x; 1) ◦i f [I ′c, ∅; c](y; 1), for x ∈
BV∅(O)(Ic, Io; o) and y ∈ BV∅(O)(I ′c, ∅; c),
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and relations coming from the based point:

• f [n; c](x; 0) = (τO′)c ◦ µ(x), for x ∈ BV(O)(n).

In order to prove Theorem 3.4, we use a method introduced by the
author in [7] for the cosimplicial case. We consider the topological space
Op[O;BV(O)](BV∅(O);O′) as an intermediate space between the relative
loop space and Op[O;O]h(L(O);O′). More precisely, Op[O;BV(O)] ×
(BV∅(O);O′) is the subspace of Op[O; ∅](BV∅(O);O′) formed by maps f
satisfying the relation:

(3.10) f(x) = (τO′)c ◦ µ(x) ∀x ∈ BV(O).

Proposition 3.18. — Under the assumptions of Theorem 3.4, the fol-
lowing weak equivalence holds:

Op[O;BV(O)](BV∅(O);O′) ' Op[O;O](L(B(O);O;O);O′).

Proof. — Let us notice that this proposition is inspired by constructions
introduced by Fresse in [11, Chapter 7] and the author in [7, Proposi-
tion 4.4]. From Corollary 3.11, to obtain the result it is sufficient to build
a weak equivalence

(3.11) ξ : BimodO(B(O);R(O′)) −→ BimodO-BV(O)(B∅(O);R(O′)).

Firstly, we build a set map i : B(O)→ B∅(O) sending a point [T ; {tv} ; {av}]
to [T ; {t′u}; {av}] where the tree with section, the indexation of vertices be-
low the section and the family {av} labelling the vertices are still the same.
If e is an inner edge above the section, then this edge is indexed by the real
number t′e ∈ [0, 1] defined as follows:

t′e =
{

(tt(e) − ts(e))/(tt(e) − 1) if tt(e) < 1,
1 if tt(e) = 1.

By convention, we assume that the pearls are indexed by 0. The function
i so obtained doesn’t depend on the choice of the point in the equivalence
class. Unfortunately, the function i is not a continuous map. Indeed, if e is
an inner edge connecting two vertices in the set V u(T ), then t′e is not well
defined as tt(e) approaches 1.
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Figure 3.7. Illustration of the map i : B(O)→ B∅(O).

To solve this issue, we introduce an equivalence relation on the sequence
B∅(O). Let ∼ be the equivalence relation generated by x ∼ x′ if and only
if there exist [T ; {t1e}; {av}], [T ; {t2e}; {av}] ∈ BV(O) and y ∈ B∅(O) such
that:

(3.12) x = y ◦i [T ; {t1e}; {av}] and x′ = y ◦i [T ; {t2e}; {av}].

We denote by B∅(O)/ ∼ (n) the quotient space B∅(O)(n)/∼. The (O-
BV(O)) bimodule structure on B∅(O) induces a O-bimodule structure on
the sequence B∅(O)/∼:

• ◦i : B∅(O)/∼(n)×O(m) −→ B∅(O)/∼(n+m− 1);

(x; y) 7−→ x ◦i y,

• γl : O(n)×
∏

16i6n
B∅(O)/∼(mi) −→ B∅(O)/∼(m1 + · · ·+mn);

(x, y1, . . . , yn) 7−→ γl(x; y1, . . . , yn).
The O-bimodule axioms are satisfied thanks to the equivalence relation.
The left BV(O)-bimodule structure on O′ arises from the map of operads
µ : BV(O) → O (see (2.13)). As a consequence, each bimodule map f ∈
BimodO-BV(O)(B∅(O);R(O′)) preserves equivalence classes and induces a
map f̃ ∈ BimodO(B∅(O)/∼;R(O′)). By using the universal property of the
quotient, one has a continuous bijection

ξ1 : BimodO(B∅(O)/∼;R(O′)) −→ BimodO-BV(O)(B∅(O);R(O′)).

Let e be an inner edge above the section connecting two vertices in V u(T ). If
tt(e) is equal to 1, then all the parameters t′e are identified in the quotient
space. So, the function i : B(O) → B∅(O)/∼ is a continuous map. By
construction, the map i is a homeomorphism and preserves the O-bimodule
structures. Consequently, we obtain the following homeomorphism coming
from the composition with i:

ξ2 : BimodO(B∅(O)/∼;R(O′)) −→ BimodO(B(O);R(O′)).
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It is not obvious that ξ1 is a homeomorphism since our cofibrant replace-
ments are not necessarily finite CW -complexes in each arity. So, we will
prove that ξ = ξ1 ◦ ξ−1

2 is a weak equivalence by using towers of fibrations
associated to the filtrations (2.1) and (3.6). Indeed, ξ induces a morphism
between the following towers of fibrations:

BimodO(B0(O)[1];R(O′))
ξ0;1
// BimodO-BV(O)(B∅(O)0[1];R(O′))

...

OO

...

OO

BimodO(Bk(O)[l];R(O′))

OO

ξk;l
// BimodO-BV(O)(B∅(O)k[l];R(O′))

OO

...

OO

...

OO

Consequently, ξ is a weak equivalence if the maps ξk;l are weak equivalences.
Since the points in B0(O)[1] and B∅(O)0[1] are indexed by trees with section
without vertices above the section, the map ξ0;1 is the identity map which
is a weak equivalence. Assume that ξk;l−1 is a weak equivalence and g is a
point in BimodO(Bk(O)[l− 1];R(O′)). We consider the following diagram:

BimodO(Bk(O)[l−1];R(O′))
ξk;l−1

'
// BimodO-BV(O)(B∅(O)k[l−1];R(O′))

BimodO(Bk(O)[l];R(O′))

OO

ξk;l
// BimodO-BV(O)(B∅(O)k[l];R(O′))

OO

F1

OO

ξg

// F2

OO

where F1 is the fiber over g and F2 is the fiber over ξk;l−1(g). Since the
left horizontal maps are fibrations, ξk;l is a weak equivalence if the map
between the fiber is a weak equivalence. By using the identifications (2.9)
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and (3.8), one has

F1

ξg

��

Seqg ((Xk[l], ∂Xk[l]);R(O′))
∼=oo

Seqg̃ ((Wk[l]/∼, ∂Wk[l]/∼);R(O′))
ξ∗2 ∼=
OO

ξ∗1 ��

F2 Seqξ
k;l−1(g) ((Wk[l], ∂Wk[l]);R(O′))

∼=oo

where ∼ is the equivalence relation generated by (3.12). Since we are in the
fiber over ξk;l−1(g) the induced map g̃ is well defined. In the same way as
Xk[l] in the proof of Theorem 2.13, Wk[l] can also be expressed as follows:

Wk[l] :=
∐

[T ;;V p(T )]

(H ′(T )×M(T )) ×
Aut(T ;V p(T ))

Σ|T |,

where H ′(T ) is the space of parametrization of the vertices below the sec-
tion and the inner edges above the section of T by real numbers satisfying
the restriction introduced in Construction 3.12. Thus, the quotient map
Wk[l] → Wk[l]/ ∼ is proper since its restriction to M(T ) is the identity
map, H ′(T ) is a finite CW -complex and streep[k; l] is a finite set. In that
case, ξ∗1 is a homeomorphism and ξk;l is a weak equivalence. �

Proposition 3.19. — Under the assumptions of Theorem 3.4, the fol-
lowing weak equivalence holds:

Op[O;BV(O)](BV∅(O);O′)
' Ω (Operad(BV(O);O′c); Op[O; ∅](BV∅(O);O′)).

Proof. — Let us recall that Op[O;BV(O)](BV∅(O);O′) is the subspace
of Op[O; ∅](BV∅(O);O′) formed by maps f satisfying the additional con-
dition (3.10). In particular, the space Op[O;BV(O)](BV∅(O);O′) is a sub-
space of the homotopy fiber (3.9), described in Definition 3.17, where the
inclusion is given by

ι : Op[O;BV(O)](BV∅(O);O′)
−→ Ω (Operad(BV(O);O′c); Op[O; ∅](BV∅(O);O′)) ;

f 7−→

{
f̃(n; c)(x; t)=(τO′)c ◦ µ(x) for x∈BV(O)(n),
f̃(Ic, Io; o)(x; 1)=f(Ic, Io; o)(x) for x∈BV∅(O)(Ic, Io; o).

Let us prove that ι is a weak equivalence. As shown in the previous sections,
the operad BV(O) and the bimodule B∅(O) have a filtration according to
the number of geometrical inputs and the number of vertices. So, we will
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define a similar filtration for the operad BV∅(O) in order to build towers
of fibrations. For this purpose, we introduce the {o; c}-sequences Vk[l] and
∂Vk[l] defined as follows:


Vk[l](∅, Io; o) = O(|Io|), if |Io| > 1,
Vk[l](Ic, ∅; o) = W ′k[l](|Ic|),
Vk[l](Ic, ∅; c) = Yk[l](|Ic|),

and


∂Vk[l](∅, Io; o) = O(|Io|), if |Io| > 1,
∂Vk[l](Ic, ∅; o) = ∂W ′k[l](|Ic|),
∂Vk[l](Ic, ∅; c) = ∂Yk[l](|Ic|),

where Yk[l] and ∂Yk[l] are the sequences introduced in the proof of The-
orem 2.19 whereas W ′k[l] and ∂W ′k[l] are the sub-sequences of Wk[l] and
∂Wk[l], introduced in the proof of Theorem 3.13, formed by points indexed
by trees with section without univalent pearl other than the root. We con-
sider these sub-sequences because B∅(O) doesn’t have univalent pearl due
to axiom (3) of Construction 2.10.
For (k; l) 6= (1; 1), the {o; c}-sequences Vk[l] and ∂Vk[l] are not pointed.

So, we denote by Ṽk[l] and ∂Ṽk[l] the {o; c}-sequences obtained from Vk[l]
and ∂Vk[l] by taking Ỹk[l] and ∂Ỹk[l] instead of Yk[l] and ∂Yk[l] respectively.
Then, we consider the following pushout diagrams:

F(O ⊕ ∅) // F(Ṽ1[1])

��
O ⊕ ∅ // BV∅(O)1[1]

F(∂Ṽk[l]) //

��

F(Ṽk[l])

��
BV∅(O)k[l − 1] // BV∅(O)k[l]

By construction, {BV∅(O)k[l]} gives rise a filtration of BV∅(O) in which
BV∅(O)k[l] is a two-coloured operad endowed with a map from O ⊕
BVk(O)[l].
Now, we are able to introduce the towers of fibrations showing that the

map ι is a weak equivalence. For the space Op[O;BV(O)](BV∅(O);O′),
the additional relation (3.10) implies that we have to consider the {o; c}-
sequence 

∂V 1
k [l](∅, Io; o) = O(|Io|)

∂V 1
k [l](Ic, ∅; o) = ∂W ′k[l](|Ic|),

∂V 1
k [l](Ic, ∅; c) = Yk[l](|Ic|).
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Since the inclusion from ∂V 1
k [l] to Vk[l] is a Σ-cofibration, the vertical maps

of the following pullback diagram are fibrations:

(3.13)

Op[O;BVk(O)[l]](BV∅(O)k[l];O′)

��

// Seq(Vk[l];O′)

��
Op[O;BVk(O)[l − 1]](BV∅(O)k[l−1];O′) // Seq(∂V 1

k [l];O′)

For the space Ω(Operad(BV(O);O′c); Op[O; ∅](BV∅(O);O′)), the relations
introduced in Definition 3.17 implies that we have to consider the {o; c}-
sequences


V 2
k [l](∅, Io; o) = O(|Io|),

V 2
k [l](Ic, ∅; o) = W ′k[l](|Ic|),

V 2
k [l](Ic, ∅; c) = Yk[l](|Ic|)× [0, 1],

and


∂V 2

k [l](∅, Io; o) = O(|Io|),

∂V 2
k [l](Ic, ∅; o) = ∂W ′k[l](|Ic|),

∂V 2
k [l](Ic, ∅; c) = (Yk[l](|Ic|)×{0})

∐
∂Yk[l](|Ic|)×{0}

(∂Yk[l](|Ic|)×[0, 1]).

Since the inclusion from ∂V 2
k [l] to V 2

k [l] is a Σ-cofibration, the vertical maps
of the following pullback diagram are fibrations:

(3.14)

Ω(Operad(BVk(O)[l];O′c); Op[O; ∅](BV∅(O)k[l];O′))

��

**
Seq(V 2

k [l];O′)

��

Ω(Operad(BVk(O)[l−1];O′c); Op[O; ∅](BV∅(O)k[l−1];O′))

********
Seq(∂V 2

k [l];O′)
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The map ι induces a morphism between the two towers of fibrations:

...

��
Op[O;BVk(O)[l]](BV∅(O)k[l];O′)

ιk;l

**
��

...

��...

��

Ω(Operad(BVk(O)[l];O′c); Op[O; ∅](BV∅(O)k[l];O′))

��

Op[O;BV1(O)[1]](BV∅(O)1[1];O′)
ι1;1

++

...

��
Ω(Operad(BV1(O)[1];O′c); Op[O; ∅](BV∅(O)1[1];O′))

Since the vertical maps are fibrations, in order to prove that the map ι is a
weak equivalence, it is sufficient to show by induction that the maps ιk;l are
weak equivalences. By using the notation of Definition 3.17, a point in the
relative loop space Ω(Operad(BV1(O)[1];O′c); Op[O; ∅](BV∅(O)1[1];O′)) is
determined by a family {f} of continuous maps

f [c; o] : O(1)× {1} −→ O′(c; o)

and
{
f [0; c] : O(0)× [0, 1] −→ O′(; c),
f [1; c] : O(0)× [0, 1] −→ O′(1; c),

satisfying the relations f [0; c](x; 0) = η(x) and f [1; c](x; 0) = η(x). On
the other hand, the image of ι1;1 is formed by maps satisfying also the
conditions f [0; c](x; t) = η(x) and f [1; c](x; t) = η(x) with t ∈ [0, 1]. So, ι1;1
is a homotopy equivalence and the homotopy H is defined as follows:

H({f};u)[c; o](x; 1) = f [c; o](x; 1),
H({f};u)[0; c](x; t) = f [0; c](x; (1− u)t),
H({f};u)[1; c](x; t) = f [1; c](x; (1− u)t),

with u ∈ [0, 1] and {f} a point in the relative loop space.
Assume that the map ιk;l−1 is a weak equivalence and g is a point in the

space Ω(Operad(BVk(O)[l − 1];O′c); Op[O; ∅](BV∅(O)k[l − 1];O′)). Let F1
and F2 be the fiber over g and ιk;l−1(g) respectively. So, the map ιk;l is a
weak equivalence if the map between the fibers ιg is a weak equivalence.
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By using the pullback diagrams 3.13 and 3.14, one has

F1

ιg

��

Seqg((Vk[l]; ∂V 1
k [l]);O′)

α

��

∼=oo

F2 Seqιk;l−1(g)((V 2
k [l]; ∂V 2

k [l]);O′)
∼=oo

The image of α is the subspace formed by maps {f} satisfying the relation
f [|Ic|; c](x; t) = f [|Ic|; c](x; 0) for x ∈ Vk[l](Ic, ∅; c) and t ∈ [0, 1]. Since
F2 is the fiber over ιk;l−1(g), a point {f} ∈ Seqιk;l−1(g)((V 2

k [l]; ∂V 2
k [l]);O′)

satisfies the relation

f [|Ic|; c](x; t) = f [|Ic|; c](x; 0), for x ∈ ∂Vk[l](Ic, ∅; c).

So, α is a homotopy equivalence and the homotopyH ′ below is well defined:{
H ′({f};u)[Ic, Io; c](x; 1) = f [Ic, Io; c](x; 1),
H ′({f};u)[|Ic|; c](x; 1) = f [|Ic|; c](x; (1− u)t),

with u ∈ [0, 1] and {f} a point in the space Seqιk;l−1(g)((V 2
k [l]; ∂V 2

k [l]);O′).
Thus proves that the map ι is a weak equivalence. �

The next theorem is the main result of this paper. It is a direct con-
sequence of Theorem 3.4 and Theorem 3.1. Indeed, the weak equivalence
in 3.1 identifies explicit loop spaces from maps between operads. Similarly,
we identify relative loop spaces in Theorem 3.4 which are compatible with
the loops spaces in the sense that they form typical algebras over the Swiss-
Cheese operad SC1.

Theorem 3.20. — Let O be a well pointed Σ-cofibrant operad. Let
η : L(O)→ O′ be a map in the category Op[O;O] in which the spaces O(1)
and O′c(1) are contractible. Then, the pair of topological spaces(

BimodhO(O;O′c); BimodhO(O;R(O′))
)

is weakly equivalent to the SC1-algebra(
Ω
(

Operadh(O;O′c)
)

; Ω
(

Operadh(O;O′c); Op[O; ∅]h(L(O;O;O);O′)
))
.

Corollary 3.21. — Let η1 : O → O′ be a map of operads and η2 :
O′ → M be a map of O′-bimodules. Assume that O is a well pointed Σ-
cofibrant operad and the spaces O(1) and O′(1) are contractible. Then, the
pair of topological spaces(

BimodhO(O;O′); BimodhO(O;M)
)
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is weakly equivalent to the SC1-algebra(
Ω
(

Operadh(O;O′)
)

;

Ω
(

Operadh(O;O′); Op[O; ∅]h(L(O;O;O);L(M ;O′;O′))
))
.

Proof. — As shown in Remark 3.6, the maps η1 : O → O′ and η2 : O′ →
M induce a map of {o; c}-operads f : L(O;O;O) → L(M ;O′;O′). So, the
corollary is a consequence of Theorem 3.20 applied to the map f . �

3.4. Truncated version of the relative delooping

In what follows, we denote by Tk Op[P ;Q] the category of k-truncated
{o; c}-operads under Tk(P ⊕Q). This section is devoted to the proof of the
following theorem which is a truncated version of Theorem 3.4:

Theorem 3.22. — Let O be a well pointed operad and η : L(O)→ O′

be a map in the category Op[O;O]. If O is Σ-cofibrant, then the following
weak equivalence holds:

Tk BimodhO(Tk(O);Tk(R(O′)))

' Ω
(
Tk Operadh(Tk(O);Tk(O′c));Tk Op[O; ∅]h(Tk(L(O));Tk(O′))

)
.

For this purpose, we need a cofibrant replacement of Tk(L(O;O;O))
in the category Tk Op[O;BVk(O)]. So, we change slightly the filtration of
B∅(O) introduced in Section 3.2. The definition of prime points and com-
posite points in B∅(O) are still the same. Nevertheless, we consider two
kinds of prime component. First, there are prime components in B∅(O)
considered in Section 3.2. Then, there are prime components in BV(O)
coming from sub-trees above the section whose trunks are indexed by 1.
So, a prime point is said to be in the n-th filtration term Bk∅(O)n if it has
at most n geometrical inputs. Besides, a composite point is said to be in
the n-th filtration term if its prime components are in Bk∅(O)n or BVk(O).
Finally, Bk∅(O)n is a (O-BVk(O)) bimodule and we denote by BVk∅(O) the
following {o; c}-operad:

BVk∅(O) := L(Bk∅(O)k;O;BVk(O)).

Lemma 3.23. — Tk(Bk∅(O)k) is a cofibrant replacement of Tk(O) in the
category of k truncated (O-BVk(O)) bimodules.
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Proof. — Similarly to the proof of Lemma 3.13, Bk∅(O)k is cofibrant in
the category of (O-BVk(O)) bimodules. So, Tk(Bk∅(O)k) is cofibrant in the
category of k truncated (O-BVk(O)) bimodules. Furthermore, the restric-
tion of the homotopy inverse introduced in Lemma 3.15 gives rise a map
µ′′ : Bk∅(O)k → O. In what follows, we prove that Tk(µ′′) is a weak equiva-
lence.
Let Tk(Bk∅(O)k)[l] be the sub-sequence formed by points having at most

l vertices above the section. Due to the axiom (3) of Construction 2.10,
Tk(Bk∅(O)k)[l] doesn’t have univalent pearl. From the identification (3.4),
Tk(Bk∅(O)k)[0] is equivalent to its sub-sequence formed by points whose
pearls are labelled by the unit ∗O ∈ O(1). Consequently, Tk(Bk∅(O)k)[0] is
homotopy equivalent to Tk(O) and the homotopy consists in bringing the
real numbers indexing the vertices below the section to 1.
According to the notation introduced in Section 2.3, let streek;l be the

set of planar trees with section having at most k leaves and exactly l ver-
tices above the section. Similarly to the proof of Theorem 2.13, on has the
pushout diagram

(3.15)

∐
[T ;V p(T )]

(H2×M)−(T ) ×
Aut(T ;V p(T ))

Σ|T | //

��

∐
[T ;V p(T )]

(H2(T )×M(T )) ×
Aut(T ;V p(T ))

Σ|T |

��
Tk(Bk∅(O)k)[l − 1] // Tk(Bk∅(O)k)[l]

where the disjoint union is along the isomorphism classes of streek;l. The
space H2(T ) is the space of parametrizations of the vertices below the
section and the inner edges above the section by real numbers satisfying the
restriction coming from the construction of Tk(Bk∅(O)k). Similarly, H−2 (T )
is the subspace of H2(T ) having at least one inner edge above the section
indexed by 0.
Similar arguments used in the proof of Theorem 2.13 imply that the hor-

izontal maps of Diagram (3.15) are acyclic Σ-cofibrations if the inclusion
from H−2 (T ) to H2(T ) is an acyclic cofibration. Since H−2 (T ) → H2(T ) is
an inclusion of CW -complex, this map is a cofibration. Moreover, H2(T ) is
obviously contractible and the homotopy consists in bringing the parame-
ters to 1. For the space H−2 (T ), there are two cases to consider. First, there
is no univalent vertex above the section. In that case, H−2 (T ) is contractible
and the homotopy is the same as the previous one.
In the second case, there is at least one univalent vertex above the section.

Hence, the homotopy consists in bringing the real number indexing the
output edge of the univalent vertex to 0. This homotopy is well define
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since univalent vertices doesn’t change the number of geometrical inputs.
Thereafter, we bring all the other vertices to 1. Finally, we proved that
the map Tk(Bk∅(O)k)[l − 1]→ Tk(Bk∅(O)k)[l] is an acyclic Σ-cofibration. In
particular, one has

Tk(Bk∅(O)k)[0] ' //

'

33Tk(Bk∅(O)k)
Tk(µ′′k )// Tk(O).

From the 2to3 axiom in model category theory, Tk(µ′′k) is a weak equiv-
alence in the category of k truncated sequences. Finally, it is also a weak
equivalence in the category of k truncated (O-BVk(O)) bimodules. �

Lemma 3.24. — Tk(BVk∅(O)) is a cofibrant replacement of Tk(L(O)) in
the category Tk Op[O; ∅].

Proof. — Since the functor L preserves cofibrant objects, BVk∅(O) is
cofibrant in the categories Op[O;BVk(O)] and Op[O; ∅]. Consequently,
Tk(BVk∅(O)) is also cofibrant in Tk Op[O; ∅]. Furthermore, the restriction
of the homotopy inverse introduced in Lemma 3.15 gives rise a map µ′′ :
Bk∅(O)k → O. There is also a map µk : BVk(O) → O which sends the real
numbers indexing the inner edges to 0. As shown in Remark 3.6, the maps
µ′′ and µk induce an {o; c}-operadic map β : BVk∅(O) → L(O). Similarly
to the proof of Lemma 3.23, the reader can check that the map Tk(β) is a
weak equivalence. �

Proof of Theorem 3.22. — Since the arguments are the same as in the
previous sections, we only give the main steps of the proof. One has the
following weak equivalences:

Tk BimodhO(Tk(O);Tk(R(O′)))
' BimodO(Bk(O);R(O′)),(1)
' Op[O;O](L(Bk(O);O;O);O′),(2)

' Op[O;BVk(O)](BVk∅(O);O′),(3)

' Ω
(

Operad(BVk(O);Oc); Op[O; ∅](BVk∅(O);O′)
)
,(4)

' Ω
(
Tk Operadh(Tk(O);Tk(O′c));Tk Op[O; ∅]h(Tk(L(O));Tk(O′))

)
.(5)

Steps (1) and (5) are consequences of the cofibrant replacements introduced
in Theorem 2.13 and Lemma 3.24 respectively. Step (2) is a consequence of
the adjunction (L;R). Finally, the proofs of steps (3) and (4) are equivalent
to the proofs of Proposition 3.18 and Proposition 3.19 respectively. �
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Theorem 3.25. — Let O be a well pointed Σ-cofibrant operad. Let
η : L(O)→ O′ be a map in the category Op[O;O] in which the spaces O(1)
and O′(1) are contractible. Then, the pair of topological spaces(

Tk BimodhO(Tk(O);Tk(O′c));Tk BimodhO(Tk(O);Tk(R(O′)))
)

is weakly equivalent to the SC1-algebra(
Ω
(
Tk Operadh(Tk(O);Tk(O′c))

)
;

Ω
(
Tk Operadh(Tk(O);Tk(O′c));Tk Op[O; ∅]h(Tk(L(O));Tk(O′))

))
.

Corollary 3.26. — Let η1 : O → O′ be a map of operads and η2 :
O′ → M be a map of O′-bimodules. Assume that O is a well pointed Σ-
cofibrant operad and the spaces O(1) and O′(1) are contractible. Then, the
pair of topological spaces(

Tk BimodhO(Tk(O);Tk(O′));Tk BimodhO(Tk(O);Tk(M))
)

is weakly equivalent to the SC1-algebra(
Ω
(
Tk Operadh(Tk(O);Tk(O′))

)
;

Ω
(
Tk Operadh(Tk(O);Tk(O′));Tk Op[O; ∅]h(Tk(L(O));

Tk(L(M ;O′;O′)))
))
.

3.5. Generalization using Dwyer–Hess’ conjecture

In this section we use the previous theorems in order to identify algebras
over the Swiss-Cheese operad SCd+1 from maps between {o; c}-operads. For
this purpose, we use the Dwyer and Hess’ conjecture. This conjecture has
been proved by Boavida de Brito and Weiss [5] in the particular case M =
Cn, with n > d, and by Tuchin and the author in the general context [9]:

Theorem 3.27 ([9]). — Let η : Cd →M be a map of Cd-bimodules with
M(0) ' ∗. One has

IbimodhCd
(Cd;M) ' Ωd

(
BimodhCd

(Cd;M)
)

Tk IbimodhCd
(Tk(Cd);Tk(M)) ' Ωd

(
Tk BimodhCd

(Tk(Cd);Tk(M))
)
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In what follows, the theorems and corollaries are direct consequences
of the statements introduced in the previous sections together with the
Dwyer–Hess’ conjecture. We denote by CCd the two-coloured operad defined
as follows:

CCd = L(Cd; Cd; Cd).

Theorem 3.28. — Let η : CCd→ O be a map in the category Op[Cd; Cd],
with O(; c) ' O(c; c) ' ∗ and O(; o) ' ∗. Then, the pair of topological
spaces (

IbimodhCd
(Cd;Oc); IbimodhCd

(Cd;R(O))
)

is weakly equivalent to the SCd+1-algebra(
Ωd+1(Operadh(Cd;Oc)) ; Ωd+1

(
Operadh(Cd;Oc); Op[Cd; ∅]h(CCd;O)

))
.

Corollary 3.29. — Let η1 : Cd → O be a map of operads and η2 :
O →M be a map of O-bimodules. Assume that the spaces O(0), O(1) and
M(0) are contractible. Then, the pair of topological spaces(

IbimodhCd
(Cd;O); IbimodhCd

(Cd;M)
)

is weakly equivalent to the SCd+1-algebra(
Ωd+1(Operadh(Cd;O));

Ωd+1
(

Operadh(Cd;O); Op[Cd; ∅]h(CCd;L(M ;O;O))
))
.

Theorem 3.30. — Let η : CCd→ O be a map in the category Op[Cd; Cd],
with O(; c) ' O(c; c) ' ∗ and O(; o) ' ∗. Then, the pair of topological
spaces(

Tk IbimodhCd
(Tk(Cd);Tk(Oc));Tk IbimodhCd

(Tk(Cd);Tk(R(O)))
)

is weakly equivalent to the SCd+1-algebra(
Ωd+1(Tk Operadh(Tk(Cd);Tk(Oc))

)
;

Ωd+1
(
Tk Operadh(Tk(Cd);Tk(Oc));Tk Op[Cd; ∅]h(Tk(CCd);Tk(O))

))
.

Corollary 3.31. — Let η1 : Cd → O be a map of operads and η2 :
O →M be a map of O-bimodules. Assume that the spaces O(0), O(1) and
M(0) are contractible. Then, the pair of topological spaces(

Tk IbimodhCd
(Tk(Cd);Tk(O));Tk IbimodhCd

(Tk(Cd);Tk(M))
)
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is weakly equivalent to the SCd+1-algebra(
Ωd+1(Tk Operadh(Tk(Cd);Tk(O)));

Ωd+1
(
Tk Operadh(Tk(Cd);Tk(O));Tk Op[Cd; ∅]h(Tk(CCd);

Tk(L(M ;O;O)))
))
.

4. Application to the spaces of embeddings and
(l)-immersions

In [23], Sinha proves that the space of long embeddings Embc(R1;Rn) is
weakly equivalent to the homotopy totalization of the Kontsevich operad.
As a consequence, Embc(R1;Rn) is weakly equivalent to an explicit double
loop space. For the space of long knots in higher dimension, defined by the
homotopy fiber

(4.1) Embc(Rd;Rn) := hofib
(
Embc(Rd;Rn) −→ Immc(Rd;Rn)

)
,

there is no cosimplicial replacement known. However, Arone and Turchin
develop in [1] a machinery, based on the Goodwillie calculus [28], in order
to identify embedding spaces with spaces of infinitesimal bimodules over
the little cubes operad. In this section, we recall the notion of embedding
calculus as well as Arone and Turchin’s results. Then, we give an application
to the space of (l)-immersions assuming the Dwyer–Hess’ conjecture.

4.1. The Goodwillie Calculus

Let M be a smooth manifold of dimension d. Let O(M) be the poset
of open subsets of M . For k ∈ N, Ok(M) is formed by elements in O(M)
homeomorphic to a disjoint union of at most k open disks in Rd. From
a contravariant functor F : O(M) → Top, Weiss introduces in [28] the
functor TkF : O(M)→ Top as follows:

TkF (U) := holim
V ∈Ok(U)

F (V ).

The functor TkF is called the k-th polynomial approximation of F . The
restriction to Ok−1(M) induces a natural transformation TkF → Tk−1F .
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There is a tower, called the Taylor tower, associated to the functor F :

F

�� ""|| ))
T0F T1Foo T2Foo T3Foo · · ·oo

In good cases, the homotopy limit of the Taylor tower, denoted by T∞F ,
is a functor equivalent to F (i.e. ∀U ∈ O(M), T∞F (U) ' F (U)) and one
says that the Taylor tower converges.
Taylor towers have been used by Goodwillie [12, 13, 14] and Weiss [16, 28]

in order to study embedding spaces. The idea is to build a contravariant
functor

Emb(−;N) : O(M)→ Top,

where N is a smooth manifold of dimension n. In a similar way, one can
study the space of immersions Imm(M ;N) as well as the space of long
embeddings defined as follows:

Emb(M ;N) := hofib (Emb(M ;N) −→ Imm(M ;N)).

Theorem 4.1 ([15]). — Let M and N be two smooth manifolds of di-
mension d and n respectively. If n − d − 2 > 0, then the Taylor towers
associated to the functors Emb(−;N), Imm(−;N) and Emb(−;N) con-
verge.

If one considers the embedding spaces and immersion spaces with com-
pact support, then one has to change slightly the construction of the Taylor
towers. Let M be the complementary of a compact subspace of Rd. Let
O′(M) be the poset of open subsets of M of the form V ∪W with W the
complementary of a closed disk, V ∈ O(M) and V ∩W = ∅. For k ∈ N,
O′k(M) is formed by points V ∪W with V ∈ Ok(M). From a contravariant
functor F : O(M) → Top, the k-th polynomial approximation functor of
F , denoted TkF : O′(M)→ Top by abuse of notation, is defined as follows:

TkF (U) := holim
V ∈O′

k
(U)
F (V ).

Theorem 4.2 ([15]). — Let M be the complementary of a compact
subspace of Rd. If n − d − 2 > 0, then the Taylor towers associated to
the functors Embc(−;Rn), Immc(−;Rn) and Embc(−;Rn) converge. In
particular, the Taylor tower associated to the space of long knots in higher
dimension (4.1) converges.
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4.2. Connections between Taylor towers and infinitesimal
bimodules

A standard isomorphism in Rd arises from an affine embedding preserving
the direction of the axes. Let A = ∪s∈SAs be a disjoint union of open
subsets of Rd indexed by a set S and let M be a subspace of Rd. A map
f : A→M is called a standard embedding if f is an embedding such that,
for each s ∈ S, the composite map As → M ↪→ Rd is an inclusion in Rd
followed by to a standard isomorphism. We denote the space of standard
embeddings from A to M by sEmb(A;M).

Definition 4.3. — Let M be an open subset of Rd. The sequence
sEmb(−;M) is given by

sEmb(−;M)(k) = sEmb
(

k
t
i=1
Cd;M

)
,

where Cd is the unit little cube of dimension d. For M = Cd, the sequence
sEmb(−; Cd) is the little cubes operad Cd. In general, sEmb(−;M) is only
a right Cd-module whose operations

◦i : sEmb(−;M)(n)× Cd(m)→ sEmb(−;M)(n+m− 1)

are induced by the composition with the standard embeddings of Cd.

Theorem 4.4 ([1, Theorem 5.10]). — Let M be an open subset of Rd
with d < n. There are the weak equivalences:{

T∞Emb(M ;Rn) ' RmodhCd
(sEmb(−;M); Cn),

TkEmb(M ;Rn) ' Tk RmodhCd
(Tk(sEmb(−;M));Tk(Cn)),

where RmodhCd
and RmodhCd

are the categories of right modules and k

truncated right modules over Cd respectively. In the particular caseM = Cd,
one has {

T∞Embc(Rd;Rn) ' IbimodhCd
(Cd; Cn),

TkEmbc(Rd;Rn) ' Tk IbimodhCd
(Tk(Cd);Tk(Cn)).

Finally, if M is the complementary of a compact subset of Rd, then there
are the weak equivalences{

T∞Embc(M ;Rn) ' IbimodhCd
(sEmb(−;M); Cn),

TkEmbc(M ;Rn) ' Tk IbimodhCd
(Tk(sEmb(−;M));Tk(Cn)).
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Corollary 4.5. — Assume Conjecture 3.27 is true. If n − d − 2 > 0,
then one has

Embc(Rd;Rn) ' Ωd+1 Operadh(Cd; Cn)

and TkEmbc(Rd;Rn) ' Ωd+1(Tk Operadh(Tk(Cd);Tk(Cn)).

Proof. — It is a consequence of Conjecture 3.27 together with Theo-
rem 4.2 and 4.4. �

4.3. The space of (l)-immersions

The space of (l)-immersions, denoted by Imm(k)
c (Rd;Rn), is the subspace

of Immc(Rd;Rn) of immersions f such that for each subset of l distinct
elements K ⊂ Rd, the restriction f|K is non constant. In particular, the
space of (2)-immersions is the embedding space Embc(Rd;Rn). The spaces
of (l)-immersions give rise a filtration of the inclusion from the space of
embeddings to the space of immersions:

Embc(Rd;Rn) −→ Imm(3)
c (Rd;Rn) −→ · · ·

· · · −→ Imm(l)
c (Rd;Rn) −→ · · · −→ Immc(Rd;Rn)

The space of long (l)-immersions is defined by the following homotopy fiber:

Imm(l)
c (Rd;Rn) := hofib

(
Imm(l)

c (Rd;Rn) −→ Immc(Rd;Rn)
)
.

Contrary to the space of long knots in higher dimension, we don’t know if

Figure 4.1. Illustration of a point in Imm(4)
c (R1;R3).

the Taylor tower associated to the space of long (l)-immersions converges.
Nevertheless, Dobrinskaya and Turchin have been able to identify the ho-
motopy limit of the Taylor tower with a space of infinitesimal bimodule
maps by using the non-(l)-overlapping little cubes bimodule.
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Theorem 4.6 ([6, Theorem 11.2]). — If n > d, then on has the following
weak equivalences:

Tk Imm(l)
c (Rd;Rn) ' Tk IbimodhCd

(Tk(Cd);Tk(C(k)
n ))

and T∞ Imm(l)
c (Rd;Rn) ' IbimodhCd

(Cd; C(k)
n ).

As shown in Section 1.1, the non-(l)-overlapping little cubes bimodule is
not an operad. Nevertheless, the inclusion η2 : Cn → C(k)

l preserves the Cn-
bimodule structures. So, Corollaries 3.29 and 3.31, applied to the bimodule
map η2 and the operadic map η1 : Cd → Cn, imply the following theorem:

Theorem 4.7. — If n− d− 2 > 0, then the pair of spaces

(Embc(Rd;Rn);T∞ Imm(l)
c (Rd;Rn))

is weakly equivalent to the SCd+1-algebra(
Ωd+1 Operadh(Cd; Cn);

Ωd+1
(

Operadh(Cd; Cn); Op[Cd; ∅]h(CCd;L(C(l)
n ; Cn; Cn))

))
.

Similarly, the pair of k polynomial approximation

(TkEmbc(Rd;Rn);Tk Imm(l)
c (Rd;Rn))

is weakly equivalent to the SCd+1-algebra(
Ωd+1(Tk Operadh(Tk(Cd);Tk(Cn))

)
;

Ωd+1
(
Tk Operadh(Tk(Cd);Tk(Cn));Tk Op[Cd; ∅]h(Tk(CCd);

Tk(L(C(l)
n ; Cn; Cn)))

))
.
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