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HOLOMORPHIC CURVES IN COMPACT SHIMURA
VARIETIES

by Emmanuel ULLMO & Andrei YAFAEV

Abstract. — We prove a hyperbolic analogue of the Bloch–Ochiai theorem
about the Zariski closure of holomorphic curves in abelian varieties.
Résumé. — On démontre un analogue hyperbolique du théorème de Bloch–

Ochiai sur l’adhérence de Zariski d’une courbe holomorphe dans une variété abé-
lienne.

1. Introduction

The following theorem of Bloch–Ochiai (see [5, Chap. 9, Thm. 3.9.19]) is
classically proved using the Nevanlinna theory.

Theorem 1.1 (Bloch–Ochiai). — Let A be an abelian variety and
f : C −→ A be a non-constant holomorphic map. Then the Zariski clo-
sure of f(C) is a translate of an abelian subvariety.

In this paper we formulate and prove an analogue of this theorem for a
certain type of locally symmetric varieties, namely the compact Shimura
varieties.

For notations and facts about Shimura varieties and weakly special sub-
varieties, we refer to [10] and references therein. Recall that any hermitian
symmetric domain X, admits a realisation X ⊂ Cn (with n = dim(X)) as
a bounded symmetric domain. See [6, Chap. 4] for details.

Keywords: Shimura variety, holomorphic curve, o-minimality.
2010 Mathematics Subject Classification: 14G35, 32A10, 03C64.



648 Emmanuel ULLMO & Andrei YAFAEV

Recall also that given an arithmetic lattice Γ ⊂ Aut(X)+, such that the
quotient Γ\X is compact, there exists a fundamental domain F for the
action of Γ on X which is an open subset of X such that F is compact. For
a bounded hermitian symmetric domain X ⊂ Cn, we denote by ∂X the
boundary of X, i.e. ∂X = X\X where X denotes the topological closure
of X in Cn.
For notions of Shimura data, Shimura varieties and their weakly special

subvarieties we refer to [2], [10] and references contained therein. We just
recall that weakly special subvarieties are defined in terms of Shimura sub-
data, but as shown in [7], they are exactly the totally geodesic subvarieties
of Γ\X and terms “weakly special” and “totally geodesic” are used in the
literature interchangeably.
Let (G,X) be a Shimura datum with G anisotropic over Q, let X+ be a

connected component of X and K a compact open subgroup of G(Af ). As
above, X+ ⊂ Cn is a bounded symmetric domain.

We let Γ be the intersection of K with the stabiliser of X+ in G(Q).
Then Γ is an arithmetic congruence group acting on X+.
Then S = Γ\X+ is compact. Let π : X+ −→ Γ\X+ be the quotient map.

Theorem 1.2. — Let f : C −→ Cn be a holomorphic map such that
C = f(C) ∩X+ is non-empty. The following holds:

(1) Let C ′ be an analytic irreducible component of f(C) ∩ X+. Then
the Zariski closure Zar(π(C ′)) is weakly special.

(2) The components of the Zariski closure Zar(π(C)) of π(C) are weakly
special subvarieties of S.

An easy analytic continuation argument shows that if Y is an irreducible
analytic subset of X+, then Zar(π(Y )) is (algebraic) irreducible. It follows
that in the statement (1) of Theorem 1.2, one does not need to consider
irreducible components of Zar(π(C ′)).
Another comment is that (2) does not follow directly from (1) since

f(C)∩X+ can have infinitely analytic irreducible components. Additional
arguments are necessary. They are given in Section 2.

This result is partly inspired the so-called hyperbolic Ax–Lindemann
theorem whose slightly different but equivalent formulation is proven in [10,
Thm. 1.3] in the co-compact case and in [4] for all Shimura varieties. The
statement of the hyperbolic Ax–Lindemann theorem is as follows.

Theorem 1.3. — Keep the notations of Theorem 1.2.
Let Y be an irreducible algebraic subset of X+. Then the Zariski closure

of π(Y ) is a weakly special subvariety of S.
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HOLOMORPHIC CURVES IN COMPACT SHIMURA VARIETIES 649

The proof of Theorem 1.2 relies on the theory of o-minimality and the
Pila–Wilkie theorem and is inspired by the proof of the hyperbolic Ax–
Lindemann theorem in the co-compact case as in [10]. The proof also uses
in an essential way the hyperbolic Ax–Lindemann theorem itself and the
results of [9].

An analogous question in the context of abelian varieties has been investi-
gated in [11]. In that paper we have not been able to re-prove Bloch–Ochiai
theorem using o-minimal techniques. We however obtained a result analo-
gous to Theorem 1.2 in the abelian context for certain sets definable in the
usual o-minimal structures. Our result in [11] is in some ways more general
than the Bloch–Ochiai theorem. It is surprising and interesting that the
obstructions to prove the Bloch–Ochiai theorem using o-minimality do not
occur in the hyperbolic case we consider here, however additional serious
difficulties arise which we overcome in Section 3.

The strategy of the proof is as follows. We start by decomposing
f−1(f(C)∩X+) as a union of connected components Ui ⊂ C. For a given i
we prove that for some Ri > 0, it is in fact enough to prove the conclusion
for π ◦ f(Ui ∩ B(0, Ri)) where B(0, Ri) is the open ball centered at the
origin of radius Ri. This is done in Section 2.
We now set Ci = f(Ui ∩B(0, Ri)). Section 3 is the technical heart of the

proof. The analytic curve Ci in X+ is definable in the o-minimal structure
Ran (here Cn is identified with R2n). For o-minimality, related notions and
results we refer to [3]. We fix a fundamental domain F for the action of Γ
on X+.
We let Vi be the Zariski closure of π(Ci) and Ṽi be π−1(Vi) ∩ F . We

associate to Ci a certain definable (in Ran) set Σ ⊂ G(R) and show that
Σ · Ci ⊂ Ṽi. The main technical work is to prove that Σ contains a lot of
points of G(Q) of height up to T . The Pila–Wilkie theorem then allows
us to conclude that Σ contains a positive dimensional semi-algebraic sub-
set W and the hyperbolic Ax–Lindemann theorem allows us to conclude
that Vi contains a Zariski dense set of weakly special subvarieties. Using
results from [9] and some additional arguments, we conclude the proof of
Theorem 1.2.

We do not know whether conclusions of Theorem 1.2 remain true without
the assumption that S is compact. The main difficulty in removing the
compactness assumption lies in proving that Ci (with the above notations)
intersects “many” translates of a fundamental set. We in fact do not know
whether it is possible for Ci to be contained in a union of finitely many
such translates.

TOME 68 (2018), FASCICULE 2
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2. Preliminaries

Keep notations as in Theorem 1.2. For simplicity of notation, we write
X for X+. Let

f−1(f(C) ∩X) =
∐
i∈I

Ui

be the decomposition of f−1(f(C) ∩ X) into connected components. By
definition of the Ui, for each i, we have

f(Ui) ∩ ∂X 6= ∅ .

For Ri > 0 large enough, we have

f(B(0, Ri) ∩ Ui) ∩ ∂X 6= ∅

(where B(0, Ri) is the open ball of radius Ri centered at the origin). For
each i, we fix an Ri with this property.

Proposition 2.1. — We have

Zar(π ◦ f(Ui)) = Zar(π ◦ f(B(0, Ri) ∩ Ui)) .

Proof. — One inclusion is obvious. Write Zar(π◦f(B(0, Ri)∩Ui)) ⊂ Pm
for some m and let s ∈ H0(Pm,O(l)) for l > 1 such that s is zero on
π ◦ f(B(0, Ri) ∩ Ui). Then the function s ◦ f ◦ π : Ui −→ C is zero on
B(0, Ri)∩Ui). Since Ui is connected, by analytic continuation, the function
s ◦ f ◦π is zero on Ui. It follows that s is zero on π ◦ f(Ui). This proves the
other inclusion. �

In this paper we will prove the following:

Theorem 2.2. — The Zariski closure of π ◦ f(B(0, Ri)∩Ui) contains a
Zariski dense subset of weakly special subvarieties.

Let V = Vi be the Zariski closure of π ◦ f(B(0, Ri) ∩ Ui). Theorem 2.2
will be deduced from the following:

Theorem 2.3. — There exists a positive dimensional semialgebraic set
W in G(R) such that

W · f(B(0, Ri) ∩ Ui) ⊂ π−1(V ) .

ANNALES DE L’INSTITUT FOURIER
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To deduce Theorem 2.2 from Theorem 2.3, let P ∈ f(B(0, Ri) ∩ Ui).
For the notion of algebraic subset of X, we refer to Appendix B of [4].
There exists a complex algebraic subset YP ⊂ π−1(V ) such that W · P ⊂
YP (see [4, Lem. B.3]). By Ax–Lindemann Theorem 1.3, the Zariski clo-
sure of π(YP ) ⊂ V is weakly special. Therefore, through each point of
πf(B(0, Ri) ∩ Ui) there passes a weakly special subvariety and hence V
contains a dense set of weakly special subvarieties.
We will now prove that Theorem 1.2 follows from Theorem 2.2. Let V

be a component of the Zariski closure of π(f(C) ∩X). By Theorem 2.2, V
contains a Zariski dense set of weakly special subvarieties.
If V is a weakly special subvariety, then we are done. Assume that V

is not weakly special. By [9, Cor. 1.4], there exists a special subvariety
S′ ⊂ S containing V and such that S′ = S1 × S2 (Si special and positive
dimensional) and such that

V = S1 × V ′

where V ′ is a subvariety of S2.
There exists a sub-Shimura datum (G′, X ′) of (G,X) and a decomposi-

tion
(G′ad, X ′ad) = (G1, X1)× (G2, X2)

such that S1 = Γ1\X1 and S2 = Γ2\X2 (where as usual we omit the
superscript +) and Γ1 and Γ2 are suitable arithmetic lattices in G1(Q)+

and G2(Q)+.
Let p1 ∼= Cr1 and p2 ∼= Cr2 be the holomorphic tangent spaces to X1 and

X2. Then p1 × p2 is a subspace of the holomorphic tangent space p ∼= Cn
to X. Let

f−1(f(C) ∩X) =
∐
i∈I

Ui .

be as before, the connected component decomposition. There exists a Ui
such that the restriction, f : Ui −→ Cn factors through Cr1 × Cr2 . By
analytic continuation f : C −→ Cn factors through Cr1 × Cr2 .

Let f1 and f2 be the holomorphic functions from C to Cr1 and Cr2

respectively such that f = (f1, f2).
Similarly, write

f−1
2 (f2(C) ∩X2) =

∐
j∈J

Vj .

the connected component decomposition.
From the definition of Uis and Vjs, it follows that any i ∈ I, there exists

an j ∈ J such that Ui ⊂ Vj . It follows that for any i ∈ I, there exists j ∈ J

TOME 68 (2018), FASCICULE 2
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such that:
Zar(π2 ◦ f2(Ui)) = Zar(π2 ◦ f2(Vj)) .

Note that V ′ is the Zariski closure of the union of the π2 ◦f2(Ui). Therefore
V ′ is the Zariski closure of⋃

i∈I
Zar(π2 ◦ f2(Ui)) .

By Theorem 2.2, Zar(π2 ◦ f2(Ui)) = Zar(π2 ◦ f2(Vj)) contains a Zariski
dense set of weakly special subvarieties.
It follows that V ′ contains a Zariski dense set of weakly special sub-

varieties of S2. An inductive argument finishes the proof of Theorem 1.2
assuming Theorem 2.2.

3. Counting lattice elements

In this section we show that f(Ui) (as in the previous section) in X

intersects “exponentially many” (in a suitable sense) Γ-translates of a fixed
fundamental domain. This section constitutes the technical heart of the
paper.
Recall the following notations from [10]. Let X be a connected Hermit-

ian symmetric domain (as usual we omit the superscript +), realised as a
bounded symmetric domain in some Cn. We let C to be f(B(0, Ri) ∩ Ui)
with Ri and Ui as in the previous section.
Let Γ be a cocompact arithmetic lattice in the group G of holomorphic

isometries of X. For a point x0 ∈ X, we let F be a fundamental domain
for the action of Γ on X such that x0 ∈ F . We assume that F is an open
connected set such that F is compact. The set

SF = {γ ∈ Γ : γF ∩ F 6= ∅}

is finite and generates Γ.
The “word metric” l : Γ −→ N with respect to SF is defined as follows:

l(1) = 0 and for γ 6= 1, l(γ) is the minimal length of a word in the elements
of SF representing γ.
We also let K(Z,W ) be the Bergmann kernel on X and we let

ω =
√
−1∂∂K(Z,Z)

be the associated Kähler form. We refer to [6, 4.1] for details on this.
We define the following functions:

NC(n) = |{γ ∈ Γ : dim(γF ∩ C) = 1, l(γ) 6 n}|

ANNALES DE L’INSTITUT FOURIER
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and
N ′C(n) = |{γ ∈ Γ : dim(γF ∩ C) = 1, l(γ) = n}| .

The main result of this section is the following theorem:

Theorem 3.1. — There is a positive constant c such that for all n� 0,
we have

NC(n) > ecn .

Let b be a point of the boundary of C ∩ ∂X and a neighbourhood Vb of
b such that C ∩ ∂X ∩ Vb is a real analytic curve.
We parametrise C ∩ ∂X ∩ Vb as follows. For 0 < α, β < 2π, let ∆α,β be

the sector of the unit disc ∆ defined as follows:

∆α,β = {z = r eiθ : 0 6 r 6 1, α 6 θ 6 β}.

Let Cα,β be the subset of ∂∆α,β defined as

Cα,β = {z = eiθ : α 6 θ 6 β}.

We can find α, β and a real analytic map ψ from a neignbourhood of ∆α,β

to Cn such that ψ(∆α,β) ⊂ C ∩X and ψ(Cα,β) ⊂ C ∩ ∂X.
Let ∆ be the open unit disk. We let ω∆ be the usual Poincaré (1, 1)-form

on ∆ (ω∆ =
√
−1 dz∧dz

(1−|z|2)2 ). By Lemma 2.8 of [10], there exists a smooth
(1, 1)-form η on ∆α,β such that

ψ∗ω = sω∆ + η

for some integer s > 0.
Let γ ∈ Γ be such that dim(γF ∩ C) = 1 and γF ∩ C ⊂ ψ(∆α,β), then

(3.1)
∫
γF∩C

ω = s

∫
ψ−1(γF∩C)

ω∆ +
∫
ψ−1(γF∩C)

η .

Proposition 3.2. — There exists a constant B such that for any γ ∈ Γ
such that dim(γF ∩ C) = 1, we have∫

γF∩C
ω 6 B .

Proof. — We consider the compact dual Xc of X which is a closed alge-
braic subvariety of some projective Pm. Let L be the dual of the canonical
line bundle endowed with the Fubini-Study metric ||.||FS . We let ωFS the
associated (1, 1)-form: ωFS = c1(L, ||.||FS).

By Harish-Chandra embedding theorem, there is a biholomorphism λ

from p ∼= Cn to an open dense subset of Xc. For details, see [6, §5.2,
Thm. 1].

TOME 68 (2018), FASCICULE 2



654 Emmanuel ULLMO & Andrei YAFAEV

Let γ ∈ Γ be such that γF ∩ C 6= ∅. Since ω is Γ-invariant, we have∫
γF∩C

ω =
∫
γ−1(γF∩C)

ω .

On the compact set F , the two forms ω and λ∗(ωFS) are positive holomor-
phic forms, therefore there is a constant B1 such that on F , we have

ω 6 B1λ
∗(ωFS) .

We have ∫
γF∩C

ω 6 B1

∫
γ−1(γF∩C)

λ∗(ωFS) .

Furthermore, ∫
γ−1(γF∩C)

λ∗(ωFS) 6
∫
γ−1λ(C)

ωFS .

The conclusion of Proposition 3.2 follows from the following lemma that
will be proven in the following section. :

Lemma 3.3. — There is a constant B2 such that for all γ ∈ Γ, we have∫
γ−1λ(C)

ωFS 6 B2.

�

3.1. Proof of Lemma 3.3

The volume of the analytic curve λ(C) is defined as

Vol(λ(C)) =
∫
λ(C)

ωFS .

Let Pm∨ be the dual projective space, the set of hyperplanes in Pm. Let
dJ be the invariant volume element on Pm∨ normalised to have total mass
one.
By Generalised Crofton’s formula (see [1] and references therein), we

have
Vol(γ−1λ(C)) = α

∫
Pm∨

nγ−1λ(C)(J) dJ .

where α is a uniformisation constant and nγ−1λ(C)(J) is the number of
points (counted with multiplicity) of the intersection of γ−1λ(C) with J .
Note that the function nγ−1λ(C)(J) is a function defined on the open subset
of Pm∨ consisting of hyperplanes J such that γ−1λ(C) is not contained J .
The complement of this open set is of measure zero, therefore the integral
is well defined.

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.4. — Let J be a hyperplane in Pm and γ ∈ Γ. There exists a
hyperplane J ′ such that

nγ−1λ(C)(J) = nλ(C)(J ′) .

Proof. — Recall that L is Γ-invariant and L is very ample i.e. L =
O(1)|Xc . Write s the section of L such that J ∩Xc = div(s). Let s′ = γ∗s.
Then s′ is a restriction of a section of O(1) corresponding to some hyper-
plane J ′ and we thus have

γ(J ∩Xc) = J ′ ∩Xc .

Therefore
λ(C) ∩ γ(J ∩Xc) = λ(C) ∩ (J ′ ∩Xc) .

We also have

λ(C) ∩ γ(J ∩Xc) = γ(γ−1λ(C) ∩ J) .

We conclude using the fact that

|γ(γ−1λ(C) ∩ J)| = nγ−1λ(C)(J) . �

We finish by proving a general lemma:

Lemma 3.5. — Let f : C −→ Pm(C) be a holomorphic map. Let R > 0.
There exists a constant Θ = Θ(R, f) such that for any hyperplane H of
Pm(C) such that f(C) is not contained in H,

|{f(B(0, R)) ∩H}| 6 Θ .

Proof. — A reference for notions of Nevanlinna–Cartan theory is [5,
Chap. 3, §B]. We use notations from this reference.

Let N(R, f,H) be the counting function associated to f,R and H. Let
α1, . . . , αt ∈ B(0, R) be complex numbers such that f(αi) ∈ H.
Let ν(f, αi, H) be the multiplicity of f in H at αi. We have

N(R, f,H) =
t∑
i=1

ν(f, αi, H) log
(
R

|αi|

)
.

Therefore

N(2R, f,H) >
t∑
i=1

ν(f, αi, H) log
(

2R
|αi|

)
.

We have log( 2R
|αi| ) > log(2), therefore a bound on N(2R, f,H) implies

a bound on
∑t
i=1 ν(f, αi, H) = |{f(B(0, R)) ∩H}|. It is hence enough to

bound N(2R, f,H).

TOME 68 (2018), FASCICULE 2



656 Emmanuel ULLMO & Andrei YAFAEV

The first main theorem of Cartan–Nevanlinna theory ([5, 3.B.16]), we
have

N(2R, f,H) 6 T (2R, f) + c

where c is a uniform constant and T (2R, f) is the order function defined
in [5, 3.B.2].
Since T (2R, f) does not depend on H, this concludes the proof. �

3.2. End of proof of Theorem 3.1

As η is smooth on ∆α,β , the integral
∫
ψ−1(γF∩C) η is bounded indepen-

dently of γ. Equation (3.1) and Lemma 3.2 imply that
∫
ψ−1(γF∩C) ω∆ is

bounded by a constant B′, independent of γ.
Recall the following lemma ([10, Lem. 21]). Note that this lemma is

proved in [10] for C algebraic but the algebraicity assumption is not used,
the statement and proof remain the same in our situation. In fact the proof
is a combination of some general facts about hermitian symmetric domains
and word metrics.

Lemma 3.6. — There exist positive constants λ1 and λ2 and D such
that for all z ∈ ∆α,β with z ∈ ψ−1(γF ∩ C),

λ1l(γ) 6 − log(1− zz) 6 λ2l(γ) +D.

We now follow the end of Section 2 of [10].
For n > 0, let

In = {z ∈ ∆α,β , e−(n+1) 6 1− |z|2 6 e−n} .

The hypebolic volume of In satisfies

Vol(In) > δ1 en

where δ1 is a positive constant.
The set In is covered by the φ−1(γF ∩ C). For each n large enough and

for all z ∈ In, by Lemma 3.6, there exists a γ such that ψ(z) ∈ γF with γ
satisfying

c1n 6 l(γ) 6 c2n

with uniform constants c1 and c2.
On the other hand, for all z ∈ ∆α,β , such that ψ(z) ∈ γF for some γ ∈ Γ,

Vol(ψ−1(γF ∩ C)) 6 B′.

ANNALES DE L’INSTITUT FOURIER
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Therefore, by the computation of Vol(In) above, there exists a δ1 > 0
such that ∑

c1n6k6c2n

N ′C(k) > δ1 en .

This finishes the proof of Theorem 3.1.

4. A definable set and application of Pila–Wilkie theorem

In this section we prove Theorem 2.3 and hence our main theorem. We
follow Section 5 of [10] with appropriate modifications.

Let U be as before a connected component of f−1(f(C)∩X) and R such
that f(U ∩B(0, R)) ∩ ∂X 6= ∅. Note that C = f(B(0, R) ∩ U) is definable
in Ran. Let F be as in the previous section. Recall (see [10, Prop. 4.2]) that
π restricted to F is definable in Ran.

Consider

Σ(C) = {g ∈ G(R) : dim(gC ∩ π−1(V ) ∩ F) = 1}.

The set Σ(C) is definable in Ran.
We prove the following.

Lemma 4.1.
(1) For all g ∈ Σ(C), gC ⊂ π−1(V ).
(2) Define

Σ′(C) = {g ∈ G(R) : g−1F ∩ C 6= ∅}.
Then

Σ(C) ∩ Γ = Σ′(C) ∩ Γ .

Proof. — Let g ∈ Σ(C), then

gC ∩ F ⊂ π−1(V ) .

By analytic continuation, this implies that gC ⊂ π−1(V ).
The proof of (2) is exactly identical to the proof of [10, Lem. 5.2], and

relies on the fact that π−1(V ) is Γ-invariant. �

From the previous lemma and Theorem 3.1, we obtain the following.

Lemma 4.2. — Let

NΣ(C)(n) = |{γ ∈ Γ ∩ Σ(C) : l(γ) 6 n}| .

For all n large enough,
NΣ(C)(n) > ecn.

TOME 68 (2018), FASCICULE 2
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The height H(γ) of an element γ of Γ is defined by viewing Γ as a
subgroup of some GLm(Z) and taking the maximum of the absolute values
of the entries. If l(γ) 6 n, then H(γ) 6 (mA)n where A is the maximum
of heights of elements of SF .

Let now

Θ(Σ(C), T ) = {g ∈ G(Q) ∩ Σ(C) : H(g) 6 T}

and
N(Σ(C), T ) = |Θ(Σ(C), T )|

Lemma 4.3. — N(Σ(C), T ) > T c1 .

We now appeal to the Pila–Wilkie theorem (see [8, Thm. 1.8]).
For a definable (in some o-minimal structure) subset Θ ⊂ Rn, we de-

fine Θalg to be the union of all positive dimensional semi-algebraic subsets
contained in Θ. We define Θtr to be Θ\Θalg.

Theorem 4.4 (Pila–Wilkie). — Let Θ be a subset of Rn definable in
an o-minimal structure. Let ε > 0. There exists a constant c = c(Θ, ε) such
that for any T > 0,

|{x ∈ Θtr ∩Qn : H(x) 6 T}| > cT ε.

In view of Lemma 4.3, by Pila–Wilkie theorem, there exists a positive
dimensional semi-algebraic subset W ⊂ Σ(C) and by (1) of Lemma 4.1, we
have W · C ⊂ π−1(V ). This finishes the proof of Theorem 2.3.
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