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INFINITELY MANY SOLUTIONS TO THE YAMABE
PROBLEM ON NONCOMPACT MANIFOLDS

by Renato G. BETTIOL & Paolo PICCIONE

Abstract. — We establish the existence of infinitely many complete metrics
with constant scalar curvature in conformal classes of certain noncompact prod-
uct manifolds. These include products of closed manifolds with constant positive
scalar curvature and simply-connected symmetric spaces of noncompact or Eu-
clidean type; in particular, Sm × Rd, m > 2, d > 1, and Sm × Hd, 2 6 d < m. As
a consequence, we obtain infinitely many periodic solutions to the singular Yam-
abe problem on Sm \ Sk, for all 0 6 k < (m − 2)/2, the maximal range where
nonuniqueness is possible. We also show that all Bieberbach groups in Iso(Rd) are
periods of bifurcating branches of solutions to the Yamabe problem on Sm × Rd,
m > 2, d > 1.
Résumé. — On établit l’existence d’une infinité de métriques complètes à cour-

bure scalaire constante dans une classe conforme prescrite sur des variétés produit
non-compactes. Celles-ci incluent produits de variétés fermés à courbure scalaire
constante et des espaces symétriques simplement connexes de type non-compact
ou Euclidien. En particulier, Sm × Rd, m > 2, d > 1, et Sm × Hd, 2 6 d < m.
Par conséquent, on obtient une infinité de solutions périodiques au problème de
Yamabe singulier sur Sm \ Sk pour tout 0 6 k < (m − 2)/2, l’ensemble maximal
pour laquelle la non-unicité est possible. Nous montrons également que tous les
groupes de Bieberbach sur Iso(Rd) sont des périodes de branches de bifurcation de
solutions de Yamabe sur Sm × Rd, m > 2, d > 1.

1. Introduction

The Yamabe problem on a Riemannian manifold (M, g) is to find a com-
plete metric with constant scalar curvature which is conformal to g. A
landmark result in Geometric Analysis is that a solution always exists if
M is closed, see [30] for a survey. The situation is much more delicate in
the noncompact case, as there exist complete noncompact manifolds (M, g)

Keywords: Yamabe problem, singular Yamabe problem, Constant scalar curvature,
nonuniqueness of solutions, Aubin’s inequality, bifurcation.
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590 Renato G. BETTIOL & Paolo PICCIONE

for which the Yamabe problem does not have any solution [28]. There are
several partial existence results in the literature, such as [6, 14, 23], how-
ever existence is not settled in full generality. In this paper, we exploit the
geometry of discrete cocompact groups to provide large classes of noncom-
pact manifolds on which the Yamabe problem has infinitely many periodic
solutions.
We say that a solution to the Yamabe problem on a noncompact manifold

(M, g) is periodic, or Γ-periodic, if it is the lift of a constant scalar curvature
metric on a compact quotient M/Γ. The discrete cocompact group Γ is the
period of the solution, in the sense that it is invariant under the action
of Γ. In all instances studied in this paper, the infinitely many periodic
solutions on noncompact manifolds correspond to infinitely many different
periods. In other words, these infinitely many metrics of constant scalar
curvature do not descend to a common compact quotient, meaning that
our multiplicity results are indeed noncompact phenomena.

Our first main result regards products of closed manifolds and symmetric
spaces:

Theorem 1.1. — Let (M, g) be a closed manifold with constant pos-
itive scalar curvature, and (N, h) be a simply-connected symmetric space
of noncompact or Euclidean type, such that the product (M × N, g ⊕ h)
has positive scalar curvature. Then there exist infinitely many periodic
solutions to the Yamabe problem on (M ×N, g ⊕ h).

An immediate consequence of Theorem 1.1 is that there exist infinitely
many periodic solutions to the Yamabe problem on Sm×Hd for all 2 6 d <
m, and on Sm × Rd for all m > 2, d > 1. We remark that there has been
considerable interest in the Yamabe problem on such noncompact manifolds
in recent years [1, 26, 35]. Each of these infinitely many solutions is of the
form φ gprod, where gprod is the corresponding product metric ground⊕ghyp
or ground⊕gflat, and φ is a smooth positive function on Sm×Hd or Sm×Rd
that does not depend on the Sm variable, by the asymptotic symmetry
method of Caffarelli, Gidas and Spruck [16].
It is easy to see that these infinitely many solutions on Sm×R translate

into infinitely many solutions also on Sm+1\{±p} and on Rm+1\{0}, which
are conformally equivalent to Sm × R via the stereographic projection. A
classification of these periodic solutions and their relation to solutions on
the compact quotient Sm×S1 has been known for several years [29, 40], for
further details see also [17, Sec. 5.2]. These can be seen as simple instances
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NONCOMPACT YAMABE PROBLEM 591

of the so-called singular Yamabe problem, which consists of finding solu-
tions to the Yamabe problem on manifolds of the form M \Λ, where M is
a closed manifold and Λ ⊂M a closed subset.

One of the most interesting consequences of Theorem 1.1 regards a more
involved instance of the singular Yamabe problem; that of the complement
Sm\Sk of a round subsphere Λ = Sk in a round sphere Sm. The special case
k = 0 is addressed above, using the stereographic projection on Sm \ {±p}.
For k > 1, a direct computation shows that the (incomplete) round metric
on Sm\Sk is conformally equivalent to the product (Sm−k−1×Hk+1, gprod),
see Subsection 3.5. Thus, pulling back the infinitely many solutions we
obtained in the latter yields the following:

Corollary 1.2. — There are infinitely many periodic solutions to the
singular Yamabe problem on Sm \ Sk, for all 0 6 k < (m− 2)/2.

The above extends our previous result in [12], where bifurcation tech-
niques were used to obtain infinitely many solutions in the particular case
of Sm \ S1. These techniques cannot be used if k > 1 due to the Mostow
Rigidity Theorem. Furthermore, 0 6 k < (m − 2)/2 is the maximal range
of dimensions for which multiplicity of periodic solutions is possible, by the
asymptotic maximum principle.
Theorem 1.1 is a particular case of the following general multiplicity

result:

Theorem 1.3. — Let (M, g) and (Σ,h) be closed Riemannian manifolds
with constant scalar curvature, such that scalg > 0 and π1(Σ) has infinite
profinite completion. Then there exists λ0 > 0 such that, for any λ > λ0,
there are infinitely many periodic solutions to the Yamabe problem on(
M × Σ̃, g ⊕ λ h̃

)
.

In the above, (Σ̃, h̃) denotes the Riemannian universal covering of (Σ,h),
and λ0 is the smallest nonnegative real number such that λ0 > − scalh

scalg .
The profinite completion of a group is infinite if and only if there exists
an infinite nested sequence of normal subgroups of finite index, see Subsec-
tion 3.1. For instance, infinite residually finite groups have infinite profinite
completion. In the proof of Theorem 1.3, this infinite chain of subgroups
of π1(Σ) is used to produce an infinite chain of finite-sheeted coverings of
M × Σ with arbitrarily large volume. Since the pull-back of g ⊕ λ h is not
a Yamabe metric if one goes sufficiently high up along this chain, there
must be another solution at some level. Iterating this argument gives the
infinitely many solutions.
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592 Renato G. BETTIOL & Paolo PICCIONE

The first key input to prove Theorem 1.1 using Theorem 1.3 is a clas-
sical result of Borel [13], which states that every symmetric space N of
noncompact type admits irreducible compact quotients Σ = N/Γ. The
same is obviously true for symmetric spaces of Euclidean type, that is, the
Euclidean space Rd. Second, if (Σ,h) is locally symmetric, then it clearly
has constant scalar curvature, and π1(Σ) is infinite and residually finite (see
Example 3.1). Thus, π1(Σ) has infinite profinite completion. We may hence
apply Theorem 1.3, which implies the desired statement in Theorem 1.1.
We stress that there are many manifolds (Σ,h) which are not locally sym-
metric but still satisfy the hypotheses of Theorem 1.3, see Subsection 3.2.
Despite providing infinitely many solutions to the Yamabe problem, none

of the above results carries any information on the (local) arrangement of
these solutions or the structure of their moduli space. However, this can be
achieved through other techniques in the particular case of M ×Rd, where
(M, g) is a closed manifold with constant positive curvature. Namely, it can
be shown that solutions bifurcate, in the sense that there are sequences of
new solutions forming branches that issue from a trivial 1-parameter family
of solutions.
In order to state our final main result, recall that a Bieberbach group

π is a torsion-free crystallographic group, i.e. a discrete and cocompact
subgroup of isometries of Rd that acts freely, so that F = Rd/π is a closed
flat manifold.

Theorem 1.4. — Let (M, g) be a closed Riemannian manifold with
constant positive scalar curvature and let π be a Bieberbach group in the
isometry group of Rd, d > 2. Then there exist infinitely many branches of
π-periodic solutions to the Yamabe problem on

(
M × Rd, g ⊕ gflat

)
.

An important part of the above statement is that every Bieberbach group
π acting on Rd can be realized as the period of infinitely many periodic
solutions to the Yamabe problem onM×Rd. The special case in which π ∼=
Zd is a lattice follows from a recent result in [37], using similar techniques.
These techniques to apply variational bifurcation theory to the Yamabe
problem originated in [10, 11, 31]. The main input is a 1-parameter family
gt of highly symmetric solutions that collapse at t = 0. By proving that
the Morse index of gt becomes unbounded, we establish the existence of
a sequence of bifurcation instants accumulating at t = 0. The proof of
Theorem 1.4 relies on showing that for all Bieberbach groups π acting on
Rd, there exists such a collapsing 1-parameter family ht of flat metrics on
F = Rd/π, and understanding the spectral behavior of their Laplacian.
The first task is achieved using results on the holonomy representation of
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(F,ht), while the second follows from estimates relating the spectrum of
the Laplacian on (F,ht) with the diameter of this manifold. Arbitrarily
small eigenvalues of the Laplacian on (F,ht) translate into arbitrarily large
Morse index for g ⊕ ht on M × F , and hence bifurcation of this family of
constant scalar curvature metrics on M × F . Lifting these metrics to the
universal covering M × Rd, we obtain the desired π-periodic solutions.

This paper is organized as follows. Section 2 is an overview of existence
and uniqueness of solutions to the Yamabe problem on closed manifolds.
Section 3 begins with a discussion of closed manifolds whose fundamental
group is residually finite or has infinite profinite completion, leading to the
proof of Theorem 1.3, from which Theorem 1.1 and Corollary 1.2 follow.
Finally, Theorem 1.4 is proved in Section 4, combining bifurcation theory
with the collapse of closed flat manifolds.

Acknowledgements. It is a pleasure to thank Claude LeBrun for sug-
gestions that eventually led to Theorem 1.3, Benson Farb and Matthew
Stover for suggestions concerning Proposition 3.2 and Example 3.3, and
Andrzej Szczepański for discussions on the holonomy group of flat mani-
folds and reference [27].

2. Classical Yamabe Problem

In this section, we briefly recall some facts about the classical Yamabe
problem for the convenience of the reader and to establish notation. A
detailed exposition can be found in Lee and Parker [30], Aubin [5, Chap. 5],
or Schoen [40].

Given a closed Riemannian manifold (M, g0), let [g0] = {φ g0 : φ ∈
H1(M)} be the SobolevH1 conformal class of g0, and consider the Hilbert–
Einstein functional

(2.1) A : [g0]→ R , A(g) = Vol(M, g)
2−n

n

∫
M

scalg volg ,

where n = dimM . It is well-known that g ∈ [g0] is a critical point of the
above functional if and only if scalg is constant, that is, g is a solution to
the Yamabe problem (see [30, 40]). In this case, the value of the functional
is clearly

(2.2) A(g) = Vol(M, g) 2
n scalg .

Existence of solutions is proved by showing that (2.1) always achieves a
minimum. More precisely, define the Yamabe invariant of the conformal

TOME 68 (2018), FASCICULE 2



594 Renato G. BETTIOL & Paolo PICCIONE

class [g0] as

(2.3) Y
(
M, [g0]

)
= inf

g∈[g0]
A(g).

The works of Yamabe [45], Trudinger [43], Aubin [3], and Schoen [39] com-
bined yield the following statement, that settled the existence problem:

Theorem 2.1. — There exists a metric gY ∈ [g0], called Yamabe met-
ric, that achieves the infimum in (2.3), Y

(
M, [g0]

)
= A(gY). Moreover, this

minimum value satisfies

(2.4) Y
(
M, [g0]

)
6 Y

(
Sn, [ground]

)
with equality if and only if (M, g0) is conformally equivalent to (Sn, ground).

Regarding the uniqueness problem, if Y
(
M, [g0]

)
6 0, then gY is the

unique solution on (M, g0) by the maximum principle. Nevertheless, if
Y
(
M, [g0]

)
> 0, there may exist several metrics g ∈ [g0] with constant

scalar curvature, but all have scalg > 0. Nonuniqueness phenomena for the
classical Yamabe problem have been extensively studied in the literature,
see, e.g., [8, 10, 11, 24, 25, 36, 37].

Remark 2.2. — Nonuniqueness of solutions on (M, g0) means the ex-
istence of two or more nonconstant conformal factors φ : M → R such
that φ g0 has constant scalar curvature. However, it should be noted that
these different conformal factors may give rise to isometric metrics. For
instance, consider the case of the round sphere (Sn, ground), in which a
metric g ∈ [ground] has constant scalar curvature if and only if it is the
pull-back of ground by a conformal diffeomorphism [40, Sec. 2]. Thus, the
moduli space of solutions is identified with the (n + 1)-dimensional mani-
fold Conf(Sn, ground)/Iso(Sn, ground) ∼= SO(n+1, 1)0/SO(n+1), but all the
corresponding metrics are isometric to ground.

Moreover, it is known that if (M, g0) is a complete manifold not confor-
mally diffeomorphic to (Sn, ground) or (Rn, gflat), then there exists g∗ ∈ [g0]
such that Conf(M, g0) = Iso(M, g∗), see [22, 41]. In particular, if g0 = φ g∗
has constant scalar curvature and f ∈ Conf(M, g0) is nontrivial, then
f∗(g0) = (φ ◦ f) g∗ is isometric to g0 hence also has constant scalar cur-
vature, and φ ◦ f is a different conformal factor. However, by the same
reasoning, if g∗ itself has constant scalar curvature, then there are no other
solutions in [g∗] that are isometric to g∗.
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3. Multiplicity of solutions via chains of coverings

We begin by discussing the relationship between infinite towers of finite-
sheeted regular coverings of a manifold and the profinite completion of
its fundamental group, providing several examples. This is then combined
with Theorem 2.1 to prove Theorem 1.3, leading to Theorem 1.1 and Corol-
lary 1.2.

3.1. Profinite completion and residually finite groups

A group G is profinite if it is isomorphic to the limit lim←−Gs of some
inverse system {Gs}s∈S of finite groups.(1) For instance, the group of p-adic
integers Zp = lim←−Z/pnZ is profinite. Given a finitely generated group G,
its profinite completion is defined as the limit

(3.1) Ĝ = lim←−G/Γ,

where Γ runs over the collection of finite index normal subgroups of G. Note
that {G/Γj}ΓjCG, [G:Γj ]<∞ is an inverse system, where i > j corresponds
to Γi ⊂ Γj , and the epimorphism φij : G/Γi → G/Γj is given by φij(gΓi) =
gΓj .
Clearly Ĝ is a profinite group, and it is characterized by the universal

property that any group homomorphism G → H, where H is profinite,
factors uniquely through a homomorphism Ĝ → H. Furthermore, there
is a natural homomorphism ι : G → Ĝ induced by the projections, whose
kernel is ker ι =

⋂
ΓCG, [G:Γ]<∞ Γ.

Groups G for which ι is injective are called residually finite. Equivalently,
G is residually finite if for any g ∈ G \ {e}, there exists a finite index sub-
group Γ ⊂ G such that g /∈ Γ. Elementary arguments show that such Γ may
be assumed to be normal, as it can be replaced by core(Γ) =

⋂
h∈G hΓh−1,

whose index satisfies [G : core(Γ)] 6 [G : Γ]!. Key properties of residual
finiteness are that if G is residually finite, then so are all of its subgroups;
and if H is a finite index residually finite subgroup of G, then also G is
residually finite.

(1)Although it is usual to consider profinite groups as topological groups, assuming that
Gs have the discrete topology, for the purposes of this paper we consider them solely as
algebraic objects.

TOME 68 (2018), FASCICULE 2



596 Renato G. BETTIOL & Paolo PICCIONE

3.2. Examples

Let us mention a few classes of examples of finitely generated groups
with infinite profinite completion, as well as some closed manifolds whose
fundamental groups satisfy this property, which is a hypothesis in Theo-
rem 1.3.

Our main source of examples is the class of infinite residually finite
groups. Since their natural homomorphism ι : G → Ĝ is injective, these
groups trivially have infinite profinite completion. For example, all finitely
generated abelian (or, more generally, nilpotent) groups are residually fi-
nite. The following classical result provides a very rich family of finitely
generated residually finite groups:

Selberg–Malcev Lemma. — Finitely generated linear groups are re-
sidually finite.

Recall that a group is linear if it is isomorphic to a subgroup of GL(n,C)
for some n ∈ N. For a proof of the Selberg–Malcev Lemma, see [38, Sec. 7.6].

Example 3.1. — The fundamental group of any locally symmetric space
Σ of noncompact type is residually finite (and infinite, if Σ is closed). In-
deed, if Σ is irreducible, then Σ̃ = G/K, where G is a semisimple noncompact
Lie group, K is the maximal compact subgroup, and Σ = Σ̃/Γ, where Γ
is a discrete torsion-free subgroup of G. The image of Γ under the adjoint
representation Ad: G→ GL(g) is linear, and Ad(Γ) ∼= Γ/Z(G) ∩ Γ. Assum-
ing that the G-action on G/K is effective, Z(G) is trivial, hence Γ ∼= Ad(Γ)
is residually finite as a consequence of the Selberg–Malcev Lemma. In par-
ticular, the fundamental group of any space form of nonpositive curvature
is infinite and residually finite, hence has infinite profinite completion.

It follows from the proof of the Geometrization Conjecture that the fun-
damental group of any 3-manifold is residually finite. For a topological view-
point on residual finiteness of fundamental groups, see Reid [32, Sec. 2.1].
We remark that there exist nonlinear finitely generated residually finite
groups [21].
There also exist many finitely generated groups that are not residually

finite but have infinite profinite completion, such as the Baumslag–Solitar
groups

BS(m,n) =
〈
a, b : b am b−1 = an

〉
, m > n > 1.

Since this is a finitely presented group, it can be realized as the fundamental
group of a closed manifold. A useful tool to produce finitely generated
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groups with infinite profinite completion that are not necessarily residually
finite is the following, communicated to us by B. Farb:

Proposition 3.2. — If L is a finitely generated infinite subgroup of a
Lie group G, then L has infinite profinite completion.

Proof. — Consider the image of L under adjoint representation Ad: G→
GL(g). By the Selberg–Malcev Lemma, Ad(L) is residually finite. Thus, if
Ad(L) is infinite, then so is ι(Ad(L)) ⊂ Âd(L). By the universal property
of L, since Âd(L) is profinite, the homomorphism ι ◦ Ad factors through a
homomorphism L̂→ ι(Ad(L)), hence L̂ must also be infinite. Else, if Ad(L)
is finite, then L∩Z(G) has finite index in L and is hence a finitely generated
abelian group. Thus, L ∩ Z(G) is residually finite, and hence so is L. This
implies that L→ L̂ is injective, so L̂ is infinite. �

Example 3.3. — According to Deligne [20], the universal central exten-
sion of Sp(2n,Z), which is the inverse image ˜Sp(2n,Z) of Sp(2n,Z) in the
universal covering of Sp(2n,R), is not residually finite for all n > 2. How-
ever, ˜Sp(2n,Z) is a lattice in a connected Lie group, hence it has infinite
profinite completion by Proposition 3.2.

Example 3.4. — Any group with positive first (rational) Betti number
has infinite profinite completion.

Remark 3.5. — It is generally difficult to exhibit finitely generated
groups with finite profinite completion, besides simple groups. One such
example is the Higman group

Hig =
〈
a, b, c, d : a−1 b a = b2, b−1 c b = c2, c−1 d c = d2, d−1 a d = a2〉,

which is infinite, finitely presented, and has no proper normal subgroups
of finite index.

3.3. Coverings

Let Σ be a closed manifold with fundamental group G = π1(Σ). Recall
that there is a natural bijective correspondence between conjugacy classes
of subgroups of G and equivalence classes of coverings of Σ. The trivial
subgroup of G corresponds to the universal covering Σ̃ → Σ. A normal
subgroup ΓCG of index n = [G : Γ] corresponds to the n-sheeted regular
covering Σ̃/Γ→ Σ, where Σ̃/Γ is the quotient by the restriction to Γ of the
monodromy action of G on Σ̃. The group of deck transformations of this
covering Σ̃/Γ→ Σ is G/Γ, and π1(Σ̃/Γ) = Γ.

TOME 68 (2018), FASCICULE 2



598 Renato G. BETTIOL & Paolo PICCIONE

Lemma 3.6. — Let Σ be a closed manifold, G = π1(Σ). The following
are equivalent:

(1) G has infinite profinite completion;
(2) There exists an infinite nested sequence of normal subgroups ΓjCG,

· · · ( Γj ( · · · ( Γ2 ( Γ1 ( G,

with finite index nj = [G : Γj ], 2 6 nj <∞;
(3) For any V > 0 and any Riemannian metric h on Σ, there is a finite-

sheeted regular covering ρ : Σ̃/Γ→ Σ such that Vol(Σ̃/Γ, ρ∗h) > V .

Proof. — The equivalence between (1) and (2) follows from the definition
of limit of an inverse system. The equivalence between (2) and (3) follows
from the correspondence between normal subgroups Γ C G and regular
coverings Σ̃/Γ → Σ described above, using the fact that Vol(Σ̃/Γ, ρ∗h) =
[G : Γ] Vol(Σ,h). �

Remark 3.7. — The statements (2) and (3) in Lemma 3.6 remain equiv-
alent to (1) even if we remove the words “normal” from (2) and “regular”
from (3).

3.4. Multiplicity of solutions

We now combine the above discussion of covering spaces with Theo-
rem 2.1 to prove Theorem 1.3.

Proof of Theorem 1.3. — Set λ0 = max{0,− scalh
scalg }. Fix λ > λ0 and

consider the product manifold
(
M × Σ, g ⊕ λ h

)
, which has constant pos-

itive scalar curvature. We are going to define a sequence gj of metrics on
finite-sheeted regular coverings of M ×Σ with constant positive scalar cur-
vature, such that the pull-backs of gj toM×Σ̃ provide the desired periodic
solutions.
If A(g ⊕ λ h) > Y

(
M × Σ, [g ⊕ λ h]

)
, then let g1 be a Yamabe metric in

[g⊕ λ h], see Theorem 2.1. Otherwise, if A(g⊕ λ h) = Y
(
M ×Σ, [g⊕ λ h]

)
,

i.e. g⊕λ h is a Yamabe metric, then by Lemma 3.6 there is a finite-sheeted
regular covering Σ1 → Σ such that the product map p1 : M ×Σ1 →M ×Σ
of the identity in M and Σ1 → Σ satisfies

Vol
(
M × Σ1, p

∗
1(g ⊕ λ h)

) 2
n scalg⊕λ h > Y

(
Sn, [ground]

)
.

By Theorem 2.1, there is a Yamabe metric g1 in [p∗1(g⊕λ h)] with constant
positive scalar curvature. Note that g1 is not isometric to p∗1(g⊕λ h) since
they lie in different levelsets of the functional A on this conformal class.
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NONCOMPACT YAMABE PROBLEM 599

The fundamental group of Σ1 is a finite index normal subgroup of π1(Σ),
hence its profinite completion is also infinite. Applying Lemma 3.6 again,
there is a finite-sheeted regular covering Σ2 → Σ1 such that the product
map p2 : M × Σ2 →M × Σ1 of the identity in M and Σ2 → Σ1 satisfies

Vol
(
M × Σ2, p

∗
2(g1)

) 2
n scalg1 > Y

(
Sn, [ground]

)
.

By Theorem 2.1, there is a Yamabe metric g2 in [p∗2(g1)] with constant
positive scalar curvature. Once more, g2 is not isometric to p∗2(g1) since
they have different values of A.
Proceeding inductively in the above manner, we obtain an infinite se-

quence of finite-sheeted regular coverings

. . . −→ Σj −→ . . . −→ Σ2 −→ Σ1 −→ Σ ,

such that the maps pj : M × Σj →M × Σj−1 satisfy

Vol
(
M × Σj , p∗j (gj−1)

) 2
n scalgj−1 > Y

(
Sn, [ground]

)
,

and gj is a Yamabe metric in [p∗j (gj−1)], which has constant positive scalar
curvature and is not isometric to p∗j (gj−1). The pull-backs of gj to M × Σ̃
clearly lie in the conformal class of g ⊕ λ h̃ and any two such metrics are
related by a nonconstant conformal factor, providing the desired infinitely
many periodic solutions. �

The main technique in the above proof can be seen as an extension
of some arguments of Hebey and Vaugon [24] to a more general class of
manifolds. We also observe that the Yamabe invariant of a closed manifold
is known to be strictly smaller than the Yamabe invariant of any of its
proper finite-sheeted coverings, see [4, Thm. 6] and [2, Lem. 3.6].

Remark 3.8. — Despite the fact that at each step in the above con-
struction the new metric gj with constant scalar curvature on M × Σj is
not isometric to the previous one p∗j (gj−1), in this level of generality, we
cannot guarantee that their pull-backs toM×Σ̃ remain nonisometric. This
corresponds to determining whether two distinct conformal factors can be
obtained from one another by composition with a conformal diffeomor-
phism, see Remark 2.2.
More information in this regard may be available in some particular cases,

such as whenM×Σ̃ is Sm×Hd with its standard metric. Since the conformal
group of (Sm×Hd, ground⊕ghyp) coincides with its isometry group, it follows
that none of the infinitely many new metrics with constant scalar curvature
are isometric to ground ⊕ ghyp. However, some of these infinitely many new
metrics may be isometric to one another.
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As explained in the Introduction, Theorem 1.1 is a consequence of The-
orem 1.3, Example 3.1, and [13, Thm. A].

3.5. Singular Yamabe problem

Given a closed manifold (M, g) and a closed subset Λ ⊂M , the singular
Yamabe problem consists of finding a complete metric g′ on M \ Λ that
has constant scalar curvature and is conformal to g. In other words, these
are solutions to the Yamabe problem on M that blow up on Λ. Consider
the case in which (M, g) is the round sphere (Sm, ground) and Λ = Sk is
a round subsphere, which was also studied in [12, 33, 34, 40]. There is a
conformal equivalence

(3.2) f :
(
Sm \ Sk, ground

)
→
(
Sm−k−1 ×Hk+1, ground ⊕ ghyp

)
,

given by first using the stereographic projection with a point in Sk to obtain
a conformal equivalence with (Rm \Rk, gflat), and second using cylindrical
coordinates gflat = d r2 + r2 d θ2 + d y2 to conclude that 1

r2 gflat = ground ⊕
ghyp, see also [12, 34].
The conformal equivalence (3.2) provides a trivial solution f∗(ground ⊕

ghyp) to the singular Yamabe problem on Sm \ Sk, with constant scalar
curvature equal to scalm,k = (m− 2k − 2)(m− 1). If k > (m− 2)/2, then
scalm,k < 0 and this is the unique solution by an argument involving the
asymptotic maximum principle [33]. Furthermore, this trivial solution is the
unique periodic solution if k = (m− 2)/2, since then scalm,k = 0 and any
two conformal metrics with vanishing scalar curvature on a closed manifold
are homothetic [5, p. 175]. Thus, nonuniqueness of periodic solutions on
Sm \ Sk is only possible in the range 0 6 k < (m − 2)/2. The existence
of infinitely many periodic solutions on this entire range (Corollary 1.2)
follows from Theorem 1.1 applied to Sm−k−1×Hk+1 and Sm−1×R, together
with the conformal equivalences (3.2) and Sm\{±p} ∼= Rm\{0} ∼= Sm−1×R.
Existence of infinitely many (nonisometric) periodic solutions in the case
Λ = S1 is a great circle, i.e. k = 1, m > 5, was recently obtained using
bifurcation techniques [12].
By Remark 3.8, none of these periodic solutions on Sm \Sk are isometric

to the trivial solution. We conjecture that, furthermore, they are pairwise
nonisometric.
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4. Multiplicity of solutions via collapse of flat manifolds

In this section, we employ another method to obtain multiplicity of so-
lutions to the Yamabe problem on noncompact product manifolds using
bifurcation theory. This technique provides further information on the lo-
cal structure of the space of solutions, and has been previously applied to
the Yamabe problem in [10, 11, 12, 37].

4.1. Flat manifolds

Let (F,h) be a closed flat manifold. It is well-known that (F,h) is iso-
metric to the orbit space Rd/π of a free isometric action on Rd of a discrete
cocompact group π, the fundamental group of F . Often, such groups are
called Bieberbach groups, and, accordingly, F is called a Bieberbach man-
ifold. In what follows, for the convenience of the reader, we provide an
overview of basic facts regarding such groups and manifolds; for more de-
tails see [9, 15, 18, 42, 44].
Let Aff(Rd) = GL(d) n Rd be the group of affine transformations of Rd,

and Iso(Rd) = O(d) n Rd be the subgroup of rigid motions. Elements of
Aff(Rd) and Iso(Rd) are denoted by (A, v), with A ∈ GL(d) or O(d) and
v ∈ Rd; the group operation is (A, v) (B,w) = (AB,Aw + v). The natural
action of these groups on Rd is given by (A, v) ·w = Aw+ v. We denote by

r : Aff(Rd) −→ GL(d), r(A, v) = A,

the projection homomorphism. Furthermore, given a subgroup π ⊂ Iso(Rd),
we denote by t(π) the normal subgroup of pure translations in π, defined
as:

t(π) = π ∩ ker(r).
Note that there is a short exact sequence

(4.1) 1 −→ t(π) −→ π −→ r(π) −→ 1.

A discrete subgroup π ⊂ Iso(Rd) is called crystallographic if it has compact
fundamental domain in Rd, so that Rd/π is a compact flat orbifold. A
crystallographic group π acts freely in Rd if and only if it is torsion-free,
in which case Rd/π is a closed flat manifold, and π is called a Bieberbach
group.
The most important facts about such groups are summarized by the

following results of Bieberbach, which provided an answer to Hilbert’s 18th
problem:
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Bieberbach Theorems (Algebraic version). — The following
hold:

I. If π ⊂ Iso(Rd) is a crystallographic group, then r(π) is finite and
t(π) is a lattice that spans Rd.

II. Let π, π′ ⊂ Iso(Rd) be crystallographic subgroups. If there exists
an isomorphism f : π → π′, then f is a conjugation in Aff(Rd), i.e.
there exists α ∈ Aff(Rd) such that f(β) = αβα−1 for all β ∈ π.

III. For all d, there are only finitely many isomorphism classes of crys-
tallographic subgroups of Iso(Rd).

The geometric interpretation of these statements in terms of Bieberbach
manifolds F = Rd/π is as follows:

Bieberbach Theorems (Geometric version). — The following
hold:

I. If (F,h) is a closed flat manifold with dimF = d, then (F,h) is
covered by a flat torus of dimension d, and the covering map is a
local isometry.

II. If F and F ′ are closed flat manifolds of the same dimension with
isomorphic fundamental groups, then F and F ′ are affinely equiv-
alent.

III. For all d, there are only finitely many affine equivalence classes of
closed flat manifolds of dimension d.

The torus covering F = Rd/π is given by T d = Rd/t(π), and r(π) ⊂
O(d) is the holonomy group of (F,h). Since the holonomy of a Riemannian
manifold depends only on its affine structure, it follows that any two flat
metrics on a closed manifold F have isomorphic holonomy groups.

4.2. Moduli space of flat metrics

The moduli spaceMflat(F ) of flat metrics on a closed manifold F = Rd/π
can be determined from the algebraic data in π, see [9, 44] for details.

In what follows, given groups H ⊂ G, we denote by NG(H) and ZG(H)
the normalizer and centralizer of H in G, respectively.

Lemma 4.1. — Two compact flat d-manifolds F = Rd/π and F ′ =
Rd/π′ are isometric if and only if there is (B,w) ∈ Iso(Rd) such that
(B,w)π (B,w)−1 = π′. Moreover, if π, π′ ⊂ Iso(Rd) are isomorphic Bieber-
bach groups, i.e. (A, v)π (A, v)−1 = π′ for some (A, v) ∈ Aff(Rd), then
F = Rd/π and F ′ = Rd/π′ are isometric if and only if A = BC, with
B ∈ O(d) and C ∈ Nπ := r

(
NAff(Rd)(π)

)
⊂ GL(d,R).
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Proof. — The first statement follows from lifting an isometry between
F and F ′ to an isometry of Rd. Thus, if π and π′ are isomorphic, then
F and F ′ are isometric if and only if there exists (B,w) ∈ Iso(Rd) such
that (B,w)π (B,w)−1 = (A, v)π (A, v)−1, i.e. (C, z) := (B,w)−1(A, v) ∈
NAff(Rd)(π). If F and F ′ are isometric, then clearly A = BC, with B ∈ O(d)
and C ∈ Nπ. Conversely, assume A = BC, with B ∈ O(d) and C ∈ Nπ.
By definition, there exists z ∈ Rd such that (C, z) ∈ NAff(Rd)(π). Set w =
v−Bz, so that (A, v) = (B,w) (C, z). Clearly, (B,w)−1(A, v) ∈ NAff(Rd)(π),
so F and F ′ are isometric. �

We associate to each closed flat manifold F = Rd/π the closed cone

(4.2)
CF :=

{
A ∈ GL(d,R) : ABA−1 ∈ O(d) for all B ∈ r(π)

}
=
{
A ∈ GL(d,R) : AtA ∈ ZGL(d,R)

(
r(π)

)}
,

where At is the transpose of A. It is easy to verify that CF contains
NGL(d,R)

(
r(π)

)
, and if A ∈ CF , then (At)−1 ∈ CF . Moreover, left-multi-

plication defines an O(d)-action on CF , and right-multiplication defines a
NGL(d,R)

(
r(π)

)
-action on CF .

Given a Bieberbach group π ⊂ Iso(Rd), denote by hπ the flat metric on
F = Rd/π for which the covering map Rd → Rd/π is Riemannian, i.e. a
local isometry. The following characterization of the moduli spaceMflat(F )
can be found in [9, 44].

Proposition 4.2. — For any flat metric h on F , there exists A ∈ CF
and v ∈ Rd such that h is isometric to hπ′ , where π′ = (A, v)π (A, v)−1 ⊂
Iso(Rd). Furthermore, hπ is isometric to hπ′ if and only if A = BC, with
B ∈ O(d) and C ∈ Nπ. Thus, the moduli space of flat metrics on F is the
double coset spaceMflat(F ) ∼= O(d)\CF /Nπ.

Proof. — The flat metric h must be of the form hπ′ for some Bieberbach
group π′ ⊂ Iso(Rd). Since Rd/π and Rd/π′ are both diffeomorphic to F , π
and π′ must be isomorphic. By the Bieberbach Theorems II, there exists
A ∈ CF and v ∈ Rd such that π′ = (A, v)π (A, v)−1. By Lemma 4.1, the
metrics hπ and hπ′ are isometric if and only if A = BC, with B ∈ O(d)
and C ∈ Nπ, concluding the proof. �

4.3. Collapse of flat manifolds

Given a Bieberbach group π ⊂ Iso(Rd), A ∈ CF and v ∈ Rd, if π′ =
(A, v)π (A, v)−1, then clearly Vol(F,hπ′) = det(A) Vol(F,hπ). We exploit
this fact together with the above facts aboutMflat(F ) to show that every
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closed flat manifold (of dimension > 2) admits a 1-parameter family of
collapsing flat metrics; which implies it can be squeezed just as the square
torus R2/Z2 ∼= S1(1)×S1(1) can be squeezed through the family of flat tori
S1(t)× S1(1/t), t > 0.

Proposition 4.3. — Any closed flat manifold (F,h) admits a real-
analytic family ht of flat metrics with h1 = h, Vol(F,ht) = Vol(F,h),
and diam(F,ht)↗ +∞ as t↘ 0.

Proof. — By a result of Hiss and Szczepański [27], the holonomy repre-
sentation of any closed flat manifold F = Rd/π is reducible. Let E ⊂ Rd be
a nontrivial invariant subspace and let E⊥ be its orthogonal complement,
which is also invariant as the representation is orthogonal. Denote by P

and P⊥ the orthogonal projections of Rd onto E and E⊥ respectively. It is
easy to see that, for all t > 0, the linear maps

(4.3) At := tdimE−d · P + tdimE · P⊥ ∈ GL(d,R)

satisfy At ∈ CF and det(At) = 1. Thus, the metrics ht := hπt where
πt = (At, 0)π (At, 0)−1, i.e. the metrics ht ∈ Mflat(F ) corresponding to
the double coset of At, have fixed volume and arbitrarily large diameter as
t↘ 0 (or t↗ +∞). �

4.4. Eigenvalues of the Laplacian

All nonzero eigenvalues λj(F,ht) of the Laplacian of the above collaps-
ing family (F,ht) of flat manifolds are nonconstant real-analytic functions
of t. Indeed, there is a Riemannian covering Rd/t(πt) → Rd/πt, where
t(πt) = At(t(π)), and the spectrum of ∆ht is contained in the spectrum of
the Laplacian of the flat torus Rd/t(πt). The dual lattice to t(πt) is given
by t(πt)∗ =

(
(At)t)−1(t(π)∗), and by [7, p. 146] the eigenvalues of the

Laplacian of Rd/t(πt) are 4π‖x‖2, with x ∈ t(πt)∗, which are nonconstant
polynomials in t and 1

t , proving the above claim.

Proposition 4.4. — For any closed flat manifold F and all ε > 0 and
j ∈ N, there exists a unit volume flat metric h on F such that λj(F,h) < ε.

Proof. — By a classical estimate of Cheng [19, Cor. 2.2], since (F,h) has
Ric > 0 and dimF = d, then

(4.4) λj(F,h) 6 2j2 d(d+ 4)
diam(F,h)2 .

By Proposition 4.3, there are unit volume flat metrics h on F for which the
right-hand side of the above is arbitrarily small, concluding the proof. �
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4.5. Bifurcation of solutions

LetM be a closed manifold and gt be a 1-parameter family of unit volume
constant scalar curvature metrics on M . We say that t∗ is a bifurcation
instant for gt if there exist sequences {tq}q∈N converging to t∗ and {φq}q∈N
of smooth nonconstant positive functions on M such that:

(1) φq → 1 in the C2,α-topology;
(2) gq := φq · gtq is a unit volume constant scalar curvature metric

on M .
Applying standard variational bifurcation results to the Hilbert–Einstein

functional on conformal classes of metrics, one obtains the following crite-
rion for bifurcation of solutions to the Yamabe problem, see e.g. [31].

Theorem 4.5. — LetM be a closed manifold of dimension n > 3 with a
1-parameter family gt of unit volume metrics with constant scalar curvature
scalgt

. Let i(M, gt) be the number of eigenvalues of ∆gt
, counted with

multiplicity, that are < scalgt

n−1 . Assume that:

(1) scalgt

n−1 6∈ Spec(∆gt
) \ {0} for all t 6= t∗;

(2) i(M, gt∗−ε) 6= i(M, gt∗+ε) for some small ε > 0.
Then t∗ is a bifurcation instant for the family gt.

A discussion on the convergence of bifurcating branches of constant scalar
curvature metrics φq → 1 can be found in [37, Sec. 3]. As a consequence
of Theorem 4.5, we have the following criterion for bifurcation of products
with flat manifolds:

Corollary 4.6. — Let (M, g) be a closed unit volume Riemannian
manifold with positive constant scalar curvature scalg. Let F be a closed
flat manifold and ht, t ∈ [t∗− ε, t∗+ ε], be a 1-parameter family of flat unit
volume metrics on F . Set
(4.5)

it := #
{

(j1, j2) : j1, j2> 0, λj1(M, g) + λj2(F,ht)<
scalg

dimM + dimF − 1

}
,

and assume:
(1) for all t 6= t∗ and all 0 6 j 6 i(M, g)− 1,

(4.6) scalg
dimM + dimF − 1 − λj(M, g) 6∈ Spec(∆ht

) ;

(2) it∗−ε 6= it∗+ε for some small ε > 0.
Then t∗ is a bifurcation instant for the family of metrics g⊕ ht on M ×F .
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Remark 4.7. — Note that the bifurcating branch in Corollary 4.6 issuing
from the family of product metrics g⊕ht does not contain any other product
metrics. Indeed, two product metrics are conformal if and only if they are
homothetic.

We are now ready to establish the bifurcation result for the Yamabe
problem on closed product manifolds M × F , which lies at the core of the
multiplicity result for M × Rd in Theorem 1.4.

Theorem 4.8. — Let (F,h) be a closed flat manifold with unit volume.
There exists a real-analytic family ht, t ∈ (0,+∞), of unit volume flat
metrics on F , with h1 = h, such that, if (M, g) is a unit volume closed
Riemannian manifold with constant positive scalar curvature, there is a
discrete countable set of bifurcation instants for the family of metrics g⊕ht
on M × F .

Proof. — The desired sequence of bifurcation instants is obtained by
repeatedly applying Corollary 4.6. Let ht be the family of metrics on F

given by Proposition 4.3.
First, we claim that for all % > 0, the only possible accumulation points of

D% =
{
t ∈ (0,+∞) : % ∈ Spec

(
∆g⊕ht

)}
are 0 and +∞. Indeed, the spectrum Spec

(
∆g⊕ht

)
is the set of eigenvalues

λj1(M, g) + λj2(F,ht) , j1, j2 > 0 ,

and the functions t 7→ λj(F,ht) are polynomials in t and 1
t . Thus, for

all fixed %, j1, and j2, the set of t’s for which λj1(M, g) + λj2(F,ht) = %

is finite. Moreover, for each compact interval [a, b] ⊂ (0,+∞), there are
only finitely many pairs (j1, j2) such that λj1(M, g) + λj2(F,ht) = % for
some t ∈ [a, b]. Therefore, D% ∩ [a, b] is finite, proving the claim. Setting
% = scalg

dimM+dimF−1 , it follows that (4.6) in assumption (a) of Corollary 4.6
holds for all t ∈ (0,+∞) outside a locally finite set.
Second, we claim that it ↗ +∞ as t ↘ 0, where it is defined in (4.5).

Setting

N0 := max
{
j > 0 : λj(M, g) < scalg

dimM + dimF − 1

}
,

it is easy to see that

(4.7) it > #
{
j > 0 : λj(F,ht) <

scalg
dimM + dimF − 1 − λN0(M, g)

}
.
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Since diam(F,ht) becomes arbitrarily large as t↘ 0, we also have that

lim
t↘0

diam
(
M × F, g ⊕ ht

)
= lim
t↘0

√
diam(M, g)2 + diam(F,ht)2 = +∞ .

Thus, by Cheng’s eigenvalue estimate (4.4), see Proposition 4.4, we find
that the right-hand side of (4.7) becomes unbounded as t↘ 0.
Therefore, Corollary 4.6 can be applied to an infinite sequence of suf-

ficiently small t∗ ∈ (0,+∞), yielding the desired sequence of bifurcation
instants. �

Finally, Theorem 1.4 in the Introduction follows from Theorem 4.8 ap-
plied to the closed manifoldM×F , where F = Rd/π, which can be assumed
to have unit volume by to rescaling. Note that the pull-back to M × Rd
of metrics on M × F with constant scalar curvature that are conformal to
g⊕ht are π-periodic solutions to the Yamabe problem on

(
M×Rd, g⊕gflat

)
.
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